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Abstract

This paper is devoted to the semiclassical analysis of the best constants in the magnetic Sobolev embeddings in the case of a 
bounded domain of the plane carrying Dirichlet conditions. We provide quantitative estimates of these constants (with an explicit 
dependence on the semiclassical parameter) and analyze the exponential localization in L∞-norm of the corresponding minimizers 
near the magnetic wells.
© 2015 
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1. Preliminary considerations and main results

We are interested in the following minimization problem. For the sake of simplicity, we consider a simply connected 
bounded domain � ⊂ R

2, p ∈ [2, +∞), h > 0 and a smooth vector potential A on �. We introduce the following 
“nonlinear eigenvalue” (or optimal magnetic Sobolev constant):

λ(�,A,p,h) = inf
ψ∈H1

0(�),ψ �=0

Qh,A(ψ)(∫
�

|ψ |p dx
) 2

p

= inf
ψ∈H1

0(�),

‖ψ‖Lp(�)=1

Qh,A(ψ), (1.1)

where the magnetic quadratic form is defined by

∀ψ ∈ H1
0(�), Qh,A(ψ) =

∫
�

|(−ih∇ + A)ψ |2 dx.

The Dirichlet realization of the magnetic Laplacian on � (defined as the Friedrichs extension) is denoted by Lh,A
whose domain is

Dom
(
Lh,A

) = {ψ ∈ Dom(Qh,A) = H1
0(�) : (−ih∇ + A)2ψ ∈ L2(�)}.
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We recall that B = ∇ × A is called the magnetic field (with the notation A = (A1, A2), B = ∂2A1 − ∂1A2). Let us here 
notice that there exists a vast literature dealing with the case p = 2. In this case λ(�, A, 2, h) is the lowest eigenvalue 
of the magnetic Laplacian. On this subject, the reader may consult the books and reviews [8,11,20].

1.1. Motivations and context

Before describing the motivations of this paper, let us recall some basic facts concerning the minimization prob-
lem (1.1).

Lemma 1.1. The infimum in (1.1) is attained.

Proof. The proof is standard but we recall it for completeness. Consider a minimizing sequence (ψj) that is nor-
malized in Lp-norm. Then, by a Hölder inequality and using that � has bounded measure, (ψj ) is bounded in L2. 
Since A ∈ L∞(�), we conclude that (ψj ) is bounded in H1

0(�). By the Banach–Alaoglu Theorem there exists a sub-
sequence (still denoted by (ψj )) and ψ∞ ∈ H1

0(�) such that ψj ⇀ ψ∞ weakly in H1
0(�) and ψj → ψ∞ in Lq(�) for 

all q ∈ [2, +∞). This is enough to conclude. �
Let us now consider the (focusing) equation satisfied by the minimizers.

Lemma 1.2. The minimizers (which belong to H1
0(�)) of the Lp-normalized version of (1.1) satisfy the following 

equation in the sense of distributions:

(−ih∇ + A)2ψ = λ(�,A,p,h)|ψ |p−2ψ, ‖ψ‖Lp(�) = 1. (1.2)

In particular (by Sobolev embedding), the minimizers belong to the domain of Lh,A.

This paper is motivated by the seminal paper [7] where the minimization problem (1.1) is investigated for � =R
d

and with a constant magnetic field (and also in the case of some nicely varying magnetic fields). In particular, Esteban 
and Lions prove the existence of minimizers by using the famous concentration-compactness method. In the present 
paper, we want to describe the minimizers as well as the infimum itself in the semiclassical limit h → 0. The naive 
idea is that, locally, modulo a blow up argument, they should look like the minimizers in the whole plane. In our paper, 
we will also allow the magnetic field to vanish and this will lead to other minimization problems in the whole plane 
which are interesting in themselves and for which the results of [7] do not apply.

Another motivation to consider the minimization problem (1.1) comes from the recent paper [5]. Di Cosmo and Van 
Schaftingen analyze a close version of (1.1) in � ⊂ R

d in the presence of an additional electric potential. Note here 
that, as for the semiclassical analysis in the case p = 2, if there is a non-zero electric potential, then the minima of V
tend to attract the bound states, independently from the presence of the magnetic field [15]; in [5] the electric potential 
is multiplied by h and plays on the same scale as B which cannot be treated as a perturbation. These authors prove, 
modulo subsequences extractions of the semiclassical parameter, that the asymptotics of the optimal Sobolev constant 
(with electro-magnetic field) is governed by a family of model minimization problems with constant magnetic fields 
and electric potentials. They also establish that we can find minimizers of (1.1) which are localized near the minima 
of the “concentration function”. This function is nothing but the infimum of the model problem in Rd , depending on 
the point x where the blow up occurs. In all their estimates, these authors do not quantify the convergence with an 
explicit dependence on h.

In our paper we will especially tackle this question in dimension two in the case of a pure magnetic field and we 
will see how this refinement can be applied to get localization estimates. As in [5], we will first give upper bounds 
of λ(�, A, p, h), but with quantitative remainders. This will be the constructive and explicit part of the analysis, 
relying on the model minimization problems. Note that this is the only part of our analysis where the concentration-
compactness method will be used, to analyze model problems with vanishing magnetic fields. Then we will establish 
lower bounds and localization estimates. For that purpose, inspired by the linear spectral techniques (see for instance 
[8, Part I]), we will provide an alternative point of view to the semiclassical concentration-compactness arguments 
of [5] by using semiclassical partitions of unity adapted simultaneously to the Lp-norm and the magnetic quadratic 
form. Moreover, in the case of non-vanishing magnetic fields, we will establish exponential decay estimates of all 
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the minimizers of (1.1) away from the magnetic wells (the minima of B). In fact, we will use the philosophy of the 
semiclassical linear methods: the more accurate the estimate of λ(�, A, p, h) obtained, the more refined is the local-
ization of the bound states. A very rough localization estimate of the bound states in Lp-norm (directly related to the 
remainders in the estimates of λ(�, A, p, h)) will then be enough to get an a priori control of the nonlinearity and 
the investigation will be reduced to the well-known semiclassical concentration estimates à la Agmon (see [1,14,10]), 
jointly with standard elliptic estimates. Finally, note that our investigation deals with the magnetic analog of the pure 
electric case of [22] (see also [4]). We could include in our analysis an electric potential, but we refrain to do so to 
highlight the pure magnetic effects.

1.2. Results

We would like to provide an accurate description of the behavior of λ(�, A, p, h) when h goes to zero. Locally, we 
can approximate by either a constant magnetic field, or a magnetic field having a zero of a certain order. Therefore, 
we introduce the following notation.

Definition 1.3. For k ∈N, we define

λ[k](p) = λ(R2,A[k],p,1) = inf
ψ∈Dom(QA[k] ),ψ �=0

QA[k](ψ)

‖ψ‖2
Lp

, (1.3)

where A[k](x, y) =
(

0, xk+1

k+1

)
. Here

QA[k](ψ) =
∫
R2

|(−i∇ + A[k])ψ |2 dx,

with domain

Dom(QA[k]) =
{
ψ ∈ L2(R2) : (−i∇ + A[k])ψ ∈ L2(R2)

}
.

In the case k = 0 and p ≥ 2, it is known that the infimum is a minimum (see [7]). We will prove in this paper 
that, for k ≥ 1 and p > 2, the minimum is also attained, even if the corresponding magnetic field does not satisfy the 
assumptions of [7].

We can now state our first theorem concerning the case when the magnetic field does not vanish.

Theorem 1.4. Let p ≥ 2. Let us assume that A is smooth on �, that B = ∇ × A does not vanish on � and that its 
minimum b0 is attained in �. Then there exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0),

(1 − Ch
1
8 )λ[0](p)b

2
p

0 h2h
− 2

p ≤ λ(�,A,p,h) ≤ (1 + Ch1/2)λ[0](p)b
2
p

0 h2h
− 2

p .

Moreover, if the magnetic field is only assumed to be smooth and positive on � (with a minimum possibly on the 
boundary), the lower bound is still valid.

Remark 1.5. The error estimate in the upper bound in Theorem 1.4 matches the corresponding bound in the well-

known linear case and we expect it to be optimal. However, the relative error of h
1
8 in the lower bound is unlikely to 

be best possible. The same remark applies to the error bounds in Theorem 1.8.

In the following theorem, we state an exponential concentration property of the minimizers.

Theorem 1.6. Let p > 2, ρ ∈
(

0, 1
2

)
, ε > 0 and consider the same assumptions as in Theorem 1.4 and also assume 

that the minimum is unique and attained at x0 ∈ �.
Then there exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0) and all ψ solution of (1.2), we have

‖ψ‖L∞(�D(x0,2ε)) ≤ Ce−Ch−ρ ‖ψ‖L∞(�),

where D(x, R) denotes the open ball of center x and radius R > 0.
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Remark 1.7. In Theorem 1.6, if the minimum of the magnetic field is non-degenerate, we can replace ε by hγ with 
γ > 0 sufficiently small. In Theorem 1.6, we have the same kind of results in the case of multiple wells. Theorems 1.4
and 1.6 are quantitative improvements of [5, Theorem 1.1] in the pure magnetic case. We can notice that, when p > 2, 
we have

(−ih∇ + A)2ϕ = |ϕ|p−2ϕ, (1.4)

with ϕ = λ(�, A, p, h)
1

p−2 ψ . Thus, we have constructed solutions of (1.4) which decay exponentially away from the 
magnetic wells in the semiclassical limit.

The following theorem analyzes the case when the magnetic field vanishes along a smooth curve.

Theorem 1.8. Let p > 2. Let us assume that A is smooth on �, that

� = {x ∈ � : B(x) = 0},
satisfies that � ⊂ � is a smooth, simple and closed curve, and that B vanishes non-degenerately along � in the sense 
that

∇B(x) �= 0, for all x ∈ �.

Assuming that B is positive inside � and negative outside, we denote by γ0 > 0 the minimum of the normal derivative 
of B with respect to �. Then there exist C > 0 and h0 > 0 such that, for all h ∈ (0, h0),

(1 − Ch
1
33 )λ[1](p)γ

4
3p

0 h2h
− 4

3p ≤ λ(�,A,p,h) ≤ (1 + Ch
1
3 )λ[1](p)γ

4
3p

0 h2h
− 4

3p .

Remark 1.9. The case p = 2 is treated in [6] (see also [18,12]). In [5], it is only stated that h−2+ 2
p λ(�, A, p, h)

goes to zero when h goes to zero. Moreover, by using the strategy of the proof of Theorem 1.6, one can establish an 
exponential decay of the ground states away from �.

1.3. Organization of the paper

In Section 2, we investigate the existence of minimizers of (1.3) and their decay properties. In Section 3, we 
provide the upper bounds stated in Theorems 1.4 and 1.8. Section 4 is devoted to the analysis of the corresponding 
lower bounds and to the proof of Theorem 1.6.

2. Minimizers of the models and exponential decay

2.1. Existence of bound states and exponential decay

We first recall the diamagnetic inequality and the so-called “IMS” formula (see [3,8]).

Lemma 2.1. We have, for u ∈ Dom(QA),

|∇|u|| ≤ |(−i∇ + A)u|, a.e.

which implies that

‖∇|u|‖2
L2(R2)

≤ QA(u).

Lemma 2.2. If χ is a Lipschitzian function and u ∈ Dom(Lh,A), then we have

Re〈Lh,Au,χ2u〉L2(�) =Qh,A(χu) − h2‖∇χ u‖2
L2(�)

(2.1)
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Finally, we recall the following useful lower bound (see for instance [2]),

Qh,A(u) ≥ h

∫
�

B|u|2 dx (2.2)

for all u ∈ H1
0(�).

We recall that we can define the Friedrichs extension of the electro-magnetic Laplacian as soon as the electric 
potential belongs to some Lq space.

Proposition 2.3. Let us consider A ∈ C∞(R2) and V ∈ Lq(R2), for some q > 1. For all u ∈ Dom(QA), we may define

QA,V (u) =
∫
R2

|(−i∇ + A)u|2 dx +
∫
R2

V |u|2 dx.

Then, for all ε > 0, there exists C > 0 such that

∀u ∈ Dom(QA), QA,V (u) ≥ (1 − ε)QA(u) − C‖u‖2
L2(R2)

. (2.3)

Furthermore, for all ε > 0 there exists R > 0 such that ∀u ∈ Dom(QA) with suppu ⊂ �D(0, R),

QA,V (u) ≥ (1 − ε)QA(u) − ε‖u‖2
L2(R2)

. (2.4)

Moreover, we may define the self-adjoint operator—the Friedrichs extension—LA,V of QA,V whose domain is

Dom(LA,V ) =
{
u ∈ Dom(QA) :

(
(−i∇ + A)2 + V

)
u ∈ L2(R2)

}
,

and

LA,V u =
(
(−i∇ + A)2 + V

)
u,

for all u ∈ Dom(LA,V ).

Proof. Let us recall the Sobolev embedding H1(R2) ⊂ Lr (R2): For all r ≥ 2 there exist C(r) > 0 such that for all 
u ∈ H1(R2),

‖u‖Lr (R2) ≤ C(r)(‖u‖L2(R2) + ‖∇u‖L2(R2)). (2.5)

In particular, for all v ∈ H1(R2) and all ε > 0, we apply this inequality to the rescaled function uε(x) = v(ε
r
2 x) to 

infer the rescaled version of the Sobolev embedding

‖v‖Lr (R2) ≤ C(r)(ε1− r
2 ‖v‖L2(R2) + ε‖∇v‖L2(R2)). (2.6)

With the diamagnetic inequality, this implies that, for all u ∈ Dom(QA), we have u ∈ Lr (R2) for all r ≥ 2 and QA,V (u)

is well defined. Then let us prove (2.3). We use the Cauchy–Schwarz inequality to get, for all u ∈ Dom(QA),∣∣∣∣∣∣∣
∫
R2

V |u|2 dx

∣∣∣∣∣∣∣ ≤ ‖V ‖Lq (R2)‖u2‖Lq′
(R2)

= ‖V ‖Lq (R2)‖u‖2
L2q′

(R2)
,

where 1
q

+ 1
q ′ = 1. Since q > 1, we have 1 < q ′ < +∞ so that with (2.6),

‖u‖2
L2q′

(R2)
≤ C̃(q ′)(ε1−q ′ ‖u‖2

L2(R2)
+ ε‖∇|u|‖2

L2(R2)
)

and so

‖u‖2
L2q′

(R2)
≤ C̃(q ′)(ε1−q ′ ‖u‖2

L2(R2)
+ εQA(u) + ε‖u‖2

L2(R2)
)

and (2.3) follows as well as the existence of the Friedrichs extension LA,V .
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Let us now prove (2.4). For all u ∈ Dom(QA) supported in �D(0, R),∣∣∣∣∣∣∣
∫
R2

V |u|2 dx

∣∣∣∣∣∣∣ ≤ ‖V ‖Lq (�D(0,R))‖u‖2
L2q′

(R2)
,

and we deduce∣∣∣∣∣∣∣
∫
R2

V |u|2 dx

∣∣∣∣∣∣∣ ≤ C2‖V ‖Lq (�D(0,R)‖|u|‖2
H1(R2)

= C2‖V ‖Lq (�D(0,R))

⎛⎜⎝‖u‖2
L2(R2)

+
∫
R2

|(−i∇ + A)u|2 dx

⎞⎟⎠ .

It remains to use that V ∈ Lq(R2) and to take R large enough to get (2.4). �
Proposition 2.4. For k = 0 and p ≥ 2, the infimum in (1.3) is a minimum. Moreover, if ψ is a minimizer, there exist η, 
C > 0 such that∫

e2η|x|(|ψ(x)|2 + |(−i∇ + A(x))ψ)(x)|2)dx ≤ C‖ψ‖2
L2(R2)

. (2.7)

Proof. The fact that the infimum is attained is proved in [7]. Let ψ be a minimizer such that ‖ψ‖Lp(R2) = 1.

We introduce the potential V = −λ0|ψ |p−2 ≤ 0 which—by (2.5)—belongs to Lq(R2) for all q ≥ 2
p−2 . By Proposi-

tion 2.3, we may consider the electro-magnetic Laplacian LA[0],V defined as the Friedrichs extension of the quadratic 
form

QA[0],V (u) =
∫
R2

|(−i∇ + A[0])u|2 dx +
∫
R2

V |u|2 dx, ∀u ∈ C∞
0 (R2).

We notice that ψ ∈ Dom(LA[0],V ), ψ �= 0 and LA0,V ψ = 0. With (2.4) in Proposition 2.3, for all ε > 0, there exists 
R0 > 0 such that, for all u ∈ Dom(QA[0]), such that supp (u) ⊂ �D(0, R0), we have

QA[0],V (u) ≥ (1 − ε)QA[0](u) − ε‖u‖2
L2(R2)

.

But we have QA[0](u) ≥ ‖u‖2
L2(R2)

, so that

QA[0],V (u) ≥ (1 − 2ε)‖u‖2
L2(R2)

.

From Persson’s theorem, we infer that inf spess(LA[0],V ) ≥ 1—with spess denoting the essential spectrum. Now, by 
definition, ψ is an eigenfunction associated with the eigenvalue 0 < 1 and, by Agmon estimates (see [19,1]), it has an 
exponential decay. �
Corollary 2.5. Let k ∈N and let ψ be a minimizer of (1.3).

• For any q ∈ [2, ∞), we have ‖ψ‖L2(R2) ≤ Cq‖ψ‖Lq (R2) ≤ C̃q‖ψ‖L2(R2).
• For any q ∈ [2, ∞), we have eη|x|ψ ∈ Lq(R2) and

‖eη|x|ψ‖Lq (R2) ≤ C‖ψ‖Lq (R2).

Proof. We give the proof for k = 0. The proof for k ≥ 1 is identical using Proposition 2.7 below instead of Proposi-
tion 2.4.
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It follows from Proposition 2.4 and the diamagnetic inequality (Lemma 2.1) that a minimizer ψ satisfies 
‖|ψ |‖H1(R2) ≤ C‖ψ‖L2(R2). Therefore, we get by the Sobolev inequality (2.5) that

‖ψ‖Lq (R2) ≤ C‖ψ‖L2(R2),

for any q ∈ [2, ∞). On the other hand, we can use the Hölder inequality, followed by the previous inequality, to 
estimate

‖ψ‖2
L2(R2)

≤ ‖ψ‖Lq (R2)‖ψ‖Lq′
(R2)

≤ C‖ψ‖Lq (R2)‖ψ‖L2(R2).

This proves the first parts of the corollary.
The exponential bound in Lq now follows from Proposition 2.4 and the diamagnetic inequality (Lemma 2.1) and 

the Sobolev inequality (2.5). �
We will need the following lemma.

Lemma 2.6. Let us consider R > 0 and a family of smooth vector potentials (An)n≥0 on D(0,R) such that Bn =
∇ × An → +∞ uniformly on D(0,R). Then, the lowest eigenvalue λNeu

1 (D(0, R), An) of the Neumann realization of 
the magnetic Laplacian (−i∇ + An)

2 on D(0, R) tends to +∞.

Proof. We start by introducing an auxiliary operator. Let R/2 ≤ r ≤ R and consider the non-magnetic Laplace oper-
ator −� on the annulus D(0, R) \ D(0, r) with Dirichlet condition at r and Neumann condition at R. If we let ζ(r)

be the lowest eigenvalue of this operator, then it is a simple fact that (R − r)2ζ(r) ≥ δ0 > 0 for some δ0 independent 
of r .

Let ψn be an L2-normalized ground state of the Neumann realization of the magnetic Laplacian (−i∇ + An)
2 on 

D(0, R). We let qn denote the quadratic form of (−i∇ + An)
2.

Assume for contradiction that λNeu
1 (D(0, R), An) remains bounded (along a subsequence). Let r < R and define 

mn(r) =
∫
D(0,r)

|ψn(x)|2 dx. We start by proving that mn(r) → 0 as n → ∞. In order to prove this, let us consider a 

partition of unity with χ2
1 + χ2

2 = 1, suppχ1 ⊂ D(0, r + R−r
2 ), χ1 = 1 on D(0, r) and such that |∇χ1|2 + |∇χ2|2 ≤

C

(R−r)2 . By the IMS-formula (2.1) we have

qn(ψn) ≥ qn(χ1ψn) + qn(χ2ψn) − C

|R − r|2
∫

{r≤|x|≤r+ R−r
2 }

|ψn|2 dx. (2.8)

Since χ1ψn has compact support in D(0, R), we can estimate, using (2.2),

qn(χ1ψn) ≥
∫

Bn|χ1ψn|2 dx ≥ (inf Bn)mn(r). (2.9)

Since, by assumption, qn(ψn) is bounded, we conclude that mn(r) → 0.
But now we can reconsider (2.8) to get, with the diamagnetic inequality,

qn(ψn) ≥ ζ(r)‖χ2ψn‖2
2 − Cmn(r + R−r

2 )

|R − r|2 . (2.10)

Since m(r + R−r
2 ) → 0 and ‖χ2ψn‖2

2 → 1 as n → ∞, we find

lim inf
n→∞ qn(ψn) ≥ ζ(r). (2.11)

But ζ(r) → ∞ as r → R, which is a contradiction. �
Proposition 2.7. For k ≥ 1 and p > 2, the infimum in (1.3) is a minimum. Moreover, if ψ is a minimizer, there exist η, 
C > 0 such that∫

e2η|x|(|ψ(x)|2 + |(−i∇ + A(x))ψ)(x)|2)dx ≤ C‖ψ‖2
L2(R2)

. (2.12)
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Proof. The existence of a minimizer is not a consequence of the results in [7]. Nevertheless we will also use the 
concentration-compactness method. For simplicity of notation we will write A instead of A[k] in this proof. Since 
k ≥ 1 is fixed there is no room for confusion.

Let us consider a minimizing sequence (un), with ‖un‖Lp(R2) = 1. We introduce the density measure μn = (|un|2 +
|(−i∇ + A)un|2) dx whose total mass μn(R

2) is bounded and we can assume that it converges to some μ > 0 up to 
the extraction of a subsequence. Indeed, if μ = 0, by the diamagnetic inequality, we would get that (|un|) goes to 0 in 
H1(R2) and thus in Lp(R2).

Since p > 2, as in [7] and using [16, Lemma 1], we are easily reduced to the “tightness” case (see Appendix A). 
In other words we may find a sequence xn = (xn, yn) such that

∀ε > 0, ∃R > 0, ∀n ≥ 1, μn(�D(xn,R)) ≤ ε. (2.13)

We introduce the translated function ûn(x) = un(x + xn) and An(x) = A(x + xn). Notice at this point that with our 
choice of vector potential A only depends on x = (x, y) through the first coordinate x. We have

QA(un) = QAn
(ûn) =

∫
R2

|Dxûn|2 +
∣∣∣∣(Dy + 1

k + 1
(x − xn)

k+1
)

ûn

∣∣∣∣2

dx.

From (2.13), we get 
∫
�D(0,R)

|ûn|2 dx ≤ ε, and we also have∫
D(0,R)

|Dxûn|2 +
∣∣∣∣(Dy + 1

k + 1
(x − xn)

k+1
)

ûn

∣∣∣∣2

dx ≤ C,

for some C independent of n. By the min-max principle, we have

λNeu
1 (D(0,R),An)

∫
D(0,R)

|ûn|2 dx

≤
∫

D(0,R)

|Dxûn|2 +
∣∣∣∣(Dy + 1

k + 1
(x − xn)

k+1
)

ûn

∣∣∣∣2

dx.

If |xn| → +∞, we get, by Lemma 2.6 that λNeu
1 (D(0, R), An) → +∞ and thus there exists N ≥ 1 such that, for all 

n ≥ N , ∫
D(0,R)

|ûn|2 dx ≤ ε.

We infer that (un) tends to 0 in L2(R2). Since the diamagnetic inequality implies that (|un|)n≥0 is bounded in H1, we 
get a contradiction to the assumption that ‖un‖p = 1 by using a Sobolev embedding. Therefore we may assume that xn

converges to some x∗ ∈ R. From this we infer that (∇ûn) is bounded in H1(D(0, R)) and since 
∫
�D(0,R)

|ûn|2 dx ≤ ε, 

we can use the Rellich Criterion [21, Theorem XIII.65] to see that we may assume that ûn converges in L2(R2) to 
some û∗. In fact, the relative compactness is also verified in Lq(R2) with q ≥ 2, since the Hölder inequality provides

∫
�D(0,R)

|ûn|q dx ≤
⎛⎜⎝ ∫
�D(0,R)

|ûn|2 dx

⎞⎟⎠
1
2
⎛⎜⎝ ∫
�D(0,R)

|ûn|2(q−1) dx

⎞⎟⎠
1
2

and that, by diamagnetism,∫
|ûn|2(q−1) dx ≤ ‖ûn‖q−1

L2q−2(R2)
≤ CQAn

(ûn)
q−1 ≤ C̃.
�D(0,R)
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Therefore we may assume that ûn converges in Lp(R2) so that we deduce, by translation invariance, 1 = ‖un‖Lp(R2) =
‖ûn‖Lp(R2) → ‖û∗‖Lp(R2) and thus ‖û∗‖Lp(R2) = 1. Moreover, up to extractions of subsequences and a diagonal argu-
ment, we can assume that (ûn) converges to û∗ weakly in H1

loc(R
2).

Then, we can conclude the proof. Indeed, we have, for all R > 0 and n ≥ 1,

QA(un) = QAn
(ûn) ≥

∫
D(0,R)

|Dxûn|2 +
∣∣∣∣(Dy + 1

k + 1
(x − xn)

k+1
)

ûn

∣∣∣∣2

dx

so that, due to the weak convergence in H1
loc(R

2),

lim inf
n→+∞QA(un) ≥

∫
D(0,R)

|Dxû∗|2 +
∣∣∣∣(Dy + 1

k + 1
(x − x∗)k+1

)
û∗

∣∣∣∣2

dx.

Therefore,

lim inf
n→+∞QA(un) ≥ QA∗(û∗) = QA(u∗),

where u∗(x, y) = û∗(x + x∗, y), A∗(x, y) = (0, 1
k+1 (x − x∗)k+1), and we also have ‖u∗‖Lp(R2) = 1. �

To stress the difference between the linear (p = 2) and the non-linear problem (p > 2) we include the following 
simple result.

Proposition 2.8. For k ≥ 1 and p = 2, the infimum in (1.3) is not a minimum.

Proof. For α ∈ R and k ≥ 1, we define the ‘Montgomery operator’ (or anharmonic oscillator) of order k,

H(k)(α) = D2
t +

( tk+1

k + 1
− α

)2
,

as a self-adjoint operator in L2(R). Let λ1,H(k)(α) be its ground state eigenvalue. By [9, Theorem 1.3], for all k ≥ 1, 

there exists a unique point α[k]
0 ∈ R such that the function α �→ λ1,H(k)(α) attains its minimum at α[k]

0 . Also λ1,H(k)(α) →
∞ as α → ∞. By partial Fourier transform in the y-coordinate and thanks to [21, Theorem XIII.85], we get

λ[k](p = 2) = λ1,H(k)(α
[k]
0 )

.

Suppose now by contradiction that ψ is an L2-normalized eigenfunction of the magnetic Laplacian (−i∇ + A[k])2

corresponding to λ[k](p = 2). Let ψ̃(x, α) ∈ L2(R2) be the partial Fourier transform of ψ in the y variable. In partic-
ular,

λ[k](2) =
∫
R

⎛⎝∫
R

|Dxψ̃ |2 +
∣∣∣∣(α − xk+1

k + 1

)
ψ̃

∣∣∣∣2

dx

⎞⎠ dα. (2.14)

By normalization and choosing δ > 0 small enough, we may assume that we have 
∫
{|α−α

[k]
0 |≥δ} |ψ̃(x, α)|2 dx dα ≥ 1/2. 

Using the continuity with respect to α and the uniqueness of the minimum, there exists ε > 0 such that

inf
{|α−α

[k]
0 |≥δ}

λ1,H(k)(α) ≥ λ1,H(k)(α
[k]
0 )

+ ε,

and so we get

λ[k](2) ≥
∫
R2

λ1,H(k)(α)|ψ̃(x,α)|2 dx dα

≥ (λ1,H(k)(α
[k]
0 )

+ ε)

∫
{|α−α

[k]|≥δ}

|ψ̃(x,α)|2 dx dα + λ1,H(k)(α
[k]
0 )

∫
{|α−α

[k]|<δ}

|ψ̃(x,α)|2 dx dα
0 0
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and thus

λ[k](2) ≥ λ1,H(k)(α
[k]
0 )

+ ε

2
.

This is a contradiction and finishes the proof. �
3. Upper bounds

This section is devoted to the proof of the upper bounds in Theorems 1.4 and 1.8.

3.1. Non-vanishing magnetic field

In this section we work under the assumptions of Theorem 1.4. Let us consider v a minimizer associated with (1.3)
for k = 0 and let

ψ(x) = h
− 1

p ei
φ(x)

h χ(x)v

(
x − x0

h
1
2

)
.

Here x0 denotes a point in � where the minimum of the magnetic field is obtained, χ ∈ C∞
0 (�), with χ ≡ 1 in a 

neighborhood of x0, and φ is a real function such that Ã = A + ∇φ satisfies in a fixed neighborhood of x0:∣∣∣Ã(x) − b0Ã[0](x)

∣∣∣ ≤ C|x − x0|2, Ã[0](x) = A[0](x − x0)

We have, by Corollary 2.5,∫
�

|ψ(x)|p dx =
∫
R2

χp

(
x0 + h

1
2 y

)
|v(y)|p dy =

∫
R2

|v(y)|p dy +O(h∞)‖v‖p

Lp(R2)

and, with the “IMS” formula,

Qh,A(ψ) = h
− 2

p

∫
�

χ2
(

x0 + h
1
2 y

)∣∣∣∣(−ih∇ + Ã
)

v

(
x − x0

h
1
2

)∣∣∣∣2

dx

+O(h∞)‖v‖2
L2(R2)

so that, for all ε > 0,

h
2
p Qh,A(ψ) ≤ (1 + ε)

∫
�

∣∣∣∣(−ih∇ + b0Ã[0])v

(
x − x0

h
1
2

)∣∣∣∣2

dx

+ (1 + ε−1)

∫
�

∣∣∣∣(Ã − b0Ã[0])v

(
x − x0

h
1
2

)∣∣∣∣2

dx +O(h∞)‖v‖2
L2(R2)

.

Due to the exponential decay of v given in Proposition 2.4, we have∫
R2

|y|4|v(y)|2 dy < +∞,

and thus

h
2
p Qh,A(ψ) ≤ (1 + ε)h2

∫
R2

∣∣∣(−i∇ + b0Ã[0])v(y)

∣∣∣2
dy

+ C2(1 + ε−1)h3
∫
R2

|v(y)|2 dx +O(h∞)‖v‖2
L2(R2)

.

We have by (2.2),
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∫
R2

∣∣∣(−i∇ + b0Ã[0])v(y)

∣∣∣2
dy ≥ b0

∫
R2

|v(y)|2 dy.

We deduce the upper bound:

h
2
p Qh,A(ψ) ≤

(
(1 + ε)h2 + b−1

0 C2(1 + ε−1)h3
)∫
R2

∣∣∣(−i∇ + b0Ã[0])v(y)

∣∣∣2
dy.

We take ε = h1/2 so that,

h
2
p λ(�,A,p,h) ≤

(
h2 + Ch5/2

) ∫
R2

∣∣∣(−i∇ + b0Ã[0]
)

v(y)

∣∣∣2
dy(∫

R2 |v(y)|p dy
) 2

p

.

We get

λ(�,A,p,h) ≤ h
− 2

p

(
h2 + Ch5/2

)
λ(1, b0Ã[0],p).

By homogeneity and gauge invariance, we have

λ(R2, b0Ã[0],p,1) = b
2
p

0 λ(R2,A[0],p,1).

We infer the upper bound

λ(�,A,p,h) ≤ h
− 2

p

(
b

2
p

0 h2λ(R2,A[0],p,1) + Ch
5
2

)
. (3.1)

So the upper bound of Theorem 1.4 is proved.

3.2. Vanishing magnetic field

Let us now work under the assumptions of Theorem 1.8. We can define the standard tubular coordinates in a 
neighborhood of a point x0 ∈ � which minimizes the normal derivative of B, � � x �→ ∂n,�B(x). These coordinates 
are defined through the local diffeomorphism �: (s, t) �→ c(s) + tn(c(s)) = x where c is a parametrization of �
such that |c′(s)| = 1 and n(c(s)) is the inward pointing normal of � at c(s), that is det(c′(s), n(c(s))) = 1. We may 
assume that �(0, 0) = x0. For further details, we refer to [8, Appendix F]. In these new coordinates the quadratic form 
becomes, for functions ψ supported near x0,

Qh,A(ψ) = Q̃h,A(ψ̃) =
∫ {

|hDtψ̃ |2 + (1 − tk(s))−2|(hDs + Ã)ψ̃ |2
}

(1 − tk(s))ds dt, (3.2)

with ψ̃(s, t) = eiϕ(s,t)/hψ(�(s, t)), where ϕ corresponds to a local change of gauge. Moreover we have let k(s) =
γ ′′(s) · n(γ (s)), and

Ã(s, t) = −
t∫

0

(1 − uk(s))B̃(s, u)du, with B̃(s, t) = B(�(s, t)).

Note that we also have, as soon as ψ is supported near �,∫
�

|ψ |p dx =
∫

|ψ̃ |p(1 − tk(s))ds dt.

We may write the following Taylor estimate∣∣∣∣Ã(s, t) + γ0
t2 ∣∣∣∣ ≤ C(|s|3 + |t |3).

2
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Let us consider w the complex conjugate of a minimizer associated with (1.3) for k = 1, normalized in Lp(R2) and let

ψ̃(s, t) = h
− 2

3p γ
2

3p

0 χ(s, t)w

(
γ

1
3

0
s

h
1
3

, γ
1
3

0
t

h
1
3

)
,

where χ ∈ C∞
0 (R2), χ ≡ 1 near 0, with suppχ sufficiently small.

We have, using the exponential decay of w,∫
|ψ̃(s, t)|p(1 − tk(s))ds dt =

∫
|w(σ, τ)|p(1 − τγ

− 1
3

0 h
1
3 k(h

1
3 γ

− 1
3

0 σ))dσ dτ +O(h∞)‖w‖p

Lp(R2)

so that,∫
|ψ̃(s, t)|p(1 − tk(s))ds dt ≥ (1 − Ch

1
3 )

∫
|w(σ, τ)|p dσ dτ.

Thanks to support considerations, we get∫ {
|hDt ψ̃ |2 + (1 − tk(s))−2|(hDs + Ã)ψ̃ |2

}
(1 − tk(s))ds dt

≤
∫ {

|hDt ψ̃ |2 + |(hDs + Ã)ψ̃ |2
}

ds dt + C

∫
|t |

{
|hDtψ̃ |2 + |(hDs + Ã)ψ̃ |2

}
ds dt.

With the exponential decay of w, we have∫
|t |

{
|hDt ψ̃ |2 + |(hDs + Ã)ψ̃ |2

}
ds dt ≤ Ch

5
3 h

− 4
3p h

2
3 .

In the same way we get∫ {
|hDt ψ̃ |2 + |(hDs + Ã)ψ̃ |2

}
ds dt

≤
∫ {

|hDtψ̃ |2 +
∣∣∣∣(hDs − γ0

t2

2

)
ψ̃

∣∣∣∣2}
ds dt + Ch

5
3 h

− 4
3p h

2
3

and ∫ {
|hDtψ̃ |2 +

∣∣∣∣(hDs − γ0
t2

2

)
ψ̃

∣∣∣∣2}
ds dt = γ

4
3p

0 h
4
3 h

2
3 h

− 4
3p λ[1](p) +O(h∞).

We deduce

Qh,A(ψ)

‖ψ‖2
Lp(R2)

≤ (1 + Ch
1
3 )γ

4
3p

0 h2h
− 4

3p λ[1](p)

and the conclusion immediately follows.

4. Lower bounds

We are now interested in the lower bounds in Theorems 1.4 and 1.8.

4.1. Quadratic partition of unity and reconstruction of Lp-norm

Let us introduce a quadratic partition of unity “with small interaction supports”. In the following we will for 
notational convenience use the ∞-norm on R2, explicitly |x|∞ = max(|x1|, |x2|).

Lemma 4.1. Let us consider E = {(α, ρ, h, �) ∈ (R+)3 ×Z
2 : α ≥ ρ}. There exists a family of smooth cutoff functions 

(χ
[�]

)(α,ρ,h,�)∈E on R2 such that 0 ≤ χ
[�] ≤ 1,
α,ρ,h α,ρ,h
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χ
[�]
α,ρ,h = 1, on |x − (2hρ + hα)�|∞ ≤ hρ,

χα,ρ,h = 0, on |x − hρ�|∞ ≥ hρ + hα,

and such that∑
�∈Z2

(
χ

[�]
α,ρ,h

)2 = 1.

Moreover there exists D > 0 such that, for all h > 0,∑
�∈Z2

|∇χ
[�]
α,ρ,h|2 ≤ Dh−2α. (4.1)

Proof. Let us consider F = {(α, ρ, h) ∈ (R+)3 : α ≥ ρ}. There exists a family of smooth cutoff functions of one real 
variable (χα,ρ,h)(α,ρ,h)∈F such that 0 ≤ χα,ρ,h ≤ 1, χα,ρ,h = 1 on |x| ≤ hρ + 1

2hα and χα,ρ,h = 0 on |x| ≥ hρ + hα , 
and such that for all (α, ρ) with α ≥ ρ > 0, there exists C > 0 such that for all h > 0, |∇χα,ρ,h| ≤ Ch−α . Then, we 
define:

Sα,ρ,h(x) =
∑
�∈Z2

χ2
α,ρ,h

(
x1 − (2hρ + hα)�1

)
χ2

α,ρ,h

(
x2 − (2hρ + hα)�2

)
,

and we have

∀x ∈R
2, 1 ≤ Sα,ρ,h(x) ≤ 4.

We let

χ
[�]
α,ρ,h(x) = χα,ρ,h(x1 − (2hρ + hα)�1)χα,ρ,h(x2 − (2hρ + hα)�2)√

Sα,ρ,h(x)
,

which satisfies the wished estimates by standard arguments. �
Given a grid and a non-negative and integrable function f , the following lemma states that, up to a translation of 

the grid, the mass of f carried by a slightly thickened grid is controlled by a slight fraction of the total mass of f .

Lemma 4.2. For r > 0 and δ > 0, we define the grid �r = ((rZ) ×R) ∪ (R × (rZ)) and the thickened grid

�r,δ = {x ∈R
2 : dist(x,�r) ≤ δ}.

Let us consider a non-negative function f belonging to L1(R2). Then there exists τ(r, δ, f ) = τ ∈R
2 such that:∫

�r,δ+τ

f (x)dx ≤ 3δ

r + 2δ

∫
R2

f (x)dx.

Proof. We let e = 1√
2
(1, 1). We notice that

� r
2δ

�+1∑
j=0

∫
�r,δ+jδe

f (x)dx =
∫
R2

gr,δ(x)f (x)dx, with gr,δ(x) =
� r

2δ
�+1∑

j=0

1�δ+jδe(x).

We have, for almost all x, gr,δ(x) ≤ 3, so that we get

� r
2δ

�+1∑
j=0

∫
�r,δ+jδe

f (x)dx ≤ 3
∫
R2

f (x)dx.

Therefore, there exists j ∈ {
0, . . . , � r � + 1

}
, such that
δ
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∫
�r,δ+jδe

f (x)dx ≤ 3

� r
2δ

� + 2

∫
R2

f (x)

and the conclusion easily follows. �
We can now establish the following lemma which permits to recover the total Lp-norm from the local contributions 

defined by the quadratic partition of unity.

Lemma 4.3. Let p ≥ 2. Let us consider the partition of unity (χ [�]
α,ρ,h) defined in Lemma 4.1, with α > ρ > 0. There 

exist C > 0 and h0 > 0 such that for all ψ ∈ Lp(�) and h ∈ (0, h0), there exists τα,ρ,h,ψ = τ ∈R
2 such that∑

�

∫
�

|χ̃ [�]
α,ρ,hψ(x)|p dx ≤

∫
�

|ψ(x)|p dx ≤ (1 + Chα−ρ)
∑

�

∫
�

|χ̃ [�]
α,ρ,hψ(x)|p dx,

with χ̃ [�]
α,ρ,h(x) = χ̃

[�]
α,ρ,h(x − τ). Moreover, the translated partition (χ̃ [�]

α,ρ,h) still satisfies (4.1).

Proof. The first inequality is obvious since the cutoff functions are bounded by 1 and their squares sum to unity. For 
the second inequality, we write, for any translation τ ,∫

�

|ψ(x)|p dx =
∑

�

∫
�

(
χ̃

[�]
α,ρ,�

)p |ψ(x)|p dx +
∫
�

ϕα,ρ(x)|ψ(x)|p dx,

where

ϕα,ρ =
∑

�

((
χ̃

[�]
α,ρ,�

)2 −
(
χ̃

[�]
α,ρ,�

)p
)

.

The smooth function ϕα,ρ is supported on τ + �
hρ+ 1

2 hα,2hα and∫
�

ϕα,ρ(x)|ψ(x)|p dx ≤
∫

τ+�
hρ+ 1

2 hα,2hα

f (x)dx,

where f (x) = |ψ(x)|p for x ∈ � and f (x) = 0 elsewhere. Thus, by Lemma 4.2, we find τ such that∫
�

ϕα,ρ(x)|ψ(x)|p dx ≤ Chα−ρ

∫
R2

|ψ(x)|p dx

and the conclusion easily follows. �
4.2. Lower bound: non-vanishing magnetic field

This section is devoted to the proof of the lower bound in Theorem 1.4.

4.2.1. A lower bound for the eigenvalue
Let us consider ψ ∈ Dom(Qh,A). With the “IMS” formula associated with the partition of unity (χ̃ [�]

α,ρ,h) that is 
adapted to ψ (see Lemma 4.3), we infer

Qh,A(ψ) =
∑

�

Qh,A(χ̃
[�]
α,ρ,hψ) − h2

∑
�

‖∇χ̃
[�]
α,ρ,hψ‖2

L2(�)
.

We have

Qh,A(ψ) ≥
∑(

Qh,A(χ̃
[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

)
. (4.2)
�
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By the min-max principle, we get

λ(�,A,2, h)‖χ̃ [�]
α,ρ,hψ‖2

L2(�)
≤ Qh,A(χ̃

[�]
α,ρ,hψ) (4.3)

and we recall that (see [13, Theorem 1.1])

λ(�,A,2, h) = b0h +O(h
3
2 ) (4.4)

so that

Qh,A(ψ) ≥ (1 − Dh1−2α)
∑

�

Qh,A(χ̃
[�]
α,ρ,hψ).

Then, we bound the local energies from below. Thanks to support considerations (recall that α ≥ ρ), we have, modulo 
a local change of gauge eiφ[�]/h,

Qh,A(χ̃
[�]
α,ρ,hψ) ≥ (1 − ε)Qh,bj A[0](eiφ[�]/hχ̃

[�]
α,ρ,hψ) − Cε−1h4ρ‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

so that it follows, by using again (4.3),

Qh,A(χ̃
[�]
α,ρ,hψ) ≥ (1 − ε − Cε−1h4ρ−1)Qh,bj A[0](eiφ[�]/hχ̃

[�]
α,ρ,hψ).

We take ε = h2ρ− 1
2 and we deduce

Qh,A(ψ) ≥ (1 − Dh1−2α − Ch2ρ− 1
2 )

∑
�

b
2/p
� h2h−2/pλ[0](p)‖χ̃ [�]

α,ρ,hψ‖2
Lp(�) (4.5)

so that

Qh,A(ψ) ≥ (1 − Dh1−2α − Ch2ρ− 1
2 )b

2/p

0 h2h−2/pλ[0](p)
∑

�

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�)

Since p ≥ 2, we have

∑
�

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�) ≥
⎛⎝∑

�

∫
�

|χ̃ [�]
α,ρ,hψ |p dx

⎞⎠
2
p

.

Using Lemma 4.3, we infer∑
�

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�) ≥ (1 − C̃hα−ρ)‖ψ‖2
Lp(�). (4.6)

Finally, we get

Qh,A(ψ) ≥ (1 − Dh1−2α − Ch2ρ− 1
2 )(1 − C̃hα−ρ)b

2/p

0 h2h−2/pλ[0](p)‖ψ‖2
Lp(�).

Optimizing the remainders, we choose 1 − 2α = 2ρ − 1
2 = α − ρ so that ρ = 5

16 and α = 7
16 and

Qh,A(ψ) ≥ (1 − Ch
1
8 )b

2/p

0 h2h−2/pλ[0](p)‖ψ‖2
Lp(�). (4.7)

This gives the lower bound needed for Theorem 1.4. Combined with (3.1), (4.7) yields the proof of Theorem 1.4.

4.2.2. A direct application to the localization
The following proposition provides a rough (but quantitative) localization in Lp-norm of the minimizers near the 

minimum of the magnetic field.
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Proposition 4.4. Let us assume that B|� admits a unique minimum attained at 0 ∈ �. For all ε > 0, there exist h0 > 0, 
C > 0 such that for all h ∈ (0, h0) and ψ minimizer,

‖ψ‖Lp(�D(0,2ε)) ≤ Ch
1

8p ‖ψ‖Lp(�). (4.8)

In the case when the minimum is non-degenerate, this can be improved to

‖ψ‖Lp(�D(0,2hρ̃ )) ≤ Ch

(
1
8 −2ρ̃

)
1
p ‖ψ‖Lp(�),

where ρ̃ < 1
16 .

Proof. We apply (4.5) to a minimizer ψ and we get, with choices of ρ and α given in the previous section:

λ(�,A,p,h)‖ψ‖2
Lp(�) ≥ (1 − Ch

1
8 )

∑
�

b
2/p

� h2h−2/pλ[0](p)‖χ̃ [�]
α,ρ,hψ‖2

Lp(�).

With the upper bound of Theorem 1.4 and (4.6), we get∑
�

{
b

2/p

� − b
2/p

0

}
‖χ̃ [�]

α,ρ,hψ‖2
Lp(�) ≤ Ch

1
8 ‖ψ‖2

Lp(�). (4.9)

Let us introduce K1(h, ε) = {� : x� ∈ D(0, ε)}. From (4.9) and the uniqueness of the minimum, we have (for some 
η > 0 and all h sufficiently small),

η
∑

�/∈K1(h,ε)

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�) ≤ Ch
1
8 ‖ψ‖2

Lp(�), (4.10)

and (by concavity),

∑
�/∈K1(h,ε)

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�) ≥
⎛⎝ ∑

�/∈K1(h,ε)

∫
�

|χ̃ [�]
α,ρ,hψ |p dx

⎞⎠
2
p

,

so that ∑
�/∈K1(h,ε)

∫
�

|χ̃ [�]
α,ρ,hψ |p dx ≤ Ch

p
16 ‖ψ‖p

Lp(�). (4.11)

We get, using Lemma 4.3 in the last step,∑
�/∈K1(h,ε)

∫
�

|χ̃ [�]
α,ρ,hψ |p dx

=
∑

�/∈K1(h,ε)

∫
�

|χ̃ [�]
α,ρ,h|2|ψ |p dx +

∑
�/∈K1(h,ε)

∫
�

(|χ̃ [�]
α,ρ,h|p|ψ |p − |χ̃ [�]

α,ρ,h|2|ψ |p)dx

≥
∑

�/∈K1(h,ε)

∫
�

|χ̃ [�]
α,ρ,h|2|ψ |p dx − Ch

1
8 ‖ψ‖p

Lp(�). (4.12)

We infer (4.8) upon inserting (4.12) in (4.11).
If the minimum of B is non-degenerate, i.e. the Hessian of B is strictly positive, (4.10) improves to∑

�/∈K1(h,hρ̃ )

‖χ̃ [�]
α,ρ,hψ‖2

Lp(�) ≤ Ch
1
8 − 4ρ̃

p ‖ψ‖2
Lp(�),

with ρ̃ < ρ = 5
16 and we get the desired improvement by the same arguments. �
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4.2.3. Proof of Theorem 1.6
By Proposition 4.4, there exists γ > 0 such that

‖ψ‖p

Lp(�D(0,2ε))
≤ Chγ ‖ψ‖p

Lp(�). (4.13)

We assume that ‖ψ‖Lp(�) = 1. Then, we have the following estimate of the non-linear electric potential, for v ∈
Dom(Qh,A) and supported away from the ball D(0, 2ε),

λ(�,A,p,h)

∫
�

|ψ |p−2|v|2 dx ≤ λ(�,A,p,h)‖v‖2
Lp

⎛⎜⎝ ∫
�D(0,2ε)

|ψ |p dx

⎞⎟⎠
p−2
p

≤ Cλ(�,A,p,h)h
γ

p−2
p ‖v‖2

Lp(�),

where we used the Hölder inequality and (4.13). We now apply (2.6) to the extension by 0 of v to get

‖v‖2
Lp(R2)

≤ C(ε1− p
2 ‖v‖2

L2(R2)
+ ε‖∇|v|‖2

L2(R2)
)

and the diamagnetic inequality implies

‖v‖2
Lp(�) ≤ C(ε1− p

2 ‖v‖2
L2(�)

+ εh−2Qh,A(v))

so that

λ(�,A,p,h)

∫
�

|ψ |p−2|v|2 dx ≤ Ch
2− 2

p h
γ

p−2
p (ε1− p

2 ‖v‖2
L2(�)

+ εh−2Qh,A(v)).

Let us now choose an appropriate ε. We would like to have

h
1− 2

p h
γ

p−2
p ε1− p

2 � 1, h
2− 2

p h
γ

p−2
p εh−2 � 1

We choose ε = δh
2
p

+γ
(
−1+ 2

p

)
with δ > 0 arbitrarily small. We get

h
1− 2

p h
γ

p−2
p ε1− p

2 = δ1− p
2 h

1− 2
p

+γ
p−2
p

+(
1− p

2

){ 2
p

+γ
(
−1+ 2

p

)}
= δ1− p

2 h
γ
2 (p−2).

We could even choose a very small power of h for δ. We infer that, for v in the domain of the magnetic Laplacian and 
supported in �D(0, 2ε),

λ(�,A,p,h)

∫
�

|ψ |p−2|v|2 dx ≤ C
(
hδ1− p

2 h
γ
2 (p−2)‖v‖2

L2(�)
+ δQh,A(v)

)
. (4.14)

Let us now establish our Agmon estimates. We recall the equation

Lh,A,Vh
ψ = (−ih∇ + A)2ψ + Vhψ = 0, with Vh = −λ(�,A,p,h)|ψ |p−2.

We consider a smooth cutoff function χ such that χ = 0 in D(0, 2ε), 0 ≤ χ ≤ 1 and χ = 1 on �D(0, 4ε). We write 
the IMS formula and get

Qh,A,Vh
(eχh−ρ |x|ψ) − Ch2−2ρ‖eχh−ρ |x|ψ‖2

L2(�)
≤ 0.

Then, we introduce a quadratic partition of unity

χ2
1 + χ2

2 = 1,

such that χ2 is supported in �D(0, 2ε). With the “IMS” formula, we deduce

Qh,A,Vh
(χ1e

χh−ρ |x|ψ) +Qh,A,Vh
(χ2e

χh−ρ |x|ψ)

− C̃h2−2ρ‖χ1e
χh−ρ |x|ψ‖2

2 − C̃h2−2ρ‖χ2e
χh−ρ |x|ψ‖2

2 ≤ 0.

L (�) L (�)
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Then, with (4.14), we have

Qh,A,Vh
(χ2e

χh−ρ |x|ψ) − C̃h2−2ρ‖χ2e
χh−ρ |x|ψ‖2

L2(�)

≥ (1 − Cδ)Qh,A(χ2e
χh−ρ |x|ψ) − hδ1− p

2 h
γ
2 (p−2)‖χ2e

χh−ρ |x|ψ‖2
L2(�)

Let us recall that

Qh,A(χ2e
χh−ρ |x|ψ) ≥ hb0‖χ2e

χh−ρ |x|ψ‖2
L2(�)

and we deduce

Qh,A,Vh
(χ2e

χh−ρ |x|ψ) − C̃h2−2ρ‖χ2e
χh−ρ |x|ψ‖2

L2(�)

≥
(
(1 − Cδ)hb0 − C̃h2−2ρ

)
‖χ2e

χh−ρ |x|ψ‖2
L2(�)

≥ ηh‖χ2e
χh−ρ |x|ψ‖2

L2(�)
,

as soon as ρ ∈
(

0, 1
2

)
and for h small enough. By support considerations, we have

Qh,A,Vh
(χ1e

χh−ρ |x|ψ) − C̃h2−2ρ‖χ1e
χh−ρ |x|ψ‖2

L2(�)
=Qh,A,Vh

(χ1ψ) − C̃h2−2ρ‖χ1ψ‖2
L2(�)

and then

Qh,A,Vh
(χ1ψ) − C̃h2−2ρ‖χ1ψ‖2

L2(�)
≥ 1

2
Qh,A(χ1ψ) − Ch

2− 2
p

∫
�

|ψ |p−2 |χ1ψ |2 dx.

Moreover, since ψ is Lp-normalized, we have∫
�

|ψ |p−2 |χ1ψ |2 dx ≤ C ‖χ1ψ‖2
Lp(�) .

By using again the rescaled Sobolev embedding (ε = δh2, with δ small enough) and the diamagnetic inequality, we 
infer

‖χ1ψ‖2
Lp(�) ≤ C

(
(δh2)1− p

2 ‖χ1ψ‖2
L2(�)

+ δQh,A(χ1ψ)
)

.

Therefore, it follows that

ηh‖χ2e
χh−ρ |x|ψ‖2

L2(�)
≤ C(δh2)1− p

2 ‖ψ‖2
L2(�)

,

and thus

‖eχh−ρ |x|ψ‖2
L2(�)

≤ C̃h1−p‖ψ‖2
L2(�)

.

With the previous analysis, we also infer that

Qh,A(χ2e
χh−ρ |x|ψ) ≤ Ch−γ ‖ψ‖2

L2(�)
,

for some γ > 0. With the same kind of arguments, we have

Qh,A(χ1e
χh−ρ |x|ψ) ≤ CQh,A,Vh

(χ1e
χh−ρ |x|ψ) + Ch−γ ‖ψ‖2

L2(�)
≤ C̃h−γ ‖ψ‖2

L2(�)
.

With the “IMS” formula, we find

Qh,A(eχh−ρ |x|ψ) ≤ Ch−γ ‖ψ‖2
L2(�)

.

Since � is bounded, A is regular and changing γ , we get∥∥∇(
eχh−ρ |x|ψ

)∥∥2
L2(�)

≤ Ch−γ ‖ψ‖2
L2(�)

and then,

‖eχh−ρ |x|ψ‖2
1 ≤ Ch−γ ‖ψ‖2

2 , ‖eχh−ρ |x|ψ‖2
Lq (�) ≤ Ch−γ ‖ψ‖2

2 ≤ C̃h−γ ‖ψ‖2
Lq (�),
H (�) L (�) L (�)
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the second inequality coming from the Sobolev embedding for all q ≥ 2 and the Hölder inequality (� is bounded). 
Finally, using the equation satisfied by ψ , we infer that

‖eχh−ρ |x|ψ‖2
H2(�)

≤ Ch−γ ‖ψ‖2
L2(�)

and thus

‖eχh−ρ |x|ψ‖2
L∞(�) ≤ Ch−γ ‖ψ‖2

L2(�)
.

This finishes the proof of Theorem 1.6.

4.3. Lower bound: vanishing magnetic field

This section is devoted to the proof of the lower bound in Theorem 1.8. Let us first state a convenient lemma.

Lemma 4.5. For b, c1, c2 ∈ R, with c2 �= 0, let us introduce

Ab,c1,c2(s, t) = −bt + c1st + c2

2
t2, Ab,c1,c2 = (Ab,c1,c2 ,0).

For p ≥ 2, we consider

μ(b, c1, c2,p) = inf
ψ∈H1

A,ψ �=0

∫
R2 |Dtψ |2 + |(Ds + Ab,c1,c2(s, t))ψ |2 ds dt

‖ψ‖2
Lp(R2)

.

Then, we have (with ‖c‖ being the Euclidean norm of (c1, c2))

μ(b, c1, c2,p) = μ(0, c1, c2,p) = ‖c‖ 4
3p λ[1](p).

Moreover, for p > 2, the infimum is a minimum.

Proof. It is enough to observe that

Ab,c1,c2(s, t) = c1st + c2

2

(
t − b

c2

)2

− b2

2c2

and to consider the translation τ = t − b
c2

. Then, a change of gauge, a rotation and a rescaling provide the conclu-
sion. �
Proof of the lower bound in Theorem 1.8. We can now prove the lower bound announced in Theorem 1.8. Let us 
again consider ψ ∈ Dom(Qh,A) and use our partition of the unity (4.2). We denote by (x�) the centers of the balls and 
define b� = B(x�). We distinguish between the balls that are close to � and the others by letting

J1(h) = {� : dist(x�,�) ≥ ε0},
J2(h) = {� : hρ̃ < dist(x�,�) < ε0},
J3(h) = {� : dist(x�,�) ≤ hρ̃}.

Here ε0 is chosen so small that the local coordinates (s, t) introduced around (3.2) make sense in the regions covered 
by J2(h) and J3(h). �
4.3.1. Collecting the balls of the region J1(h)

Using that the magnetic field does not vanish in the region determined by J1(h) and using (4.4), we find first∑
�∈J1(h)

{
Qh,A(χ̃

[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

}
≥

∑
�∈J1(h)

(1 − D̃h1−2α)Qh,A(χ̃
[�]
α,ρ,hψ),

and then, with the lower bound of Theorem 1.4 (in the region where the magnetic field is bounded from below by a 
positive constant),
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∑
�∈J1(h)

{
Qh,A(χ̃

[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

}
≥ (1 − D̃h1−2α)(1 − Ch

1
8 )λ[0](p)b

2
p

0 h2h
− 2

p ‖χ̃ [�]
α,ρ,hψ‖2

Lp(�),

where b0 > 0 is the minimal value of the magnetic field strength in the region covered by balls from J1(h).
In the regions determined by J2(h) and J3(h), we use the tubular coordinates near the zero line �. We recall the 

asymptotic expansion of the linear eigenvalue (see [12,6]) under the assumptions of Theorem 1.8:

λ(�,A,2, h) = γ
2
3

0 λ[1](2)h
4
3 + o(h

4
3 ). (4.15)

Therefore, since we have

λ(�,A,2, h)‖χ̃ [�]
α,ρ,hψ‖2

L2(�)
≤ Qh,A(χ̃

[�]
α,ρ,hψ)

we get, for j ∈ {2, 3},∑
�∈Jj (h)

{
Qh,A(χ̃

[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

}
≥

∑
�∈Jj (h)

(1 − D̃h
2
3 −2α)Qh,A(χ̃

[�]
α,ρ,hψ). (4.16)

4.3.2. Collecting the balls of the region J2(h)

By changing to the local coordinates introduced in (3.2) we find

Qh,A(χ̃
[�]
α,ρ,hψ) ≥ 1

2

∫
|hDtψ̃�|2 + |(hDs + A2,�(s, t) + R3,�(s, t))ψ̃�|2 ds dt,

where ψ̃� = eiϕ�/h(χ̃
[�]
α,ρ,hψ)(�(s, t)), for some suitable local gauge transformation ϕ� and with

A2,�(s, t) = −b�(t − t�) + c1,�(s − s�)(t − t�) + c2,�

2
(t − t�)

2

and where R3,� is Taylor remainder of order 3 of Ã at (s�, t�). Actually, at this point we could include the terms of 
order 2 in the remainder, but since we will use the higher precision in the treatment of the J3(h)-terms, we introduce 
the notation here.

By a Cauchy inequality and the support properties of χ̃ [�]
α,ρ,h,∫

|hDtψ̃�|2 + |(hDs + A2,�(s, t) + R3,�(s, t))ψ̃�|2 ds dt

≥ (1 − η)

∫
|hDt ψ̃�|2 + |(hDs − b�t)ψ̃�|2 ds dt − Cη−1h4ρ‖ψ̃�‖2.

Notice that since � ∈ J2(h), |b�| ≥ Chρ̃ . So we can estimate (using (2.2))∫
|hDtψ̃�|2 + |(hDs − b�t)ψ̃�|2 ds dt ≥ hb�‖ψ̃�‖2

L2 ≥ Ch1+ρ̃‖ψ̃�‖2
L2 .

We deduce that

Qh,A(χ̃
[�]
α,ρ,hψ) ≥

(
1

2
(1 − η) − Cη−1h4ρ−1−ρ̃

)∫
|hDtψ̃�|2 + |(hDs − b�t)ψ̃�|2 ds dt.

Choosing η = h2ρ− 1
2 − ρ̃

2 ,

Qh,A(χ̃
[�]
α,ρ,hψ) ≥

(
1

2
− Ch2ρ− 1

2 − ρ̃
2

)∫
|hDt ψ̃�|2 + |(hDs − b�t)ψ̃�|2 ds dt,

so that, by using a scaling argument and the definition of λ[1](p),
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Qh,A(χ̃
[�]
α,ρ,hψ) ≥

(
1

2
− Ch2ρ− 1

2 − ρ̃
2

)
b

2
p

� h
2− 2

p λ[1](p)‖ψ̃�‖2
Lp

≥
(

1

2
− Ch2ρ− 1

2 − ρ̃
2

)
h

2ρ̃
p h

2− 2
p λ[1](p)‖ψ̃�‖2

Lp .

We deduce that, for h sufficiently small, and using also (4.16),∑
�∈J2(h)

{
Qh,A(χ̃

[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

}
≥ 1

4
λ[1](p)h

2ρ̃
p h

2− 2
p

∑
�∈J2(h)

‖χ̃ [�]
α,ρ,hψ‖2

Lp .

4.3.3. Collecting the balls of the region J3(h)

By changing to local coordinates as in the region J2(h),

Qh,A(χ̃
[�]
α,ρ,hψ)

≥ (1 − Chρ̃)

∫
|hDt(ψ̃�)|2 + |(hDs + A2,�(s, t) + R3,�(s, t))(ψ̃�)|2 ds dt.

We notice that (for any η > 0),∫
|hDt(ψ̃�)|2 + |(hDs + A2,�(s, t) + R3,�(s, t))(ψ̃�)|2 ds dt

≥ (1 − η − Cη−1h6ρ− 4
3 )

∫
|hDt(ψ̃�)|2 + |(hDs + A2,�(s, t))(ψ̃�)|2 ds dt,

where we have used∫
|hDt(ψ̃�)|2 + |(hDs + A2,�(s, t))(ψ̃�)|2 ds dt ≥ λ[1](2)‖c�‖ 2

3 h
4
3 ‖ψ̃�‖2

L2,

which itself comes from Lemma 4.5 with p = 2. Thus, choosing η = h3ρ− 2
3 , and using again Lemma 4.5, we get

Qh,A(χ̃
[�]
α,ρ,hψ)

≥ (1 − Chρ̃)(1 − Ch3ρ− 2
3 )

∫
|hDt(ψ̃�)|2 + |(hDs + A2,�(s, t))(ψ̃�)|2 ds dt

≥ (1 − Chρ̃)(1 − Ch3ρ− 2
3 )‖c�‖

4
3p λ[1](p)‖ψ̃�‖2

Lp

≥ (1 − C̃hρ̃)(1 − Ch3ρ− 2
3 )γ

4
3p

0 λ[1](p)‖ψ̃�‖2
Lp ,

where the last inequality will be justified below: Notice that

c1,� = ∂sB̃(s, t)|(s�,t�) = ∇B(�(s�, t�)) · [c′(s�) + t�∂sn(s�)] =O(hρ̃),

since ∇B(�(s�, 0)) · c′(s�) = 0. Similarly,

c1,� = ∂t B̃(s, t)|(s�,t�) = ∇B(�(s�, t�)) · n(s�) = ∂n,�B(x�) +O(hρ̃).

This gives the inequality.
It follows that∑

�∈J3(h)

{
Qh,A(χ̃

[�]
α,ρ,hψ) − Dh2−2α‖χ̃ [�]

α,ρ,hψ‖2
L2(�)

}
≥ (1 − D̃h

2
3 −2α)(1 − C̃hρ̃)(1 − Ch3ρ− 2

3 )γ
4

3p

0 λ[1](p)h
2− 4

3p

∑
�∈J3(h)

‖χ̃ [�]
α,ρ,hψ‖2

Lp .
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4.3.4. Optimization of the parameters
The constraints on the different powers of h are:

0 < α <
1

3
, 0 < ρ̃ < min

(
2ρ − 1

2
,

1

3
, ρ

)
,

2

9
< ρ < α. (4.17)

Under these constraints, the smallest term comes from the region determined by J3(h) and we find

Qh,A(ψ) ≥ (1 − D̃h
2
3 −2α)(1 − C̃hρ̃)(1 − Ch3ρ− 2

3 )γ
4

3p

0 λ[1](p)h
2− 4

3p

∑
�

‖χ̃ [�]
α,ρ,hψ‖2

Lp .

With Lemma 4.3, we deduce

Qh,A(ψ) ≥ (1 − D̃h
2
3 −2α)(1 − C̃hρ̃)(1 − Ch3ρ− 2

3 )γ
4

3p

0 λ[1](p)h
2− 4

3p

∑
�

‖χ̃ [�]
α,ρ,hψ‖2

Lp

≥ (1 − Chα−ρ)(1 − D̃h
2
3 −2α)(1 − C̃hρ̃)(1 − Ch3ρ− 2

3 )γ
4

3p

0 λ[1](p)h
2− 4

3p ‖ψ‖2
Lp(�).

Let us consider the case when

α − ρ = 2

3
− 2α = 3ρ − 2

3

which provides α = 10
33 and ρ = 8

33 . Unfortunately, the second constraint in (4.17) cannot be satisfied for this choice. 
Therefore, we take rather

ρ = 9

33
, α = 10

33

and we take ρ̃ ∈
(

0, 1
22

)
so that

Qh,A(ψ) ≥ (1 − Ch
1
33 )γ

4
3p

0 λ[1](p)h
2− 4

3p ‖ψ‖2
Lp(�). �
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Appendix A. Concentration-compactness method

In this section, for the convenience of the reader, we recall the strategy used in [7]. We consider the minimization 
problem (with p > 2)

λ = inf
u∈H1

A(R2),

‖ψ‖Lp(R2)
=1

QA(u), QA(u) =
∫
R2

|(−i∇ + A)u|2 dx,

with a non-zero magnetic field B. Let us also introduce the following norm defined on Dom(QA) = H1
A by ‖u‖H1

A
=(

‖u‖2
L2 + QA(u)

) 1
2
. We have λ > 0 and we introduce a minimizing sequence (un)n≥0. Let us consider the density 

measure μn = (|un|2 + |(−i∇ + A)un|2) dx whose total mass μn(R
2) converges to μ > 0, with ‖un‖Lp(�) = 1. By 

using a slight adaptation of [16, Lemma I.1], there are three possible behaviors for the sequence (μn)n∈N.
The first one is vanishing, that is

∀R > 0, lim
n→+∞ sup

x∈R2
μn(D(x,R)) = 0.

With the diamagnetic inequality, this implies that supx∈R2 ‖|un|‖H1(D(x,R)) → 0. By Sobolev embedding and [17, 
Lemma I.1], it follows that ‖un‖Lp → 0. This is a contradiction.



S. Fournais, N. Raymond / Ann. I. H. Poincaré – AN 33 (2016) 1199–1222 1221
The second possible behavior is dichotomy, that is

∃β ∈ (0,μ), ∀ε > 0, ∃R1 > 0, ∃Rn → +∞, (yn)n∈N,

|μn(D(yn,R1)) − β| ≤ ε, |μn(�D(yn,Rn)) − (μ − β)| ≤ ε,

so that

|μn(D(yn,R1) ∪ �D(yn,Rn)) − μ| ≤ 2ε.

By using cutoff functions and the “IMS” formula, we can find χn,1 and χn,2, with supports such that
dist(supp (χn,1), supp (χn,2)) → +∞ such that∣∣∣‖χn,1un‖2

H1
A

− β

∣∣∣ ≤ ε,

∣∣∣‖χn,2un‖2
H1

A
− (μ − β)

∣∣∣ ≤ ε, (A.1)

‖un − χn,1un − χn,2un‖H1
A

≤ Cε.

From the last inequality, we get∣∣QA(un) − QA(χn,1un) − QA(χn,2un)
∣∣ ≤ Cε (A.2)

and also, by Sobolev embedding,

‖un − χn,1un − χn,2un‖Lp ≤ Cε.

This implies

|‖un‖Lp − ‖χn,1un + χn,2un‖Lp | ≤ Cε

so that

|‖un‖p
Lp − ‖χn,1un‖p

Lp − ‖χn,2un‖p
Lp | ≤ C̃ε. (A.3)

We notice that, for j ∈ 1,2, due to (A.1),

lim inf
n→+∞QA(χn,j un) > 0. (A.4)

We let αn = ‖χn,1un‖p
Lp . We may assume that (αn) converges to some α ∈ [0, 1]. If α = 1, we get, by definition of λ, 

that

QA(χn,1un) ≥ λα
2
p
n ≥ λ(1 − Cε),

since (un) is a minimizing sequence and due to (A.2), we have QA(χn,2un) ≤ Cε which contradicts (A.4). In the same 
way, we have α �= 0.

With (A.2) and (A.3), we get

λ ≥ λα
2
p
n + λ(1 − αn)

2
p − Cε

and thus, for α ∈ (0, 1),

α
2
p + (1 − α)

2
p ≤ 1.

This is not possible when p > 2.
The third and last possible behavior is tightness up to translation (compactness case). There exists (xn)n≥0 such 

that

∀ε > 0, ∃R > 0, ∀n ≥ 1, μn(R
2 \ D(xn,R)) ≤ ε.
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