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Abstract

We extend the De Giorgi–Nash–Moser theory to nonlocal, possibly degenerate integro-differential operators.
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1. Introduction

The aim of this paper is to develop localization techniques in order to establish regularity results for nonlocal 
integro-differential operators and minimizers of fractional order s ∈ (0, 1) and summability p > 1. Let � be a bounded 
domain and let g be a function in the fractional Sobolev space Ws,p(Rn). We shall prove general local regularity 
estimates for the minimizers u, where u is minimizing the functional

F(v) :=
∫
Rn

∫
Rn

K(x, y)|v(x) − v(y)|p dxdy, (1.1)

over the class of functions {v ∈ Ws,p(Rn) : v = g a.e. in R
n \ �}. Here K is a suitable symmetric kernel of order 

(s, p) with just measurable coefficients, see (2.1). It is standard to show, which is in fact our Theorem 2.3 below, 
that minimizers can be equivalently characterized by the weak solutions to the following class of integro-differential 
problems{

Lu = 0 in �,

u = g in R
n \ �,

(1.2)
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where the operator L is defined formally by

Lu(x) = P.V .

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))dy, x ∈R
n; (1.3)

the symbol P.V . means “in the principal value sense”. We immediately refer to Section 2 for the precise assumptions 
on the involved quantities.

To simplify, one can keep in mind the model case when the kernel K(x, y) coincides with |x − y|−(n+sp), though 
in such a case the difficulties arising from having merely measurable coefficients disappear; that is, the function u
reduces to the solution of the following problem{

(−�)sp u = 0 in �,

u = g in R
n \ �,

(1.4)

where the symbol (−�)sp denotes the standard fractional p-Laplacian operator.
Recently, a great attention has been focused on the study of problems involving fractional Sobolev spaces and 

corresponding nonlocal equations, both from a pure mathematical point of view and for concrete applications, since 
they naturally arise in many different contexts. For an elementary introduction to this topic and for a quite extensive 
list of related references we refer to [8].

However, for what concerns regularity and related results for this kind of operators when p �= 2, the theory seems to 
be rather incomplete. Nonetheless, some partial results are known. Firstly, we would like to cite the higher regularity 
contributions for viscosity solutions in the case when s is close to 1 proven in the recent interesting paper [1]; see, 
also, [16]. Secondly, the analysis in the papers [3] and [18] considers the special case when p is suitably large – thus 
falling in the Morrey embedding case when concerning regularity. See also [9] for some basic results for fractional 
p-eigenvalues.

On the contrary, when p = 2 and K(x, y) = |x − y|−n−2s , that is the case of the well-known fractional Laplacian 
operator (−�)s , the situation simplifies notably. Although having been a classical topic in Functional and Harmonic 
Analysis as well as in Partial Differential Equations for a long time, in the last years the growing interest for such 
operator has become really significant and many important results for the minimizer of (1.1) have been achieved. For 
what concerns the main topic in the present paper, i.e., the local behavior of the fractional minimizers, it is worth 
mentioning the very relevant contributions for the case p = 2 by Kassmann [12,13]; see also [31,30]. In particular, 
among other results, Kassmann proves Hölder regularity and a Harnack inequality “revisited” in the right form taking 
into account the nonlocality of the fractional Laplacian operator; we refer also to [11] to discover how the classic 
Harnack inequality fails in the fractional framework.

In the present paper, we will deal with a larger class of operators with a symmetric kernel K having only measur-
able coefficients, and, above all, satisfying fractional differentiability for any s ∈ (0, 1) and p-summability for any
p > 1. For this, we will have to handle not only the usual nonlocal character of such fractional operators, but also 
the difficulties given by the corresponding nonlinear behavior. As a consequence, we can make use neither of the 
powerful framework provided by the Caffarelli–Silvestre s-harmonic extension [4] nor of various tools as, e.g., the 
sharp 3-commutators estimates introduced in [5] to deduce the regularity of weak fractional harmonic maps, the strong 
barriers and density estimates in [26,28,29], the commutator and energy estimates in [25,27], and so on. Indeed, the 
aforementioned tools seem not to be trivially adaptable to a nonlinear framework; also, increasing difficulties are due 
to the non-Hilbertian structure of the involved fractional Sobolev spaces Ws,p when p is different than 2.

We will have to work carefully in order to obtain the needed local estimates. For this, we want to underline that a 
specific quantity will be fundamental throughout the whole paper. Namely, we introduce the nonlocal tail of a function 
v ∈ Ws,p(Rn) in the ball BR(x0) ⊂ R

n given by

Tail(v;x0,R) :=
[
Rsp

∫
Rn\BR(x0)

|v(x)|p−1|x − x0|−(n+sp) dx

] 1
p−1

. (1.5)

Note that the number above is finite by Hölder’s inequality whenever v ∈ Lq(Rn), q ≥ p−1, and R > 0. As expected, 
the way how the nonlocal tail will be managed is a key-point in the present extended local theory. We believe that 
this is a general fact that will have to be taken into account in other results and extensions in the nonlinear fractional 
framework.

We are now ready to introduce our main results. The first one describes the local boundedness.
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Theorem 1.1 (Local boundedness). Let p ∈ (1, ∞), let u ∈ Ws,p(Rn) be a weak subsolution to problem (1.2) and let 
Br ≡ Br(x0) ⊂ �. Then the following estimate holds true

sup
Br/2(x0)

u ≤ δ Tail(u+;x0, r/2) + cδ
− (p−1)n

sp2

(∫
−

Br(x0)

u
p
+ dx

) 1
p

, (1.6)

where Tail(u+; x0, r/2) is defined in (1.5), u+ = max{u, 0} is the positive part of the function u, δ ∈ (0, 1], and the 
constant c depends only on n, p, s and on the structural constants λ, � defined in (2.1).

The parameter δ allows interpolation between the local and nonlocal terms. Armed with the Logarithmic Lemma 
and the Caccioppoli estimate with tail introduced below, together with the deduced local boundedness, we can prove 
our main result, that is, the Hölder continuity theorem.

Theorem 1.2 (Hölder continuity). Let p ∈ (1, ∞) and let u ∈ Ws,p(Rn) be a solution to problem (1.2). Then u is 
locally Hölder continuous in �. In particular, there are positive constants α, α < sp/(p − 1), and c, both depending 
only on n, p, s, λ, �, such that if B2r(x0) ⊂ �, then

osc
B�(x0)

u ≤ c
(�

r

)α
[

Tail(u;x0, r) +
(∫

−
B2r (x0)

|u|p dx

) 1
p

]

holds whenever � ∈ (0, r].

The theorem above provides an extension of classical analogous results by De Giorgi–Nash–Moser [6,24,23] to the 
nonlocal, nonlinear framework. It also extends the recent aforementioned result by Kassmann [12] to the case p �= 2. 
Moreover, it is worth noticing that in the linear case studied in [12] a further boundedness assumption is required, 
which is now for free thanks to Theorem 1.1.

In the proof of the Hölder continuity the following logarithmic estimate plays the key role. We state it in the 
introduction as we think that it might be extremely useful also in other contexts.

Lemma 1.3 (Logarithmic Lemma). Let p ∈ (1, ∞). Let u ∈ Ws,p(Rn) be a weak supersolution to problem (1.2) such 
that u ≥ 0 in BR ≡ BR(x0) ⊂ �. Then the following estimate holds for any Br ≡ Br(x0) ⊂ BR/2(x0) and any d > 0,∫

Br

∫
Br

K(x, y)

∣∣∣∣log

(
d + u(x)

d + u(y)

)∣∣∣∣
p

dxdy

≤ c rn−sp
{
d1−p

( r

R

)sp [
Tail(u−;x0,R)

]p−1 + 1
}

, (1.7)

where Tail(u−; x0, R) is defined in (1.5), u− = max{−u, 0} is the negative part of the function u, and c depends only 
on n, p, s, λ and �.

Then, we will show that the fractional p-minimizers, equivalently the weak solutions to the Euler–Lagrange equa-
tion associated to (1.1), satisfy the following nonlocal Caccioppoli-type inequalities.

Theorem 1.4 (Caccioppoli estimates with tail). Let p ∈ (1, ∞) and let u ∈ Ws,p(Rn) be a weak solution to problem 
(1.2). Then, for any Br ≡ Br(x0) ⊂ � and any nonnegative φ ∈ C∞

0 (Br), the following estimate holds true∫
Br

∫
Br

K(x, y)|w±(x)φ(x) − w±(y)φ(y)|p dxdy

≤ c

∫
Br

∫
Br

K(x, y)(max{w±(x),w±(y)})p|φ(x) − φ(y)|p dxdy

+ c

∫
Br

w±(x)φp(x)dx

(
sup

y ∈ supp φ

∫
Rn\Br

K(x, y)w
p−1
± (x)dx

)
, (1.8)

where w± := (u − k)± and c depends only on p.



1282 A. Di Castro et al. / Ann. I. H. Poincaré – AN 33 (2016) 1279–1299
Remark 1.5. The estimate in (1.8) continues to hold for w+ when u is merely a weak subsolution to (2.3) and for w−
when u is a weak supersolution to (2.3).

Notice that, as expected, in the nonlocal framework one has to take into account a suitable tail; see, in particular, 
the estimate in (5.14) below to see how the second term in the right hand-side of (1.8) is controlled by a tail as given 
in definition (1.5). Also, it is worth mentioning that other fractional Caccioppoli-type inequalities have been recently 
used in different contexts (see, for instance, [21,22,9]), although none of them takes into account the tails.1

Let us finally comment some recent results in the literature. In [7] we prove Harnack-type inequalities with tail for 
weak supersolutions and solutions to (1.2). These can be applied to obtain Hölder continuity of the solutions. However, 
the proofs in [7] are heavily based on the tools developed in the present paper. Moreover, the regularity theory for 
the inhomogeneous counterpart Lu = f have been settled in [14] in a general setting, including also the case when 
the source term f is merely a measure. In turn, these results are partly based on the quantitative estimates established 
here. The principal value definition (1.3) has been used in [17] to obtain regularity results in the context of viscosity 
solutions. Also, for general existence results and other regularity issues, we refer to the very recent contributions 
in [15], and in [2], where the related fractional p-eigenvalue problem has been considered.

The paper is organized as follows. In Section 2 below, we fix the notation by also providing some preliminary 
results. Section 3 is devoted to the proof of the Logarithmic Lemma 1.3 and the Caccioppoli estimates with tail in 
Theorem 1.4. In Section 4, we establish the local boundedness given by Theorem 1.1. In Section 5, we shall finally 
prove the Hölder continuity given by Theorem 1.2.

2. Preliminaries

In this section, we state the general assumptions of the problem we deal with in the present paper, we fix notation, 
and we provide some definitions and some basic preliminary results that we will use in the following pages.

The kernel K : Rn ×R
n → [0, ∞) is a symmetric measurable function such that

λ ≤ K(x,y)|x − y|n+sp ≤ � for almost every x, y ∈ R
n, (2.1)

for some s ∈ (0, 1), p > 1, � ≥ λ ≥ 1. Notice that such assumption on K can be weakened as follows

λ ≤ K(x,y)|x − y|n+sp ≤ � for almost every x, y ∈ R
n s.t. |x − y| ≤ 1,

0 ≤ K(x,y)|x − y|n+η ≤ M for almost every x, y ∈ R
n s.t. |x − y| > 1,

for some s, λ, � as above, η > 0 and M ≥ 1; see, e.g., [12,13]. For the sake of simplicity, we will keep the assumption 
in (2.1), since such a choice will imply no relevant differences in all the proofs in the rest of the paper.

For any p ∈ [1, ∞) and s ∈ (0, 1) we denote by Ws,p(Rn) the fractional Sobolev space, that is

Ws,p(Rn) :=
{

v ∈ Lp(Rn) : |v(x) − v(y)|
|x − y| n

p
+s

∈ Lp(Rn ×R
n)

}
;

i.e., an intermediary Banach space between Lp(Rn) and W 1,p(Rn), endowed with the natural norm

‖v‖Ws,p(Rn) :=
( ∫

Rn

|v|p dx

) 1
p +

( ∫
Rn

∫
Rn

|v(x) − v(y)|p
|x − y|n+sp

dxdy

) 1
p

.

In a similar way, it is possible to define the fractional Sobolev space Ws,p(�) in a domain � ⊆ R
n. Furthermore, by 

saying that v belongs to Ws,p

0 (�) we mean that v ∈ Ws,p(Rn) and v = 0 almost everywhere in Rn \ �.
As mentioned in the introduction, we define the nonlocal tail of a function v in the ball BR(x0), a quantity which 

will play an important role in the rest of the paper. For any v ∈ Ws,p(Rn) and BR(x0) ⊂R
n, we write

Tail(v;x0,R) :=
[
Rsp

∫
Rn\BR(x0)

|v(x)|p−1|x − x0|−n−sp dx

] 1
p−1

, (2.2)

which is a finite number by Hölder’s inequality since v ∈ Lp(Rn) and R > 0.

1 We recently discovered that Kassmann proved similar Caccioppoli estimates with tail terms in the linear case, when p = 2; see [10].
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Let � be a bounded open set in Rn and g ∈ Ws,p(Rn), we will be interested in weak solutions to the following 
integro-differential problems{

Lu = 0 in �,

u = g in R
n \ �,

(2.3)

where the operator L is formally defined in (1.3). Notice that the boundary condition is given in the whole comple-
ment of �, as usual when dealing with such nonlocal operators. A model example we have in mind is the fractional 
p-Laplacian, that is

−(−�)sp u(x) = c(n, s,p) P .V .

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|n+sp
dxdy,

with s ∈ (0, 1) and p > 1.
Now, let us consider in Ws,p(Rn), the following functional

F(u) =
∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p dxdy. (2.4)

In view of the assumptions (2.1) on K , one can use the standard Direct Method to prove that there exists a unique 
p-minimizer of F over all u ∈ Ws,p(Rn) such that u(x) = g(x) for x ∈ R

n \ �. Moreover, a p-minimizer u is a weak 
solution to problem (2.3) and vice versa (see Theorem 2.3 below).

To specify relevant spaces, for given g ∈ Ws,p(Rn), we define the convex sets of Ws,p(Rn) as

K±
g (�) := {v ∈ Ws,p(Rn) : (g − v)± ∈ W

s,p

0 (�)
}

and

Kg(�) := K+
g (�) ∩K−

g (�) = {v ∈ Ws,p(Rn) : v − g ∈ W
s,p

0 (�)
}
.

We recall that the functions in the space Ws,p

0 (�) are defined in the whole space, since they are considered to be 
extended to zero outside �.

We conclude this section by recalling the definition of weak sub- and supersolutions as well as weak solutions to 
problem (2.3).

Definition 2.1. Let g ∈ Ws,p(Rn). A function u ∈K−
g (K+

g ) is a weak subsolution (supersolution) to problem (2.3) if∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))(η(x) − η(y))dxdy ≤ (≥) 0 (2.5)

for every nonnegative η ∈ W
s,p

0 (�).
A function u is a weak solution to problem (2.3) if it is both weak sub- and supersolution. In particular, u belongs 

to Kg(�) and satisfies∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))(η(x) − η(y))dxdy = 0 (2.6)

for every η ∈ W
s,p

0 (�).

Similarly, we recall the definition of sub- and superminimizers of (2.4). We have

Definition 2.2. Let g ∈ Ws,p(Rn). A function u ∈ K−
g is a subminimizer of the functional (2.4) over K−

g if F(u) ≤
F(u + η) for every nonpositive η ∈ W

s,p

0 (�). Similarly, a function u ∈ K+
g is a superminimizer of the functional (2.4)

over K+
g if F(u) ≤ F(u + η) for every nonnegative η ∈ W

s,p

0 (�).
Finally, u ∈Kg is a minimizer of the functional (2.4) over Kg if F(u) ≤ F(u + η) for every η ∈ W

s,p

0 (�).
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2.1. Notation

Before starting with the proofs, it is convenient to fix some notation which will be used throughout the rest of 
the paper. Firstly, notice that we will follow the usual convention of denoting by c a general positive constant which 
will not necessarily be the same at different occurrences and which can also change from line to line. For the sake of 
readability, dependencies of the constants will be often omitted within the chains of estimates, therefore stated after 
the estimate. Relevant dependences on parameters will be emphasized by using parentheses; special constants will be 
denoted by c0, c1, . . . .

As customary, we denote by

BR(x0) = B(x0;R) :=
{
x ∈ R

n : |x − x0| < R
}

the open ball centered in x0 ∈ R
n with radius R > 0. When not important and clear from the context, we shall 

use the shorter notation BR := B(x0; R). We denote by βBR the concentric ball scaled by a factor β > 0, that is 
βBR := B(x0; βR). Moreover, if f ∈ L1(S) and the n-dimensional Lebesgue measure |S| of the set S ⊆ R

n is finite 
and strictly positive, we write

(f )S :=
∫
−

S

f (x)dx = 1

|S|
∫

S

f (x)dx. (2.7)

Let k ∈R, we denote by

w+(x) := (u(x) − k)+ = max{u(x) − k,0}, (2.8)

and

w−(x) := (u(x) − k)− = (k − u(x))+. (2.9)

Clearly w+(x) �= 0 in the set 
{
x ∈ S : u(x) > k

}
, and w−(x) �= 0 in the set 

{
x ∈ S : u(x) < k

}
.

2.2. Existence and uniqueness of the minimizers

The proof of the existence and uniqueness for fractional minimizers is simple and it is recorded into the following.

Theorem 2.3. Let s ∈ (0, 1) and p ∈ [1, ∞), and let g ∈ Ws,p(Rn). Then there exists a minimizer u of (2.4) over Kg . 
Moreover, if p > 1, then the solution is unique. Moreover, a function u ∈ Kg is a minimizer of (2.4) over Kg if and 
only if it is a weak solution to problem (2.3).

Proof. The proof plainly follows by the Direct Method of Calculus of Variations. One can take any minimizing 
sequence uj ∈ Kg . Due to the assumptions on the kernel K , one can control the fractional seminorm of uj , so that, 
one can find by pre-compactness in Lp (see, for instance, [8, Theorem 6.7]) a subsequence ujk

converging pointwise 
a.e. to a function u ∈Kg . By Fatou’s lemma we deduce that u is actually a minimizer of (2.4) over Kg . The uniqueness 
in the case p > 1 follows from the strict convexity of the functional.

Furthermore, the fact that u solves the corresponding Euler–Lagrange equation follows by perturbing u ∈Kg with 
a test function in a standard way. Indeed, supposing that u ∈Kg is a minimizer of (2.4) over Kg , take any φ ∈ W

s,p

0 (�)

and calculate formally

d

dt
F(u + tφ)

∣∣∣∣
t=0

=
∫
Rn

∫
Rn

K(x, y)
d

dt
|u(x) − u(y) + t (φ(x) − φ(y))|p dxdy

∣∣∣∣
t=0

= p

∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))dxdy .

Since u is a minimizer, the term on the left is zero and hence u ∈ Kg is a weak solution to problem (2.3). For the 
converse, let u ∈ Kg be a weak solution to problem (2.3) and take φ = u − v ∈ W

s,p
(�), where v ∈ Kg . Then, by
0
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Young’s inequality,

0 =
∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))dxdy

=
∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p dxdy

−
∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))dxdy

≥ 1

p

∫
Rn

∫
Rn

K(x, y)|u(x) − u(y)|p dxdy

− 1

p

∫
Rn

∫
Rn

K(x, y)|v(x) − v(y)|p dxdy ,

and hence u is a minimizer of (2.4) over Kg . �
3. Fundamental estimates

In this section, we establish some relevant estimates that we will use in the following. We believe that these 
results could have their own interest in the analysis of equations involving the (nonlinear) fractional Laplacian and 
related nonlocal operators. The first of them states a natural extension of the well-known Caccioppoli inequality to the 
nonlocal framework, by showing that in such a case one can take into account a suitable tail, in order to detect deeper 
informations.

Proof of Theorem 1.4. For the sake of generality, we would point out that the present proof is also valid when p = 1.
Let u be a weak solution as in the statement. Testing (2.5) with η := w+ φp , where φ is any nonnegative function 

in C∞
0 (Br(x0)), we get

0 ≥
∫

Br

∫
Br

K(x, y)|u(x) − u(y)|p−2

× (u(x) − u(y))(w+(x)φp(x) − w+(y)φp(y))dxdy

+ 2
∫
Rn\Br

∫
Br

K(x, y)|u(x) − u(y)|p−2

× (u(x) − u(y))w+(x)φp(x)dxdy (3.1)

Note that η is an admissible test function since truncations of functions in Ws,p(Rn) still belong to Ws,p(Rn).
Let us consider the integrands of the two terms above separately. In the first term, we may assume without loss of 

generality that u(x) ≥ u(y); otherwise just exchange the roles of x and y below. We have

|u(x) − u(y)|p−2(u(x) − u(y))(w+(x)φp(x) − w+(y)φp(y))

= (u(x) − u(y))p−1((u(x) − k)+φp(x) − (u(y) − k)+φp(y))

=

⎧⎪⎨
⎪⎩

(w+(x) − w+(y))p−1(w+(x)φp(x) − w+(y)φp(y)) , u(x),u(y) > k

(u(x) − u(y))p−1w+(x)φp(x) , u(x) > k , u(y) ≤ k

0, otherwise

≥ (w+(x) − w+(y))p−1(w+(x)φp(x) − w+(y)φp(y)).

For the second term in the right hand-side of the inequality in (3.1) we instead have

|u(x) − u(y)|p−2(u(x) − u(y))w+(x) ≥ −(u(y) − u(x))
p−1
+ (u(x) − k)+

≥ −(u(y) − k)
p−1
+ (u(x) − k)+

= −w+(y)p−1w+(x),
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and estimating further we obtain∫
Rn\Br

∫
Br

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))w+(x)φp(x)dxdy

≥ −
∫
Rn\Br

∫
Br

K(x, y)w
p−1
+ (y)w+(x)φp(x)dxdy

≥ −
(

sup
x∈supp φ

∫
Rn\Br

K(x, y)w
p−1
+ (y)dy

)∫
Br

w+(x)φp(x)dx.

We thus deduce from (3.1) that

0 ≥
∫

Br

∫
Br

K(x, y)|w+(x) − w+(y)|p−2

× (w+(x) − w+(y))(w+(x)φp(x) − w+(y)φp(y))dxdy

− 2

(
sup

x∈supp φ

∫
Rn\Br

K(x, y)w
p−1
+ (y)dy

)∫
Br

w+(x)φp(x)dx. (3.2)

Let us then consider the first term in the inequality above. If w+(x) ≥ w+(y) and φ(x) ≤ φ(y) in the integrand, 
we appeal to Lemma 3.1 below and get

φp(x) ≥ (1 − cp ε)φp(y) − (1 + cpε) ε1−p|φ(x) − φ(y)|p (3.3)

for any ε ∈ (0, 1] with the constant cp ≡ (p − 1)(max{1, p − 2}). Thus, by choosing

ε := 1

max{1,2cp}
w+(x) − w+(y)

w+(x)
∈ (0,1]

we get

(w+(x) − w+(y))p−1w+(x)φp(x) ≥ (w+(x) − w+(y))p−1w+(x)(max{φ(x),φ(y)})p

− 1

2
(w+(x) − w+(y))p(max{φ(x),φ(y)})p

− c(max{w+(x),w+(y)})p|φ(x) − φ(y)|p

with c ≡ c(p). Recall that in the estimate above we assumed that φ(x) ≤ φ(y), max{φ(x), φ(y)} = φ(y). However, 
when 0 = w+(x) ≥ w+(y) ≥ 0 or w+(x) ≥ w+(y) and φ(x) ≥ φ(y), the estimate in the display above is trivial and 
hence we conclude that it holds also in these cases. It follows that

(w+(x) − w+(y))p−1(w+(x)φp(x) − w+(y)φp(y))

≥ (w+(x) − w+(y))p−1(w+(x)(max{φ(x),φ(y)})p − w+(y)φp(y))

− 1

2
(w+(x) − w+(y))p(max{φ(x),φ(y)})p

− c(max{w+(x),w+(y)})p|φ(x) − φ(y)|p

≥ 1

2
(w+(x) − w+(y))p(max{φ(x),φ(y)})p

− c(max{w+(x),w+(y)})p|φ(x) − φ(y)|p

whenever w+(x) ≥ w+(y). If, on the other hand, w+(y) > w+(x) in the integrand, we may interchange the roles of x
and y in the display above by analogous reasoning. Hence we arrive in all cases at
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∫
Br

∫
Br

K(x, y)|w+(x) − w+(y)|p−2

× (w+(x) − w+(y))(w+(x)φp(x) − w+(y)φp(y))dxdy

≥ 1

2

∫
Br

∫
Br

K(x, y)|w+(x) − w+(y)|p(max{φ(x),φ(y)})p dxdy

− c

∫
Br

∫
Br

K(x, y)(max{w+(x),w+(y)})p|φ(x) − φ(y)|p dxdy. (3.4)

Observing finally that

|w+(x)φ(x) − w+(y)φ(y)|p ≤ 2p−1|w+(x) − w+(y)|p(max{φ(x),φ(y)})p

+ 2p−1(max{w+(x),w+(y)})p|φ(x) − φ(y)|p
and combining this with (3.2) and (3.4) concludes the proof of (1.8) for w+.

In order to prove the estimate in (1.8) for w−, it will suffice to proceed as above, using the function η = −w− φ, 
instead of η = w+ φ, as a test function in the weak formulation of problem (2.3). �

Above we made use of the following trivial but very useful small lemma.

Lemma 3.1. Let p ≥ 1 and ε ∈ (0, 1]. Then

|a|p ≤ |b|p + cpε|b|p + (1 + cpε)ε1−p|a − b|p, cp := (p − 1)(max{1,p − 2}),
holds for every a, b ∈ R

m, m ≥ 1. Here  stands for the standard Gamma function.

Proof. By the triangle inequality and convexity we obtain

|a|p ≤ (|b| + |a − b|)p

= (1 + ε)p
(

1

1 + ε
|b| + ε

1 + ε

|a − b|
ε

)p

≤ (1 + ε)p−1|b|p +
(

1 + ε

ε

)p−1

|a − b|p.

Estimating

(1 + ε)p−1 = 1 + (p − 1)

∫ 1+ε

1
tp−2 dt ≤ 1 + ε(p − 1)max{1, (1 + ε)p−2},

and then iterating, to get the Gamma function bound, concludes the proof. �
We would like to recall that, as in the classic local case, the proven Caccioppoli estimates with tail encode basically 

all the informations deriving from the minimum property of the functions u for what concerns the corresponding 
Hölder continuity.

We next show the validity of the second main tool, that is the Logarithmic Lemma 1.3.

Proof of Logarithmic Lemma 1.3. Let d > 0 be a real parameter and let φ ∈ C∞
0 (B3r/2) be such that

0 ≤ φ ≤ 1, φ ≡ 1 in Br and |Dφ| < c r−1 in Br ⊂ BR/2.

We use in the weak formulation of problem (2.3), the test function η defined by

η = (u + d)1−pφp.

Note that since u ≥ 0 in the support of φ, the test function is well-defined. We get
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0 =
∫

B2r

∫
B2r

K(x, y)|u(x) − u(y)|p−2(u(x) − u(y))

×
[

φp(x)

(u(x) + d)p−1
− φp(y)

(u(y) + d)p−1

]
dxdy

+ 2
∫
Rn\B2r

∫
B2r

K(x, y)|u(x) − u(y)|p−2 u(x) − u(y)

(u(x) + d)p−1
φp(x)dxdy

=: I1 + I2. (3.5)

If u(x) > u(y), for the integrand of I1, we use the inequality in Lemma 3.1, by choosing there a = φ(x), b = φ(y)

and

ε = δ
u(x) − u(y)

u(x) + d
∈ (0,1), with δ ∈ (0,1),

since u(y) ≥ 0 for any y ∈ B2r ⊂ BR . It follows that

K(x,y)|u(x) − u(y)|p−2(u(x) − u(y))

[
φp(x)

(u(x) + d)p−1
− φp(y)

(u(y) + d)p−1

]

≤ K(x,y)
(u(x) − u(y))p−1

(u(x) + d)p−1
φp(y)

[
1 + c δ

u(x) − u(y)

u(x) + d
−
(

u(x) + d

u(y) + d

)p−1
]

+ c δ1−pK(x, y)|φ(x) − φ(y)|p,

where c ≡ c(p). Observe that the first term that appears in the right-hand side of the previous inequality can be 
rewritten as

K(x,y)

(
u(x) − u(y)

u(x) + d

)p

φp(y)

⎡
⎢⎣1 −

(
u(y)+d
u(x)+d

)1−p

1 − u(y)+d
u(x)+d

+ c δ

⎤
⎥⎦=: J1. (3.6)

Now, consider the real function t �→ g(t) given by

g(t) := 1 − t1−p

1 − t
= −p − 1

1 − t

∫ 1

t

τ−p dτ, ∀ t ∈ (0,1).

We have that g is an increasing function in t , since

t �→ 1

1 − t

∫ 1

t

τ−p dτ

is a decreasing function (recall that p > 1). Thus

g(t) ≤ −(p − 1) ∀ t ∈ (0,1).

Moreover, if t ≤ 1/2, then

g(t) ≤ −p − 1

2p

t1−p

1 − t
.

Therefore, if

t = u(y) + d

u(x) + d
∈ (0, 1/2];

that is,

u(y) + d ≤ u(x) + d

2
,

then, since (u(x) − u(y))(u(y) + d)p−1/(u(x) + d)p ≤ 1, we get
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J1 ≤ K(x,y)

(
c δ − p − 1

2p

)[
u(x) − u(y)

u(y) + d

]p−1

φp(y). (3.7)

Choosing

δ = p − 1

2p+1 c
, (3.8)

we get

J1 ≤ −K(x,y)
p − 1

2p+1

[
u(x) − u(y)

u(y) + d

]p−1

.

If, on the other hand,

t = u(y) + d

u(x) + d
∈ (1/2, 1),

that is,

u(y) + d >
u(x) + d

2
,

then

J1 ≤ K(x,y) [cδ − (p − 1)]
[
u(x) − u(y)

u(x) + d

]p

φp(y),

and so, by the choice of δ in (3.8), we finally get

J1 ≤ −K(x,y)
(2p+1 − 1)(p − 1)

2p+1

[
u(x) − u(y)

u(x) + d

]p

φp(y). (3.9)

Furthermore, if 2(u(y) + d) < u(x) + d , then[
log

(
u(x) + d

u(y) + d

)]p

≤ c

[
u(x) − u(y)

u(y) + d

]p−1

(3.10)

holds with c ≡ c(p). On the other hand, if 2(u(y) + d) ≥ u(x) + d , recalling that we have assumed u(x) > u(y), then[
log

(
u(x) + d

u(y) + d

)]p

=
[

log

(
1 + u(x) − u(y)

u(y) + d

)]p

≤ 2p

(
u(x) − u(y)

u(x) + d

)p

, (3.11)

where we have used

log(1 + ξ) ≤ ξ, ∀ ξ ≥ 0, with ξ = u(x) − u(y)

u(y) + d
≤ 2[u(x) − u(y)]

u(x) + d
.

Thus, combining (3.6) with (3.7), (3.9), (3.10) and (3.11), we conclude with

K(x,y)|u(x) − u(y)|p−2(u(x) − u(y))

[
φp(x)

(u(x) + d)p−1
− φp(y)

(u(y) + d)p−1

]

≤ − 1

c
K(x, y)

[
log

(
u(x) + d

u(y) + d

)]p

φp(y) + c δ1−pK(x, y)|φ(x) − φ(y)|p.

Observe that when u(x) = u(y), then the estimate above holds trivially. If, on the other hand, u(y) > u(x) we can 
again exchange the roles of x and y in the computations above. We finally get for the first term in (3.5) that

I1 ≤ −1

c

∫
B2r

∫
B2r

K(x, y)

∣∣∣∣log

(
u(x) + d

u(y) + d

)∣∣∣∣
p

φp(y)dxdy

+ c

∫
B2r

∫
B2r

K(x, y)|φ(x) − φ(y)|p dxdy (3.12)

for a constant c ≡ c(p) by the choice of δ.
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For the second contribution in (3.5), namely I2, we can proceed as follows. First of all, notice that when y ∈ BR , 
u(y) ≥ 0 and so

(u(x) − u(y))
p−1
+

(d + u(x))p−1
≤ 1 for all x ∈ B2r , y ∈ BR.

Moreover, when y ∈R
n \ BR ,

(u(x) − u(y))
p−1
+ ≤ 2p−1[up−1(x) + (u(y))

p−1
− ] for all x ∈ B2r .

Therefore,

I2 ≤ 2
∫

BR\B2r

∫
B2r

K(x, y)(u(x) − u(y))
p−1
+ (d + u(x))1−p φp(x)dxdy

+ 2
∫
Rn\BR

∫
B2r

K(x, y)(u(x) − u(y))
p−1
+ (d + u(x))1−pφp(x)dxdy

≤ c

∫
Rn\B2r

∫
B2r

K(x, y)φp(x)dxdy

+ cd1−p

∫
Rn\BR

∫
B2r

K(x, y)(u(y))
p−1
− dxdy (3.13)

follows for c ≡ c(p). By the assumptions on K and the fact that the support of φ belongs to B3r/2, we have∫
Rn\B2r

∫
B2r

K(x, y)φp(x)dxdy ≤ c sup
x∈B3r/2

rn

∫
Rn\B2r

K(x, y)dy ≤ crn−sp (3.14)

and ∫
Rn\BR

∫
B2r

K(x, y)(u(y))
p−1
− dxdy ≤ c |Br |

∫
Rn\BR

(u(y))
p−1
−

|y − x0|n+sp
dy

≤ c
rn

Rsp

[
Tail(u−;x0,R)

]p−1
, (3.15)

where we also used that, for any x ∈ Br , y ∈ R
n \ BR and 2r ≤ R,

|y − x0|
|y − x| ≤ 1 + |x − x0|

|x − y| ≤ 1 + r

R − r
≤ 2.

By combining (3.13) with (3.14) and (3.15), we obtain

I2 ≤ c

∫
B2r

∫
B2r

K(x, y)|φ(x) − φ(y)|p dxdy + crn−sp

+ c d1−p rn R−sp
[
Tail(u−;x0,R)

]p−1
,

which, together with (3.12) in (3.5), yields∫
B2r

∫
B2r

K(x, y)

∣∣∣∣log

(
u(x) + d

u(y) + d

)∣∣∣∣
p

φp(y)dxdy

≤ c

∫
B2r

∫
B2r

K(x, y)|φ(x) − φ(y)|p dxdy

+ c d1−p rn R−sp
[
Tail(u−;x0,R)

]p−1 + crn−sp. (3.16)

Finally, in order to conclude the proof, we need the following estimate∫
B2r

∫
B2r

K(x, y)|φ(x) − φ(y)|p dxdy ≤ cr−p

∫
B2r

∫
B2r

|x − y|−n+p(1−s) dxdy

≤ c
r−sp|B2r |, (3.17)
p(1 − s)
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where we used the bound from above on the kernel K and the fact that we are assuming |Dφ| ≤ c r−1. The proof of 
(1.7) is finished. �

A first consequence of the Logarithmic Lemma is the following

Corollary 3.2. Let p ∈ (1, ∞) and let u ∈ Ws,p(Rn) be the solution to problem (2.3) such that u ≥ 0 in BR ≡
BR(x0) ⊂ �. Let a, d > 0, b > 1 and define

v := min
{
(log(a + d) − log(u + d))+ , log(b)

}
.

Then the following estimate holds true, for any Br ≡ Br(x0) ⊂ BR/2(x0),∫
−

Br

|v − (v)Br |p dx ≤ c
{
d1−p

( r

R

)sp [
Tail(u−;x0,R)

]p−1 + 1
}

,

where Tail(u−; x0, R) is defined by (2.2) and c depends only on n, p, s, λ and �.

Proof. By the fractional Poincaré type inequality (see, e.g., Proposition 5.1, Formula (6.3) in [20]) and the assumption 
in (2.1) for K we get∫

−
Br

|v − (v)Br |p dx ≤ c rsp−n

∫
Br

∫
Br

K(x, y)|v(x) − v(y)|p dxdy

with a constant c ≡ c(n, p, s, λ, �). Now observe that v is a truncation of the sum of a constant and log(u + d) and 
hence it follows that∫

Br

∫
Br

K(x, y)|v(x) − v(y)|p dxdy ≤
∫

Br

∫
Br

K(x, y)

∣∣∣∣log

(
u(y) + d

u(x) + d

)∣∣∣∣
p

dxdy.

At this stage, in order to conclude, it just suffices to apply the estimate in (1.7). �
4. Local boundedness

In this section, we prove the local boundedness for the fractional p-minimizers of the functional (2.4), as stated in 
Theorem 1.1.

Proof of Theorem 1.1. Before starting, let us give some definitions. For any j ∈ N and r > 0 such that Br(x0) ⊂ �,

rj = 1

2
(1 + 2−j )r, r̃j = rj + rj+1

2
,

Bj = Brj (x0), B̃j = Br̃j (x0). (4.1)

Moreover, take

φj ∈ C∞
0 (B̃j ), 0 ≤ φj ≤ 1, φj ≡ 1 on Bj+1, and |Dφj | < 2j+3/r,

kj = k + (1 − 2−j )k̃, k̃j = kj+1 + kj

2
, k̃ ∈R

+ and k ∈ R,

w̃j = (u − k̃j )+ and wj = (u − kj )+. (4.2)

By the fractional Poincaré inequality applied to the function w̃jφj , as defined above, together with the properties 
of the kernel K , we plainly get∣∣∣∣∣∣

(∫
−

Bj

|w̃j (x)φj (x)|p∗
dx

) 1
p∗

−
∣∣∣∣∣
∫
−

Bj

w̃j (x)φj (x)dx

∣∣∣∣∣
∣∣∣∣∣∣
p

≤ c

(∫
−

Bj

|w̃jφj − (w̃jφj )Bj
|p∗

dx

) p

p∗

≤ c
rsp

rn

∫ ∫
K(x,y)|w̃j (x)φj (x) − w̃j (y)φj (y)|p dxdy, (4.3)
Bj Bj
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where p∗ = np/(n − sp) is the critical exponent for fractional Sobolev embeddings, so that we are now dealing with 
the case when sp < n.

Using the nonlocal Caccioppoli inequality with tail given by (1.8), with w+ = w̃j and φ = φj there, we arrive at(∫
−

Bj

|w̃j (x)φj (x)|p∗
dx

) p

p∗

≤ crsp

∫
−

Bj

∫
Bj

K(x, y)(max{w̃j (x), w̃j (y)})p|φj (x) − φj (y)|p dxdy

+ crsp

∫
−

Bj

w̃j (y)φ
p
j (y)dy

(
sup

y∈supp φj

∫
Rn\Bj

K(x, y)w̃
p−1
j (x)dx

)

+ c

∫
−

Bj

|w̃j (x)φj (x)|p dx. (4.4)

By the definition of φj and the assumption (2.1), we obtain the following estimate for the first term in the right 
hand-side of the inequality above,

rsp

∫
−

Bj

∫
Bj

K(x, y)(max{w̃j (x), w̃j (y)})p|φj (x) − φj (y)|p dxdy

≤ c2jp rsp

rp

∫
−

Bj

w
p
j (y)

(∫
Bj

dx

|x − y|n−p(1−s)

)
dy

≤ c2jp

p(1 − s)

∫
−

Bj

w
p
j (x)dx. (4.5)

For the second term on the right in (4.4), we get

c rsp

∫
−

Bj

w̃j (y)φ
p
j (y)dy

(
sup

y∈supp φj

∫
Rn\Bj

K(x, y)w̃
p−1
j (x)dx

)

≤ c 2j (n+sp)rsp

(∫
−

Bj

w
p
j (y)

(k̃j − kj )p−1
dy

)⎛⎝∫
Rn\Bj

w
p−1
j (x)

|x0 − x|n+sp
dx

⎞
⎠

≤ c
2j (n+sp+p−1)

k̃p−1

[
Tail(w0;x0, r/2)

]p−1
∫
−

Bj

w
p
j (y)dy, (4.6)

where we have just used the definitions in (4.1)–(4.2), the facts that w̃j ≤ w
p
j /(k̃j − kj )

p−1 and that y ∈ B̃j = suppφj

and x ∈R
n \ Bj yield

|x − x0|
|x − y| ≤ |x − y| + |x0 − x|

|x − y| ≤ 1 + r̃j

rj − r̃j
≤ 2j+4.

The left hand-side of (4.4) can be estimated from below as follows(∫
−

Bj

|w̃j (x)φj (x)|p∗
dx

) p

p∗
≥ (kj+1 − k̃j )

(p∗−p)p

p∗
(∫

−
Bj+1

w
p

j+1(x)dx

) p

p∗

=
(

k̃

2j+2

) (p∗−p)p

p∗ (∫
−

Bj+1

w
p

j+1(x)dx

) p

p∗
. (4.7)

By combining (4.4) with (4.5), (4.6) and (4.7), we obtain(
k̃1−p/p∗

2(j+2)
(p∗−p)

p∗

)p

A

p2

p∗
j+1 ≤ c 2j (n+sp+p−1)

(
1

p(1 − s)
+
[
Tail(w0;x0, r/2)

]p−1

k̃p−1
+ 1

)
A

p
j ,

where we have set Aj :=
(∫−

B
w

p
j (x)dx

) 1
p

.

j
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Now, by taking

k̃ ≥ δTail(w0;x0, r/2), δ ∈ (0,1], (4.8)

we get(
Aj+1

k̃

) p

p∗
≤ δ

1−p
p c̄

p

p∗ 2
j
(

n+sp+p−1
p

+ sp
n

)
Aj

k̃
, (4.9)

where c̄ = 2
2(p∗−p)

p c
p∗
p2 (2 + (p(1 − s))−1)

p∗
p2 .

Setting β := sp/(n − sp) = p∗/p − 1 > 0 and C := 2
(n+sp+p−1)n

p(n−sp)
+ sp

n−sp > 1, the estimate in (4.9) becomes

Aj+1

k̃
≤ δ

(1−p)p∗
p2 c̄ Cj

(
Aj

k̃

)1+β

Thus, it suffices to prove that the following estimate on A0 does hold

A0

k̃
≤ δ

(p−1)p∗
βp2 c̄

− 1
β C

− 1
β2

and, by a well-known iteration argument, it will follow Aj → 0 as j → ∞. Since

(p − 1)p∗

β p2
= p − 1

p

n

n − ps

n − sp

sp
= (p − 1)n

sp2
,

we choose

k̃ = δ Tail(w0;x0, r/2) + δ
− (p−1)n

sp2 HA0, with H := c̄
1
β C

1
β2 ,

which is in accordance with (4.8).
We deduce

sup
Br/2

u ≤ k + k̃

= k + δTail((u − k)+;x0, r/2) + δ
− (p−1)n

sp2 H

(∫
−

Br

(u − k)
p
+
) 1

p

,

which finally gives the desired result by taking k = 0.
The remaining case, that is when sp = n, can be treated exactly as above, just replacing p� by a suitable power q

in the left hand-side of (4.3) and consequently adjusting the exponents in the rest of the proof. �
Remark 4.1. Similarly, it is possible to prove that the weak solutions to problem (2.3) are locally bounded from 
below, satisfying an estimate analogous to the one in (1.6). The proof is exactly as before: one has just to work 
with w̃j = (k̃j − u)+ and wj = (kj − u)+ instead of the auxiliary functions defined in (4.2) and make use of the 
corresponding Caccioppoli estimate (1.8) for w−.

5. Hölder continuity

This section is devoted to the proof of the Hölder continuity of solutions, namely Theorem 1.2. As in the local 
framework, an iteration lemma is the keypoint of the proof. However, as before, we have to handle the nonlocality 
of the involved operator and thus a certain care is required. In the proof below, all the estimates proven in previous 
sections will appear.

Before starting, let us fix some notation. For any j ∈ N, let 0 < r < R/2, for some R such that BR(x0) ⊂ �,

rj := σ j r

2
, σ ∈ (0,1/4

]
and Bj := Brj (x0).

Moreover, let us define
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1

2
ω(r0) = 1

2
ω
( r

2

)
:= Tail(u;x0, r/2) + c

(∫
−

Br

|u|p dx

) 1
p

,

with Tail(u; x0, r/2) as in (2.2) and c as in (1.6), and

ω(rj ) :=
(

rj

r0

)α

ω(r0), for some α <
sp

p − 1
.

In order to prove Theorem 1.2, it will suffice to prove the following

Lemma 5.1. Under the notation introduced above, let u ∈ Ws,p(Rn) be the solution to problem (2.3). Then

osc
Bj

u ≡ sup
Bj

u − inf
Bj

u ≤ ω(rj ), ∀ j = 0,1,2, . . . . (5.1)

Proof. We will proceed by induction. For this, note that by the definition of ω(r0) and Theorem 1.1 (with δ = 1
there), the estimate in (5.1) trivially holds for j = 0, since, in particular, both the functions (u)+ and (−u)+ are weak 
subsolutions.

Now, we make a strong induction assumption and assume that (5.1) is valid for all i ∈ {0, . . . , j} for some j ≥ 0, 
and then we prove that it holds also for j + 1. We have that either

|2Bj+1 ∩ {u ≥ infBj
u + ω(rj )/2}|

|2Bj+1| ≥ 1

2
, (5.2)

or

|2Bj+1 ∩ {u ≤ infBj
u + ω(rj )/2}|

|2Bj+1| ≥ 1

2
(5.3)

must hold. If (5.2) holds, we set uj := u − infBj
u, and if (5.3) holds, we set uj := ω(rj ) − (u − infBj

u). In all cases 
we have that uj ≥ 0 in Bj and

|2Bj+1 ∩ {uj ≥ ω(rj )/2}|
|2Bj+1| ≥ 1

2
(5.4)

holds. Moreover, uj is a weak solution satisfying

sup
Bi

|uj | ≤ 2ω(ri) ∀ i ∈ {0, . . . , j}. (5.5)

We now claim that under the induction assumption we have[
Tail(uj ;x0, rj )

]p−1 ≤ c σ−α(p−1)[ω(rj )]p−1, (5.6)

where the constant c depends only on n, p, s and the difference of sp/(p−1) and α, but, in particular, it is independent 
of σ . Indeed, we have

[
Tail(uj ;x0, rj )

]p−1 = r
sp
j

j∑
i=1

∫
Bi−1\Bi

|uj (x)|p−1|x − x0|−n−sp dx

+ r
sp
j

∫
Rn\B0

|uj (x)|p−1|x − x0|−n−sp dx

≤ r
sp
j

j∑
i=1

[sup
Bi−1

|uj |]p−1
∫
Rn\Bi

|x − x0|−n−sp dx

+ r
sp
j

∫
Rn\B0

|uj (x)|p−1|x − x0|−n−sp dx

≤ c

j∑(
rj

ri

)sp

[ω(ri−1)]p−1,
i=1
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where on the last line we used (5.5) and∫
Rn\B0

|uj (x)|p−1|x − x0|−n−sp dx

≤ cr
−sp

0 sup
B0

|u|p−1 + cr
−sp

0 [ω(r0)]p−1 + c

∫
Rn\B0

|u(x)|p−1|x − x0|−n−sp dx

≤ cr
−sp

1 [ω(r0)]p−1.

Estimating further as

j∑
i=1

(
rj

ri

)sp

[ω(ri−1)]p−1

= [ω(r0)]p−1
(

rj

r0

)α(p−1) j∑
i=1

(
ri−1

ri

)α(p−1)( rj

ri

)sp−α(p−1)

= [ω(rj )]p−1 σ−α(p−1)

j−1∑
i=0

σ i(sp−α(p−1))

≤ [ω(rj )]p−1 σ−α(p−1)

1 − σ sp−α(p−1)

≤ 4sp−α(p−1)

log(4)(sp − α(p − 1))
σ−α(p−1) [ω(rj )]p−1,

where we have used the fact that σ ≤ 1/4 and α < sp/(p−1). Hence (5.6) is proved with c depending only on n, p, s
and the difference of sp/(p − 1) and α.

Next, consider the function v defined as follows

v := min

{[
log

(
ω(rj )/2 + d

uj + d

)]
+

, k

}
, k > 0. (5.7)

Applying then Corollary 3.2, obviously with a ≡ ω(rj )/2 and b ≡ exp(k), we get

∫
−

2Bj+1

|v − (v)2Bj+1 |p dx ≤ c

{
d1−p

(
rj+1

rj

)sp

[Tail(uj ;x0, rj )]p−1 + 1

}
.

Thus, as a consequence of the estimate in (5.6), we arrive at∫
−

2Bj+1

|v − (v)2Bj+1 |p dx ≤ c
{
d1−pσ sp−α(p−1)[ω(rj )]p−1 + 1

}
.

Therefore, choosing d = ε ω(rj ) with

ε := σ
sp

p−1 −α
,

we get∫
−

2Bj+1

|v − (v)2Bj+1 |dx ≤ c, (5.8)

where the constant c depends only on n, p, s, λ, � and the difference of sp/(p − 1) and α.
To continue, denote in short B̃ ≡ 2Bj+1, and follow the path paved in [19, Lemma 2.107], together with (5.4) and 

the definition of v given in (5.7). We obtain
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k = 1

|B̃ ∩ {uj ≥ ω(rj )/2}|
∫

B̃ ∩ {uj ≥ω(rj )/2}
k dx

= 1

|B̃ ∩ {uj ≥ ω(rj )/2}|
∫

B̃ ∩ {v=0}
k dx

≤ 2

|B̃|
∫

B̃

(k − v)dx = 2[k − (v)
B̃
].

By integrating the preceding inequality over the set B̃ ∩ {v = k} we obtain

|B̃ ∩ {v = k}|
|B̃| k ≤ 2

|B̃|
∫

B̃ ∩ {v=k}
[k − (v)

B̃
]dx

≤ 2

|B̃|
∫

B̃

|v − (v)
B̃
|dx ≤ c,

thanks to (5.8). Let us take

k = log

(
ω(rj )/2 + ε ω(rj )

3 ε ω(rj )

)
= log

(
1/2 + ε

3 ε

)
≈ log

(
1

ε

)
,

so that

|B̃ ∩ {v = k}|
|B̃| k ≤ c

yields

|B̃ ∩ {uj ≤ 2 ε ω(rj )}|
|B̃| ≤ c

k
≤ clog

log
(

1
σ

) , (5.9)

where the constant clog depends only on n, p, s, λ, � and the difference of sp/(p − 1) and α via the definition of ε.
We are now in a position to start a suitable iteration to deduce the desired oscillation reduction. First, for any 

i = 0, 1, 2, . . . , we define

�i = rj+1 + 2−i rj+1, �̃i := �i + �i+1

2
, Bi = B�i

, B̃i = B�̃i

and corresponding cut-off functions

φi ∈ C∞
0 (B̃i), 0 ≤ φi ≤ 1, φi ≡ 1 on Bi+1, and |Dφi | < c�−1

i .

Furthermore, set

ki = (1 + 2−i )ε ω(rj ), wi := (ki − uj )+,

and

Ai = |Bi ∩ {uj ≤ ki}|
|Bi | = |Bi ∩ {wi > 0}|

|Bi | .

The Caccioppoli inequality in (1.8) now yields∫
Bi

∫
Bi

K(x, y)|wi(x)φi(x) − wi(y)φi(y)|p dxdy

≤ c

∫
Bi

∫
Bi

K(x, y)(max{wi(x),wi(y)})p|φi(x) − φi(y)|p dxdy

+ c

∫
Bi

wi(x)φ
p
i (x)dx

(
sup

y ∈ B̃i

∫
Rn\Bi

K(x, y)w
p−1
i (x)dx

)
. (5.10)

We can estimate the term on the left below as
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A

p

p∗
i+1(ki − ki+1)

p = 1

|Bi+1| p

p∗

(∫
Bi+1 ∩ {uj ≤ki+1}

(ki − ki+1)
p∗

φ
p∗
i (x)dx

) p

p∗

≤ 1

|Bi+1| p

p∗

(∫
Bi

w
p∗
i (x)φ

p∗
i (x)dx

) p

p∗

≤ c r
sp−n

j+1

∫
Bi

∫
Bi

K(x, y)|wi(x)φi(x) − wi(y)φi(y)|p dxdy. (5.11)

Recalling that |Dφi | ≤ c2i r−1
j+1, the first term on the right in (5.10) can be treated as follows,

r
sp

j+1

∫
Bi

∫
Bi

K(x, y)(max{wi(x),wi(y)})p|φi(x) − φi(y)|p dxdy

≤ c 2ipr
sp

j+1r
−p

j+1 k
p
i

∫
Bi ∩ {uj ≤ki }

∫
Bi

1

|x − y|−p+n+sp
dydx

≤ c 2ip
[
εω(rj )

]p |Bi ∩ {uj ≤ ki}|. (5.12)

Moreover,∫
Bi

wi(x)φ
p
i (x)dx ≤ c

[
εω(rj )

] |Bi ∩ {uj ≤ ki}| (5.13)

holds. To tackle the third integral in (5.10), we first have

r
sp

j+1

(
sup

y ∈ B̃i

∫
Rn\Bi

K(x, y)w
p−1
i (x)dx

)
≤ c2i(n+sp)

[
Tail(wi;x0, rj+1)

]p−1
, (5.14)

using

inf
y∈B̃i

|y − x| ≥ |x0 − x| inf
y∈B̃i

|y − x|
|x0 − x| ≥ 2−i−1|x − x0|

for all x ∈R
n \ Bi and the fact that

Brj+1 ≡ Bj+1 ⊂ Bi ⇒ R
n \ Bi ⊂R

n \ Bj+1.

Recalling (5.6) and the facts that wi ≤ 2εω(rj ) in Bj and wi ≤ |uj | + 2εω(rj ) in Rn, we further get[
Tail(wi;x0, rj+1)

]p−1

≤ cr
sp

j+1

∫
Bj \Bj+1

w
p−1
i (x)|x − x0|−n−sp dx + c

(
rj+1

rj

)sp [
Tail(wi;x0, rj )

]p−1

≤ cεp−1ω(rj )
p−1 + cσ sp

[
Tail(uj ;x0, rj )

]p−1

≤ c

(
1 + σ sp−α(p−1)

εp−1

)[
εω(rj )

]p−1

≤ c
[
εω(rj )

]p−1
,

by the very definition of ε. Combining the estimates above, we deduce that

r
sp

j+1

(
sup

y ∈ B̃i

∫
Rn\Bi

K(x, y)w
p−1
i (x)dx

)
≤ c 2i(n+sp)

[
εω(rj )

]p−1
. (5.15)

Putting together (5.10), (5.11), (5.12), (5.13) and (5.15), we arrive at

A

p

p∗
(ki − ki+1)

p ≤ c 2i(n+sp+p)
[
εω(rj )

]p
Ai,
i+1



1298 A. Di Castro et al. / Ann. I. H. Poincaré – AN 33 (2016) 1279–1299
which yields

Ai+1 ≤ c 2i [n+(2+s)p]p∗/pA
1+β
i

with β := sp/(n − sp) by the definition of ki’s. Now, we recall that if we prove the following estimate on A0,

A0 = |B̃ ∩ {uj ≤ 2εω(rj )}|
|B̃| ≤ c−1/β2−[n+(2+s)p]p∗/[pβ2] =: ν∗, (5.16)

then we can deduce that

Ai → 0 as i → ∞.

Indeed, the condition (5.16) we can guarantee by (5.9) choosing

σ = min{1/4, exp(−clog/ν
∗)},

which then depends only on n, p, s, λ, � and the difference of sp/(p − 1) and α. In other words, we have shown that

osc
Bj+1

u ≤ (1 − ε)ω(rj ) = (1 − ε)

(
rj

rj+1

)α

ω(rj+1) = (1 − ε)σ−αω(rj+1).

Taking finally α ∈
(

0,
sp

p−1

)
small enough satisfying

σα ≥ 1 − ε = 1 − σ
sp

p−1 −α
,

then, clearly, α depends only on n, p, s, λ, � and

osc
Bj+1

u ≤ ω(rj+1)

holds, proving the induction step and finishing the proof. �
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