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Abstract

We prove the existence, uniqueness and non-negativity of solutions for a nonlinear stationary Doi–Edwards equation. The exis-
tence is proved by a perturbation argument. We get the uniqueness and the non-negativity by showing the convergence in time of 
the solution of the evolutionary Doi–Edwards equation towards any stationary solution.
© 2015 
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1. Introduction

It is well established that the modelling of non-Newtonian and viscoelastic flows bases on molecular theories. In 
such theories, kinetical concepts are used to obtain a mathematical description of the configuration of polymer chains. 
One of the most popular theories used to predict the behaviour of the melted polymers is that of Doi and Edwards 
(see for example [8] and [9]). It makes use of de Gennes reptation concept [10]. In the Doi–Edwards model, chains 
of polymer are confined within a tube of surrounding chains, and chains cannot move freely. This description of the 
entanglement phenomenon leads to the concept of a primitive chain (the tube centerline). The primitive chain is not the 
real chain, and is shorter. Nevertheless, the goal of Doi–Edwards theory is to describe the dynamics of the primitive 
chain. Basically, short time fluctuations of the polymer chain happen near the primitive chain in a wriggling motion, 
while fluctuations on larger time scales (say t ≥ Tequilibrium, see [7]) account for the chain ability to move inside the 
tube (roughly speaking, Tequilibrium is the time after which the primitive chain “feels” the constraints imposed by the 
tube). This is the “snakelike” diffusive motion. Since diffusion concerns the primitive chain, the primitive chain finally 
disengages from the original tube. This is a major complication in the theory, and for more details the reader is referred
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to [7,8] and [9]. Nevertheless, notice that on the average (say on �t = Tequilibrium) the primitive chain and the real 
chain coincide. Finally, for details on the thermodynamics of the model, see for instance [9,17].

From a mathematical point of view, a primitive chain is represented as a curve in R3. The position on the primitive 
chain is given by a curvilinear coordinate s ∈ [0, 1] (from now on, all the primitive chains are supposed to have the 
same length which is normalised to 1). Moreover, the orientation for any s is given by a unitary vector u tangent to 
the curve; we then have u ∈ S2 where S2 is the unit sphere in R3, that is:

S2 = {u ∈ R
3, ‖u‖ = 1}

where ‖ · ‖ is the Euclidean norm in R3. The tangent vector (s, u) is the microscopic variable of the model.
The rheology of such a fluid is obtained with the help of the so-called configurational probability density of the 

molecules, denoted here by F . It is a probability density with respect to the variable u. Assuming space indepen-
dence, we have F = F(t, s, u) where t ≥ 0 is the time variable. In the general case F = F(t, x, s, u) and one should 
write equation (1.1) below with a convective term, i.e. replace ∂F/∂t by the material derivative ∂F/∂t + v · ∇xF . It 
would lead to serious complications since, in that case, a complementary equation (conservation law) is required to 
determine v. Here, as usual, v stands for the macroscopic speed of the fluid.

The probability density satisfies the following PDE, known under the name of Doi–Edwards equation, and which 
is of Fokker–Planck–Smoluchowski type:

∂F

∂t
− D

∂2F

∂s2
+ ∂

∂u
.(GF) − εFκ : u ⊗ u + ε

∂

∂s

(
Fκ : λ(F )

)
= 0 on S2 × ]0,1[ (1.1)

The orientation at the chain ends is assumed to be isotropic (see [8]), which gives the boundary condition:

F(s = 0) = F(s = 1) = (1/4π). (1.2)

We also have the initial condition:

F(t = 0) = F0(s, u) (1.3)

(see also [9,17] and [5]).
In the equation (1.1) D > 0 and ε ≥ 0 are physical coefficients and κ = κ(t) ∈ M3(R) is the velocity gradient; in 

order to comply with the hypothesis that F is independent on the space variable x we assume that κ is a function of t
only. We also have

G = κ.u − (κ : u ⊗ u)u

and

λ(F )(s) =
s∫

0

∫
S2

F(s′, u)u ⊗ udμds′.

The case ε = 0 corresponds to the so-called Independent Alignment Approximation (IAA) for which explicit solutions 
of the evolutionary configurational PDE are known (see [8]). In the case ε > 0, the two mechanism described by the 

terms −εFκ : u ⊗ u and ε ∂
∂s

(
Fκ : λ(F )

)
compensate, keeping constant the number of segments by unit length:

1∫
0

∫
S2

[
− εFκ : u ⊗ u + ε

∂

∂s

(
Fκ : λ(F )

)]
dμ(u)ds = 0 (1.4)

In fact, we first obtain the following “non-integrated in s version” of (1.4):

∫
S2

[
− εFκ : u ⊗ u + ε

∂

∂s

(
Fκ : λ(F )

)]
dμ = ε

∂

∂s

⎡
⎢⎣

⎛
⎜⎝∫

S2

F(s,u) dμ − 1

⎞
⎟⎠κ : λ(F )

⎤
⎥⎦ . (1.5)

Integrating in s this inequality, we obtain (1.4) with the help of (1.2). In the present paper, we will make little use 
of (1.4), but it is likely that a thorough analysis of the stationary problem (i.e. for large ε) would appeal to such 
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cancellation property. Note also that this is an “ad hoc” compensation since these two terms arise from two different 
phenomena. The first one quantifies the creation of new segments, while the second one is due to the extension–
retraction mechanism by which the chain keeps constant its curvilinear length.

Existence, uniqueness, and regularity of solutions of (1.1), (1.2), (1.3) are proved in [5], as well as the fact that F is 
a probability density. For existence results in the case of related – but different – molecular models, see [15,6,13]. As 
an aside, notice that the Doi–Edwards model should not be mixed up with what is commonly called the Doi model
(see [16]), this latter being used for dilute polymers. In Doi theory, molecules are considered as rigid dumbbells.

In this paper we focus on the following stationary problem associated with (1.1), (1.2):

−∂2F

∂s2
+ ∂

∂u
.(GF) − εFκ : u ⊗ u + ε

∂

∂s

(
Fκ : λ(F )

)
= 0 on S2 × ]0,1[ (1.6)

F(s = 0) = F(s = 1) = (1/4π) (1.7)

In equation (1.6), we set D = 1, which is not restrictive, and we assume that the tensor κ does not depend on t . Notice 
that stationary Fokker–Planck equations with degenerate constitutive functions, but elliptic principal part, are studied 
for example in [2,3] and [4].

The two points that are addressed in the sequel are the well posedness and the non-negativity of solutions of 
equations (1.6)–(1.7) (remark that, in contrast with F ≥ 0, equality 

∫
S2

F(u)dμ(u) = 1 can easily be obtained in 
formal manner by integrating (1.6) on S2 and making use of (1.5) and (1.7)). We will essentially restrict to |ε| small, 
since global estimates on the sphere S2 do not seem easy to obtain for |ε| large. As a matter of fact, even for ε = 0, well 
posedness of the stationary problem may not be obvious due to the lack of ellipticity in the u variable. Moreover, due 
to the probabilistic features of the equations, the problem has to be well posed in L1(S2), with some extra smoothness 
due for instance to the FLog(F ) entropy estimates on the associated time dependent problem (see for instance [6]). 
But L2(S2) estimates are not expected. Anyhow, proceeding as in [8], i.e. writing

f (s,u) := F(s,u) − 1

4π
=

∑
n∈N∗

fn(u) sin(nπs)

the original problem (1.6)–(1.7) with ε = 0 is reduced to a set of well posed problems in Lr(S2) with r − 1 ≥ 0 small 
enough (see Section 3):

∂

∂u
·
(
Gfn

)
+ n2π2fn = gn, n ∈N

∗ (1.8)

Therefore, we proceed as follows. We first introduce our main functional space (Section 2), and prove an existence and 
uniqueness theorem in the case ε = 0 (Section 3). The existence result is extended in Section 4 to the case |ε| small, 
by means of the implicit function theorem. Notice that the proof provides quite strong Lr(S2) estimates frequency 
by frequency with r ≥ 1 close enough to 1, but not for r = 2, due to the low frequencies. This excludes all the 
usual Hilbert spaces as suitable working frames. We use instead a subspace of W 1,∞(

0, 1, Lr(S2)
)
, subspace which 

is not easily characterised in term of the classical functional spaces. As a matter of fact, the restriction r < 2 on low 
frequencies also causes some difficulties in the proof of the positivity of F .

The above arguments could be used to show uniqueness of solutions of problem (1.6)–(1.7) by duality. Never-
theless, we proceed differently and prove at the same time the uniqueness and the non-negativity of F . In order to 
establish this last result, we show that the solutions of problem (1.6)–(1.7) are the limits when t → ∞ of solutions of 
the time dependent Doi–Edwards problems (see Section 5 and Section 6). In fact, these evolutionary solutions are al-
ready known to be probability densities (see [5]). The proof of the above convergence consists essentially in bounding 

globally in time nonlinear terms such as 
∂

∂s

(
Fκ : λ(F )

)
.

2. Presentation of the problem and of the main results

Throughout this paper we write Q = ]0, 1[ × S2. Making use of the Riemannian metric induced by the canonical 
inner product . of R3, we can define the usual surface measure dμ (or dμ(u)), the gradient ∂

∂u
and the divergence 

∂
∂u

· operators on S2 (see [1]). Since S2 is a Riemannian submanifold of R3, the gradient of a smooth scalar valued 
function g : S2 → R can alternatively be defined as the following projection (see [12]):



1356 I.S. Ciuperca, A. Heibig / Ann. I. H. Poincaré – AN 33 (2016) 1353–1373
∂

∂u
g = ∇ug̃ − (∇ug̃ · u)

u

where g̃ is any smooth extension of g in a neighbourhood of S2 in R3 and ∇u is the usual gradient in R3. Similarly, 
for any smooth vector valued vector field of S2, identified with X ∈ C1(S2, R3) with X · u = 0, the divergence of X
can be defined as (see [12]):

∂

∂u
· X = ∇u · X̃ − X̃′u · u

where X̃ is any smooth extension of X in a neighbourhood of S2 in R3. Notation X̃′ stands for the usual Jacobian 
matrix of X̃. In what follows, we will essentially use Stokes formula:∫

S2

X · ∂g

∂u
dμ = −

∫
S2

( ∂

∂u
· X

)
gdμ (2.1)

valid for any smooth functions X : S2 → R
3 with X · u = 0, and g : S2 → R. In particular, for g = 1, we get:∫

S2

( ∂

∂u
· X

)
dμ = 0 (2.2)

Formulas (2.1) and (2.2) will be used to neglect or discard terms coming from 
∂

∂u
· (Gf

)
.

Using the following change of unknown function f = F − 1

4π
and making use of:

∂

∂u
· G = −3κ : u ⊗ u (2.3)

κ : Id3 = tr(κ) = 0 (2.4)

problem (1.6)–(1.7) becomes a problem with homogeneous Dirichlet boundary conditions:

−∂2f

∂s2
+ ∂

∂u
· (Gf ) − εf κ : u ⊗ u + ε

∂

∂s

(
f κ : λ(f )

)
+ ε

4π

∫
S2

κ : v ⊗ vf (s, v)dμ(v) = 3 + ε

4π
κ : u ⊗ u on Q (2.5)

f (s = 0) = f (s = 1) = 0 (2.6)

In the following, we use a Hilbertian basis of eigenvectors of the Laplacian in ]0, 1[ with Dirichlet boundary condi-
tions. Namely, family (Hn)n∈N∗ is defined by

Hn(s) = √
2 sin(nπs)

For any g ∈ L1(Q), n ∈ N
∗, we write gn(u) = ∫ 1

0 g(s, u)Hn(s)ds. For any r ≥ 1, we define the vector spaces Xr by:

Xr = {
g ∈ W 1,∞(

0,1,Lr(S2)
)

such that for any n ∈N
∗,

G · ∂gn

∂u
∈ Lr(S2) and sup

n∈N∗

(
n3‖gn‖Lr(S2)

)
+ sup

n∈N∗

(
n

∥∥∥G · ∂gn

∂u

∥∥∥
Lr(S2)

)
< ∞}

(2.7)

We will see in Section 3 that Xr is a Banach space when endowed with its natural norm ‖.‖Xr :

‖g‖Xr = sup
n∈N∗

(
n3‖gn‖Lr(S2)

)
+ sup

n∈N∗

(
n

∥∥∥G · ∂gn

∂u

∥∥∥
Lr(S2)

)
(2.8)

Moreover, we shall prove that any g ∈ Xr satisfies the homogeneous condition (see Remark 3.1 below):

g(s = 0) = g(s = 1) = 0

Remark also that if r2 ≥ r1 ≥ 1 then Xr2 is continuously embedded in Xr1 .
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Remark 2.1. a) Definition of Xr is a simple but useful step in our analysis. Classical spaces such as W 1,∞(0, 1;
W 1,r (S2)) cannot be used in place of Xr . In fact, Lr(S2) estimates are not likely to be obtained directly from (2.5)

(with ε = 0) since we cannot take advantage of the s-elliptic term − ∂2f

∂s2 . In contrast, after a Fourier decomposition 
in s we shall get the needed estimates. Notice that after such partial decomposition, the non-elliptic divergence term 
∂
∂u

· (Gf ) is still controlled by integration on S2.
b) The space Xr is formally obtained by counting the powers of n in the equation obtained from (2.5) by formal 

expansion in the (Hn)n∈N∗ basis. Notice for instance that we write n3‖gn‖Lr(S2) in place of n2‖gn‖Lr(S2) as a corre-
sponding term to −∂2f/∂s2. This gain of one power in definition of Xr arises from the right-hand side of equation 
(2.5), which does not depend on the s variable. Indeed, for any n ∈N

∗:

|
1∫

0

(κ : u ⊗ u) sin(nπs)ds| ≤ C/n

supplying one power of n.

Before giving the weak formulation of equations (2.5)–(2.6) in the Xr functional frame, notice that for any 
g, h ∈ Xr we have λ(h) ∈ W 2,∞(0, 1) and g ∈ W 1,∞(

0, 1, Lr(S2)
)

which implies:

for any g,h ∈ Xr,
∂

∂s

(
gκ : λ(h)

)
is well defined and belongs to L∞(

0,1,Lr(S2)
)

(2.9)

Definition 2.1. We say that f is a weak solution of (2.5)–(2.6) if f belongs to X1 and satisfies:∫
Q

[∂f

∂s

∂φ

∂s
− fG · ∂φ

∂u
− εf κ : u ⊗ uφ + ε

∂

∂s

[
f κ : λ(f )

]
φ + ε

4π

∫
S2

κ : v ⊗ vf dμ(v)φ
]
dQ

= 3 + ε

4π

∫
Q

κ : u ⊗ uφdQ ∀ φ ∈ H 1
0

(
0,1,H 2(S2)

)
(2.10)

The main result of this paper is:

Theorem 2.1. There exist ε0 > 0 such that, for any ε ∈ ]−ε0, ε0[, there exists a unique weak solution fε of equations 
(2.5)–(2.6). Moreover:

• There exists r > 1 such that fε ∈ Xr ∀ ε ∈ ]−ε0, ε0[ (regularity result)
• fε + (1/4π) is a probability density on S2. That is, for any s ∈ ]0, 1[, we have(

fε + 1

4π

)
(s) ≥ 0 a.e. in u ∈ S2 and

∫
S2

(
fε + 1

4π

)
dμ(u) = 1 (2.11)

In the sequel, we often drop the index ε (or r ≥ 1) in the notations. In particular, from now on, we write f in place 
of fε .

The above theorem is proved in two steps. In a first step, the existence of a solution is established via the implicit 
function theorem. The rest of the theorem is obtained by showing that solution F of problem (1.6)–(1.7) is the limit 
for t → +∞ of a family of density probabilities 

(
F(t)

)
t≥0, namely, the solution of an evolutionary Doi–Edwards 

equation.

3. The case ε = 0

We give results related to the functional spaces used in this paper. The existence part of Theorem 2.1 for ε = 0 will 
follow from a priori estimates in these spaces.
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Lemma 3.1. For any r ∈ [1, +∞[, Xr is a Banach space, continuously embedded in W 1,∞(
0, 1, Lr(S2)

)
. Moreover, 

for any φ ∈ Xr , we have:

φ(s,u) =
∞∑

n=1

φn(u)Hn(s) (3.1)

with absolute convergence in W 1,∞(
0, 1, Lr(S2)

)
.

Proof. It is clear that ‖.‖Xr is a seminorm on the vectorial space Xr . The fact that ‖.‖Xr is a norm will be a straight-
forward consequence of equality (3.1).

Let φ ∈ Xr and n ∈N
∗. Then:

‖φnHn‖W 1,∞(
0,1,Lr (S2)

) ≤ C1(1 + πn)
‖φ‖Xr

n3

≤ C2
‖φ‖Xr

n2

It implies that 
∑∞

n=1 φn(u)Hn(s) is absolutely convergent in W 1,∞(
0, 1, Lr(S2)

)
.

Now, for any ψ ∈ Lr ′
(S2), r−1 + (r ′)−1 = 1 and N ∈N

∗, we have:

1∫
0

∫
S2

[
φ(s,u) −

∞∑
n=1

φn(u)Hn(s)
]
HN(s)ψ(u)dsdμ(u)

=
∫
S2

φN(u)ψ(u)dμ(u) −
∞∑

n=1

∫
S2

φn(u)ψ(u)dμ(u)

1∫
0

Hn(s)HN(s)ds = 0 (3.2)

due to the absolute convergence of 
∑∞

n=1 φn(u)ψ(u)Hn(s)HN(s) in L∞(
0, 1, L1(S2)

)
. This proves (3.1) and the fact 

that Xr is continuously embedded in W 1,∞(
0, 1, Lr(S2)

)
.

It remains to prove the completeness of the space 
(
Xr, ‖.‖Xr

)
. Let (φp)p∈N be a Cauchy sequence in Xr . Since 

Xr is continuously embedded in W 1,∞(
0, 1, Lr(S2)

)
, (φp)p∈N is also a Cauchy sequence in W 1,∞(

0, 1, Lr(S2)
)
. We 

denote by φ its limit in W 1,∞(
0, 1, Lr(S2)

)
. For any n ∈N

∗:

‖φp
n − φn‖Lr(S2) ≤ √

2

1∫
0

‖φp − φ‖Lr(S2)(s)ds → 0 when p → +∞

Hence, φp
n → φn in Lr(S2) when p → +∞, uniformly in n ∈ N

∗. We also have that 
(
G · ∂φ

p
n

∂u

)
p∈N∗ is a Cauchy 

sequence in Lr(S2), hence convergent in Lr(S2). By identification, we deduce that G · ∂φn

∂u
belongs to Lr(S2) and that 

G · ∂φ
p
n

∂u
→ G · ∂φn

∂u
in Lr(S2) for p → +∞. From the inequalities:

‖φp
n − φ

q
n‖Lr(S2) ≤ (1/n3)‖φp − φq‖Xr

and ∥∥∥G · ∂φ
p
n

∂u
− G · ∂φ

q
n

∂u

∥∥∥
Lr(S2)

≤ 1

n
‖φp − φq‖Xr

we classically deduce, taking q → +∞, that φ ∈ Xr and φp → φ in Xr for p → +∞. �
Remark 3.1. Formula (3.1) implies that φ(s = 0) = φ(s = 1) = 0 for any φ ∈ Xr .



I.S. Ciuperca, A. Heibig / Ann. I. H. Poincaré – AN 33 (2016) 1353–1373 1359
Let us define for any r ≥ 1 the space:

Zr = {φ ∈ Lr(S2) such that G · ∂φ

∂u
∈ Lr(S2)}

which is clearly a Banach space with norm

‖φ‖Xr = ‖φ‖Lr(S2) +
∥∥∥G · ∂φ

∂u

∥∥∥
Lr(S2)

The space Zr will be used in the existence proof for ε = 0. In order to perform estimates in Zr , we first establish a 
useful formula (Lemma 3.2). Since this formula shall also be used for the evolution Doi–Edwards equation, we add 
the variable t in the statement. Notice also that Lemma 3.2 cannot be reduced locally to the case Glocal chart = Cst due 
to the zeros of G on S2.

Lemma 3.2. For any T > 0, r ≥ 1 and φ ∈ Lr(]0, T [ × S2) with G · ∂φ

∂u
∈ Lr(]0, T [ × S2) we have

r|φ|r−1 sgn(φ)G · ∂φ

∂u
= G · ∂

∂u
(|φ|r ) (3.3)

Proof. Using local charts, this amounts essentially to prove that for any open bounded set 
 ⊂R
3, A ∈ C∞(
, R3), 

ψ ∈ Lr(
) with A · ∇ψ ∈ Lr(
), we have:

r|ψ |r−1 sgn(ψ)A · ∇ψ = A · ∇(|ψ |r ) (3.4)

Let us consider a sequence 
(
ψn

)
n∈N in C∞(
) endowed with the two following properties (see Lemma II.1 of [11]):

ψn → ψ in Lr(
) for n → +∞ (3.5)

A · ∇ψn → A · ∇ψ in Lr(
) for n → +∞ (3.6)

and, for any δ > 0, define functions hδ : R → R and jδ : R → R by hδ(y) = √
y2 + δ and jδ(y) = y/

√
y2 + δ. We 

classically have:

r
[
hδ(ψn)

]r−1
jδ(ψn)A · ∇ψn = A · ∇

[(
hδ(ψn)

)r
]

(3.7)

(δ > 0, n ∈N
∗).

We extract a subsequence of 
(
ψn

)
n∈N∗ , still denoted by 

(
ψn

)
n∈N∗ , such that:

ψn → ψ a.e. for n → +∞ (3.8)

|ψn| ≤ ψ∗ a.e., with ψ∗ ∈ Lr(
) (3.9)

Fix δ > 0. Our goal is to pass to the limit when n → +∞ in (3.7). We have:

|hδ(ψn) − hδ(ψ)| ≤ |ψn − ψ ||ψn + ψ |√
ψ2

n + δ + √
ψ2 + δ

≤ |ψn − ψ |
Hence, from (3.5), we get 

[
hδ(ψn)

]r → [
hδ(ψ)

]r for n → ∞. It implies that, for n → +∞:

A · ∇
[
hδ(ψn)

r
]

→ A · ∇
[
hδ(ψ)r

]
in D ′(
) (3.10)

Observe that:

|jδ(ψn)||hδ(ψn)|r−1 ≤ [
(ψ∗)2 + δ

](r−1)/2

≤ [
ψ∗ + δ

]r−1 ∈ Lr ′
(
) (3.11)

with r ′ ∈ [1, +∞] such that r−1 + r ′ −1 = 1. For r > 1, using the dominated convergence theorem, we deduce from 
(3.8) and (3.11) that:
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jδ(ψn)hδ(ψn)
r−1 → jδ(ψ)hδ(ψ)r−1 in Lr ′

(
) for n → +∞ (3.12)

Using (3.6) and (3.12), we conclude that, for r > 1:

jδ(ψn)hδ(ψn)
r−1A · ∇ψn → jδ(ψ)hδ(ψ)r−1A · ∇ψ in L1(
) for n → +∞ (3.13)

For r = 1, we easily obtain:

jδ(ψn)A · ∇ψn → jδ(ψ)A · ∇ψ in L1(
) for n → +∞ (3.14)

We deduce from (3.7), (3.10), (3.13), (3.14), that:

r
[
hδ(ψ)

]r−1
jδ(ψ)A · ∇ψ = A · ∇

[(
hδ(ψ)

)r
]

(3.15)

for r ≥ 1. In order to pass to the limit δ → 0 in the above equality, notice that:

|hδ(ψ)| ≤ |ψ | + 1 for δ ≤ 1 (3.16)

For δ → 0, we have hδ → |.| everywhere. Due to (3.16), ψ ∈ Lr(
) and the dominated convergence theorem, we 
conclude that, for any r ≥ 1:

hδ(ψ)r → |ψ |r in L1(
) when δ → 0 (3.17)

for any r ≥ 1. Arguing similarly, we also prove that:

jδ(ψ)hδ(ψ)r−1A.∇ψ → sgn(ψ)|ψ |r−1A.∇ψ in L1(
) when δ → 0 (3.18)

Using (3.17), (3.18) and (3.15), we obtain the result. �
Let us introduce for any r ≥ 1 the following space of Lr(S2) sequences:

Yr = {(an)n∈N∗ such that: ∀n ∈ N
∗, an ∈ Lr(S2) and sup

n∈N∗

(
n‖an‖Lr(S2)

)
< ∞}

It is clear that Yr , when endowed with its natural norm:

‖(an)n∈N∗‖Yr = sup
n∈N∗

(
n‖an‖Lr(S2)

)
is a Banach space. Next, we introduce the linear, bounded operator T0 : Xr → Yr defined for any g ∈ Xr by T0(g) =
(an)n∈N∗ with:

an = n2π2gn + ∂

∂u
· (Ggn)

where we recall that

gn =
1∫

0

g(s)Hn(s)ds (3.19)

This operator is formally obtained by projecting the left-hand side of equation (2.5) for ε = 0 on the Hilbertian basis 
(Hn)n∈N∗ of L2(]0, 1[).

In order to study T0, we first introduce the following unbounded linear operator defined for any n ∈N
∗ and r > 1

by:

Ln : Lr(S2) → Lr(S2)

where D(Ln) = Zr and for any h ∈ Zr :

Ln(h) = n2π2h + ∂

∂u
· (Gh)

It is clear that Ln is closed and densely defined.
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Let us consider r ′ > 1 such that

1

r
+ 1

r ′ = 1. (3.20)

One can easily prove that the adjoint operator

L∗
n : Lr ′

(S2) → Lr ′
(S2)

is such that D(L∗
n) = Zr ′ and for any ψ ∈ Zr ′ :

L∗
n(ψ) = n2π2ψ − G · ∂ψ

∂u

Lemma 3.3. There exists r0 > 1 such that Ln : Zr → Lr(S2) is a Banach isomorphism for any r ∈ ]0, r0[ and n ∈N
∗. 

Moreover, there exists C > 0 such that

‖L−1
n (ψ)‖Zr ≤ C‖ψ‖Lr(S2) (3.21)

‖L−1
n (ψ)‖Lr(S2) ≤ C

n2
‖ψ‖Lr(S2) (3.22)

for any ψ ∈ Lr(S2), n ∈ N
∗ and r ∈ ]0, r0[.

Proof. Let r ′ > 1 satisfying (3.20). The surjectivity of Ln is a consequence of the following a priori estimate:

∀ϕ ∈ Zr ′ ,‖ϕ‖
Lr ′ (S2)

≤ C1‖L∗
n(ϕ)‖

Lr′ (S2)
(3.23)

In order to prove (3.23), set h = L∗
n(ϕ). We have:

n2π2ϕ − G · ∂ϕ

∂u
= h (3.24)

We multiply this inequality by |ϕ|r ′−1 sgn(ϕ), integrate over S2 and use Lemma 3.2 and we get:

n2π2
∫
S2

|ϕ|r ′
dμ − 1

r ′

∫
S2

G · ∂(|ϕr ′ |)
∂u

dμ =
∫
S2

h|ϕ|r ′−1 sgn(ϕ)dμ (3.25)

Using the Stokes formula and Hölder inequality we obtain:∫
S2

(
n2π2 − 3

r ′ κ : u ⊗ u
)
|ϕ|r ′

dμ ≤ ‖h‖
Lr′ (S2)

‖ϕ‖r ′−1
Lr′ (S2)

Taking r ′ large enough, that is r − 1 small enough, we get (3.23), which proves that Ln is surjective.
We now prove the injectivity of Ln. Let us denote ψ = Ln(g), with g ∈ Zr , ψ ∈ Lr(S2). Hence:

n2π2g + ∂

∂u
· (Gg

) = ψ (3.26)

Using Lemma 3.2, we get:

|g|r−1 sgn(g)
∂

∂u
· (Gg

) = |g|r ∂

∂u
· G + 1

r
G · ∂

∂u

(|g|r)
= ∂

∂u
· (G|g|r) + (1

r
− 1

)
G · ∂

∂u

(|g|r) (3.27)

We now multiply (3.26) by |g|r−1 sgn(g) and integrate over S2 to get:∫ (
n2π2 − 3(r − 1)

r
κ : u ⊗ u

)
|g|rdμ ≤ ‖ψ‖Lr(S2)‖g‖r−1

Lr(S2)
(3.28)
S2
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Taking again r − 1 small enough we obtain at the same time that Ln is one to one and estimate (3.22). Estimate (3.21)
follows from equality

G · ∂g

∂u
= ψ − (

n2π2 − 3κ : u ⊗ u
)
g

(see eqs. (3.26) and (2.3)) and estimate (3.22). �
Remark 3.2. In the above proof, the condition n2 r

r−1 large enough is required. Hence, we can take r large provided 
that n is large enough. This limitation on low frequencies forbids to work in a Hilbertian frame (r = 2).

Since for any g ∈ Xr we have 
(
T0(g)

)
n

= Ln(gn) where gn is given by (3.19), we easily obtain the following:

Corollary 3.1. There exists r0 > 1 such that for any r ∈ ]0, r0[, T0 is a Banach isomorphism.

4. Proof of the existence result for ε small

For |ε| small enough, existence of solutions for the problem (2.5)–(2.6) will be a consequence of Corollary 3.1 and 
the implicit function theorem for an appropriate operator T : R × Xr → Yr . In order to handle the nonlinearity of 
such an operator, we prove a preliminary lemma. Notice first that for any n ∈N

∗, due to Remark 2.9:

bn =
1∫

0

∂

∂s

[
φκ : λ(ψ)

]
(s)Hn(s)ds (4.1)

is well defined and belongs to Lr(S2) for any φ, ψ ∈ Xr .

Lemma 4.1. For any r ≥ 1 let B : Xr × Xr → Yr be given by B(φ, ψ) = (bn)n∈N∗ where bn is given by (4.1).
The function B is well defined, bilinear and continuous. Moreover, for any φ, ψ ∈ Xr and r ≥ 1 we have:

‖bn‖Lr(S2) ≤ C

n2
‖φ‖Xr ‖ψ‖Xr (4.2)

where C > 0 is a constant.

Proof. In order to prove inequality (4.2), we integrate by parts equation (4.1). We get:

bn = −√
2nπ

1∫
0

φκ : λ(ψ) cos(nπs)ds (4.3)

Hence, we just have to prove that:

‖
1∫

0

φκ : λ(ψ)e−inπsds‖Lr(S2) ≤ C

n3
‖φ‖Xr ‖ψ‖Xr (4.4)

for any n ∈N
∗, with C > 0 independent of n, φ, ψ .

Observe that:

κ : λ(ψ)(s) =
s∫

0

∫
S2

[
κ : v ⊗ v

+∞∑
q=1

ψq(v)Hq(s′)
]
dvds′

= √
2

+∞∑
q=1

{ 1

qπ

[
1 − cos(qπs)

] ∫
S2

ψq(v)κ : v ⊗ vdv
}

(4.5)

We have by definition of ‖.‖Xr and Hölder inequality:
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∣∣ ∫
S2

ψq(s)(v)κ : v ⊗ vdv
∣∣ ≤ C

q3
‖ψ‖Xr (4.6)

Hence:

+∞∑
q=1

{ 1

q

∣∣ ∫
S2

ψq(v)κ : v ⊗ vdv
∣∣} ≤ C‖ψ‖Xr (4.7)

It follows from (4.5), (4.6) and (4.7) that:

κ : λ(ψ)(s) =
∑
p∈Z

λpeipπs (4.8)

with:

• For p = 0, |λ0| ≤ C‖ψ‖Xr (4.9)

• For p ∈ Z
∗, |λp| ≤ C

p4
‖ψ‖Xr (4.10)

As a consequence, 
∑

p∈Z λpeipπs is absolutely convergent in L∞(0, 1).
On the other hand, we can write:

φ(s) =
∞∑

q=1

φq sin(qπs)

=
∑
q∈Z

φ̃qeiqπs (4.11)

with φ̃0 = 0, φ̃q = −(i/2)φq for q > 0 and φ̃q = (i/2)φ−q for q < 0. Hence, for any q ∈ Z
∗:

‖φ̃q‖Lr(S2) ≤ 1

2
‖φq‖Lr(S2)

≤ 1

2|q|3 ‖φ‖Xr (4.12)

It follows that 
∑

q∈Z φ̃qeiqπs is absolutely convergent in L∞(0, 1, Lr(S2)). Invoking a classical result on the product 
of absolutely convergent series in Banach spaces, we find that:

φκ : λ(ψ) =
∑
n∈Z

hne
inπs

with absolute convergence in L∞(0, 1, Lr(S2)). Moreover, since, for any n ∈ Z we have:

hn =
∑
q∈Z

λn−q φ̃q (4.13)

we can write, restricting to n ∈N
∗ and making use of inequalities (4.9), (4.10), (4.12):

‖hn‖Lr(S2) ≤ |λ0|‖φ̃n‖Lr(S2) +
∑

|q|≥(n/2)

|λn−q |‖φ̃q‖Lr(S2) +
∑

0<|q|<(n/2)

|λn−q |‖φ̃q‖Lr(S2)

≤ ‖ψ‖Xr ‖φ‖Xr

[ C

n3
+ C

( ∑
k∈Z∗

1

k4

)(2

n

)3 + C
( ∑

q∈Z∗

1

q3

)(2

n

)4
]

≤ C

n3
‖φ‖Xr ‖ψ‖Xr

This implies (4.4). Due to equality (4.3), we finally get (4.2). �



1364 I.S. Ciuperca, A. Heibig / Ann. I. H. Poincaré – AN 33 (2016) 1353–1373
Let r ≥ 1. We introduce the operator:

T :R× Xr → Yr

defined for any ε ∈R and g ∈ Xr by T (ε, g) = (dn)n∈N∗ with:

dn = n2π2gn + ∂

∂u
· (Ggn

) − εκ : u ⊗ ugn + ε
(
B(g,g)

)
n

+ ε

4π

∫
S2

κ : v ⊗ vgn(v)dv − 3 + ε

4π
κ : u ⊗ u1n (4.14)

In this writing, gn is given by (3.19). Coefficient 1n is such that 1 = ∑
n∈N∗ 1nHn(s), with convergence in L2(0, 1), 

that is:

1n = √
2
∫
S2

sin(nπs)ds

=
√

2

nπ
[1 − (−1)n] (4.15)

We can formulate problem (2.5)–(2.6) in term of operator T :

Lemma 4.2. Let (ε, f ) ∈ R × Xr with r ≥ 1. Function f is a weak solution of (2.5)–(2.6) if and only if T (ε, f ) = 0.

Proof. Let f ∈ Xr be a weak solution of (2.5)–(2.6). Taking in (2.10) φ(s, u) = ψ(u) sin(nπs) with arbitrary ψ ∈
H 2(S2) and n ∈N

∗, we obtain after integration by parts in s that T (ε, f ) = 0.
Conversely, let us consider f ∈ Xr such that 

(
T (ε, f )

)
n

= 0 for any n ∈ N
∗. This implies that for any φ ∈

H 1
0

(
0, 1, H 2(S2)

)
and any m ∈N

∗ we have:

∫
S2

1∫
0

[
−∂2f (m)

∂s2
φ − f (m)G · ∂φ

∂u
− εf (m)κ : u ⊗ uφ + εh(m)φ

+ ε

4π

∫
S2

κ : v ⊗ vf (m)(v, s)dμ(v)φ − 3 + ε

4π
κ : u ⊗ u1(m)φ

]
dsdμ(u) = 0 (4.16)

In the above equation, exponent (m) indicates an L2 projection on span(H1, . . . , Hm), i.e.:

f (m)(s) =
m∑

n=1

[ 1∫
0

f (σ )Hn(σ )dσ
]
Hn(s),

h(m)(s) =
m∑

n=1

[ 1∫
0

∂

∂s

(
f κ : λ(f )

)
(σ )Hn(σ )dσ

]
Hn(s),

1(m)(s) =
m∑

n=1

1nHn(s).

We integrate by parts with respect to the s variable the first term of (4.16). Using convergences f (m) → f in 

W 1,∞(
0, 1, Lr(S2)

)
(see (3.1)) and h(m) → ∂

∂s

(
f κ : λ(f )

)
in L∞(

0, 1, Lr(S2)
)

(see (4.2)), we obtain the result. �
We are in position to prove the existence and regularity parts in Theorem 2.1:
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Proof. We consider r ∈ ]1, r0[ with r0 > 1 given by Lemma 3.3. It is clear from Lemma 4.1 that T is a C∞ function. 

Remark that, for any g ∈ Xr , T (0, g) = T0(g) −α where α ∈ Yr is given by αn = 3

4π
κ : u ⊗u1n. Now, Corollary 3.1

ensures that the hypothesis of the implicit function theorem are satisfied. It provides the existence part as well as the 
regularity part in Theorem 2.1. �
Remark 4.1. In the case ε = 0 we have fn ∈ Lr(S2) for r ∈ [1, r0[. But we also know, from Remark 3.2, that there 
exists N ∈ N

∗ such that fn ∈ L2(S2) for n ≥ N . Hence for α ∈ [0, 52 [ we have:

‖
∞∑

n=1

nαfn(u)Hn(s)‖L2(0,1;Lr (S2))
≤

N−1∑
n=1

nα‖fn‖Lr(S2) + C‖
∞∑

n=N

nαfn(u)Hn(s)‖L2(0,1;L2(S2))

≤ C(N,α) + C

( ∞∑
n=N

n2α‖fn‖2
L2(S2)

)1/2

< +∞

since ‖fn‖L2(S2)
≤ c

n3 for n ≥ N . It follows that f ∈ H 5/2−δ(0, 1; Lr(S2)) for any δ > 0 arbitrary small.

In contrast, we are unable to obtain such smoothness for ε �= 0. It comes from the non-linear term ε ∂
∂s

(Fk : λ(F ))

which couples the “bad” low frequencies with high frequencies.

The main issue in the following is the non-negativity of F , the other properties could be obtained by rather simple 
means. For instance the uniqueness can be proved by Holmgren’s principle, but we now argue differently.

5. Some results on the evolution problem

We prove in the sequel (Sections 5 and 6) that the solution F = f + (4π)−1 obtained in Theorem 2.1 is the L1(Q)

limit as t → +∞ of a family 
((

f e + (4π)−1
)
(t)

)
t>0

of probability densities which is solution of the corresponding 

evolution problem. In the rest of this paper, we mostly restrict to exponent r = 1, in order to get uniqueness in the 
L1(S2) frame. To begin with, consider the following evolution problem associated with equations (2.5)–(2.6):

Find f e(t, s, u) solution of (5.1), (5.2), (5.3):

∂f e

∂t
− ∂2f e

∂s2
+ ∂

∂u
· (Gf e) − εf eκ : u ⊗ u + ε

∂

∂s

(
f eκ : λ(f )

)
+ ε

4π

∫
S2

κ : v ⊗ vf e(s, v)dμ(v) = 3 + ε

4π
κ : u ⊗ u on QT (5.1)

f e(s = 0) = f e(s = 1) = 0 (5.2)

f e(t = 0) = f e
0 (5.3)

with QT = [0, T ] × Q, T > 0. Function f e
0 : Q → R is the initial data.

Existence and uniqueness results for problem (5.1), (5.2), (5.3) have been obtained in [5]:

Theorem 5.1. Assume that f e
0 ∈ L2(Q) and 

∂f e
0

∂u
∈ (L2(Q))3. Then, there exists a unique variational solution f e ∈

L2
(
0, T , H 1

0 (Q)
)

with 
∂f e

∂t
∈ L2

(
0, T , H−1(Q)

)
in the following sense:

−
∫

QT

f e ∂φ

∂t
dQT −

∫
Q

f e
0 φ(t = 0)dQ +

∫
QT

[∂f e

∂t

∂φ

∂s
+ ∂

∂u
· (Gf e

)
φ

− εκ : u ⊗ uf eφ + ε

4π

∫
κ : v ⊗ vf edvφ − εf eκ : λ(f e)

∂φ

∂s

]
dQT = 3 + ε

4π

∫
κ : u ⊗ uφ dQT (5.4)
S2 QT
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for any φ ∈ H 1
(
0, T : H 1

0 (Q)
)

with φ(t = T ) = 0. Moreover, if:

f e
0 + 1

4π
≥ 0 a.e. (s, u) ∈ Q and

∫
S2

(
f e

0 + 1

4π

)
dμ = 1 a.e. s ∈ ]0,1[

then:

f e + 1

4π
≥ 0 a.e. (t, s, u) ∈ QT and

∫
S2

(
f e + 1

4π

)
dμ = 1 a.e. (t, s) ∈ ]0, T [ × ]0,1[

From now on, we assume that f ε
0 ∈ H 1

0 (Q) with f e
0 + 1

4π
≥ 0 and 

∫
S2

(
f e

0 + 1

4π

)
dμ = 1. From Theorem 5.1, this 

implies the very useful estimate (uniform in t ∈R+):∫
S2

|f e|dμ ≤ 2 a.e. (t, s) ∈ R+ × ]0,1[ (5.5)

As a consequence, we deduce from (5.5) that:

‖λ(f e)‖L∞(0,T :W 1,∞(0,1)) ≤ 2 (5.6)

with C ≥ 0 independent of T ≥ 0. We also have:
∞∑

n=1

n2‖f e
0,n‖2

L1(S2)
≤ C

∞∑
n=1

n2‖f e
0,n‖2

L2(S2)
< ∞ (5.7)

where

f e
0,n =

1∫
0

f e
0 (s)Hn(s)ds (5.8)

for any n ∈ N
∗. For n ∈ N

∗, let us denote f e
n = ∫ 1

0 f e(s)Hn(s)ds ∈ L2
(
0, T , H 1(S2)

)
. In (5.4), taking φ(t, s, u) =

ψ(t, u)Hn(s) with ψ ∈ H 1
(
0, T , H 1(S2)

)
and ψ(t = T ) = 0 as a test function, we easily obtain, for any n ∈N

∗:

∂f e
n

∂t
+ n2π2f e

n + ∂

∂u
· (Gf e

n

) − εκu ⊗ uf e
n + ε

4π

∫
S2

κ : v ⊗ vf e
n (v)dv

− √
2εnπ

1∫
0

(
f eκ : λ(f e)

)
(s) cos(nπs)ds = 3 + ε

4π
κ : u ⊗ u1n (5.9)

All the terms appearing in the above equality belongs to L2
(
0, T , L2(S2)

)
.

For the initial data, we have:

f e
n (t = 0) = f e

0,n (5.10)

where f e
0,n is given by (5.8). For future reference note that:

f e(t, s, u) =
∞∑

n=1

f e
n (t, u)Hn(s) (5.11)

with convergence in L2
(

0, 1, L2
(
0, T , H 1(S2)

))
. Last:

∂f e
n

∂s
(s) =

∞∑
n=1

nπ
√

2f e
n (s) cos(nπs) (5.12)

with convergence in L2(QT ).
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It is well known that for the heat equation, estimates of two derivatives with respect to the space variables can be 
obtained in suitable spaces. From that point of view, estimates with respect to the s derivatives in Theorem 5.1 do not 
seem to be optimal. The following simple estimate will be enough for our purposes:

Lemma 5.1. With the notations, and under the hypothesis of Theorem 5.1, there exist ε0 > 0 such that:

∞∑
n=1

T∫
0

n4‖f e
n (t)‖2

L1(S2)
dt ≤ C(T ) < ∞ (5.13)

for any T ≥ 0 and ε ∈ ]0, ε0[

Proof. Let us denote ge = ∂

∂s

[
f eκ : λ(f e)

]
. Function ge is an element of L2(QT ) due to (5.6). For n ∈N

∗, we write 

as usual ge
n = ∫ 1

0 ge(s)Hn(s)ds. Function ge
n belongs to L2(]0, T [ × S2), and by the Hölder and Bessel inequalities:

∞∑
n=1

‖ge
n‖2

L2(0,T ;L1(S2))
≤ C

∞∑
n=1

‖ge
n‖2

L2(]0,T [×S2)
≤ C‖ge‖2

L2(QT )
(5.14)

We multiply (5.9) by sgn(f e
n ) and integrate on S2. It gives, for n ∈N

∗ and ε small enough:

d

dt
‖f e

n ‖L1(S2)
+ n2π2‖f e

n ‖L1(S2)
≤ Cε‖f e

n ‖L1(S2)
+ ‖ge

n‖L1(S2)
+ C|1n| (5.15)

In the above inequality, we have used Lemma 3.2 with r = 1 and identity 
∫
S2

∂

∂u
· (
G|f e

n |)dμ = 0. Remark that 

‖f e
n ‖L1(S2)

belongs to H 1(0, T ). Now, we fix m ∈ N
∗, multiply (5.15) by n2‖f e

n ‖L1(S2)
and take the sum from n = 1

to m. Using the fact that:(
‖ge

n‖L1(S2)
+ C|1n|

)
n2‖f e

n ‖L1(S2)
≤ π2n4

4
‖f e

n ‖2
L1(S2)

+ 2‖ge
n‖2

L1(S2)
+ 2C2|1n|2 (5.16)

we deduce from (5.15) for ε small enough and using also (4.15) that:

d

dt

( m∑
n=1

n2‖f e
n ‖2

L1(S2)

)
+ π2

m∑
n=1

n4‖f e
n ‖2

L1(S2)
≤ C + 4

∞∑
n=1

‖ge
n(t)‖2

L1(S2)
(5.17)

with C > 0 independent of m ∈N
∗. Integrating this inequality with respect to t and appealing to (5.7) and (5.14), we 

obtain the result. �
6. Proof of uniqueness. Function F is a probability density

We denote by f d = f e − f . As before, function f is a stationary solution constructed in Section 4 and f e is the 
solution of the evolutionary Doi–Edwards equation (see Section 5). We now prove that f d(t) → 0 in a suitable norm 
when t → +∞. This will provide at the same time uniqueness of f and the fact that f + (4π)−1 is a probability 
density. Notice that long time behaviour of some systems arising in the theory of polymeric fluids (Hookean model 
and FENE model) are studied for instance in [14].

Since

f e ∈ H 1
(

0,1,L2(]0, T [ × S2
))

(6.1)

and

f ∈ W 1,∞(
0,1,Lr(S2)

)
with r ∈ [1, r0] (6.2)

we have:

f d ∈ H 1
(

0,1,L2(0, T ,Lr(S2)
))

(6.3)
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We also have:

f d(s) =
∞∑

n=1

f d
n Hn(s) (6.4)

with convergence in H 1
(

0, 1, L2
(
0, T , Lr(S2)

))
, with f d

n = f e
n − fn (see (5.11), (5.12), and Lemma 3.1). Remark 

that from Lemma 5.1 and the fact that f ∈ X1 we have:

∞∑
n=1

T∫
0

n4‖f d
n (t)‖2

L1(S2)
dt ≤ C(T ) < ∞.

Now, from (5.9) and equality T (ε, f ) = 0, we obtain:

∂f d
n

∂t
+ n2π2f d

n + ∂

∂u
· (Gf d

n

) − εκu ⊗ uf d
n + ε

4π

∫
S2

κ : v ⊗ vf d
n (v)dv

+ ε

1∫
0

∂

∂s

[
κ : λ(f d)f

]
(s)Hn(s)ds + ε

1∫
0

∂

∂s

[
κ : λ(f e)f d

]
(s)Hn(s)ds = 0 (6.5)

for any n ∈N
∗. Remark that:

I1n :=
1∫

0

∂

∂s

[
κ : λ(f e)f d

]
Hn(s) ds ∈ L2(]0, T [,Lr(S2)

)
(6.6)

and:

I2n :=
1∫

0

∂

∂s

[
κ : λ(f d)f

]
Hn(s) ds ∈ L∞(]0, T [,Lr(S2)

)
(6.7)

due to (6.1), (6.2), (6.3) and (5.6). Notice also that 
∂

∂t
‖f d

n ‖L1(S2)
∈ L2(0, T ). We multiply (6.5) by sgn(f d

n ) and 

integrate on S2. Using Lemma 3.2 with r = 1, we obtain:

∂

∂t
‖f d

n ‖L1(S2)
+ n2π2‖f d

n ‖L1(S2)
≤ 2ε

∫
S2

|κ : u ⊗ uf d
n |dμ + ε‖I1n‖L1(S2)

+ ε‖I2n‖L1(S2)
(6.8)

The goal is now to multiply (6.8) by n2‖f d
n ‖L1(S2)

and take the sum from n = 1 to ∞. We will need some preliminary 
lemmas.

Lemma 6.1.

∞∑
n=1

n2‖f d
n ‖L1(S2)

‖I1n‖L1(S2)
≤ C

∞∑
n=1

n4‖f d
n ‖2

L1(S2)
(6.9)

with C > 0 independent of t .

Proof. We have:

I1n(t, u) =
∞∑

aqn(t)f
d
q (t, u) (6.10)
q=1
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where aqn(t) =
∫ 1

0
∂

∂s

[
κ : λ(f e)Hq(s)

]
Hn(s)ds. The right-hand side of (6.10) is convergent in L2

(
0, T , L1(S2)

)
due 

to the convergence in H 1
(

0, 1, L2
(
0, T , L1(S2)

))
of 

∑∞
q=1 f d

q Hq . From (6.10), we deduce:

‖I1n(t)‖L1(S2)
≤

∞∑
q=1

|aqn(t)|‖f d
q (t)‖L1(S2)

(6.11)

Now, we observe that, due to (5.6):
∞∑

n=1

|aqn|2 = ‖ ∂

∂s

(
κ : λ(f e)Hq

)
‖2
L2(0,1)

≤ Cq2 (6.12)

with C > 0 independent of t . We deduce from (6.11) that

∞∑
n=1

n2‖f d
n (t)‖L1(S2)

‖I1n‖L1(S2)
≤

∞∑
n=1

∞∑
q=1

n2|aqn|‖f d
n ‖L1(S2)

‖f d
q ‖L1(S2)

≤
∞∑

n=1

∞∑
q=1

|aqn|
q2

n2‖f d
n ‖L1(S2)

q2‖f d
q ‖L1(S2)

(6.13)

Using Cauchy– Schwarz inequality, we obtain:

∞∑
n=1

n2‖f d
n (t)‖L1(S2)

‖I1n‖L1(S2)
≤

( ∞∑
n=1

∞∑
q=1

|aqn|2
q4

)1/2( ∞∑
n=1

n4‖f d
n ‖2

L1(S2)

)
(6.14)

With (6.12), this gives the result. �
Before giving bounds on ‖I2n‖L1(S2)

, we establish the following:

Lemma 6.2. There exists C > 0 such that for any N ∈ N
∗, we have:

‖
1∫

0

f (s) cos(Nπs)ds‖L1(S2)
≤ C

N2
‖f ‖X1 (6.15)

Proof. We have:
1∫

0

f (s) cos(Nπs)ds = √
2

∞∑
p=1

fp

1∫
0

sin(pπs) cos(Nπs)ds

= √
2

∑
p �=N

p

p2 − N2

[
1 + (−1)p+N+1]fp (6.16)

Now, from definition of ‖f ‖Xr we have:

‖
1∫

0

f (s) cos(Nπs)ds‖L1(S2)
≤ 2

√
2‖f ‖X1

∑
p �=N

1

p2|p2 − N2| (6.17)

Next, remark that:∑
p �=N

1

p2|p2 − N2|

=
∑ 1

p2

1

|p − N ||p + N | +
∑ 1

p2|p2 − N2| +
∑ 1

p2|p2 − N2|

1≤|p−N |<N/2 1≤p≤(N/2) p≥(3N/2)
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≤
( 2

N

)2( ∑
N/2<p<3N/2

1

N

)
+ 4

3N2

( ∞∑
p=1

1

p2

)
+ 4

5N2

( ∞∑
p=1

1

p2

)

≤ C

N2

Together with (6.16), (6.17), this ends the proof. �
As a consequence, we have the following estimate on the nonlinear term:

Lemma 6.3. There exists C > 0 such that for any q ∈ N
∗, n ∈ N

∗ we have:

‖
1∫

0

∂

∂s

[ s∫
0

Hq(τ)dτf (s,u)
]
Hn(s)ds‖L1(S2)

≤ C
q

n
‖f ‖X1 (6.18)

Proof. Since 
∫ s

0 Hq(τ)dτ =
√

2

qπ

[
1 − cos(qπs)

]
, we obtain, integrating by parts:

1∫
0

∂

∂s

[ s∫
0

Hq(τ)dτf (s,u)
]
Hn(s)ds = n

q
(E1 + E2 + E3) (6.19)

where:

• E1 = −2 
∫ 1

0 f (s) cos(nπs)ds

• E2 = ∫ 1
0 f (s) cos

(
(n + q)πs

)
ds

• E3 = ∫ 1
0 f (s) cos

(
(n − q)πs

)
ds

Using Lemma 6.2, we have:

‖Ej‖L1(S2)
≤ C

n2
‖f ‖X1, for j = 1,2 (6.20)

and also:

• ‖E3‖L1(S2)
≤ C‖f ‖X1, for q = n (6.21)

• ‖E3‖L1(S2)
≤ C

|n − q|2 ‖f ‖X1, for q �= n

Now, notice that:

1

|n − q| = 1

n

∣∣∣1 + q

n − q

∣∣∣ ≤ 2
q

n
for q �= n (6.22)

Hence:

‖E3‖L1(S2)
≤ C

q2

n2
‖f ‖X1 ∀q,n ∈ N

∗. (6.23)

From (6.19), (6.20), (6.23), we get the result. �
We deduce from Lemma 6.3 the required estimate on ‖I2n‖Lr(S2):

Lemma 6.4.
∞∑

n=1

n2‖f d
n ‖L1(S2)

‖I2n‖L1(S2)
≤ C

∞∑
n=1

n4‖f d
n ‖2

L1(S2)

with C > 0 independent of t .



I.S. Ciuperca, A. Heibig / Ann. I. H. Poincaré – AN 33 (2016) 1353–1373 1371
Proof. We can write

I2n =
∞∑

q=1

κ : λ̃(f d
q )

1∫
0

∂

∂s

[ s∫
0

Hq(τ)dτf (s)
]
Hn(s)ds

where we denote

λ̃(f d
q ) =

∫
S2

f d
q (t, v)v ⊗ v dv.

Using Lemma 6.3, we deduce:

‖I2n‖L1(S2)
≤

∞∑
q=1

‖f d
q ‖L1(S2)

q

n
‖f ‖X1

which gives:

∞∑
n=1

n2‖f d
n ‖L1(S2)

‖I2n‖L1(S2)
≤

∞∑
q=1

∞∑
n=1

nq‖f d
n ‖L1(S2)

‖f d
q ‖L1(S2)

‖f ‖X1

=
[ ∞∑
n=1

n‖f d
n ‖L1(S2)

]2‖f ‖X1 (6.24)

From Cauchy–Schwarz inequality, we get:

∞∑
n=1

n‖f d
n ‖L1(S2)

≤
[ ∞∑
n=1

1

n2

]1/2[ ∞∑
n=1

n4‖f d
n ‖2

L1(S2)

]1/2
(6.25)

Inequalities (6.24) and (6.25) provides the result. �
We finally give the proof of the last part of Theorem 2.1.

Proof. We multiply (6.8) by n2‖f d
n ‖L1(S2)

and take the sum from n = 1 to m ∈ N
∗. For |ε| small enough, and using 

Lemma 6.1 and Lemma 6.4, we obtain:

d

dt
ξm(τ) + χm(τ) ≤ C|ε|χ(τ) (6.26)

where we denote

ξm(τ) =
m∑

n=1

n2‖f d
n (τ )‖2

L1(S2)

χm(τ) =
m∑

n=1

n4‖f d
n (τ )‖2

L1(S2)

ξ(τ ) =
∞∑

n=1

n2‖f d
n (τ )‖2

L1(S2)

χ(τ ) =
∞∑

n=1

n4‖f d
n (τ )‖2

L1(S2)

Let t ∈ [0, T ]. We multiply (6.26) by eτ/2, integrate from τ = 0 to τ = t and we get:

ξm(t)et/2 − 1

2

t∫
ξm(τ)eτ/2dτ +

t∫
χm(τ)eτ/2dτ ≤ C|ε|

t∫
χ(τ)eτ/2dτ + ξm(0). (6.27)
0 0 0
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Now we pass to the limit m → +∞ in (6.27), which gives for |ε| small enough

ξ(t)et/2 − 1

2

t∫
0

ξ(τ )eτ/2dτ + 1

2

t∫
0

χ(τ)eτ/2dτ ≤ C.

Since χ(t) ≥ ξ(t) we deduce ξ(t) ≤ Ce−t/2 which implies that ξ(t) → 0 when t → +∞. Since by the Cauchy–
Schwarz inequality and the definition of function ξ we have:

∞∑
n=1

‖f d
n (t)‖L1(S2)

≤ C
[ ∞∑
n=1

1

n2

]1/2[ ∞∑
n=1

n2‖f d
n (t)‖2

L1(S2)

]1/2

≤ C
√

ξ(t) (6.28)

we finally get (see (6.4)):

‖f d(t)‖L∞(0,1,L1(S2))
→ 0 when t → +∞ (6.29)

As a consequence,∥∥∥∫
S2

f d(t)dμ

∥∥∥
L∞(0,1)

→ 0 when t → +∞

Recall that
∫
S2

f e(t)dμ = 1. Hence 
∫
S2

f dμ = 1 for almost every s ∈ ]0, 1[, and in fact for every s ∈ [0, 1] due to 
(6.2) and Sobolev embeddings. The uniqueness follows also from (6.29) since for another solution g of (2.5)–(2.6), 
we have that ‖f − g‖L∞(0,1,L1(S2))

→ 0 when t → +∞, hence f = g.

It remains to prove the non-negativity of f + 1
4π

. To do that, let us consider an arbitrary function ϕ ∈ C(S2) with 
ϕ ≥ 0 on S2. We have∫

S2

(
f + 1

4π

)
ϕ dμ =

∫
S2

(
f e + 1

4π

)
ϕ dμ −

∫
S2

f dϕ dμ (6.30)

Since f e + 1
4π

≥ 0 we obtain with the help of (6.29) that 
∫
S2

(
f + 1

4π

)
ϕ dμ ≥ 0 for almost every s ∈ ]0, 1[, and in 

fact for every s ∈ [0, 1]. This completes the proof. �
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