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Abstract

In this paper, we establish pointwise Schauder estimates for solutions of nonlocal fully nonlinear elliptic equations by perturba-
tive arguments. A key ingredient is a recursive Evans–Krylov theorem for nonlocal fully nonlinear translation invariant equations.
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1. Introduction

Integro-differential equations, which are usually called nonlocal equations nowadays, appear naturally when study-
ing discontinuous stochastic process. In a series papers of Caffarelli and Silvestre [6–8], regularities of solutions of 
nonlocal fully nonlinear elliptic equations such as Hölder estimates, Cordes–Nirenberg type estimates and Evans–
Krylov theorem were established. In this paper, we shall prove Schauder estimates for nonlocal fully nonlinear elliptic 
equations of the type:

inf
a∈A

⎧⎨
⎩

∫
Rn

δu(x, y)Ka(x, y)dy

⎫⎬
⎭ = f (x) in B5, (1.1)

where δu(x, y) = u(x + y) + u(x − y) − 2u(x), A is an index set, and each Ka is a positive kernel. We will restrict 
our attention to symmetric kernels which satisfy

K(x,y) = K(x,−y). (1.2)

✩ T. Jin was supported in part by NSF grant DMS-1362525. J. Xiong was supported in part by the First Class Postdoctoral Science Foundation of 
China (No. 2012M520002) and Beijing Municipal Commission of Education for the Supervisor of Excellent Doctoral Dissertation (20131002701).

* Corresponding author.
E-mail addresses: tj@math.uchicago.edu (T. Jin), jx@bnu.edu.cn (J. Xiong).

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.anihpc.2015.05.004
0294-1449/© 2015 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2015.05.004
http://www.elsevier.com/locate/anihpc
mailto:tj@math.uchicago.edu
mailto:jx@bnu.edu.cn
http://dx.doi.org/10.1016/j.anihpc.2015.05.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2015.05.004&domain=pdf


1376 T. Jin, J. Xiong / Ann. I. H. Poincaré – AN 33 (2016) 1375–1407
We also assume that the kernels are uniformly elliptic

(2 − σ)λ

|y|n+σ
≤ K(x,y) ≤ (2 − σ)�

|y|n+σ
(1.3)

for some 0 < λ ≤ � < ∞, which is an essential assumption leading to local regularizations. Finally, we suppose that 
the kernels are C2 away from the origin and satisfy

|∇ i
yK(x, y)| ≤ �

|y|n+σ+i
, i = 1,2. (1.4)

We say that a kernel K ∈ L0(λ, �, σ) if K satisfies (1.2) and (1.3), and K ∈ L2(λ, �, σ) if K satisfies (1.2), (1.3) and 
(1.4). In this paper, all the solutions of nonlocal equations are understood in the viscosity sense, where the definitions 
of such solutions can be found in [6].

One way to obtain Schauder estimates is that first we prove high regularity for solutions of translation invariant (or 
“constant coefficients”) equations, and then use perturbative arguments or approximations. In our case, the regularities 
for translation invariant equations should be the Evans–Krylov theorem for nonlocal fully nonlinear equations proved 
in [8], which states that: If u is a bounded solution of

inf
a∈A

⎧⎨
⎩

∫
Rn

δu(x, y)Ka(y)dy

⎫⎬
⎭ = 0 in B5,

where every Ka(y) ∈ L2(λ, �, σ) with σ ≥ σ0 > 0. Then, u ∈ Cσ+ᾱ(B1) for some ᾱ > 0. Moreover,

‖u‖Cσ+ᾱ (B1)
≤ Nek‖u‖L∞(Rn), (1.5)

where both ᾱ and Nek are positive constants depending only on n, σ0, λ, �. Note that ᾱ and Nek do not depend on σ , 
and thus, do not blow up as σ → 2. The result becomes most interesting when σ is close to 2 and σ + ᾱ > 2. If we 
let σ → 2, then it recovers the theorem of Evans and Krylov about the regularity of solutions to concave uniformly 
elliptic PDEs of second order.

Throughout the paper, we will always denote ᾱ as the one in (1.5) without otherwise stated.
In the step of approximations to obtain Schauder estimates at x = 0, it usually requires that the coefficients of the 

equations, which in our case are K(x, y) and f (x), are Hölder continuous at x = 0 in some sense. For the right-hand 
side f (x), we assume f satisfies the standard Hölder condition that

|f (x) − f (0)| ≤ Mf |x|α and |f (x)| ≤ Mf (1.6)

for all x ∈ B5, where Mf is a nonnegative constant.
For the kernel K , one may impose different types of Hölder conditions. Here, we focus on the (most delicate, as 

explained below) case that σ + ᾱ − 2 ≥ γ0 > 0, and we will assume the kernels satisfy∫
Rn

|K(x,y) − K(0, y)|min(|y|2, r2)dy ≤ �|x|αr2−σ (1.7)

for all r ∈ (0, 1], x ∈ B5.
For s ∈ R, [s] denotes the largest integer that is less than or equals to s. Our main result is the following pointwise 

Schauder estimates for solutions of (1.1). Recall that ᾱ is the one in (1.5).

Theorem 1.1. Assume every Ka(x, y) ∈ L2(λ, �, σ) satisfies (1.7) with α ∈ (0, ᾱ), σ + ᾱ − 2 ≥ γ0 > 0 and 
|σ + α − 2| ≥ ε0 > 0. Suppose that f satisfies (1.6). If u is a bounded viscosity solution of (1.1), then there exists a 
polynomial P(x) of degree [σ + α] such that for x ∈ B1,

|u(x) − P(x)| ≤ C
(‖u‖L∞(Rn) + Mf

) |x|σ+α;
|∇jP (0)| ≤ C

(‖u‖L∞(Rn) + Mf

)
, j = 0, · · · , [σ + α], (1.8)

where C is a positive constant depending only on λ, �, n, ᾱ, α, ε0 and γ0.
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Roughly speaking, Theorem 1.1 states that if K and f are of Cα at x = 0 in the sense of (1.7) and (1.6), respectively, 
then the solution u of (1.1) is precisely of Cσ+α at x = 0. Moreover, the constant C in (1.8) does not depend on σ , 
and hence, does not blow up as σ → 2.

Various Schauder estimates for solutions of some nonlocal linear equations were obtained before by R.F. Bass [3], 
R. Mikulevicius and H. Pragarauskas [21], H. Dong and D. Kim [14], B. Barrera, A. Figalli and E. Valdinoci [2], 
D. Kriventsov [18], as well as the authors [16]. The results in [2] contain bootstrap regularity and applications to 
nonlocal minimal surfaces. The equations considered in [3,21,14,18] are of rough kernels, i.e., without the assumption 
(1.4). Also in [18], D. Kriventsov proved C1+α estimates for nonlocal fully nonlinear equations with rough kernels 
when the order of the equation s > 1 by perturbative arguments. Later, J. Serra [23] extended this result in [18] to 
parabolic equations and used a different method. In [17], M. Kassmann, M. Rang and R.W. Schwab proved Hölder 
regularity results for those nonlocal equations whose ellipticity bounds are strongly directionally dependent. Recently, 
X. Ros-Oton and J. Serra [22] studied boundary regularity for nonlocal fully nonlinear equations. One may see, e.g., 
[1,13,15] for more regularity results on nonlocal elliptic equations.

For the Hölder condition (1.7) on the kernels, one can check that it will hold if the kernels satisfy the pointwise 
Hölder continuous condition |K(x, y) − K(0, y)| ≤ �(2 − σ)|x|α|y|−n−σ . In the case of σ + ᾱ < 2, all of our ar-
guments still work except that one needs to change the condition (1.7) to (3.16) or (3.17), since the approximation 
solutions will be of only Cσ+ᾱ; see Remark 3.3 and Corollary 3.4.

In the case of second order partial differential equations F(∇2u, x) = 0, to show that u ∈ C2+α , we usually use 
second order polynomials p(x) to approximate u (see [4,5]), in which one implicit convenience is that ∇2p(x) is a 
constant function. In the nonlocal case, to prove Cσ+α estimates of solutions to (1.1) for σ + α > 2, second order 
polynomial approximation does not seem to work directly, since first of all, for a second order polynomial p(x), it 
grows too fast at infinity so that δp(x, y)K(y) is not integrable; and secondly, in general 

∫
Rn δp̃(x, y)K(y)dy will 

not be a constant function for any cut-off p̃(x) of p(x) so that we cannot apply Evans–Krylov theorem during the 
approximation and will lose control of the error. Another common difficulty in approximation arguments to obtain 
regularities for nonlocal equations is to control the error outside of the balls in the iteration, which may results in a 
slight loss of regularity as in [7] compared to second order equations. Instead of polynomials, we will approximate 
the genuine solution by solutions of “constant coefficients” equations, which is inspired by [4,20]. In this way, we do 
not need to worry about either polynomials or the errors coming from the infinity. But a new difficulty arises for fully 
nonlinear equations (which does not appear in the case of linear equations): the Evans–Krylov theorem in [8] cannot be 
applied to obtain the uniform estimates for the sequence of approximation solutions to those “constant coefficients” 
equations; see also Remark 3.2. This leads us to establish a recursive Evans–Krylov theorem in Theorem 2.2 to 
overcome this difficulty.

Our paper is organized as follows. In Section 2, we prove Theorem 2.2, a recursive Evans–Krylov theorem for non-
local fully nonlinear equations, where we adapt the proofs in [8] with delicate decomposition and cut-offs arguments. 
In Section 3, we will use Theorem 2.2 and perturbative arguments to prove the Schauder estimates in Theorem 1.1. In 
Appendix A, we recall some definitions and notions of nonlocal operators from [7], and establish two approximation 
lemmas for our own purposes, which are variants of that in [7].

After we finished our paper, we learned from Joaquim Serra that he has a preprint [24] on estimates for concave 
nonlocal fully nonlinear elliptic equations with rough kernels, where interior Schauder estimates are obtained inde-
pendently and by a very different method. Interior estimates of ‖u‖Cσ+α(B1/2) were obtained in [24] when the kernels 
are rough for u ∈ Cα(Rn), and when the kernels are Cα in y for u ∈ L∞(Rn). The proof in [24] uses compactness 
arguments, combining a Liouville theorem and a blow up procedure.

2. A recursive Evans–Krylov theorem

We start with our motivation of the recursive Evans–Krylov theorem in Theorem 2.2. Recall that the idea of our 
proof of Theorem 1.1 is to find a sequence of suitable functions approximating u in a desirable way.

Let u be a bounded viscosity solution of (1.1). We first approximate u by w0 which solves

inf
a∈A

∫
Rn

δw0(x, y)Ka(0, y)dy = f (0) in B4

w0 = u in R
n \ B4.
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Then the error estimate ‖u − w0‖L∞(B4) can be controlled by the approximation lemmas in Appendix A. We need to 
further estimate the error u − w0 in the Cσ+α norm near 0. To do this, we scale the error:

W1(x) = ρ−(σ+α)(u − w0)(ρx),

where ρ will be universally chosen, and look for a desirable approximation for W1 in B4. It follows from (1.1) that 
W1 satisfies

inf
a∈A

∫
Rn

(
δW1(x, y) + ρ−(σ+α)δw0(ρx,ρy)

)
K(1)

a (x, y)dy = ρ−αf (ρx),

where

K(i)
a (x, y) = ρ(n+σ)iKa(ρ

ix, ρiy), i ∈ N.

The correct approximation (see Remark 3.2) of W1 will be v1, which solves

inf
a∈A

∫
Rn

(
δv1(x, y) + ρ−(σ+α)δw0(ρx,ρy)

)
K(1)

a (0, y)dy = ρ−αf (0) in B4

v1 = W1 in R
n \ B4.

From the approximation lemmas, we know that |v1| ≤ 1 in Rn. If we can get a desired estimate for ‖v1‖Cσ+ᾱ (B1)
, then 

for w1(x) = ρσ+αv1(ρ
−1x), w0 + w1 approximates u better than w0 does near 0.

We do one more step to illustrate the essential difficulty. Now we need to estimate the error u − w0 − w1 in the 
Cσ+α norm near 0. We again further scale the error:

W2(x) = ρ−2(σ+α)(u − w0 − w1)(ρ
2x).

Based on the equation of W2, the correct approximation of W2 will be v2, which satisfies

inf
a∈A

∫
Rn

(
δv2(x, y) + ρ−(σ+α)δv1(ρx,ρy) + ρ−2(σ+α)δv0(ρ

2x,ρ2y)
)
K(2)

a (0, y)dy

= ρ−2αf (0) in B4

such that v2 = W2 in Rn \ B4, where v0 ≡ w0. We will know that |v2| ≤ 1 in Rn. If we can get a desired estimate for 
‖v2‖Cσ+ᾱ (B1)

, then for w2(x) = ρ2(σ+α)v2(ρ
−2x), w0 + w1 + w2 approximates u better than w0 + w1 does near 0.

Continuing this process, we can find a sequence of function {v
}∞
=1, where each vm is defined recursively through 
v0, v1, · · · , vm−1 by solving an equation like (2.1).

We know that |v
| ≤ 1 in Rn for all 
. If one applies the estimate (1.4) in [8] to v
 directly, one will get their Cσ+ᾱ

estimates depending on 
, which blows up as 
 → ∞. What we need is to find a universal ρ and obtain the estimate 
‖v
‖Cσ+ᾱ uniformly, i.e., independent of 
. This is what we call the recursive Evans–Krylov estimate.

2.1. Statements and ideas of the proof

If we re-examine the proof of the nonlocal Evans–Krylov theorem in [8], we can show the following theorem with 
few modification.

Theorem 2.1. Assume that every Ka(y) ∈ L2(λ, �, σ) with 2 > σ ≥ σ0 > 1 and every ba is a constant. If w is a 
bounded solution of

inf
a∈A

⎧⎨
⎩

∫
Rn

δw(x, y)Ka(y)dy + ba

⎫⎬
⎭ = 0 in B5,

then, w ∈ Cσ+ᾱ(B1), and there holds
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‖w‖Cσ+ᾱ (B1)
≤ Nek(‖w‖L∞(Rn) + | inf

a
ba|),

where both ᾱ and Nek are the same as those in (1.5).

The recursive Evans–Krylov theorem we are going to show is the following.

Theorem 2.2. Assume that every ba is a constant, Ka(y) ∈ L2(λ, �, σ) with 2 > σ ≥ σ0 > 1. For each m ∈ N ∪ {0}, 
let {v
}m
=0 be a sequence of functions satisfying

inf
a∈A

⎧⎨
⎩

∫
Rn

j∑

=0

ρ−(j−
)(σ+α)δv
(ρ
j−
x, ρj−
y)K

(j)
a (y)dy + ρ−jαba

⎫⎬
⎭ = 0 in B5 (2.1)

in viscosity sense for all 0 ≤ j ≤ m, where K
(j)
a (x) = ρj(n+σ)Ka(ρ

jx), ρ ∈ (0, 1), α ∈ (0, ᾱ). Suppose that 
‖v
‖L∞(Rn) ≤ 1 for all 
 and | infa∈A ba| ≤ 1. Then, v
 ∈ Cσ+ᾱ(B1), and there exist constants C > 0 and ρ0 ∈
(0, 1/100), both of which depend only on n, σ0, λ, �, ᾱ and α, such that if ρ ≤ ρ0 then we have

‖v
‖Cσ+ᾱ (B1)
≤ C ∀ 
 = 0,1, . . . ,m. (2.2)

The rest of this section will be devoted to proving Theorem 2.2. The regularity of vi+1 follows from the Evans–
Krylov theorem in [8]. But if one applies the estimate (1.4) in [8] to v
 directly, one will get their Cσ+ᾱ estimates 
depending on 
 and ρ. Our goal is to prove the estimate (2.2) which is independent of both 
 and ρ.

A constant C is said to be a universal constant if C only depends on n, σ0, λ, �, α and ᾱ. Throughout this section, 
all the constants denoted as C will be universal constants, and it may vary from lines to lines.

Let M >> 1 be a universal constant which will be fixed later. Replacing v
 by v
/M , we may assume that

‖v
‖L∞(Rn) ≤ 1/M and | inf
a∈A

ba| ≤ 1/M.

Then our goal is to show that

‖v
‖Cσ+ᾱ (B1)
≤ 1 ∀ 
 = 0,1, · · · ,m.

The proof is by induction on m. When m = 0, then by Theorem 2.1, (2.2) holds for M = 2Nek. We assume that 
Theorem 2.2 holds up to m = i for some i ≥ 0, and we are going to show that it holds for i + 1 as well.

It follows from the induction hypothesis and the i + 1 equations for v0, . . . , vi that

‖v
‖Cσ+ᾱ (B1)
≤ 1, ∀ 
 = 0,1, . . . , i.

We are going to show

‖vi+1‖Cσ+ᾱ (B1)
≤ 1. (2.3)

To illustrate the idea of our proof, let us first consider the second order fully nonlinear elliptic equations

F(D2u) := inf
k∈K

a
(k)
ij uij = 0 in B5, (2.4)

where K is an index set, and λI ≤ (a
(k)
ij ) ≤ �I for all k ∈ K. By the Evans–Krylov theorem, for every viscosity 

solution u of (2.4), we have

‖u‖C2+ᾱ (B1)
≤ Nek‖u‖L∞(B5).

Suppose that there exists a sequence of functions {v
}m
=0 satisfying

F
( j∑

D2(ρ−(j−
)(2+α)v
(ρ
j−
x)

)) = 0 in B5

=0
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in viscosity sense for all 0 ≤ j ≤ m, and ‖v
‖L∞(B5) ≤ 1/M for all 
. Suppose that up to m = i for some i ≥ 0 there 
holds

‖v
‖C2+ᾱ (B1)
≤ 1 for all 
 = 0,1, . . . ,m.

We are going to show this holds for m = i +1 as well. For 
 = 0, . . . , i, we let P
 be the second order Taylor expansion 
polynomial of v
 at x = 0. Let

ṽi+1 = vi+1 +
i∑


=0

ρ−(i+1−
)(2+α)(v
 − P
)(ρ
i+1−
x).

Then

G(D2ṽi+1) := F
(
D2ṽi+1 +

i∑

=0

D2(ρ−(i+1−
)(2+α)P
(ρ
i+1−
x)

)) = 0 in B5.

It is clear that G(·) is uniformly elliptic and concave. Since,

i∑

=0

D2(ρ−(i+1−
)(2+α)P
(ρ
i+1−
x)

)
is a constant matrix, (2.5)

and

F
( i∑


=0

D2(ρ−(i+1−
)(2+α)P
(ρ
i+1−
x)

)) = 0, (2.6)

we have G(0) = 0. By the Evans–Krylov theorem,

‖ṽi+1‖C2+ᾱ (B1)
≤ Nek‖ṽi+1‖L∞(B5).

Since

‖
i∑


=0

ρ−(i+1−
)(2+α)(v
 − P
)(ρ
i+1−
x)‖L∞(B5) ≤ 52+ᾱ

i∑

=0

ρ(i+1−
)(ᾱ−α) ≤ 53ρᾱ−α

1 − ρᾱ−α

‖
i∑


=0

ρ−(i+1−
)(2+α)(v
 − P
)(ρ
i+1−
x)‖C2+ᾱ (B1)

≤ 4 · 52+ᾱ

i∑

=0

ρ(i+1−
)(ᾱ−α)

≤ 54ρᾱ−α

1 − ρᾱ−α
,

it follows that

‖vi+1‖C2+ᾱ (B1)
≤ Nek

(
1/M + 53

1 − ρᾱ−α
ρᾱ−α

)
+ 54

1 − ρᾱ−α
ρᾱ−α ≤ 1

if we choose M sufficiently large and ρ0 sufficiently small.
From this proof for the second order case, we see that the idea is to decompose v
 as (v
 − P
) + P
, and apply 

Evans–Krylov theorem to the equation for ṽi+1 which is vi+1 plus those rescaled (v
 −P
). In this step, we used (2.5)
and (2.6).

In the nonlocal fully nonlinear case (2.1), we are going to use the same idea of decomposing v
 and studying the 
equation of ṽi+1. However, there is a difficulty that δP
(x, y)K(y) is not integrable and 

∫
Rn δP̃
(x, y)K(y)dy will 

never be a constant for any cut-off P̃
 of P
. Thus, we are not be able to use the Evans–Krylov theorem proved in [8]. 
Instead, we are going to employ the proofs in [8] to prove the Cσ+ᾱ estimate for vi+1. A delicate part is that we need 
to decompose v
 in an appropriate way. We start with some preliminaries in the following.
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2.2. Preliminaries

For a kernel K(y), we denote

Lu(x) =
∫
Rn

δu(x, y)K(y)dy,

We will also say L ∈ L2(λ, �, σ) (or L0(λ, �, σ)) if K ∈ L2(λ, �, σ) (or L0(λ, �, σ)).

Lemma 2.3. Suppose that u ∈ C4(B2) ∩ L∞(Rn) and K(y) ∈ L2(λ, �, σ). Then

‖Lu‖C2(B1)
≤ C(‖u‖C4(B2)

+ ‖u‖L∞(Rn)),

where C is a positive constant depending only on α, σ0 and �.

Proof. Let η ∈ C∞
c (B3/2) and η ≡ 1 in B5/4. Then

Lu = L(ηu) + L((1 − η)u).

It is clear that ∂ij (L(ηu)) = L(∂ij (ηu)), from which it follows that

‖L(ηu)‖C2(B1)
≤ C(‖u‖C4(B2)

+ ‖u‖L∞(Rn)).

For the second term, we have 1 − η(x) = 0 if x ∈ B1, and thus

L((1 − η)u)(x) =
∫
Rn

(1 − η(x + y))u(x + y)K(y)dy =
∫

Rn\B5/4

(1 − η(y))u(y)K(y − x)dy.

The lemma follows immediately since K(y) ∈ L2(λ, �, σ). �
Lemma 2.4. Suppose that u ∈ Cσ+α(Rn), 0 ≤ K(y) ≤ (2 − σ)�|y|−n−σ and K(y) = K(−y). Then

‖Lu‖Cα(Rn) ≤ C‖u‖Cσ+α(Rn),

and C is a positive constant depending only on α, σ0 and �.

Proof. First of all, it is clear that

‖Lu‖L∞(Rn) ≤ C‖u‖Cσ+α(Rn).

In the following, we are going to estimate the Cα norm of Lu. We first consider that σ + α ≥ 2, which is the most 
difficult case. Since

Lu(x) = 2
∫
Rn

(u(x + y) − u(x) − ∇u(x)y)K(y)dy

Lu(0) = 2
∫
Rn

(u(y) − u(0) − ∇u(0)y)K(y)dy,

we have that, for r = |x|
Lu(x) − L(0)

2
=

∫
Br

((u(x + y) − u(x) − ∇u(x)y) − (u(y) − u(0) − ∇u(0)y))K(y)dy

+
∫

Rn\Br

((u(x + y) − u(x) − ∇u(x)y) − (u(y) − u(0) − ∇u(0)y))K(y)dy

= I1 + I2.
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For I1, we have that

I1 =
∫
Br

(u(x + y) − u(x) − ∇u(x)y − 1

2
yT ∇2u(x)y)K(y)dy

−
∫
Br

(u(y) − u(0) − ∇u(0)y − 1

2
yT ∇2u(0)y)K(y)dy

+ 1

2

∫
Br

(yT ∇2u(x)y − yT ∇2u(0)y)K(y)dy,

and thus

|I1| ≤ 2
∫
Br

‖u‖Cσ+α(Rn)|y|σ+αK(y)dy + ‖u‖Cσ+α(Rn)r
σ+α−2

∫
Br

|y|2K(y)dy

≤ (4α−1 + �)‖u‖Cσ+α(Rn)r
α.

For I2, it follows from mean value theorem that

|(u(x + y) − u(x) − ∇u(x)y) − (u(y) − u(0) − ∇u(0)y)| ≤ ‖u‖Cσ+α(Rn)|x||y|σ+α−1.

Thus,

|I2| ≤ ‖u‖Cσ+α(Rn)|x|
∫

Rn\Br

|y|σ+α−1K(y)dy ≤ (1 − α)−1‖u‖Cσ+α(Rn)|x|α.

For the case σ + α < 2, one can prove them similarly and we omit its proof here. �
Lemma 2.5. Suppose that u ∈ Cσ+α(B2) ∩ L∞(Rn), 0 ≤ K(y) ≤ (2 − σ)�|y|−n−σ , K(y) = K(−y) and |∇K(y)| ≤
�|y|−n−σ−1. Then

‖Lu‖Cα(B1) ≤ C(‖u‖Cσ+α(B2) + ‖u‖L∞(Rn)),

where

Lu =
∫
Rn

δu(x, y)K(y)dy,

and C is a positive constant depending only on α, σ0 and �.

Proof. Let η ∈ C∞
c (B3/2) and η ≡ 1 in B5/4. Then

Lu = L(ηu) + L((1 − η)u).

It follows from Lemma 2.4 that

‖L(ηu)‖Cα(B1) ≤ C‖ηu‖Cσ+α(Rn) ≤ C(‖u‖Cσ+α(B2) + ‖u‖L∞(Rn)).

For the second term, we have 1 − η(x) = 0 if x ∈ B1, and thus

L((1 − η)u)(x) =
∫
Rn

(1 − η(x + y))u(x + y)K(y)dy =
∫

Rn\B5/4

(1 − η(y))u(y)K(y − x)dy.

The lemma follows immediately since |∇K(y)| ≤ �|y|−n−σ−1. �
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Lemma 2.6. Let v ∈ Cσ+ᾱ
c (B1/2) such that ‖v‖

Cσ+ᾱ
c (B1/2)

≤ 1, and p(x) be the Taylor expansion polynomial of v at 
x = 0 with degree [σ + ᾱ]. For every L ∈ L0(λ, �, σ), there exists P ∈ C∞

c (B1/2) such that P(x) = p(x) in B1/4, 
‖P‖C4(B1/2)

≤ C and

LP(0) = Lv(0),

where C is a positive constant depending only on n, λ, �, σ0 and ᾱ.

Proof. Let η ∈ C∞
c (B1/3) be such that η ≡ 1 in B1/4. Let h(x) ∈ C4

c (B1/2 \ B̄1/3) be such that h(x) = 1 for B11/24 \
B9/24 and 0 ≤ h ≤ 1 in B1/2. Let P(x) = η(x)p(x) + t · h(x), where t = L(v − ηp)(0)/Lh(0). Then we are left to 
show that |t | ≤ C, which depends only on n, λ, �, σ0 and ᾱ. On one hand, it is clear that

Lh(0) ≥ (2 − σ)C−1.

On the other hand, since |v(x) − p(x)| ≤ C|x|σ+ᾱ for x ∈ B1/4, we have

|L(v − ηp)(0)| =
∫

B1/4

|v(y) − p(y)|K(y)dy +
∫

B1/2\B1/4

|v(y) − η(y)p(y)|K(y)dy

≤ C(2 − σ)

∫
B1/4

|y|σ+ᾱ−n−σ dy + C(2 − σ)

≤ C(2 − σ),

from which it follows that |t | ≤ C. �
2.3. Decompositions

We shall adapt the proofs in [8] with delicate decomposition and cut-off arguments indicated in Section 2.1 to 
prove Theorem 2.2. Recall that we are left to show (2.3).

For a function v, we denote vρ(x) = ρ−(σ+α)v(ρx). Set

R(x) =
i∑


=0

ρ−(i−
)(σ+α)v
(ρ
i−
x).

By (2.1),

inf
a∈A

{L(i+1)
a Rρ(x) + ρ−(i+1)αba} = 0 in B5/ρ,

where L(i+1)
a is the linear operator with kernel K(i+1)

a ∈ L2(λ, �, σ). Hence, there exists an ā ∈ A such that

0 ≤ L
(i+1)
ā Rρ(0) + ρ−(i+1)αbā < ρᾱ−α. (2.7)

Let η0(x) = 1 in B1/4 and η0 ∈ C∞
c (B1/2) be a fixed cut-off function. Set

v
(x) = v
η0 + v
(1 − η0) =: v(1)

 + v

(2)

 .

Let p
(x) be the Taylor expansion polynomial of v(1)

 (x) at x = 0 with degree [σ + ᾱ]. By Lemma 2.6, there exists 

P
 ∈ C∞
c (B1/2) such that P
(x) = p
(x) in B1/4, ‖P
‖C4(B1/2)

≤ c0 (a universal constant, independent of 
) and

L
(
)
ā P
(0) = L

(
)
ā v

(1)

 (0). (2.8)

Set

v
 = (v
(1) − P
) + (v

(2) + P
) =: V (1) + V
(2)

.
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We have

‖V (1)

 ‖L∞(Rn) + ‖V (2)


 ‖L∞(Rn) ≤ c0 + 1, V
(1)

 (0) = 0,

V
(1)

 ∈ Cσ+ᾱ

c (B1/2), ‖V (1)

 ‖Cσ+ᾱ (Rn) + ‖V (2)


 ‖Cσ+ᾱ (B1)
≤ 44(c0 + 1),

V
(1)

 = v
 − p
 in B1/4, V

(2)

 = p
 in B1/4, |V (1)


 (x)| ≤ 44(c0 + 1)|x|σ+ᾱ in R
n. (2.9)

Decompose R(x) as

R(x) = R(1)(x) + R(2)(x),

where

R(1)(x) =
i∑


=0

ρ−(i−
)(σ+α)V
(1)

 (ρi−
x)

R(2)(x) =
i∑


=0

ρ−(i−
)(σ+α)V
(2)

 (ρi−
x).

By change of variables, we have that for each a ∈A,

L(i+1)
a R(1)

ρ (x) =
i∑


=0

ρ−(i+1−
)α(L(
)
a V

(1)

 )(ρi+1−
x),

L(i+1)
a R(2)

ρ (x) =
i∑


=0

ρ−(i+1−
)α(L(
)
a V

(2)

 )(ρi+1−
x). (2.10)

By (2.7) and (2.8), we have

L
(i+1)
ā R(1)

ρ (0) = 0,

0 ≤ L
(i+1)
ā R(2)

ρ (0) + ρ−(i+1)αbā = L
(i+1)
ā Rρ(0) + ρ−(i+1)αbā ≤ ρᾱ−α. (2.11)

It follows from Lemma 2.4, (2.10), (2.11) and (2.9) that

|L(i+1)
ā R(1)

ρ (x)| = |L(i+1)
ā R(1)

ρ (x) − L
(i+1)
ā R(1)

ρ (0)|

≤
i∑


=0

ρ−(i+1−
)α|(L(
)
a V

(1)

 )(ρi+1−
x) − (L(
)

a V
(1)

 )(0)|

≤ C|x|ᾱ
i∑


=0

ρ(i+1−
)(ᾱ−α)‖V (1)

 ‖Cσ+ᾱ (Rn)

≤ C|x|ᾱρᾱ−α
∞∑


=0

ρ
(ᾱ−α)

≤ Cρᾱ−α|x|ᾱ for x ∈ R
n. (2.12)

Similarly, it follows from Lemma 2.5, (2.10)and (2.9) that

|L(i+1)
ā R(2)

ρ (x) − L
(i+1)
ā R(2)

ρ (0)|

≤
i∑


=0

ρ−(i+1−
)α|(L(
)
a V

(2)

 )(ρi+1−
x) − (L(
)

a V
(2)

 )(0)|

≤ C|x|ᾱ
i∑


=0

ρ(i+1−
)(ᾱ−α)(‖V (2)

 ‖Cσ+ᾱ (B1)

+ ‖V (2)

 ‖L∞(Rn))

≤ Cρᾱ−α|x|ᾱ for x ∈ B5. (2.13)
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Thus, by (2.11), we have

|L(i+1)
ā R(2)

ρ (x) + ρ−(i+1)αbā| ≤ Cρᾱ−α(|x|ᾱ + 1) for x ∈ B5. (2.14)

Let

ṽi+1 = vi+1 + R(1)
ρ .

Hence, the equation of (2.1) involving vi+1 is

inf
a

{L(i+1)
a (vi+1 + Rρ) + ρ−(i+1)αba} = 0,

which is equivalent to

inf
a

{L(i+1)
a (ṽi+1 + R(2)

ρ ) + ρ−(i+1)αba} = 0 in B5. (2.15)

It follows from (2.12) and (2.14) that

L
(i+1)
ā vi+1(x) ≥ −Cρᾱ−α in B5,

L
(i+1)
ā ṽi+1(x) ≥ −Cρᾱ−α in B5, (2.16)

where C is a universal positive constant.

2.4. Cσ estimates

Define the maximal operators

M+
0 u(x) = sup

K∈L0(λ,�,σ )

∫
Rn

δu(x, y)K(y)dy,

M+
2 u(x) = sup

K∈L2(λ,�,σ )

∫
Rn

δu(x, y)K(y)dy.

And one can define the extremal operators M−
0 and M−

2 similarly. Let η1 ∈ C∞
c (B4) be a smooth cut-off function 

such that η1 ≡ 1 in B3. We write (2.15) as

inf
a∈A

{L(i+1)
a ṽi+1 + ha(x) + ρ−(i+1)αba} = 0 in B3, (2.17)

where

ha(x) := η1(x)L(i+1)
a R(2)

ρ (x).

Lemma 2.7. Let K be a symmetric kernel satisfying 0 ≤ K(y) ≤ (2 − σ)�|y|−n−σ . Then for every bump function η
such that

0 ≤ η(x) ≤ 1 in R
n,

η(x) = η(−x) in R
n,

η(x) = 0 in R
n \ B3/2,

we have

M+
2

⎛
⎝ ∫

Rn

δṽi+1(x, y)K(y)η(y)dy

⎞
⎠ ≥ −Cρ2−α in B3/2.
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Proof. Let φk be the L1 function φk = χRn\B1/k
K(y)η(y), where χE is the characteristic function of a set E. For 

every a ∈A, we know from (2.17) that

L(i+1)
a ṽi+1(x) + ha(x) + ρ−(i+1)αba ≥ 0 ∀ x ∈ B3.

It follows that for all x ∈ B3/2,

0 ≤ (L(i+1)
a ṽi+1 + ha + ρ−(i+1)αba) ∗ φk(x)

≤ L(i+1)
a (ṽi+1 ∗ φk)(x) + ha ∗ φk(x) + ρ−(i+1)αba‖φk‖L1 .

It also follows from (2.17) that

inf
a∈A

{‖φk‖L1(L
(i+1)
a ṽi+1(x) + ha(x) + ρ−(i+1)αba)} = 0 ∀ x ∈ B3.

This implies that for all x ∈ B3/2,

sup
a∈A

L(i+1)
a (ṽi+1 ∗ φk − ‖φk‖L1 ṽi+1)(x) + sup

a∈A
{ha ∗ φk(x) − ‖φk‖L1ha(x)} ≥ 0.

For any x ∈ B3/2, any a ∈ A, by using (2.10) and change of variables we have

2|ha ∗ φk(x) − ‖φk‖L1ha(x)|
≤ |

∫
B3/2\B1/k

δ(L(i+1)
a R(2)

ρ )(x, y)K(y)η(y)dy|

≤
i∑


=0

ρ(
−1−i)α

∫
B3/2\B1/k

|δ(L(
)
a V

(2)

 )(ρi+1−
x, ρi+1−
y)|K(y)η(y)dy

≤
i∑


=0

ρ(i+1−
)(σ−α)

∫
B3ρi+1−
/2\Bρi+1−
/k

|δ(L(
)
a V

(2)

 )(ρi+1−
x, y)|K−(i+1−
)(y)dy

≤
i∑


=0

ρ(i+1−
)(σ−α)

∫
B3ρi+1−
/2

‖L(
)
a V

(2)

 ‖C2(B1/8)

|y|2K−(i+1−
)(y)dy

≤
i∑


=0

ρ(i+1−
)(σ−α)‖LaV
(2)

 ‖C2(B1/8)

∫
B3ρi+1−
/2

�(2 − σ)

|y|n+σ−2
dy

≤ C

i∑

=0

ρ(i+1−
)(σ−α)(‖V (2)

 ‖C4(B1/4)

+ ‖V (2)

 ‖L∞(Rn))ρ

(i+1−
)(2−σ)

≤ Cρ2−α(‖V (2)

 ‖C4(B1/4)

+ ‖V (2)

 ‖L∞(Rn))

∞∑

=0

ρ
(2−α)

≤ Cρ2−α,

where K−(i+1−
)(y) = ρ−(i+1−
)(n+σ)K(ρ−(i+1−
)y), and Lemma 2.3 was used since V (2)

 (x) = p
(x) in B1/4. 

Consequently,

M+
2 (ṽi+1 ∗ φk − ‖φk‖L1 ṽi+1)(x) ≥ −Cρ2−α.

The result follows from Lemma 5 in [7] by taking the limit as k → ∞. �
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Lemma 2.8. Let K be a symmetric kernel satisfying 0 ≤ K(y) ≤ (2 − σ)�|y|−n−σ . Then for every smooth bump 
function η such that

0 ≤ η(x) ≤ 1 in R
n, η(x) = η(−x) in R

n,

η(x) = 0 in R
n \ B4/5, η(x) = 1 in B3/4,

we have

M+
2

⎛
⎜⎝η(x)

∫
B1

δṽi+1(x, y)K(y)dy

⎞
⎟⎠ ≥ −C(ρᾱ−α + 1

M
) in B3/5.

Proof. Define

T v(x) =
∫
B1

δv(x, y)K(y)dy.

It follows from Lemma 2.7 that

M+
2 (T ṽi+1)(x) ≥ −Cρ2−α in B3/2. (2.18)

Let L̄ be any operator with kernel K̄ ∈ L2(λ, �, σ). For x ∈ B3/5, we have

L̄(ηT ṽi+1)(x) =
∫
Rn

δ(T ṽi+1)(x, y)K̄(y)dy −
∫
Rn

δ((1 − η)T ṽi+1)(x, y)K̄(y)dy

≥ L̄(T ṽi+1)(x) − 2
∫
Rn

(1 − η(x − y))T ṽi+1(x − y)K̄(y)dy. (2.19)

Now we estimate the second term in the last inequality. Recall that ṽi+1 = vi+1 + R
(1)
ρ . It is clear that∫

Rn

T vi+1(x − y)(1 − η(x − y))K̄(y)dy

=
∫
Rn

vi+1(x − y)T ((1 − η(x − ·))K̄(·))(y)dy ≤ C‖vi+1‖L∞ ≤ C/M.

By change of variables, we have for all x ∈ R
n,

|T R(1)
ρ (x)| = |

∫
B1

δR(1)
ρ (x, y)K(y)dy|

= |
i∑


=0

∫
B

ρi+1−


ρ−(i+1−
)αδV
(1)

 (ρi+1−
x, y)K−(i+1−
)(y)dy|,

where K−(i+1−
)(y) = ρ−(i+1−
)(n+σ)K(ρ−(i+1−
)y).
By triangle inequality, we have

|T R(1)
ρ (x)| ≤

i∑
l=0

ρ−(i+1−
)α|
∫

B
ρi+1−


(δV
(1)

 (ρi+1−
x, y) − δV

(1)

 (0, y))K−(i+1−
)(y)dy|

+
i∑

l=0

ρ−(i+1−
)α|
∫

B i+1−


δV
(1)

 (0, y)K−(i+1−
)(y)dy|
ρ
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≤ C

i∑

=0

‖V (1)

 ‖Cσ+ᾱ (Rn)|x|ᾱρ(i+1−
)(ᾱ−α) + C

i∑
l=0

ρ−(i+1−
)α

∫
B

ρi+1−


(2 − σ)�|y|σ+ᾱ

|y|n+σ
dζ

≤ Cρᾱ−α(1 + |x|ᾱ) for all x ∈ R
n, (2.20)

where we used Lemma 2.4 and (2.9) in the second inequality.
It follows that for x ∈ B3/5,∫

Rn

(1 − η(x − y))T R(1)
ρ (x − y)K̄(y)dy

=
∫
Rn

(1 − η(y))T R(1)
ρ (y)K̄(x − y)dy

=
∫

Rn\B3/4

(1 − η(y))T R(1)
ρ (y)K̄(x − y)dy

≤ Cρᾱ−α

∫
|y|>1/64

(2 − σ)

|y|n+σ−ᾱ
≤ Cρᾱ−α, (2.21)

where we used that σ ≥ σ0 > 1 > ᾱ. Taking the supremum of all K̄ in L2(λ, �, σ) in (2.19) and using (2.18), we 
complete the proof. �
Lemma 2.9. We have

|L(i+1)
ā vi+1(x)| ≤ C(ρᾱ−α + 1

M
) in B1/2.

Proof. Let η1(x) ≥ 0 be a smooth cutoff function in B2 with η1 ≡ 1 in B1. Then∫
Rn

L
(i+1)
ā vi+1η1 =

∫
Rn

vi+1L
(i+1)
ā η1 ≤ C‖vi+1‖L∞(Rn) ≤ C/M.

By (2.16), L(i+1)
ā vi+1 ≥ −Cρᾱ−α in B4, we have∫

B1

|L(i+1)
ā vi+1| ≤ C(ρᾱ−α + 1

M
).

Let

T
(i+1)
ā v =

∫
B1

δv(x, y)K
(i+1)
ā (y)dy.

It is easy to see that∫
B1

|T (i+1)
ā vi+1| ≤

∫
B1

|L(i+1)
ā vi+1| + C‖vi+1‖L∞ ≤ C(ρᾱ−α + 1

M
).

It follows from (2.20) that for all x ∈R
n,

|T (i+1)
ā R(1)

ρ (x)| ≤ Cρᾱ−α(1 + |x|ᾱ). (2.22)

Since ṽi+1 = vi+1 + R
(1)
ρ , we obtain∫

|T (i+1)
ā ṽi+1| ≤ C(ρᾱ−α + 1

M
). (2.23)
B1
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Let η be the cut-off function in Lemma 2.8, and denote v(x) := η(x)T
(i+1)
ā ṽi+1(x). It follows from Lemma 2.8 that

M+
2 v(x) ≥ −C(ρᾱ−α + 1

M
) in B3/5.

It follows from (2.23) and Theorem 5.1 in [8] that v ≤ C(ρᾱ−α + 1
M

) in B1/2. But v = T
(i+1)
ā ṽi+1 in B1/2, so we have 

proved that

T
(i+1)
ā ṽi+1 ≤ C(ρᾱ−α + 1

M
) in B1/2.

By (2.22), we have T (i+1)
ā vi+1(x) ≤ C(ρᾱ−α + 1

M
) in B1/2, and thus,

L
(i+1)
ā vi+1(x) ≤ C(ρᾱ−α + 1

M
) in B1/2.

We complete the proof together with (2.16). �
Lemma 2.10. There is a universal constant C such that for every operator L with a symmetric kernel K satisfying 
0 ≤ K(y) ≤ (2 − σ)�|y|n+σ , we have

|Lvi+1(x)| ≤ C(ρᾱ−α + 1

M
) in B1.

Proof. We will prove the estimate in B1/6, and the general estimate follows from scaling and translation arguments. 
By Lemma 2.9 we have

‖L(i+1)
ā vi+1‖L2(B1/2)

≤ C(ρᾱ−α + 1

M
).

Note that ‖vi+1‖L1(Rn,1/(1+|y|n+σ )) ≤ C‖vi+1‖L∞ ≤ C/M . From Theorem 4.3 of [8], we have L2 estimate for every 
linear operator L with kernel K ∈ L0(λ, �, σ),

‖Lvi+1‖L2(B1/3)
≤ C(ρᾱ−α + 1

M
).

We split the integral of Lvi+1 as

Lvi+1(x) =
∫
B1

+
∫
Bc

1

δvi+1(x, y)K(y)dy.

It is clear that

|
∫
Bc

1

δvi+1(x, y)K(y)dy| ≤ C‖vi+1‖L∞ ≤ C/M.

Hence, we have L2 estimates for the first one∥∥∥∥∥
∫
B1

δvi+1(x, y)K(y)dy

∥∥∥∥∥
L2(B1/3)

≤ C(ρᾱ−α + 1

M
).

It follows from (2.20) that

|
∫
B1

δR(1)
ρ (x, y)K(y)dy| ≤ Cρᾱ−α for x ∈ B1. (2.24)

By triangle inequality, we have∥∥∥∥∥
∫

δṽi+1(x, y)K(y)dy

∥∥∥∥∥
L2(B1/3)

≤ C(ρᾱ−α + 1

M
). (2.25)
B1
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For a smooth cut-off function c(x) ∈ C∞
c (B1/3), c(x) = c(−x), and c(x) = 1 in B1/4, we define

v(x) := c(x)

∫
B1

δṽi+1(x, y)K(y)dy.

It follows from the proof of Lemma 2.8 that M+
2 v ≥ −C(1/M + ρᾱ−α) in B1/5. By (2.25) and Theorem 5.1 in [8]

we have v ≤ C(1/M + ρᾱ−α) in B1/6, and thus∫
B1

δṽi+1(x, y)K(y)dy ≤ C(1/M + ρᾱ−α) in B1/6.

Since (2.24) holds for x ∈ B1, we have that∫
B1

δvi+1(x, y)K(y)dy ≤ C(1/M + ρᾱ−α) in B1/6.

Consequently,

Lvi+1 ≤ C(1/M + ρᾱ−α) in B1/6.

Consider the kernel

Kd = 2

λ
K

(i+1)
ā − 1

�
K

and the corresponding linear operator Ld , where 0 ≤ K ≤ (2 −σ)�|y|−n−σ . Then Kd satisfies the ellipticity condition 
(2 − σ)|y|−n−σ ≤ Kd(y) ≤ (2 − σ)(2�/λ)|y|−n−σ . The same proof as above yields that

Ldvi+1 ≤ C(1/M + ρᾱ−α) in B1/6.

Since L(i+1)
ā vi+1 is lower bounded by (2.16), we obtain a bound from below for L in B1/6

Lvi+1 = 2
�

λ
L

(i+1)
ā vi+1 − �Ldvi+1 ≥ −C(1/M + ρᾱ−α) in B1/6.

Similarly, if we consider K̃d = 2
λ
K

(i+1)
ā + 1

�
K , we obtain that Lvi+1 ≤ C(1/M + ρᾱ−α). In conclusion, we obtained 

that |Lvi+1| ≤ C(1/M + ρᾱ−α) in B1/6. �
The above lemma immediately gives

Corollary 2.11. M+
0 vi+1 and M−

0 vi+1 are bounded by C(ρᾱ−α + 1
M

) in B1. In particular,

‖∇vi+1‖L∞(B1/2) ≤ C(ρᾱ−α + 1

M
), (2.26)

and consequently,

‖∇ṽi+1‖L∞(B1/2) ≤ C(ρᾱ−α + 1

M
). (2.27)

Proof. The first conclusion is clear, from which (2.26) also follows immediately since σ ≥ σ0 > 1. To prove (2.27), we 
notice that V (1)


 = v
(1)

 −P
 ∈ Cσ+ᾱ

c (B1/2), and V (1)

 = v

(1)

 −p
 in B1/4 where p
 is the Taylor expansion polynomial 

of v(1)

 at x = 0 with degree [σ + ᾱ]. Hence, |∇V

(1)

 (x)| ≤ C|x|σ+ᾱ−1 in B1/2. Thus, for all x ∈ B1/2,

|∇R(1)
ρ (x)| = |∇

i∑

=0

ρ−(i+1−
)(σ+α)V
(1)

 (ρi+1−
x)|

≤ C

i∑

=0

ρ−(i+1−
)(σ+α−1)|ρi+1−
x|σ+ᾱ−1 ≤ Cρᾱ−α.

Thus, (2.27) follows immediately. �
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Theorem 2.12. We have∫
Rn

|δvi+1(x, y)| (2 − σ)

|y|n+σ
dy ≤ C(ρᾱ−α + 1

M
) in B1.

Proof. Given Lemma 2.10 and Corollary 2.11, it follows from the same proof as that of Theorem 7.4 in [8]. �
2.5. Cσ+ᾱ estimates

For brevity, we write

u = vi+1 and ũ = ṽi+1

in this subsection.
Let η be a bump function as in Lemma 2.8. For each measurable set A with −A = A, we write

wA(x) = η(x)

∫
B1

(δũ(x, y) − δũ(0, y))KA(y)dy,

where

KA(y) = (2 − σ)

|y|n+σ
χA(y).

For x ∈ B1, by Lemma 2.4 and change of variables, we have

|
∫
B1

(δR(1)
ρ (x, y) − δR(1)

ρ (0, y))KA(y)dy|

= |
i∑


=0

ρ−(i+1−
)(σ+α)

∫
B1

(δV
(1)

 (ρi+1−
x, ρi+1−
y) − δV

(1)

 (0, ρi+1−
y))KA(y)dy|

= |
i∑


=0

ρ−(i+1−
)α

∫
B

ρi+1−


(δV
(1)

 (ρi+1−
x, y) − δV

(1)

 (0, y))K

(
−1−i)
A (y)dy|

≤
i∑


=0

ρ−(i+1−
)α‖V (1)

 ‖Cσ+ᾱ (Rn)ρ

(i+1−
)ᾱ|x|ᾱ

≤ Cρᾱ−α|x|ᾱ . (2.28)

Then it follows from Theorem 2.12 that

|wA| ≤ C(ρᾱ−α + 1/M) in R
n. (2.29)

Also, it follows from Lemma 2.10 as well as (2.20) that

|
∫
B1

δũ(0, y)KA(y)dy| ≤ C(ρᾱ−α + 1/M).

Together with Lemma 2.8, we have

M+
2 wA ≥ −C(ρᾱ−α + 1/M) in B3/5 uniformly in A.

As in [8], we define

N+(x) := sup
A

wA(x) = η(x)

∫
(δũ(x, y) − δũ(0, y))+ (2 − σ)

|y|n+σ
dy,
B1
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N−(x) := sup
A

−wA(x) = η(x)

∫
B1

(δũ(x, y) − δũ(0, y))− (2 − σ)

|y|n+σ
dy.

Lemma 2.13. For all x ∈ B1/4, we have

λ

�
N−(x) − C(ρᾱ−α + 1/M)|x| ≤ N+(x) ≤ �

λ
N−(x) + C(ρᾱ−α + 1/M)|x|.

Proof. For some x ∈ B1/2, let ũx(z) = ũ(x + z). It follows from (2.17) that

M+
2 (ũx − ũ)(0) ≥ − sup

a
(ha(x) − ha(0)), M−

2 (ũx − ũ)(0) ≤ sup
a

(ha(0) − ha(x)).

Note that for x ∈ B3,

ha(x) = L(i+1)
a R(2)

ρ (x) =
i∑


=0

ρ−(i+1−
)α(L(
)
a V

(2)

 )(ρi+1−
x)

and thus for ρx ∈ B1/4

|ha(x) − ha(0)| = |
i∑


=0

ρ−(i+1−
)α(L(
)
a V

(2)

 (ρ(i+1−
)x) − L(
)

a V
(2)

 (0))|

≤ C

i∑

=0

ρ−(i+1−
)α(‖V (2)

 ‖C4(B1/2)

+ ‖V (2)

 ‖L∞(Rn))|ρ(i+1−
)x|

≤ Cρ1−α

∞∑

=0

ρ
(1−α)|x|,

where Lemma 2.3 was used in the first inequality. Hence, we have

M+
2 (ũx − ũ)(0) ≥ −Cρ1−α|x|, M−

2 (ũx − ũ)(0) ≤ Cρ1−α|x|. (2.30)

For every kernel K ∈ L2(λ, �, σ), we have

L(ũx − ũ)(0) =
∫
Rn

(δũ(x, y) − δũ(0, y))K(y)dy

=
∫
B1

(δũ(x, y) − δũ(0, y))K(y)dy +
∫

Rn\B1

(δũ(x, y) − δũ(0, y))K(y)dy.

Now we estimate the second term of right hand side: for x ∈ B1/4

1

2

∫
Rn\B1

(δũ(x, y) − δũ(0, y))K(y)dy

=
∫
Rn

ũ(y)(K(y − x)χBc
1
(y − x) − K(y)χBc

1
(y))dy − (ũ(x) − ũ(0))

∫
Rn\B1

K(y)dy

≤
∫

Rn\B1+|x|

|ũ(y)||K(y − x) − K(y)|dy + ‖ũ‖L∞(B1+|x|)

∫
B1+|x|\B1−|x|

K(y)dy + C(ρᾱ−α + 1

M
)|x|

≤ C(ρᾱ−α + 1

M
)|x|, (2.31)

where in the first inequality we have used (2.27), and in the last we used that |∇K(y)| ≤ (2 − σ)�|y|−n−σ−1 and
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|ũ(y)| ≤ ‖vi+1‖L∞(Rn) + |R(1)
ρ (y)|

≤ 1

M
+ C

i∑

=0

ρ−(i+1−
)(σ+α)|V (1)

 (ρi+1−
y)|

≤ 1

M
+ C

i∑

=0

ρ−(i+1−
)(σ+α)|ρi+1−
y|σ+ᾱ

≤ 1

M
+ Cρᾱ−α|y|σ+ᾱ .

Therefore, for every kernel K ∈ L2(λ, �, σ), we have∫
Rn

(δũ(x, y) − δũ(0, y))K(y)dy ≤
∫
B1

(δũ(x, y) − δũ(0, y))K(y)dy + C(ρᾱ−α + 1

M
)|x|.

Taking the supremum and using (2.30), we obtain

−Cρ1−α|x| ≤ M+
2 (ũx − ũ) ≤ sup

K

∫
B1

(δũ(x, y) − δũ(0, y))K(y)dy + C(ρᾱ−α + 1

M
)|x|.

In particular, if we take the supremum over all kernels K ∈ L0(λ, �, σ), we still have

sup
λ(2−σ)

|y|n+σ ≤K≤ �(2−σ)

|y|n+σ

∫
B1

(δũ(x, y) − δũ(0, y))K(y)dy ≥ −C(ρᾱ−α + 1

M
)|x|,

which is equivalent to

�N+(x) − λN−(x) ≥ −C(ρᾱ−α + 1

M
)|x|.

The same computation with M−
2 (ũx − ũ)(0) ≤ C(ρᾱ−α + 1

M
)|x| provides the other inequality. �

One may consider w̄A = (C(1/M + ρᾱ−α))−1wA(rx), where C is the constant in (2.29). For every ε1 small, we 
can choose r smaller so that

for every set A : |wA| ≤ 1 in R
n,

for every set A : M+
2 wA ≥ −ε1 in B1

λ

�
N−(x) − ε1|x| ≤ N+(x) ≤ �

λ
N−(x) + ε1|x|. (2.32)

Note that wA and w̄A share the same Hölder exponent.

Lemma 2.14. We have for x ∈ B1/4,

N+(x) ≤ C(1/M + ρᾱ−α)|x|ᾱ .

Proof. It follows from exactly the same proof of Lemma 9.2 in [8]. �
Proof of Theorem 2.2. For x ∈ B1/4, we have

| − �)σ/2ṽi+1(x) − (−�)σ/2ṽi+1(0)|

= C

∣∣∣∣∣∣∣N
+(x) − N−(x) +

∫
Rn\B

(δṽi+1(x, y) − δṽi+1(0, y))K(y)dy

∣∣∣∣∣∣∣

1
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≤ C(ρᾱ−α + 1

M
)|x|ᾱ + C(ρᾱ−α + 1

M
)|x|

≤ C(ρᾱ−α + 1

M
)|x|ᾱ ,

where in the first inequality we used Lemma 2.14, Lemma 2.13 and (2.31).
On the other hand, it follows from the computations in (2.28) and Lemma 2.4 that

|(−�)σ/2R(1)
ρ (x) − (−�)σ/2R(1)

ρ (0)| ≤ C(ρᾱ−α + 1

M
)|x|ᾱ .

Thus,

|(−�)σ/2vi+1(x) − (−�)σ/2vi+1(0)| ≤ C(ρᾱ−α + 1

M
)|x|ᾱ .

It follows from Lemma 2.10, standard translation arguments and Schauder estimates for (−�)σ/2 that

‖vi+1‖Cσ+ᾱ (B1)
≤ C(ρᾱ−α + 1

M
).

This finishes the proof of Theorem 2.2 provided that ρᾱ−α
0 ≤ 1/(2C) and M ≥ 2C. �

Lastly, let us discuss the case 0 < σ0 ≤ σ ≤ 1. In this case, the Evans–Krylov theorem in [8] does not provide any 
improvement with respect to the C1,α estimate in [6]. However, we do not know how to use the incremental quotients 
method as in [6] to prove our Theorem 2.2. But we still can find some ᾱ > 0 so that Theorem 2.2 holds. Recall that in 
the proof of Theorem 2.2 above, there are two places where we used σ > 1:

(i): In (2.21), we used σ ≥ σ0 > 1 > ᾱ so that the integral there is universally bounded.
(ii): In (2.26), we have the gradient estimate for vi+1 when σ ≥ σ0 > 1. This was used in proving (2.31) in the proof 

of Lemma 2.13 and (2.32).

It is clear that the use in (i) is not essential, since we can assume that ᾱ < σ0 when 0 < σ0 ≤ σ ≤ 1. The use in (ii) is 
not essential, either, since we can proceed using the Hölder estimates in [6] that

‖vi+1‖Cβ(B1/2)
≤ C(ρᾱ−α + 1

M
) (2.33)

instead of (2.26), where β ∈ (0, 1) is a constant depending only on n, σ0, λ, �. Consequently, the statement of 
Lemma 2.13 becomes

λ

�
N−(x) − C(ρᾱ−α + 1/M)|x|β ≤ N+(x) ≤ �

λ
N−(x) + C(ρᾱ−α + 1/M)|x|β ∀ x ∈ B1/4,

and (2.32) becomes

λ

�
N−(x) − ε1|x|β ≤ N+(x) ≤ �

λ
N−(x) + ε1|x|β.

The same proof of Lemma 9.2 in [8] will give that there exists some β̄ > 0 depending only on σ0, n, λ, � such that

N+(x) ≤ C(1/M + ρᾱ−α)|x|β̄ ∀ x ∈ B1/4,

and we will choose ᾱ = β̄ (which might be smaller than the one in (1.5) when σ < 1 if one consider the best possible 
one due to the C1,α estimates in [6] even for σ very small).

Thus, we can prove that

Theorem 2.15. For σ0 ∈ (0, 2) and σ ∈ [σ0, 2), there exists a constant ᾱ ∈ (0, 1) depending only on n, σ0, λ and � so 
that Theorem 2.2 holds.
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3. Schauder estimates

In this section, we will prove the Schauder estimates in Theorem 1.1. We start with a lemma. It follows quickly 
from comparison principles and we omit the proof here.

Lemma 3.1. Suppose that every Ka(y) ∈ L2(λ, �, σ) with σ ≥ σ0 > 0, c0 is a constant. Let u be the viscosity solution 
of

inf
a∈A

∫
Rn

δu(x, y)Ka(y)dy = c0 in B1

u = g in R
n \ B1.

Then there exists a constant C depending only on λ, �, n and σ0 such that

‖u‖L∞(Rn) ≤ C(‖g‖L∞(Rn\B1) + |c0|).

Proof of Theorem 1.1. The strategy of the proof is to find a sequence of approximation solutions which are suffi-
ciently regular, and the error between the genuine solution and the approximation solutions can be controlled in a 
desired rate. We divide the proof into four steps.

Step 1: Normalization and rescaling.

Let w0 be the viscosity solution of

I0w0(x) := inf
a∈A

∫
Rn

δw0(x, y)Ka(0, y)dy − f (0) = 0 in B4

w0 = u in R
n \ B4.

Then by Lemma 3.1 we have that

‖w0‖L∞(Rn) ≤ C(‖u‖L∞(Rn) + ‖f ‖L∞(B5)).

Thus by normalization, we may assume that

‖w0‖L∞(Rn) ≤ 1/2, ‖u‖L∞(Rn) + ‖f ‖L∞(B5) ≤ 1/2.

For some universal small positive constant γ < 1, which will be chosen later in (3.15), we may also assume that 
|f (x) − f (0)| ≤ γ |x|α and∫

Rn

|Ka(x, y) − Ka(0, y)|min(|y|2, r2)dy ≤ γ |x|αr2−σ (3.1)

for all a ∈A, r ∈ (0, 1], x ∈ B5. This can be achieved by the scaling for s < 1 small that if we let

K̃a(x, y) = sn+σ Ka(sx, sy) ∈ L2(λ,�,σ ),

ũ(x) = u(sx),

f̃ (x) = sσ f (sx), (3.2)

then we see that

Ĩ ũ(x) = inf
a∈A

L̃aũ(x) = f̃ (x) in B5,

where

L̃aũ(x) :=
∫
n

δũ(x, y)K̃a(x, y)dy.
R
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It follows that if we choose s sufficiently small, then

|f̃ (x) − f̃ (0)| ≤ Mf sσ+α|x|α ≤ γ |x|α ≤ 5γ,

and ∫
Rn

|K̃a(x, y) − K̃a(0, y)|min(|y|2, r2)dy ≤ 2�sα|x|αr2−σ ≤ γ |x|αr2−σ

for all a ∈A, r ∈ (0, 1], x ∈ B5. Thus, we may consider the equation of ũ instead.
Consequently, it follows from (3.1) that (‖ · ‖∗ is defined in (A.1) in Appendix A

‖I − I0‖∗ ≤ 25γ.

Indeed, if x ∈ B5, h ∈ C2(x), ‖h‖L∞(Rn) ≤ M, |h(y) − h(x) − (y − x) · ∇h(x)| ≤ M
2 |x − y|2 for every y ∈ B1(x), we 

have

‖I − I0‖∗ ≤ sup
x,a,h

1

1 + M

∫
Rn

|δh(x, y)||Ka(x, y) − Ka(0, y)|dy

≤ sup
a

M

1 + M

⎛
⎜⎝∫

B1

|y|2|Ka(x, y) − Ka(0, y)| + 4
∫

Rn\B1

|Ka(x, y) − Ka(0, y)|
⎞
⎟⎠

< 5γ |x|α ≤ 25γ. (3.3)

Step 2: From now on, we denote

ρ = ρ0 as the one in Theorem 2.2, which is a universal constant.

We claim that we can find a sequence of functions wi , i = 0, 1, 2, · · · , such that for all i,

inf
a∈A

∫
Rn

i∑

=0

δw
(x, y)Ka(0, y)dy = f (0) in B4·ρi , (3.4)

and

(u −
i∑

l=0

w
)(ρ
ix) = 0 for all x ∈R

n \ B4, (3.5)

and

‖wi‖L∞(Rn) ≤ ρ(σ+α)i ,

‖Dwi‖L∞(B
(4−τ )·ρi ) ≤ c2ρ

(σ+α−1)iτ−1,

‖D2wi‖L∞(B
(4−τ )·ρi ) ≤ c2ρ

(σ+α−2)iτ−2,

[D2wi]Cσ+ᾱ−2(B
(4−τ )·ρi )

≤ c2ρ
(α−ᾱ)iτ−4,

(3.6)

and

‖u −
i∑


=0

w
‖L∞(Rn) ≤ ρ(σ+α)(i+1), (3.7)

and

[u −
i∑

w
]Cα1 (B
(4−3τ )·ρi ) ≤ 8c1ρ

(σ+α−α1)iτ−4, (3.8)


=0
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where τ is an arbitrary constant in (0, 1], α1 and c1 are positive constants depending only on n, λ, �, γ0 and ᾱ, and 
c2 is the constant in (2.2).

Then Theorem 1.1 will follow from this claim and standard arguments. Indeed, we have, when 1 < σ + α < 2 and 
for ρi+1 ≤ |x| < ρi ,

|u(x,0) −
∞∑


=0

w
(0,0) −
∞∑


=0

∇xw
(0,0) · x|

≤ |u(x,0) −
i∑


=0

w
(x,0)| + |
i∑


=0

w
(x,0) −
i∑


=0

w
(0,0) −
i∑


=0

∇xw
(0,0) · x|

+ |
∞∑


=i+1

w
(0,0)| + |
∞∑


=i+1

∇xw
(0,0) · x|

≤ ρ(σ+α)(i+1) + c2|x|2
i∑


=0

ρ(σ+α−2)
 +
∞∑


=i+1

ρ(σ+α)
 + |x|
∞∑


=i+1

c2ρ
(σ+α−1)


≤ C2|x|σ+α.

When σ + α > 2 and for ρi+1 ≤ |x| < ρi ,

|u(x) −
∞∑


=0

w
(0) −
∞∑


=0

Dw
(0) · x −
∞∑


=0

1

2
xT D2w
(0)x|

≤ |
i∑


=0

w
(x) −
i∑


=0

w
(0) −
i∑


=0

Dw
(0) · x −
i∑


=0

1

2
xT D2w
(0)x|

+ |u(x) −
i∑


=0

w
(x)| + |
∞∑


=i+1

w
(0)| + |
∞∑

l=i+1

Dw
(0) · x| + 1

2
|

∞∑

=i+1

xT D2w
(0)x|

≤ ρ(σ+α)(i+1) + 2c2|x|σ+ᾱ
i∑


=0

ρ(α−ᾱ)
 +
∞∑


=i+1

ρ(σ+α)
 + |x|
∞∑


=i+1

c2ρ
(σ+α−1)


+ |x|2
∞∑


=i+1

c2ρ
(σ+α−2)


≤ C3|x|σ+α.

This proves the estimate (1.8).
Now we are left to prove this claim. Before we provide the detailed proof, we would like to first mention the idea 

and the structure of (3.4)–(3.8):

• Solving (3.4) and (3.5) inductively is how we construct this sequence of functions {wi}.
• (3.7) will follow from the approximation lemmas in Appendix A, where (3.8) will be used.
• (3.6) will follow from (3.7), maximum principles and the recursive Evans–Krylov theorem, Theorem 2.2.

Step 3: Prove the claim for i = 0.

Let u be a viscosity solution of (1.1). It follows from the Hölder estimates in [6], standard scaling and covering 
(contributing at most a factor of 4/τ ) arguments that there exist constants α1 ∈ (0, 1), c1 > 0, depending only on 
n, λ, �, γ0, ᾱ, such that for τ ∈ (0, 1]

‖u‖Cα1 (B4−τ ) ≤ c1τ
−1−α1

(‖u‖L∞(Rn) + ‖f ‖L∞(B4)

)
. (3.9)
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Let w0 be the one in Step 1 and c2 be the constant in (2.2). Then by Theorem 2.2, standard scaling, translation and 
covering arguments that

‖w0‖L∞(Rn) ≤ 1, ‖Dw0‖L∞(B4−τ ) ≤ c2τ
−1,

‖D2w0‖L∞(B4−τ ) ≤ c2τ
−2, [D2w0]Cσ+ᾱ−2(B4−τ ) ≤ c2τ

−4. (3.10)

Let us set up to apply the approximation lemma, Lemma A.1, in Appendix A. Let ε = ρ3 ≤ ρσ+α and M = 1. 
Let us fixed a modulus continuity ω1(r) = rα1 . Then for these ω1, ε, M , there exist η1 (small) and R (large) so that 
Lemma A.1 holds. We can assume that the rescaling in (3.2) make the equation hold in a very large ball containing 
B2R and |u(x) − u(y)| ≤ ω1(|x − y|) for every x ∈ BR \ B4 and y ∈ R

n \ B4. The latter one can be done due to (3.9). 
We will choose γ < η1/25 in (3.15). Then by the rescaling in Step 1, we can conclude from Lemma A.1 that

‖u − w0‖L∞(B4) ≤ ε ≤ ρσ+α,

and thus,

‖u − w0‖L∞(Rn) ≤ ‖u − w0‖L∞(B4) ≤ ε ≤ ρσ+α.

This proves that (3.4), (3.5), (3.6) and (3.7) hold for i = 0.
Let v(x) = u(x) − w0(x). Since w0 ∈ Cσ+ᾱ , v is a solution of

I (0)v : = inf
a∈A

∫
Rn

δv(x, y)Ka(x, y) + δw0(x, y)Ka(x, y)dy − f (0)

= f (x) − f (0) in B4.

It is clear that I (0) is elliptic with respect to L0(λ, �, σ). Moreover, for x ∈ B4−2τ ,

|I (0)0| := | inf
a∈A

∫
Rn

δw0(x, y)Ka(x, y)dy − f (0)|

= | inf
a∈A

∫
Rn

δ(w0(x, y))Ka(x, y)dy − inf
a∈A

∫
Rn

δ(w0(x, y))Ka(0, y)dy|

≤ sup
a∈A

∫
Rn

|δw0(x, y)||Ka(x, y) − Ka(0, y)|dy

≤ sup
a∈A

⎛
⎜⎝∫

Bτ

c2τ
−2|y|2|Ka(x, y) − Ka(0, y)|dy + 4

∫
Rn\Bτ

|Ka(x, y) − Ka(0, y)|dy

⎞
⎟⎠

≤ γ (c2 + 4) |x|ατ−σ ≤ γ 4 (c2 + 4) τ−σ ≤ τ−σ , (3.11)

where (3.10) was used in the second inequality, and (3.1) was used in the third inequality, and (3.15) was used 
in the last inequality. It follows from Hölder estimates established in [6], standard scaling and covering arguments 
(contributing at most a factor of 4/τ ) we have

‖v‖Cα1 (B4−3τ ) ≤ c1τ
−α1−1(τ−σ + 4γ + 1) ≤ 8c1τ

−4,

and thus,

[u − w0]Cα1 (B4−3τ ) ≤ 8c1τ
−4.

This finishes the proof of (3.8) for i = 0.

Step 4: We assume all of (3.4), (3.5), (3.6), (3.7) and (3.8) hold up to i ≥ 0, and we will show that they all hold for 
i + 1 as well.



T. Jin, J. Xiong / Ann. I. H. Poincaré – AN 33 (2016) 1375–1407 1399
Let

W(x) = ρ−(i+1)(σ+α)

(
u −

i∑

=0

w


)
(ρi+1x),

v
 = ρ−(σ+α)
w
(ρ

x),

and

K(i+1)(x, y) = ρ(n+σ)(i+1)K(ρi+1x,ρi+1y).

Since w
 ∈ Cσ+ᾱ for each 
, then W is a solution of

I (i+1)W = ρ−(i+1)αf (ρi+1x) − ρ−(i+1)αf (0) in B4/ρ,

where

I (i+1)W := inf
a∈A

∫
Rn

(
δW(x, y) +

i∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)

)
K(i+1)

a (x, y)dy − ρ−(i+1)αf (0)

= inf
a∈A

∫
Rn

(
δW(x, y) +

i∑

=0

ρ−(i+1−
)(σ+α)δv
(ρ
i+1−
x, ρi+1−
y)

)
K(i+1)

a (x, y)dy − ρ−(i+1)αf (0).

It is clear that I (i+1) is elliptic with respect to L0(λ, �, σ). Denote

I
(i+1)
0 v := inf

a∈A

∫
Rn

(
δv(x, y) +

i∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)

)
K(i+1)

a (0, y)dy − ρ−(i+1)αf (0)

= inf
a∈A

∫
Rn

(
δv(x, y) +

i∑

=0

ρ−(i+1−
)(σ+α)δv
(ρ
i+1−
x, ρi+1−
y)

)
K(i+1)

a (0, y)dy − ρ−(i+1)αf (0),

which is also elliptic with respect to L0(λ, �, σ). Let vi+1 be the solution of

I
(i+1)
0 vi+1 = 0 in B4

vi+1 = W in R
n \ B4.

It follows that

‖vi+1‖L∞(Rn) ≤ ‖W‖L∞(Rn) ≤ 1. (3.12)

Indeed, we first know from the nonlocal Evans–Krylov theorem that vi+1 ∈ Cσ+ᾱ and thus I (i+1)
0 vi+1 can be calcu-

lated point-wisely. Since I (i+1)
0 0 = 0 which follows from (3.4), we have for x ∈ B4,

inf
a∈A

∫
Rn

δvi+1(x, y)K(i+1)
a (0, y)dy ≤ I

(i+1)
0 vi+1(x) ≤ sup

a∈A

∫
Rn

δvi+1(x, y)K(i+1)
a (0, y)dy.

We also know from then boundary regularity in [7] that vi+1 ∈ C(B4). Suppose that there exists x0 ∈ B4 so that 
vi+1(x0) = maxB4

vi+1 > ‖W‖L∞(Rn\B4). Then

sup
a∈A

∫
Rn

δvi+1(x0, y)K(i+1)
a (0, y)dy < 0,

which is a contradiction to I (i+1)
0 vi+1(x0) = 0. It follows from similar arguments that vi+1(x) ≥ −‖W‖L∞(Rn\B4) for 

x ∈ B4. This proves (3.12).
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Again, by our induction hypothesis (3.4), it follows that for all m = 0, 1, · · · , i,

inf
a∈A

∫
Rn

(
m∑


=0

ρ−(m−
)(σ+α)δv
(ρ
m−
x, ρm−
y)

)
K(m)

a (0, y)dy = ρ−mαf (0) in B4.

It follows from Theorem 2.2 and standard scaling arguments that

‖Dvi+1‖L∞(B4−τ ) ≤ c2τ
−1,

‖D2vi+1‖L∞(B4−τ ) ≤ c2τ
−2,

[D2vi+1]Cσ+ᾱ−2(B4−τ ) ≤ c2τ
−4.

We want to apply Lemma A.2 to the equations of W and vi+1 so that we have |W − vi+1| ≤ ρσ+α in B4.
First of all, |W | ≤ 1 in Rn, W ≡ 0 in Rn \ B4/ρ , and [W ]Cα1 (B(4−3τ )/ρ) ≤ 8c1ρ

α1−σ−ατ−4 ≤ 8c1ρ
−3τ−4. Secondly, 

it follows from similar computations in (2.28), and making use of (3.6) and Lemma 2.5 that

[L(i+1)
a Rρ]Cᾱ(B4)

≤ M0 ∀ a ∈A,

where M0 is a universal constant independent of i,

L(i+1)
a v =

∫
Rn

δv(x, y)K(i+1)
a (0, y)dy, Rρ(x) =

i∑

=0

ρ−(i+1−
)(σ+α)v
(ρ
i+1−
x).

Lastly, we are going to show that we can choose γ sufficiently small so that

‖I (i+1) − I
(i+1)
0 ‖∗ ≤ η2 in B4 (3.13)

and we can apply Lemma A.2, where η2 is the one in (A.2) with ε = ρ3 ≤ ρσ+α , M0 as above, M1 = 1, M2 = 8c1ρ
−3, 

M3 = c2.
For x ∈ B4, h ∈ C2(x), ‖h‖L∞(Rn) ≤ M, |h(y) − h(x) − (y − x) · ∇h(x)| ≤ M

2 |x − y|2 for every y ∈ B1(x), we 
have

‖I (i+1) − I
(i+1)
0 ‖∗

≤ sup
a,h,x

|
∫
Rn

δh(x, y)(K(i+1)
a (x, y) − K(i+1)

a (0, y))dy|

+
i∑


=0

sup
a∈A

|
∫
Rn

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)(K(i+1)

a (x, y) − K(i+1)
a (0, y))dy|

= I1 + I2.

It follows from the same computations in (3.3) that

|I1| ≤ 25γ.

For a ∈A, 
 = 0, 1, · · · , i and for x ∈ B(4−2τ)/ρ , we have, similar to (3.11),

|
∫
Rn

δw
(ρ
i+1x,ρi+1y)(K(i+1)

a (0, y) − K(i+1)
a (x, y))dy|

≤ ρσ(i+1)

∫
Rn

|δw
(ρ
i+1x, y)||Ka(0, y) − Ka(ρ

i+1x, y)|dy

≤ ρσ(i+1)

∫
B 


c2ρ
(σ+α−2)
τ−2|y|2|Ka(0, y) − Ka(ρ

i+1x, y)|dy
ρ τ
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+ ρσ(i+1)

∫
Rn\B

ρ
τ

ρ(σ+α)
4|Ka(0, y) − Ka(ρ
i+1x, y)|dy

≤ ρ(σ+α)(i+1)γ (c2 + 4)ρα
τ−σ |x|α, (3.14)

where we used (3.6) in the second inequality. We choose γ such that(
25 + (c2 + 4)4

∞∑

=0

ρα


)
γ ≤ min(η1/25, η2). (3.15)

It follows that (3.13) holds (here we can choose τ = 1). By Lemma A.2 we have that

‖W − vi+1‖L∞(Rn) = ‖W − vi+1‖L∞(B4) ≤ ε ≤ ρσ+α.

Let

wi+1(x) = ρ(σ+α)(i+1)vi+1(ρ
−(i+1)x).

Thus, we have shown in the above that all of (3.4), (3.5), (3.6), (3.7) hold for i + 1. In the following, we shall show 
that (3.8) hold for i + 1 as well. Let

V = W − vi+1 = ρ−(i+1)(σ+α)

(
u −

i+1∑

=0

w


)
(ρi+1x).

Thus, for x ∈ B4

I (i+1)V := inf
a∈A

∫
Rn

[δV (x, y) +
i+1∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)]K(i+1)

a (x, y)dy − ρ−(i+1)αf (0)

= ρ−(i+1)αf (ρi+1x) − ρ−(i+1)αf (0).

Moreover, for x ∈ B4−2τ ,

|I (i+1)0| = | inf
a∈A

∫
Rn

[
i+1∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)]K(i+1)

a (x, y)dy − ρ−(i+1)αf (0)|

= | inf
a∈A

∫
Rn

[
i+1∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)]K(i+1)

a (x, y)dy

− inf
a∈A

∫
Rn

[
i+1∑

=0

ρ−(i+1)(σ+α)δw
(ρ
i+1x,ρi+1y)]K(i+1)

a (0, y)dy|

≤ sup
a∈A

i+1∑
l=0

∫
Rn

ρ−(i+1)(σ+α)|δw
(ρ
i+1x,ρi+1y)||K(i+1)

a (x, y) − K(i+1)
a (0, y)|dy

≤ η2τ
−σ ,

where in the last inequality we have used (3.14) and the choice of η2 in (3.15). Thus, by standard scaling and covering 
arguments,

[V ]Cα1 (B4−3τ ) ≤ 8c1τ
−4.

Hence, (3.8) holds for i + 1.
This finishes the proof of the claim in Step 2. Therefore, the proof of Theorem 1.1 is completed. �



1402 T. Jin, J. Xiong / Ann. I. H. Poincaré – AN 33 (2016) 1375–1407
Remark 3.2. In the step of approximation, one cannot use

Ĩ
(i+1)
0 v := inf

a∈A

∫
Rn

(
δv(x, y) +

i∑

=0

ρ−(i+1−
)(σ+α)δv
(0, ρi+1−
y)

)
K(i+1)

a (0, y)dy − ρ−(i+1)αf (0)

to approximate I (i+1)W , since one can check that Ĩ (i+1)
0 will not be close to I (i+1). This is the main reason why we 

need Theorem 2.2.

Remark 3.3. In the case of σ ≥ σ0 > 0 and σ + ᾱ ≤ 2 − γ0 for some γ0 > 0, our approximation solutions {w
} are of 
only Cσ+ᾱ but may not be C2. Thus, instead of (1.7), we need the following (stronger) assumption on Ka:∫

Rn

|Ka(x, y) − Ka(0, y)|min(|y|σ+ᾱ , rσ+ᾱ)dy ≤ �|x|αrᾱ, (3.16)

which will be used in (3.11) and (3.14). Then, with the help of Theorem 2.15, for |σ + ᾱ − 1| ≥ γ0, α ∈ (0, ᾱ) and 
|σ + α − 1| ≥ ε0, the same proof shows that the Schauder estimate (1.8) holds under the conditions (3.16) and (1.6), 
where the constant C there will additionally depend on σ0.

Let σ0 ∈ (0, 2). A unified Hölder condition on the kernels K for all σ ∈ [σ0, 2), which is slightly stronger than both 
(1.7) and (3.16), would be∫

B2r\Br

|K(x,y) − K(0, y)|dy ≤ (2 − σ)�|x|αr−σ (3.17)

for all r > 0, x ∈ B5.
Combining Theorem 1.1 and Remark 3.3, we have this corollary.

Corollary 3.4. Let σ0 ∈ (0, 2). There exists ᾱ ∈ (0, 1) depending only on n, λ, � and σ0 such that the following 
statement holds: Assume every Ka(x, y) ∈ L2(λ, �, σ) satisfies (3.17) with σ ∈ [σ0, 2), α ∈ (0, ᾱ), |σ + ᾱ − j | ≥
γ0 > 0 and |σ + α − j | ≥ ε0 > 0 for j = 1, 2. Suppose that f satisfies (1.6). If u is a bounded viscosity solution of 
(1.1), then there exists a polynomial P(x) of degree [σ + α] such that (1.8) holds for x ∈ B1, where C in (1.8) is a 
positive constant depending only on λ, �, n, σ0, ᾱ, α, ε0 and γ0.

An application of our Schauder estimates is another proof of the following Evans–Krylov type estimates for vis-
cosity solutions of nonlocal fully nonlinear parabolic equations:

ut (x, t) = inf
a∈A

⎧⎨
⎩

∫
Rn

δu(x, y; t)Ka(y)dy

⎫⎬
⎭ in B2 × (−2,0], (3.18)

where δu(x, y; t) = u(x+y, t) +u(x−y, t) −2u(x, t), A is an index set, and each Ka ∈ L2(λ, �, σ). These estimates 
for more general nonlocal parabolic equations have been established by H. Chang Lara and G. Davila [12]. The 
definition of viscosity solutions to nonlocal parabolic equations and their many properties can be found in [9,10].

Theorem 3.5. Let u : Rn × [−2, 0] → R be a viscosity solution of (3.18). Suppose that u is Lipschitz continuous in t
in (Rn \ B2) × [−2, 0] and ‖M±

0 u(·, −2)‖L∞(Rn) ≤ C0. Then there exists β̄ ∈ (0, 1) depending only on n, λ, � such 
that for σ + β̄ − 2 ≥ γ0 > 0 we have

‖ut‖Cᾱ
x,t (B1×[−1,0]) +‖∇2

xu‖Cᾱ
x,t (B1×[−1,0]) ≤ C(‖u‖L∞(Rn×[−2,0]) + ‖ut‖L∞((Rn\B2)×[−2,0]) + C0), (3.19)

where ᾱ = γ0β̄/2 and C is a positive constant depending only on n, λ, � and γ0.
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Proof. It follows from Theorem 6.2 in [9] and Theorem 4.1 in [10] that there exists some β̄ ∈ (0, 1) depending only 
on n, λ, � such that

∇x,tu ∈ C
β̄
x,t (B1 × [−1,0]).

In particular, the right hand side of (3.18) is Hölder in x. By the Schauder estimates in Theorem 1.1 (and adjusting β̄
if necessary), when σ + β̄ − 2 ≥ γ0 > 0, we have for all t ∈ [−1, 0]

∇2
xu(·, t) ∈ Cσ+β̄−2

x (B1).

By Lemma 3.1 on page 78 in [19], we have for all x ∈ B1,

∇2
xu(x, ·) ∈ C

β̄(σ+β̄−2)/(σ+β̄−1)
t ([−1,0]) ⊂ Cᾱ

t ([−1,0]).
Thus, ∇2

xu ∈ Cᾱ
x,t (B1 ×[−1, 0]), and the estimate (3.19) follows from the estimates in Theorem 6.2 in [9], Theorem 4.1 

in [10] and the Schauder estimates we proved. This finishes the proof. �
The estimate (3.19) is not written in the scaling invariant form for the purpose of convenience in its proof. Note that 

Example 2.4.1 in [10] shows that the assumption of the Lipschitz continuity on u in (Rn \ B2) × [−2, 0] is necessary 
to obtain Hölder continuity of ut in B1 × [−1, 0]. The constant C in (3.19) does not depend on σ , and thus, does not 
blow up as σ → 2.

One also can replace the condition on the initial data u(·, −2) in Theorem 3.5 by the following global Lipschitz 
type assumption:

[u]C0,1((t1,t2];L1(ωσ )) := sup
(t−τ,t]⊂(t1,t2]

‖u(·, t) − u(·, t − τ)‖L1(ωσ )

τ
< ∞, (3.20)

where ‖v‖L1(ωσ ) = ∫
Rn |v(y)| min(1, |y|−n−σ )dy.

Theorem 3.6. Let u :Rn ×[−2, 0] → R be a viscosity solution of (3.18) and satisfy (3.20). Then there exists β̄ ∈ (0, 1)

depending only on n, λ, � such that for σ + β̄ − 2 ≥ γ0 > 0 we have

‖ut‖Cᾱ
x,t (B1×[−1,0]) + ‖∇2

xu‖Cᾱ
x,t (B1×[−1,0]) ≤ C(‖u‖L∞(Rn×[−2,0]) + [u]C0,1((t1,t2];L1(ωσ ))),

where ᾱ = γ0β̄/2 and C is a positive constant depending only on n, λ, � and γ0.

Proof. It is the same as the proof of Theorem 3.5, except that we use Corollary 7.2 and Corollary 7.4 in [11] instead 
of Theorem 6.2 in [9] and Theorem 4.1 in [10], �
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Appendix A. Approximation lemmas

Our proof of Schauder estimates uses perturbative arguments, and we need the following two approximation lem-
mas, which are variants of Lemma 7 in [6]. We will do a few modifications for our own purposes, and we decide to 
include them in this appendix for completeness and convenience.

To start with, we recall some definitions and notations about nonlocal elliptic operators, which can be found in 
[6,7]. Let σ0 ∈ (0, 2) be fixed, and ω(y) = (1 + |y|n+σ0)−1. We say u ∈ L1(Rn, ω) if 

∫
Rn |u(y)|ω(y)dy < ∞. Let �

be an open subset of Rn. Let us recall Definition 21 in [7] for nonlocal operators. A nonlocal operator I in � is a rule 
that assigns a function u to a value I (u, x) at every point x ∈ � satisfying the following assumptions:
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• I (u, x) is well-defined as long as u ∈ C2(x) and u ∈ L1(Rn, ω).
• If u ∈ C2(�) ∩ L1(Rn, ω), then I (u, x) is continuous in � as a function of x.

Here u ∈ C2(x) we mean that there is a quadratic polynomial p such that u(y) = p(y) + o(|y − x|2) for y close to x. 
An operator is translation invariant if τzIu = I (τzu) where τz is the translation operator τzu(x) = u(x − z).

Given such a nonlocal operator I , one can defined a norm ‖I‖ as in Definition 22 in [7]. We also define a (weaker) 
norm ‖I‖∗ for our own purpose:

‖I‖∗ := sup{|I (u, x)|/(1 + M) : x ∈ �,u ∈ C2(x),‖u‖L∞(Rn) ≤ M,

|u(y) − u(x) − (y − x) · ∇u(x)| ≤ M

2
|x − y|2 for every y ∈ B1(x)}. (A.1)

We say that a nonlocal operator I is uniformly elliptic with respect to L0(λ, �, σ), which will be written as L0(σ )

for short, if

M−
L0(σ )

v(x) ≤ I (u + v, x) − I (u, x) ≤M+
L0(σ )

v(x),

where

M−
L0(σ )

v(x) = inf
L∈L0(σ )

Lv(x) = (2 − σ)

∫
Rn

λδv(x, y)+ − �δv(x, y)−

|y|n+σ
dy

M+
L0(σ )

v(x) = sup
L∈L0(σ )

Lv(x) = (2 − σ)

∫
Rn

�δv(x, y)+ − λδv(x, y)−

|y|n+σ
dy.

It is also convenient to define the limit operators when σ → 2 as

M−
L0(2)

v(x) = lim
σ→2

M−
L0(σ )

v(x)

M+
L0(2)

v(x) = lim
σ→2

M+
L0(σ )

v(x).

It has been explained in [7] that M+
L0(2)

is a second order uniformly elliptic operator, whose ellipticity constants λ̃

and �̃ depend only λ, � and the dimension n. Moreover, M+
L0(2)

v ≤ M+(∇2v), where M+(∇2v) is the second 

order Pucci operator with ellipticity constants λ̃ and �̃. Similarly, we also have corresponding relations for M−
L0(2)

.
Our approximation lemmas will be proved by compactness arguments, where we need the concepts of the weak 

convergence of nonlocal operators in Definition 41 in [7]. We say that a sequence of nonlocal operators Ik ⇀ I weakly 
in � if, for every x0 ∈ � and for every function v of the form

v(x) =
{

p(x) if |x − x0| ≤ r;
u(x) if |x − x0| > r,

where p is a polynomial of degree two and u ∈ L1(Rn, ω), we have Ik(v, x) → I (v, x) uniformly in Br/2(x0).

Lemma A.1. For some σ ≥ σ0 > 0 we consider nonlocal operators I0, I1 and I2 uniformly elliptic with respect to 
L0(σ ). Assume also that I0 is translation invariant and I0(0) = 1.

Given M > 0, a modulus of continuity ω1 and ε > 0, there exists η1 (small, independent of σ ) and R (large, 
independent of σ ) so that if u, v, I0, I1 and I2 satisfy

I0(v, x) = 0, I1(u, x) ≥ −η1, I2(u, x) ≤ η1 in B1

in viscosity sense, and

‖I1 − I0‖∗ ≤ η1, ‖I2 − I0‖∗ ≤ η1 in B1,

and
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u = v in R
n \ B1,

|u(x)| ≤ M in R
n,

|u(x) − u(y)| ≤ ω1(|x − y|) for every x ∈ BR \ B1 and y ∈R
n \ B1,

then |u − v| ≤ ε in B1.

Proof. It follows from the proof of Lemma 71 in [7] with modifications. We argue by contradiction. Suppose the 
above lemma was false. Then there would be sequences σk, I (k)

0 , I (k)
1 , I (k)

2 , ηk , uk , vk such that σk → σ ∈ [σ0, 2], 
ηk → 0 and all the assumptions of the lemma are valid, but supB1

|uk − vk| ≥ ε.

Since I (k)
0 is a sequence of uniformly elliptic translation invariant operators with respect to L (σk), by Theorem 42 

in [7] that we can take a subsequence, which is still denoted as I (k)
0 , that converges weakly to some nonlocal operator 

I0, and I0 is also translation invariant, and uniformly elliptic with respect to the class L0(σ ).
It follows from the boundary regularity Theorem 32 in [7] that uk and vk have a modulus of continuity, uniform in 

k, in the closed unit ball B1. Thus, uk and vk have a uniform (in k) modulus of continuity on BRk
with Rk → ∞. We 

can subsequences of {uk} and {vk}, which will be still denoted as {uk} and {vk}, which converges locally uniformly in 
R

n to u and v, respectively. Moreover, u = v in Rn \ B1, and supB1
|u − v| ≥ ε.

In the following, we are going to show that

I0(u, x) = 0 = I0(v, x) in B1, (A.2)

from which we can conclude that u ≡ v in B1, since I0 is translation invariant. But we know that supB1
|u − v| ≥ ε. 

This reaches a contradiction.
The second equality of (A.2) follows from Lemma 5 in [7]. The first equality actually follows almost identically 

from the proof of Lemma 5 in [7]: we only need to notice that the sequence {uk} is uniformly bounded by M , and thus 
the conditions that I (k)

1 (uk, x) ≥ −ηk , I (k)
2 (uk, x) ≤ ηk , ‖I (k)

1 − I
(k)
0 ‖∗ → 0 and ‖I (k)

2 − I
(k)
0 ‖∗ → 0 are sufficient to 

show I0(u, x) = 0 in B1 as in the proof of Lemma 5 in [7]. �
Lemma A.2. For some σ ≥ σ0 > 0 we consider nonlocal operators I0, I1 and I2 uniformly elliptic with respect to 
L0(σ ). Assume also that

I0v(x) := inf
a∈A

⎧⎨
⎩

∫
Rn

δv(x, y)Ka(y)dy + ha(x)

⎫⎬
⎭ in B4,

where each Ka ∈ L2(σ ) and for some constant β ∈ (0, 1),

[ha]Cβ(B4)
≤ M0 and inf

a∈A
ha(x) = 0 ∀ x ∈ B4.

Given M0, M1, M2, M3 > 0, R0 > 5, β, ν ∈ (0, 1), and ε > 0, there exists η2 (small, independent of σ ) so that if 
u, v, I0, I1 and I2 satisfy

I0(v, x) = 0, I1(u, x) ≥ −η2, I2(u, x) ≤ η2 in B4,

in viscosity sense, and

‖I1 − I0‖∗ ≤ η2, ‖I2 − I0‖∗ ≤ η2 in B4,

and

u = v in R
n \ B4,

u ≡ 0 in R
n \ BR0 ,

1 The statements of Lemma 7 and Lemma 8 in [7] should be read under the condition that I0 is translation invariant (see [25]), which does not 
affect their applications in [7].
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|u| ≤ M1 in R
n,

[u]Cν(BR0−τ ) ≤ M2τ
−4 ∀ τ ∈ (0,1),

‖v‖Cσ+β(B4−τ ) ≤ M3τ
−4 ∀ τ ∈ (0,1),

then |u − v| ≤ ε in B4.

Proof. This lemma can be proved similarly to Lemma A.1. Suppose the above lemma was false. Then there would be 
sequences σk , I (k)

0 , I (k)
1 , I (k)

2 , ηk , uk , vk such that σk → σ ∈ [σ0, 2], ηk → 0 and all the assumptions of the lemma are 
valid, but supB1

|uk − vk| ≥ ε.
By our assumptions, it is clear that, up to a subsequence, uk converges locally uniformly in BR0 . Since uk ≡ 0 in 

R
n \BR0 , it converges almost everywhere to some function u in Rn. Since vk is bounded and has a modulus continuity 

on B5 \B4, then by the boundary regularity Theorem 32 in [7], there is another modulus continuity that extends to the 
closed unit ball B4, and thus, vk converges uniformly in B4, as well as in Cσ+β−μ

loc (B4) for any arbitrarily small μ > 0. 

Therefore, vk converges to some function v ∈ C
σ+β−μ

loc (B4) almost everywhere in Rn. Moreover, u = v in Rn \ B4, 
and supB4

|u − v| ≥ ε.

We are going to show that there exists a subsequence of {I (k)
0 }, which is still denoted as I (k)

0 , that converges weakly 
in B4 to some nonlocal operator I0, and I0 is uniformly elliptic with respect to the class L0(σ ). Then it follows 
from the proof of (A.2) that u and v solve the same equation I0(u, x) = I0(v, x) = 0 in B4 in viscosity sense. Since 
v ∈ C

σ+β−μ

loc (B4) is a classical solution and u = v in Rn \ B4, we have u = v in B4, which is a contradiction.

The proof of that there exists a subsequence of {I (k)
0 } weakly converges in B4 will basically follow from the proofs 

of Lemma 6 and Theorem 42 in [7].

Claim 1. Let ϕ be a function

ϕ(x) =
{

p(x) in Br

�(x) in R
n \ Br,

where r > 0, p(x) is a second order polynomial, and � ∈ L1(Rn, ω). Then there exists a subsequence {I (kj )

0 } such 

that fkj
(x) := I

(kj )

0 ϕ(x) converges uniformly in Br/2.

Proof of Claim 1. Since I (k)
0 (0) = 0, by uniformly ellipticity, fk is uniformly bounded in Br/2. We are going to find 

a uniform modulus of continuity for fk in Br/2 so that Claim 1 follows from Arzela–Ascoli theorem.
Recall τzϕ(x) = ϕ(x + z). Given x, y ∈ Br/2 with |x − y| < r/8, we have

fk(x) − fk(y) ≤M+
L (σk)

(v − τy−xv, x) + M0|x − y|β,

where the first term has a modulus of continuity depends on ϕ but not I (k)
0 as shown in the proof of Lemma 6 in [7]. 

This finishes the proof of Claim 1.
As long as we have Claim 1, it follows from the proof of Theorem 42 in [7] identically that there exists a subse-

quence of {I (k)
0 }, which is still denoted as I (k)

0 , that converges weakly in B4 to some nonlocal operator I0, and I0 is 
uniformly elliptic with respect to the class L0(σ ). �
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