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Abstract

We analyze the behaviour of free boundaries in thin-film flow in the regime of strong slippage n ∈ [1, 2) and in the regime of 
very weak slippage n ∈ [ 32

11 , 3) qualitatively and quantitatively. In the regime of strong slippage, we construct initial data which are 
bounded from above by the steady state but for which nevertheless instantaneous forward motion of the free boundary occurs. This 
shows that the initial behaviour of the free boundary is not determined just by the growth of the initial data at the free boundary. 
Note that this is a new phenomenon for degenerate parabolic equations which is specific for higher-order equations. Furthermore, 
this result resolves a controversy in the literature over optimality of sufficient conditions for the occurrence of a waiting time 
phenomenon. In contrast, in the regime of very weak slippage we derive lower bounds on free boundary propagation which are 
optimal in the sense that they coincide up to a constant factor with the known upper bounds. In particular, in this regime the growth 
of the initial data at the free boundary fully determines the initial behaviour of the interface.
© 2015 

Keywords: Thin-film equation; Free boundary; Waiting time; Qualitative behaviour; Higher-order parabolic equation; Degenerate parabolic 
equation

1. Introduction

In this paper, we are concerned with the qualitative behaviour of free boundaries in solutions to the thin-film 
equation

d

dt
u = −div(un∇�u), n ∈ R

+,

in the case of strong slippage n ∈ [1, 2) and in the case of very weak slippage n ∈ [ 32
11 , 3). The thin-film equation 

describes the evolution of a thin viscous liquid film on a flat solid driven by surface tension. Different values of n
correspond to different slip conditions on the fluid–solid interface: The case n = 3 corresponds to a no-slip condition 
(see e.g. [1]), while the case n = 2 (or more precisely, un replaced by u2 +u3) corresponds to the Navier slip condition, 
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the effective boundary condition for viscous flow on a rough surface [2]. For n = 1 the thin-film equation arises as the 
lubrication approximation of the Hele-Shaw flow [3].

In order to prevent ill-posedness, one needs to prescribe an additional boundary condition at the free boundary. 
Typically one prescribes the contact angle of solutions. In this paper, we shall be concerned with the case of zero 
contact angle solutions only; i.e. we formally require |∇u| = 0 on ∂ suppu(., t). In the framework of weak solutions 
with zero contact angle, this condition is enforced by an additional regularity constraint on the solution. For existence 
of such weak solutions to the thin-film equation with zero contact angle, see the papers [4–8] (note that in the latter 
works, these solutions are called “strong solutions”, as opposed to the weaker solutions of [6] without prescribed 
contact angle). For a stronger notion of solution (for which existence however is only guaranteed locally or for small 
initial data and which we shall not be concerned with in the sequel), see the recent works [9–13]. For solution concepts 
in case of nonzero contact angle and corresponding existence results, see [14–18].

The analysis of qualitative behaviour of solutions to the thin-film equation has a long history. Finite speed of sup-
port propagation of solutions has been shown in [5,19–23]. If the initial data are “flat enough” at the free boundary, 
a waiting time phenomenon occurs [24]: The free boundary of the solution initially does not advance for some time 
before it starts moving forward. The waiting time has been estimated from below in [25]. However, all now-classical 
results on qualitative behaviour of weak solutions to the thin-film equation with zero contact angle have been con-
cerned with proving upper bounds on free boundary propagation. Mainly due to the lack of a comparison principle 
and Harnack inequalities, no lower bounds on free boundary propagation have been available.

With no rigorous lower bounds on free boundary propagation available, there has been a controversy over the 
optimal condition for the occurrence of a waiting time phenomenon for n < 2. In [24], the authors have shown that 

an estimate of the form u0 � x
4
n+ is sufficient for a waiting time phenomenon to occur. The authors conjectured their 

condition to be optimal. In contrast, a formal analysis in [26] suggested the occurrence of a waiting time phenomenon 
also in case u0 ∼ x

β
+ with β ≥ 2.

Only recently, the author of the present paper has developed a technique for the derivation of lower bounds on 
interface propagation. For the parameter range n ∈ (1, 32

11 ), the author has shown that for large times the support of 
solutions spreads at roughly the same rate as the self-similar solution [27]. In the case of weak slippage n ∈ (2, 32

11 ), 
sufficient conditions for instantaneous propagation of the free boundary in terms of the growth of initial data at the free 
boundary have been deduced [28]; with a grain of salt, these conditions are the converse of the sufficient conditions for 
the occurrence of a waiting time phenomenon in [24]. Thus, for n ∈ (2, 32

11 ) the initial behaviour of the free boundary 
is entirely determined by the growth of the initial data at the free boundary. Nevertheless, the sharp conditions for 
the nonoccurrence of a waiting time being restricted to n ≥ 2, the controversy regarding optimality of the sufficient 
conditions for a waiting time phenomenon in [24] for n < 2 has remained unresolved.

These recent results by the author are based on new monotonicity formulas for the thin-film equation of the form

d

dt

∫
u1+α|x − x0|γ dx ≥ c

∫
u1+α+n|x − x0|γ−4 dx (1)

(for certain α ∈ (−1, 0) and γ < 0), which hold as long as the support of the solution does not touch the singularity 
of the weight. Combined with a differential inequality argument due to Chipot and Sideris [29], these formulas imply 
lower bounds on free boundary propagation. However, the procedure used for obtaining such formulas has been 
limited to the regime n ∈ (1, 32

11 ). Moreover, in the regime n ∈ (1, 2) the range of admissible values for γ has not been 
large enough to deduce conditions for instantaneous forward motion of the free boundary which are both necessary 
and sufficient at the same time.

It is well-known that the qualitative behaviour of solutions to the thin-film equation depends sensitively on the 
parameter n: for n > 1.5, no backward motion of the free boundary may happen, while for n < 1.5 the support of 
solutions may shrink. For n ≥ 3, one expects the support of zero contact angle solutions to be constant in time. This 
sensitive dependence on the parameter is in contrast to the situation for the second-order analogue of the thin-film 
equation, the porous medium equation

ut = ∇ · (um−1∇u) ;
the qualitative behaviour of solutions to the porous medium equation is independent of the parameter m > 1.

Thus, it is of interest whether the limitations of the recent results by the author are caused by changes in qualitative 
behaviour of solutions to the thin-film equation or just by limitations of our technical tools.
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In the present work, we show that the limitation of the monotonicity formulas to n < 32
11 has been merely a technical 

issue of our estimates. Using an alternative strategy, we are able to prove monotonicity formulas of the form (1) also 
in the range n ∈ [ 32

11 , 3), thereby extending our results on asymptotic support propagation and waiting times to the full 
range n ∈ (2, 3). Due to the conjectured change in qualitative behaviour for n ≥ 3, the upper bound of the interval 
(2, 3) is presumably optimal.

In contrast, the limitation of the sharp conditions for instantaneous propagation of the interface to n ∈ (2, 3) is 
caused by a change in qualitative behaviour: For d = 1, the solution with the profile x2+ is a steady state of the thin-film 
equation, although for n < 2 the profile x2+ violates the sufficient conditions for a waiting-time phenomenon of [24]. 

On the other hand, in the present work we construct for any β ∈ ( 4
n
, 2] some initial data u0 satisfying u0(x) ≤ x

β
+ for 

which instantaneous propagation of the interface occurs.
Therefore for n < 2 the initial behaviour of the interface is not completely determined by the growth of the initial 

data at the free boundary. This is a yet unobserved phenomenon for degenerate parabolic PDEs. It is specific for 
higher-order equations as it entails a drastic violation of any comparison principle.

Furthermore, this result resolves the above-mentioned controversy on optimality of the known sufficient conditions 
for a waiting time phenomenon for n < 2: the conditions in [24] are seen to be in general optimal also in this case. 
While we cannot exclude correctness of the predictions of the heuristics in [26] for “nice” initial data (i.e. data with 
u0(x) ∼ x

β
+ close to the free boundary at 0), our approach shows that the heuristics break down in case of oscillatory 

initial data (i.e. certain data for which only u0(x) � x
β
+ is known). This result is interesting in that it is an example of 

the (heuristically known) peculiarities of fourth-order equations with respect to oscillatory initial data.
The idea of our construction of initial data u0 with u0(x) ≤ x

β
+ (for 2 ≤ β < 4

n
) for which instantaneous interface 

propagation occurs is to consider an infinite sum of scaled droplets which accumulate at the initial left free boundary 
(cf. Fig. 1). After some time has passed, droplets spread at a rate comparable to the self-similar solution [27]. This 
enables us to show that every droplet has to spread beyond the initial left interface before it may merge with larger 
droplets.

To prove our monotonicity formulas for the range n ∈ [ 32
11 , 3), we apply a strategy suggested by a computer-based 

analysis of the problem. For d > 1, we additionally need to estimate the non-radial components of the derivatives of 
the solution carefully.

Throughout the paper we use standard notation for Sobolev spaces. We abbreviate I := [0, ∞). By Lp

loc(I ; X) we 
denote the set consisting of all measurable mappings u : I → X which belong to Lp([0, T ]; X) for all T > 0.

2. Main results

Let us recall the definition of weak solutions with zero contact angle for the thin-film equation.

Definition 1. Let 1 ≤ d ≤ 3. Let � ⊂ R
d be a bounded domain with boundary of class C1,1 which is piecewise 

smooth or let � = R
d . Let u0 ∈ H 1(�) be nonnegative with bounded support and let n ∈ ( 1

8 , 2). A nonnegative 
function u ∈ L∞(I ; H 1(�)) is called a weak solution to the thin-film equation with zero contact angle if the following 
conditions are satisfied:

a) u ∈ H 1
loc

(
I ; [W 1,p(�)

]′)
for all p > 4d

2d+n(2−d)
.

b) For any α ∈ (max{−1, 12 − n}, 2 − n) \ {0}, we have D2u
1+n+α

2 ∈ L2
loc(I ; L2(�)) and ∇u

1+n+α
4 ∈ L4

loc(I ; L4(�)).
c) For any ξ ∈ C∞

c (Rd × I ) we have

T∫
0

〈ut , ξ 〉 dt =
T∫

0

∫
{u>0}

un∇u · ∇�ξ dx dt

+ n

T∫ ∫
un−1∇u · D2ξ · ∇u dx dt
0 {u>0}
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+ n

2

T∫
0

∫
{u>0}

un−1|∇u|2�ξ dx dt

+ n(n − 1)

2

T∫
0

∫
{u>0}

un−2|∇u|2∇u · ∇ξ dx dt ,

for all T > 0.
d) u attains the initial data in the sense that u(., t) → u0 in L1(�) as t → 0.

Existence of such weak solutions with zero contact angle has been shown by Dal Passo, Garcke, and Grün [7] (note 
that these authors call these solutions “strong solutions”, as opposed to the weak solutions without prescribed contact 
angle of [6]).

There is a stronger notion of weak solution with zero contact angle which is characterized by the additional require-
ment that the Dirichlet energy be dissipated. Existence of such energy-dissipating weak solutions (the author decided 
to use this name in order to distinguish this notion of solution from the weaker notion of weak solutions with zero 
contact angle defined above) for the thin-film equation has been shown by Bernis in the case of one spatial dimension 
[5]. In case d = 2 or d = 3, proving existence of these solutions is much more demanding. In this case the proof has 
been carried out by Grün [8].

Definition 2. Let 1 ≤ d ≤ 3. Let � ⊂R
d be a bounded convex domain with boundary of class C1,1 or let � =R

d . Let 
u0 ∈ H 1(�) be nonnegative with bounded support. We call u ∈ L∞(I ; H 1(�)) an energy-dissipating weak solution 
to the thin-film equation if it is nonnegative and if the following conditions are satisfied:

a) We have ∇u
n+2

6 ∈ L6(I ; L6(�)), u
n−2

2 ∇u ⊗ D2u ∈ L2(I ; L2(�)), u
n
2 ∇�u ∈ L2(I ; L2(�)).

b) For any α ∈ (max{−1, 12 − n}, 2 − n) \ {0}, we have D2u
1+n+α

2 ∈ L2
loc(I ; L2(�)) and ∇u

1+n+α
4 ∈ L4

loc(I ; L4(�)).

c) It holds that u ∈ H 1
loc

(
I ; (W 1,p(�)

)′)
for all p > 4d

2d+n(d−2)
.

d) For any ξ ∈ C∞
c (Rd × I ) it holds that

T∫
0

〈ut , ξ 〉 dt =
T∫

0

∫
{u>0}

un∇�u · ∇ξ dx dt .

e) u attains its initial data u0 in the sense that limt→0 u(., t) = u0(.) in L1(�).

Dal Passo, Giacomelli, and Grün [24] have given sufficient conditions for the occurrence of a waiting time phe-
nomenon for solutions to the thin-film equation. E.g. in case d = 1 and n < 2 they show that for initial data whose left 
free boundary is located at 0 and which satisfy for some S > 0 and a certain p > 1

⎛
⎜⎝ −
∫

[0,r]
|u0|p dx

⎞
⎟⎠

1
p

≤ S · r 4
n

for any r > 0, a waiting time phenomenon occurs.
We now give an example showing that for initial data growing steeper at the free boundary than the critical growth 

x
4
n+ , instantaneous support spreading may happen (for certain initial data; see Fig. 1 for a sketch of our construction):

Theorem 3. Let n ∈ [1, 2] and 1 ≤ d ≤ 3. Let g : (0, ∞) → R satisfy

lim
s→0

g(s)
4 = ∞ .
s n
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Then there exist compactly supported continuous nonnegative initial data u0 ∈ L1(Rd) ∩H 1(Rd) with suppu0 ⊂ {x ∈
R

d : x1 ≥ 0} and suppu0 ∩{x : x1 = 0} �= ∅ as well as u0(x) ≤ g(x1) for any x ∈ R
d such that the following holds: For 

any (zero contact angle) weak solution to the thin-film equation u constructed as in [7] (and for any energy-dissipating 
weak solution) with initial data u0, we have

inf
{
t > 0 : suppu(., t) ∩ {x : x1 < 0} �= ∅

}
= 0 .

Thus, the sufficient condition of [24] for the occurrence of a waiting time phenomenon is in general optimal. 
However, in case d = 1 the function x2+ is a steady state for the thin-film equation; for n < 2, it locally grows steeper 

than x
4
n+ at the free boundary. For n ∈ [1, 2) the behaviour of solutions to the thin-film equation is therefore not fully 

determined by the growth of the initial data at the free boundary.
We now turn to our results in the case of very weak slippage n ∈ [ 32

11 , 3).
The following result has already been proven for n ∈ (1, 32

11 ) in [27]; in the present work we extend it to n ∈ (1, 3). 
Note that in the special case n = 1, d = 1 there is a much stronger result due to Carrillo and Toscani [30].

Theorem 4. Let u0 ∈ H 1(Rd) be nonnegative and compactly supported. Assume d ≤ 3 and n ∈ (1, 3). Let

• n ∈
(

2 −
√

8
8+d

,3
)

and let u be an energy-dissipating weak solution to the Cauchy problem for the thin-film 
equation, or

• let n ∈ (1, 2) and let u be a weak solution with zero contact angle of the Cauchy problem constructed as in [7].

Let x ∈ R
d be a point.

Denote by T ∗ the infimum of all T satisfying inft∈[0,T ] dist(x, suppu(., t)) = 0. Then there exists a constant Clow

depending only on d and n such that the following estimate holds:

T ∗ ≤ Clow
[
dist(x, suppu0) + diam(suppu0)

]4+d·n ||u0||−n

L1

Note that for n > 3
2 , the support of solutions as constructed in [8] is nondecreasing with respect to time. Thus we 

obtain the following corollary:

Corollary 5. Let u0 ∈ H 1(Rd) be nonnegative and compactly supported. Assume 1 ≤ d ≤ 3 and 3
2 < n < 3. Let u be 

an energy-dissipating weak solution of the Cauchy problem for the thin-film equation.
Suppose that suppu(., t1) ⊂ suppu(., t2) holds for all 0 ≤ t1 ≤ t2.
Let xs ∈ suppu0 be some point. Then there exists a constant c(d, n) depending only on n and d such that for any 

t > 0 with R(t) > 0 we have

BR(t)(xs) ⊂ suppu(., t) ,

where

R(t) := c(d,n)||u0||
n

4+d·n
L1(Rd )

t
1

4+d·n − diam(suppu0) .

An analogous version of the following theorem has been proven in [28] for n ∈ (2, 32
11 ); we now prove it for 

n ∈ [ 32
11 , 3).

Theorem 6. Let d = 1 and x0 ∈ R. Let u be an energy-dissipating weak solution to the Cauchy problem for the 
thin-film equation with compactly supported nonnegative initial data u0 ∈ H 1(�).

a) Suppose n ∈
[

32
11 ,3

)
. Assume suppu0 ∩ (−∞, x0) = ∅. Then there exists a constant C > 0 which depends only on 

n such that the quantity T := inf{t > 0 : (−∞, x0) ∩ suppu(., t) �= ∅} is bounded by
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T ≤ C(n) inf
ε>0

ε
4− 2n

10(3−n)

⎡
⎣∫
R

u
3−n

2
0 |x − x0 + ε|−1.1 dx

⎤
⎦

− 2n
3−n

.

b) Suppose n ∈
[

32
11 ,3

)
. Assume suppu0 ∩ (x0 − δ, x0) = ∅ for some δ > 0 and x0 ∈ ∂ suppu0. Then there exists a 

constant C > 0 which depends only on n and such that the waiting time T ∗ at x0 is bounded by

T ∗ ≤ C(n)

⎡
⎢⎣lim sup

ε→0
−
∫

(x0,x0+ε)

[
1

ε
4
n

u0

] 3−n
2

dx

⎤
⎥⎦

− 2n
3−n

.

This theorem easily implies the following corollary:

Corollary 7. Suppose d = 1. Let u be an energy-dissipating weak solution to the Cauchy problem for the thin-film 
equation with compactly supported nonnegative initial data u0 ∈ H 1(�). Let a point x0 ∈ ∂ suppu0 be given such that 
suppu0 ∩ (x0 − δ, x0) = ∅ holds for some δ > 0.

a) Let n ∈ (2,3). If

u0(x) ≥ S̃ · (x − x0)
4
n+

is satisfied for all x ∈ Bε(x0) for some ε > 0, then the waiting time T ∗ at x0 is bounded from above by

T ∗ ≤ C(n)S̃−n .

b) Let n ∈ (2,3). If

lim
x↘x0

u0(x)

(x − x0)
4
n+

= ∞

holds, then the interface at x0 starts moving forward instantaneously.
c) Let n ∈ (2,3). If

u0(x) ≥ S̃ · (x − x0)
4
n
−β

+
is satisfied for all x ∈ Bε(x0) for some ε > 0 and some β > 0, then we have for any μ ∈ (0, ε)

inf{t ≥ 0 : suppu(., t) ∩ (−∞, x0 − μ) �= ∅} ≤ C(n)S̃−nμnβ .

In particular, in case nβ > 1 the free boundary (considered as a function of time) cannot have better regularity 

than C
1

βn ([0, ∞)).

In the multidimensional case, the following result has been proven in [28] for n ∈ (2, 32
11 ); we extend it to n ∈ (2, 3).

Theorem 8. Let u be an energy-dissipating weak solution to the thin-film equation on a domain � ⊂R
d , d ≤ 3, with 

nonnegative initial data u0 ∈ H 1(�). Assume that suppu0 is bounded. Let x0 ∈ ∂ suppu0 ∩ � be some point with the 
property that in some neighbourhood of x0, suppu0 is the closure of a C4 domain.

a) Suppose n ∈ (2,3). Provided that there exist constants r > 0, S̃ > 0, such that for any x ∈ Br(x0) ∩ suppu0 we 
have

u0(x) ≥ S̃ · dist(x, ∂ suppu0)
4
n ,

the waiting time T ∗ of u at x0 is bounded from above by

T ∗ ≤ C(d,n)S̃−n .
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b) Suppose that n ∈ (2,3). Set A := (suppu0)
◦. If we have

lim
A�x→x0

u0(x)

dist(x, ∂ suppu0)
4
n

= ∞ ,

then the interface at x0 starts moving forward instantaneously.

3. Proof of the main results

3.1. Optimality of sufficient conditions for the existence of waiting times

The following quantitative bound on support spreading due to Bernis [5], Hulshof and Shishkov [20], Bertsch, 
Dal Passo, Garcke, and Grün [21] and Grün [8] will be required for our proof:

Theorem 9. Assume 1 ≤ d ≤ 3 and � = R
d . Let u be an energy-dissipating weak solution to the thin-film equation 

and n ∈
(

2 −
√

8
8+d

,3
)

or let u be a (zero contact angle) weak solution to the thin-film equation constructed as in [7]

and n ∈ ( 1
8 , 2). Assume that suppu0 ⊂ BR0(x) for some R0 > 0 and some x ∈ R

d . Then for any t > 0 we have the 
estimate suppu(., t) ⊂ BR(t)(x) with

R(t) := R0 + Cup||u0||
n

4+d·n
L1 t

1
4+d·n ,

where Cup depends only on d and n.

We now construct initial data growing steeper than x
4
n+ such that in any corresponding solution to the thin-film 

equation the free boundary starts moving forward instantaneously.

Proof of Theorem 3. Let y ∈ R
d be given by y = 4 in case d = 1, y = (4, 0)T in case d = 2, and y = (4, 0, 0)T in 

case d = 3. Take some nonnegative ϕ ∈ C∞
c (Rd) with suppϕ ⊂ B1(y) and 

∫
Rd ϕ dx ≥ 1 as well as ϕ ≤ 1.

Denote by (λk), (μk) two sequences of positive real numbers subject to the following conditions:

(S1) The sequence (λk) is decreasing with λk+1 ≤ λk

5 , λk ≤ 1, and limk
λk+1
λk

= 0.

(S2) The sequence (μk) is increasing with limk
μk+1
μk

= ∞.

(S3) We have μk+1 ≤ μk
λk

λk+1
.

(S4) The estimate μk ≤ λ−1
k is satisfied.

(S5) It holds that

inf
s∈(0,5λk]

g(s)

s
4
n

≥ μk .

We shall show below that such sequences indeed exist.
Fix K ∈ N and define

u0(x) :=
∞∑

k=K

μkλ
4
n

k ϕ

(
1

λk

x

)
.

For a sketch of such initial data, see Fig. 1. It is immediate that u0 ∈ L∞(Rd) since limk μkλ
4
n

k = 0 (recall that n ≤ 2) 
and since the supports of the different ϕ(λ−1

k x) are disjoint (due to λk+1 ≤ 1
4λk and suppϕ ⊂ B1(y)). Moreover, we 

have suppu0 ⊂ {x ∈R
d : x1 ≥ 0}. Additionally we have the regularity u0 ∈ L1(Rd): we know that
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Fig. 1. A sketch of the initial data u0 (blue solid line) constructed as in the proof of Theorem 3. Note that it consists of an infinite sum of 
appropriately scaled droplets of the same kind. The function g (black line, dotted) dominates u0.

||u0||L1 ≤
∞∑

k=K

μkλ
4
n

k

∣∣∣∣
∣∣∣∣ϕ
(

1

λk

x

)∣∣∣∣
∣∣∣∣
L1

≤
∞∑

k=K

μkλ
4
n
+d

k ||ϕ||L1

≤ ||ϕ||L1

∞∑
k=K

λ
4
n
+d−1

k

< ∞ ,

where in the penultimate step we have used (S4) and where the last estimate holds due to λk+1 ≤ 1
4λk . Furthermore 

we observe that u0 ∈ H 1(Rd) holds: we have

||∇u0||L2(Rd ) ≤
∞∑

k=K

μkλ
4
n

k

∣∣∣∣
∣∣∣∣∇
(

ϕ

(
1

λk

x

))∣∣∣∣
∣∣∣∣
L2(Rd )

≤
∞∑

k=K

μkλ
4
n
−1

k

∣∣∣∣
∣∣∣∣∇ϕ

(
1

λk

x

)∣∣∣∣
∣∣∣∣
L2(Rd )

≤
∞∑

k=K

μkλ
4
n
−1+ d

2
k ||∇ϕ||L2(Rd )

≤ ||∇ϕ||L2(Rd )

∞∑
k=K

λ
4
n
−2+ d

2
k

< ∞ ,

where in the penultimate step we have used (S4) and where the last estimate follows since n ≤ 2 and since λk+1 ≤ 1
4λk . 

Finally we know that u0(x) ≤ g(x1) for all x: As the supports of the different droplets in the definition of u0 are 
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disjoint, it suffices to consider a single droplet. We have 

∣∣∣∣μkλ
4
n

k ϕ
(

1
λk

x
)∣∣∣∣ ≤ μkλ

4
n

k and suppϕ
(

1
λk

·
)

⊂ Bλk
(λky)

which implies x1 ∈ [3λk, 5λk] for any x ∈ suppϕ
(

1
λk

·
)

, i.e. (using (S5)) g(x1) ≥ μkx
4
n

1 ≥ μk(3λk)
4
n . Thus the 

estimate is established.
Making use of the finite speed of propagation result Theorem 9, we can estimate the time it takes for droplet

DK(x) := μKλ
4
n

Kϕ

(
1

λK

x

)
to merge with the rest

DR
K(x) :=

∞∑
k=K+1

μkλ
4
n

k ϕ

(
1

λk

x

)
.

Applying Theorem 9 with x := λKy and R0 := λK to bound the support of the droplet DK , we see that the evolved 
support of the (initial) droplet DK is contained in B2λK

(y) as long as we have t ≤ TK,1, where

TK,1 = C−4−d·n
up ||DK ||−n

L1 λ4+d·n
K

= C−4−d·n
up ||ϕ||−n

L1 μ−n
K λ−4−d·n

K λ4+d·n
K

= C−4−d·n
up ||ϕ||−n

L1 μ−n
K .

We apply Theorem 9 once more with x := 0 and R0 := (4 + 1)λK+1. We see that the evolved support of the (initial) 
rest DR

K is contained in B2λK
(0) (recall that λK ≥ 5λK+1) as long as t ≤ TK,2, where

TK,2 = C−4−n·d
up ||DR

K ||−n

L1 (2λK − 5λK+1)
4+d·n

≥ C−4−n·d
up ||DR

K ||−n

L1 λ4+d·n
K

= C−4−n·d
up

⎛
⎝ ∞∑

k=K+1

μkλ
4
n
+d

k ||ϕ||L1

⎞
⎠

−n

λ4+d·n
K

= C−4−n·d
up

⎛
⎝ ∞∑

k=K+1

(μkλk)λ
4
n
+d−1

k ||ϕ||L1

⎞
⎠

−n

λ4+d·n
K

≥ C−4−n·d
up

⎛
⎝(μK+1λK+1)λ

4
n
+d−1

K+1

∞∑
k=K+1

(
λk

λK+1

) 4
n
+d−1

||ϕ||L1

⎞
⎠

−n

λ4+d·n
K

≥ C−4−n·d
up

(
μK+1λ

4
n
+d

K+1||ϕ||L1

∞∑
k=0

5−k

)−n

λ4+d·n
K

= C−4−n·d
up

(
5

4

)−n

||ϕ||−n

L1 μ−n
K+1λ

−4−d·n
K+1 λ4+d·n

K

≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
K+1λ

−n
K+1λ

n
K

≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
K .

Here in the second inequality we have used (S3) and in the third inequality we have used (S1) as well as n ≤ 2; in 
the penultimate inequality, we have used (S1) and, finally, in the last inequality we have used (S3). Summing up, the 
droplet DK cannot merge with the rest DR

K before

TK = min(TK,1, TK,2) ≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
K .

As long as the droplet DK and the rest DR
K remain bounded away from each other, we may consider them as separate 

solutions. Thus for t < TK we may consider the droplet



1310 J. Fischer / Ann. I. H. Poincaré – AN 33 (2016) 1301–1327
DK+1(x) := μK+1λ
4
n

K+1ϕ

(
1

λK+1
x

)
and the rest

DR
K+1(x) :=

∞∑
k=K+1+1

μkλ
4
n

k ϕ

(
1

λk

x

)
.

In this case, by the same arguments as above we can show that the droplet DK+1 cannot merge with the rest DR
K+1

before TK+1, where

TK+1 = min(TK,TK+1,1, TK+1,2)

≥ min(2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
K ,C−4−n·d

up ||ϕ||−n

L1 μ−n
K+1,2−nC−4−n·d

up ||ϕ||−n

L1 μ−n
K+1)

≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
K+1

(note that we need to include TK in our minimum since our argument is based on the assumption that DR
K has not yet 

merged with the larger droplet DK ). More generally, define

DM(x) := μMλ
4
n

Mϕ

(
1

λM

x

)
and

DR
M(x) :=

∞∑
k=M+1

μkλ
4
n

k ϕ

(
1

λk

x

)
.

Repeating the previous argument, we see by induction that generally the rest DR
M (where M ≥ K) does not merge 

with any larger droplet (i.e. the droplets DK, . . . , DM ) before time

TM = min(TK, . . . , TM−1, TM,1, TM,2) ≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
M .

The previous observation now enables us to use our lower bounds on asymptotic support propagation rates, as 
for t < TM we may treat DR

M as a separate solution: Applying Theorem 4 to the rest DR
M (instead of u0) with x :=

−λM+1y (to apply Theorem 4, we need the condition n ≥ 1 of our theorem), we obtain

inf{t > 0 : suppu(., t) ∩ {x : x1 < 0} �= ∅}
≤ Clow

[
4λM+1 + 5λM+1

]4+d·n ||DR
M ||−n

L1

if the right-hand side does not exceed TM (the latter condition is necessary as our argument is based on the assumption 
that DR

M has not yet merged with a larger droplet). This in particular implies

inf{t > 0 : suppu(., t) ∩ {x : x1 < 0} �= ∅}
≤ 94+d·nClowλ4+d·n

M+1

∣∣∣∣
∣∣∣∣μM+1λ

4
n

M+1ϕ
(
λ−1

M+1x
)∣∣∣∣
∣∣∣∣
−n

L1

if the right-hand side does not exceed TM , which in turn implies

inf{t > 0 : suppu(., t) ∩ {x : x1 < 0} �= ∅}
≤ 94+d·nClowλ4+d·n

M+1 μ−n
M+1λ

−4−d·n
M+1 ||ϕ||−n

L1

= 94+d·nClow||ϕ||−n

L1 μ−n
M+1

if the right-hand side does not exceed TM . Since TM ≥ 2−nC−4−n·d
up ||ϕ||−n

L1 μ−n
M and since limk

μk+1
μk

= ∞, the right-
hand side indeed does not exceed TM if M is large enough.

Thus, we finally see that choosing K ∈ N large enough, we obtain some initial data u0 which satisfies all properties 
stated in our theorem (since for K large, the condition in the previous paragraph is satisfied for any M ≥ K and thus 
we have inf{t > 0 : suppu ∩ {x : x1 < 0} �= ∅} ≤ 94+d·nClow||ϕ||−n

L1 μ−n
M+1 for any M ≥ K , i.e. inf{t > 0 : suppu ∩ {x :

x1 < 0} �= ∅} = 0). �
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Lemma 10. Sequences (λk), (μk) subject to conditions (S1) to (S5) indeed exist.

Proof. Set λ0 := 1. We define

μa
0 := inf

s∈(0,5·λ0]
g(s)

s
4
n

.

We then choose λ1 ∈ (0, λ0
5+0 ) small enough such that

μa
1 := inf

s∈(0,5·λ1]
g(s)

s
4
n

satisfies μa
1 ≥ (2 + 0)μa

0; this is possible due to our assumptions on g.

Proceeding similarly, we construct sequences (λk), (μa
k) by induction: we choose λk+1 ∈ (0, min(

λk

5+k
, 

λ2
k

λk−1
)) small 

enough such that

μa
k+1 := inf

s∈(0,5·λk+1]
g(s)

s
4
n

satisfies μa
k+1 ≥ (2 + k)μa

k ; this is possible due to our assumptions on g. Summing up, we see that the sequences (λk)

and (μa
k) satisfy conditions (S1), (S2) and (S5); moreover, we have λk+1

λk
≤ λk

λk−1
for k ≥ 1.

We now define another sequence (μk): we define μ0 := min(λ−1
0 , μa

0) and set (inductively)

μk+1 := min

(
λ−1

k+1,
λk

λk+1
μk,μ

a
k+1

)
.

Since property (S5) is preserved when decreasing μk , we see that the sequences (λk), (μk) also satisfy (S5). The 
conditions (S3) and (S4) are satisfied by construction. As we do not change (λk), the property (S1) also holds. It 
remains to check (S2). Since (λk) is decreasing, since λk+1

λk
≤ 1

5 , and since (μa
k) is increasing, we conclude that (μk)

is also increasing. Furthermore using our definition of μk+1 and μk we see that

μk+1

μk

= min

(
1

λk+1μk

,
λk

λk+1
,
μa

k+1

μk

)
≥ min

(
λk

λk+1
,

λk

λk+1
,
μa

k+1

μa
k

)
.

As all terms in the minimum on the right-hand side tend to infinity as k → ∞, we see that (S2) holds. �
3.2. Extension of the lower bounds on interface propagation to n ∈ [ 32

11 , 3)

In this section, we extend the upper bounds on waiting times and the lower bounds on asymptotic support propa-
gation rates to the whole interval n ∈ (2, 3).

We shall need the following version of Hardy’s inequality.

Lemma 11 (Hardy’s inequality). For v ∈ H 1(Rd) with suppv ⊂⊂ R
d \ {0} and any ψ ∈ C∞(Rd \ {0}) with �ψ > 0

on Rd \ {0} the inequality∫
v2�ψ dx ≤ 4

∫ ∣∣∣∣ ∇ψ

|∇ψ | · ∇v

∣∣∣∣
2 |∇ψ |2

�ψ
dx

holds.

A proof can be found e.g. in [28].
We now prove the following basic estimate which will allow for the derivation of the desired monotonicity formu-

las. Note that the strategy for integrating by parts which we use has been suggested by a computer-based analysis of 
the problem in [31] in case d = 1.
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Lemma 12. Let n ∈ [ 32
11 , 3) and let u be an energy-dissipating weak solution to the thin-film equation on a domain 

� ⊂ R
d , d ≤ 3, with initial data u0 ∈ H 1(�). Assume that suppu0 is bounded. Let α ∈ (−1, 0). Set b := n + α and 

assume that the following conditions are satisfied:

(H1) Assume that 1 ≤ b ≤ 2.
(H2) Suppose that n2 ≤ b ≤ n.
(H3) Assume that n − 1 < b.

Let x0 ∈R
d and T > 0. Suppose that dist(

⋃
t∈[0,T ] suppu(., t), x0) > 0 holds.

Let ψ ∈ C∞
c (�) be nonnegative. Then for a.e. t1, t2 ∈ [0, T ) with t2 ≥ t1 and for a.e. t2 ∈ [0, T ) in case t1 = 0 we 

have ∫
�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|∇u|2�ψ +
(

b − n − b

3

) t2∫
t1

∫
�

ub−1∇u · D2ψ · ∇u

+ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|D2u|2ψ

− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

+
(

5

3
n − 8

3
b

)∫
�

ub−1∇u · D2u · ∇ψ (2)

as well as∫
�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|∇u|2�ψ +
(

b − n − b

3

) t2∫
t1

∫
�

ub−1∇u · D2ψ · ∇u

− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

− (5n − 8b)2

24(n − b)

t2∫
t1

∫
�

ub−1|∇u|2 |∇ψ |2
ψ

.

Proof. In the proof of Lemma 6 in [28] it is shown that if the conditions of our lemma are satisfied, the following 
equation holds:∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

=
(

b − 1

2
n + n − b

3

) t2∫ ∫
ub−1|∇u|2�ψ +

(
b − n − b

3

) t2∫ ∫
ub−1∇u · D2ψ · ∇u
t1 � t1 �
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− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

+ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|D2u|2ψ + 1

3
(n − b)

t2∫
t1

∫
�

ub−1|�u|2ψ

+
(

2

3
+ 1

3

)(
b − n

2

)
(b − 1)(2 − b)

t2∫
t1

∫
�

ub−3|∇u|4ψ

+
(

5

3
n − 8

3
b

)
(b − 1)

t2∫
t1

∫
�

ub−2∇u · D2u · ∇u ψ

+
(

5

6
n − 4

3
b

)
(b − 1)

t2∫
t1

∫
�

ub−2|∇u|2�u ψ .

Additionally we know that

0 = 2
∫
�

ub−2∇u · D2u · ∇u ψ +
∫
�

ub−2|∇u|2�u ψ

+ (b − 2)

∫
�

ub−3|∇u|4 ψ +
∫
�

ub−2|∇u|2∇u · ∇ψ (3)

holds for any nonnegative u with u
b+1

2 ∈ H 2(�): The formula is obvious for smooth strictly positive u; for strictly 
positive u with u

b+1
2 ∈ H 2(�) it follows by approximation. Considering u

b+1
2 + δ and letting δ → 0, the formula is 

also seen to hold in case u
b+1

2 ∈ H 2(�). Putting the previous equations together, we deduce∫
�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

=
(

b − 1

2
n + n − b

3

) t2∫
t1

∫
�

ub−1|∇u|2�ψ +
(

b − n − b

3

) t2∫
t1

∫
�

ub−1∇u · D2ψ · ∇u

− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

+ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|D2u|2ψ + 1

3
(n − b)

t2∫
t1

∫
�

ub−1|�u|2ψ

+ 1

3
(n − b) (b − 1)(2 − b)

t2∫
t1

∫
�

ub−3|∇u|4ψ

−
(

5

6
n − 4

3
b

)
(b − 1)

t2∫
t1

∫
�

ub−2|∇u|2∇u · ∇ψ .

We also know that
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0 = (b − 1)

∫
�

ub−2|∇u|2∇u · ∇ψ + 2
∫
�

ub−1∇u · D2u · ∇ψ

+
∫
�

ub−1|∇u|2�ψ (4)

holds for any nonnegative u with u
b+1

2 ∈ H 2(�). This implies∫
�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

= 2

3
(n − b)

t2∫
t1

∫
�

ub−1|∇u|2�ψ +
(

b − n − b

3

) t2∫
t1

∫
�

ub−1∇u · D2ψ · ∇u

− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

+ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|D2u|2ψ + 1

3
(n − b)

t2∫
t1

∫
�

ub−1|�u|2ψ

+ 1

3
(n − b) (b − 1)(2 − b)

t2∫
t1

∫
�

ub−3|∇u|4ψ

+
(

5

3
n − 8

3
b

)∫
�

ub−1∇u · D2u · ∇ψ .

Dropping the penultimate term and the second term in the third line of the right-hand side (note that they are both non-
negative), we obtain the first assertion. Applying Young’s inequality to the last term, we get the second assertion. �

We now proceed to the proof of our estimates on waiting times in the case of very weak slippage n ∈ [ 32
11 , 3). We 

first deal with the one-dimensional case.

Proof of Theorem 6. We only need to establish an appropriate monotonicity formula; then the proof of Theorem 1 in 
[28] carries over verbatim. In order to avoid duplication of arguments, we only present the proof of the monotonicity 
formula.

Set α := 1−n
2 . We apply Lemma 12 with ψ := |x − x0 + ε|−1.1 to obtain∫

�

1

1 + α
u1+α(., t2)|x − x0 + ε|−1.1 dx −

∫
�

1

1 + α
u1+α(., t1)|x − x0 + ε|−1.1 dx

≥ 2.31 · n − 1

3

t2∫
t1

∫
�

ub−1|ux |2|x − x0 + ε|−3.1

+ 2.31 · n + 2

3

t2∫
t1

∫
�

ub−1|ux |2|x − x0 + ε|−3.1

− 2.31 · 3.1 · 4.1 · 2

n + 3

t2∫ ∫
ub+1|x − x0 + ε|−5.1
t1 �
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− 1.21
(n − 4)2

12(n − 1)

t2∫
t1

∫
�

ub−1|ux |2|x − x0 + ε|−3.1

=
(

2.31 · 2n + 1

3
− 1.21

(n − 4)2

12(n − 1)

) t2∫
t1

∫
�

ub−1|ux |2|x − x0 + ε|−3.1

− 2.31 · 3.1 · 4.1 · 2

n + 3

t2∫
t1

∫
�

ub+1|x − x0 + ε|−5.1 .

By Lemma 11 we infer that∫
�

1

1 + α
u1+α(., t2)|x − x0 + ε|−1.1 dx −

∫
�

1

1 + α
u1+α(., t1)|x − x0 + ε|−1.1 dx

≥
(

2.31 · 2n + 1

3
− 1.21 · (n − 4)2

12(n − 1)

)
· 16

(n + 3)2

t2∫
t1

∫
�

|(u b+1
2 )x |2|x − x0 + ε|−3.1

− 2.31 · 3.1 · 4.1 · 2

n + 3

t2∫
t1

∫
�

ub+1|x − x0 + ε|−5.1

≥
(

2.31 · 2n + 1

3
− 1.21 · (n − 4)2

12(n − 1)

)
· 4

(n + 3)2
· 4.12

t2∫
t1

∫
�

ub+1|x − x0 + ε|−5.1

− 2.31 · 3.1 · 4.1 · 2

n + 3

t2∫
t1

∫
�

ub+1|x − x0 + ε|−5.1

= 2

n + 3

(
2 · 4.12 · 2.31 · 2n + 1

3(n + 3)
− 4.12 · 1.21 · (n − 4)2

6(n − 1)(n + 3)
− 2.31 · 3.1 · 4.1

)

·
t2∫

t1

∫
�

ub+1|x − x0 + ε|−5.1 .

Factorizing the factor in front of the right-hand side, we see that it is nonnegative for n ∈ [ 32
11 , 3). We thus get∫

�

1

1 + α
u1+α(., t2)|x − x0 + ε|−1.1 dx −

∫
�

1

1 + α
u1+α(., t1)|x − x0 + ε|−1.1 dx

≥ c(n)

t2∫
t1

∫
�

ub+1|x − x0 + ε|−5.1 .

This estimate implies the theorem by an argument analogous to the proof of Theorem 1 in [28] since 4
n

· (1 + α) <
0.1 = −γ − 1. �

To prove Theorem 8, we only need to establish the following lemma (since then again, the proofs of Lemma 8 and 
Theorem 2 in [28] carry over). This lemma is an analogue of Lemma 7 in [28].

Lemma 13. Let u be an energy-dissipating weak solution of the thin-film equation on a domain � ⊂R
d , d ≤ 3, with 

nonnegative initial data u0 ∈ H 1(�) with bounded support and let n ∈ ( 29
10 , 3). Set α := 1−n

2 and b := n + α. Set 
γ := −1.1.
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Let M be the closure of a C4 domain and let x0 ∈ ∂M; w.l.o.g. we may assume that x0 = 0. Denote the tangent plane 
to ∂M in 0 by H ; w.l.o.g. (i.e. possibly after a rotation and reflection) we may assume that H = {x ∈R

d : xd = 0} and 
that x0 + μ �ed ∈ M for any μ > 0 small enough. Denote the projection onto H by P . Define

Zρ := {x : |Px| < ρ, |xd | < ρ} . (5)

Let R > 0 and let ξ : H →R, ξ ∈ C4, be a function such that

ZR ∩ M = ZR ∩ {x ∈ R
d : xd ≥ ξ(Px)} (6)

holds (for R small enough such a function exists by the implicit function theorem). Note that ξ(0) = 0 and that 
∇ξ(0) = 0 as H is tangent to ∂M at 0.

Assume that ZR ⊂⊂ �.
Take any r ∈ (0, R

3

)
and any K ∈ R

+
0 such that

(P1) suppu0 ∩ Z3r ⊂ M , i.e. locally near x0 the support of u0 is contained in M .
(P2) |D2ξ(Px)| ≤ K , |D3ξ(Px)| ≤ K

r
, and |D4ξ(Px)| ≤ K

r2 for any x ∈R
d with |Px| ≤ 3r .

(P3) The inequality Kr < ε(d, n) holds for some small constant ε(d, n) < 1
10 which is to be determined in the course 

of the proof below.

Let φ : Rd → R be a smooth cutoff with 0 ≤ φ ≤ 1, φ ≡ 1 on Z2r , suppφ ⊂ Z3r , and |∇φ| ≤ C(d)
r

, |D2φ| ≤ C(d)

r2 , 

|D3φ| ≤ C(d)

r3 , |D4φ| ≤ C(d)

r4 . Define ξ̃ : H →R by

ξ̃ (x) := ξ(x) − Kr−3(|x| − r)5+ . (7)

Set

T := inf{t > 0 : suppu(., t) ∩ (Rd \ M) ∩ Z3r �= ∅} . (8)

Then we have for any δ ∈ (0, r)

∫
�

1

1 + α
u1+α(., t)|xd − ξ̃ (P x) + δ|γ φ2(x) dx

∣∣∣∣∣
t2

t1

≥ c(n)

t2∫
t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(r4(Kr2)γ−4 + (Kr2)γ )

t2∫
t1

∫
Z3r

|∇u
b+1

4 |4 (9)

for a.e. 0 < t1 < t2 < T and a.e. 0 < t2 < T in case t1 = 0.

Proof. Set

ε(d,n) := min

(
ε0, ε1,

1

10

)
(10)

where ε0 and ε1 are to be chosen below depending only on d and n. From now on, to simplify notation we write ε
instead of ε(d, n).

Note that ξ̃ ∈ C4. The function ξ̃ satisfies some estimates similar to (P2), namely:

(P2′) We have |D2ξ̃ (P x)| ≤ C(d)K , |D3ξ̃ (P x)| ≤ C(d)K , and |D4ξ̃ (P x)| ≤ C(d)K
2 for any x ∈R

d with |Px| ≤ 3r .

r r
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We abbreviate ψ(x) := |xd − ξ̃ (P x) + δ|γ φ2(x). This function obviously satisfies ψ ∈ C4(M) (as the points at 
which the function has singularities do not belong to M). We now use ψ as a weight in Lemma 12 and the estimates 
(11) and (12) from the lemma below to obtain∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥ 2

3
(n − b)

t2∫
t1

∫
�

ub−1|∇u|2�ψ +
(

b − n − b

3

) t2∫
t1

∫
�

ub−1∇u · D2ψ · ∇u

− 1

b + 1

t2∫
t1

∫
�

ub+1�2ψ

− (5n − 8b)2

24(n − b)

t2∫
t1

∫
�

ub−1|∇u|2 |∇ψ |2
ψ

≥
(

γ (γ − 1)
8

3(b + 1)2
(n − b) − γ 2 4(5n − 8b)2

24(n − b)(b + 1)2
− C(d,n)Kr

)

·
t2∫

t1

∫
�

|∇u
b+1

2 |2 · φ2(x)|xd − ξ̃ (x) + δ|γ−2

+ γ (γ − 1)
4(4b − n)

3(b + 1)2

t2∫
t1

∫
�

|∂du
b+1

2 |2 · φ2(x)|xd − ξ̃ (P x) + δ|γ−2

−
(

γ (γ − 1)(γ − 2)(γ − 3)

b + 1
+ C(d,n)Kr

)

·
t2∫

t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(Kr2)γ−2

t2∫
t1

∫
Z3r

|∇u
b+1

2 |2 − C(d,n)(Kr2)γ−4

t2∫
t1

∫
Z3r

ub+1 .

Choosing ε0 > 0 small enough depending only on d and n, we see that the factor in front of the first term on the 
right-hand side is nonnegative (note that n − b ≥ 9

10 , that 19
10 ≤ b ≤ 2, and that |5n − 8b| ≤ 3

2 ). We may thus drop the 
derivatives in directions perpendicular to �ed . Rearranging, we obtain (note that |∇φ| ≤ C(d)r−1 ≤ C(d)(Kr2)−1)∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥
(

γ (γ − 1)
8(n − b) + 4(4b − n)

3(b + 1)2
− γ 2 4(5n − 8b)2

24(n − b)(b + 1)2
− C(d,n)Kr

)

·
t2∫

t1

∫
�

|∂d(φ · ub+1
2 )|2 · |xd − ξ̃ (P x) + δ|γ−2

−
(

γ (γ − 1)(γ − 2)(γ − 3) + C(d,n)Kr

)

b + 1
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·
t2∫

t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(Kr2)γ−2

t2∫
t1

∫
Z3r

|∇u
b+1

2 |2 − C(d,n)(Kr2)γ−4

t2∫
t1

∫
Z3r

ub+1 .

Hardy’s inequality (Lemma 11) implies

(γ − 3)2

4

∫
φ2ub+1|xd − ξ̃ (P x) + δ|γ−4dxd

≤
∫

|∂d(φu
b+1

2 )|2|xd − ξ̃ (P x) + δ|γ−2 dxd

since by assumption u is zero on some neighbourhood of xd = ξ̃ (P x) − δ. Integrating this inequality with respect to 
(x1, . . . , xd−1), we deduce that∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥
[
γ (γ − 1)(γ − 3)2 2b + n

3(b + 1)2
− γ 2(γ − 3)2 (5n − 8b)2

24(n − b)(b + 1)2

− γ (γ − 1)(γ − 2)(γ − 3)

b + 1
− C(d,n)Kr

]

·
t2∫

t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(Kr2)γ−2

t2∫
t1

∫
Z3r

u
b+1

2 |∇u
b+1

4 |2 − C(d,n)(Kr2)γ−4

t2∫
t1

∫
Z3r

ub+1 .

Note that |ξ(Px)| ≤ Kr2 ≤ r since Dξ(0) = 0 and ξ(0) = 0. Recalling that u ≡ 0 in Z3r ∩ {x : xd < ξ(Px)}, we 
see that the Poincare inequality implies that 

∫
(−3r,3r)

ub+1 dxd ≤ Cr−4
∫
(−3r,3r)

|∂du
b+1

4 |4 dxd . We therefore obtain 
by applying Young’s inequality to the penultimate term in the previous estimate and using the Poincare inequality to 
estimate the last term on the right-hand side (note that r−1 ≤ (Kr2)−1)∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥ γ (γ − 1)(3 − γ )

n + 3

·
[

41

10
· 4(2n + 1)

3(n + 3)
− 11

10
· 41

10
· 10

21
· 4(n − 4)2

12(n − 1)(n + 3)
− 31

10
· 2 − C(d,n)Kr

]

·
t2∫

t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(Kr2)γ

t2∫
t

∫
|∇u

b+1
4 |4 ,
1 Z3r
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where we have used our choices γ = −1.1 and α = 1−n
2 . We see using e.g. a computer algebra program that for 

n ∈ (2.9, 3) the factor in front of the first term on the right-hand side is strictly positive if C(d, n)Kr is small enough; 
thus, if ε1 is chosen small enough depending only on d and n, we get∫

�

1

1 + α
u1+α(., t2)ψ(.) dx −

∫
�

1

1 + α
u1+α(., t1)ψ(.) dx

≥ c(n, d)

t2∫
t1

∫
�

ub+1 · φ2(x)|xd − ξ̃ (P x) + δ|γ−4

− C(d,n)(Kr2)γ

t2∫
t1

∫
Z3r

|∇u
b+1

4 |4 . �

Proof of Theorem 8. Proceeding as in the proof of Theorem 2 in [28] (note that this proof relies on the estimate from 
Lemma 13), we obtain Theorem 8. It is essential for this proof to work that for the choices of γ and α in Lemma 13, 
we have γ + 4

n
· (1 + α) + 1 < 0. �

The following lemma has been proven in [28] (there it is called Lemma 9); we do not repeat its proof here.

Lemma 14. With φ defined as at the beginning of the proof of the previous lemma, for any x ∈ M ∩ supp∇φ we have 
xd − ξ̃ (P x) ≥ Kr2.

Moreover, the following estimate holds for the second derivative of ψ for any x ∈ M:∣∣∣D2ψ(x) − γ (γ − 1)|xd − ξ̃ (P x) + δ|γ−2 · φ2(x) · �ed ⊗ �ed

∣∣∣
≤ C(d)Kr|xd − ξ̃ (P x) + δ|γ−2 · φ2(x) + C(d)[Kr2]γ−2. (11)

For the fourth derivative, the following estimate is satisfied for any x ∈ M:∣∣∣�2ψ(x) − γ (γ − 1)(γ − 2)(γ − 3)|xd − ξ̃ (P x) + δ|γ−4 · φ2(x)

∣∣∣
≤ C(d)Kr|xd − ξ̃ (P x) + δ|γ−4 · φ2(x) + C(d)[Kr2]γ−4. (12)

Our next aim is to extend the lower bounds on asymptotic support propagation rates to the range n ∈ [ 32
11 , 3).

Proof of Theorem 4. Again, it is sufficient to establish appropriate monotonicity formulas, since then the arguments 
of [27] carry over.

Using |x − x0|γ as a weight function in inequality (2) and using the abbreviation P := Id − x−x0|x−x0| ⊗ x−x0|x−x0| , we 
deduce that∫

Rd

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
Rd

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥ 2γ (γ − 2 + d)

3
(n − b)

t2∫
t1

∫
Rd

ub−1|∇u|2|x − x0|γ−2

+ γ (γ − 1)
4b − n

3

t2∫
t1

∫
Rd

ub−1
∣∣∣∣∇u · x − x0

|x − x0|
∣∣∣∣
2

|x − x0|γ−2

+ γ
4b − n

3

t2∫
t

∫
d

ub−1|P∇u|2|x − x0|γ−2
1 R
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+ 2

3
(n − b)

t2∫
t1

∫
Rd

ub−1|D2u|2|x − x0|γ

− γ (γ + d − 2)(γ − 2)(γ + d − 4)

b + 1

t2∫
t1

∫
Rd

ub+1|x − x0|γ−4

+ γ

(
5

3
n − 8

3
b

)∫
Rd

ub−1∇u · D2u · x − x0

|x − x0| |x − x0|γ−2 .

Applying the estimate∣∣∣∣∇u · D2u · x − x0

|x − x0|
∣∣∣∣

≤ |P∇u| ·
∣∣∣∣PD2u · x − x0

|x − x0|
∣∣∣∣+

∣∣∣∣ x − x0

|x − x0| · ∇u

∣∣∣∣ ·
∣∣∣∣ x − x0

|x − x0| · D2u · x − x0

|x − x0|
∣∣∣∣

as well as Young’s inequality to the last term in the previous inequality (note that mixed derivatives occur twice in 
|D2u|2, i.e. |D2u| = |∂1∂1u|2 + 2|∂1∂2u|2 + . . .), we deduce that∫

Rd

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
Rd

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
(

2γ (γ − 2 + d)

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)

·
t2∫

t1

∫
Rd

ub−1
∣∣∣∣∇u · x − x0

|x − x0|
∣∣∣∣
2

|x − x0|γ−2

+
(

2γ (γ − 2 + d)

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)

·
t2∫

t1

∫
Rd

ub−1|P∇u|2|x − x0|γ−2

+ 2

3
(n − b)

t2∫
t1

∫
Rd

ub−1|P D2u P |2|x − x0|γ

− γ (γ + d − 2)(γ − 2)(γ + d − 4)

b + 1

t2∫
t1

∫
Rd

ub+1|x − x0|γ−4 . (13)

We now subsequently treat the cases d = 2, d = 1, and d = 3, as the calculations differ to some amount. Suppose 
that d = 2. We then have

t2∫
t1

∫
R2

ub−1|P∇u|2|x − x0|γ−2

=
t2∫

t

∫ ∫
ub−1|r−1∂φu|2rγ−2 · r dφ dr dt
1 (0,∞) (0,2π)
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= −b−1

t2∫
t1

∫
(0,∞)

∫
(0,2π)

ubr−2∂φ∂φu rγ−2 · r dφ dr dt

= −b−1

t2∫
t1

∫
R2

ub tr(P D2u P )|x − x0|γ−2 .

We therefore obtain from (13), taking into account that d = 2∫
R2

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R2

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
(

2γ 2

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)

· 4

(b + 1)2

t2∫
t1

∫
R2

∣∣∣∣∇u
b+1

2 · x − x0

|x − x0|
∣∣∣∣
2

|x − x0|γ−2

− b−1
(

2γ 2

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)

·
t2∫

t1

∫
R2

ub tr(P D2u P )|x − x0|γ−2

+ 2

3
(n − b)

t2∫
t1

∫
R2

ub−1|P D2u P |2|x − x0|γ

− γ 2(γ − 2)2

b + 1

t2∫
t1

∫
R2

ub+1|x − x0|γ−4 .

Using Lemma 11 to bound the first term on the right-hand side from below and applying Young’s inequality to the 
second term on the right-hand side, we infer the estimate∫

R2

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R2

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
[(

2γ 2

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)
· (γ − 2)2

(b + 1)2

− 3

8b2(n − b)

(
2γ 2

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)2

− γ 2(γ − 2)2

b + 1

]

·
t2∫

t1

∫
R2

ub+1|x − x0|γ−4 .

Setting γ := −2 and b := 2, we deduce that
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∫
R2

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R2

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
[(

8

3
(n − 2) + 2(8 − n) − (5n − 16)2

6(n − 2)

)
· 16

9

− 3

32(n − 2)

(
8

3
(n − 2) − 2

8 − n

3
− (5n − 16)2

12(n − 2)

)2

− 64

3

]

·
t2∫

t1

∫
R2

ub+1|x − x0|γ−4 .

Using e.g. a computer algebra program, we can show that the factor on the right-hand side is strictly positive for 
n ∈ [ 32

11 , 3). This yields∫
R2

1

1 + α
u1+α(., t2)|x − x0|−2 dx −

∫
R2

1

1 + α
u1+α(., t1)|x − x0|−2 dx

≥ c(n)

t2∫
t1

∫
R2

ub+1|x − x0|−6 .

From this point on, we can follow the lines of the proof of the lower bounds on asymptotic support propagation rates 
from [27] to prove our theorem in case d = 2 (more precisely, we may repeat the steps below inequality (4) in [27]
to prove an analogue of Lemma 11 from [27]. Having established such an analogue, the proof in Section 3.4 in [27]
applies).

For d = 1, an analogous estimate follows directly from the second inequality in Lemma 12: we set b := 2 and use 
|x − x0|−1 as a weight to obtain∫

R

1

1 + α
u1+α(., t2)|x − x0|−1 dx −

∫
R

1

1 + α
u1+α(., t1)|x − x0|−1 dx

≥ 2
2

3
(n − 2)

t2∫
t1

∫
R

ub−1|ux |2|x − x0|−3 + 2 · 8 − n

3

t2∫
t1

∫
R

ub−1|ux |2|x − x0|−3

− 2 · 3 · 4

3

t2∫
t1

∫
R

ub+1|x − x0|−5

− (5n − 16)2

24(n − 2)

t2∫
t1

∫
R

ub−1|ux |2|x − x0|−3

which yields∫
R

1

1 + α
u1+α(., t2)|x − x0|−1 dx −

∫
R

1

1 + α
u1+α(., t1)|x − x0|−1 dx

≥
(

2n + 8

3
− (5n − 16)2

24(n − 2)

) t2∫
t1

∫
R

ub−1|ux |2|x − x0|−3

− 2 · 3 · 4

3

t2∫ ∫
ub+1|x − x0|−5 .
t1 R
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An application of Hardy’s inequality (Lemma 11) (note that the factor in front of the first term is nonnegative since 
n ∈ [ 32

11 , 3)) gives∫
R

1

1 + α
u1+α(., t2)|x − x0|−1 dx −

∫
R

1

1 + α
u1+α(., t1)|x − x0|−1 dx

≥
[(

2n + 8

3
− (5n − 16)2

24(n − 2)

)
· 16

9
− 24

3

] t2∫
t1

∫
R

ub+1|x − x0|−5 .

Writing the factor on the right-hand side as a product, we see that for n ∈ [ 32
11 , 3) it is strictly positive, yielding∫

R

1

1 + α
u1+α(., t2)|x − x0|−1 dx −

∫
R

1

1 + α
u1+α(., t1)|x − x0|−1 dx

≥ c(n)

t2∫
t1

∫
R

ub+1|x − x0|−5 .

This monotonicity formula again enables us to follow the lines of the proof of the lower bounds on asymptotic support 
propagation rates from [27] to prove our theorem in case d = 1 (again, this formula provides a substitute for the 
estimate just below inequality (4) in [27]).

In case d = 3, denoting by Pφ the projection onto the space spanned by �eφ we compute∫
R3

ub−1|Pφ∇u|2|x − x0|γ−2

=
∫

(0,∞)

∫
(0,π)

∫
(0,2π)

ub−1|[r sin(θ)]−1∂φu|2rγ−2 · r sin(θ) dφ dθ dr

= −b−1
∫

(0,∞)

∫
(0,π)

∫
(0,2π)

ub[r sin(θ)]−2∂φ∂φu rγ−2 · r sin(θ) dφ dθ dr

= −b−1
∫
R3

ub tr(Pφ D2u Pφ)|x − x0|γ−2 .

Denoting by Pθ the projection onto the space spanned by �eθ , we obtain∫
R3

ub−1|Pθ∇u|2|x − x0|γ−2

=
∫

(0,∞)

∫
(0,2π)

∫
(0,π)

ub−1|r−1∂θu|2rγ−2 · r sin(θ) dθ dφ dr

= −b−1
∫

(0,∞)

∫
(0,2π)

∫
(0,π)

ubr−2∂θ∂θu rγ−2 · r sin(θ) dθ dφ dr

− b−1
∫

(0,∞)

∫
(0,2π)

∫
(0,π)

ubr−2∂θu rγ−2 · r cos(θ) dθ dφ dr

= −b−1
∫ ∫ ∫

ubr−2∂θ∂θu rγ−2 · r sin(θ) dθ dφ dr
(0,∞) (0,2π) (0,π)
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− 1

b(b + 1)

∫
(0,∞)

∫
(0,2π)

∫
(0,π)

ub+1r−2 rγ−2 · r sin(θ) dθ dφ dr

− 1

b(b + 1)

∫
(0,∞)

∫
(0,2π)

[
ub+1r−2 rγ−2 · r cos(θ)

]θ=π

θ=0
dφ dr

= −b−1
∫
R3

ub tr(PθD
2uPθ ) |x − x0|γ−2

− 1

b(b + 1)

∫
R3

ub+1|x − x0|γ−4

+ 2π

b(b + 1)

∫
(0,∞)

[ub+1(r�ez) + ub+1(−r�ez)] rγ−4 · r dr .

These two formulas enable us to use arguments analogous to the two-dimensional situation: inserting these formulas 
into equation (13) and noting that tr(PθAPθ ) + tr(PφAPφ) = tr(PAP ) holds for any matrix A, we deduce that

∫
R3

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R3

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
(

2γ (γ − 2 + d)

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)

·
t2∫

t1

∫
R3

ub−1
∣∣∣∣∇u · x − x0

|x − x0|
∣∣∣∣
2

|x − x0|γ−2

− b−1
(

2γ (γ − 2 + d)

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)

·
t2∫

t1

∫
R3

ub−1 tr(PD2uP )|x − x0|γ−2

− 1

b(b + 1)

(
2γ (γ − 2 + d)

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)

·
⎛
⎜⎝∫ ub+1|x − x0|γ−4 − 2π

∫
(0,∞)

[ub+1(r�ez) + ub+1(−r�ez)] rγ−4 · r dr

⎞
⎟⎠

+ 2

3
(n − b)

t2∫
t1

∫
R3

ub−1|P D2u P |2|x − x0|γ

− γ (γ + d − 2)(γ − 2)(γ + d − 4)

b + 1

t2∫
t1

∫
R3

ub+1|x − x0|γ−4 .

After symmetrization (letting �ez take all possible values in S2 and taking the average integral) the third term on the 
right-hand side is seen to vanish (note that all the other terms do not depend on the orientation of �ez). Taking into 
account that d = 3, this yields
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∫
R3

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R3

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
(

2γ (γ + 1)

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)

·
t2∫

t1

∫
R3

ub−1
∣∣∣∣∇u · x − x0

|x − x0|
∣∣∣∣
2

|x − x0|γ−2

− b−1
(

2γ (γ + 1)

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)

·
t2∫

t1

∫
R3

ub−1 tr(PD2uP )|x − x0|γ−2

+ 2

3
(n − b)

t2∫
t1

∫
R3

ub−1|P D2u P |2|x − x0|γ

− γ (γ + 1)(γ − 2)(γ − 1)

b + 1

t2∫
t1

∫
R3

ub+1|x − x0|γ−4 .

An application of Young’s inequality to the penultimate term and an application of Hardy’s inequality (Lemma 11) to 
the first term on the right-hand side gives∫

R3

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R3

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
[(

2γ (γ + 1)

3
(n − b) + γ (γ − 1)

4b − n

3
− γ 2 (5n − 8b)2

24(n − b)

)
· (γ − 1)2

(b + 1)2

− 2 · 3

8b2(n − b)

(
2γ (γ + 1)

3
(n − b) + γ

4b − n

3
− γ 2 (5n − 8b)2

48(n − b)

)2

− γ (γ + 1)(γ − 2)(γ − 1)

b + 1

]

·
t2∫

t1

∫
R3

ub+1|x − x0|γ−4 .

Setting b := 2 and γ := −3, we deduce that∫
R3

1

1 + α
u1+α(., t2)|x − x0|γ dx −

∫
R3

1

1 + α
u1+α(., t1)|x − x0|γ dx

≥
[(

4(n − 2) + 4(8 − n) − 9
(5n − 16)2

24(n − 2)

)
· 16

9

− 2 · 3

32(n − 2)

(
4(n − 2) − (8 − n) − 9

(5n − 16)2

48(n − 2)

)2

− 120

3

]

·
t2∫

t

∫
3

ub+1|x − x0|γ−4 .
1 R
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Using e.g. a computer algebra program, one can show that the factor on the right-hand side is strictly positive for 
n ∈ [32

11 , 3). This gives∫
R3

1

1 + α
u1+α(., t2)|x − x0|−3 dx −

∫
R3

1

1 + α
u1+α(., t1)|x − x0|−3 dx

≥ c(n)

t2∫
t1

∫
R3

ub+1|x − x0|−7

which again may be used as a starting point for the arguments in [27] (we may use our formula as a substitute for the 
inequality just below estimate (4) in [27]). This finishes the proof of our theorem. �
4. Conclusion

To conclude, we would like to provide an overview of the known results on initial behaviour of free boundaries in 
thin-film flow; for simplicity, we restrict ourselves to the one-dimensional case.

• In general (for n ∈ (0, 3)): If (with a grain of salt) the initial data u0 grow at most like S · x
4
n+ at the free boundary, 

a waiting time phenomenon occurs.
• Case n ∈ (0, 1): Apart from the result just mentioned, nothing is known about the initial behaviour of free bound-

aries. Essentially this is due to the fact that for n < 1 no backward entropies exist. Whether this is merely a 
technical limitation or whether this fact points to a fundamental change in behaviour of solutions is also an open 
question.

• Case n ∈ (1, 2): There exist initial data growing just a bit steeper than x
4
n+ at the free boundary for which imme-

diate support spreading takes place. However, there also exist initial data growing steeper than x
4
n+ for which the 

interface remains stationary. Thus, the initial behaviour of the free boundary is not determined by the growth of 
the initial data at the free boundary only.

• Case n = 2: If the initial data u0 grow steeper than x2+| logx| 1
2 at the free boundary, instantaneous forward motion 

of the interface occurs. The gap between the sufficient conditions for instantaneous support spreading and the 
sufficient conditions for the occurrence of a waiting time phenomenon is very small.

• Case n ∈ (2, 3): If the initial data u0 grow steeper than x
4
n+ at the free boundary, immediate support spreading 

takes place. In particular, the initial behaviour of the free boundary is entirely determined by the growth of the 
initial data at the free boundary.

One might conjecture that for n ∈ (0, 2) and initial data which grows steeper than x2+, immediate support spreading 
must happen. However, a proof of this assertion is presently out of reach.
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