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Abstract

The chemotaxis–Navier–Stokes system⎧⎪⎪⎨
⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c),

ct + u · ∇c = �c − nf (c),

ut + (u · ∇)u = �u + ∇P + n∇�,

∇ · u = 0,

(�) (0.1)

is considered under homogeneous boundary conditions of Neumann type for n and c, and of Dirichlet type for u, in a bounded 
convex domain � ⊂R

3 with smooth boundary, where � ∈ W2,∞(�), and where f ∈ C1([0, ∞)) and χ ∈ C2([0, ∞)) are nonneg-
ative with f (0) = 0. Problems of this type have been used to describe the mutual interaction of populations of swimming aerobic 
bacteria with the surrounding fluid. Up to now, however, global existence results seem to be available only for certain simplified 
variants such as e.g. the two-dimensional analogue of (�), or the associated chemotaxis–Stokes system obtained on neglecting the 
nonlinear convective term in the fluid equation.

The present work gives an affirmative answer to the question of global solvability for (�) in the following sense: Under mild 
assumptions on the initial data, and under modest structural assumptions on f and χ , inter alia allowing for the prototypical case 
when

f (s) = s for all s ≥ 0 and χ ≡ const.,

the corresponding initial–boundary value problem is shown to possess a globally defined weak solution.
This solution is obtained as the limit of smooth solutions to suitably regularized problems, where appropriate compactness 

properties are derived on the basis of a priori estimates gained from an energy-type inequality for (�) which in an apparently novel 
manner combines the standard L2 dissipation property of the fluid evolution with a quasi-dissipative structure associated with the 
chemotaxis subsystem in (�).
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1. Introduction

We consider the chemotaxis–Navier–Stokes system⎧⎪⎪⎨
⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c), x ∈ �, t > 0,

ct + u · ∇c = �c − nf (c), x ∈ �, t > 0,

ut + (u · ∇)u = �u + ∇P + n∇�, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(1.2)

in a domain � ⊂R
N , where the main focus of this work will be on the case when N = 3 and � is bounded and convex 

with smooth boundary.
As described in [8], problems of this type arise in the modeling of populations of swimming aerobic bacteria in 

situations when besides their chemotactically biased movement toward oxygen as their nutrient, a buoyancy-driven 
effect of bacterial mass on the fluid motion is not negligible. Indeed, striking experimental findings indicate that such a 
mutual chemotaxis–fluid interaction may lead to quite complex types of collective behavior, even in markedly simple 
settings such as present when populations of Bacillus subtilis are suspended in sessile drops of water [8,35,21].

In particular, in (1.2) it is assumed that the presence of bacteria, with density denoted by n = n(x, t), affects the 
fluid motion, as represented by its velocity field u = u(x, t) and the associated pressure P = P(x, t), through buoyant 
forces. Moreover, it is assumed that both cells and oxygen, the latter with concentration c = c(x, t), are transported 
by the fluid and diffuse randomly, that the cells partially direct their movement toward increasing concentrations of 
oxygen, and that the latter is consumed by the cells.

The regularity problem in the Navier–Stokes and chemotaxis subsystems. The mathematical understanding of 
such types of interplay is yet quite rudimentary only, which may be viewed as reflecting the circumstance that (1.2)
joins two delicate subsystems which themselves are far from understood even when decoupled from each other: 
Indeed, as is well-known, the three-dimensional Navier–Stokes system is still lacking a satisfactory existence theory 
even in absence of external forcing terms [37]: Global weak solutions for initial data in L2(�) have been known to 
exist since Leray’s celebrated pioneering work [18,28], but despite intense research over the past decades it cannot 
be decided up to now whether the nonlinear convective term may enforce the spontaneous emergence of singularities 
in the sense of blow-up with respect to e.g. the norm in L∞(�), or whether such phenomena are entirely ruled out 
by diffusion; in contrast to this, the latter is known to be the case in the two-dimensional analogue in which unique 
global smooth solutions exist for all reasonably regular initial data to the corresponding Dirichlet problem in bounded 
domains, for instance [28].

A similar criticality of the spatially three-dimensional setting with respect to rigorous analytical evidence can be 
observed for the chemotaxis subsystem obtained upon neglecting the fluid interaction in (1.2). In fact, e.g. for the 
prototypical system

{
nt = �n − ∇ · (n∇c), x ∈ �, t > 0,

ct = �c − nc, x ∈ �, t > 0,
(1.3)

it is known that the Neumann initial–boundary value problem in planar bounded convex domains is uniquely globally 
solvable for all suitably smooth nonnegative initial data, whereas in the three-dimensional counterpart only certain 
weak solutions are known to exist globally, with the question whether or not blow-up may occur being undecided 
yet [31]. Anyhow, a highly destabilizing potential of cross-diffusive terms of the type in (1.3), at relative strength 
increasing with the spatial dimension, is indicated by known results on the related classical Keller–Segel system of 
chemotaxis, as obtained by replacing the second equation in (1.3) with ct = �c − c + n: While all classical solutions 
to the corresponding initial–boundary value problem remain bounded when either N = 1, or N = 2 and the total mass ∫
�

n0 of cells is small [26,25], it is known that finite-time blow-up does occur for large classes of radially symmetric 
initial data when either N = 2 and 

∫
�

n0 is large, or N ≥ 3 and 
∫
�

n0 is an arbitrarily small prescribed number 
[24,40].

Existence results for chemotaxis–fluid systems. Accordingly, the literature on coupled chemotaxis–fluid systems is 
yet quite fragmentary, and beyond very interesting numerical findings [5,22], most rigorous analytical results available
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so far concentrate either on special cases involving somewhat restrictive assumptions, or on variants of (1.2) which 
contain additional regularizing effects. For instance, a considerable simplification consists in removing the convective 
term (u · ∇)u from the third equation in (1.2), thus assuming the fluid motion to be governed by the linear Stokes 
equations. The correspondingly modified system is indeed known to possess global solutions at least in a certain 
weak sense under suitable initial and boundary conditions in smoothly bounded three-dimensional convex domains, 
provided that the coefficient functions in (1.2) are adequately smooth, and that χ and f satisfy some mild structural 
conditions (cf. (1.9) below) generalizing the prototypical choices

f (s) = s for all s ≥ 0 and χ ≡ const. (1.4)

(see [39]); it is not known, however, whether these solutions are sufficiently regular so as to avoid phenomena of 
unboundedness, e.g. with respect to the norm of n in L∞(�), in either finite or infinite time (cf. also [4] for some 
refined extensibility criteria for local-in-time smooth solutions).

A further regularization can be achieved by assuming the diffusion of cells to be nonlinearly enhanced at large 
densities. Indeed, if in the first equation the term �n is replaced by �nm for m > 1, then, firstly, for any such choice 
of m it is again possible to construct global weak solutions under appropriate assumptions on χ and f [10], but 
beyond this one can secondly prove local-in-time and even global boundedness of these solutions in the cases m > 8

7
and m > 7

6 , respectively, and thereby rule out the occurrence of blow-up in finite time, and also in infinite time (cf. [33]
and [42]). If the range of m is further restricted by assuming m > 4

3 , then global existence of, possibly unbounded, 
solutions can be derived even in presence of the full nonlinear Navier–Stokes equations [36].

As alternative blow-up preventing mechanisms, the authors in [2] and [36] identify certain saturation effects at 
large cell densities in the cross-diffusive term, as well as the inclusion of logistic-type cell kinetics with quadratic 
death terms in (1.2), in both cases leading to corresponding results on global existence of weak solutions.

In the spatially two-dimensional case, the knowledge on systems of type (1.2) is expectedly much further de-
veloped. Even in the original chemotaxis–Navier Stokes system (1.2) containing nonlinear convection in the fluid 
evolution, the regularizing effect of the diffusive mechanisms turns out to be strong enough so as to allow for the con-
struction of unique global bounded classical solutions under the mild assumptions (1.8) and (1.9) on χ, f and � [39]; 
(see also [20]), and to furthermore enforce stabilization of these solutions toward spatially homogeneous equilibria in 
the large time limit [41]. Corresponding results on global existence in presence of porous medium type cell diffusion, 
or of additional logistic terms, can be found in [6,32,36,1] and [15], for instance, and recently statements on global 
existence and boundedness have been derived in [7] and [30] for a two-dimensional chemotaxis–Stokes variant of 
(1.2) involving signal production by cells and a quadratic death term in the cell evolution, as proposed in a different 
modeling context in [16].

Main results. For the full three-dimensional chemotaxis–Navier–Stokes system (1.2), even at the very basic level of 
global existence in generalized solution frameworks, a satisfactory solution theory is entirely lacking. The only global 
existence results we are aware of concentrate on the construction of solutions near constant steady states [9], or on the 
particular case when χ precisely coincides with a multiple of f [3], where the latter not only excludes the situation 
determined by (1.4), but under the natural assumption that f (0) = 0 apparently also rules out any choice of χ which 
is consistent with standard approaches in the modeling of chemotaxis phenomena [14].

It is the purpose of the present work to undertake a first step toward a comprehensive existence theory for (1.2)
under mild assumptions of the coefficient functions therein, and for widely general initial data. In order to formulate 
our main results in this direction, let us specify the precise evolution problem addressed in the sequel by considering 
(1.2) along with the initial conditions

n(x,0) = n0(x), c(x,0) = c0(x) and u(x,0) = u0(x), x ∈ �, (1.5)

and under the boundary conditions

∂n

∂ν
= ∂c

∂ν
= 0 and u = 0 on ∂�, (1.6)

in a bounded convex domain � ⊂R
3 with smooth boundary, where we assume that
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⎧⎨
⎩

n0 ∈ L logL(�) is nonnegative with n0 �≡ 0, that
c0 ∈ L∞(�) is nonnegative and such that

√
c0 ∈ W 1,2(�), and that

u0 ∈ L2
σ (�),

(1.7)

with L2
σ (�) := {ϕ ∈ L2(�) | ∇ · ϕ = 0} denoting the Hilbert space of all solenoidal vector fields in L2(�).

With regard to the chemotactic sensitivity χ , the signal consumption rate f and the potential � in (1.2), throughout 
this paper we shall require that⎧⎨

⎩
χ ∈ C2([0,∞)) is positive on [0,∞),

f ∈ C1([0,∞)) is nonnegative on [0,∞) with f (0) = 0, and that
� ∈ W 2,∞(�),

(1.8)

and moreover we will need the structural hypotheses
(f

χ

)′
> 0,

(f

χ

)′′ ≤ 0 and (χ · f )′ ≥ 0 on [0,∞). (1.9)

We shall see that within this framework, there exists at least one globally defined triple (n, c, u) of functions solving 
(1.2) in a natural generalized sense specified in Definition 2.1 below. Apart from satisfying the respective weak formu-
lations associated with the PDEs in (1.2), this solution will enjoy further properties in that it fulfills two energy-type 
inequalities. The first of these will be the standard estimate (1.13) reflecting energy dissipation in the Navier–Stokes 
system, as satisfied by any so-called turbulent solution thereof [37,28], while the second will refer to the functional 
Fκ with appropriate κ > 0, where we have set

Fκ [n, c,u] :=
∫
�

n lnn + 1

2

∫
�

χ(c)

f (c)
|∇c|2 + κ

∫
�

|u|2 (1.10)

for κ > 0 whenever n ∈ L logL(�) and c ∈ W 1,2(�) are nonnegative and such that χ(c)
f (c)

|∇c|2 ∈ L1(�), and u ∈
L2(�; R3).

Now our main result reads as follows.

Theorem 1.1. Let (1.8) and (1.9) hold. Then for all n0, c0 and u0 fulfilling (1.7), there exist

n ∈ L∞((0,∞);L1(�)) ∩ L
5
4
loc([0,∞);W 1, 5

4 (�)),

c ∈ L∞(� × (0,∞)) ∩ L4
loc([0,∞);W 1,4(�)),

u ∈ L∞
loc([0,∞);L2

σ (�)) ∩ L2
loc([0,∞);W 1,2

0 (�)), (1.11)

such that (n, c, u) is a global weak solution of the problem (1.2), (1.5), (1.6) in the sense of Definition 2.1. This 
solution can be obtained as the pointwise limit a.e. in � × (0, ∞) of a suitable sequence of classical solutions to the 
regularized problems (2.9) below. Moreover, (n, c, u) has the additional properties that

n
1
2 ∈ L2

loc([0,∞);W 1,2(�)) and

c
1
4 ∈ L4

loc([0,∞);W 1,4(�)), (1.12)

and there exist κ > 0, K > 0 and a null set N ⊂ (0, ∞) such that

1

2

∫
�

|u(·, t)|2 +
t∫

t0

∫
�

|∇u|2 ≤ 1

2

∫
�

|u(·, t0)|2 +
t∫

t0

∫
�

nu · ∇� for all t0 ∈ [0,∞) \ N and all t > t0, (1.13)

as well as

d

dt
Fκ [n, c,u] + 1

K

∫
�

{ |∇n|2
n

+ |∇c|4
c3

+ |∇u|2
}

≤ K in D′([0,∞)). (1.14)
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Remark. The property c
1
4 ∈ L4

loc([0, ∞); W 1,4(�)) along with the boundedness of c and the fact that f
χ

is nonnegative 

and belongs to C1([0, ∞)), with nonvanishing derivative at zero, ensures that χ(c)
f (c)

|∇c|2 ∈ L1(�) for a.e. t > 0 by the 
Cauchy–Schwarz inequality. Along with the regularity features of n and u in (1.11) this implies that Fκ [n, c, u](t)
and 

∫
�

|u(·, t)|2 are well-defined for a.e. t > 0, whence the statements (1.14) and (1.13) are indeed meaningful.

The plan of this paper is as follows. In Section 2.2 we shall specify the generalized solution concept considered 
thereafter, and introduce a family of regularized problems each of which allows for smooth solutions at least locally 
in time. Section 3.1 will be devoted to an analysis of the functional obtained on letting κ = 0 in (1.10), evaluated at 
these approximate solutions. As known from previous studies, the assumptions in (1.9) ensure that the time evolu-
tion of this two-component functional involves, besides certain dissipated quantities, expressions containing the fluid 
velocity. An apparently novel way to treat the latter by making appropriate use of the standard energy dissipation in 
the Navier–Stokes equations will allow for absorbing these suitably in Section 3.2. This will entail a series of a priori 
estimates which will firstly be used in Section 3.3 to make sure that all the approximate solutions are actually global 
in time, and which secondly enable us to derive further ε-independent bounds in Section 3.4. On the basis of the 
compactness properties thereby implied, in Section 4 we shall finally pass to the limit along an adequate sequence of 
numbers ε = εj ↘ 0 and thereby verify Theorem 1.1.

2. Preliminaries

2.1. A weak solution concept

We first specify the notion of weak solution to which we will refer in the sequel. Here for candidates of solutions we 
require the apparently weakest possible regularity properties which ensure that all expressions in the weak identities 
(2.3), (2.4) and (2.5) are meaningful. As already announced in the formulation of Theorem 1.1, the solution we shall 
construct below will actually be significantly more regular.

Throughout the sequel, for vectors v ∈ R
3 and w ∈ R

3 we let v ⊗ w denote the matrix (aij )i,j∈{1,2,3} ∈ R
3×3

defined on setting aij := viwj for i, j ∈ {1, 2, 3}.

Definition 2.1. By a global weak solution of (1.2), (1.5), (1.6) we mean a triple (n, c, u) of functions

n ∈ L1
loc([0,∞);W 1,1(�)), c ∈ L1

loc([0,∞);W 1,1(�)), u ∈ L1
loc([0,∞);W 1,1

0 (�;R3)), (2.1)

such that n ≥ 0 and c ≥ 0 a.e. in � × (0, ∞),

nf (c) ∈ L1
loc(�̄ × [0,∞)), u ⊗ u ∈ L1

loc(�̄ × [0,∞);R3×3), and

nχ(c)∇c,nu and cu belong to L1
loc(�̄ × [0,∞);R3), (2.2)

that ∇ · u = 0 a.e. in � × (0, ∞), and that

−
∞∫

0

∫
�

nφt −
∫
�

n0φ(·,0) = −
∞∫

0

∫
�

∇n · ∇φ +
∞∫

0

∫
�

nχ(c)∇c · ∇φ +
∞∫

0

∫
�

nu · ∇φ (2.3)

for all φ ∈ C∞
0 (�̄ × [0, ∞)),

−
∞∫

0

∫
�

cφt −
∫
�

c0φ(·,0) = −
∞∫

0

∫
�

∇c · ∇φ −
∞∫

0

∫
�

nf (c)φ +
∞∫

0

∫
�

cu · ∇φ (2.4)

for all φ ∈ C∞
0 (�̄ × [0, ∞)) as well as

−
∞∫

0

∫
�

u · φt −
∫
�

u0 · φ(·,0) = −
∞∫

0

∫
�

∇u · ∇φ +
∞∫

0

∫
�

u ⊗ u · ∇φ +
∞∫

0

∫
�

n∇� · φ (2.5)

for all φ ∈ C∞
0 (� × [0, ∞); R3) satisfying ∇ · φ ≡ 0.
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2.2. A family of regularized problems

In order to suitably regularize the original problem (1.2), (1.5), (1.6), let us consider families of approximate initial 
data n0ε, c0ε and u0ε , ε ∈ (0, 1), with the properties that

{
n0ε ∈ C∞

0 (�), n0ε ≥ 0 in �,
∫
�

n0ε = ∫
�

n0 for all ε ∈ (0,1) and
n0ε → n0 in L logL(�) as ε ↘ 0,

(2.6)

that {
c0ε ≥ 0 in � is such that

√
c0ε ∈ C∞

0 (�) and ‖c0ε‖L∞(�) ≤ ‖c0‖L∞(�) for all ε ∈ (0,1) and√
c0ε → √

c0 a.e. in � and in W 1,2(�) as ε ↘ 0,
(2.7)

and that{
u0ε ∈ C∞

0,σ (�) with ‖u0ε‖L2(�) = ‖u0‖L2(�) for all ε ∈ (0,1) and
u0ε → u0 in L2(�) as ε ↘ 0,

(2.8)

where as usual L logL(�) denotes the standard Orlicz space associated with the Young function (0, ∞) � z �→
z ln(1 + z).

For ε ∈ (0, 1), we thereupon consider
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂tnε + uε · ∇nε = �nε − ∇ · (nεF
′
ε(nε)χ(cε)∇cε), x ∈ �, t > 0,

∂t cε + uε · ∇cε = �cε − Fε(nε)f (cε), x ∈ �, t > 0,

∂tuε + (Yεuε · ∇)uε = �uε + ∇Pε + nε∇φ, x ∈ �, t > 0,

∇ · uε = 0, x ∈ �, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂�, t > 0,

nε(x,0) = n0ε(x), cε(x,0) = c0ε(x), uε(x,0) = u0ε(x), x ∈ �,

(2.9)

where we adopt from [39] the weakly increasing approximation Fε of [0, ∞) � s �→ s determined by

Fε(s) := 1

ε
ln(1 + εs) for s ≥ 0, (2.10)

and where we utilize the standard Yosida approximation Yε [28,23] defined by

Yεv := (1 + εA)−1v for v ∈ L2
σ (�). (2.11)

Here and throughout the sequel, by A we mean the realization of the Stokes operator −P� in L2
σ (�), with domain 

D(A) = W 2,2(�) ∩ W
1,2
0,σ (�), where W 1,2

0,σ (�) := W
1,2
0 (�) ∩ L2

σ (�) ≡ C∞
0,σ (�)

‖·‖
W1,2(�) with C∞

0,σ (�) := C∞
0 (�) ∩

L2
σ (�), and where P denotes the Helmholtz projection in L2(�). It is well-known that A is self-adjoint and positive 

due to the fact that � is bounded, and hence in particular possesses fractional powers Aα for arbitrary α ∈ R [28, 
Ch. III.2].

We remark that in contrast to the case of the pure Navier–Stokes equations without chemotactic coupling, where 
global existence of weak solutions can be proved employing the less regularizing operators (1 + εA

1
2 )−1 instead of Yε

[28, Ch. V.2], the use of our stronger regularization in (2.11) will turn out to be more convenient in the present context, 
because in conjunction with the properties of Fε it will allow for a comparatively simple proof of global solvability in 
(2.9) due to the fact that Yε acts as a bounded operator from L2(�) into L∞(�) (cf. Lemma 3.9).

Let us furthermore note that our choice of Fε ensures that

0 ≤ F ′
ε(s) = 1

1 + εs
≤ 1 and 0 ≤ Fε(s) ≤ s for all s ≥ 0 and ε ∈ (0,1), (2.12)

and that

F ′
ε(s) ↗ 1 and Fε(s) ↗ s as ε ↘ 0 for all s ≥ 0. (2.13)

All the above approximate problems admit for local-in-time smooth solutions:
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Lemma 2.2. For each ε ∈ (0, 1), there exist Tmax,ε ∈ (0, ∞] and uniquely determined functions

nε ∈ C2,1(�̄ × [0, Tmax,ε)), cε ∈ C2,1(�̄ × [0, Tmax,ε)) and uε ∈ C2,1(�̄ × [0, Tmax,ε);R3) (2.14)

which are such that nε > 0 and cε > 0 in �̄ × (0, Tmax,ε), and such that with some Pε ∈ C1,0(� × (0, Tmax,ε)), the 
quadruple (nε, cε, uε, Pε) solves (2.9) classically in � × (0, Tmax,ε). Moreover,

if Tmax,ε < ∞, then ‖nε(·, t)‖L∞(�) + ‖cε(·, t)‖W 1,q (�) + ‖Aαuε(·, t)‖L2(�) → ∞ as t ↗ Tmax,ε

for all q > 3 and α >
3

4
. (2.15)

Proof. A proof for this, based e.g. on the contraction mapping principle and standard regularity theories for the heat 
equation and the Stokes system [17,27,29,28], can be copied almost word by word from [39, Lemma 2.1], where minor 
modifications, mainly due to the presence of the Yosida approximation operator Yε, may be left to the reader. �

We shall later see in Lemma 3.9 that each of these solutions is in fact global in time. This will be a particular 
consequence of a series of a priori estimates for (2.9), as the first two of which one may view the following two basic 
properties.

Lemma 2.3. For any ε ∈ (0, 1), we have∫
�

nε(·, t) =
∫
�

n0 for all t ∈ (0, Tmax,ε) (2.16)

and

‖cε(·, t)‖L∞(�) ≤ s0 := ‖c0‖L∞(�) for all t ∈ (0, Tmax,ε). (2.17)

Proof. In (2.9), we only need to integrate the first equation over � and apply the maximum principle to the second 
equation. �
3. A priori estimates

3.1. An energy functional for the chemotaxis subsystem

A key role in the derivation of further estimates will be played by the following identity which was stated in [39]
for the case when Yε in (2.9) is replaced by the identity operator, but which readily extends to the present situation, 
because it actually only relies on the first two equations in (2.9) and the fact that the fluid component in the transport 
terms therein is solenoidal. The novelty of the present reasoning, as compared to previous approaches based on this or 
similar identities (cf. also [9]), appears to consist in the particular manner in which (3.1) will subsequently be related 
to the natural dissipative properties of the Navier–Stokes subsystem in (2.9).

Lemma 3.1. Given any ε ∈ (0, 1), the solution of (2.9) satisfies

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2
}

+
∫
�

|∇nε|2
nε

+
∫
�

g(cε)|D2ρ(cε)|2

= −1

2

∫
�

g′(cε)

g2(cε)
|∇cε|2(uε · ∇cε) +

∫
�

1

g(cε)
�cε(uε · ∇cε) +

∫
�

Fε(nε)
{f (cε)g

′(cε)

2g2(cε)
− f ′(cε)

g(cε)

}
· |∇cε|2

+ 1

2

∫
�

g′′(cε)

g2(cε)
|∇cε|4 + 1

2

∫
∂�

1

g(cε)
· ∂|∇cε|2

∂ν
for all t ∈ (0, Tmax,ε), (3.1)

where we have set
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g(s) := f (s)

χ(s)
, �(s) :=

s∫
1

dσ√
g(σ )

and ρ(s) :=
s∫

1

dσ

g(σ )
for s > 0. (3.2)

Proof. This can be obtained by straightforward computation on the basis of the first two equations in (2.9) and the 
fact that ∇ · uε ≡ 0 (see [39, Lemma 3.2] for details). �

In order to take full advantage of the dissipated quantities on the left of (3.1), we recall the following functional 
inequality from [39, Lemma 3.3].

Lemma 3.2. Suppose that h ∈ C1((0, ∞)) is positive, and let �(s) := ∫ s

1
dσ

h(σ )
for s > 0. Then

∫
�

h′(ϕ)

h3(ϕ)
|∇ϕ|4 ≤ (2 + √

3)2
∫
�

h(ϕ)

h′(ϕ)
|D2�(ϕ)|2 (3.3)

holds for all ϕ ∈ C2(�̄) satisfying ϕ > 0 in �̄ and ∂ϕ
∂ν

= 0 on ∂�.

For our application of (3.3) to (3.1), let us state a consequence of our hypotheses (1.8) and (1.9) on the function g
from (3.2) which appears as a weight function in several expressions in (3.1).

Lemma 3.3. Let s0 be as in (2.17). Then there exist C+
g > 0 and C−

g > 0 such that the function g = f
χ

in (3.2) satisfies

C−
g · s ≤ g(s) ≤ C+

g · s for all s ∈ [0, s0]. (3.4)

Proof. This is an immediate consequence of the first assumption in (1.9), which together with (1.8) entails that g
belongs to C1([0, s0]) with g(0) = 0, g′(0) > 0 and g > 0 on (0, s0]. �

We can thereby turn (3.1) into an inequality only involving the Dirichlet integral of the fluid velocity on its right-
hand side.

Lemma 3.4. There exists K0 ≥ 1 such that for all ε ∈ (0, 1) we have

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2
}

+ 1

K0
·
{∫

�

|∇nε|2
nε

+
∫
�

|D2cε|2
cε

+
∫
�

|∇cε|4
c3
ε

}

≤ K0

∫
�

|∇uε|2 (3.5)

for all t ∈ (0, Tmax,ε), where � is as in (3.2).

Proof. We first follow an argument presented in [39, Lemma 3.4] to infer from the third and the second inequality in 
(1.9) that with g = f

χ
we have

fg′

2g2
− f ′

g
= − (χ · f )′

2f
≤ 0 and g′′ ≤ 0 on [0,∞). (3.6)

Apart from that, we note that with s0 as in (2.17), the first two assumptions in (1.9) along with (2.17) imply that 
g′(cε) ≥ g′(s0) > 0 in � × (0, Tmax,ε), whence Lemma 3.2 combined with (3.4) shows that if we take ρ from (3.2), 
then

g′(s0)

(C+
g )3

∫ |∇cε|4
c3
ε

≤
∫

g′(cε)

g3(cε)
|∇cε|4
� �



M. Winkler / Ann. I. H. Poincaré – AN 33 (2016) 1329–1352 1337
≤ (2 + √
3)2

∫
�

g(cε)

g′(cε)
|D2ρ(cε)|2

≤ (2 + √
3)2

g′(s0)

∫
�

g(cε)|D2ρ(cε)|2 for all t ∈ (0, Tmax,ε). (3.7)

Next, for i, j ∈ {1, 2, 3} we may again rely on Lemma 3.3 and the concavity and positivity of g and use that (a +b)2 ≥
1
2a2 − b2 for a, b ∈ R to obtain the pointwise inequality

g(cε)|∂ij ρ(cε)|2 = g(cε)

∣∣∣ρ′(cε)∂ij cε + ρ′′(cε)∂icε∂j cε

∣∣∣2

≥ 1

2
g(cε)ρ

′ 2(cε)|∂ij cε|2 − g(cε)ρ
′′ 2(cε)|∂icε∂j cε|2

= 1

2g(cε)
|∂ij cε|2 − g′ 2(cε)

g3(cε)
|∂icε∂j cε|2

≥ 1

2C+
g

· |∂ij cε|2
cε

− g′ 2(0)

(C−
g )3

· |∂icε∂j cε|2
c3
ε

in � × (0, Tmax,ε). (3.8)

Summarizing, from (3.7) and (3.8) we thus infer the existence of positive constants C1, C2 and C3 such that
∫
�

g(cε)|D2ρ(cε)|2 ≥ C1

∫
�

|∇cε|4
c3
ε

and
∫
�

g(cε)|D2ρ(cε)|2 ≥ C2

∫
�

|D2cε|2
cε

− C3

∫
�

|∇cε|4
c3
ε

for all t ∈ (0, Tmax,ε), which in combination can easily be seen to imply that
∫
�

g(cε)|D2ρ(cε)|2 ≥ C4

∫
�

|D2cε|2
cε

+ C4

∫
�

|∇cε|4
c3
ε

(3.9)

holds for all t ∈ (0, Tmax,ε) if we let C4 := min{C1
4 , C2

2 , C1
8C3

}.
Since finally ∂|∇cε|2

∂ν
≤ 0 on ∂� according to the convexity of � [19], (3.1), (3.6) and (3.9) imply that

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2
}

+
∫
�

|∇nε|2
nε

+ C4

∫
�

|D2cε|2
cε

+ C4

∫
�

|∇cε|4
c3
ε

≤ −1

2

∫
�

g′(cε)

g2(cε)
|∇cε|2(uε · ∇cε) +

∫
�

1

g(cε)
�cε(uε · ∇cε) for all t ∈ (0, Tmax,ε). (3.10)

We now adopt an idea from [3] and integrate by parts in the rightmost integral herein to see that
∫
�

1

g(cε)
�cε(uε · ∇cε) =

∫
�

g′(cε)

g2(cε)
|∇cε|2(uε · ∇cε) −

∫
�

1

g(cε)
∇cε · (∇uε · ∇cε)

−
∫
�

1

g(cε)
uε · (D2cε · ∇cε)

for all t ∈ (0, Tmax,ε), where another integration by parts yields

−
∫
�

1

g(cε)
uε · (D2cε · ∇cε) = −1

2

∫
�

1

g(cε)
uε · ∇|∇cε|2

= −1

2

∫
g′(cε)

g2(cε)
|∇cε|2(uε · ∇cε) for all t ∈ (0, Tmax,ε),
�
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because ∇ · uε ≡ 0. Thereby the first integral on the right-hand side of (3.10) can be canceled, so that altogether we 
obtain

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2
}

+
∫
�

|∇nε|2
nε

+ C4

∫
�

|D2cε|2
cε

+ C4

∫
�

|∇cε|4
c3
ε

≤ −
∫
�

1

g(cε)
∇cε · (∇uε · ∇cε) (3.11)

for all t ∈ (0, Tmax,ε), where by Young’s inequality, (3.4) and (2.17) we see that with some C5 > 0 we have

−
∫
�

1

g(cε)
∇cε · (∇uε · ∇cε) ≤ C4

2

∫
�

|∇cε|4
c3
ε

+ C5

∫
�

c3
ε

g2(cε)
|∇uε|2

≤ C4

2

∫
�

|∇cε|4
c3
ε

+ C5

(C−
g )2

∫
�

cε|∇uε|2

≤ C4

2

∫
�

|∇cε|4
c3
ε

+ C5s0

(C−
g )2

∫
�

|∇uε|2 for all t ∈ (0, Tmax,ε).

The claimed inequality (3.5) thus results from (3.11) if we let K0 := max
{

1 , 2
C4

, C5s0
(C−

g )2

}
. �

3.2. Involving fluid dissipation

In order to absorb the source on the right of (3.5) appropriately, we recall the following standard energy inequality 
for the fluid component (cf. also [28]).

Lemma 3.5. For each ε ∈ (0, 1), the solution of (2.9) satisfies

1

2

d

dt

∫
�

|uε|2 +
∫
�

|∇uε|2 =
∫
�

nεuε · ∇� for all t ∈ (0, Tmax,ε). (3.12)

Proof. Testing the third equation in (2.9) by uε and writing vε := Yεuε , we obtain

1

2

d

dt

∫
�

|uε|2 +
∫
�

|∇uε|2 = −
∫
�

(vε · ∇)uε · uε +
∫
�

nεuε · ∇� for all t ∈ (0, Tmax,ε). (3.13)

Here since ∇ · uε ≡ 0 and also ∇ · (I + εA)−1uε ≡ 0, twice integrating by parts shows that∫
�

(vε · ∇)uε · uε = −
∫
�

(∇ · vε)|uε|2 − 1

2

∫
�

vε · ∇|uε|2 = −1

2

∫
�

(∇ · vε)|uε|2 = 0

for all t ∈ (0, Tmax,ε), whence (3.13) implies (3.12). �
Now a suitable combination of Lemma 3.4 with Lemma 3.5 yields the following energy-type inequality which 

simultaneously involves all the components nε, cε and uε .

Lemma 3.6. Let � be as given by (3.2). Then there exist κ > 0 and K > 0 such that for all ε ∈ (0, 1), the solution of 
(2.9) satisfies

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2 + κ

∫
�

|uε|2
}

+ 1

K

{∫
�

|∇nε|2
nε

+
∫
�

|D2cε|2
cε

+
∫
�

|∇cε|4
c3
ε

+
∫
�

|∇uε|2
}

≤ K for all t ∈ (0, Tmax,ε). (3.14)
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In particular, with Fκ as defined in (1.10) we have

−
∞∫

0

Fκ [nε, cε, uε](t) · φ′(t)dt + 1

K

∞∫
0

∫
�

{ |∇nε|2
nε

+ |∇cε|4
c3
ε

+ |∇uε|2
}
(x, t) · φ(t)dxdt

≤Fκ [n0ε, c0ε, u0ε] · φ(0) + K

∞∫
0

φ(t)dt (3.15)

for each nonnegative φ ∈ C∞
0 ([0, ∞)) and all ε ∈ (0, 1).

Proof. We first combine (3.5) with (3.12) to see that with K0 as introduced in Lemma 3.4,

d

dt

{∫
�

nε lnnε + 1

2

∫
�

|∇�(cε)|2 + K0

∫
�

|uε|2
}

+ 1

K0
·
{∫

�

|∇nε|2
nε

+
∫
�

|D2cε|2
cε

+
∫
�

|∇cε|4
c3
ε

}
+ K0

∫
�

|∇uε|2

≤ K0

∫
�

nεuε · ∇� for all t ∈ (0, Tmax,ε). (3.16)

Here we use the Hölder inequality, (1.8) and the continuity of the embedding W 1,2(�) ↪→ L6(�) to find C1 > 0 such 
that

K0

∫
�

nεuε · ∇� ≤ K0‖∇�‖L∞(�)‖nε‖
L

6
5 (�)

‖uε‖L6(�)

≤ C1‖nε‖
L

6
5 (�)

‖∇uε‖L2(�) for all t ∈ (0, Tmax,ε),

where the Gagliardo–Nirenberg inequality provides C2 > 0 and C3 > 0 such that

‖nε‖
L

6
5 (�)

= ‖n
1
2
ε ‖2

L
12
5 (�)

≤ C2‖∇n
1
2
ε ‖

1
2
L2(�)

‖n
1
2
ε ‖

3
2
L2(�)

+ C2‖n
1
2
ε ‖2

L2(�)

≤ C3 ·
{
‖∇n

1
2
ε ‖L2(�) + 1

} 1
2

for all t ∈ (0, Tmax,ε),

because ‖n
1
2
ε (·, t)‖2

L2(�)
= ∫

�
nε(·, t) =

∫
�

n0 for all t ∈ (0, Tmax,ε) by (2.16). Twice applying Young’s inequality, we 
hence infer that with some C4 > 0 and C5 > 0 we have

K0

∫
�

nεuε · ∇� ≤ C1C3 ·
{
‖∇n

1
2
ε ‖L2(�) + 1

} 1
2 · ‖∇uε‖L2(�)

≤ K0

2
‖∇uε‖2

L2(�)
+ C4 ·

{
‖∇n

1
2
ε ‖L2(�) + 1

}

≤ K0

2
‖∇uε‖2

L2(�)
+ 1

2K0

∫
�

|∇nε|2
nε

+ C5 for all t ∈ (0, Tmax,ε).

Since K0 ≥ 1 and hence K0
2 ≥ 1

2K0
, inserted into (3.16) this readily yields (3.14) if we let κ := K0 and K :=

max{2K0, C5}. Finally, (3.15) can be obtained in a straightforward manner on multiplying (3.14) by φ and integrating 
the resulting inequality over (0, ∞), dropping a nonnegative term on its left-hand side. �
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In order to derive suitable estimates from this, let us make sure that the energy functional Fκ therein, when evalu-
ated at the initial time, approaches its expected limit as ε ↘ 0. Since in this respect the integrals involving n0ε and u0ε

clearly have the desired behavior due to (2.6) and (2.8), this actually reduces to proving the following lemma, which 
for later purpose asserts a slightly more general statement.

Lemma 3.7. Let � be as in (3.2), and suppose that (ϕj )j∈N ⊂ C2(�̄; (0, ∞)) and ϕ : � → [0, ∞) are such that √
ϕ ∈ W 1,2(�) and

√
ϕj → √

ϕ in W 1,2(�) and a.e. in � as j → ∞ (3.17)

as well as ‖ϕj‖L∞(�) ≤ s0 with s0 given by (2.17). Then �(ϕ) ∈ W 1,2(�) and

�(ϕj ) → �(ϕ) in W 1,2(�) as j → ∞. (3.18)

Proof. Since (3.4) and the inequality ϕj ≤ s0 ensure that

ϕj�
′ 2(ϕj ) = ϕj

g(ϕj )
≤ 1

C−
g

in � for all ε ∈ (0,1),

our assumption that ϕj → ϕ a.e. in � as j → ∞ entails that ϕj�
′ 2(ϕj ) 

�
⇀ ϕ� ′ 2(ϕ) in L∞(�) as j → ∞. Combined 

with the fact that by (3.17) we have |∇√
ϕj |2 → |∇√

ϕ|2 in L1(�) as j → ∞, this shows that∫
�

|∇�(ϕj )|2 =
∫
�

ϕj�
′ 2(ϕj )|∇√

ϕj |2 →
∫
�

ϕ� ′ 2(ϕ)|∇√
ϕ|2 =

∫
�

|∇�(ϕ)|2

as j → ∞. Since the estimates in Lemma 3.7 along with (3.17) and the dominated convergence theorem readily imply 
that �(ϕj ) → �(ϕ) in L1(�) as j → ∞, this proves (3.18). �

We can thereby draw the following consequence of Lemma 3.6.

Lemma 3.8. There exists C > 0 such that with � as in (3.2) we have∫
�

nε(·, t) lnnε(·, t) +
∫
�

|∇�(cε(·, t))|2 +
∫
�

|uε(·, t)|2 ≤ C for all t ∈ (0, Tmax,ε) (3.19)

and

T∫
0

∫
�

|∇nε|2
nε

+
T∫

0

∫
�

|D2cε|2
cε

+
T∫

0

∫
�

|∇cε|4
c3
ε

+
T∫

0

∫
�

|∇uε|2 ≤ C · (T + 1) for all T ∈ (0, Tmax,ε) (3.20)

whenever ε ∈ (0, 1).

Proof. With κ > 0 and K > 0 as provided by Lemma 3.6, an application of the latter shows that if we take � from 
(3.2), then for each ε ∈ (0, 1),

yε(t) := Fκ [nε, cε, uε](t) ≡
∫
�

{
nε lnnε + 1

2
|∇�(cε)|2 + κ|uε|2

}
(·, t), t ∈ [0, Tmax,ε),

satisfies

y′
ε(t) + 1

K
hε(t) ≤ K for all t ∈ (0, Tmax,ε), (3.21)

where

hε(t) :=
∫ { |∇nε|2

nε

+ |D2cε|2
cε

+ |∇cε|4
c3
ε

+ |∇uε|2
}
(·, t) for t ∈ (0, Tmax,ε).
�
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In order to estimate yε(t) in terms of hε(t), we first use the Poincaré inequality to find C1 > 0 such that
∫
�

|uε|2 ≤ C1

∫
�

|∇uε|2 for all t ∈ (0, Tmax,ε), (3.22)

and next recall the definitions of � and g in (3.2) as well as (3.4) and (2.17) to see employing Young’s inequality that

1

2

∫
�

|∇�(cε)|2 = 1

2

∫
�

|∇cε|2
g(cε)

≤
∫
�

|∇cε|4
c3
ε

+ 1

16

∫
�

c3
ε

g2(cε)

≤
∫
�

|∇cε|4
c3
ε

+ 1

16(C−
g )2

∫
�

cε

≤
∫
�

|∇cε|4
c3
ε

+ s0|�|
16(C−

g )2
for all t ∈ (0, Tmax,ε). (3.23)

We finally make use of the elementary inequality z lnz ≤ 3
2z

5
3 , valid for all z ≥ 0, and invoke the Gagliardo–Nirenberg 

inequality together with (2.16) to infer that with some C2 > 0 and C3 > 0 we have
∫
�

nε lnnε ≤ 3

2

∫
�

n
5
3
ε

= 3

2
‖n

1
2
ε ‖

10
3

L
10
3 (�)

≤ C2‖∇n
1
2
ε ‖2

L2(�)
‖n

1
2
ε ‖

4
3
L2(�)

+ C2‖n
1
2
ε ‖

10
3

L2(�)

≤ C3

∫
�

|∇nε|2
nε

+ C3

for all t ∈ (0, Tmax,ε). In conjunction with (3.22) and (3.23), this provides C4 > 0 such that

yε(t) ≤ C4hε(t) + C4 for all t ∈ (0, Tmax,ε),

so that (3.21) implies that yε satisfies the ODI

y′
ε(t) + 1

2K
hε(t) + 1

2KC4
yε(t) ≤ C5 := K + 1

2K
for all t ∈ (0, Tmax,ε). (3.24)

This firstly warrants that

yε(t) ≤ C6 := max
{

sup
ε∈(0,1)

yε(0) , 2KC4C5

}
for all t ∈ (0, Tmax,ε) (3.25)

and thus proves (3.19), because supε∈(0,1) yε(0) is finite thanks to (2.6), (2.7), (2.8) and Lemma 3.7. Secondly, another 
integration of (3.24) thereupon shows that

1

2K

T∫
0

hε(t)dt ≤ yε(0) + C5T ≤ C6 + C5T for all T ∈ (0, Tmax,ε),

which in view of the definition of hε establishes (3.20). �
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3.3. Global existence in the regularized problems

In light of the fact that our specific choice (2.10) of Fε warrants that [0, ∞) � s �→ sF ′
ε(s) is bounded for any fixed 

ε ∈ (0, 1), the bound for ∇cε in L4
loc(�̄ × [0, Tmax,ε)) implied by Lemma 3.8 and (2.17) is sufficient to guarantee that 

each of our approximate solutions is indeed global in time:

Lemma 3.9. For all ε ∈ (0, 1), the solution of (2.9) is global in time; that is, we have Tmax,ε = ∞.

Proof. Assuming that Tmax,ε be finite for some ε ∈ (0, 1), we first note that as a particular consequence of Lemma 3.8
and (2.17) we can then find C1 > 0 and C2 > 0 such that

Tmax,ε∫
0

∫
�

|∇cε|4 ≤ C1 and
∫
�

|uε(·, t)|2 ≤ C2 for all t ∈ (0, Tmax,ε). (3.26)

To deduce a contradiction from this, we firstly multiply the equation for nε in (2.9) by n3
ε , integrate by parts and use 

Young’s inequality together with the fact that nεF
′
ε(nε) ≤ 1

ε
by (2.12) to obtain C3 > 0, as all constants below possibly 

depending on ε, such that

1

4

d

dt

∫
�

n4
ε + 3

∫
�

n2
ε|∇nε|2 ≤

∫
�

n2
ε |∇nε|2 +

∫
�

|∇cε|4 + C3

∫
�

n4
ε for all t ∈ (0, Tmax,ε),

so that thanks to the first inequality in (3.26) we see that∫
�

n4
ε(·, t) ≤ C4 for all t ∈ (0, Tmax,ε) (3.27)

with some C4 > 0.
We next observe that D(1 + εA) = W 2,2(�) ∩ W

1,2
0,σ (�) ↪→ L∞(�), according to the second estimate in (3.26)

there exist C5 > 0 and C6 > 0 such that vε := Yεuε satisfies

‖vε(·, t)‖L∞(�) = ∥∥(1 + εA)−1uε(·, t)
∥∥

L2(�)
≤ C4‖uε(·, t)‖L2(�) ≤ C6 for all t ∈ (0, Tmax,ε). (3.28)

Therefore, testing the projected Stokes equation uεt + Auε = hε(x, t) := P[−(vε · ∇)uε + nε∇�] by Auε shows that

1

2

d

dt

∫
�

|A 1
2 uε|2 +

∫
�

|Auε|2 =
∫
�

Auε · hε

≤
∫
�

|Auε|2 + 1

4

∫
�

|hε|2

≤
∫
�

|Auε|2 + 1

2

∫
�

|(vε · ∇)uε|2 + 1

2

∫
�

|nε∇�|2

≤
∫
�

|Auε|2 + C7 ·
{∫

�

|∇uε|2 +
∫
�

n2
ε

}
for all t ∈ (0, Tmax,ε)

with some C7 > 0, because ‖Pϕ‖L2(�) ≤ ‖ϕ‖L2(�) for all ϕ ∈ L2(�). As 
∫
�

|A 1
2 ϕ|2 = ∫

�
|∇ϕ|2 for all ϕ ∈ D(A), in 

view of (3.27) this implies the existence of C8 > 0 fulfilling∫
�

|∇uε(·, t)|2 ≤ C8 for all t ∈ (0, Tmax,ε). (3.29)

Along with (3.28) and again (3.27), this in turn provides C9 > 0 such that ‖hε(·, t)‖L2(�) ≤ C9 for all t ∈ (0, Tmax,ε). 
Thus if we pick an arbitrary α ∈ ( 3

4 , 1), then known smoothing properties of the Stokes semigroup [12, p. 201] entail 
that for some C10 > 0 we have
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‖Aαuε(·, t)‖L2(�) =
∥∥∥∥Aαe−tAu0ε +

t∫
0

Aαe−(t−s)Ahε(·, s)ds

∥∥∥∥
L2(�)

≤ C10t
−α‖u0ε‖L2(�) + C10

t∫
0

(t − s)−α‖hε(·, s)‖L2(�)ds

≤ C10t
−α‖u0ε‖L2(�) + C9C10T

1−α
max,ε

1 − α
for all t ∈ (0, Tmax,ε).

Since also D(Aα) is continuously embedded into L∞(�) due to our choice of α [13, Thm. 1.6.1], [11], we thereby 
obtain C11 > 0 and C12 > 0 such that with τ := 1

2Tmax,ε ,

‖uε(·, t)‖L∞(�) ≤ C11‖Aαuε(·, t)‖L2(�) ≤ C12 for all t ∈ (τ, Tmax,ε). (3.30)

Thereafter, standard smoothing estimates for the Neumann heat semigroup [27,38], an application of the Hölder 
inequality and (2.17), (2.12), (3.27), (3.30) and (3.26) yield positive constants C13, C14 and C15 satisfying

‖∇cε(·, t)‖L4(�) =
∥∥∥∥∇e(t−τ)�cε(·, τ ) −

t∫
τ

∇e(t−s)�
{
Fε(nε)f (cε) + uε · ∇cε

}
(·, s)ds

∥∥∥∥
L4(�)

≤ C13(t − τ)−
1
2 ‖cε(·, τ )‖L4(�)

+C13

t∫
τ

(t − s)−
1
2

{∥∥∥Fε(nε(·, s))f (cε(·, s))
∥∥∥

L4(�)
+

∥∥∥uε(·, s) · ∇cε(·, s)
∥∥∥

L4(�)

}
ds

≤ C13(t − τ)−
1
2 ‖cε(·, τ )‖L4(�)

+C14

t∫
τ

(t − s)−
1
2 ds + C14

t∫
τ

(t − s)−
1
2 ‖∇cε(·, s)‖L4(�)ds

≤ C13(t − τ)−
1
2 ‖cε(·, τ )‖L4(�) + 2C14T

1
2

max,ε

+C14

{ Tmax,ε∫
0

σ− 2
3 dσ

} 3
4 ·

{ Tmax,ε∫
0

‖∇cε(·, s)‖4
L4(�)

ds

} 1
4

≤ C15 for all t ∈ (2τ, Tmax,ε). (3.31)

Similarly, combining (2.17), (2.12), (3.27) and (3.30) shows that there exist C16 > 0, C17 > 0 and C18 > 0 such that

‖nε(·, t)‖L∞(�)

=
∥∥∥∥e(t−τ)�nε(·, τ ) −

t∫
τ

e(t−s)�∇ ·
{
nε(·, s)F ′

ε(nε(·, s))χ(cε(·, s))∇cε(·, s) + nε(·, s)uε(·, s)
}
ds

∥∥∥∥
L∞(�)

≤ C16(t − τ)−
3
2 ‖nε(·, τ )‖L1(�) + C16

t∫
τ

(t − s)−
1
2 − 3

2 · 1
4 ‖nε(·, s)‖L4(�)

{
1 + ‖uε(·, s)‖L∞(�)

}
ds

≤ C17 for all t ∈ (2τ, Tmax,ε).

Together with (3.31) and (3.30), this contradicts the extensibility criterion (2.15) in Lemma 2.2 and thereby entails 
that actually Tmax,ε = ∞, as claimed. �
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3.4. Further a priori estimates. Time regularity

By interpolation, the estimates from Lemma 3.8 imply bounds for further spatio-temporal integrals.

Lemma 3.10. There exists C > 0 such that for each ε ∈ (0, 1) we have

T∫
0

∫
�

n
5
3
ε ≤ C · (T + 1) for all T > 0 (3.32)

and

T∫
0

∫
�

|∇nε| 5
4 ≤ C · (T + 1) for all T > 0 (3.33)

as well as

T∫
0

∫
�

|uε| 10
3 ≤ C · (T + 1) for all T > 0. (3.34)

Proof. According to Lemma 3.8, there exists C1 > 0 such that

T∫
0

∫
�

|∇nε|2
nε

≤ C1 · (T + 1) for all T > 0. (3.35)

Thus, invoking the Gagliardo–Nirenberg inequality along with (2.16) we obtain C2 > 0 and C3 > 0 such that

T∫
0

∫
�

n
5
3
ε =

T∫
0

‖n
1
2
ε (·, t)‖

10
3

L
10
3 (�)

dt

≤ C2

T∫
0

{
‖∇n

1
2
ε (·, t)‖2

L2(�)
· ‖n

1
2
ε (·, t)‖

4
3
L2(�)

+ ‖n
1
2
ε (·, t)‖

10
3

L2(�)

}
dt

≤ C2 ·
{C1 · (T + 1)

4
· ‖n0‖

2
3
L1(�)

+ ‖n0‖
5
3
L1(�)

T
}

≤ C3 · (T + 1) for all T > 0. (3.36)

Employing the Hölder inequality, again by (2.16) we furthermore conclude from (3.35) together with (3.36) that

T∫
0

∫
�

|∇nε| 5
4 =

T∫
0

∫
�

|∇nε| 5
4

n
5
8
ε

· n
5
8
ε

≤
( T∫

0

∫
�

|∇nε|2
nε

) 5
8 ·

( T∫
0

∫
�

n
5
3
ε

) 3
8

≤ C
5
8
1 C

3
8
3 · (T + 1) for all T > 0.

Since once more relying on Lemma 3.8 we can find C4 > 0 and C5 > 0 such that

∫
|uε(·, t)|2 ≤ C4 for all t > 0 and

T∫ ∫
|∇uε|2 ≤ C5 · (T + 1) for all T > 0,
� 0 �
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upon another application of the Gagliardo–Nirenberg inequality in precisely the same way as in (3.36) we see that 
with some C6 > 0 we have

T∫
0

‖uε(·, t)‖
10
3

L
10
3 (�)

dt ≤ C6

T∫
0

{
‖∇uε(·, t)‖2

L2(�)
· ‖uε(·, t)‖

4
3
L2(�)

+ ‖uε(·, t)‖
10
3

L2(�)

}
dt

≤ C
2
3
4 C5C6 · (T + 1) + C

5
3
4 C6T for all T > 0,

whereby the proof is completed. �
In a straightforward manner, from Lemma 3.8 and Lemma 3.10 we can moreover deduce certain regularity features 

of the time derivatives in (2.9). Since in Lemma 4.1 these will mainly be used to warrant pointwise convergence we 
refrain from pursuing here the question which are the smallest spaces within which such derivative bounds can be 
obtained.

Lemma 3.11. There exists C > 0 such that
T∫

0

‖∂tnε(·, t)‖
10
9

(W 1,10(�))�
dt ≤ C · (T + 1) for all T > 0 (3.37)

and
T∫

0

‖∂t

√
cε(·, t)‖

5
3

(W
1, 5

2 (�))�
dt ≤ C · (T + 1) for all T > 0 (3.38)

as well as
T∫

0

‖∂tuε(·, t)‖
5
4

(W
1,5
0,σ (�))�

dt ≤ C · (T + 1) for all T > 0. (3.39)

Proof. For arbitrary t > 0 and ϕ ∈ C∞(�̄), multiplying the first equation in (2.9) by ϕ, integrating by parts and using 
the Hölder inequality we obtain∣∣∣∣

∫
�

∂tnε(·, t)ϕ
∣∣∣∣ =

∣∣∣∣ −
∫
�

∇nε · ∇ϕ +
∫
�

nεF
′
ε(nε)χ(cε)∇cε · ∇ϕ +

∫
�

nεuε · ∇ϕ

∣∣∣∣

≤
{
‖∇nε‖

L
10
9 (�)

+ ‖nεF
′
ε(nε)χ(cε)∇cε‖

L
10
9 (�)

+ ‖nεuε‖
L

10
9 (�)

}
· ‖ϕ‖W 1,10(�),

so that with some C1 > 0 we have

T∫
0

‖∂tnε(·, t)‖
10
9

(W 1,10(�))�
dt ≤

T∫
0

{
‖∇nε‖

L
10
9 (�)

+ ‖nεF
′
ε(nε)χ(cε)∇cε‖

L
10
9 (�)

+ ‖nεuε‖
L

10
9 (�)

} 10
9

dt

≤ C1

T∫
0

∫
�

|∇nε| 10
9 + C1

T∫
0

∫
�

|nε∇cε| 10
9 + C1

T∫
0

∫
�

|nεuε| 10
9 (3.40)

for all T > 0, because F ′
ε(nε) ≤ 1 by (2.12) and χ(cε) ≤ ‖χ‖L∞((0,s0)) with s0 = ‖c0‖L∞(�) according to (2.17). Here 

several applications of Young’s inequality show that

T∫ ∫
|∇nε| 10

9 ≤
T∫ ∫

|∇nε| 5
4 + |�|T for all T > 0
0 � 0 �
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and

T∫
0

∫
�

|nε∇cε| 10
9 ≤

T∫
0

∫
�

n
5
3
ε +

T∫
0

∫
�

|∇cε| 10
3 ≤

T∫
0

∫
�

n
5
3
ε +

T∫
0

∫
�

|∇cε|4 + |�|T for all T > 0

as well as

T∫
0

∫
�

|nεuε| 10
9 ≤

T∫
0

∫
�

n
5
3
ε +

T∫
0

∫
�

|uε| 10
3 for all T > 0,

whence in light of Lemma 3.10, Lemma 3.8 and (2.17), (3.37) results from (3.40).
Likewise, given any ϕ ∈ C∞(�̄) we may test the second equation in (2.9) against ϕ√

cε
to see that

∣∣∣∣
∫
�

∂t

√
cε(·, t)ϕ

∣∣∣∣

=
∣∣∣∣ − 1

2

∫
�

∇cε√
cε

· ∇ϕ + 1

4

∫
�

|∇cε|2√
cε

3
ϕ − 1

2

∫
�

Fε(nε)
f (cε)√

cε

ϕ +
∫
�

√
cεuε · ∇ϕ

∣∣∣∣

≤
{

1

2

∥∥∥∇cε√
cε

∥∥∥
L

5
3 (�)

+ 1

4

∥∥∥ |∇cε|2√
cε

3

∥∥∥
L

5
3 (�)

+
∥∥∥Fε(nε)

f (cε)√
cε

∥∥∥
L

5
3 (�)

+ ‖√cεuε‖
L

5
3 (�)

}
· ‖ϕ‖

W
1, 5

2 (�)

for all t > 0, and that hence by Young’s inequality we can find C2 > 0 such that

T∫
0

‖∂t

√
cε(·, t)‖

5
3

(W
1, 5

2 (�))�
dt ≤ C2

T∫
0

∫
�

c
− 5

6
ε |∇cε| 5

3 + C2

T∫
0

∫
�

c
− 5

2
ε |∇cε| 10

3 + C2

T∫
0

∫
�

n
5
3
ε + C2

t∫
0

∫
�

|uε| 5
3

≤ C2

T∫
0

∫
�

|∇cε|4
c3
ε

+ C2M
5
7 |�|T + C2

T∫
0

∫
�

|∇cε|4
c3
ε

+ C2|�|T

+ C2

T∫
0

∫
�

n
5
3
ε + C2

T∫
0

∫
�

|uε| 10
3 + C2|�|T

for all T > 0, since Fε(nε) ≤ nε due to (2.12), and since once more by (2.17) we have cε ≤ s0 and f (cε)√
cε

≤ ‖f ‖
C

1
2 ([0,s0])

in � × (0, ∞). Again by Lemma 3.10 and Lemma 3.8, this implies (3.38).
Finally, given ϕ ∈ C∞

0,σ (�; R3) we infer from the third equation in (2.9) that
∣∣∣∣
∫
�

∂tuε(·, t) · ϕ
∣∣∣∣ =

∣∣∣∣−
∫
�

∇uε · ∇ϕ −
∫
�

(Yεuε ⊗ uε) · ∇ϕ +
∫
�

nε∇� · ϕ
∣∣∣∣

≤
{
‖∇uε‖

L
5
4 (�)

+ ‖Yεuε ⊗ uε‖
L

5
4 (�)

+ ‖nε∇�‖
L

5
4 (�)

}
· ‖ϕ‖W 1,5(�) (3.41)

for all t > 0. In view of Young’s inequality, (3.41) implies that there exists C3 > 0 fulfilling

T∫
0

‖∂tuε(·, t)‖
5
4

(W
1,5
0,σ (�))�

dt ≤ C3

T∫
0

∫
�

|∇uε| 5
4 + C3

T∫
0

∫
�

|Yεuε ⊗ uε| 5
4 + C3

T∫
0

∫
�

n
5
4
ε

≤ C3

T∫ ∫
|∇uε|2 + C3

T∫ ∫
|Yεuε|2 + C3

T∫ ∫
|uε| 10

3

0 � 0 � 0 �
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+ C3

T∫
0

∫
�

n
5
3
ε + 2C3|�|T for all T > 0,

because ∇� ∈ L∞(�). Since ‖Yεv‖L2(�) ≤ ‖v‖L2(�) for all v ∈ L2
σ (�) and hence 

∫ T

0

∫
�

|Yεuε|2 ≤ ∫ T

0

∫
�

|uε| 10
3 +

|�|T for all T > 0, (3.39) results from this upon another application of Lemma 3.10 and Lemma 3.8. �
4. Passing to the limit. Proof of Theorem 1.1

With the above compactness properties at hand, by means of a standard extraction procedure we can now derive 
the following lemma which actually contains our main existence result already.

Lemma 4.1. There exists (εj )j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞, and such that as ε = εj ↘ 0 we have

nε → n in L
5
3
loc(�̄ × [0,∞)) and a.e. in � × (0,∞), (4.1)

∇nε ⇀ ∇n in L
5
4
loc(�̄ × [0,∞)), (4.2)

cε → c a.e. in � × (0,∞), (4.3)

cε
�

⇀ c in L∞(� × (0,∞)), (4.4)

∇c
1
4
ε ⇀ ∇c

1
4 in L4

loc(�̄ × [0,∞)), (4.5)

uε → u in L2
loc(�̄ × [0,∞)) and a.e. in � × (0,∞), (4.6)

uε
�

⇀ u in L∞([0,∞);L2
σ (�)), (4.7)

uε ⇀ u in L
10
3

loc(�̄ × [0,∞)) and (4.8)

∇uε ⇀ ∇u in L2
loc(�̄ × [0,∞)) (4.9)

with some limit functions n, c and u such that (n, c, u) is a global weak solution of (1.2), (1.5), (1.6) in the sense of 
Definition 2.1.

Proof. Using the pointwise identity

∂ij

√
cε = 1

2
√

cε

∂ij cε − 1

4
√

cε
3
∂icε∂j cε,

valid in � × (0, Tmax,ε) for all i, j ∈ {1, 2, 3}, we see that according to Lemma 3.8, Lemma 3.10 and Lemma 3.11, an 
application of the Aubin–Lions lemma [34, Ch. III.2.2] provides a sequence (εj )j∈N ⊂ (0, 1) and limit functions n, c
and u such that εj ↘ 0 as j → ∞ and such that (4.2)–(4.9) hold as well as

nε ⇀ n in L
5
3
loc(�̄ × [0,∞)), (4.10)

nε → n in L
5
4
loc(�̄ × [0,∞)) and a.e. in � × (0,∞), (4.11)

nε(·, t) → n(·, t) in L
5
4 (�) for all t ∈ (0,∞) \ N, (4.12)

√
nε ⇀

√
n in L2

loc([0,∞);W 1,2(�)), (4.13)
√

cε → √
c in L2

loc([0,∞);W 1,2(�)), (4.14)√
cε(·, t) → √

c(·, t) in W 1,2(�) for all t ∈ (0,∞) \ N, and (4.15)

uε(·, t) → u(·, t) in L2(�) for all t ∈ (0,∞) \ N, (4.16)

as ε = εj ↘ 0 with some null set N ⊂ (0, ∞). Since (4.10) entails that for each T > 0 we have
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T∫
0

∫
�

n
5
3
ε =

∞∫
0

∫
�

1�×(0,T )n
5
3
ε →

∞∫
0

∫
�

1�×(0,T )n
5
3 =

T∫
0

∫
�

n
5
3

as ε = εj ↘ 0, it follows that also (4.1) holds.
Now in order to verify (1.14), given a nonnegative φ ∈ C∞

0 ([0, ∞)) we recall (3.15) to obtain

−
∞∫

0

Fκ [nε, cε, uε](t) · φ′(t)dt + 1

K

∞∫
0

∫
�

{ |∇nε|2
nε

+ |∇cε|4
c3
ε

+ |∇uε|2
}
(x, t) · φ(t)dxdt

≤Fκ [n0ε, c0ε, u0ε] · φ(0) + K

∞∫
0

φ(t)dt (4.17)

for all ε ∈ (0, 1). Here combining (4.12), (4.15) and (4.16) with Lemma 3.7 shows that as ε = εj ↘ 0 we have∫
�

nε(·, t) lnnε(·, ) →
∫
�

n(·, t) lnn(·, t),
∫
�

|∇�(cε(·, t))|2 →
∫
�

|∇�(c(·, t))|2 and

uε(·, t) → u(·, t) in L2(�) for all t ∈ (0,∞) \ N (4.18)

and hence

Fκ [nε, cε, uε](t) → Fκ [n, c,u](t) for all t ∈ (0,∞) \ N,

so that since clearly Fκ [nε, cε, uε](t) ≥ −|�|
e

for all ε ∈ (0, 1) and t > 0 and

sup
ε∈(0,1)

sup
t>0

Fκ [nε, cε, uε](t) < ∞

according to Lemma 3.8, we may invoke the dominated convergence theorem to infer that
∞∫

0

Fκ [nε, cε, uε](t) · φ′(t)dt →
∞∫

0

Fκ [n, c,u](t) · φ′(t)dt as ε = εj ↘ 0.

Since (2.6), (2.7), Lemma 3.7 and (2.8) warrant that similarly

Fκ [n0ε, c0ε, u0ε] →Fκ [n0, c0, u0] as ε ↘ 0,

by nonnegativity of φ we conclude from (4.17) and the weak convergence properties in (4.13), (4.5) and (4.9) that

−
∞∫

0

Fκ [n, c,u](t) · φ′(s)dt + 1

K

∞∫
0

∫
�

{ |∇n|2
n

+ |∇c|4
c3

+ |∇u|2
}
(x, t) · φ(t)dxdt

≤Fκ [n0, c0, u0] · φ(0) + K

∞∫
0

φ(t)dt

for any such φ, and that hence (1.14) holds.
Next, to deduce (1.13) we integrate (3.12) in time to see that

1

2

∫
�

|uε(·, t)|2 +
t∫

t0

∫
�

|∇uε|2 = 1

2

∫
�

|uε(·, t0)|2 +
t∫

t0

∫
�

nεuε · ∇� for all t0 ≥ 0 and t > t0, (4.19)

where for any such t0 and t we have

t∫ ∫
nεuε · ∇� →

t∫ ∫
nu · ∇� as ε = εj ↘ 0,
t0 � t0 �
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because

nεuε → nu in L1
loc(�̄ × [0,∞)) as ε = εj ↘ 0 (4.20)

due to (4.1), (4.8) and the fact that 3
5 + 3

10 = 9
10 < 1. Therefore, (4.9) together with the last property in (4.18) ensures 

that if t0 ∈ [0, ∞) \ N and t > t0 then indeed

1

2

∫
�

|u(·, t)|2 +
t∫

t0

∫
�

|∇u|2 ≤ lim
ε=εj ↘0

{
1

2

∫
�

|uε(·, t0)|2 +
t∫

t0

∫
�

nεuε · ∇�

}

= 1

2

∫
�

|u(·, t0)|2 +
t∫

t0

∫
�

nu · ∇�,

as desired.
Now in order to verify that (n, c, u) is a global weak solution of (1.2), (1.5), (1.6) in the sense of Definition 2.1, 

we first note that the regularity properties (2.1) therein are obvious from (4.1), (4.2), (4.4), (4.5), (4.6) and (4.9), that 
clearly n and c inherit nonnegativity from nε and cε , and that ∇ ·u = 0 a.e. in � × (0, ∞) according to (2.9) and (4.9). 
To prepare a derivation of (2.2) and (2.3)–(2.5), we observe that in view of the dominated convergence theorem,

F ′
ε(nε)χ(cε)c

3
4
ε → χ(c)c

3
4 in L

20
3

loc(�̄ × [0,∞)) as ε = εj ↘ 0

as a consequence of (4.1) and (4.3), the boundedness of (cε)ε∈(0,1) in L∞(� × (0, ∞)) and the fact that F ′
ε ↗ 1 on 

(0, ∞) as ε ↘ 0 by (2.13). Combining this with (4.1) and (4.5) shows that

nεF
′
ε(nε)χ(cε)∇cε = 4nε · F ′

ε(nε)χ(cε)c
3
4
ε · ∇c

1
4
ε ⇀ 4n · χ(c)c

3
4 · ∇c

1
4 = nχ(c)∇c in L1

loc(�̄ × [0,∞))

(4.21)

as ε = εj ↘ 0. We proceed to make sure that

Fε(nε) → n in L
5
3
loc(�̄ × [0,∞)) as ε = εj ↘ 0. (4.22)

Indeed, for each fixed T > 0 we have

‖Fε(nε) − n‖
L

5
3 (�×(0,T ))

≤ ‖Fε(nε) − Fε(n)‖
L

5
3 (�×(0,T ))

+ ‖Fε(n) − n‖
L

5
3 (�×(0,T ))

≤ ‖F ′
ε‖L∞((0,∞))‖nε − n‖

L
5
3 (�×(0,T ))

+ ‖Fε(n) − n‖
L

5
3 (�×(0,T ))

, (4.23)

where ‖nε − n‖
L

5
3 (�×(0,T ))

→ 0 as ε = εj ↘ 0 by (4.1), and where since

∥∥∥Fε(n(·, t)) − n(·, t)
∥∥∥

5
3

L
5
3 (�)

≤ 2
5
3 ‖n(·, t)‖

5
3

L
5
3 (�)

for a.e. t > 0

due to (2.12), (4.1) guarantees that also

T∫
0

∥∥∥Fε(n(·, t)) − n(·, t)
∥∥∥

5
3

L
5
3 (�)

dt → 0 as ε = εj ↘ 0

by the dominated convergence theorem. As 0 ≤ F ′
ε ≤ 1 by (2.12), (4.23) and (4.1) prove (4.22), from which we 

particularly obtain that

Fε(nε)f (cε) → nf (c) in L1
loc(�̄ × [0,∞)) as ε = εj ↘ 0, (4.24)

because again Lebesgue’s theorem along with (4.3) and (2.17) ensures that f (cε) → f (c) in L
5
2
loc(�̄ × [0, ∞)) as 

ε = εj ↘ 0.



1350 M. Winkler / Ann. I. H. Poincaré – AN 33 (2016) 1329–1352
Next, since (4.3) and (2.17) furthermore imply that cε → c in L
10
7

loc(�̄ × [0, ∞)) as ε = εj ↘ 0, from (4.8) we infer 
that

cεuε → cu in L1
loc(�̄ × [0,∞)) as ε = εj ↘ 0. (4.25)

Finally, following an argument from [28, Theorem V.3.1.1] we use that for each ϕ ∈ L2
σ (�) we have ‖Yεϕ‖L2(�) ≤

‖ϕ‖L2(�) and Yεϕ → ϕ in L2(�) as ε ↘ 0 to infer from (4.18) that for each t ∈ (0, ∞) \ N we have
∥∥∥Yεuε(·, t) − u(·, t)

∥∥∥
L2(�)

≤
∥∥∥Yε

(
uε(·, t) − u(·, t)

)∥∥∥
L2(�)

+
∥∥∥Yεu(·, t) − u(·, t)

∥∥∥
L2(�)

≤
∥∥∥uε(·, t) − u(·, t)

∥∥∥
L2(�)

+
∥∥∥Yεu(·, t) − u(·, t)

∥∥∥
L2(�)

→ 0 as ε = εj ↘ 0,

and that moreover∥∥∥Yεuε(·, t) − u(·, t)
∥∥∥2

L2(�)
≤

(
‖Yεuε(·, t)‖L2(�) + ‖u(·, t)‖L2(�)

)2

≤
(
‖uε(·, t)‖L2(�) + ‖u(·, t)‖L2(�)

)2

≤ 4 sup
ε′∈(0,1)

‖uε′‖2
L2(�×(0,∞))

for all t ∈ (0,∞) \ N and ε ∈ (0,1).

In view of (3.19), once more thanks to the dominated convergence theorem this entails that for all T > 0 we obtain

T∫
0

∥∥∥Yεuε(·, t) − u(·, t)
∥∥∥2

L2(�)
dt → 0 as ε = εj ↘ 0.

Thus,

Yεuε → u in L2
loc(�̄ × [0,∞)) as ε = εj ↘ 0,

which in conjunction with (4.6) entails that

Yεuε ⊗ uε → u ⊗ u in L1
loc(�̄ × [0,∞)) as ε = εj ↘ 0. (4.26)

Now (4.20), (4.21), (4.24), (4.25) and (4.26) firstly warrant that the integrability requirements in (2.2) are satisfied, and 
secondly, together with (4.1)–(4.9) and (2.6)–(2.8), allow for passing to the limit in the respective weak formulations 
associated with the equations in (2.9). In fact, if for ε ∈ (0, 1) we multiply the first equation in (2.9) by an arbitrary 
φ ∈ C∞

0 (�̄ × [0, ∞)) and integrate by parts, then in the resulting identity

−
∞∫

0

∫
�

nεφt −
∫
�

n0εφ(·,0) = −
∞∫

0

∫
�

∇nε · ∇φ +
∞∫

0

∫
�

nεF
′
ε(nε)χ(cε)∇cε · ∇φ +

∞∫
0

∫
�

nεuε · ∇φ

we may apply (4.1), (2.6), (4.2), (4.21) and (4.20) to take ε = εj ↘ 0 in the first, second, third, fourth and fifth integral, 
respectively, to conclude that (2.3) holds. Likewise, since for all φ ∈ C∞

0 (�̄ × [0, ∞)) and ε ∈ (0, 1) we have

−
∞∫

0

∫
�

cεφt −
∫
�

c0εφ(·,0) = −
∞∫

0

∫
�

∇cε · ∇φ −
∞∫

0

∫
�

Fε(nε)f (cε)φ +
∞∫

0

∫
�

cεuε · ∇φ,

invoking (4.3), (2.7), (4.5), (4.24) and (4.25) and again applying the dominated convergence theorem along with (2.17)
establishes (2.4). Finally, given any φ ∈ C∞

0 (� × [0, ∞); R3) satisfying ∇ · φ ≡ 0, from (2.9) we obtain

−
∞∫ ∫

uε · φt −
∫

u0ε · φ(·,0) = −
∞∫ ∫

∇uε · ∇φ +
∞∫ ∫

Yεuε ⊗ uε · ∇φ +
∞∫ ∫

nε∇� · φ

0 � � 0 � 0 � 0 �
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for all ε ∈ (0, 1), so that taking ε = εj ↘ 0 and using (4.6), (2.8), (4.9), (4.26) and (4.1) yields (2.5) and thereby 
completes the proof. �
Proof of Theorem 1.1. The statement is evidently implied by Lemma 4.1. �
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