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Abstract

We prove sharp embedding inequalities for certain reduced Sobolev spaces that arise naturally in the context of Dirichlet prob-
lems with L1 data. We also find the optimal target spaces for such embeddings, which in dimension 2 could be considered as

limiting cases of the Hansson–Brezis–Wainger spaces, for the optimal embeddings of borderline Sobolev spaces W
k,n/k
0 .

© 2013

1. Introduction

In this paper we are concerned with special kinds of the so-called reduced Sobolev spaces, namely the spaces
defined by

W
2,1
� (Ω) = {

u ∈ W
1,1
0 (Ω): �u ∈ L1(Ω)

}
(1)

and

W
2,1
�,0(Ω) = closure of C∞

0 (Ω) in the norm ‖�u‖1 (2)

which we name �-reduced Sobolev spaces. Here Ω is a bounded open set of Rn, and W
k,p

0 (Ω) denotes the closure of

the set of C∞ functions compactly supported in Ω , in the norm ‖u‖k,p = (
∑

|α|�k ‖Dαu‖p
p)1/p . The spaces W

2,1
� (Ω)

and W
2,1
�,0(Ω) could be regarded as natural domains for the Dirichlet Laplacian, as an unbounded operator in L1(Ω).

Indeed, for f ∈ L1(Ω) the problem −�u = f has a unique solution u ∈ W
2,1
� (Ω), and if Ω is smooth enough then

such u is the limit of C∞ functions in Ω which are continuous up to the boundary, with 0 boundary value. The same
considerations can be made for the Lp versions W

2,p
� and W

2,p

�,0, obtained by replacing W
1,1
0 with W

1,p

0 and ‖�u‖1

with ‖�u‖p in (1) and (2). There is, however, an important difference: if p > 1 then W
2,p

�,0(Ω) = W
2,p

0 (Ω), and (if Ω

is smooth enough) W
2,p
� (Ω) = W

1,p

0 (Ω)∩W 2,p(Ω), but these assertions are both false in the case p = 1. The reason
for this is, essentially, that the L1 norms of the second partial derivatives cannot be controlled by ‖�u‖1 (see for
example [17]). For a general L1 theory of second order elliptic equations see [8].
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From the above discussion it should be apparent that such spaces are natural choices if one would like to study
the summability properties of solutions of the Dirichlet problem in L1, or the exceptional case n = 2 of the Moser–

Trudinger embedding W
2, n

2
0 ↪→ eL

n
n−2 .

In a recent paper [12] Cassani, Ruf and Tarsi investigated sharp embedding properties of the �-reduced spaces in
(1) and (2), for smooth Ω . Among the main results of [12] are the sharp forms of the embeddings of W

2,1
� (Ω) into

the Zygmund space Lexp(Ω), when n = 2, and into the weak-L
n

n−2 space L
n

n−2 ,∞(Ω), when n � 3. These spaces are
defined by the quasi-norms

‖u‖∗
Lexp

= sup
0<t�|Ω|

u∗(t)
1 + log |Ω|

t

, ‖u‖∗
n

n−2 ,∞ = sup
0<t�|Ω|

t
n−2
n u∗(t), (3)

where u∗ denotes the decreasing rearrangement of u on (0,∞), and the sharp forms of the embeddings derived in
[12, Thms. 1, 2] are written as

‖u‖∗
Lexp

� 1

4π
‖�u‖1, n = 2, (4)

‖u‖∗
n

n−2 ,∞ � 1

n
n−2
n (n − 2)ω

2/n

n−1

‖�u‖1, n � 3 (5)

where ωn−1 denotes the volume of the (n − 1)-dimensional unit sphere. The quantities on the left-hand side are
quasi-norms defining the spaces Lexp(Ω) and L

n
n−2 ,∞(Ω), respectively; the constants on the right-hand sides are

sharp, that is, they cannot be replaced by smaller constants.
In [12] the following slightly better estimate is in fact obtained for any u ∈ W

2,1
� (Ω):

u∗(t) �N∗|Ω|(t)‖�u‖1, 0 < t � |Ω|, n� 2 (6)

where

N∗|Ω|(t) =
⎧⎨
⎩

1
4π

log |Ω|
t

if n = 2,

1

n
n−2
n (n−2)ω

2/n
n−1

(t− n−2
n − |Ω|− n−2

n ) if n� 3,
(7)

denotes the decreasing rearrangement of the Green function of the Laplacian for the ball of volume |Ω|, with pole at
the origin (see the proofs of Thms. 1, 3 and Prop. 12 in [12]).

It must be noted that inequality (6) was obtained several years ago by Alberico and Ferone (see [3, Theorem 4.1
and Remark 4.1] for the case n = 2, and Theorem 5.1 for the case n � 3, which trivially yields (6)). In [3] it is in
fact shown that u∗(t)� N∗|Ω|(t)‖Pu‖1, for a general class of second order elliptic operators P , such that the Dirichlet

problem Pu = f admits a unique weak solution u ∈ L1, for each f ∈ L1(Ω); in such generality, however, one cannot
expect the inequality to be sharp. Related results are also contained in [5] and [4].

Regarding the analogous results for the space W
2,1
�,0(Ω), i.e. the case of compactly supported functions, only partial

results were obtained in [12], which however revealed an intriguing aspect: among all functions of W
2,1
�,0(Ω) which

are either radial or nonnegative, inequalities (4), (5) and (6) continue to hold but the constants are halved. In particular,
Cassani, Ruf and Tarsi proved that (see [12, proofs of Props. 14 and 16]) for any t ∈ (0, |Ω|]

u∗(t) � 1

2
N∗|Ω|(t)‖�u‖1, u ∈ W

2,1
�,0(Ω), u � 0 or u radial, n� 2 (8)

and consequently [12, Thm. 5, Props. 14, 16]

‖u‖∗
Lexp

� 1

8π
‖�u‖1, n = 2, (9)

‖u‖∗
n

n−2 ,∞ � 1

2n
n−2
n (n − 2)ω

2/n

n−1

‖�u‖1, n� 3, (10)

for any u ∈ W
2,1
�,0(Ω) which is either nonnegative or radial, and with sharp constants, within that class of functions.

One of the original motivations of this work was to find out whether the inequalities in (9), and (10) would still be
valid, and therefore sharp, in the whole space W

2,1
(Ω).
�,0
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The first main result of this paper is the following sharp version of (8): if Ω is open and bounded, then for any
t ∈ (0, |Ω|]

u∗(t) � 2−2/nN∗|Ω|(t)‖�u‖1, u ∈ W
2,1
�,0(Ω), n � 2. (11)

and the constant 2−2/n in (11) is sharp, in the sense that it cannot be replaced with a smaller constant if t is allowed
to be sufficiently small. We will also prove sharpness of (11) for any given t when Ω is either a ball (n = 2) or the
whole of Rn (n � 3). As a consequence of (11) we then find that allowing u to be an arbitrary function in W

2,1
�,0(Ω)

(not just nonnegative or radial) inequality (9) continues to hold, with sharp constant, whereas (10) is replaced with

‖u‖∗
n

n−2 ,∞ � 2−2/n

n
n−2
n (n − 2)ω

2/n

n−1

‖�u‖1, n � 3,

with sharp constant.
To prove (11), we will first rederive (8) (and also (6)) for arbitrary open and bounded Ω , as a relatively straight-

forward consequence of Talenti’s comparison theorem (which was also the starting point in [3] and [12]) and a
well-known formula that goes back to Talenti [19], for the solution of the Dirichlet problem on a ball with radial
data (see (40), (41)). The use of such formula in combination with Talenti’s type comparison theorems allows one to
obtain optimal norm estimates of the solution u of a Dirichlet problem −�u = f in terms of norms of f ; this idea
was already mentioned and used elsewhere (see for example [5, Prop. 3.1] and comments thereafter, and also [3, proof
of Theorem 4.1]).

The presence of the factor 1
2 in (8) is perhaps better clarified in our proof, which is based on the simple observation

that if u is compactly supported in Ω , then
∫
Ω

�u = 0, and∫
Ω

(�u)+ dx =
∫
Ω

(�u)− dx = 1

2
‖�u‖1 (12)

where (�u)+ and (�u)− denote the positive and negative parts of �u. The proof of (11) will be then obtained by
carefully combining estimates for the distribution functions of the positive and the negative parts of u. We will also
introduce natural families of radial extremal functions for (6) and (8), essentially Green’s potentials of normalized
characteristic functions of balls or annuli; by suitably translating such functions we will be able to produce a family
of extremals for (11).

An immediate consequence of (11) when n = 2 is the following Brezis–Merle type inequality

sup
u∈W

2,1
�,0(Ω)

∫
Ω

e
α

|u(x)|
‖�u‖1 dx � 8π

8π − α
|Ω|, α < 8π, (13)

where the left-hand side is infinite if α = 8π , and with sharpness of the constant 8π
8π−α

when Ω is a ball. The same

inequality holds for W
2,1
� (Ω) with 8π replaced by 4π :

sup
u∈W

2,1
� (Ω)

∫
Ω

e
α

|u(x)|
‖�u‖1 dx � 4π

4π − α
|Ω|, α < 4π, (14)

and as such it also appears in [3, Thm. 3.1], as a consequence of (6). The original Brezis–Merle inequality was obtained
in [6] and it is essentially (14), but with a larger right-hand side. Similar inequalities without explicit right-hand side
constants, but slightly more general integrands, were also obtained in [12], but either on W

2,1
� (Ω) or for functions

of W
2,1
�,0(Ω) which are nonnegative or radial. The Brezis–Merle inequality quantifies the exponential integrability of

functions in W
2,1
�,0(Ω) and W

2,1
� (Ω), when n = 2; indeed it is well known that the function u is in Lexp(Ω) if and

only if
∫
Ω

eλ|u| dx < ∞, for some λ > 0.
We observe that the discrepancy between the optimal ranges of α’s in (13) and (14) is a phenomenon that is peculiar

to L1 and the identities in (12). Indeed, the analogous sharp exponential inequality when n > 2∫
e
α

( |u(x)|
‖�u‖n/2

) n
n−2

dx � C, 0 < α � n(n − 2)
n

n−2 ω
2

n−2
n−1 (15)
Ω



220 L. Fontana, C. Morpurgo / Ann. I. H. Poincaré – AN 31 (2014) 217–230
was obtained by Adams [1] for the space W
2,n/2
0 (Ω) = W

2,n/2
�,0 (Ω), but it can be easily extended to the larger space

W
2,n/2
� (Ω) = W

1,p

0 (Ω)∩W 2,p(Ω), with the same sharp range of α’s. The reason for that is that if p > 1 then ‖f +‖p

can be made arbitrarily close to ‖f ‖p within the class of functions with zero mean; the vanishing of the mean of
�u plays no role in (15), as opposed to the case n = 2 in (13) and (14), where (12) causes a doubling of the largest
exponential constant, going from general solutions of Dirichlet problems to compactly supported functions.

When n� 3 one instead obtains, as a result of (11), an estimate of type

sup
u∈W

2,1
�,0(Ω)

‖u‖q

‖�u‖1
� C

(
n,q, |Ω|), 1 � q <

n

n − 2

and a similar estimate for W
2,1
� (Ω), using (6). In Corollary 2 we will exhibit a specific constant C(n,q, |Ω|) which

is sharp in the case of W
2,1
� (Ω) and Ω a ball. Similar estimates without explicit constants, but slightly more general

otherwise, were also obtained in [12], but again, only on W
2,1
� (Ω) or for functions of W

2,1
�,0(Ω) which are nonnegative

or radial.
A question of interest that one can raise, in view of the embedding results in [12] and in the present paper, is the

following: What is the smallest target space for the embeddings of W
2,1
�,0(Ω)?

A natural request in this sort of questions is that our admissible target spaces be the so-called rearrangement in-
variant spaces; those are Banach spaces (X,‖ · ‖X) of Lebesgue measurable functions on Ω with the property that
‖u‖X = ‖w‖X , whenever u and w are equimeasurable. This problem has been fully investigated in the case of the
classical Sobolev spaces embeddings. In particular, for the borderline embeddings of W

k,n/k

0 (Ω) (n > k), the optimal
r.i. target spaces turn out to be the so-called Hansson–Brezis–Wainger spaces [9,11,13,14,18]; such spaces are strictly
contained in the exponential classes involved in the Adams–Moser–Trudinger inequalities [1]. See also [10], where op-
timal embedding results are obtained for general Orlicz–Sobolev spaces, including those of Hansson–Brezis–Wainger
as special cases.

The second main result of this paper is that the optimal target space for the embedding W
2,1
�,0(Ω) ↪→ X, where X

is an r.i. space over Ω , is the space of functions

Lexp,0(Ω) =
{
u ∈ Lexp(Ω): lim

t→0

u∗∗(t)
log 1

t

= 0

}
, when n = 2,

and

L
n

n−2 ,∞
0 (Ω) =

{
u ∈ L

n
n−2 ,∞(Ω): lim

t→0
t

n−2
n u∗∗(t) = 0

}
, when n� 3,

where u∗∗(t) = 1
t

∫ t

0 u∗(s) ds denotes the so-called maximal function of u∗. It is easy to see that the limit conditions
in the above spaces can be unified as

lim
t→0

u∗(t)
N∗|Ω|(t)

= 0 (16)

which is obviously a stronger condition than (11) from the point of view of “best target space”.
When n = 2 the space Lexp,0(Ω) is a Banach subspace of Lexp(Ω), endowed with the norm

‖u‖Lexp = sup
0<t�|Ω|

u∗∗(t)
1 + log |Ω|

t

(17)

and our optimal embedding result can be interpreted as the limiting case of the optimal borderline embeddings ob-
tained by Hansson and Brezis–Wainger for W

k,n/k

0 (Ω), n > k.

When n� 3 the space L
n

n−2 ,∞
0 (Ω) is a Banach subspace of L

n
n−2 ,∞(Ω), endowed with the norm

‖u‖ n
n−2 ,∞ = sup

0<t�|Ω|
t

n−2
n u∗∗(t). (18)

The space Lexp,0(Ω) can also be characterized as the closure of the class of simple measurable functions on Ω , in
the norm ‖ · ‖Lexp , and also as the subspace of all order continuous elements of Lexp(Ω) (i.e. those f ∈ Lexp(Ω) such
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that if |fn| � |f | and |fn| ↓ 0 then ‖fn‖Lexp ↓ 0). This is also true for L
n

n−2 ,∞
0 (Ω), and in fact for any Marcinkiewicz

space Mw(Ω), defined by the norm ‖u‖Mw = sup{u∗∗(t)w(t)}, for a quasiconcave function w, and its subspace
M0

w(Ω) = {u ∈ Mw(Ω): limt→0 u∗∗(t)w(t) = 0} (see for example [16], and also [15] which contains a nice summary
of the properties of M0

w).

It is important to note that our optimal spaces Lexp,0 and L
n

n−2 ,∞
0 do not satisfy the so-called Fatou property, that

is, they are not closed under a.e. limits of uniformly bounded sequences. For this reason the definition of r.i. space
that we adopt here, given for example in [16], is the more general one, which does not require the Fatou property. It is
an easy consequence of our result, however, that the optimal r.i. spaces with the Fatou property that contain W

2,1
�,0(Ω)

are Lexp(Ω), when n = 2, and L
n

n−2 ,∞(Ω), when n� 3 (see Theorem 2).
Our optimality results improve those obtained in Alberico and Cianchi [2], namely Theorem 1.1 in case k = +∞,

n > p = 2 and Theorem 1.2, (iii), k = +∞, n = p = 2. In such theorems the authors prove in particular the optimality
of the norms ‖u‖ n

n−2 ,∞ (n� 3) and ‖u‖Lexp (n = 2) in the inequality

‖u‖X � C‖f ‖1 (19)

among all r.i. spaces X satisfying the Fatou property, assuming that the inequality is valid for all f ∈ L1 and all
solutions u of a general class of boundary value problems, which includes the Dirichlet problem. Their proof is based
on a duality argument and the fact that if X is an r.i. space with the Fatou property then its second associate space X′′
coincides with X. It is well known that if X does not satisfy the Fatou property, then X is a proper subspace of X′′
(see for example [7,16,15] for a summary of these and more facts on r.i. spaces, and references therein). In our result
we assume only the minimal set of axioms for an r.i. space, and the validity of (19) when f = −�u, and u compactly
supported in Ω , i.e. when u ∈ W

2,1
�,0(Ω).

Our proof is self-contained and borrows some ideas used in [11, Thm. 5], for the spaces Wk,n/k . The key step is to
prove that for a function u satisfying (16) and with support inside a ball of volume V one has

u∗(t) � (Tf )∗(t), 0 < t � V

where T is the Green potential for the ball, and f is a suitable positive radial function on the ball. This is a version of
[11, Thm. 4] that is suited to our situation.

2. Sharp embedding inequalities for W
2,1
� (Ω) and W

2,1
�,0(Ω)

If Ω is an open set of Rn and u : Ω → R is Lebesgue measurable, the decreasing rearrangement of u is the function

u∗(t) = inf
{
s � 0:

∣∣{x ∈ Ω:
∣∣u(x)

∣∣ > s
}∣∣ � t

}
, t > 0

that is the function on [0,+∞) that is equimeasurable with u and also decreasing.
On a ball BR = B(0,R) let

NBR
(r) =

{
cn(r

2−n − R2−n) if n� 3,
1

2π
log R

r
if n = 2,

0 < r � R

with

cn = 1

(n − 2)ωn−1
, ωn−1 = 2πn/2

Γ (n
2 )

.

If BR is a ball of given volume V and 0 < t � V , we let

N∗
V (t) = NBR

((
nt

ωn−1

)1/n)
=

{
1

4π
log V

t
if n = 2,

cn

(ωn−1
n

) n−2
n (t− n−2

n − V − n−2
n ) if n� 3.

Note that if GBR
(x, y) is the Green function for the ball of volume V then N∗

V (t) is the decreasing rearrangement of
GBR

(x,0).
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When n� 3 we also set

N∗∞(t) = cn

(
ωn−1

n

) n−2
n

t−
n−2
n , t > 0. (20)

The �-reduced spaces W
2,1
� (Ω) and W

2,1
�,0(Ω) are defined in (1) and (2). Note that those definitions make sense for

arbitrary open sets, not necessarily bounded. In particular when Ω =R
n it is straightforward to check that W

2,1
� (Rn) =

W
2,1
�,0(R

n).

Theorem 1. Let Ω ⊆R
n, n� 2, be open and bounded with volume |Ω|. Then:

(a) For all u ∈ W
2,1
� (Ω)

u∗(t) �N∗|Ω|(t)‖�u‖1, 0 < t � |Ω|. (21)

(b) For all u ∈ W
2,1
�,0(Ω) and n� 2

u∗(t) � 2−2/n N∗|Ω|(t)‖�u‖1, 0 < t � |Ω| (22)

and if n� 3 and either u� 0 or u radial and Ω a ball, then

u∗(t) � 1

2
N∗|Ω|(t)‖�u‖1, 0 < t � |Ω|. (23)

When n� 3 both (22) and (23) hold for Ω unbounded, with the convention in (20).
(c) The inequalities in (a) and (b) are sharp in the following sense:

sup
u∈X, 0<t�|Ω|

u∗(t)
N∗|Ω|(t)‖�u‖1

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if X = W
2,1
� (Ω), (24)

2−2/n if X = W
2,1
�,0(Ω), (25)

1
2 if X = W

2,1
�,0(Ω) ∩ {u radial}

or X = W
2,1
�,0(Ω) ∩ {u� 0}. (26)

Moreover, if B is any ball, then for each t ∈ (0, |B|]

sup
u∈X

u∗(t)
‖�u‖1

=

⎧⎪⎪⎨
⎪⎪⎩

N∗|B|(t) if X = W
2,1
� (B), (27)

1
2N∗|B|(t) if X = W

2,1
�,0(B) ∩ {u radial},

or X = W
2,1
�,0(B) ∩ {u� 0} (28)

and also

sup
u∈W

2,1
�,0(R

n)

u∗(t)
‖�u‖1

= 2−2/nN∗∞(t). (29)

Remark. As we noted in the introduction, (21) appears in [3] and [12] and (23) appears in [12], in case Ω is smooth.

As an immediate consequence of Theorem 1 we obtain sharp norm embeddings for the spaces W
2,1
� (Ω) and

W
2,1
�,0(Ω). Recall that

Lexp(Ω) = {
u : Ω → R, u measurable and ‖u‖∗

Lexp
< ∞}

(30)

and

L
n

n−2 ,∞(Ω) = {
u : Ω →R, u measurable and ‖u‖∗

n
n−2 ,∞ < ∞}

, (31)

where the quasi-norms ‖u‖∗
Lexp

and ‖u‖∗
n

n−2 ,∞ are defined as in (3). Note that in (30), (31) the norms ‖u‖Lexp and

‖u‖ n ,∞ defined in (17), (18) can be equivalently used in place of the corresponding quasi-norms.

n−2
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Corollary 1. Let Ω ⊆R
n, n� 2, be open and bounded. If n = 2 then W

2,1
� (Ω) ↪→ Lexp(Ω) and in particular

‖u‖∗
Lexp

� 1

4π
‖�u‖1, w ∈ W

2,1
� (Ω), (32)

‖u‖∗
Lexp

� 1

8π
‖�u‖1, w ∈ W

2,1
�,0(Ω) (33)

and the constants 1
4π

and 1
8π

are sharp, i.e. they cannot be replaced by smaller constants.

If n� 3 then W
2,1
� (Ω) ↪→ L

n
n−2 ,∞(Ω) and in particular

‖u‖∗
n

n−2 ,∞ � cn

(
ωn−1

n

) n−2
n ‖�u‖1, w ∈ W

2,1
� (Ω), (34)

‖u‖∗
n

n−2 ,∞ � 2−2/ncn

(
ωn−1

n

) n−2
n ‖�u‖1, w ∈ W

2,1
�,0(Ω) (35)

and the constants are sharp.

Remark. Corollary 1 continues to hold if ‖u‖∗
Lexp

and ‖u‖∗
n

n−2 ,∞ are replaced by the larger quantities ‖u‖Lexp ,

‖u‖ n
n−2 ,∞, and the constants in (32)–(35) are multiplied by n

2 . The reason for this is that

N∗∗
V (t) = 1

t

t∫
0

N∗
V (u)du =

{
1

4π
(1 + log V

t
) if n = 2,

cn(
ωn−1

n
)

n−2
n ( n

2 t− n−2
n − V − n−2

n ) if n� 3,

so that N∗∗
V (t) ∼ n

2 N∗
V (t), as t → 0.

Another immediate consequence of the estimates of Theorem 1 are the following sharp versions of the Brezis–
Merle and Maz’ya’s inequalities:

Corollary 2. Let Ω ⊆R
n, n� 2, be open and bounded. If n = 2 then∫

Ω

e
α

|u(x)|
‖�u‖1 dx � 4π

4π − α
|Ω|, 0 < α < 4π, u ∈ W

2,1
� (Ω), (36)

∫
Ω

e
α

|u(x)|
‖�u‖1 dx � 8π

8π − α
|Ω|, 0 < α < 8π, u ∈ W

2,1
�,0(Ω) (37)

and the integrals are infinite if α = 4π in (36) and α = 8π in (37). If Ω is a ball, the constants 4π
4π−α

, 8π
8π−α

are sharp.

If n� 3 then, for 1 � q < n
n−2

‖u‖q � cn

(
ωn−1

n

) n−2
n

[
Γ ( n

n−2 − q)Γ (q + 1)

Γ ( n
n−2 )

]1/q

|Ω| 1
q
− n−2

n ‖�u‖1, u ∈ W
2,1
� (Ω), (38)

‖u‖q � 2− 2
qn cn

(
ωn−1

n

) n−2
n

[
Γ ( n

n−2 − q)Γ (q + 1)

Γ ( n
n−2 )

]1/q

|Ω| 1
q
− n−2

n ‖�u‖1, u ∈ W
2,1
�,0(Ω) (39)

and if Ω is a ball, the constant is sharp in (38).

Proof of Theorem 1. The first step in the proof of (21) and (23) is Talenti’s comparison theorem, as in [3] and [12],
and the following well-known formula for the solution of the Dirichlet problem −�v = f on the ball BR and with
radial data f ∈ L1(BR):
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v
(|x|) = NBR

(|x|) ∫
|y|�|x|

f (y)dy +
∫

|x|�|y|�R

NBR

(|y|)f (y)dy (40)

or, in polar coordinates,

v(ρ) = ωn−1NBR
(ρ)

ρ∫
0

f (r)rn−1 dr + ωn−1

R∫
ρ

NBR
(r)f (r)rn−1 dr

= −ωn−1

R∫
ρ

N ′
BR

(r) dr

r∫
0

f (ξ)ξn−1 dξ. (41)

Note that if either f � 0 or f decreasing with mean zero, then v(ρ) given as in (41) is decreasing.
What we need here is the following version of Talenti’s result: let Ω be open and bounded and let f ∈ L1(Ω) and let

f �(x) = f ∗(|B1||x|n), the Schwarz symmetrization of f , supported in the ball BR with volume |Ω|; if u,v ∈ W
1,1
0 (Ω)

are the unique solutions of −�u = f and −�v = f �, then u∗(t) � v∗(t) for t > 0. This result (including existence and
uniqueness of the solutions) follows by a routine argument: (1) approximate f in L1 via a sequence of fn ∈ C∞

0 (Ω);

(2) solve the problems −�un = fn, −�vn = f
�
n ; (3) use the uniform gradient estimate ‖∇un‖1 � ‖∇vn‖1 � C‖f ‖1

(the left inequality for example is in [19, p. 715]); (4) show that {un} is a Cauchy sequence convergent to u, the
solution of −�u = f ; (5) apply Talenti’s classical result to the un, and pass to the limit.

To prove (21) we then apply the above version of Talenti’s theorem to a function ∈ W
2,1
� (Ω), and conclude that

u∗(t) � v∗(t) for t > 0, where v is the solution of −�v = (�u)�, v = 0 on ∂BR . Next, note that the solution of
−�v = f (v = 0 on ∂BR) with f radial given in (40) satisfies∣∣v(|x|)∣∣� NBR

(|x|)‖f ‖1

which instantly gives (21).
A small modification of the above argument yields (23) in the case u ∈ W

2,1
�,0(Ω) with either u � 0 or u radial.

Indeed, assuming WLOG that u ∈ C∞
0 (Ω), then

∫
Ω

�u = 0, so letting f = −�u, and f +, f − be the positive and
negative parts of f , we have

∫
Ω

f + = ∫
Ω

f − = 1
2‖f ‖1. If u is radial then (40) yields

−NBR

(|x|) ∫
BR

f −(y) dy � v
(|x|) � NBR

(|x|) ∫
BR

f +(y) dy

or ∣∣v(|x|)∣∣� 1

2
NBR

(|x|)‖f ‖1

from which (23) follows. If u � 0 then letting w be the solution of −�w = f + on Ω , with w ∈ W
1,1
0 (Ω) we have

0 � u � w, by the maximum principle, and the result follows from part (a) applied to w.
To prove (22) we argue as follows. First, note that it is enough to prove the result for u ∈ C∞

0 (Ω). For such given
u and for each ε � 0 consider the open subsets of Ω

Ωε = {
x ∈ Ω: u(x) > ε

}
, Ω ′

ε = {
x ∈ Ω: −u(x) > ε

}
and the functions

uε := (u − ε)|Ωε , u′
ε = (−u − ε)|Ω ′

ε
.

Sard’s theorem combined with the implicit function theorem guarantee that for a.e. ε > 0 both ∂Ωε and ∂Ω ′
ε are

smooth C∞ (n − 1)-dimensional manifolds; therefore, for each such ε both uε and u′
ε are C∞ in their domains,

continuous up to the boundaries, and with zero boundary values, and if f = −�u they clearly solve the Dirichlet
problems −�uε = f and −�u′

ε = −f in their domains. Let now we, w′
ε be the solutions to the Dirichlet problems{−�wε = f + on Ωε,

{−�w′
ε = f − on Ω ′

ε,

w′ = 0 on ∂Ω ′ .
wε = 0 on ∂Ωε, ε ε
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Then we have 0 � uε � wε and 0 � u′
ε � w′

ε , and also wε ∈ W
1,2
� (Ωε), w′

ε ∈ W
1,2
� (Ω ′

ε). We can then apply part (a) to
deduce

(uε)
∗(t) � (wε)

∗(t) � N∗|Ωε |(t)
∫
Ωε

f + dx,

for 0 < t � |Ωε | and hence for 0 < t � |Ω0|. All the quantities involved above are monotone decreasing w.r.t. ε hence
we deduce

(u0)
∗(t) � N∗|Ω0|(t)

∫
Ω0

f + = 1

2
N∗|Ω0|(t)‖�u‖1, 0 < t � |Ω0|. (42)

Likewise, arguing with u′
ε , w′

ε , we obtain

(
u′

0

)∗
(t) � 1

2
N∗

|Ω ′
0|(t)‖�u‖1, 0 < t �

∣∣Ω ′
0

∣∣. (43)

Let now λV (s) be the distribution function of N∗
V , i.e.

λV (s) = ∣∣{t > 0: N∗
V (t) > s

}∣∣ =
{

V e−4πs if n = 2,

(αns + V − n−2
n )−

n
n−2 if n� 3

where αn = (n − 2)n
n−2
n ω

2/n
n . With this notation we have, for s > 0,∣∣{x ∈ Ω:

∣∣u(x)
∣∣ > s

}∣∣ = ∣∣{x ∈ Ω0: u0(x) > s
}∣∣ + ∣∣{x ∈ Ω ′

0: u′
0(x) > s

}∣∣
� λ|Ω0|

(
2s

‖�u‖1

)
+ λ|Ω ′

0|
(

2s

‖�u‖1

)
. (44)

Now note that |Ω0| + |Ω ′
0| = |Ω| and that

λ|Ω0|
(

2s

‖�u‖1

)
+ λ|Ω ′

0|
(

2s

‖�u‖1

)
�

{ |Ω|e−8πs/‖�u‖1 if n = 2,

(22/n αns
‖�u‖1

+ |Ω|− n−2
n )−

n
n−2 if n� 3,

(45)

since for n = 2 there actually is equality, whereas for n � 3 the right-hand side of (44) is maximized precisely when
|Ω0| = |Ω ′

0| = 1
2 |Ω|. Inequalities (44) and (45) imply (22).

Now let us prove the sharpness statements. Introduce the radially decreasing functions

FR
δ = χBδ

|Bδ| , 0 < δ < R,

FR
δ,ε = χBδ

2|Bδ| − χAε,R

2|Aε,R| , 0 < δ < R − 2ε < R

where

Bδ = {
x: |x|� δ

}
, Aε,R = {

x: R − 2ε < |x| < R − ε
}
.

Applying formula (40) we obtain that the solution UR
δ of the Dirichlet problem{−�UR

δ = FR
δ on BR,

UR
δ = 0 on ∂BR

is given by

UR
δ (x) :=

{ |x|n
δn NBR

(|x|) + 1
|Bδ |

∫
|x|<|y|<δ

NBR
(|y|) dy if |x| < δ,

NBR
(|x|) if δ � |x| �R,

which is nonnegative, radial and decreasing, so that
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(
UR

δ

)∗
(t) = N∗|BR |(t), |Bδ|� t � |BR|,

and this takes care of (27) immediately, since UR
δ ∈ W

2,1
� (BR).

If Ω is an arbitrary open and bounded set, then we can assume that 0 ∈ Ω , and find R so that BR ⊆ Ω . The
function UR

δ (extended to be 0 outside BR) is not in W
2,1
� (Ω), however we can argue that since FR

δ � 0 then the

solution Uδ ∈ W
2,1
� (Ω) of −�Uδ = FR

δ is nonnegative on Ω and satisfies UR
δ � Uδ on BR , by the maximum principle;

hence (Uδ)
∗(t) � (UR

δ )∗(t) = N∗|BR |(t), for |Bδ|� t � |BR|. It’s then clear that taking δt so that |Bδt | = t gives

(Uδt )
∗(t)

N∗|Ω|(t)
�

N∗|BR |(t)
N∗|Ω|(t)

→ 1, t → 0,

thereby proving (24).
Likewise, the solution UR

δ,ε to{
−�UR

δ,ε = FR
δ,ε on BR,

UR
δ,e = 0 on ∂BR

can be computed explicitly, however all we need is that UR
δ,ε is nonnegative, radial, decreasing on (0, |BR|], and

UR
δ,ε(x) =

{ 1
2NBR

(|x|) − 1
2|Aε,R |

∫
Aε,R

NBR
(|y|) dy if δ � |x| � R − 2ε,

0 if R − ε � |x| � R
(46)

all of which can be readily checked. We then have UR
δ,ε ∈ W

2,1
�,0(B(0,R)), and the above identity leads to (28), since

lim
ε→0

1

2|Aε,R|
∫

Aε,R

NBR

(|y|)dy = 0.

For an arbitrary open and bounded Ω , we can prove (26) like before, assuming 0 ∈ Ω , B(0,R) ⊆ Ω , this time
observing that UR

δ,ε ∈ W
2,1
�,0(B(0,R)) ⊆ W

2,1
�,0(Ω). It remains to settle (25) and (29) for n � 3. We consider the

functions

V R
δ,λ(x) = UR

δ,R/4(x) − UR
δ,R/4(x − xλ), xλ := (λ,0,0, . . . ,0),

with

δ < min

{
1

2
,

1

2
R

}
, δ <

1

2
λ <

1

2
R, (47)

so that

−�V R
δ,λ = 1

2|Bδ|
(
χBδ − χxλ+Bδ

) − hR
λ ,

where Bδ and Bδ + xλ are disjoint and where

hR
λ = 1

|AR/4,R| (χAR/4,R
− χxλ+AR/4,R

)

which converges to 0 pointwise and in L1, as λ → 0 for fixed R, and as R → +∞ for fixed λ; moreover, |hR
δ |� CR−n

and ∫
Rn

∣∣hR
λ

∣∣� C
λ

R
. (48)

Note that V R
δ,λ ∈ W

2,1
(B(0,R + λ)).
�,0
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In order to estimate the distribution function of V R
δ,λ on a given Ω containing the support of such function, write

for s > 0∣∣{x ∈ Ω:
∣∣V R

δ,λ(x)
∣∣ > s

}∣∣� 2

∣∣∣∣
{
x: δ < |x| < 1

2
R, x1 <

1

2
λ,

∣∣V R
δ (x)

∣∣ > s

}∣∣∣∣.
Note that (46) gives

UR
δ,R/4(x) = 1

2
cn|x|2−n − dnR

2−n, δ � |x|� 1

2
R (49)

for some dn > 0.
If x1 < 1

2λ then 0 � UR
δ,R/4(x − xλ) � UR

δ,R/4(
1
2xλ), since UR

δ,R/4(x − xλ) is radial decreasing about xλ, and since

δ < 1
2λ < 1

2R we also have, using (49),

∣∣V R
δ,λ(x)

∣∣ � UR
δ,R/4(x) − UR

δ,R/4

(
1

2
xλ

)
= 1

2
cn|x|2−n − 2n−3cnλ

2−n,

and it is clear that the right-hand side is greater than s if and only if |x| < |x∗|, where

∣∣x∗∣∣ =
(

2s

cn

+ 2n−2λ2−n

)− 1
n−2

<
λ

2
<

R

2
.

Conversely, if |x∗| defined by the above equation satisfies |x∗|� δ, then∣∣∣∣
{
x ∈ Ω:

1

2
cn|x|2−n − 2n−3cnλ

2−n > s

}∣∣∣∣ = ωn−1

n

∣∣x∗∣∣n = ωn−1

n

(
2s

cn

+ 2n−2λ2−n

)− n
n−2

.

Since |x∗| � δ if and only if s � 1
2cn(δ

2−n − 2n−2λ2−n) > 0 (due to (47)), we finally obtain that for any such s

∣∣{x ∈ Ω:
∣∣V R

δ,λ(x)
∣∣ > s

}∣∣� 2
ωn−1

n

[(
2s

cn

+ 2n−2λ2−n

)− n
n−2 − δn

]
, (50)

which implies

(
V R

δ,λ

)∗
(t) � cn

2

[(
nt

2ωn−1
+ δn

)− n−2
n − 2n−2λ2−n

]
, 0 � t � 2|Bλ/2| − 2|Bδ|. (51)

For a given open and bounded Ω , assume 0 ∈ Ω , and fix R < 1 so that B(0,2R) ⊆ Ω . Pick any σ with
0 < σ < 1/2, and take δ < R1/σ and λ = δσ , so that V R

δ,δσ ∈ W
2,1
�,0(B(0,2R)) ⊆ W

2,1
�,0(Ω), and ‖�V R

δ,δσ ‖1 �
1 + ‖hR

δσ ‖1 → 1, as δ → 0. Therefore, (51) with δt such that 2|Bδt | = t2, and t so small so that δσ
t > 2δt , gives

(V R
δt δσ

t
)∗(t)

N∗|Ω|(t)‖�V R
δt ,δ

σ
t
‖ � 2−2/ncn

(
ωn−1

n

) n−2
n (t + t2)− n−2

n − Ct−2σ n−2
n

N∗|Ω|(t)(1 + ‖hR
δσ
t
‖1)

→ 2−2/n

as t → 0, proving (25).
If instead we fix t > 0, then take Ω = R

n, δR so that 2|BδR
| = 1/R, and R > 1 so large that if λ = Rσ , with

0 < σ < 1, then t < 2|BRσ /2| − 2|BδR
|, so that from (48) and (51) we have

(V R
δR,Rσ )∗(t)

‖�V R
δR,Rσ ‖ � 2−2/ncn

(
ωn−1

n

) n−2
n ((t + R−1)− n−2

n − CRσ(2−n))

(1 + ‖hR
Rσ ‖1)

→ 2−2/nN∗∞(t),

as R → +∞, yielding (29). �
Proofs of Corollaries 1, 2. The inequalities (32)–(39) are straightforward consequences of (21) and (22). The proof
of the sharpness statements can be easily obtained arguing as in the proof of Theorem 1, using the families of functions
Uδ ∈ W

2,1
� (Ω), UR

δ,ε ∈ W
2,1
�,0(Ω), V R

δ,λ ∈ W
2,1
�,0(Ω). �
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Remark. The question of the sharpness of (39) remains unsettled. The extremal families used in the above proofs

seem to be unsuited for the computation of the supremum of |Ω|− 1
q
+ n−2

n ‖u‖q‖�u‖−1
1 , over all open and bounded Ω

and all u ∈ W
2,1
�,0(Ω).

3. Optimal target spaces

In this section we improve the embedding results of Corollary 1 from the point of view of “smallest target space”.
For Ω ⊆R

2 define the space

Lexp,0(Ω) =
{
u ∈ Lexp(Ω): lim

t→0

u∗∗(t)
log 1

t

= 0

}

which is a closed subspace of Lexp(Ω), endowed with the norm ‖u‖Lexp . Likewise, for Ω ⊆R
n, n� 3 define

L
n

n−2 ,∞
0 (Ω) =

{
u ∈ L

n
n−2 ,∞(Ω): lim

t→0
t

n−2
n u∗∗(t) = 0

}
,

which is a closed subspace of L
n

n−2 ,∞(Ω), endowed with the norm ‖u‖ n
n−2 ,∞.

Given a Lebesgue measurable set Ω let MΩ be the set of all Lebesgue measurable functions f : Ω → [−∞,∞]
which are a.e. finite (with the usual convention that a.e. equal functions are identified). A rearrangement invariant
(r.i.) space over Ω is a Banach space (X,‖ · ‖X) which is a subspace of MΩ satisfying the two properties

(i) |g| � |f | a.e. and f ∈ X ⇒ g ∈ X and ‖g‖X � ‖f ‖X (X is an ideal Banach lattice);
(ii) if f,g ∈ MΩ are equimeasurable (i.e. if |{x ∈ Ω: |f (x)| > s}| = |{x ∈ Ω: |g(x)| > s}| for each s � 0), then

‖f ‖X = ‖g‖X .

In addition, we say that an r.i. space (X,‖ · ‖X) satisfies the Fatou property if the following condition holds:

(iii) if 0 � fn ↑ f a.e., with fn ∈ X and supn ‖fn‖X < ∞, then f ∈ X and ‖fn‖X ↑ ‖f ‖X .

The Fatou property is easily seen to be equivalent to

(iii′) if fn → f a.e., with fn ∈ X and supn ‖fn‖X < ∞, then f ∈ X and ‖f ‖X � lim infn ‖fn‖X .

The above definition of rearrangement invariant space is taken from [16] (where it is called “symmetric space”); in
other standard references, such as [7], the Fatou property is instead included in the defining axioms.

Clearly, both Lexp(Ω) and L
n

n−2 ,∞(Ω) are rearrangement invariant spaces over Ω , and both of them satisfy the

Fatou property. The spaces Lexp,0(Ω) and L
n

n−2 ,∞
0 (Ω) are r.i. spaces over Ω which do not satisfy the Fatou property.

This is easily seen by considering truncations of the function f (x) = NB(|x|), where B is any small ball inside Ω .
It is a known fact [16, Thm. 4.1] that if conditions (i) and (ii) hold, X is nontrivial, and if |Ω| < ∞ then

L∞(Ω) ↪→ X ↪→ L1(Ω)

in the sense of continuous embeddings. The closed graph theorem also implies that any Banach space Y which is a
subset of an r.i. space X over Ω , with |Ω| < ∞, is continuously embedded in X.

Theorem 2. For n � 2 and Ω open and bounded in R
n, let Λ0

2(Ω) = Lexp,0(Ω) if n = 2, and Λ0
n(Ω) = L

n
n−2 ,∞
0 (Ω)

if n� 3. Then, we have

W
2,1
�,0(Ω) ⊆ W

2,1
� (Ω) ⊆ Λ0

n(Ω) (52)

and for any rearrangement invariant space (X,‖ · ‖X) over Ω

W
2,1
�,0(Ω) ⊆ X ⇒ Λ0

n(Ω) ⊆ X. (53)

In other words, Λ0
n(Ω) is the smallest target space X for the embedding W

2,1
(Ω) ⊆ X, among all r.i. spaces X.
�,0
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Moreover, if (X,‖ · ‖X‖) is any r.i. space with the Fatou property (iii), then for n = 2

W
2,1
�,0(Ω) ⊆ X ⇒ Lexp(Ω) ⊆ X, (54)

and for n� 3

W
2,1
�,0(Ω) ⊆ X ⇒ L

n
n−2 ,∞(Ω) ⊆ X. (55)

Proof. If u ∈ W
2,1
� (Ω), then the fact that u ∈ Λ0

n(Ω) follows easily from Talenti’s comparison theorem combined
with (41).

Let now (X,‖ · ‖X) be an r.i. space over Ω , endowed with the Lebesgue measure, such that W
2,1
�,0(Ω) ⊆ X. We

claim that for any u ∈ Λ0
n(Ω) there exists a function v ∈ W

2,1
�,0(Ω) and a constant C such that

u∗(t) � v∗(t) + C, 0 < t � |Ω|, (56)

which implies u ∈ X and therefore (53); obviously it is enough to show this for u� 0.
To prove the claim, let us assume first WLOG that 0 ∈ Ω and that u0 ∈ Λ0

n(Ω) has support inside a ball BR ⊆ Ω .
We now show that we can find a nonnegative integrable function h : [0, |BR|] →R such that

N∗|BR |(t)
t∫

0

h(s) ds � (u0)
∗(t), 0 < t � |BR|. (57)

To prove the claim, let g(t) = (u0)
∗∗(t)/N∗|BR |(t) (0 < t � |BR|), which is continuous and converges to 0 as t → 0

(by hypothesis), and let f (t) = sup0<s<t g(s). This f is continuous, nonnegative, increasing, satisfies f � g, and
f (t) → 0 as t → 0.

Take any nonnegative, differentiable and decreasing function m : (0, |BR| ] → R, with m(|BR|) = 0 and
m(t) → +∞ as t → 0 (for example m(t) = log(|BR|/t)), and let

k(t) = − 1

m(t)

|BR |∫
t

f (s)m′(s) ds = 1

m(t)

m(t)∫
0

f
(
m−1(u)

)
du, 0 < t < |BR|; (58)

such k is differentiable, positive, increasing, k(t) → f (|BR|) if t → |BR|, and k(t) → 0 as t → 0. Therefore, the
function h(t) := k′(t) is integrable, nonnegative and it satisfies (57).

Now let us go back to our u ∈ Λ0
n(Ω), and assume that u � 0, u is not 0 a.e., 0 ∈ Ω , and λ > 0 is such that

|{x ∈ Ω: u(x) > λ}| = |BR|, with B2R ⊆ Ω . Define

u0(x) = max
{
u(x),λ

} − λ = u(x) − min
{
u(x),λ

}
, x ∈ Ω.

Clearly (u0)
∗(t) = u∗(t) − λ for 0 < t < |BR|, and (u0)

∗(t) = 0 � u∗(t) − λ for |BR| � t � |Ω|, so that u0 ∈
Λ0

n(Ω) and u∗ � (u0)
∗ +λ. If u#

0(x) = (u0)
∗(|B(0, x)|), for x ∈ BR and u#

0(x) = 0 for x ∈ Ω \BR , then u#
0 ∈ Λ0

n(Ω),
and u#

0 is supported in BR . Let f be the radial and integrable function on BR defined as f (x) = h(|B(0, x)|) with

h = k′ and k as in (58). If v0 ∈ W
2,1
� (BR) is the solution of the problem −�v0 = f given as in (41), then by (57)

(v0)
∗(t) = N∗|BR |(t)

t∫
0

h(s) ds +
|BR |∫
t

N∗|BR |(s)h(s) ds � u∗
0(t), 0 < t � |BR|. (59)

On the other hand, if v1 ∈ W
2,1
� (B2R) solves −�v1 = f (with f = 0 outside BR), with v1 = 0 on ∂BR , then v0 � v1

on BR (since f � 0), and we can construct a function v ∈ W
2,1
�,0(B2R), so that v1 � v + C for some constant C. In

order to do that, it is enough to proceed as in the construction of the function UR
δ,ε in the proof of Theorem 1, by letting

v be the solution of the Dirichlet problem −�v = F on B2R and v = 0 on ∂B2R , where
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F(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f if |x| < R,

0 if R � |x| < 4
3R,

− 1
|B 5

3 R
\B 4

3 R
|
∫
BR

f if 4
3R � |x| < 5

3R,

0 if 5
3R � |x| � 2R.

In summary, we have that u∗ � (u0)
∗ + λ � (v0)

∗ + λ � v∗
1 + λ � v∗ + C + λ and this proves our initial claim (56)

and therefore (53).
Suppose now that X is an r.i. space with the Fatou property, and that W

2,1
�,0(Ω) ⊆ X. Then Λ0

n(Ω) ⊆ X, contin-

uously, so it is an easy matter to check that when u ∈ Lexp(Ω) (n = 2) or u ∈ L
n

n−2 ,∞(Ω) (n � 3), then u ∈ X, by
considering the sequence of truncations un = min{|u|, n}, which belongs to Λ0

n(Ω), has uniformly bounded norm,
and converges monotonically to |u|. �
Remark. Estimate (56) can be extended to arbitrary functions u in Lexp(Ω) (n = 2) or in L

n
n−2 ,∞(Ω) (n � 3) as

follows:

u∗(t) � v∗(t) + C + N∗|B|(t) lim sup
s→0

u∗∗(s)
N∗|B|(s)

, 0 < t � |Ω|, (60)

for some v ∈ W
2,1
�,0(Ω), some ball B ⊆ Ω and some constant C. This follows from the previous proof, since the

function k in (58) satisfies k(0) = lim sups→0
u∗∗(s)
N∗|B|(s)

.
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