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Abstract

In this paper, for 0 < m1 � m(x) � m2 and positive parameters λ and p, we study the existence of positive solution for the
quasilinear model problem⎧⎨

⎩−�u + m(x)
|∇u|2
1 + u

= λ(1 + u)p in Ω,

u = 0 on ∂Ω.

We prove that the maximal set of λ for which the problem has at least one positive solution is an interval (0, λ∗], with λ∗ > 0,
and there exists a minimal regular positive solution for every λ ∈ (0, λ∗). We also prove, under suitable conditions depending on
the dimension N and the parameters p, m1, m2, that for λ = λ∗ there exists a minimal regular positive solution. Moreover we
characterize minimal solutions as those solutions satisfying a stability condition in the case m1 = m2.
© 2013
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1. Introduction

Let Ω be an open and bounded set in R
N (N � 3) and λ > 0. We study the existence of positive solution for the

following problem{−�u + H(x,u,∇u) = λf (u) in Ω,

u = 0 on ∂Ω,
(Pλ)

where f is a continuous nonnegative function in [0,+∞) with f (0) > 0 and H is a Carathédory function defined
on Ω × [0,+∞) × R

N , i.e. H(·, s, ξ) is a measurable function for every (s, ξ) ∈ [0,+∞) × R
N and H(x, ·, ·) is

a continuous function for a.e. x ∈ Ω .
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We point out that (Pλ) provides a general framework including, as a particular case, semilinear problems which
have been studied in the literature. Namely, motivated by different applications (thermal self-ignition in combustion
theory [18], temperature distribution in an object heated by a uniform electric current [19,20], etc.) there is a vast
amount of works, among others [4,13,15,21], concerned with the problem{−�w = λf (w) in Ω,

w = 0 on ∂Ω,
(1.1)

where f is a smooth function satisfying f (0) > 0, f ′(0) > 0 and f ′′(s) > 0 for every s > 0. Specifically, for a general
linear second order differential operator and a nonlinearity f depending also on x ∈ Ω , it is proved in [15] that
there exists a parameter λ∗ > 0 such that problem (1.1) has a minimal classical solution wλ ∈ C2(Ω) provided that
0 � λ < λ∗, and no solution if λ > λ∗. The set {wλ: 0 � λ < λ∗} is a branch and wλ is increasing in λ. These results
have been extended in [21] to the case in which f is only assumed to be strictly convex. In addition, it is proved that
the pointwise limit w∗(x) := limλ→λ∗ wλ(x) is also a weak solution (usually called extremal solution) of (1.1) with
λ = λ∗. To prove this, it is essential the fact that the minimal solutions wλ are stable, i.e. they satisfy∫

Ω

|∇φ|2 � λ

∫
Ω

f ′(wλ)φ
2 for every φ ∈ H 1

0 (Ω).

Observe that the above condition is nothing but the nonnegative definiteness of the second variation in w = wλ of the
associated energy functional

EΩ(w) =
∫
Ω

(
1

2
|∇w|2 − λF(w)

)
, F ′ = f.

In addition, it implies that the least eigenvalue of −� − λf ′(wλ) is nonnegative (see Proposition 1.2.1 in [16]). Even
more, for 0 � λ < λ∗ it is always positive and, as it was point out in [15, Proposition 2.15], this fact is also important
to prove that an equilibrium solution for the corresponding parabolic problem is stable. Moreover in [21, Théorème 1
and Proposition 1] it is proved that this characterizes the minimal regular solutions.

This stability condition plays also a crucial role in order to study when the extremal solution w∗ is regular. Indeed,
it can be used to show that, for a few values of N , wλ is bounded in C(Ω) uniformly in λ ∈ (0, λ∗) and then w∗ ∈
L∞(Ω). This has been proved in the case f (s) = es (Gelfand problem) for 3 �N < 10 (see [15, Example 1.12]) and
f (s) = (1+s)p with p > 1 and 3 � N < 4+2(1−1/p)+4

√
1 − 1/p (see [15, p. 213]). The cases of nonlinearities f

having an asymptote like f (s) = 1/(1 − s)k , with k > 0, are also covered in [21]. A characterization of singular H 1

extremal solutions appears in [13] in terms of the stability condition, pointing out that the stability condition is a
version of the classical Hardy inequality. In fact, an improved inequality with best constant, generalizing the classical
Hardy and Poincaré inequalities is used in that paper to determine, in some particular cases, the dimensions for
which any H 1 extremal solution is singular. Regularity of extremal solutions of semilinear elliptic problems up to
dimension 4 has been proved in [14].

For clarity, we present in this introduction the results only in the particular case⎧⎨
⎩−�u + m(x)

|∇u|2
1 + u

= λ(1 + u)p in Ω,

u = 0 on ∂Ω,

(1.2)

with 0 � m1 � m(x) � m2 < p and 1 < p. The reader is referred to Theorems 3.1, 4.4, 4.6 and 4.7 below for the
corresponding results for the general problem (Pλ). The study of general quasilinear problems with quadratic growth
in the gradient ∇u like (1.2) provides a suitable unified framework for all the previously cited results. In fact, it handles
as a particular case, taking m2 = 0, the problem (1.1) for f (s) = (1 + s)p with p > 1. Moreover it also handles, at
least formally, the cases f (s) = es and f (s) = 1/(1 − s)k , with k > 0. Indeed, if w is a positive solution of{−�w = λew in Ω,

w = 0 on ∂Ω,

then the function u given by the change w = ln(1 + u) solves (1.2) in the particular case m(x) = 1 and p = 2.
Similarly, via the change w = 1 − 1/(u + 1)α , solutions of the equation −�w = λ/(1 − w)k (k > 0) are related to
solutions of (1.2) with m(x) = α + 1 and p = αk + α + 1.
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Notice that the quasilinear differential operator in (1.2) falls into the framework of the pioneering works by Boc-
cardo, Murat and Puel [9,10]. They have extensively studied this operator confronted with a right-hand side not
depending on u. The case in which the right-hand side is nonlinear has been less studied. A power-like right-hand
side has been studied by Orsina and Puel in [22] and recently in [2,11]. In [5] and [6] are proved some comparison
principles for general differential operators including the left-hand side of the equation in (Pλ) if H(x, s, ξ) is nonde-
creasing in s. However, in order to deal with the model problem (1.2), where H(x, s, ξ) is decreasing on s, we prove
a comparison principle for positive solutions including this case (see Section 2).

We show that the solution set of problem (1.2) behaves as in the semilinear case described above. That is, we give
sufficient conditions on m1, m2 and p in order to show the existence of λ∗ > 0 such that (1.2) admits a minimal
solution uλ if 0 < λ < λ∗ and no solution if λ > λ∗. In order to prove the existence of the minimal solutions we use
the quasilinear comparison stated in Section 2.

As regard to the extremal solution, in order to prove that the minimal solutions are bounded in H 1
0 (Ω) uniformly

in λ ∈ [0, λ∗), we need to generalize the stability condition. Specifically, if p > m2 � m1 > 1, we prove that∫
Ω

|∇φ|2 � λ
(p − m2)(m1 − 1)

m2 − 1

∫
Ω

(1 + uλ)
p−1φ2,

for every φ ∈ H 1
0 (Ω).

As in the semilinear case, this extension of the stability condition is the keystone to prove, for 0 < λ < λ∗ and
(p − m2)(m1 + 1) > m2−1

m1−1 , a uniform estimate in the Sobolev space of the minimal solutions and as a corollary
the existence of extremal solution u∗ of (1.2) with λ = λ∗. In the particular case m1 = m2 we show that the above
inequality characterizes minimal solutions (see Theorem 4.6). We point out that, up to the authors’ knowledge, stability
condition is unknown in the literature of quasilinear elliptic equations with quadratic growth in the gradient. We remark
that problem (1.2) does not have variational characterization.

Moreover, we establish whether u∗ is regular (i.e. u∗ ∈ L∞(Ω)) in terms of N , p, m1 and m2. We gather the results
for (1.2) in the following theorem.

Theorem 1.1. Assume that 1 < m1 � m(x) � m2 < p. Then there exists λ∗ > 0 such that (1.2) has a minimal regular
solution uλ for every λ < λ∗ and no solution for every λ > λ∗. Moreover, if (p − m2)(m1 + 1) > m2−1

m1−1 then u∗ =
limλ→λ∗ uλ is an extremal solution. Even more, u∗ is regular if

3 � N < 4
(p − m2)(m1 − 1)

(p − 1)(m2 − 1)
+ 2 + 4(m1 − 1)

m2 − 1

√
p − m2

p − 1
. (1.3)

We point out that in the case m1 = m2 the condition m1 > 1 can be overcome (see Remark 4.9 below).
Notice that, the particular case p = 2 and m(x) = 1, which, as it has been observed, handles Example 1.12 of [15]

(Gelfand problem), the above condition (1.3) it is nothing but 3 � N < 10. If m2 = 0, the dimension condition is
3 � N < 4 + 2(1 − 1/p) + 4

√
1 − 1/p (see [15, p. 213]). Other particular case (related to −�w = λ/(1 − w)k

(k > 0)) is p = αk + α + 1 and m(x) = α + 1 where condition (1.3) reduces to 3 � N < 4 k
k+1 + 2 + 4

√
k

k+1 .
Therefore, Theorem 1.1 is an extension of the cited semilinear results of [15].

The plan of the paper is the following: in Section 2 we deduce a comparison principle for the general problem (Pλ).
In Section 3 we prove the existence of a minimal solution of (Pλ) for λ in a bounded interval and the extension of the
stability condition for such minimal solutions. Section 4 is devoted to study the properties of the minimal solutions
and the existence as well as the regularity of the extremal solutions.

Notation. As usual for every s ∈ R we consider the positive and negative parts given by s+ = max{s,0} and s− =
min{s,0}. We denote by Tk the usual truncature function given by Tk(s) = min{k, s+}+max{−k, s−}, for every s ∈ R.
We denote by |Ω| the Lebesgue measure of a measurable set Ω in R

N. For 1 � p � +∞, ‖u‖p is the usual norm
of a function u ∈ Lp(Ω). We equipped the standard Sobolev space H 1

0 (Ω) with the norm ‖u‖ = (
∫
Ω

|∇u|2)1/2. We
denote by S = sup{‖u‖2∗ : ‖u‖ = 1} the Sobolev embedding constant (2∗ = 2N/(N −2)). By λ1 (respectively, φ1) we
also denote the first positive eigenvalue (respectively, eigenfunction) of the Laplacian operator −� with zero Dirichlet
boundary conditions.



252 D. Arcoya et al. / Ann. I. H. Poincaré – AN 31 (2014) 249–265
2. A comparison principle

In this section we state a comparison result for the following quasilinear elliptic boundary value problem{−�u + H(x,u,∇u) = d(x) in Ω,

u = 0 on ∂Ω,
(2.1)

where 0 � d ∈ L1(Ω) and H is a nonnegative Carathédory function defined on Ω × [0,+∞) ×R such that

H(x, s, tξ) = t2H(x, s, ξ), ∀s � 0, ∀t ∈R, ∀ξ ∈R
N, a.e. x ∈ Ω. (2.2)

Moreover, we assume that there exists a continuously differentiable positive function g : [0,+∞) → R satisfying

0 � g(s)|ξ |2 �H(x, s, ξ), ∀s � 0, ∀t ∈ R, ∀ξ ∈R
N, a.e. x ∈ Ω. (2.3)

In the sequel, we denote by G the primitive of g given by G(s) = ∫ s

0 g(t) dt for every s � 0.
We say that 0 � u ∈ H 1

0 (Ω) is a supersolution for (2.1) if H(x,u,∇u) ∈ L1(Ω) and∫
Ω

∇u∇φ +
∫
Ω

H(x,u,∇u)φ �
∫
Ω

d(x)φ,

for every φ ∈ H 1
0 (Ω) ∩ L∞(Ω). Analogously we say that 0 � u ∈ H 1

0 (Ω) is a subsolution for (2.1) if H(x,u,∇u) ∈
L1(Ω) and the reverse inequality holds. If u ∈ H 1

0 (Ω) is a sub and a supersolution, then u is called a solution of (2.1).

Theorem 2.1. Assume that H satisfies (2.2), (2.3) and that there exists θ � 0 such that

θ∂sH(x, s, ξ) + θg(s)H(x, s, ξ) − θ
[
g′(s) + g2(s)

]|ξ |2 − 1

4

∣∣2g(s)ξ − ∂ξH(x, s, ξ)
∣∣2 � 0, (2.4)

for a.e. x ∈ Ω , every s � 0 and ξ ∈R
N . If v1, v2 are respectively a sub and a supersolution for (2.1) with v1 ∈ L∞(Ω),

then v1 � v2.

Remark 2.2. We remark explicitly that, in contrast with the comparison principle stated in [3] for a general quasilinear
elliptic differential operators in divergence form, we do not require that H to be independent of x ∈ Ω . Moreover,
we do not impose the (increasing) monotonicity of H with respect to s as in [5,6]. In the particular case H(x, s, ξ) =
h(x, s)|ξ |2 then (2.2) is trivially satisfied and (2.3)–(2.4) reduces to the existence of g, θ such that for every s � 0,
a.e. x ∈ Ω , 0 < g(s) � h(x, s) and

0 � θ∂s

(
h(x, s) − g(s)

) + (
h(x, s) − g(s)

)(
(1 + θ)g(s) − h(x, s)

)
. (2.5)

Observe that if g(s) − h(x, s) is decreasing in s, then (2.5) is satisfied.

Remark 2.3. Existence of solution for (2.1) is known from [9,10], the previous theorem shows that this solution is
unique.

Proof of Theorem 2.1. We consider the C3-function ψ defined in [0,+∞) by ψ(s) = ∫ s

0 e−G(r) dr for each s � 0.
Observe that ψ is increasing with decreasing derivative ψ ′ and that ψ(s) � s, for every s � 0. Thus w = ψ(v1) −
ψ(v2) ∈ H 1(Ω) and w+ ∈ H 1

0 (Ω). If n is the integer part of θ + 1, we denote also S(w) = wn. Taking ψ ′(v1)S(w+)

(respectively, ψ ′(v2)S(w+)) as test function in the inequality satisfied by v1 (respectively, v2), subtracting the resulting
inequalities and taking into account that ψ ′ is nonincreasing, S is increasing with S(0) = 0, d(x) � 0 and (2.2), we
obtain

0 �
∫
Ω

[
ψ ′′(v1)|∇v1|2 + H(x, v1,∇v1)ψ

′(v1) − ψ ′′(v2)|∇v2|2 − H(x, v2,∇v2)ψ
′(v2)

]
S
(
w+)

+
∫

S′(w+)[
ψ ′(v1)∇v1 − ψ ′(v2)∇v2

] · ∇w+
Ω
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=
∫
Ω

[
ψ ′′(v1)|∇ψ(v1)|2 + H(x, v1,∇ψ(v1))ψ

′(v1)

ψ ′(v1)2

− ψ ′′(v2)|∇ψ(v2)|2 + H(x, v2,∇ψ(v2))ψ
′(v2)

ψ ′(v2)2

]
S
(
w+) +

∫
Ω

S′(w+)∣∣∇w+∣∣2

=
∫

{w>0}
S(w)

1∫
0

d

dt

[
ψ ′′(s)|η|2 + H(x, s, η)ψ ′(s)

ψ ′(s)2

]
dt +

∫
{w>0}

|∇w|2S′(w+)

where s = ψ−1(tψ(v1) + (1 − t)ψ(v2)) and η = t∇ψ(v1) + (1 − t)∇ψ(v2). After computing the above derivative,
we derive that

∫
{w>0}

wS(w)

1∫
0

(
ψ ′′′(s)ψ ′(s) − 2ψ ′′(s)2

ψ ′(s)4
|η|2

)
dt

+
∫

{w>0}
wS(w)

1∫
0

(
∂sH(x, s, η)ψ ′(s)2 − H(x, s, η)ψ ′′(s)ψ ′(s)

ψ ′(s)4

)
dt +

∫
{w>0}

S(w)

1∫
0

ψ ′′(s)
ψ ′(s)2

2η · ∇w dt

+
∫

{w>0}
S(w)

1∫
0

ψ ′(s)
ψ ′(s)2

∂ξH(x, s, η) · ∇w dt +
∫

{w>0}
|∇w|2S′(w+)

� 0.

Multiplying by θ̃ = θ
n

and using Young inequality in the set {w > 0}

θ̃

∣∣∣∣S(w)

(
ψ ′′(s)
ψ ′(s)2

2η + ψ ′(s)
ψ ′(s)2

∂ξH(x, s, η)

)
· ∇w

∣∣∣∣
� θ̃2S′(w)|∇w|2 + S2(w+)

4S′(w+)

∣∣∣∣ ψ ′′(s)
ψ ′(s)2

2η + ψ ′(s)
ψ ′(s)2

∂ξH(x, s, η)

∣∣∣∣
2

,

we get

∫
{w>0}

1∫
0

θ̃ (1 − θ̃ )S′(w)|∇w|2

+ θ̃wS(w)

(
∂sH(x, s, η)ψ ′(s)2 − H(x, s, η)ψ ′′(s)ψ ′(s)

ψ ′(s)4
+ ψ ′′′(s)ψ ′(s) − 2ψ ′′(s)2

ψ ′(s)4
|η|2

)

− S2(w+)

S′(w+)

∣∣∣∣ ψ ′′(s)
ψ ′(s)2

2η + ψ ′(s)
ψ ′(s)2

∂ξH(x, s, η)

∣∣∣∣
2

dt � 0.

Taking into account the definition of ψ and S and using the variational characterization of λ1, we have

∫
{w>0}

1∫
0

θ̃ (1 − θ̃ )
4λ1n

(n + 1)2
wn+1 + wn+1

nψ ′(s)2

[
θ∂sH(x, s, η) + θg(s)H(x, s, η) − θ

(
g′(s) + g(s)2)|η|2

− 1

4

∣∣2g(s)η − ∂ξH(x, s, η)
∣∣2

]
dt � 0.

By (2.4), this implies that w+ ≡ 0; i.e. v1 � v2 and the proof is finished. �
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Remark 2.4. Observe that Theorem 2.1 assures the uniqueness of bounded solution u ∈ H 1
0 (Ω) for (2.1). Moreover,

the same conclusion holds, arguing as in the proof with S(Tk(w
+)) instead of S(w+), if we suppose that

lim
k→∞

∫
{w+�k}

kn−1|∇w|2 = 0.

This occurs, for example, in the case n = 1, which correspond to 0 � θ < 1 and S(w) = w in the previous proof.

3. Minimal solutions and stability condition

Let H be a Carathéodory nonnegative function in Ω × [0,+∞) × R satisfying (2.2) and assume that there exist
M � 1 and a C1 nonnegative function g such that

g(s)|ξ |2 � H(x, s, ξ)� Mg(s)|ξ |2, (3.1)

for every x ∈ Ω , s � 0, ξ ∈R
N . Let also f be a continuous function in [0,+∞) with f (0) > 0.

We show the existence of a parameter λ∗ such that problem (Pλ) has a solution if λ < λ∗ and no solution provided
that λ > λ∗. Recall that u ∈ H 1

0 (Ω) is a solution if u� 0 in Ω , H(x,u,∇u) ∈ L1(Ω), f (u) ∈ L1(Ω) and∫
Ω

∇u∇φ +
∫
Ω

H(x,u,∇u)φ = λ

∫
Ω

f (u)φ, (3.2)

for every φ ∈ H 1
0 (Ω) ∩ L∞(Ω). We say that a solution u ∈ H 1

0 (Ω) of (Pλ) is regular if, in addition, u ∈ L∞(Ω).

Theorem 3.1. Let H be a Carathéodory nonnegative function in Ω ×[0,+∞)×R satisfying (2.2), (2.4) and (3.1). Let
also f be a derivable, strictly increasing, nonnegative function in [0,+∞) with f (0) > 0 such that 1

f (s)
∈ L1(0,+∞).

Assume that f ′(s)|ξ |2 −H(x, s, ξ)f (s) is an increasing function in s for every x ∈ Ω , and that there exists a positive
constant c such that (recall that G is a primitive of g)

lim inf
s→+∞

f (s)e−MG(s)∫ s

0 e−MG(r) dr
> 0, (3.3)

and ∣∣∣∣ f ′(s)
f 2(s)

∣∣∣∣� c
(
1 + √

g(s)
)
, ∀s � 0. (3.4)

Then there exists λ∗ ∈ (0,+∞) such that (Pλ) admits a bounded minimal solution uλ for every λ ∈ (0, λ∗) and no
solution for λ > λ∗.

Remark 3.2. In the particular model case H(x, s, ξ) = h(x, s)|ξ |2 with g(s) � h(x, s) � Mg(s) then H satisfies (2.2)
and (3.1), while condition (2.4) is reduced to (2.5). Moreover, f ′(s)|ξ |2 − H(x, s, ξ)f (s) is an increasing function
in s for every x ∈ Ω whenever f ′(s) − h(x, s)f (s) is an increasing function in s for every x ∈ Ω .

Remark 3.3. We point out the independence of hypotheses (3.3) and (3.4) in the above theorem. Indeed, the proof of
the existence of solution for small λ only requires hypothesis (3.4) (i.e., it does not use (3.3)). On the other hand, the
nonexistence of nontrivial solution for large λ only uses (3.3).

Remark 3.4. In the semilinear case (H ≡ 0), condition (3.3) is reduced to the standard condition lim infs→+∞ f (s)/

s > 0. This superlinearity hypothesis on f may also be a sufficient condition for (3.3) for some cases of a general H .
For example, this is true if H(x, s, ξ) = c|ξ |2/(1 + s) with 0 < c < 1. When c � 1 in the above example, the su-
perlinear condition on f has to be strengthened. Specifically, (3.3) holds true provided that lims→+∞ f (s)/sc > 0
(respectively, lims→+∞ f (s)/(s ln s) > 0) if c > 1 (respectively, c = 1).
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Remark 3.5. Observe that if f (0) > 0 then (3.4) is verified for small s > 0. Moreover, since f is increasing,
lim infs→∞ f ′(s)/f 2(s) = 0 (note that f ′/f 2 is integrable with primitive −1/f ). Thus, if the function f ′(s)

f 2(s)
has

limit at infinity, then f verifies (3.4) at infinity.

Proof of Theorem 3.1. First, we show that (3.3) implies that (Pλ) has no positive solution for λ > λ1/c1 for some
positive constant c1. Even more, for these λ’s we prove that (Pλ) does not have a supersolution u ∈ H 1

0 (Ω). Indeed,
let u ∈ H 1

0 (Ω) be satisfying f (u),H(x,u,∇u) ∈ L1(Ω) and∫
Ω

∇u∇φ +
∫
Ω

H(x,u,∇u)φ � λ

∫
Ω

f (u)φ, (3.5)

for every φ ∈ H 1
0 (Ω) ∩ L∞(Ω). The function φ = e−MG(Tk(u))φ1 belongs to H 1

0 (Ω) ∩ L∞(Ω) and we can take it as
test function in (3.5) to get, using (3.1),∫

Ω

∇u∇φ1e
−MG(Tk(u)) +

∫
{u�k}

H(x,u,∇u)e−MG(k)φ1 � λ

∫
Ω

f (u)e−MG(Tk(u))φ1.

By the Lebesgue dominated convergence theorem, taking limits as k tends to ∞, we have∫
Ω

∇u∇φ1e
−MG(u) � λ

∫
Ω

f (u)e−MG(u)φ1.

Using that f � f (0) > 0 and (3.3), there exists a positive constant c1 such that f (s)e−MG(s) � c1
∫ s

0 e−MG(r) dr , for

every s > 0. Consequently, if z(x) = ∫ u(x)

0 e−MG(r) dr , then f (u)e−MG(u) � c1z. Observing that z belongs to H 1
0 (Ω),

this means that

λ1

∫
Ω

zφ1 =
∫
Ω

∇z∇φ1 � λc1

∫
Ω

zφ1,

i.e. λ1 � c1λ, as desired.
In particular, if we consider the set Λ of these λ > 0 for which (Pλ) has a solution, we have Λ ⊂ [0, λ1/c1)

and therefore Λ is bounded. In addition, Λ is an interval. In fact, we observe that if 0 < μ ∈ Λ, then (Pμ) has a
solution w ∈ H 1

0 (Ω). For every fixed λ < μ, we claim that λ ∈ Λ, i.e. that problem (Pλ) has a bounded supersolution
u ∈ H 1

0 (Ω). To verify it we follow closely [12] and define h(s) = ∫ s

0
dt

f (t)
, which is continuous and strictly increasing.

In addition, it is also bounded since 1
f (s)

∈ L1(0,+∞). We take Φ(s) = h−1( λ
μ
h(s)) and we will show that u = Φ(w)

is the desired bounded supersolution. To prove it, we first observe that u ∈ H 1
0 (Ω) ∩ L∞(Ω) (which clearly also

implies that f (u), g(u)|∇u|2 ∈ L1(Ω) and thus, by (3.1), that H(x,u,∇u) ∈ L1(Ω)). Indeed, by the boundedness
of Φ , u ∈ L∞(Ω). Since 1

f
,Φ ∈ L∞(0,+∞), we deduce that f (Φ(w))

f (w)
∈ L∞(Ω) and that

∇u = λ

μ

f (Φ(w))

f (w)
∇w ∈ L2(Ω),

from which, using that Φ(0) = 0, we obtain u ∈ H 1
0 (Ω) ∩ L∞(Ω).

Now, by (3.4), if φ ∈ H 1
0 (Ω) ∩ L∞(Ω), then f (Φ(w))

f (w)
φ ∈ H 1

0 (Ω) ∩ L∞(Ω) and∫
Ω

∇u∇φ +
∫
Ω

H(x,u,∇u)φ =
∫
Ω

Φ ′(w)∇w∇φ +
∫
Ω

H
(
x,Φ(w),Φ ′(w)∇w

)
φ

= μ

∫
Ω

f (w)Φ ′(w)φ −
∫
Ω

H(x,w,∇w)Φ ′(w)φ

−
∫

Φ ′′(w)|∇w|2φ +
∫

H
(
x,Φ(w),Φ ′(w)∇w

)
φ

Ω Ω
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= λ

∫
Ω

f (u)φ +
∫
Ω

[
H

(
x,Φ(w),Φ ′(w)∇w

)

− H(x,w,∇w)Φ ′(w) − Φ ′′(w)|∇w|2]φ.

To conclude that u is a supersolution for (Pλ), it is enough to show that

H
(
x,Φ(w),Φ ′(w)∇w

) − H(x,w,∇w)Φ ′(w) − Φ ′′(w)|∇w|2 � 0.

By (2.2) this is equivalent to prove that

λ

μ

[
f ′(Φ(w)

)|∇u|2 − H
(
x,Φ(w),∇w

)
f

(
Φ(w)

)]
� f ′(w)|∇w|2 − H(x,w,∇w)f (w).

Since λ
μ

< 1 and Φ(s) � s, this is deduced by the hypothesis imposed on the monotony of f ′(s)|ξ |2 −H(x, s, ξ)f (s).
On the other hand, since f (0) > 0, u0 ≡ 0 is a (bounded) subsolution of (Pλ). For an integer n � 1, we define by

induction un as the unique positive and bounded solution of{−�un + H(x,un,∇un) = λf
(
un−1(x)

)
, x ∈ Ω,

un = 0, x ∈ ∂Ω.
(3.6)

The existence of un is guaranteed in [9]. Observe that the uniqueness can be deduced from Theorem 2.1. Moreover,
if un−1(x) � u(x) a.e. x ∈ Ω , using that f is increasing, we deduce that f (un−1(x)) � f (u(x)) a.e. x ∈ Ω and
Theorem 2.1 allows to conclude that un � u. Therefore, since u0 � u, we have inductively that un � u for every
n � 0. Even more, if un−1(x) � un(x) a.e. x ∈ Ω we deduce again from Theorem 2.1 that un � un+1. Thus, since
u0(x) � u1(x) a.e. x ∈ Ω we have that

0 < un � un+1 � · · ·� u.

In particular, un is converging almost everywhere in Ω to some uλ satisfying 0 < un � uλ � u and ‖un‖∞ � ‖u‖∞
for every n ∈ N.

Taking un as test function in (3.6), and using that H is positive, we obtain∫
Ω

|∇un|2 � λf
(‖u‖∞

)‖u‖∞|Ω|.

Therefore, un weakly converges to uλ in H 1
0 (Ω) and the convergence is strongly in Lq(Ω) for 1 � q < 2∗. The

compactness of un is a consequence of Lemma 4 in [10] which implies that uλ is a bounded solution of (Pλ) and,
consequently, Λ is an interval.

We point out that it has been proved that if μ ∈ Λ and λ ∈ (0,μ), then (Pλ) has a bounded solution uλ ∈ H 1
0 (Ω).

In addition, observe that, by the previously cited comparison principle, every solution w ∈ H 1
0 (Ω) of (Pλ) satisfies

that 0 < un � w for every n� 1. This implies uλ � w and it proves that uλ is the minimal solution of (Pλ).
To conclude the proof we only have to prove that Λ is not empty. Indeed, by Remark 2.3, let z ∈ H 1

0 (Ω) ∩ L∞(Ω)

be the unique solution of the problem{−�z + H(x, z,∇z) = 1, x ∈ Ω,

z = 0, x ∈ ∂Ω.

Clearly, there exists ε > 0 such that if λ ∈ [0, ε), then λf (z(x)) � 1 in Ω , so that z is a bounded supersolution of (Pλ).
Using again the iterative scheme (3.6) with z playing the role of u, we deduce the existence of a solution of (Pλ).
Hence, the set Λ contains the interval [0, ε) and it is not empty. �
Remark 3.6. In the previous proof we have proved that if f is a continuous and strictly increasing function with
f (0) > 0 and u is a bounded supersolution of (Pλ), then the limit of the sequence un given by (3.6) is the bounded
minimal solution uλ of (Pλ) for every 0 < λ � λ. As a consequence, uλ(x) is increasing in λ. Moreover, if w ∈ H 1

0 (Ω)

is a solution for (Pμ) then there exists such a bounded supersolution u for every λ < μ and u < w.

In the following lemma we prove a condition satisfied by minimal regular solutions.
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Lemma 3.7. Assume that H satisfies (2.2), (3.1) and there exists 0 < τ � 1 such that

(1 − τ)
[
∂sH(x, s, ξ) + Mg(s)H(x, s, ξ) − (

Mg′(s) + M2g(s)2)|ξ |2]
+ 1

4

∣∣−2Mg(s)ξ + ∂ξH(x, s, ξ)
∣∣2 � 0. (3.7)

If u is a minimal regular solution of (Pλ), then

1

τ

∫
Ω

|∇φ|2 � λ

∫
Ω

[
f ′(u) − Mg(u)f (u)

]
φ2, (3.8)

for every φ ∈ H 1
0 (Ω).

Remark 3.8. In the particular case H(x, s, ξ) = h(x, s)|ξ |2, (3.7) reduces to

0 � (1 − τ)∂s

(
h(x, s) − Mg(s)

) + (
h(x, s) − Mg(s)

)(
h(x, s) − τMg(s)

)
.

We observe that a sufficient condition is that ∂s(Mg(s) − h(x, s)) � 0.

Remark 3.9. Observe that (3.8) plays the role of the stability condition of the semilinear case (see Theorem 4.6
below).

Remark 3.10. If |{x ∈ Ω: f ′(u(x)) − Mg(u(x))f (u(x)) > 0}| > 0, then inequality (3.8), with τ = 1, means that
λ1[f ′(u) − Mg(u)f (u)] � λ, where λ1[d(x)] denotes, for d(x) ∈ Lq(Ω) (q > N/2), the first positive eigenvalue
associated to the weighted eigenvalue problem:{−�u = λd(x)u, x ∈ Ω,

u = 0, x ∈ ∂Ω.

This occurs in particular, if f ′ −Mgf is strictly increasing and nonnegative and u = uλ is a minimal bounded solution
of (Pλ) with λ ∈ (0, λ∗]. Moreover, if λ < λ∗, then we can show that λ1[f ′(uλ) − Mg(uλ)f (uλ)] > λ. Indeed, by
Remark 3.6, we have 0 � uλ � uλ, for every 0 < λ < λ < λ∗. Therefore, using that f ′ − Mgf is increasing, we get

λ1
[
f ′(uλ) − Mg(uλ)f (uλ)

]
� λ1

[
f ′(uλ) − Mg(uλ)f (uλ)

]
� λ > λ.

Proof of Lemma 3.7. Observe that u = limn→∞ un. We define ψ(s) = ∫ s

0 e−MG(r) dr for every s � 0. Choosing
φψ ′(un) as test function in the equation satisfied by un and φψ ′(u) in the equation satisfied by u and subtracting them
we obtain∫

Ω

∇w∇φ = λ

∫
Ω

[
f (u)ψ ′(u) − f (un−1)ψ

′(un)
]
φ −

∫
Ω

[−Mg(u)|∇u|2 + H(x,u,∇u)
]
φψ ′(u)

+
∫
Ω

[−Mg(un)|∇un|2 + H(x,un,∇un)
]
φψ ′(un)

where w = ψ(u) − ψ(un) ∈ H 1
0 (Ω). For any φ ∈ C∞

0 (Ω) and δ > 0 we can take φ2

w+δ
as test function to obtain,

denoting hδ(x) := f (u)ψ ′(u)−f (un−1)ψ
′(un)

w+δ
, that

λ

∫
Ω

hδ(x)φ2 = 2
∫
Ω

φ

w + δ
∇w∇φ −

∫
Ω

φ2

(w + δ)2
|∇w|2 +

∫
Ω

ψ ′′(u)|∇ψ(u)|2 + H(x,u,∇ψ(u))ψ ′(u)

ψ ′(u)2

φ2

w + δ

−
∫
Ω

ψ ′′(un)|∇ψ(un)|2 + H(x,un,∇ψ(un))ψ
′(un)

ψ ′(un)2

φ2

w + δ

= 2
∫

φ

w + δ
∇w∇φ −

∫
φ2

(w + δ)2
|∇w|2 +

∫
φ2

w + δ

1∫
d

dt

(
ψ ′′(s)|η|2 + H(x, s, η)ψ ′(s)

ψ ′(s)2

)
dt
Ω Ω Ω 0
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where s = ψ−1(tψ(u) + (1 − t)ψ(un)) and η = t∇ψ(u) + (1 − t)∇ψ(un). Observe that, from Young inequality we

have |2 φ
w+δ

∇w∇φ|� 1
τ
|∇φ|2 + τ

φ2

(w+δ)2 |∇w|2. Thus

λ

∫
Ω

hδ(x)φ2 � 1

τ

∫
Ω

|∇φ|2 + (τ − 1)

∫
Ω

φ2

(w + δ)2
|∇w|2 +

∫
Ω

φ2

w + δ

1∫
0

d

dt

(
ψ ′′(s)|η|2 + H(x, s, η)ψ ′(s)

ψ ′(s)2

)
dt.

By computing the above derivative, this inequality reduces to

λ

∫
Ω

hδ(x)φ2 � 1

τ

∫
Ω

|∇φ|2 + (τ − 1)

∫
Ω

φ2

(w + δ)2
|∇w|2

+
∫
Ω

φ2w

w + δ

1∫
0

−[Mg′(s) + M2g2(s)]|η|2 + ∂sH(x, s, η) + Mg(s)H(x, s, η)

ψ ′(s)2
dt

+
∫

{w>0}
φ2

1∫
0

∇w

w + δ

(−2Mg(s)η + ∂ξH(x, s, η)

ψ ′(s)

)
dt. (3.9)

In the case τ < 1, taking into account that∣∣∣∣ ∇w

w + δ

(−2Mg(s)η + ∂ξH(x, s, η)

ψ ′(s)

)∣∣∣∣� (1 − τ)
|∇w|2

(w + δ)2
+ 1

4(1 − τ)

∣∣∣∣−2Mg(s)η + ∂ξH(x, s, η)

ψ ′(s)

∣∣∣∣
2

,

we can assure that

λ

∫
Ω

hδ(x)φ2 � 1

τ

∫
Ω

|∇φ|2 +
∫

{w>0}

φ2w

w + δ

1∫
0

[−Mg′(s) − M2g2(s)]|η|2 + ∂sH(x, s, η) + Mg(s)H(x, s, η)

ψ ′(s)2
dt

+
∫

{w>0}
φ2

1∫
0

(
1

4(1 − τ)

∣∣∣∣2ψ ′′(s)η + ∂ξH(x, s, η)ψ ′(s)
ψ ′(s)2

∣∣∣∣
2)

dt. (3.10)

By (3.7) we have

−[
Mg′(s) + M2g2(s)

]|η|2 + ∂sH(x, s, η) + Mg(s)H(x, s, η) � 0.

Thus, by Fatou lemma, taking limits as δ goes to zero in (3.10), we deduce that

λ

∫
Ω

h(x)φ2 � 1

τ

∫
Ω

|∇φ|2 +
∫

{w>0}
φ2

1∫
0

[−Mg′(s) − M2g2(s)]|η|2 + ∂sH(x, s, η) + Mg(s)H(x, s, η)

ψ ′(s)2
dt

+
∫

{w>0}
φ2

1∫
0

(
1

4(1 − τ)

∣∣∣∣2ψ ′′(s)η + ∂ξH(x, s, η)ψ ′(s)
ψ ′(s)2

∣∣∣∣
2)

dt,

where h(x) := f (u)ψ ′(u)−f (un−1)ψ
′(un)

w
. In particular, using again hypothesis (3.7), we obtain

λ

∫
Ω

h(x)φ2 � 1

τ

∫
Ω

|∇φ|2.

The above inequality is also deduced if τ = 1. Indeed, (3.7) and (2.2) imply that, in this case, H(x, s, ξ) = Mg(s)|ξ |2
and (3.9) becomes

λ

∫
hδ(x)φ2 �

∫
|∇φ|2.
Ω Ω
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Using that f is increasing and the generalized mean value theorem, we deduce that

h(x) � f (u)ψ ′(u) − f (un)ψ
′(un)

ψ(u) − ψ(un)
= f ′(θn) − Mg(θn)f (θn),

for some θn ∈ [un,u]. Therefore, we obtain

1

τ

∫
Ω

|∇φ|2 � λ

∫
Ω

(
f ′(θn) − Mg(θn)f (θn)

)
φ2,

which, by taking limits as n → ∞, implies

1

τ

∫
Ω

|∇φ|2 � λ

∫
Ω

[
f ′(u) − Mg(u)f (u)

]
φ2,

for every φ ∈ C∞
0 (Ω). Now, using that f ′(u) − Mg(u)f (u) ∈ L∞(Ω) and the density of C∞

0 (Ω) in H 1
0 (Ω), it

yields (3.8). �
4. Extremal solution

In order to study the existence of solution of (Pλ∗), if uλ denotes the minimal solution of (Pλ) given by Theorem 3.1
for 0 < λ < λ∗, we first give sufficient conditions for the boundedness of uλ in H 1

0 (Ω).

Lemma 4.1. Assume, in addition of hypotheses of Theorem 3.1 and Lemma 3.7, that

lim
s→+∞

s2(f ′(s) − Mg(s)f (s))eG(s)

f (s)
∫ s

0 eG(t) dt
= ρ >

1

τ
. (4.1)

Then the set {‖uλ‖H 1
0 (Ω): λ ∈ (0, λ∗)} is bounded.

Remark 4.2. In the semilinear case (H ≡ 0), condition (4.1) reduces to

lim
s→+∞

sf ′(s)
f (s)

= ρ > 1,

which is satisfied for example if f (s) = es or f (s) = (1 + s)p with p > 1. With respect to quasilinear equations,
hypothesis (4.1) is also satisfied in the following cases:

• f (s) = e�s and H(x, s, ξ) = m(x)|ξ |2 with 0 < m1 � m(x) � m2 < � . In this case, g(s) = m1, M = m2
m1

,
τ = m1

m2
.

• f (s) = (1 + s)p and H(x, s, ξ) = m(x)
1+s

|ξ |2 with 1 < m1 � m(x) � m2 < p and (p − m2)(m1 + 1) > m2−1
m1−1 . In

this case, g(s) = m1/(1 + s), M = m2
m1

, τ = m1−1
m2−1 .

Proof of Lemma 4.1. Observe that ϕ(s) = e−G(s)
∫ s

0 eG(t) dt satisfies ϕ′(s) + g(s)ϕ(s) = 1. Thus, if we take
φ = ϕ(uλ) as test function in (3.2) with u = uλ, we obtain from (3.1) that

λ

∫
Ω

f (uλ)ϕ(uλ) =
∫
Ω

|∇uλ|2ϕ′(uλ) +
∫
Ω

H(x,uλ,∇uλ)ϕ(uλ)

�
∫
Ω

|∇uλ|2
[
ϕ′(uλ) + g(uλ)ϕ(uλ)

] =
∫
Ω

|∇uλ|2.

Choosing φ = uλ in the stability condition (3.8) satisfied by uλ, we get

λ

∫
f (uλ)ϕ(uλ) �

∫
|∇uλ|2 � τλ

∫ [
f ′(uλ) − Mg(uλ)f (uλ)

]
u2

λ.
Ω Ω Ω
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By (4.1), there exists C > 0 such that
1
τ
+ρ

2 ϕ(s)f (s) � [f ′(s) − Mg(s)f (s)]s2 + C, for every s � 0 and, conse-
quently, we deduce that

∫
Ω

f (uλ)ϕ(uλ) (and hence
∫
Ω

|∇uλ|2) is bounded for λ ∈ (0, λ∗). �
Remark 4.3. We remark explicitly that in the above proof we have seen that

∫
Ω

f (uλ)ϕ(uλ) is bounded for λ ∈
(0, λ∗).

Now, we give sufficient conditions to prove that there exists extremal solution.

Theorem 4.4. If, in addition to the hypotheses of Lemma 4.1, we assume that g is bounded, then uλ converges almost
everywhere in Ω as λ → λ∗ to a function u∗ ∈ H 1

0 (Ω) which is a (not necessarily bounded) solution of the quasilinear
problem (Pλ∗).

Proof. By Lemma 4.1, uλ is bounded in H 1
0 (Ω) and then there exists u∗ ∈ H 1

0 (Ω) such that uλ weakly converges
to u∗. Now, we prove that u∗ is a solution of (Pλ∗) dividing the proof in two steps. In the first one, we show
that {f (uλ): 0 < λ < λ∗} is bounded in L1(Ω). In the second step, we see that this boundedness implies that u∗
solves (Pλ∗).

Step 1: {f (uλ): 0 < λ < λ∗} is bounded in L1(Ω) and f (u∗) ∈ L1(Ω). Indeed, since g is bounded, if a > 0 is an
upper bound of g, then the function ϕ(s) := ∫ s

0 e− ∫ s
t g(τ ) dτ dt � 1

a
(1 − e−as), for s � 0. In particular, for every fixed

s0 > 0 it follows that infs�s0 ϕ(s) > 0 and we have∫
Ω

f (uλ)� f (s0)|Ω| + 1

infs�s0 ϕ(s)

∫
Ω

f (uλ)ϕ(uλ),

which, by Remark 4.3, implies that
∫
Ω

f (uλ) is bounded for λ ∈ (0, λ∗). This implies, using the monotone conver-
gence theorem (the function λ → uλ is increasing, see Remark 3.6) that f (u∗) ∈ L1(Ω).

Step 2: u∗ is a solution of (Pλ∗). First, taking Tε(uλ)/ε as test function in Eq. (3.2) satisfied by uλ we have∫
Ω

H(x,uλ,∇uλ)
Tε(uλ)

ε
� λ

∫
Ω

f (uλ)
Tε(uλ)

ε
� λ∗

∫
Ω

f (uλ).

Using Fatou lemma when ε tends to zero, we obtain by Step 1 the boundedness in L1(Ω) of H(x,uλ,∇uλ), more pre-
cisely, ‖H(x,uλ,∇uλ)‖1 � ‖λ∗f (u∗)‖1 for every 0 < λ < λ∗. Hence ‖λf (uλ) − H(x,uλ,∇uλ)‖1 � 2‖λ∗f (u∗)‖1.
By [8, Theorem 2.1], this assures that ∇uλ(x) → ∇u∗(x) (λ → λ∗) almost everywhere in Ω . Then we can use again
Fatou lemma as λ goes to λ∗ to get H(x,u∗,∇u∗) ∈ L1(Ω).

Now, in order to verify that u∗ is a solution of (Pλ∗), we closely follow [7]. Taking a nonnegative function φ ∈
H 1

0 (Ω) ∩ L∞(Ω) as test function in Eq. (3.2) satisfied by uλ, we can apply again Fatou lemma to obtain∫
Ω

H
(
x,u∗,∇u∗)φ � λ∗

∫
Ω

f
(
u∗)φ −

∫
Ω

∇u∗∇φ. (4.2)

On the other hand, taking the function eM[G(Tk(u
∗))−G(uλ)]φ as test function, it follows that∫

Ω

∇uλ∇φeM[G(Tk(u
∗))−G(uλ)] +

∫
Ω

Mg
(
Tk

(
u∗))eM[G(Tk(u

∗))−G(uλ)]∇Tk

(
u∗)∇uλφ

= −
∫
Ω

H(x,uλ,∇uλ)e
M[G(Tk(u

∗))−G(uλ)]φ +
∫
Ω

Mg(uλ)e
M[G(Tk(u

∗))−G(uλ)]|∇uλ|2φ

+ λ

∫
f (uλ)e

M[G(Tk(u
∗))−G(uλ)]φ.
Ω
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By the weak convergence of uλ to u∗ (as λ → λ∗) and the convergence of eM[G(Tk(u
∗))−G(uλ)] to eM[G(Tk(u

∗))−G(u∗)]
in L2(Ω) we have the convergence of the left-hand side of the previous identity to∫

Ω

∇u∗∇φeM[G(Tk(u
∗))−G(u∗)] +

∫
Ω

Mg
(
Tk

(
u∗))eM[G(Tk(u

∗))−G(u∗)]∇Tk

(
u∗)∇u∗φ.

Thus, using (3.1) and once again by Fatou lemma in the right-hand side of this identity, we get∫
Ω

∇u∗∇φeM[G(Tk(u
∗))−G(u∗)] +

∫
Ω

Mg
(
Tk

(
u∗))eM[G(Tk(u

∗))−G(u∗)]∇Tk

(
u∗)∇u∗φ

�−
∫
Ω

H
(
x,u∗,∇u∗)eM[G(Tk(u

∗))−G(u∗)]φ +
∫
Ω

Mg
(
u∗)eM[G(Tk(u

∗))−G(u∗)]∣∣∇u∗∣∣2
φ

+ λ∗
∫
Ω

f
(
u∗)eM[G(Tk(u

∗))−G(u∗)]φ.

Using that eM[G(Tk(u
∗))−G(u∗)] � 1 and passing to the limit in the previous inequality as k → +∞, the Lebesgue

dominated convergence theorem implies that∫
Ω

∇u∗∇φ +
∫
Ω

H
(
x,u∗,∇u∗)φ � λ∗

∫
Ω

f
(
u∗)φ,

which together to (4.2) implies∫
Ω

∇u∗∇φ +
∫
Ω

H
(
x,u∗,∇u∗)φ = λ∗

∫
Ω

f
(
u∗)φ,

for every 0 � φ ∈ H 1
0 (Ω) ∩ L∞(Ω). �

Remark 4.5. By taking uλ as test function in (3.2) with u = uλ, we have∫
Ω

|∇uλ|2 +
∫
Ω

H(x,uλ,∇uλ)uλ = λ

∫
Ω

f (uλ)uλ.

Thus, recalling that uλ is bounded in H 1
0 (Ω), in the case in which g(s)s is a bounded function then f (u∗)u∗ ∈ L1(Ω).

We point out that since the constant M in (3.1) can be chosen arbitrarily large, then the condition (3.8) cannot be
optimal in general.

Next result shows that if M = 1 in hypothesis (3.1); i.e., if H(x, s, ξ) = g(s)|ξ |2, then we can extend the semilinear
characterization of the minimal solution as the solutions satisfying (3.8) with τ = 1 (see [13]). A solution u ∈ H 1

0 (Ω)

of (Pλ) with H(x, s, ξ) = g(s)|ξ |2 is called stable if it satisfies condition (3.8).
Observe that, under the hypotheses of Theorem 4.4, the minimal solution uλ(x) is increasing in λ and converging

to u∗(x) almost everywhere in Ω . Since f ′ − gf is increasing, the monotone convergence theorem implies that u∗
satisfies also the condition (3.8); that is u∗ is stable. We also prove that λ∗ can be characterized as the unique possible
value of λ for which problem (Pλ) admits a singular stable solution.

Theorem 4.6. Assume that H(x, s, ξ) = g(s)|ξ |2 with g a continuous nonnegative function and let f be a derivable
function satisfying (3.3), (3.4) and such that f and f ′ − gf are strictly increasing positive functions. If u ∈ H 1

0 (Ω)

is a stable solution of (Pλ), then u is the minimal solution of (Pλ). In particular, if additionally u is singular, then
λ = λ∗. Moreover, if λ = λ∗ and 1/f (u), f (u)u ∈ L1(Ω) then u = u∗ = limλ→λ∗ uλ.

Proof. Let u ∈ H 1
0 (Ω) be a stable solution of (Pλ). We claim that u � v, for any other solution v ∈ H 1

0 (Ω) of (Pλ).
Indeed, given φ ∈ H 1

0 (Ω) ∩ L∞(Ω), take e−G(Tk(v))φ and e−G(Tk(u))φ as test functions in the equations satisfied
respectively by v and u. After passing to the limit as k tends to infinity we get
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∫
Ω

∇v∇φe−G(v) = λ

∫
Ω

f (v)e−G(v)φ,

and ∫
Ω

∇u∇φe−G(u) = λ

∫
Ω

f (u)e−G(u)φ.

Subtracting both identities and choosing φ = wk := Tk(ψ(v) − ψ(u))− (with ψ(s) = ∫ s

0 e−G(t) dt), it follows that∫
Ω

|∇wk|2 = λ

∫
Ω

(
f (v)e−G(v) − f (u)e−G(u)

)
wk.

Using that wk � (ψ(v)−ψ(u))− and passing to the limit when k goes to infinity we obtain that w := (ψ(v)−ψ(u))−
satisfies∫

Ω

|∇w|2 � λ

∫
Ω

(
f (v)e−G(v) − f (u)e−G(u)

)
w.

Since u is a stable solution,
∫
Ω

|∇w|2 � λ
∫
Ω

(f ′(u) − g(u)f (u))w2, and we derive that∫
Ω

[
f (v)e−G(v) − f (u)e−G(u) − (

f ′(u) − g(u)f (u)
)
w

]
w � 0.

Since f ′ − gf is strictly increasing, we observe that the integrand in the preceding inequality is strictly positive.
Indeed,

f (v)e−G(v) − f (u)e−G(u) − (
f ′(u) − g(u)f (u)

)
w

=
v∫

u

(
f ′(s) − g(s)f (s)

)
e−G(s) ds −

v∫
u

f ′(u) − g(u)f (u)

v − u
w ds

=
v∫

u

[(
f ′(s) − g(s)f (s)

)
e−G(s) − f ′(u) − g(u)f (u)

v − u
w

]
ds

>

v∫
u

(
f ′(u) − g(u)f (u)

)[
e−G(s) − w

v − u

]
ds

= (
f ′(u) − g(u)f (u)

)[(
ψ(v) − ψ(u)

) − w
] = 0,

and, consequently, we deduce that w = 0, or equivalently, ψ(v) � ψ(u). Using that ψ is an increasing function we
obtain v � u, proving the claim and, therefore, u is the minimal solution for (Pλ).

Recalling that by Theorem 3.1, the minimal solution of (Pλ) for λ < λ∗ is bounded, we also obtain that the unique
parameter λ for which (Pλ) may admit a singular stable solution u is λ = λ∗.

Finally, if λ = λ∗, since u ∈ H 1
0 (Ω) is a (not necessarily singular) stable minimal solution for (Pλ∗ ), then, uλ � u

for every λ < λ∗ (see Remark 3.6) and thus u∗ = limλ→λ∗ uλ � u. On the other hand, taking uλ as test function in the
equation satisfied by uλ and, using that g � 0 and that f is increasing, we get∫

Ω

|∇uλ|2 �
∫
Ω

|∇uλ|2
(
1 + g(uλ)uλ

) = λ

∫
Ω

f (uλ)uλ � λ∗
∫
Ω

f (u)u.

Therefore uλ is bounded in H 1
0 (Ω) and thus u∗ ∈ H 1

0 (Ω) and it is its weak limit as λ tends to λ∗. Taking into account
that u is the minimal solution for (Pλ∗ ) then, in order to conclude that u∗ = u, it is enough to show that u∗ is actually
a solution for (Pλ∗ ). This is a consequence of the integrability of f (u∗) due to the inequality
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0 � f (uλ) � f
(
u∗) � f (u)

with f (u) ∈ L1(Ω) (since u is a solution of (Pλ)). �
A natural question arises: is the extremal solution bounded or not? In [15] (see also [13,21]), for the semilinear case,

sufficient conditions are given to assure that the extremal solution is bounded. We extend these sufficient conditions
to the quasilinear case.

Theorem 4.7. Assume that hypotheses of Lemma 4.1 hold true with g bounded. If, in addition,

lim
s→+∞g(s)

f (s)

f ′(s)
= α <

1

M
, lim

s→+∞
f (s)[f ′(s) − Mg(s)f (s)]′
f ′(s)[f ′(s) − Mg(s)f (s)] = μ (4.3)

and

N < 4τ(1 − Mα) + 2μ + 4
√

τ(1 − Mα)
[
τ(1 − Mα) + μ + α − 1

]
, (4.4)

then the extremal solution u∗ given by Theorem 4.4 is bounded.

Proof. If we define ν := 2τ(1 − Mα) + μ + 2
√

τ(1 − Mα)[τ(1 − Mα) + μ + α − 1], by (4.4), we can fix β ∈
(N/2, ν). Let ϕ(s) be a continuously differentiable function with ϕ(0) = 0 and

ϕ(s) =
(

f (s)β

f ′(s) − Mg(s)f (s)

) 1
2

for s � 1.

For λ < λ∗ we choose φ = ϕ(uλ) as test function in the stability condition (3.8) to get∫
Ω

|∇uλ|2ϕ′(uλ)
2 � τλ

∫
Ω

f (uλ)
β + τλ

∫
{uλ�1}

[
f ′(uλ) − Mg(uλ)f (uλ)

]
ϕ(uλ)

2 − τλ

∫
{uλ�1}

f (uλ)
β. (4.5)

Now, we define ψ(s) = ∫ s

0 ϕ′(t)2eG(t)−G(s) dt . Using L’Hôpital rule and (4.3) we have

lim
s→+∞

ψ(s)

f (s)β−1
= lim

s→+∞

∫ s

0 ϕ′(t)2e
∫ t

0 g(τ) dτ dt

f (s)β−1e
∫ s

0 g(τ) dτ dt
= 1

4

(β − μ)2

(β − 1 + α)(1 − Mα)
.

In particular, since β < ν, we can choose γ in the interval (
(β−μ)2

4(β−1+α)(1−Mα)
, τ ) and K > 0 such that

ψ(s) � γf (s)β−1 + K for s � 0.

Thus, taking ψ(uλ) as test function in (3.2) with u = uλ and using (3.1), it follows∫
Ω

|∇uλ|2ϕ′(uλ)
2 =

∫
Ω

|∇uλ|2ψ ′(uλ) +
∫
Ω

g(uλ)|∇uλ|2ψ(uλ)

� λ

∫
Ω

f (uλ)ψ(uλ)

� λγ

∫
Ω

f (uλ)
β + Kλ

∫
Ω

f (uλ).

This, jointly with (4.5) gives

(τ − γ )λ

∫
Ω

f (uλ)
β � Kλ

∫
Ω

f (uλ) + τλ

∫
{uλ�1}

f (uλ)
β

� Kλ∗
∫

f
(
u∗) + τλ∗f (1)β |Ω|.
Ω
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Thus, γ < τ and Fatou lemma imply that f (u∗) ∈ Lβ(Ω). As a consequence, since β > N
2 , the Stampacchia theorem

(see Lemma 5.1 in [23]) assures that u∗ ∈ L∞(Ω). �
Remark 4.8. In some cases, condition (4.4) can be improved. For example, we can analyze the case that g � 0 and,
for some q, k > 1, f (s) ∼ ksq for s � 0. In this particular case, the boundedness of the extremal solution u∗ in the
above result is deduced from the Lβ -integrability of the power (u∗)q for some β > N/2. However, using a bootstrap
argument, it is also possible to deduce that u∗ ∈ L∞(Ω) if we just have β > N

2
q−1
q

. Thus, condition (4.4) can be
improved in this case to

N <
q

q − 1

(
4τ(1 − Mα) + 2μ + 4

√
τ(1 − Mα)

[
τ(1 − Mα) + μ + α − 1

] )
.

We conclude this section and the paper by showing some applications of the preceding theorems to some particular
cases of nonlinearities f and H . First we consider the case of problem (1.2) proving Theorem 1.1.

Proof of Theorem 1.1. Take f (s) = (1 + s)p and H(x, s, ξ) = m(x)
1+s

|ξ |2, with 1 < m1 � m(x) � m2 < p and 1 < p.
Observe that (3.1) is satisfied with g(s) = m1

1+s
and M = m2

m1
. Moreover, f and g are nonnegative C1-functions in

[0,∞) with f (0) > 0, f strictly increasing, f ′(s) − m(x)
1+s

f (s) is strictly increasing in s for every x ∈ Ω and g

bounded. In addition, 1/f ∈ L1(0,+∞) and conditions (2.2), (2.4) for θ = m2−m1
m1−1 , (3.3) and (3.4) are satisfied. Thus,

by Theorem 3.1, there exists λ∗ > 0 such that (1.2) has a minimal regular solution uλ for every λ < λ∗ and no solution
for every λ > λ∗. On the other hand, condition (3.7) holds true with τ = m1−1

m2−1 and, if (p − m2)(m1 + 1) > m2−1
m1−1 ,

then also condition (4.1) is satisfied (see Remark 4.2) and Theorem 4.4 assures in this case that u∗ = limλ→λ∗ uλ is an
extremal solution. Finally, condition (4.3) is satisfied with α = m1/p and μ = (p − 1)/p which implies, taking into
account Theorem 4.7 and Remark 4.8, that u∗ is regular provided that

3 � N < 4
m1 − 1

m2 − 1

p − m2

p − 1
+ 2 + 4

m1 − 1

m2 − 1

√
p − m2

p − 1
. �

Remark 4.9. In the case m1 = m(x) = m2 Eq. (2.4) is trivially satisfied even for m1 � 1.

Remark 4.10. Using similar arguments to these ones in [17,21], we can study (see [1]) the radial solutions for (1.2)
with m(x) = 1 and p = 2, that is, the problem⎧⎨

⎩−�w + |∇w|2
1 + w

= λ(1 + w)2 in B1(0),

w = 0 on ∂B1(0).

(Qλ)

A phase plane technique proves, for every λ > 0, the existence of infinitely many negative radially increasing solutions
with w(0) = −1. Moreover, in this case there exist infinitely many bounded sign-changing solutions. Even more, if
we denote λ = 2(N − 2) and λ∗ := sup{λ > 0: (Qλ) admits positive radial solution} we have:

1. If N � 10 then λ∗ = λ and (Qλ) has a unique positive radial regular solution for every λ ∈ (0, λ∗).
2. If 2 < N < 10 then λ < λ∗ < +∞ and (Qλ) has infinitely many positive regular radial solutions and a unique

positive singular solution for 5 � N < 10.

Similarly, it is possible to handle the case of exponential nonlinearities f (s).

Theorem 4.11. If 0 < m1 � m(x) � m2 < � , then there exists λ∗ > 0 such that the problem{−�u + m(x)|∇u|2 = λe�u in Ω,

u = 0 on ∂Ω

has a minimal regular solution uλ for every 0 < λ < λ∗ and no solution for every λ > λ∗. Moreover, u∗ = limλ→λ∗ uλ

is a solution (the extremal solution) for λ = λ∗ and, if
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3 � N < 4
m1

m2

� − m2

�
+ 2 + 4

m1

m2

√
� − m2

�
,

then u∗ is also regular.

Proof. Take f (s) = e�s and H(x, s, ξ) = m(x)|ξ |2 which satisfies (3.1) with g(s) = m1 and M = m2
m1

. Hypotheses
of Theorems 3.1, 4.4 and 4.7 are satisfied. Indeed, see Remarks 3.2 and 4.2 and use α = 1/� and μ = 1 to verify
condition (4.3). The proof is concluded applying these theorems. �
Remark 4.12. In the particular semilinear case, i.e., M = 0, we again obtain the sufficient condition 3 � N < 10 for
the regularity of the extremal solution.
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