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Abstract

Let u be a type I blowing up solution of the Cauchy–Dirichlet problem for a semilinear heat equation,⎧⎪⎨
⎪⎩

∂tu = �u + up, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x,0) = ϕ(x), x ∈ Ω,

(P )

where Ω is a (possibly unbounded) domain in RN , N � 1, and p > 1. We prove that, if ϕ ∈ L∞(Ω)∩Lq(Ω) for some q ∈ [1,∞),
then the blow-up set of the solution u is bounded. Furthermore, we give a sufficient condition for type I blowing up solutions not to
blow up on the boundary of the domain Ω . This enables us to prove that, if Ω is an annulus, then the radially symmetric solutions
of (P ) do not blow up on the boundary ∂Ω .
© 2013

1. Introduction

This paper concerns the blow-up problem for a semilinear heat equation,⎧⎪⎨
⎪⎩

∂tu = �u + up in Ω × (0, T ),

u(x, t) = 0 on ∂Ω × (0, T ) if ∂Ω �= ∅,

u(x,0) = ϕ(x) � 0 in Ω,

(1.1)

where Ω is a (possibly unbounded) domain in RN , N � 1, ∂t = ∂/∂t , p > 1, T > 0, and ϕ ∈ L∞(Ω). Let T be the
maximal existence time of the unique bounded solution u of (1.1). If T < ∞, then

lim sup
t→T

∥∥u(t)
∥∥

L∞(Ω)
= ∞,
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and we call T the blow-up time of the solution u. The blow-up of u is said to be of type I if

lim sup
t→T

(T − t)
1

p−1
∥∥u(t)

∥∥
L∞(Ω)

< ∞.

Furthermore, the blow-up of u is said to be of O.D.E. type if

lim sup
t→T

(T − t)
1

p−1
∥∥u(t)

∥∥
L∞(Ω)

= κ with κ =
(

1

p − 1

)1/(p−1)

.

If the blow-up of u is not of type I, then we say that the blow-up of u is of type II. We denote by B(u) the blow-up set
of the solution u, that is,

B(u) =
{
x ∈ Ω: there exists a sequence

{
(xn, tn)

} ⊂ Ω × (0, T )

such that lim
n→∞(xn, tn) = (x, T ), lim

n→∞u(xn, tn) = +∞
}
.

We remark that B(u) is a closed set in Ω .
The blow-up set for problem (1.1) has been studied intensively since the pioneering work due to Weissler [32].

See for example [1–3,6–27,31–35], and references therein. See also [30], which includes a good list of references in
this topic. Among others, Friedman and McLeod [6] studied the blow-up set by using the comparison principle, and
proved the following (see [6, Theorem 3.3]):

(a) If Ω is convex, then the boundary blow-up does not occur, that is, B(u) ∩ ∂Ω = ∅.

In [14–16], Giga and Kohn studied blow-up problem (1.1), and established a blow-up criterion for the solutions in the
case where (N − 2)p < N + 2. This criterion implies the following:

(b) If Ω is a (possibly unbounded) convex domain and (N − 2)p < N + 2, then the blow-up set B(u) is bounded
provided that ϕ ∈ H 1(Ω);

(c) If Ω is strictly star-shaped about a ∈ ∂Ω and (N − 2)p < N + 2, then a /∈ B(u).

For assertion (b), see [16, Theorem 5.1, Remarks 5.2 and 5.4] and for assertion (c), see [16, Theorem 5.3]. Assertion (b)
was also proved in [12] and [13] for the one dimensional case, with the initial function ϕ which deceases monotonically
to 0 and which satisfies 0 � ϕ(x) � C|x|−2/(p−1) for some constant C. On the other hand, in [19], the second author
of this paper and Mizoguchi proved that a blow-up criterion similar to that of [14–16] holds for type I blowing up
solutions without the convexity of the domain Ω , and obtained the following:

(d) If Ω is a bounded smooth domain in RN and (N − 2)p � N + 2, then type I blowing up solutions do not blow
up on the boundary ∂Ω .

Unfortunately, if Ω is not convex, then there are few results, except assertion (d), identifying whether the boundary
blow-up occurs or not, and the following problem is still open as far as we know:

(P )
Let Ω be an annulus in RN . Then does the radially symmetric solution

of (1.1) blow up on the boundary ∂Ω?

We remark that there exists a solution blowing up on the boundary of the domain for the equation

∂tu = uxx + k
(
um

)
x

+ u2m−1,

where m > 1 and large enough k > 2/
√

m (see [4]).
In this paper we prove that the blow-up set of the solution u of (1.1) is bounded if the blow-up of the solution u

is of type I and the initial function ϕ ∈ L∞(Ω) ∩ Lq(Ω) for some q ∈ [1,∞). Furthermore, we give a sufficient
condition for the solution u not to blow up on the boundary of the domain Ω , and prove that, if Ω is annulus, then
the radially symmetric solution does not blow up on the boundary ∂Ω . In addition, we prove that, if Ω satisfies the
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exterior sphere condition and the solution u of (1.1) exhibits O.D.E. type blow-up, then the solution does not blow-up
on the boundary ∂Ω .

We introduce some notation. Let B(x, r) = {y ∈ RN : |y − x| < r} for x ∈ RN and r > 0. For any bounded contin-
uous function f on Ω and any constant η, we put

M(f,η) := {
x ∈ Ω: f (x) � ‖f ‖L∞(Ω) − η

}
.

For any φ ∈ L∞(RN), let

(
et�ϕ

)
(x) := (4πt)−

N
2

∫

RN

e− |x−y|2
4t φ(y) dy.

For any λ > 0, let ζλ be a solution of ζ ′ = ζp with ζ(0) = λ, that is,

ζλ(t) := κ(Sλ − t)
− 1

p−1 with Sλ = λ−(p−1)

p − 1
. (1.2)

Now we are ready to state the main results of this paper. The first theorem concerns the boundedness of the blow-up
set for problem (1.1).

Theorem 1.1. Let u be a solution of (1.1) which exhibits type I blow-up at t = T . If ϕ ∈ L∞(Ω) ∩ Lq(Ω) for some
q ∈ [1,∞), then

sup
x∈Ω\B(0,R), t∈(0,T )

∣∣u(x, t)
∣∣ < ∞

for some R > 0. In particular, the blow-up set B(u) is bounded.

In the second theorem we give a result on the relationship between the location of the blow-up set and the level
sets of the solution just before the blow-up time. Theorem 1.2 also gives a sufficient condition for type I blowing up
solutions of (1.1) not to blow up on the boundary ∂Ω .

Theorem 1.2. Let u be a solution of (1.1) which exhibits type I blow-up at t = T . Assume

lim
t→T

(T − t)
1

p−1 + 1
2
∥∥∇u(t)

∥∥
L∞(Ω)

= 0. (1.3)

Then the blow-up of u is of O.D.E. type. Furthermore, for any η ∈ (0, κ), there exists a constant T ′ ∈ (0, T ) such that

B(u) ⊂
⋂

T ′<t<T

M
(
(T − t)

1
p−1 u(t), η

)
. (1.4)

In particular, the solution u does not blow up on the boundary ∂Ω , that is, B(u) ∩ ∂Ω = ∅.

Here we remark that, if Ω is a smooth bounded domain and (N − 2)p < N + 2, then the blow-up of the solution
is of type I and (1.3) holds (see Theorem 1.1 in [26]).

As an application of Theorem 1.2, we give the following result, which gives an affirmative answer to problem (P ).

Corollary 1.1. Let

Ω = {
x ∈ RN : a < |x| < b

}
, 0 < a < b < ∞.

Then the radially symmetric solution of (1.1) does not blow up on the boundary ∂Ω .

Furthermore, we give the following theorem with the aid of Corollary 1.1.

Theorem 1.3. Let Ω be a bounded domain in RN satisfying the exterior sphere condition. Let u be a solution of (1.1)
which exhibits O.D.E. type blow-up. Then the solution u does not blow up on the boundary ∂Ω .
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In this paper we improve the arguments in [8], and give a blow-up criterion for the semilinear heat equations
with small diffusion (see Proposition 2.1). This blow-up criterion enables us to study the location of the blow-up
set for problem (1.1) by using the profile of the solution just before the blow-up time and to obtain Theorems 1.1
and 1.2. Furthermore, for the radially symmetric solutions of (1.1) in an annulus, we apply the arguments in [5]
and [28] with the aid of [26,27,29], and obtain the blow-up estimates of the solution and its gradient. Then we can
prove Corollary 1.1 with the aid of Theorem 1.2. In addition, we prove Theorem 1.3 by using Proposition 2.1 and
Corollary 1.1.

The rest of this paper is organized as follows: In Section 2 we give some preliminary results on the blow-up
problem (1.1). Section 3 is devoted to the proofs of Theorems 1.1, 1.2, and Corollary 1.1. In Section 4 we prove
Theorem 1.3.

2. Preliminaries

In this section we give preliminary results on the blow-up problem for the semilinear heat equations. We first give
a lemma on O.D.E. type blowing up solutions.

Lemma 2.1. Assume the same conditions as in Theorem 1.2. Then the blow-up of the solution u is of O.D.E. type.

Proof. We denote by T the blow-up time of the solution u of (1.1). Let ε > 0 be a sufficiently small constant. Put

wε(x, t) := ε
1

p−1 u(x,T − ε + εt), ϕε(x) := ε
1

p−1 u(x,T − ε). (2.1)

Then wε blows up at t = 1 and satisfies⎧⎪⎨
⎪⎩

∂twε = ε�wε + wp
ε in Ω × (0,1),

wε(x, t) = 0 on ∂Ω × (0,1),

wε(x,0) = ϕε(x) in Ω.

(2.2)

By the comparison principle we see that∥∥wε(t)
∥∥

L∞(Ω)
� ζλε (t) for 0 < t < Sλε ,

where λε = ‖ϕε‖L∞(Ω), and obtain Sλε � 1. This together with (1.2) implies

‖ϕε‖L∞(Ω) � κ. (2.3)

Furthermore, since the blow-up of u is of type I, by (2.1) we can find a positive constant C such that

‖ϕε‖L∞(Ω) = ε
1

p−1
∥∥u(T − ε)

∥∥
L∞(Ω)

� ε
1

p−1 · C(
T − (T − ε)

)− 1
p−1 � C. (2.4)

On the other hand, by (1.3) and (2.1) we have

lim
ε→0

ε
1
2 ‖∇ϕε‖L∞(Ω) = lim

ε→0
ε

1
p−1 + 1

2
∥∥∇u(T − ε)

∥∥
L∞(Ω)

= lim
t→T

(T − t)
1

p−1 + 1
2
∥∥∇u(t)

∥∥
L∞(Ω)

= 0. (2.5)

Then, by (2.3)–(2.5) we apply [7, Proposition 1] to problem (2.2), and obtain

lim
ε→0

Sλε = 1.

This together with (1.2) yields limε→0 ‖ϕε‖L∞(Ω) = κ , and we obtain

lim
t→T

(T − t)
1

p−1
∥∥u(t)

∥∥
L∞(Ω)

= lim
ε→0

ε
1

p−1
∥∥u(T − ε)

∥∥
L∞(Ω)

= lim
ε→0

‖ϕε‖L∞(Ω) = κ.

Thus the blow-up of the solution u is of O.D.E. type, and Lemma 2.1 follows. �
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Next we consider the blow-up problem for a semilinear heat equation with small diffusion. Let uε be a solution of⎧⎪⎨
⎪⎩

∂tu = ε�u + up in Ω × (0, Tε),

u(x, t) = 0 on ∂Ω × (0, Tε) if ∂Ω �= ∅,

u(x,0) = ϕε(x) � 0 in Ω,

(2.6)

where N � 1, Ω is a domain in RN , p > 1, ε > 0, and ϕε ∈ L∞(Ω). Let Tε and Bε be the blow-up time and the
blow-up set of the solution uε of problem (2.6), respectively. The rest of this section is devoted to the proof of the
following proposition, which is the main ingredient of this paper and a modification of [8, Proposition 4.1].

Proposition 2.1. Let uε be a solution of (2.6) with Tε = 1 such that

sup
0<ε<ε0

sup
0<t<1

(1 − t)
1

p−1
∥∥uε(t)

∥∥
L∞(Ω)

� C∗ (2.7)

for some ε0 > 0 and C∗ > 0. Let Ω ′ be a domain such that Ω ⊂ Ω ′ and {ϕ̃ε}0<ε<ε0 a family of functions belonging
to W 1,∞(Ω ′) such that

0 � ϕε � ϕ̃ε in Ω for all ε ∈ (0, ε0), (2.8)

sup
0<ε<ε0

‖ϕ̃ε‖L∞(Ω ′) < ∞. (2.9)

Assume that there exists a constant η > 0 such that

ϕ̃ε(x) < κ − η on ∂Ω ′ if ∂Ω ′ �= ∅. (2.10)

Then, for any δ > 0, there exist positive constants σ and ε1 such that, if

sup
0<ε<ε1

ε
1
2 ‖∇ϕ̃ε‖L∞({x∈Ω ′: κ−η�ϕ̃ε (x)�κ}) � σ, (2.11)

then there holds

Bε ⊂ {
x ∈ Ω: ϕ̃ε(x) � κ − δ

}
, 0 < ε < ε1. (2.12)

Here the constants σ and ε1 are independent of the domain Ω .

Let δ > 0. Let σ and ε1 be sufficiently small positive constants to be chosen later, and assume (2.11). Let α ∈
(0,min{κ,η}/10). For any ε ∈ (0, ε1), put

ϕ∗
ε (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ − α if x ∈ Ω ′ and ϕ̃ε(x) � κ − α,

ϕ̃ε(x) if x ∈ Ω ′ and κ − 10α � ϕ̃ε(x) � κ − α,

κ − 10α if x ∈ Ω ′ and ϕ̃ε(x) � κ − 10α,

κ − 10α if x ∈ RN \ Ω ′.

(2.13)

By (2.10) and (2.13) we see that ϕ∗
ε ∈ W 1,∞(RN). Let β and γ be positive constants to be chosen later, and put

z(x, t) := (
eεt�ϕ∗

ε

)
(x), (2.14)

w(t) := (κ − 3α)−(p−1) + βσ
(
1 − (1 − t)

1
2
)
, (2.15)

and

fγ (t) := eγ t
(
e2(p−1)γ − e(p−1)γ t

)− 1
p−1 .

Here the function fγ satisfies

f ′
γ (t) = γ

(
fγ (t) + fγ (t)p

)
, 0 < t < 2, (2.16)

and there exists a positive constant cγ , depending only on p and γ , such that

cγ � inf
0<t<1

fγ (t) < sup fγ (t)� c−1
γ . (2.17)
0<t<1
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Furthermore, we define the following three functions v1, v2, and v by

v1(x, t) := (
z(x, t)−(p−1) − (p − 1)t

)− 1
p−1 , (2.18)

v2(x, t) := (
z(x, t)−(p−1) − w(t)

)− 1
p−1 , (2.19)

v(x, t) := v1(x, t) + σ
2

p−1 v2(x, t)2 + fγ (t). (2.20)

Then we prove the following proposition.

Lemma 2.2. Assume the same conditions as in Proposition 2.1. Then, for any α ∈ (0,min{κ,η}/10), there exist
positive constants β1, γ , σ , and ε1 such that, if ϕ̃ε satisfies (2.11), then the function v defined by (2.20) satisfies

∂tv � ε�v + vp in Eε (2.21)

for any β � β1 and ε ∈ (0, ε1), where

Eε :=
{
(x, t) ∈ RN × (0,1): z(x, t)−(p−1) − w(t)� 1

2
C

− p−1
2∗ σ(1 − t)

1
2

}
. (2.22)

Here C∗ is the constant given in (2.7).

Proof. Let σ and ε1 be positive constants to be chosen later, and assume (2.11). We first prove the following inequal-
ities,

κ − 10α � z(x, t) � κ − α in RN × (0,∞), (2.23)∥∥∇z(t)
∥∥

L∞(RN)
� ε− 1

2 σ in (0,∞), (2.24)

v1(x, t)� C in RN × (0,1), (2.25)

vp − v
p

1 � C
(
σ

2
p−1 v2

2 + σ
2p

p−1 v
2p

2 + fγ + f p
γ

)
in Eε, (2.26)

for all ε ∈ (0, ε1), where C is a positive constant, independent of β and γ . The inequality (2.23) easily follows
from (2.13) and the comparison principle. By (2.11) and (2.13) we have

sup
t>0

∥∥∇z(t)
∥∥

L∞(RN)
�

∥∥∇ϕ∗
ε

∥∥
L∞(RN)

� ‖∇ϕ̃ε‖L∞({x∈Ω ′: κ−10α�ϕ̃ε (x)�κ−α}) � ε− 1
2 σ,

and obtain the inequality (2.24). On the other hand, since

(κ − α)−(p−1) − (p − 1) = (p − 1)
[(

1 − κ−1α
)−(p−1) − 1

]
> 0,

by (2.18) and (2.23) we have

v1(x, t)�
(
(κ − α)−(p−1) − (p − 1)

)− 1
p−1 = κ

[(
1 − κ−1α

)−(p−1) − 1
]− 1

p−1 ,

and obtain (2.25). The inequality (2.26) is obtained by the same argument as in (3.19) of [8], and we omit its details.
Next we prove (2.21) by using (2.23)–(2.26). Let β and γ be positive constants to be chosen later. By (2.16) and

(2.20) we obtain

∂tv − (
ε�v + vp

)
� 2

p − 1
σ

2
p−1 w′(t)vp+1

2 + γ
(
fγ (t) + fγ (t)p

)

− pεv
2p−1
1 z−2p|∇z|2 − 2(p + 1)εσ

2
p−1 v

2p

2 z−2p|∇z|2 − (
vp − v

p

1

)
for all (x, t) ∈ Eε . Then, by (2.23)–(2.26) there exists a constant C1, independent of β and γ , such that

∂tv − (
ε�v + vp

)
� 2

p − 1
σ

2
p−1 w′(t)vp+1

2 + γ
(
fγ (t) + fγ (t)p

)

− C1σ
2 − C1σ

2
p−1 +2

v
2p − C1

(
σ

2
p−1 v2

2 + σ
2p

p−1 v
2p + fγ + f p

γ

)
(2.27)
2 2
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for all (x, t) ∈ Eε . Let γ be a positive constant such that γ � 3C1. By (2.17), taking a sufficiently small σ if necessary,
we have

(γ − C1)
(
fγ (t) + fγ (t)p

) − C1σ
2 � 2C1

(
cγ + cp

γ

) − C1σ
2 � C1cγ .

This together with (2.15) and (2.27) implies that

∂tv − (
ε�v + vp

)
� β

p − 1
σ

p+1
p−1 (1 − t)−

1
2 v

p+1
2 + C1cγ − C1

(
σ

2
p−1 v2

2 + 2σ
2p

p−1 v
2p

2

)
(2.28)

for all (x, t) ∈ Eε .
Let

β � max
{
8(p − 1)C1C

p−1
2∗ , c−(p−1)

γ ,4C2
1(p − 1)2}. (2.29)

By (2.19) and (2.22) we have

v2(x, t)p−1 = (
z(x, t)−(p−1) − w(t)

)−1 � 2C
p−1

2∗ σ−1(1 − t)−
1
2 , (x, t) ∈ Eε,

and by (2.29) we obtain

2C1σ
2p

p−1 v
2p

2 = 2C1σv
p−1
2 · σ p+1

p−1 v
p+1
2

� 4C1C
p−1

2∗ (1 − t)−
1
2 σ

p+1
p−1 v

p+1
2 � β

2(p − 1)
(1 − t)−

1
2 σ

p+1
p−1 v

p+1
2 (2.30)

for all (x, t) ∈ Eε . Therefore, by (2.28) and (2.30), we obtain

∂tv − (
ε�v + vp

)
� β

2(p − 1)
σ

p+1
p−1 (1 − t)−

1
2 v

p+1
2 + C1cγ − C1σ

2
p−1 v2

2 (2.31)

for all (x, t) ∈ Eε .
Put

Eε,1 = {
(x, t) ∈ Eε : z(x, t)−(p−1) − w(t)� β

1
2 σ

}
, Eε,2 = Eε \ E1.

By (2.19) and (2.29) we have

C1σ
2

p−1 v2
2 � C1σ

2
p−1

(
β

1
2 σ

)− 2
p−1 = C1β

− 1
p−1 � C1cγ (2.32)

for all (x, t) ∈ Eε,1. On the other hand, since

(1 − t)−
1
2 � 1, σv

p−1
2 � σ

(
β

1
2 σ

)−1 = β− 1
2 ,

for all (x, t) ∈ Eε,2, by (2.29) we have

β

2(p − 1)
σ

p+1
p−1 (1 − t)−

1
2 v

p+1
2 = β

2(p − 1)
(1 − t)−

1
2 σv

p−1
2 · σ 2

p−1 v2
2

� β1/2

2(p − 1)
σ

2
p−1 v2

2 � C1σ
2

p−1 v2
2

for all (x, t) ∈ Eε,2. This together with (2.32) implies

β

2(p − 1)
σ

p+1
p−1 (1 − t)−

1
2 v

p+1
2 + C1cγ � C1σ

2
p−1 v2

2 (2.33)

for all (x, t) ∈ Eε . Therefore, by (2.31) and (2.33) we have (2.21) for all (x, t) ∈ Eε . Thus Lemma 2.2 follows. �
Let β1 be the constant given in Lemma 2.2, and put

β = max

{
β1,

C
−(p−1)/2∗

}
. (2.34)
2
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Let χ be a C∞ smooth function in R such that

χ(z) = 1/4 for z � 0, χ(z) = z for z � 1/2, 0 � χ ′(z) � 1 in R,

and put

uε(x, t) = v1(x, t) + C∗(1 − t)
− 1

p−1 χ

(
z(x, t)−(p−1) − w(t)

C
−(p−1)/2∗ σ(1 − t)1/2

)− 2
p−1 + fγ (t). (2.35)

This together with (2.20) and (2.22) implies that

uε(x, t) = v(x, t) in Eε. (2.36)

Here we prove the following lemma.

Lemma 2.3. Let uε be the function defined in (2.35). Then

uε(x,0) � ϕε(x), x ∈ Ω. (2.37)

Proof. For any x ∈ Ω with ϕ̃ε(x) � κ − 2α, by (2.8) and (2.13) we have

uε(x,0) � v1(x,0) = ϕ∗
ε (x) � ϕ̃ε(x) � ϕε(x). (2.38)

On the other hand, for any x ∈ Ω with ϕ̃ε(x) > κ − 2α, we have

z(x,0) = ϕ∗
ε (x) > κ − 2α.

Then, by (2.15) and (2.23) we have

z(x,0)−(p−1) − w(0) < (κ − 2α)−(p−1) − (κ − 3α)−(p−1) � 0.

This together with (2.7) and (2.35) implies

uε(x,0) � C∗χ
(

z(x,0)−(p−1) − w(0)

C
−(p−1)/2∗ σ

)− 2
p−1 = 16

1
p−1 C∗

� C∗ � uε(x,0) = ϕε(x). (2.39)

Therefore, by (2.38) and (2.39) we have the inequality (2.37), and Lemma 2.3 follows. �
Now we are ready to complete the proof of Proposition 2.1.

Proof of Proposition 2.1. Let h ∈ C1(R) be such that

h(z) = −1 for z � 1, h(z) = 1 for z � 4, 0 � h′(z) � 1 in R.

By (2.7) we have

h

(
uε(x, t)p−1

C
p−1∗ (1 − t)−1

)
= −1 in Ω × (0,1),

and see that uε satisfies

∂tuε = ε�uε + up
ε + 1

2

(
h

(
u

p−1
ε

C
p−1∗ (1 − t)−1

)
+ 1

)
Gε(x, t) in Ω × (0,1), (2.40)

where

Gε(x, t) = ∂tuε − (
ε�uε + up

ε

)
.

On the other hand, by Lemma 2.2 and (2.36) we have

∂tuε � ε�uε + up
ε in dEε, that is, Gε � 0 in Eε. (2.41)
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Furthermore, since

χ

(
zε(x, t)−(p−1) − w(t)

C
−(p−1)/2∗ σ(1 − t)1/2

)
� 1

2
in RN × [0,1) \ Eε,

we have

uε(x, t)� 41/(p−1)C∗(1 − t)−1/(p−1), (x, t) ∈ RN × [0,1) \ Eε,

and obtain

h

(
uε(x, t)p−1

C
p−1∗ (1 − t)−1

)
= 1, (x, t) ∈ RN × [0,1) \ Eε. (2.42)

Since h � 1, by (2.41) and (2.42) we have

∂tuε −
[
ε�uε + up

ε + 1

2

(
h

(
u

p−1
ε

C
p−1∗ (1 − t)−1

)
+ 1

)
Gε(x, t)

]

= 1

2

(
1 − h

(
u

p−1
ε

C
p−1∗ (1 − t)−1

))
Gε(x, t)� 0 in Ω × (0,1). (2.43)

Therefore, by (2.37), (2.40), and (2.43) we apply the comparison principle to obtain

uε(x, t)� uε(x, t) in Ω × [0,1). (2.44)

Without loss of generality we can assume that δ ∈ (0,min{κ,η}/2), and let

α = δ/5 ∈ (
0,min{κ, η}/10

)
.

Let 0 < ε < ε1 and xε ∈ Ω be such that ϕ̃ε(xε) < κ − δ. Then there exists a positive constant R, depending on ε

and xε , such that

ϕ̃ε(x) < κ − δ = κ − 5α, x ∈ B(xε,R) ∩ Ω.

Then, by (2.13) we have

z(x,0) = ϕ∗
ε (x) � κ − 5α (2.45)

for all x ∈ B(xε,R) ∩ Ω . Furthermore, by [7, Lemma 1], taking sufficiently small σ and ε1 if necessary, we have

sup
0<ε<ε1

sup
0<t<1

∥∥z(t) − z(0)
∥∥

L∞(RN)
< α.

This together with (2.45) implies that

z(x, t) � κ − 4α, (x, t) ∈ (
B(xε,R) ∩ Ω

) × [0,1), (2.46)

for all ε ∈ (0, ε1). On the other hand, let C1 be a positive constant such that

(κ − 4α)−(p−1) − (κ − 3α)−(p−1) � C1. (2.47)

Then, by (2.15), (2.34), (2.46), and (2.47), taking a sufficiently small σ if necessary, we obtain

z(x, t)−(p−1) − w(t)� (κ − 4α)−(p−1) − [
(κ − 3α)−(p−1) + βσ

(
1 − (1 − t)

1
2
)]

� C1 − βσ + βσ(1 − t)
1
2 � C1

2
+ 1

2
C

− p−1
2∗ σ(1 − t)

1
2

� max

{
1

2
C1,

1

2
C

− p−1
2∗ σ(1 − t)

1
2

}
(2.48)

for all (x, t) ∈ (B(xε,R) ∩ Ω) × [0,1). This implies that (B(xε,R) ∩ Ω) × [0,1) ⊂ Eε (see (2.22)). Therefore,
by (2.17), (2.20), (2.25), (2.36), (2.44), and (2.48) we have

uε(x, t)� uε(x, t) = v(x, t) � v1(x, t) + σ
2

p−1 (C1/2)
− 2

p−1 + c−1
γ � C2

for all (x, t) ∈ (B(xε,R) ∩ Ω) × [0,1), where C2 is a constant. This implies xε /∈ Bε . Therefore, by the arbitrariness
of xε , we have (2.12) for all ε ∈ (0, ε1), and the proof of Proposition 2.1 is complete. �
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3. Proof of Theorems 1.1 and 1.2

We prove Theorem 1.1 and Theorem 1.2 by using Proposition 2.1.

Proof of Theorem 1.1. Let ε0 be a sufficiently small positive constant. Put

uε(x, τ ) := ε
1

p−1 u(x,T − ε + ετ), ϕε(x) := ε
1

p−1 u(x,T − ε), Mε := sup
0<t<T −ε

∥∥u(t)
∥∥

L∞(Ω)
,

for all ε ∈ (0, ε0). Then uε satisfies⎧⎪⎨
⎪⎩

∂τ uε = ε�uε + u
p
ε in Ω × (0,1),

uε(x, τ ) = 0 on ∂Ω × (0,1),

uε(x,0) = ϕε(x) in Ω,

(3.1)

and uε blows up at τ = 1. This implies that ‖ϕε‖L∞(Ω) � κ (see (2.3)). Furthermore, since the blow-up of the solu-
tion u is of type I, we have

d∗ := sup
0<ε<ε0

‖ϕε‖L∞(Ω) < ∞. (3.2)

On the other hand, letting ϕ = 0 outside Ω , we apply the comparison principle to obtain

0 � u(x, t) � eM
p−1
ε t

(
et�ϕ

)
(x) in Ω × (0, T − ε). (3.3)

Furthermore, since ϕ ∈ Lq(RN), for any δ > 0, we take a sufficiently large R so that∫

RN\B(0,R)

∣∣ϕ(y)
∣∣q dy � δ.

This together with the Hölder inequality implies that

∣∣(et�ϕ
)
(x)

∣∣q � (4πt)−
N
2

∫

RN

e− |x−y|2
4t

∣∣ϕ(y)
∣∣q dy

= (4πt)−
N
2

( ∫
B(0,R)

+
∫

RN\B(0,R)

)
e− |x−y|2

4t

∣∣ϕ(y)
∣∣q dy

� (4πt)−
N
2 e− (|x|−R)2

4t ‖ϕ‖q

Lq(RN)
+ (4πt)−

N
2 δ (3.4)

for all x ∈ RN \ B(0,R). Therefore, since δ is arbitrary, by (3.3) and (3.4) we have

lim
L→∞

∥∥u(T − ε)
∥∥

L∞(Ω\B(0,L))
= 0.

Then we can take a positive constant Lε satisfying

0 � ϕε(x) � κ/2 (3.5)

for all x ∈ Ω with |x| � Lε . For any x ∈ RN , we put

ϕ̃ε(x) =

⎧⎪⎨
⎪⎩

‖ϕε‖L∞(Ω) if |x| � Lε,

−(|x| − Lε) + ‖ϕε‖L∞(Ω) if Lε < |x| � Lε + ‖ϕε‖L∞(Ω) − κ/2,

κ/2 if |x| > Lε + ‖ϕε‖L∞(Ω) − κ/2.

Then we have

ϕ̃ε ∈ W 1,∞(
RN

)
, ‖ϕε‖L∞(Ω) = ‖ϕ̃ε‖L∞(RN), ‖∇ϕ̃ε‖L∞(RN) � 1, (3.6)

and by (3.5) we obtain

ϕε(x) � ϕ̃ε(x) in Ω. (3.7)
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Therefore, by (3.2), (3.6), and (3.7) we apply Proposition 2.1 with δ = κ/4, and obtain

B(u) = B(uε) ⊂ {
x ∈ Ω: ϕ̃ε(x) � 3κ/4

} ⊂ B
(
0,Lε + ‖ϕε‖L∞(Ω) − κ/2

)
for all sufficiently small ε > 0. This means that B(u) is bounded, and the proof of Theorem 1.1 is complete. �
Proof of Theorem 1.2. We use the same notation as in the proof of Theorem 1.1. By (1.3) we have

lim
ε→0

ε
1
2 ‖∇ϕε‖L∞(Ω) = 0.

Then, for any η > 0, we apply Proposition 2.1 with ϕ̃ε = ϕε and Ω ′ = Ω to uε , and have

B(uε) ⊂ M(ϕε, η), 0 < ε < ε0, (3.8)

for some ε0 > 0. Therefore, since B(u) = B(uε), by (3.8) we have

B(u) ⊂
⋂

0<ε<ε0

M
(
ε

1
p−1 u(T − ε), η

)
.

This implies (1.4). Furthermore, by Lemma 2.1, we see that the blow-up of the solution u is of O.D.E. type, and
Theorem 1.2 follows. �

Next we prove Corollary 1.1 by using Theorem 1.2 with the aid of blow-up estimates of the solutions.

Proof of Corollary 1.1. Let Ω = {a < |x| < b} with 0 < a < b < ∞. Let u be a radially symmetric solution of (1.1)
blowing up at t = T . Then, due to Theorem 1.2, it suffices to prove

sup
0<t<T

(T − t)
1

p−1
∥∥u(t)

∥∥
L∞(Ω)

< ∞, (3.9)

lim
t→T

(T − t)
1

p−1 + 1
2
∥∥∇u(t)

∥∥
L∞(Ω)

= 0. (3.10)

We first prove (3.9) by the same argument as in the proof of [5, Theorem 2.1]. For any t ∈ (0, T ), we put

M(t) := ‖u‖L∞(Ω×(0,t)), λ(t) := M(t)−
p−1

2 .

Since M(t) is a positive, continuous, and nondecreasing function on (0, T ) such that M(t) → ∞ as t → T , we can
define τ(t) by

τ(t) := max
{
τ ∈ (0, T ): M(τ) = 2M(t)

}
, 0 < t < T .

Then, similarly to [5], it suffices to prove that there exists a constant K such that

λ(t)−2(τ(t) − t
)
� K, t ∈ (T /2, T ). (3.11)

We prove (3.11) by contradiction. Assume that there exists a sequence {tj } such that

lim
j→∞λ(tj )

−2(τ(tj ) − tj
) = ∞.

For any j = 1,2, . . . , we take a sequence {(rj , t̂j )} ⊂ [a, b] × (0, tj ] satisfying

u(rj , t̂j ) �
1

2
M(tj ).

Put λj = λ(tj ) and

vj (τ, s) := λ
2

p−1
j u

(
λj τ + rj , λ

2
j s + t̂j

)
for (τ, s) ∈ Ij × (−λ−2

j t̂j , λ
−2
j (T − t̂j )

)
,

where Ij := {τ ∈ R: λj τ + rj ∈ (a, b)}. Then vj satisfies

∂svj = ∂2
τ vj + λj

N − 1

r + λ τ
∂τ vj + v

p
j in Ij × (−λ−2

j t̂j , λ
−2
j (T − t̂j )

)
.

j j
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Furthermore, we have

0 � vj � 2 in Ij × (−λ−2
j t̂j , λ

−2
j

(
τ(tj ) − t̂j

)]
, vj (0,0) � 1

2
.

Since

0 < a � rj � b, lim
j→∞λj = 0, lim

j→∞λ−2
j

(
τ(tj ) − t̂j

) = ∞,

by the same argument as in [5] we see that there exist an unbounded open interval H with 0 ∈ H and a subsequence
{vj ′ } of {vj } such that {vj ′ } converges to some function v in C

2,1
loc (H × (−∞,∞)) and

∂sv = ∂2
τ v + vp in H × (−∞,∞), (3.12)

0 � v � 2 in H × (−∞,∞), (3.13)

v(τ, s) = 0 in (−∞,∞) if τ ∈ ∂H, (3.14)

v(0,0)� 1

2
. (3.15)

Then, by (3.12)–(3.14) we apply [29, Theorems A and 2.1] to obtain v ≡ 0 in H × (−∞,∞). This contradicts (3.15).
Therefore (3.11) holds, and we have (3.9).

Next we follow an argument in [28], and prove (3.10) by contradiction. Assume that there exist a positive con-
stant m and a sequence {(rn, tn)} ⊂ [a, b] × (0, T ) such that tn → T as n → ∞ and

Mn := (T − tn)
p+1

2(p−1)
∣∣∂ru(rn, tn)

∣∣� m > 0, n = 1,2, . . . .

Put

μn = (T − tn)
1
2 M

− p−1
p+1

n , wn(τ, s) = μ
2

p−1
n u

(
rn + μnτ, tn + μ2

ns
)

in In × (−αn,0],
where In = {τ ∈ R: μnτ + rn ∈ (a, b)} and αn = μ−2

n tn. Then wn satisfies

∂swn = ∂2
τ wn + μn

N − 1

rn + μnτ
∂τwn + w

p
n

in In × (−αn,0]. By (3.9) we have

∣∣wn(τ, s)
∣∣ � Cμ

2
p−1
n

(
T − tn − μ2

ns
)− 1

p−1

= Cμ
2

p−1
n

(
T − tn − (T − tn)M

− 2(p−1)
p+1

n s
)− 1

p−1

= C
(
M

2(p−1)
p+1

n − s
)− 1

p−1 � C
(
m

2(p−1)
p+1 − s

)− 1
p−1 � C(−s)

− 1
p−1

for all τ ∈ In and s ∈ (−αn,0], where C is a constant. Then there exist an unbounded open interval I with 0 ∈ I and
a subsequence {wn′ } of {wn} such that {wn′ } converges to some function w in C

2,1
loc (I × (−∞,0]) and w satisfies

∂sw = ∂2
τ w + wp in I × (−∞,0], w(τ, s) = 0 in (−∞,0] if τ ∈ ∂I. (3.16)

Therefore, by [27, Corollary 1] (see also [26, Corollary 1.6]) we have

w(τ, s) ≡ 0 or w(τ, s) = κ(T0 − s)−1/(p−1) for some T0 � 0.

On the other hand, since |∂τwn(0,0)| = 1 for all n, we have |(∇w)(0,0)| = 1. This is a contradiction. Thus we
have (3.10). Therefore we have (3.9) and (3.10), and the proof of Corollary 1.1 is complete. �

By Theorems 1.1 and 1.2 we can obtain the following result.

Theorem 3.1. Let Ω be a (possibly unbounded) smooth domain in RN . Let u be a solution of (1.1) which exhibits
type I blow-up at t = T . Assume

ϕ ∈ L∞(Ω) ∩ Lq(Ω) for some q ∈ [1,∞), (N − 2)p < N + 2.

Then the blow-up set B(u) is compact in Ω . In particular, B(u) ∩ ∂Ω = ∅.
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Proof. By Theorem 1.1 we can find a positive constant R satisfying

sup
x∈Ω\B(0,R), t∈(0,T )

∣∣u(x, t)
∣∣ < ∞, (3.17)

and obtain

B(u) ⊂ Ω ∩ B(0,R). (3.18)

Then, by (3.17) we apply the gradient estimates for parabolic equations to obtain∣∣∇u(x, t)
∣∣ � C (3.19)

for all x ∈ Ω \ B(0,R + 1) and t ∈ (0, T ), where C is a constant. Furthermore, the solution u satisfies (1.3). Indeed,
if not, there exist a positive constant m and a sequence {(xn, tn)} ⊂ Ω × (0, T ) such that

Mn := (T − tn)
p+1

2(p−1)
∣∣∇u(xn, tn)

∣∣� m > 0, n = 1,2, . . . .

By (3.19) we can assume that {xn} ⊂ Ω ∩ B(0,R + 1). Then, by using the similar argument as in the proof of
[28, Theorem 2.1] with the aid of the Liouville type theorem (see [26] and [27]) we can obtain a contradiction (see
also the proof of Corollary 1.1). Therefore, by Theorem 1.2 we have B(u)∩∂Ω = ∅. This together with (3.18) implies
that B(u) is compact in Ω , and Theorem 3.1 follows. �
4. Proof of Theorem 1.3

In this section we prove Theorem 1.3 by using Proposition 2.1 and Corollary 1.1. In order to prove Theorem 1.3,
we prepare the following lemma.

Lemma 4.1. Let ε0 > 0 and {Mε}0<ε<ε0 ⊂ (0,∞) be such that

0 < inf
0<ε<ε0

Mε � sup
0<ε<ε0

Mε < ∞.

Let Ω = {x ∈ RN : R1 < |x| < R2} with 0 < R1 < R2 < ∞. For any ε ∈ (0, ε0), let uε be the blowing up solution of⎧⎪⎨
⎪⎩

∂tu = ε�u + up in Ω × (0, Tε),

u(x, t) = 0 on ∂Ω × (0, Tε),

u(x,0) = Mε in Ω,

where Tε is the blow-up time of uε . Then there exists a constant ε1 ∈ (0, ε0) such that

sup
0<ε<ε1

lim sup
t→Tε

(Tε − t)
1

p−1
∥∥uε(t)

∥∥
L∞(Ω)

< ∞, (4.1)

lim
t→Tε

ε
1
2 (Tε − t)

1
p−1 + 1

2
∥∥∇uε(t)

∥∥
L∞(Ω)

= 0 uniformly for ε ∈ (0, ε1). (4.2)

Proof. We prove Lemma 4.1 by modifying the arguments in the proof of Corollary 1.1. We first prove (4.1). Let
ε1 ∈ (0, ε0) be a sufficiently small constant. Then, by [8, Proposition 2.1] we have

0 < inf
0<ε<ε1

Tε � sup
0<ε<ε1

Tε < ∞. (4.3)

For any t ∈ (0, Tε), put

Mε(t) := ‖uε‖L∞(Ω×(0,t)), λε(t) := Mε(t)
− p−1

2 .

Then, for any t ∈ (0, Tε), we define τε(t) by

τε(t) := max
{
τ ∈ (0, Tε): Mε(τ) = 2Mε(t)

}
.

Similarly to (3.11), we prove by contradiction that there exists a positive constant K such that

λε(t)
−2(τε(t) − t

)
� K (4.4)



244 Y. Fujishima, K. Ishige / Ann. I. H. Poincaré – AN 31 (2014) 231–247
for all t ∈ (Tε/2, Tε) and all ε ∈ (0, ε1). Assume that there exist sequences {εj } ⊂ (0, ε1) and {tj } ⊂ (0, Tεj
) such that

lim
j→∞ εj = 0, lim

j→∞λεj
(tj )

−2(τεj
(tj ) − tj

) = ∞.

For any j = 1,2, . . . , we can take a point (rj , t̂j ) ∈ [R1,R2] × (0, tj ] such that

uεj
(rj , t̂j ) �

1

2
Mεj

(tj ).

Put λj = λεj
(tj ) and

vj (τ, s) := λ
2

p−1
j uεj

(
ε

1
2
j λj τ + rj , λ

2
j s + t̂j

)
for (τ, s) ∈ Ij × (−λ−2

j t̂j , λ
−2
j (Tεj

− t̂j )
)
,

where Ij := {τ ∈ R: ε
1
2
j λj τ + rj ∈ (R1,R2)}. Then vj satisfies

∂svj = ∂2
τ vj + ε

1
2
j λj

N − 1

rj + ε
1
2 λj τ

∂τ vj + v
p
j in Ij × (−λ−2

j t̂j , λ
−2
j (Tεj

− t̂j )
)

and

0 � vj � 2 in Ij × (−λ−2
j t̂j , λ

−2
j

(
τ(tj ) − t̂j

)]
, vj (0,0) � 1

2
.

Then, by the similar argument as in the proof of (3.9) we obtain (3.12)–(3.15), which yield a contradiction. Therefore
we have (4.4), which implies (4.1).

Next we prove (4.2) by contradiction. Assume that there exist sequences {εn} ⊂ (0, ε1) and {(rn, tn)} ⊂ I × (0, Tεn)

and a positive constant m such that εn → 0, |tn − Tεn | → 0 as n → ∞, and

Mn := ε
1
2
n (Tεn − tn)

1
p−1 + 1

2
∣∣∂ruεn(rn, tn)

∣∣ �m > 0, n = 1,2, . . . .

Put

μn := (Tεn − tn)
1
2 M

− p−1
p+1

n , wn(τ, s) := μ
2

p−1
n uεn

(
rn + ε

1
2
n μnτ, tn + μ2

ns
)

in In × (−αn,0],

where In = {τ ∈ R: ε
1
2
n μnτ + rn ∈ (R1,R2)} and αn = μ−2

n tn. Then we have

∂swn = ∂2
r wn + ε

1
2
n μn

N − 1

rn + ε
1
2
n μnτ

∂rwn + w
p
n

in In × (−αn,0]. On the other hand, by (4.1) we have

∣∣wn(τ, s)
∣∣ � Cμ

2
p−1
n

(
Tεn − tn − μ2

ns
)− 1

p−1

= Cμ
2

p−1
n

(
Tεn − tn − (Tεn − tn)M

− 2(p−1)
p+1

n s
)− 1

p−1

= C
(
M

2(p−1)
p+1

n − s
)− 1

p−1 � C
(
m

2(p−1)
p+1 − s

)− 1
p−1 � C(−s)

− 1
p−1

for all (τ, s) ∈ In × (−αn,0]. Then, by the similar argument as in the proof of (3.10) we obtain (3.16), which yields a
contradiction. Therefore we have (4.2), and the proof of Lemma 4.1 is complete. �

We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. The proof is by contradiction. Let u be a solution of (1.1) which exhibits O.D.E. type blow-up
at t = T . Assume that there exists a point

a ∈ B(u) ∩ ∂Ω. (4.5)

Since Ω satisfies the exterior sphere condition, there exist a point x0 ∈ RN and positive constants R1 and R2 such that

a ∈ ∂B(x0,R1), B(x0,R1) ∩ Ω = ∅, Ω ⊂ Ω ′ := {
x ∈ RN : R1 < |x − x0| < R2

}
.
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In what follows, we can assume, without loss of generality, that x0 = 0. Let ε be a sufficiently small positive constant
and put

uε(x, τ ) := ε
1

p−1 u(x,T − ε + ετ), ϕε(x) := ε
1

p−1 u(x,T − ε).

Then uε satisfies (3.1). Furthermore, since the blow-up of the solution u is of O.D.E. type, there holds

lim
ε→0

‖ϕε‖L∞(Ω) = lim
t→T

(T − t)
1

p−1
∥∥u(t)

∥∥
L∞(Ω)

= κ. (4.6)

Let vε = vε(x, τ ) be a radially symmetric blowing up solution of⎧⎪⎨
⎪⎩

∂τ v = ε�v + vp in Ω ′ × (0, Tε),

v(x, τ ) = 0 on ∂Ω ′ × (0, Tε),

v(x,0) = ‖ϕε‖L∞(Ω) in Ω ′,
(4.7)

where Tε is the blow-up time of vε . Then the comparison principle together with (4.6) implies

0 � uε � vε in Ω × (0, Tε),
1

2
< S‖ϕε‖L∞(Ω)

� Tε � 1, (4.8)

for all sufficiently small ε > 0. By (1.2), (4.6), and (4.8) we have

νε := 2 max{1 − Tε, ε} → 0 as ε → 0. (4.9)

Furthermore, by Lemma 4.1 we can find a positive constant ε1 such that

sup
0<ε<ε1

sup
0<τ<Tε

(Tε − τ)
1

p−1
∥∥vε(τ )

∥∥
L∞(Ω ′) < ∞, (4.10)

lim
τ→Tε

ε
1
2 (Tε − τ)

1
p−1 + 1

2
∥∥∇vε(τ )

∥∥
L∞(Ω ′) = 0 (4.11)

uniformly for all ε ∈ (0, ε1). Put

u∗
ε (x, s) := ν

1
p−1
ε uε(x,1 − νε + νεs), ϕ∗

ε (x) := ν
1

p−1
ε u∗

ε (x,1 − νε), ϕ̃ε(x) := ν
1

p−1
ε vε(x,1 − νε).

Then u∗
ε = u∗

ε (x, s) is a solution of⎧⎪⎨
⎪⎩

∂su = ενε�u + up in Ω × (0,1),

u(x, s) = 0 on ∂Ω × (0,1),

u(x,0) = ϕ∗
ε (x) in Ω,

(4.12)

and blows up at s = 1. Furthermore, it holds

0 � ϕ∗
ε (x) � ϕ̃ε(x) in Ω. (4.13)

On the other hand, it follows from (4.9) that

Tε − (1 − νε)�
νε

2
,

and by (4.10) we have

lim sup
ε→0

‖ϕ̃ε‖L∞(Ω ′) = lim sup
ε→0

ν
1

p−1
ε

∥∥vε(1 − νε)
∥∥

L∞(Ω ′)

� lim sup
ε→0

2
1

p−1
(
Tε − (1 − νε)

) 1
p−1

∥∥vε(1 − νε)
∥∥

L∞(Ω ′) < ∞. (4.14)

Similarly, by (4.11) we have

lim
ε→0

(ενε)
1
2 ‖∇ϕ̃ε‖L∞(Ω ′) = lim

ε→0
ε

1
2 ν

1
2 + 1

p−1
ε

∥∥∇vε(1 − νε)
∥∥

L∞(Ω ′)

� lim 2
1
2 + 1

p−1 ε
1
2
(
Tε − (1 − νε)

) 1
2 + 1

p−1
∥∥∇vε(1 − νε)

∥∥
L∞(Ω ′) = 0. (4.15)
ε→0
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Furthermore, since the blow-up of u is of type I, there exists a constant C such that

(1 − s)
1

p−1
∥∥u∗

ε (s)
∥∥

L∞(Ω)
= (1 − s)

1
p−1 ν

1
p−1
ε ε

1
p−1

∥∥u
(
T − ε + ε(1 − νε + νεs)

)∥∥
L∞(Ω)

� C(1 − s)
1

p−1 ν
1

p−1
ε ε

1
p−1 · (ενε(1 − s)

)− 1
p−1 = C (4.16)

for all s ∈ (0,1). Therefore, by (4.9), (4.13), (4.14), (4.15), and (4.16) we apply Proposition 2.1 to u∗
ε , which is a

solution of problem (4.12), and obtain

B(u) ⊂ {
x ∈ Ω ′: ϕ̃ε(x) � κ/2

}
(4.17)

for all sufficiently small ε > 0. Here we remark that the blow-up set of u∗
ε coincides with B(u). On the other hand,

since a ∈ ∂Ω ′, we have ϕ̃ε = 0 at x = a and

a /∈ {
x ∈ Ω ′: ϕ̃ε(x) � κ/2

}
for all sufficiently small ε > 0. This together with (4.17) implies a /∈ B(u). This contradicts (4.5), and Theorem 1.3
follows. �
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