

Available online at www.sciencedirect.com

[Ann. I. H. Poincaré – AN 31 \(2014\) 231–247](http://dx.doi.org/10.1016/j.anihpc.2013.03.001)

www.elsevier.com/locate/anihpc

Blow-up set for type I blowing up solutions for a semilinear heat equation

Yohei Fujishima^{a,∗}, Kazuhiro Ishige ^b

^a *Division of Mathematical Science, Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan*

^b *Mathematical Institute, Tohoku University, Aoba, Sendai 980-8578, Japan*

Received 3 August 2012; received in revised form 1 March 2013; accepted 8 March 2013

Available online 14 March 2013

Abstract

Let *u* be a type I blowing up solution of the Cauchy–Dirichlet problem for a semilinear heat equation,

$$
\begin{cases} \n\partial_t u = \Delta u + u^p, & x \in \Omega, \ t > 0, \\ \nu(x, t) = 0, & x \in \partial\Omega, \ t > 0, \\ \nu(x, 0) = \varphi(x), & x \in \Omega, \n\end{cases} \tag{P}
$$

where Ω is a (possibly unbounded) domain in \mathbb{R}^N , $N \ge 1$, and $p > 1$. We prove that, if $\varphi \in L^\infty(\Omega) \cap L^q(\Omega)$ for some $q \in [1, \infty)$, then the blow-up set of the solution *u* is bounded. Furthermore, we give a sufficient condition for type I blowing up solutions not to blow up on the boundary of the domain *Ω*. This enables us to prove that, if *Ω* is an annulus, then the radially symmetric solutions of *(P)* do not blow up on the boundary *∂Ω*.

© 2013 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper concerns the blow-up problem for a semilinear heat equation,

$$
\begin{cases} \n\partial_t u = \Delta u + u^p & \text{in } \Omega \times (0, T), \\ \nu(x, t) = 0 & \text{on } \partial \Omega \times (0, T) \text{ if } \partial \Omega \neq \emptyset, \\ \nu(x, 0) = \varphi(x) \geq 0 & \text{in } \Omega, \n\end{cases} \tag{1.1}
$$

where Ω is a (possibly unbounded) domain in \mathbb{R}^N , $N \geq 1$, $\partial_t = \partial/\partial t$, $p > 1$, $T > 0$, and $\varphi \in L^{\infty}(\Omega)$. Let *T* be the maximal existence time of the unique bounded solution *u* of (1.1). If $T < \infty$, then

lim sup $t \rightarrow T$ $\|u(t)\|_{L^{\infty}(\Omega)} = \infty$,

Corresponding author.

E-mail address: fujishima@sigmath.es.osaka-u.ac.jp (Y. Fujishima).

^{0294-1449/\$ –} see front matter © 2013 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.anihpc.2013.03.001>

and we call T the blow-up time of the solution u . The blow-up of u is said to be of type I if

$$
\limsup_{t\to T}(T-t)^{\frac{1}{p-1}}\|u(t)\|_{L^{\infty}(\Omega)}<\infty.
$$

Furthermore, the blow-up of *u* is said to be of O.D.E. type if

$$
\limsup_{t \to T} (T - t)^{\frac{1}{p-1}} \| u(t) \|_{L^{\infty}(\Omega)} = \kappa \quad \text{with } \kappa = \left(\frac{1}{p-1} \right)^{1/(p-1)}.
$$

If the blow-up of *u* is not of type I, then we say that the blow-up of *u* is of type II. We denote by $B(u)$ the blow-up set of the solution u , that is,

$$
B(u) = \left\{ x \in \overline{\Omega} \colon \text{there exists a sequence } \{ (x_n, t_n) \} \subset \overline{\Omega} \times (0, T) \right\}
$$

such that
$$
\lim_{n \to \infty} (x_n, t_n) = (x, T), \lim_{n \to \infty} u(x_n, t_n) = +\infty \right\}.
$$

We remark that $B(u)$ is a closed set in $\overline{\Omega}$.

The blow-up set for problem [\(1.1\)](#page-0-0) has been studied intensively since the pioneering work due to Weissler [\[32\].](#page-16-0) See for example [\[1–3,6–27,31–35\],](#page-15-0) and references therein. See also [\[30\],](#page-16-0) which includes a good list of references in this topic. Among others, Friedman and McLeod [\[6\]](#page-15-0) studied the blow-up set by using the comparison principle, and proved the following (see [\[6, Theorem 3.3\]\)](#page-15-0):

(a) If Ω is convex, then the boundary blow-up does not occur, that is, $B(u) \cap \partial \Omega = \emptyset$.

In $[14–16]$, Giga and Kohn studied blow-up problem (1.1) , and established a blow-up criterion for the solutions in the case where $(N - 2)p < N + 2$. This criterion implies the following:

- (b) If Ω is a (possibly unbounded) convex domain and $(N 2)p < N + 2$, then the blow-up set $B(u)$ is bounded provided that $\varphi \in H^1(\Omega)$;
- (c) If Ω is strictly star-shaped about $a \in \partial \Omega$ and $(N 2)p < N + 2$, then $a \notin B(u)$.

For assertion (b), see [\[16, Theorem 5.1, Remarks 5.2](#page-15-0) and 5.4] and for assertion (c), see [\[16, Theorem 5.3\].](#page-15-0) Assertion (b) was also proved in $[12]$ and $[13]$ for the one dimensional case, with the initial function φ which deceases monotonically to 0 and which satisfies $0 \le \varphi(x) \le C|x|^{-2/(p-1)}$ for some constant *C*. On the other hand, in [\[19\],](#page-15-0) the second author of this paper and Mizoguchi proved that a blow-up criterion similar to that of $[14-16]$ holds for type I blowing up solutions without the convexity of the domain Ω , and obtained the following:

(d) If Ω is a bounded smooth domain in \mathbb{R}^N and $(N-2)p \le N+2$, then type I blowing up solutions do not blow up on the boundary *∂Ω*.

Unfortunately, if *Ω* is not convex, then there are few results, except assertion (d), identifying whether the boundary blow-up occurs or not, and the following problem is still open as far as we know:

- *(P)* Let Ω be an annulus in \mathbf{R}^N . Then does the radially symmetric solution
- of [\(1.1\)](#page-0-0) blow up on the boundary *∂Ω*?

We remark that there exists a solution blowing up on the boundary of the domain for the equation

$$
\partial_t u = u_{xx} + k(u^m)_x + u^{2m-1},
$$

where $m > 1$ and large enough $k > 2/\sqrt{m}$ (see [\[4\]\)](#page-15-0).

In this paper we prove that the blow-up set of the solution u of (1.1) is bounded if the blow-up of the solution u is of type I and the initial function $\varphi \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some $q \in [1, \infty)$. Furthermore, we give a sufficient condition for the solution *u* not to blow up on the boundary of the domain Ω , and prove that, if Ω is annulus, then the radially symmetric solution does not blow up on the boundary *∂Ω*. In addition, we prove that, if *Ω* satisfies the exterior sphere condition and the solution *u* of [\(1.1\)](#page-0-0) exhibits O.D.E. type blow-up, then the solution does not blow-up on the boundary *∂Ω*.

We introduce some notation. Let $B(x, r) = \{y \in \mathbb{R}^N : |y - x| < r\}$ for $x \in \mathbb{R}^N$ and $r > 0$. For any bounded continuous function *f* on $\overline{\Omega}$ and any constant *η*, we put

$$
M(f,\eta) := \{ x \in \overline{\Omega} : f(x) \geq \| f \|_{L^{\infty}(\Omega)} - \eta \}.
$$

For any $\phi \in L^{\infty}(\mathbb{R}^N)$, let

$$
(e^{t\Delta}\varphi)(x) := (4\pi t)^{-\frac{N}{2}} \int_{\mathbf{R}^N} e^{-\frac{|x-y|^2}{4t}} \varphi(y) dy.
$$

For any $\lambda > 0$, let ζ_{λ} be a solution of $\zeta' = \zeta^{p}$ with $\zeta(0) = \lambda$, that is,

$$
\zeta_{\lambda}(t) := \kappa \left(S_{\lambda} - t \right)^{-\frac{1}{p-1}} \quad \text{with } S_{\lambda} = \frac{\lambda^{-(p-1)}}{p-1}.
$$
\n
$$
(1.2)
$$

Now we are ready to state the main results of this paper. The first theorem concerns the boundedness of the blow-up set for problem (1.1) .

Theorem 1.1. Let *u* be a solution of [\(1.1\)](#page-0-0) which exhibits type I blow-up at $t = T$. If $\varphi \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ for some *q* ∈ [1*,*∞*), then*

$$
\sup_{x \in \Omega \setminus B(0,R), t \in (0,T)} |u(x,t)| < \infty
$$

for some $R > 0$ *. In particular, the blow-up set* $B(u)$ *is bounded.*

In the second theorem we give a result on the relationship between the location of the blow-up set and the level sets of the solution just before the blow-up time. Theorem 1.2 also gives a sufficient condition for type I blowing up solutions of [\(1.1\)](#page-0-0) not to blow up on the boundary *∂Ω*.

Theorem 1.2. Let u be a solution of (1.1) which exhibits type I blow-up at $t = T$. Assume

$$
\lim_{t \to T} (T - t)^{\frac{1}{p - 1} + \frac{1}{2}} \|\nabla u(t)\|_{L^{\infty}(\Omega)} = 0.
$$
\n(1.3)

Then the blow-up of u is of O.D.E. type. Furthermore, for any $\eta \in (0, \kappa)$, there exists a constant $T' \in (0, T)$ such that

$$
B(u) \subset \bigcap_{T' < t < T} M\big((T-t)^{\frac{1}{p-1}}u(t), \eta\big). \tag{1.4}
$$

In particular, the solution u does not blow up on the boundary $\partial \Omega$ *, that is,* $B(u) \cap \partial \Omega = \emptyset$ *.*

Here we remark that, if *Ω* is a smooth bounded domain and *(N* − 2*)p < N* + 2, then the blow-up of the solution is of type I and (1.3) holds (see Theorem 1.1 in $[26]$).

As an application of Theorem 1.2, we give the following result, which gives an affirmative answer to problem *(P)*.

Corollary 1.1. *Let*

$$
\Omega = \left\{ x \in \mathbf{R}^N \colon a < |x| < b \right\}, \quad 0 < a < b < \infty.
$$

Then the radially symmetric solution of [\(1.1\)](#page-0-0) *does not blow up on the boundary ∂Ω.*

Furthermore, we give the following theorem with the aid of Corollary 1.1.

Theorem 1.3. Let Ω be a bounded domain in \mathbb{R}^N satisfying the exterior sphere condition. Let u be a solution of [\(1.1\)](#page-0-0) *which exhibits O.D.E. type blow-up. Then the solution u does not blow up on the boundary ∂Ω.*

In this paper we improve the arguments in [\[8\],](#page-15-0) and give a blow-up criterion for the semilinear heat equations with small diffusion (see Proposition [2.1\)](#page-4-0). This blow-up criterion enables us to study the location of the blow-up set for problem (1.1) by using the profile of the solution just before the blow-up time and to obtain Theorems [1.1](#page-2-0) and [1.2.](#page-2-0) Furthermore, for the radially symmetric solutions of (1.1) in an annulus, we apply the arguments in [\[5\]](#page-15-0) and [\[28\]](#page-16-0) with the aid of [\[26,27,29\],](#page-15-0) and obtain the blow-up estimates of the solution and its gradient. Then we can prove Corollary [1.1](#page-2-0) with the aid of Theorem [1.2.](#page-2-0) In addition, we prove Theorem [1.3](#page-2-0) by using Proposition [2.1](#page-4-0) and Corollary [1.1.](#page-2-0)

The rest of this paper is organized as follows: In Section 2 we give some preliminary results on the blow-up problem [\(1.1\)](#page-0-0). Section 3 is devoted to the proofs of Theorems [1.1,](#page-2-0) [1.2,](#page-2-0) and Corollary [1.1.](#page-2-0) In Section 4 we prove Theorem [1.3.](#page-2-0)

2. Preliminaries

In this section we give preliminary results on the blow-up problem for the semilinear heat equations. We first give a lemma on O.D.E. type blowing up solutions.

Lemma 2.1. *Assume the same conditions as in Theorem* [1.2](#page-2-0)*. Then the blow-up of the solution u is of O.D.E. type.*

Proof. We denote by T the blow-up time of the solution *u* of [\(1.1\)](#page-0-0). Let $\epsilon > 0$ be a sufficiently small constant. Put

$$
w_{\epsilon}(x,t) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon + \epsilon t), \qquad \varphi_{\epsilon}(x) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon).
$$
\n(2.1)

Then w_{ϵ} blows up at $t = 1$ and satisfies

$$
\begin{cases} \n\partial_t w_{\epsilon} = \epsilon \Delta w_{\epsilon} + w_{\epsilon}^p & \text{in } \Omega \times (0, 1), \\ \nw_{\epsilon}(x, t) = 0 & \text{on } \partial \Omega \times (0, 1), \\ \nw_{\epsilon}(x, 0) = \varphi_{\epsilon}(x) & \text{in } \Omega. \n\end{cases} \tag{2.2}
$$

By the comparison principle we see that

$$
\|w_{\epsilon}(t)\|_{L^{\infty}(\Omega)} \leq \zeta_{\lambda_{\epsilon}}(t) \quad \text{for } 0 < t < S_{\lambda_{\epsilon}},
$$

where $\lambda_{\epsilon} = ||\varphi_{\epsilon}||_{L^{\infty}(\Omega)}$, and obtain $S_{\lambda_{\epsilon}} \leq 1$. This together with [\(1.2\)](#page-2-0) implies

$$
\|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} \geq \kappa. \tag{2.3}
$$

Furthermore, since the blow-up of *u* is of type I, by (2.1) we can find a positive constant *C* such that

$$
\|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = \epsilon^{\frac{1}{p-1}} \|u(T-\epsilon)\|_{L^{\infty}(\Omega)} \leq \epsilon^{\frac{1}{p-1}} \cdot C\big(T-(T-\epsilon)\big)^{-\frac{1}{p-1}} \leq C. \tag{2.4}
$$

On the other hand, by (1.3) and (2.1) we have

$$
\lim_{\epsilon \to 0} \epsilon^{\frac{1}{2}} \|\nabla \varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = \lim_{\epsilon \to 0} \epsilon^{\frac{1}{p-1} + \frac{1}{2}} \|\nabla u(T - \epsilon)\|_{L^{\infty}(\Omega)}
$$
\n
$$
= \lim_{t \to T} (T - t)^{\frac{1}{p-1} + \frac{1}{2}} \|\nabla u(t)\|_{L^{\infty}(\Omega)} = 0.
$$
\n(2.5)

Then, by (2.3) – (2.5) we apply [\[7, Proposition 1\]](#page-15-0) to problem (2.2) , and obtain

$$
\lim_{\epsilon \to 0} S_{\lambda_{\epsilon}} = 1.
$$

This together with [\(1.2\)](#page-2-0) yields $\lim_{\epsilon \to 0} ||\varphi_{\epsilon}||_{L^{\infty}(\Omega)} = \kappa$, and we obtain

$$
\lim_{t\to T} (T-t)^{\frac{1}{p-1}} \|u(t)\|_{L^{\infty}(\Omega)} = \lim_{\epsilon\to 0} \epsilon^{\frac{1}{p-1}} \|u(T-\epsilon)\|_{L^{\infty}(\Omega)} = \lim_{\epsilon\to 0} \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = \kappa.
$$

Thus the blow-up of the solution *u* is of O.D.E. type, and Lemma 2.1 follows. \Box

Next we consider the blow-up problem for a semilinear heat equation with small diffusion. Let u_{ϵ} be a solution of

$$
\begin{cases} \n\partial_t u = \epsilon \Delta u + u^p & \text{in } \Omega \times (0, T_\epsilon), \\ \nu(x, t) = 0 & \text{on } \partial \Omega \times (0, T_\epsilon) \text{ if } \partial \Omega \neq \emptyset, \\ \nu(x, 0) = \varphi_\epsilon(x) \geq 0 & \text{in } \Omega, \n\end{cases} \tag{2.6}
$$

where $N \geq 1$, Ω is a domain in \mathbb{R}^N , $p > 1$, $\epsilon > 0$, and $\varphi_{\epsilon} \in L^{\infty}(\Omega)$. Let T_{ϵ} and B_{ϵ} be the blow-up time and the blow-up set of the solution u_{ϵ} of problem (2.6), respectively. The rest of this section is devoted to the proof of the following proposition, which is the main ingredient of this paper and a modification of [\[8, Proposition 4.1\].](#page-15-0)

Proposition 2.1. *Let* u_{ϵ} *be a solution of* (2.6) *with* $T_{\epsilon} = 1$ *such that*

$$
\sup_{0 < \epsilon < \epsilon_0} \sup_{0 < t < 1} (1 - t)^{\frac{1}{p - 1}} \| u_{\epsilon}(t) \|_{L^{\infty}(\Omega)} \leq C_* \tag{2.7}
$$

for some $\epsilon_0 > 0$ *and* $C_* > 0$. Let Ω' be a domain such that $\Omega \subset \Omega'$ and $\{\tilde{\varphi}_\epsilon\}_{0 < \epsilon < \epsilon_0}$ a family of functions belonging $to W^{1,\infty}(\Omega')$ *such that*

$$
0 \leq \varphi_{\epsilon} \leq \tilde{\varphi}_{\epsilon} \quad \text{in } \Omega \text{ for all } \epsilon \in (0, \epsilon_0), \tag{2.8}
$$

$$
\sup_{0 < \epsilon < \epsilon_0} \|\tilde{\varphi}_{\epsilon}\|_{L^{\infty}(\Omega')} < \infty. \tag{2.9}
$$

Assume that there exists a constant η > 0 *such that*

$$
\tilde{\varphi}_{\epsilon}(x) < \kappa - \eta \quad \text{on } \partial \Omega' \text{ if } \partial \Omega' \neq \emptyset. \tag{2.10}
$$

Then, for any $\delta > 0$ *, there exist positive constants* σ *and* ϵ_1 *such that, if*

$$
\sup_{0 < \epsilon < \epsilon_1} \epsilon^{\frac{1}{2}} \|\nabla \tilde{\varphi}_\epsilon\|_{L^\infty(\{x \in \overline{\Omega'} : \, \kappa - \eta \leq \tilde{\varphi}_\epsilon(x) \leq \kappa\})} \leq \sigma,\tag{2.11}
$$

then there holds

$$
B_{\epsilon} \subset \left\{ x \in \overline{\Omega} : \tilde{\varphi}_{\epsilon}(x) \geqslant \kappa - \delta \right\}, \quad 0 < \epsilon < \epsilon_1. \tag{2.12}
$$

Here the constants σ *and* ϵ_1 *are independent of the domain* Ω *.*

Let $\delta > 0$. Let σ and ϵ_1 be sufficiently small positive constants to be chosen later, and assume (2.11). Let $\alpha \in$ $(0, \min\{\kappa, \eta\}/10)$. For any $\epsilon \in (0, \epsilon_1)$, put

$$
\varphi_{\epsilon}^{*}(x) = \begin{cases}\n\kappa - \alpha & \text{if } x \in \Omega' \text{ and } \tilde{\varphi}_{\epsilon}(x) \geq \kappa - \alpha, \\
\tilde{\varphi}_{\epsilon}(x) & \text{if } x \in \Omega' \text{ and } \kappa - 10\alpha \leq \tilde{\varphi}_{\epsilon}(x) \leq \kappa - \alpha, \\
\kappa - 10\alpha & \text{if } x \in \Omega' \text{ and } \tilde{\varphi}_{\epsilon}(x) \leq \kappa - 10\alpha, \\
\kappa - 10\alpha & \text{if } x \in \mathbf{R}^{N} \setminus \Omega'.\n\end{cases}
$$
\n(2.13)

By (2.10) and (2.13) we see that $\varphi_{\epsilon}^* \in W^{1,\infty}(\mathbb{R}^N)$. Let β and γ be positive constants to be chosen later, and put

$$
z(x,t) := \left(e^{\epsilon t \Delta} \varphi_{\epsilon}^*\right)(x),\tag{2.14}
$$

$$
w(t) := (\kappa - 3\alpha)^{-(p-1)} + \beta \sigma \left(1 - (1 - t)^{\frac{1}{2}}\right),\tag{2.15}
$$

and

$$
f_{\gamma}(t) := e^{\gamma t} \left(e^{2(p-1)\gamma} - e^{(p-1)\gamma t} \right)^{-\frac{1}{p-1}}.
$$

Here the function f_{γ} satisfies

$$
f'_{\gamma}(t) = \gamma \left(f_{\gamma}(t) + f_{\gamma}(t)^{p} \right), \quad 0 < t < 2,
$$
\n(2.16)

and there exists a positive constant c_γ , depending only on p and γ , such that

$$
c_{\gamma} \leq \inf_{0 < t < 1} f_{\gamma}(t) < \sup_{0 < t < 1} f_{\gamma}(t) \leq c_{\gamma}^{-1}.
$$
 (2.17)

Furthermore, we define the following three functions v_1 , v_2 , and \bar{v} by

$$
v_1(x,t) := \left(z(x,t)^{-(p-1)} - (p-1)t \right)^{-\frac{1}{p-1}},\tag{2.18}
$$

$$
v_2(x,t) := (z(x,t)^{-(p-1)} - w(t))^{-\frac{1}{p-1}},
$$
\n(2.19)

$$
\bar{v}(x,t) := v_1(x,t) + \sigma^{\frac{2}{p-1}} v_2(x,t)^2 + f_{\gamma}(t).
$$
\n(2.20)

Then we prove the following proposition.

Lemma 2.2. Assume the same conditions as in Proposition [2.1](#page-4-0). Then, for any $\alpha \in (0, \min\{\kappa, \eta\}/10)$, there exist positive constants β_1 , γ , σ , and ϵ_1 such that, if $\tilde{\varphi}_{\epsilon}$ satisfies [\(2.11\)](#page-4-0), then the function $\bar{\nu}$ defined by (2.20) satisfies

$$
\partial_t \bar{v} \geqslant \epsilon \Delta \bar{v} + \bar{v}^p \quad \text{in } E_{\epsilon} \tag{2.21}
$$

 $for any $\beta \geq \beta_1$ and $\epsilon \in (0, \epsilon_1)$, where$

$$
E_{\epsilon} := \left\{ (x, t) \in \mathbf{R}^{N} \times (0, 1) : z(x, t)^{-(p-1)} - w(t) \geqslant \frac{1}{2} C_{*}^{-\frac{p-1}{2}} \sigma (1-t)^{\frac{1}{2}} \right\}.
$$
\n(2.22)

Here C_* *is the constant given in* [\(2.7\)](#page-4-0)*.*

Proof. Let σ and ϵ_1 be positive constants to be chosen later, and assume [\(2.11\)](#page-4-0). We first prove the following inequalities,

$$
\kappa - 10\alpha \leqslant z(x, t) \leqslant \kappa - \alpha \quad \text{in } \mathbf{R}^N \times (0, \infty), \tag{2.23}
$$

$$
\|\nabla z(t)\|_{L^{\infty}(\mathbf{R}^N)} \leqslant \epsilon^{-\frac{1}{2}}\sigma \quad \text{in } (0, \infty),
$$
\n(2.24)

$$
v_1(x,t) \leqslant C \quad \text{in } \mathbf{R}^N \times (0,1), \tag{2.25}
$$

$$
\bar{v}^p - v_1^p \le C \left(\sigma^{\frac{2}{p-1}} v_2^2 + \sigma^{\frac{2p}{p-1}} v_2^{2p} + f_\gamma + f_\gamma^p \right) \quad \text{in } E_\epsilon,
$$
\n(2.26)

for all $\epsilon \in (0, \epsilon_1)$, where *C* is a positive constant, independent of β and γ . The inequality (2.23) easily follows from (2.13) and the comparison principle. By (2.11) and (2.13) we have

$$
\sup_{t>0} \|\nabla z(t)\|_{L^{\infty}(\mathbf{R}^N)} \le \|\nabla \varphi_{\epsilon}^*\|_{L^{\infty}(\mathbf{R}^N)} \le \|\nabla \tilde{\varphi}_{\epsilon}\|_{L^{\infty}(\{x \in \overline{\Omega'} : \ \kappa - 10\alpha \le \tilde{\varphi}_{\epsilon}(x) \le \kappa - \alpha\})} \le \epsilon^{-\frac{1}{2}}\sigma,
$$

and obtain the inequality (2.24). On the other hand, since

$$
(\kappa - \alpha)^{-(p-1)} - (p-1) = (p-1)\left[\left(1 - \kappa^{-1}\alpha\right)^{-(p-1)} - 1\right] > 0,
$$

by (2.18) and (2.23) we have

$$
v_1(x,t) \leqslant \left((\kappa - \alpha)^{-(p-1)} - (p-1)\right)^{-\frac{1}{p-1}} = \kappa \left[\left(1 - \kappa^{-1} \alpha\right)^{-(p-1)} - 1\right]^{-\frac{1}{p-1}},
$$

and obtain (2.25). The inequality (2.26) is obtained by the same argument as in (3.19) of $[8]$, and we omit its details.

Next we prove (2.21) by using (2.23)–(2.26). Let *β* and *γ* be positive constants to be chosen later. By [\(2.16\)](#page-4-0) and (2.20) we obtain

$$
\partial_t \bar{v} - (\epsilon \Delta \bar{v} + \bar{v}^p) \geq \frac{2}{p-1} \sigma^{\frac{2}{p-1}} w'(t) v_2^{p+1} + \gamma (f_\gamma(t) + f_\gamma(t)^p) - p \epsilon v_1^{2p-1} z^{-2p} |\nabla z|^2 - 2(p+1) \epsilon \sigma^{\frac{2}{p-1}} v_2^{2p} z^{-2p} |\nabla z|^2 - (\bar{v}^p - v_1^p)
$$

for all $(x, t) \in E_{\epsilon}$. Then, by (2.23)–(2.26) there exists a constant C_1 , independent of β and γ , such that

$$
\partial_t \bar{v} - (\epsilon \Delta \bar{v} + \bar{v}^p) \geq \frac{2}{p-1} \sigma^{\frac{2}{p-1}} w'(t) v_2^{p+1} + \gamma (f_\gamma(t) + f_\gamma(t)^p) - C_1 \sigma^2 - C_1 \sigma^{\frac{2}{p-1} + 2} v_2^{2p} - C_1 (\sigma^{\frac{2}{p-1}} v_2^2 + \sigma^{\frac{2p}{p-1}} v_2^{2p} + f_\gamma + f_\gamma^p)
$$
(2.27)

for all $(x, t) \in E_{\epsilon}$. Let γ be a positive constant such that $\gamma \ge 3C_1$. By [\(2.17\)](#page-4-0), taking a sufficiently small σ if necessary, we have

$$
(\gamma - C_1)\big(f_\gamma(t) + f_\gamma(t)^p\big) - C_1\sigma^2 \geq 2C_1\big(c_\gamma + c_\gamma^p\big) - C_1\sigma^2 \geq C_1c_\gamma.
$$

This together with (2.15) and (2.27) implies that

$$
\partial_t \bar{v} - \left(\epsilon \Delta \bar{v} + \bar{v}^p\right) \geq \frac{\beta}{p-1} \sigma^{\frac{p+1}{p-1}} (1-t)^{-\frac{1}{2}} v_2^{p+1} + C_1 c_\gamma - C_1 \left(\sigma^{\frac{2}{p-1}} v_2^2 + 2\sigma^{\frac{2p}{p-1}} v_2^{2p}\right)
$$
(2.28)

for all $(x, t) \in E_{\epsilon}$.

Let

$$
\beta \ge \max\left\{8(p-1)C_1C_*^{\frac{p-1}{2}}, c_\gamma^{-(p-1)}, 4C_1^2(p-1)^2\right\}.
$$
\n(2.29)

By [\(2.19\)](#page-5-0) and [\(2.22\)](#page-5-0) we have

$$
v_2(x,t)^{p-1} = (z(x,t)^{-(p-1)} - w(t))^{-1} \leq 2C_*^{\frac{p-1}{2}} \sigma^{-1} (1-t)^{-\frac{1}{2}}, \quad (x,t) \in E_{\epsilon},
$$

and by (2.29) we obtain

$$
2C_1\sigma^{\frac{2p}{p-1}}v_2^{2p} = 2C_1\sigma v_2^{p-1} \cdot \sigma^{\frac{p+1}{p-1}}v_2^{p+1}
$$

\$\leqslant 4C_1C_*^{\frac{p-1}{2}}(1-t)^{-\frac{1}{2}}\sigma^{\frac{p+1}{p-1}}v_2^{p+1} \leqslant \frac{\beta}{2(p-1)}(1-t)^{-\frac{1}{2}}\sigma^{\frac{p+1}{p-1}}v_2^{p+1}\$ (2.30)

for all $(x, t) \in E_{\epsilon}$. Therefore, by (2.28) and (2.30), we obtain

$$
\partial_t \bar{v} - \left(\epsilon \Delta \bar{v} + \bar{v}^p\right) \geq \frac{\beta}{2(p-1)} \sigma^{\frac{p+1}{p-1}} (1-t)^{-\frac{1}{2}} v_2^{p+1} + C_1 c_\gamma - C_1 \sigma^{\frac{2}{p-1}} v_2^2 \tag{2.31}
$$

for all $(x, t) \in E_{\epsilon}$.

Put

$$
E_{\epsilon,1} = \left\{ (x,t) \in E_{\epsilon}: z(x,t)^{-(p-1)} - w(t) \geqslant \beta^{\frac{1}{2}} \sigma \right\}, \qquad E_{\epsilon,2} = E_{\epsilon} \setminus E_1.
$$

By [\(2.19\)](#page-5-0) and (2.29) we have

$$
C_1 \sigma^{\frac{2}{p-1}} v_2^2 \leq C_1 \sigma^{\frac{2}{p-1}} (\beta^{\frac{1}{2}} \sigma)^{-\frac{2}{p-1}} = C_1 \beta^{-\frac{1}{p-1}} \leq C_1 c_\gamma
$$
\n(2.32)

for all $(x, t) \in E_{\epsilon,1}$. On the other hand, since

$$
(1-t)^{-\frac{1}{2}} \geq 1, \qquad \sigma v_2^{p-1} \geq \sigma \left(\beta^{\frac{1}{2}} \sigma\right)^{-1} = \beta^{-\frac{1}{2}},
$$

for all $(x, t) \in E_{\epsilon,2}$, by (2.29) we have

$$
\frac{\beta}{2(p-1)}\sigma^{\frac{p+1}{p-1}}(1-t)^{-\frac{1}{2}}v_2^{p+1} = \frac{\beta}{2(p-1)}(1-t)^{-\frac{1}{2}}\sigma v_2^{p-1} \cdot \sigma^{\frac{2}{p-1}}v_2^2
$$

$$
\geq \frac{\beta^{1/2}}{2(p-1)}\sigma^{\frac{2}{p-1}}v_2^2 \geq C_1\sigma^{\frac{2}{p-1}}v_2^2
$$

for all $(x, t) \in E_{\epsilon,2}$. This together with (2.32) implies

$$
\frac{\beta}{2(p-1)}\sigma^{\frac{p+1}{p-1}}(1-t)^{-\frac{1}{2}}v_2^{p+1} + C_1c_\gamma \geqslant C_1\sigma^{\frac{2}{p-1}}v_2^2\tag{2.33}
$$

for all $(x, t) \in E_\epsilon$. Therefore, by (2.31) and (2.33) we have [\(2.21\)](#page-5-0) for all $(x, t) \in E_\epsilon$. Thus Lemma [2.2](#page-5-0) follows. \Box

Let β_1 be the constant given in Lemma [2.2,](#page-5-0) and put

$$
\beta = \max\left\{\beta_1, \frac{C_*^{-(p-1)/2}}{2}\right\}.
$$
\n(2.34)

Let χ be a C^{∞} smooth function in **R** such that

$$
\chi(z) = 1/4
$$
 for $z \le 0$, $\chi(z) = z$ for $z \ge 1/2$, $0 \le \chi'(z) \le 1$ in **R**,

and put

$$
\overline{u}_{\epsilon}(x,t) = v_1(x,t) + C_*(1-t)^{-\frac{1}{p-1}} \chi \left(\frac{z(x,t)^{-(p-1)} - w(t)}{C_*^{-(p-1)/2} \sigma (1-t)^{1/2}} \right)^{-\frac{2}{p-1}} + f_{\gamma}(t).
$$
\n(2.35)

This together with (2.20) and (2.22) implies that

$$
\bar{u}_{\epsilon}(x,t) = \bar{v}(x,t) \quad \text{in } E_{\epsilon}.\tag{2.36}
$$

Here we prove the following lemma.

Lemma 2.3. Let \overline{u}_{ϵ} be the function defined in (2.35). Then

$$
\overline{u}_{\epsilon}(x,0) \geq \varphi_{\epsilon}(x), \quad x \in \Omega. \tag{2.37}
$$

Proof. For any $x \in \Omega$ with $\tilde{\varphi}_{\epsilon}(x) \le \kappa - 2\alpha$, by [\(2.8\)](#page-4-0) and [\(2.13\)](#page-4-0) we have

$$
\overline{u}_{\epsilon}(x,0) \geq v_1(x,0) = \varphi_{\epsilon}^*(x) \geq \tilde{\varphi}_{\epsilon}(x) \geq \varphi_{\epsilon}(x). \tag{2.38}
$$

On the other hand, for any $x \in \Omega$ with $\tilde{\varphi}_{{\epsilon}}(x) > \kappa - 2\alpha$, we have

$$
z(x, 0) = \varphi_{\epsilon}^{*}(x) > \kappa - 2\alpha.
$$

Then, by (2.15) and (2.23) we have

$$
z(x,0)^{-(p-1)} - w(0) < (k-2\alpha)^{-(p-1)} - (k-3\alpha)^{-(p-1)} \leq 0.
$$

This together with (2.7) and (2.35) implies

$$
\overline{u}_{\epsilon}(x,0) \geq C_{*}\chi \left(\frac{z(x,0)^{-(p-1)} - w(0)}{C_{*}^{-(p-1)/2}\sigma}\right)^{-\frac{2}{p-1}} = 16^{\frac{1}{p-1}}C_{*}
$$
\n
$$
\geq C_{*} \geq u_{\epsilon}(x,0) = \varphi_{\epsilon}(x). \tag{2.39}
$$

Therefore, by (2.38) and (2.39) we have the inequality (2.37), and Lemma 2.3 follows. \Box

Now we are ready to complete the proof of Proposition [2.1.](#page-4-0)

Proof of Proposition [2.1.](#page-4-0) Let $h \in C^1(\mathbb{R})$ be such that

$$
h(z) = -1 \quad \text{for } z \leq 1, \qquad h(z) = 1 \quad \text{for } z \geq 4, \ 0 \leq h'(z) \leq 1 \text{ in } \mathbf{R}.
$$

By (2.7) we have

$$
h\left(\frac{u_{\epsilon}(x,t)^{p-1}}{C_{*}^{p-1}(1-t)^{-1}}\right) = -1 \quad \text{in } \Omega \times (0,1),
$$

and see that u_{ϵ} satisfies

$$
\partial_t u_{\epsilon} = \epsilon \Delta u_{\epsilon} + u_{\epsilon}^p + \frac{1}{2} \left(h \left(\frac{u_{\epsilon}^{p-1}}{C_{\ast}^{p-1} (1-t)^{-1}} \right) + 1 \right) G_{\epsilon}(x, t) \quad \text{in } \Omega \times (0, 1), \tag{2.40}
$$

where

$$
G_{\epsilon}(x,t) = \partial_t \bar{u}_{\epsilon} - (\epsilon \Delta \bar{u}_{\epsilon} + \bar{u}_{\epsilon}^p).
$$

On the other hand, by Lemma [2.2](#page-5-0) and (2.36) we have

$$
\partial_t \overline{u}_{\epsilon} \geqslant \epsilon \Delta \overline{u}_{\epsilon} + \overline{u}_{\epsilon}^p \quad \text{in } dE_{\epsilon}, \quad \text{that is,} \quad G_{\epsilon} \geqslant 0 \quad \text{in } E_{\epsilon}.
$$
\n
$$
(2.41)
$$

Furthermore, since

$$
\chi\left(\frac{z_{\epsilon}(x,t)^{-(p-1)}-w(t)}{C_*^{-(p-1)/2}\sigma(1-t)^{1/2}}\right) \leq \frac{1}{2} \quad \text{in } \mathbf{R}^N \times [0,1) \setminus E_{\epsilon},
$$

we have

$$
\overline{u}_{\epsilon}(x,t) \geq 4^{1/(p-1)} C_{*}(1-t)^{-1/(p-1)}, \quad (x,t) \in \mathbf{R}^{N} \times [0,1) \setminus E_{\epsilon},
$$

and obtain

$$
h\left(\frac{\bar{u}_{\epsilon}(x,t)^{p-1}}{C_{*}^{p-1}(1-t)^{-1}}\right) = 1, \quad (x,t) \in \mathbf{R}^{N} \times [0,1) \setminus E_{\epsilon}.
$$
 (2.42)

Since $h \leq 1$, by [\(2.41\)](#page-7-0) and (2.42) we have

$$
\partial_t \overline{u}_{\epsilon} - \left[\epsilon \Delta \overline{u}_{\epsilon} + \overline{u}_{\epsilon}^p + \frac{1}{2} \left(h \left(\frac{\overline{u}_{\epsilon}^{p-1}}{C_{\epsilon}^{p-1} (1-t)^{-1}} \right) + 1 \right) G_{\epsilon}(x, t) \right]
$$

=
$$
\frac{1}{2} \left(1 - h \left(\frac{\overline{u}_{\epsilon}^{p-1}}{C_{\epsilon}^{p-1} (1-t)^{-1}} \right) G_{\epsilon}(x, t) \ge 0 \quad \text{in } \Omega \times (0, 1).
$$
 (2.43)

Therefore, by [\(2.37\)](#page-7-0), [\(2.40\)](#page-7-0), and (2.43) we apply the comparison principle to obtain

$$
u_{\epsilon}(x,t) \leq \overline{u}_{\epsilon}(x,t) \quad \text{in } \Omega \times [0,1). \tag{2.44}
$$

Without loss of generality we can assume that $\delta \in (0, \min\{\kappa, \eta\}/2)$, and let

$$
\alpha = \delta/5 \in (0, \min\{\kappa, \eta\}/10).
$$

Let $0 < \epsilon < \epsilon_1$ and $x_{\epsilon} \in \overline{\Omega}$ be such that $\tilde{\varphi}_{\epsilon}(x_{\epsilon}) < \kappa - \delta$. Then there exists a positive constant *R*, depending on ϵ and x_{ϵ} , such that

$$
\tilde{\varphi}_{\epsilon}(x) < \kappa - \delta = \kappa - 5\alpha, \quad x \in B(x_{\epsilon}, R) \cap \overline{\Omega}.
$$

Then, by (2.13) we have

$$
z(x,0) = \varphi_{\epsilon}^*(x) \leq \kappa - 5\alpha \tag{2.45}
$$

for all $x \in B(x_{\epsilon}, R) \cap \overline{\Omega}$. Furthermore, by [\[7, Lemma 1\],](#page-15-0) taking sufficiently small σ and ϵ_1 if necessary, we have

sup $0<\epsilon<\epsilon_1$ sup 0*<t<*1 $||z(t) - z(0)||_{L^{\infty}(\mathbf{R}^N)} < \alpha.$

This together with (2.45) implies that

$$
z(x,t) \leq \kappa - 4\alpha, \quad (x,t) \in (B(x_{\epsilon}, R) \cap \overline{\Omega}) \times [0, 1), \tag{2.46}
$$

for all $\epsilon \in (0, \epsilon_1)$. On the other hand, let C_1 be a positive constant such that

$$
(\kappa - 4\alpha)^{-(p-1)} - (\kappa - 3\alpha)^{-(p-1)} \ge C_1.
$$
\n(2.47)

Then, by [\(2.15\)](#page-4-0), [\(2.34\)](#page-6-0), (2.46), and (2.47), taking a sufficiently small σ if necessary, we obtain

$$
z(x, t)^{-(p-1)} - w(t) \ge (k - 4\alpha)^{-(p-1)} - \left[(k - 3\alpha)^{-(p-1)} + \beta \sigma \left(1 - (1 - t)^{\frac{1}{2}} \right) \right]
$$

\n
$$
\ge C_1 - \beta \sigma + \beta \sigma \left(1 - t \right)^{\frac{1}{2}} \ge \frac{C_1}{2} + \frac{1}{2} C_*^{-\frac{p-1}{2}} \sigma \left(1 - t \right)^{\frac{1}{2}}
$$

\n
$$
\ge \max \left\{ \frac{1}{2} C_1, \frac{1}{2} C_*^{-\frac{p-1}{2}} \sigma \left(1 - t \right)^{\frac{1}{2}} \right\}
$$
\n(2.48)

for all $(x, t) \in (B(x_{\epsilon}, R) \cap \overline{\Omega}) \times [0, 1)$. This implies that $(B(x_{\epsilon}, R) \cap \overline{\Omega}) \times [0, 1) \subset E_{\epsilon}$ (see [\(2.22\)](#page-5-0)). Therefore, by [\(2.17\)](#page-4-0), [\(2.20\)](#page-5-0), [\(2.25\)](#page-5-0), [\(2.36\)](#page-7-0), (2.44), and (2.48) we have

$$
u_{\epsilon}(x, t) \leq \overline{u}_{\epsilon}(x, t) = \overline{v}(x, t) \leq v_1(x, t) + \sigma^{\frac{2}{p-1}} (C_1/2)^{-\frac{2}{p-1}} + c_{\gamma}^{-1} \leq C_2
$$

for all $(x, t) \in (B(x_{\epsilon}, R) \cap \overline{\Omega}) \times [0, 1)$, where C_2 is a constant. This implies $x_{\epsilon} \notin B_{\epsilon}$. Therefore, by the arbitrariness of x_{ϵ} , we have [\(2.12\)](#page-4-0) for all $\epsilon \in (0, \epsilon_1)$, and the proof of Proposition [2.1](#page-4-0) is complete. \Box

3. Proof of Theorems [1.1](#page-2-0) and [1.2](#page-2-0)

We prove Theorem [1.1](#page-2-0) and Theorem [1.2](#page-2-0) by using Proposition [2.1.](#page-4-0)

Proof of Theorem [1.1.](#page-2-0) Let ϵ_0 be a sufficiently small positive constant. Put

$$
u_{\epsilon}(x,\tau) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon + \epsilon \tau), \qquad \varphi_{\epsilon}(x) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon), \qquad M_{\epsilon} := \sup_{0 < t < T - \epsilon} \left\| u(t) \right\|_{L^{\infty}(\Omega)},
$$

for all $\epsilon \in (0, \epsilon_0)$. Then u_{ϵ} satisfies

$$
\begin{cases} \n\partial_{\tau} u_{\epsilon} = \epsilon \Delta u_{\epsilon} + u_{\epsilon}^{p} & \text{in } \Omega \times (0, 1), \\ \nu_{\epsilon}(x, \tau) = 0 & \text{on } \partial \Omega \times (0, 1), \\ \nu_{\epsilon}(x, 0) = \varphi_{\epsilon}(x) & \text{in } \Omega, \n\end{cases} \tag{3.1}
$$

and u_{ϵ} blows up at $\tau = 1$. This implies that $\|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} \geq \kappa$ (see [\(2.3\)](#page-3-0)). Furthermore, since the blow-up of the solution u is of type I, we have

$$
d_* := \sup_{0 < \epsilon < \epsilon_0} \|\varphi_\epsilon\|_{L^\infty(\Omega)} < \infty. \tag{3.2}
$$

On the other hand, letting $\varphi = 0$ outside Ω , we apply the comparison principle to obtain

$$
0 \leq u(x,t) \leq e^{M_{\epsilon}^{p-1}t} \left(e^{t\Delta}\varphi\right)(x) \quad \text{in } \Omega \times (0,T-\epsilon). \tag{3.3}
$$

Furthermore, since $\varphi \in L^q(\mathbf{R}^N)$, for any $\delta > 0$, we take a sufficiently large *R* so that

$$
\int_{\mathbf{R}^N\setminus B(0,R)}|\varphi(y)|^q dy\leqslant \delta.
$$

This together with the Hölder inequality implies that

$$
\begin{split} \left| \left(e^{t\Delta} \varphi \right) (x) \right|^q &\leqslant (4\pi t)^{-\frac{N}{2}} \int_{\mathbf{R}^N} e^{-\frac{|x-y|^2}{4t}} \left| \varphi(y) \right|^q dy \\ &= (4\pi t)^{-\frac{N}{2}} \bigg(\int_{B(0,R)} + \int_{\mathbf{R}^N \setminus B(0,R)} \bigg) e^{-\frac{|x-y|^2}{4t}} \left| \varphi(y) \right|^q dy \\ &\leqslant (4\pi t)^{-\frac{N}{2}} e^{-\frac{(|x|-R)^2}{4t}} \left| \varphi \right|_{L^q(\mathbf{R}^N)}^q + (4\pi t)^{-\frac{N}{2}} \delta \end{split} \tag{3.4}
$$

for all $x \in \mathbb{R}^N \setminus B(0, R)$. Therefore, since δ is arbitrary, by (3.3) and (3.4) we have

$$
\lim_{L \to \infty} \|u(T - \epsilon)\|_{L^{\infty}(\Omega \setminus B(0, L))} = 0.
$$

Then we can take a positive constant L_{ϵ} satisfying

$$
0 \leqslant \varphi_{\epsilon}(x) \leqslant \kappa/2 \tag{3.5}
$$

for all $x \in \Omega$ with $|x| \geqslant L_{\epsilon}$. For any $x \in \mathbb{R}^N$, we put

$$
\tilde{\varphi}_{\epsilon}(x) = \begin{cases}\n\|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} & \text{if } |x| \le L_{\epsilon}, \\
-(|x| - L_{\epsilon}) + \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} & \text{if } L_{\epsilon} < |x| \le L_{\epsilon} + \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \kappa/2, \\
\kappa/2 & \text{if } |x| > L_{\epsilon} + \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} - \kappa/2.\n\end{cases}
$$

Then we have

$$
\tilde{\varphi}_{\epsilon} \in W^{1,\infty}(\mathbf{R}^N), \qquad \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = \|\tilde{\varphi}_{\epsilon}\|_{L^{\infty}(\mathbf{R}^N)}, \qquad \|\nabla \tilde{\varphi}_{\epsilon}\|_{L^{\infty}(\mathbf{R}^N)} \leq 1, \tag{3.6}
$$

and by (3.5) we obtain

$$
\varphi_{\epsilon}(x) \leq \tilde{\varphi}_{\epsilon}(x) \quad \text{in } \Omega. \tag{3.7}
$$

Therefore, by [\(3.2\)](#page-9-0), [\(3.6\)](#page-9-0), and [\(3.7\)](#page-9-0) we apply Proposition [2.1](#page-4-0) with $\delta = \frac{\kappa}{4}$, and obtain

$$
B(u) = B(u_{\epsilon}) \subset \{x \in \Omega : \tilde{\varphi}_{\epsilon}(x) \geq 3\kappa/4\} \subset B(0, L_{\epsilon} + ||\varphi_{\epsilon}||_{L^{\infty}(\Omega)} - \kappa/2)
$$

for all sufficiently small $\epsilon > 0$. This means that $B(u)$ is bounded, and the proof of Theorem [1.1](#page-2-0) is complete. \Box

Proof of Theorem [1.2.](#page-2-0) We use the same notation as in the proof of Theorem [1.1.](#page-2-0) By [\(1.3\)](#page-2-0) we have

$$
\lim_{\epsilon \to 0} \epsilon^{\frac{1}{2}} \|\nabla \varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = 0.
$$

Then, for any $\eta > 0$, we apply Proposition [2.1](#page-4-0) with $\tilde{\varphi}_{\epsilon} = \varphi_{\epsilon}$ and $\Omega' = \Omega$ to u_{ϵ} , and have

$$
B(u_{\epsilon}) \subset M(\varphi_{\epsilon}, \eta), \quad 0 < \epsilon < \epsilon_0,
$$
\n
$$
(3.8)
$$

for some $\epsilon_0 > 0$. Therefore, since $B(u) = B(u_\epsilon)$, by (3.8) we have

$$
B(u) \subset \bigcap_{0 < \epsilon < \epsilon_0} M\big(\epsilon^{\frac{1}{p-1}}u(T-\epsilon), \eta\big).
$$

This implies [\(1.4\)](#page-2-0). Furthermore, by Lemma [2.1,](#page-3-0) we see that the blow-up of the solution u is of O.D.E. type, and Theorem [1.2](#page-2-0) follows. \square

Next we prove Corollary [1.1](#page-2-0) by using Theorem [1.2](#page-2-0) with the aid of blow-up estimates of the solutions.

Proof of Corollary [1.1.](#page-2-0) Let $\Omega = \{a < |x| < b\}$ with $0 < a < b < \infty$. Let *u* be a radially symmetric solution of [\(1.1\)](#page-0-0) blowing up at $t = T$. Then, due to Theorem [1.2,](#page-2-0) it suffices to prove

$$
\sup_{0 < t < T} (T - t)^{\frac{1}{p-1}} \|u(t)\|_{L^{\infty}(\Omega)} < \infty,
$$
\n
$$
\lim_{t \to T} (T - t)^{\frac{1}{p-1} + \frac{1}{2}} \|\nabla u(t)\|_{L^{\infty}(\Omega)} = 0.
$$
\n(3.10)

We first prove (3.9) by the same argument as in the proof of [\[5, Theorem 2.1\].](#page-15-0) For any $t \in (0, T)$, we put

$$
M(t) := \|u\|_{L^{\infty}(\Omega \times (0,t))}, \qquad \lambda(t) := M(t)^{-\frac{p-1}{2}}.
$$

Since $M(t)$ is a positive, continuous, and nondecreasing function on $(0, T)$ such that $M(t) \to \infty$ as $t \to T$, we can define $\tau(t)$ by

$$
\tau(t) := \max \{ \tau \in (0, T) : M(\tau) = 2M(t) \}, \quad 0 < t < T.
$$

Then, similarly to $[5]$, it suffices to prove that there exists a constant *K* such that

$$
\lambda(t)^{-2} \big(\tau(t) - t\big) \leqslant K, \quad t \in (T/2, T). \tag{3.11}
$$

We prove (3.11) by contradiction. Assume that there exists a sequence $\{t_i\}$ such that

$$
\lim_{j\to\infty}\lambda(t_j)^{-2}(\tau(t_j)-t_j)=\infty.
$$

For any *j* = 1, 2, ..., we take a sequence $\{(r_j, \hat{t}_j)\} \subset [a, b] \times (0, t_j]$ satisfying

$$
u(r_j, \hat{t}_j) \geqslant \frac{1}{2} M(t_j).
$$

Put $\lambda_j = \lambda(t_j)$ and

$$
v_j(\tau, s) := \lambda_j^{\frac{2}{p-1}} u(\lambda_j \tau + r_j, \lambda_j^2 s + \hat{t}_j) \quad \text{for } (\tau, s) \in I_j \times \left(-\lambda_j^{-2} \hat{t}_j, \lambda_j^{-2} (T - \hat{t}_j)\right),
$$

where $I_i := \{ \tau \in \mathbb{R} : \lambda_i \tau + r_i \in (a, b) \}.$ Then v_i satisfies

$$
\partial_s v_j = \partial_\tau^2 v_j + \lambda_j \frac{N-1}{r_j + \lambda_j \tau} \partial_\tau v_j + v_j^p \quad \text{in } I_j \times \left(-\lambda_j^{-2} \hat{t}_j, \lambda_j^{-2} (T - \hat{t}_j) \right).
$$

Furthermore, we have

$$
0 \leq v_j \leq 2 \quad \text{in } I_j \times \left(-\lambda_j^{-2} \hat{t}_j, \lambda_j^{-2} \big(\tau(t_j) - \hat{t}_j\big)\right], \qquad v_j(0,0) \geq \frac{1}{2}.
$$

Since

$$
0 < a \leq r_j \leq b, \qquad \lim_{j \to \infty} \lambda_j = 0, \qquad \lim_{j \to \infty} \lambda_j^{-2} \big(\tau(t_j) - \hat{t}_j \big) = \infty,
$$

by the same argument as in [\[5\]](#page-15-0) we see that there exist an unbounded open interval *H* with $0 \in \overline{H}$ and a subsequence $\{v_j\}$ of $\{v_j\}$ such that $\{v_{j'}\}$ converges to some function *v* in $C_{loc}^{2,1}(\overline{H} \times (-\infty,\infty))$ and

$$
\partial_s v = \partial_t^2 v + v^p \quad \text{in } H \times (-\infty, \infty), \tag{3.12}
$$

$$
0 \leq v \leq 2 \quad \text{in } H \times (-\infty, \infty), \tag{3.13}
$$

$$
v(\tau, s) = 0 \quad \text{in } (-\infty, \infty) \text{ if } \tau \in \partial H,
$$
\n
$$
(3.14)
$$

$$
v(0,0) \geqslant \frac{1}{2}.\tag{3.15}
$$

Then, by (3.12)–(3.14) we apply [\[29, Theorems A and 2.1\]](#page-16-0) to obtain $v \equiv 0$ in $\overline{H} \times (-\infty, \infty)$. This contradicts (3.15). Therefore (3.11) holds, and we have (3.9) .

Next we follow an argument in $[28]$, and prove (3.10) by contradiction. Assume that there exist a positive constant *m* and a sequence $\{(r_n, t_n)\} \subset [a, b] \times (0, T)$ such that $t_n \to T$ as $n \to \infty$ and

$$
M_n := (T - t_n)^{\frac{p+1}{2(p-1)}} \left| \partial_r u(r_n, t_n) \right| \geqslant m > 0, \quad n = 1, 2, \dots
$$

Put

$$
\mu_n = (T - t_n)^{\frac{1}{2}} M_n^{-\frac{p-1}{p+1}}, \qquad w_n(\tau, s) = \mu_n^{\frac{2}{p-1}} u(r_n + \mu_n \tau, t_n + \mu_n^2 s) \quad \text{in } I_n \times (-\alpha_n, 0],
$$

where $I_n = \{ \tau \in \mathbf{R} : \mu_n \tau + r_n \in (a, b) \}$ and $\alpha_n = \mu_n^{-2} t_n$. Then w_n satisfies

$$
\partial_s w_n = \partial_{\tau}^2 w_n + \mu_n \frac{N-1}{r_n + \mu_n \tau} \partial_{\tau} w_n + w_n^p
$$

in $I_n \times (-\alpha_n, 0]$. By [\(3.9\)](#page-10-0) we have

$$
\left| w_n(\tau, s) \right| \leq C \mu_n^{\frac{2}{p-1}} \left(T - t_n - \mu_n^2 s \right)^{-\frac{1}{p-1}}
$$

= $C \mu_n^{\frac{2}{p-1}} \left(T - t_n - (T - t_n) M_n^{-\frac{2(p-1)}{p+1}} s \right)^{-\frac{1}{p-1}}$
= $C \left(M_n^{\frac{2(p-1)}{p+1}} - s \right)^{-\frac{1}{p-1}} \leq C \left(m^{\frac{2(p-1)}{p+1}} - s \right)^{-\frac{1}{p-1}} \leq C (-s)^{-\frac{1}{p-1}}$

for all $\tau \in I_n$ and $s \in (-\alpha_n, 0]$, where *C* is a constant. Then there exist an unbounded open interval *I* with $0 \in \overline{I}$ and a subsequence $\{w_{n'}\}$ of $\{w_{n}\}$ such that $\{w_{n'}\}$ converges to some function *w* in $C_{loc}^{2,1}(\bar{I} \times (-\infty,0])$ and *w* satisfies

$$
\partial_s w = \partial_\tau^2 w + w^p \quad \text{in } I \times (-\infty, 0], \qquad w(\tau, s) = 0 \quad \text{in } (-\infty, 0] \text{ if } \tau \in \partial I. \tag{3.16}
$$

Therefore, by [\[27, Corollary 1\]](#page-15-0) (see also [\[26, Corollary 1.6\]\)](#page-15-0) we have

$$
w(\tau, s) \equiv 0
$$
 or $w(\tau, s) = \kappa (T_0 - s)^{-1/(p-1)}$ for some $T_0 \ge 0$.

On the other hand, since $|\partial_{\tau} w_n(0,0)| = 1$ for all *n*, we have $|\nabla w(0,0)| = 1$. This is a contradiction. Thus we have [\(3.10\)](#page-10-0). Therefore we have [\(3.9\)](#page-10-0) and (3.10), and the proof of Corollary [1.1](#page-2-0) is complete. \Box

By Theorems [1.1](#page-2-0) and [1.2](#page-2-0) we can obtain the following result.

Theorem 3.1. Let Ω be a (possibly unbounded) smooth domain in \mathbb{R}^N . Let u be a solution of [\(1.1\)](#page-0-0) which exhibits *type I blow-up at* $t = T$ *. Assume*

 $\varphi \in L^{\infty}(\Omega) \cap L^{q}(\Omega)$ *for some* $q \in [1, \infty)$, $(N-2)p < N+2$.

Then the blow-up set $B(u)$ *is compact in* Ω *. In particular,* $B(u) \cap \partial \Omega = \emptyset$ *.*

Proof. By Theorem [1.1](#page-2-0) we can find a positive constant *R* satisfying

$$
\sup_{x \in \Omega \setminus B(0,R), \, t \in (0,T)} |u(x,t)| < \infty,\tag{3.17}
$$

and obtain

$$
B(u) \subset \overline{\Omega} \cap B(0, R). \tag{3.18}
$$

Then, by (3.17) we apply the gradient estimates for parabolic equations to obtain

$$
\left|\nabla u(x,t)\right| \leqslant C\tag{3.19}
$$

for all $x \in \Omega \setminus B(0, R+1)$ and $t \in (0, T)$, where *C* is a constant. Furthermore, the solution *u* satisfies [\(1.3\)](#page-2-0). Indeed, if not, there exist a positive constant *m* and a sequence $\{(x_n, t_n)\}\subset \overline{\Omega}\times(0, T)$ such that

$$
M_n := (T - t_n)^{\frac{p+1}{2(p-1)}} |\nabla u(x_n, t_n)| \geq m > 0, \quad n = 1, 2,
$$

By (3.19) we can assume that $\{x_n\} \subset \Omega \cap B(0, R + 1)$. Then, by using the similar argument as in the proof of [\[28, Theorem 2.1\]](#page-16-0) with the aid of the Liouville type theorem (see [\[26\]](#page-15-0) and [\[27\]\)](#page-15-0) we can obtain a contradiction (see also the proof of Corollary [1.1\)](#page-2-0). Therefore, by Theorem [1.2](#page-2-0) we have $B(u) \cap \partial \Omega = \emptyset$. This together with (3.18) implies that *B*(*u*) is compact in Ω , and Theorem [3.1](#page-11-0) follows. \Box

4. Proof of Theorem [1.3](#page-2-0)

In this section we prove Theorem [1.3](#page-2-0) by using Proposition [2.1](#page-4-0) and Corollary [1.1.](#page-2-0) In order to prove Theorem [1.3,](#page-2-0) we prepare the following lemma.

Lemma 4.1. *Let* $\epsilon_0 > 0$ *and* $\{M_{\epsilon}\}_{0 < \epsilon < \epsilon_0} \subset (0, \infty)$ *be such that*

$$
0<\inf_{0<\epsilon<\epsilon_0}M_{\epsilon}\leqslant \sup_{0<\epsilon<\epsilon_0}M_{\epsilon}<\infty.
$$

Let $\Omega = \{x \in \mathbf{R}^N : R_1 < |x| < R_2\}$ with $0 < R_1 < R_2 < \infty$. For any $\epsilon \in (0, \epsilon_0)$, let u_{ϵ} be the blowing up solution of

$$
\begin{cases} \n\partial_t u = \epsilon \Delta u + u^p & \text{in } \Omega \times (0, T_\epsilon), \\ \nu(x, t) = 0 & \text{on } \partial \Omega \times (0, T_\epsilon), \\ \nu(x, 0) = M_\epsilon & \text{in } \Omega, \n\end{cases}
$$

where T_{ϵ} *is the blow-up time of* u_{ϵ} *. Then there exists a constant* $\epsilon_1 \in (0, \epsilon_0)$ *such that*

$$
\sup_{0 < \epsilon < \epsilon_1} \limsup_{t \to T_\epsilon} (T_\epsilon - t)^{\frac{1}{p-1}} \| u_\epsilon(t) \|_{L^\infty(\Omega)} < \infty,\tag{4.1}
$$

$$
\lim_{t \to T_{\epsilon}} \epsilon^{\frac{1}{2}} (T_{\epsilon} - t)^{\frac{1}{p-1} + \frac{1}{2}} \|\nabla u_{\epsilon}(t)\|_{L^{\infty}(\Omega)} = 0 \quad \text{uniformly for } \epsilon \in (0, \epsilon_1). \tag{4.2}
$$

Proof. We prove Lemma 4.1 by modifying the arguments in the proof of Corollary [1.1.](#page-2-0) We first prove (4.1). Let $\epsilon_1 \in (0, \epsilon_0)$ be a sufficiently small constant. Then, by [\[8, Proposition 2.1\]](#page-15-0) we have

$$
0 < \inf_{0 < \epsilon < \epsilon_1} T_{\epsilon} \leqslant \sup_{0 < \epsilon < \epsilon_1} T_{\epsilon} < \infty. \tag{4.3}
$$

For any $t \in (0, T_{\epsilon})$, put

$$
M_{\epsilon}(t) := \|u_{\epsilon}\|_{L^{\infty}(\Omega \times (0,t))}, \qquad \lambda_{\epsilon}(t) := M_{\epsilon}(t)^{-\frac{p-1}{2}}.
$$

Then, for any $t \in (0, T_{\epsilon})$, we define $\tau_{\epsilon}(t)$ by

$$
\tau_{\epsilon}(t) := \max\bigl\{\tau \in (0, T_{\epsilon}) : M_{\epsilon}(\tau) = 2M_{\epsilon}(t)\bigr\}.
$$

Similarly to (3.11) , we prove by contradiction that there exists a positive constant *K* such that

$$
\lambda_{\epsilon}(t)^{-2} \big(\tau_{\epsilon}(t) - t\big) \leqslant K \tag{4.4}
$$

for all $t \in (T_{\epsilon}/2, T_{\epsilon})$ and all $\epsilon \in (0, \epsilon_1)$. Assume that there exist sequences $\{\epsilon_j\} \subset (0, \epsilon_1)$ and $\{t_j\} \subset (0, T_{\epsilon_j})$ such that

$$
\lim_{j \to \infty} \epsilon_j = 0, \qquad \lim_{j \to \infty} \lambda_{\epsilon_j}(t_j)^{-2} (\tau_{\epsilon_j}(t_j) - t_j) = \infty.
$$

For any $j = 1, 2, \ldots$, we can take a point $(r_j, \hat{t}_j) \in [R_1, R_2] \times (0, t_j]$ such that

$$
u_{\epsilon_j}(r_j, \hat{t}_j) \geq \frac{1}{2} M_{\epsilon_j}(t_j).
$$

Put $\lambda_j = \lambda_{\epsilon_j}(t_j)$ and

$$
v_j(\tau,s) := \lambda_j^{\frac{2}{p-1}} u_{\epsilon_j} \left(\epsilon_j^{\frac{1}{2}} \lambda_j \tau + r_j, \lambda_j^2 s + \hat{t}_j \right) \quad \text{for } (\tau,s) \in I_j \times \left(-\lambda_j^{-2} \hat{t}_j, \lambda_j^{-2} (T_{\epsilon_j} - \hat{t}_j) \right),
$$

where $I_j := \{ \tau \in \mathbf{R} : \epsilon_j^{\frac{1}{2}} \lambda_j \tau + r_j \in (R_1, R_2) \}$. Then v_j satisfies

$$
\partial_s v_j = \partial_\tau^2 v_j + \epsilon_j^{\frac{1}{2}} \lambda_j \frac{N-1}{r_j + \epsilon^{\frac{1}{2}} \lambda_j \tau} \partial_\tau v_j + v_j^p \quad \text{in } I_j \times \left(-\lambda_j^{-2} \hat{t}_j, \lambda_j^{-2} (T_{\epsilon_j} - \hat{t}_j) \right)
$$

and

$$
0 \leqslant v_j \leqslant 2 \quad \text{in } I_j \times \left(-\lambda_j^{-2}\hat{t}_j, \lambda_j^{-2}\big(\tau(t_j)-\hat{t}_j\big)\right], \qquad v_j(0,0) \geqslant \frac{1}{2}
$$

Then, by the similar argument as in the proof of (3.9) we obtain (3.12) – (3.15) , which yield a contradiction. Therefore we have (4.4) , which implies (4.1) .

.

Next we prove [\(4.2\)](#page-12-0) by contradiction. Assume that there exist sequences $\{\epsilon_n\} \subset (0, \epsilon_1)$ and $\{(r_n, t_n)\} \subset I \times (0, T_{\epsilon_n})$ and a positive constant *m* such that $\epsilon_n \to 0$, $|t_n - T_{\epsilon_n}| \to 0$ as $n \to \infty$, and

$$
M_n := \epsilon_n^{\frac{1}{2}} (T_{\epsilon_n} - t_n)^{\frac{1}{p-1} + \frac{1}{2}} \Big| \partial_r u_{\epsilon_n}(r_n, t_n) \Big| \geqslant m > 0, \quad n = 1, 2, \ldots.
$$

Put

$$
\mu_n := (T_{\epsilon_n} - t_n)^{\frac{1}{2}} M_n^{-\frac{p-1}{p+1}}, \qquad w_n(\tau, s) := \mu_n^{\frac{2}{p-1}} u_{\epsilon_n} (r_n + \epsilon_n^{\frac{1}{2}} \mu_n \tau, t_n + \mu_n^2 s) \quad \text{in } I_n \times (-\alpha_n, 0],
$$

where $I_n = \{ \tau \in \mathbf{R} : \epsilon_n^{\frac{1}{2}} \mu_n \tau + r_n \in (R_1, R_2) \}$ and $\alpha_n = \mu_n^{-2} t_n$. Then we have

$$
\partial_s w_n = \partial_r^2 w_n + \epsilon_n^{\frac{1}{2}} \mu_n \frac{N-1}{r_n + \epsilon_n^{\frac{1}{2}} \mu_n \tau} \partial_r w_n + w_n^p
$$

in $I_n \times (-\alpha_n, 0]$. On the other hand, by [\(4.1\)](#page-12-0) we have

$$
\left| w_n(\tau,s) \right| \leq C \mu_n^{\frac{2}{p-1}} \left(T_{\epsilon_n} - t_n - \mu_n^2 s \right)^{-\frac{1}{p-1}}
$$

= $C \mu_n^{\frac{2}{p-1}} \left(T_{\epsilon_n} - t_n - (T_{\epsilon_n} - t_n) M_n^{-\frac{2(p-1)}{p+1}} s \right)^{-\frac{1}{p-1}}$
= $C \left(M_n^{\frac{2(p-1)}{p+1}} - s \right)^{-\frac{1}{p-1}} \leq C \left(m^{\frac{2(p-1)}{p+1}} - s \right)^{-\frac{1}{p-1}} \leq C (-s)^{-\frac{1}{p-1}}$

for all $(\tau, s) \in I_n \times (-\alpha_n, 0]$. Then, by the similar argument as in the proof of [\(3.10\)](#page-10-0) we obtain [\(3.16\)](#page-11-0), which yields a contradiction. Therefore we have [\(4.2\)](#page-12-0), and the proof of Lemma [4.1](#page-12-0) is complete. \Box

We are ready to prove Theorem [1.3.](#page-2-0)

Proof of Theorem [1.3.](#page-2-0) The proof is by contradiction. Let *u* be a solution of [\(1.1\)](#page-0-0) which exhibits O.D.E. type blow-up at $t = T$. Assume that there exists a point

$$
a \in B(u) \cap \partial \Omega. \tag{4.5}
$$

Since Ω satisfies the exterior sphere condition, there exist a point $x_0 \in \mathbb{R}^N$ and positive constants R_1 and R_2 such that

$$
a \in \partial B(x_0, R_1), \qquad B(x_0, R_1) \cap \Omega = \emptyset, \qquad \Omega \subset \Omega' := \left\{ x \in \mathbf{R}^N \colon R_1 < |x - x_0| < R_2 \right\}.
$$

In what follows, we can assume, without loss of generality, that $x_0 = 0$. Let ϵ be a sufficiently small positive constant and put

$$
u_{\epsilon}(x,\tau) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon + \epsilon \tau), \qquad \varphi_{\epsilon}(x) := \epsilon^{\frac{1}{p-1}} u(x, T - \epsilon).
$$

Then u_{ϵ} satisfies [\(3.1\)](#page-9-0). Furthermore, since the blow-up of the solution *u* is of O.D.E. type, there holds

$$
\lim_{\epsilon \to 0} \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} = \lim_{t \to T} (T - t)^{\frac{1}{p - 1}} \|u(t)\|_{L^{\infty}(\Omega)} = \kappa.
$$
\n(4.6)

Let $v_{\epsilon} = v_{\epsilon}(x, \tau)$ be a radially symmetric blowing up solution of

$$
\begin{cases}\n\partial_{\tau} v = \epsilon \Delta v + v^{p} & \text{in } \Omega' \times (0, T_{\epsilon}), \\
v(x, \tau) = 0 & \text{on } \partial \Omega' \times (0, T_{\epsilon}), \\
v(x, 0) = \|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)} & \text{in } \Omega',\n\end{cases}
$$
\n(4.7)

where T_{ϵ} is the blow-up time of v_{ϵ} . Then the comparison principle together with (4.6) implies

$$
0 \leqslant u_{\epsilon} \leqslant v_{\epsilon} \quad \text{in } \Omega \times (0, T_{\epsilon}), \qquad \frac{1}{2} < S_{\|\varphi_{\epsilon}\|_{L^{\infty}(\Omega)}} \leqslant T_{\epsilon} \leqslant 1,\tag{4.8}
$$

for all sufficiently small $\epsilon > 0$. By [\(1.2\)](#page-2-0), (4.6), and (4.8) we have

$$
\nu_{\epsilon} := 2\max\{1 - T_{\epsilon}, \epsilon\} \to 0 \quad \text{as } \epsilon \to 0. \tag{4.9}
$$

Furthermore, by Lemma [4.1](#page-12-0) we can find a positive constant ϵ_1 such that

$$
\sup_{0 < \epsilon < \epsilon_1} \sup_{0 < \tau < T_\epsilon} (T_\epsilon - \tau)^{\frac{1}{p-1}} \| v_\epsilon(\tau) \|_{L^\infty(\Omega')} < \infty,\tag{4.10}
$$

$$
\lim_{\tau \to T_{\epsilon}} \epsilon^{\frac{1}{2}} (T_{\epsilon} - \tau)^{\frac{1}{p-1} + \frac{1}{2}} \|\nabla v_{\epsilon}(\tau)\|_{L^{\infty}(\Omega')} = 0
$$
\n(4.11)

uniformly for all $\epsilon \in (0, \epsilon_1)$. Put

$$
u_{\epsilon}^*(x,s) := v_{\epsilon}^{\frac{1}{p-1}} u_{\epsilon}(x,1-v_{\epsilon}+v_{\epsilon}s), \qquad \varphi_{\epsilon}^*(x) := v_{\epsilon}^{\frac{1}{p-1}} u_{\epsilon}^*(x,1-v_{\epsilon}), \qquad \tilde{\varphi}_{\epsilon}(x) := v_{\epsilon}^{\frac{1}{p-1}} v_{\epsilon}(x,1-v_{\epsilon}).
$$

Then $u_{\epsilon}^* = u_{\epsilon}^*(x, s)$ is a solution of

$$
\begin{cases}\n\partial_s u = \epsilon v_\epsilon \Delta u + u^p & \text{in } \Omega \times (0, 1), \\
u(x, s) = 0 & \text{on } \partial \Omega \times (0, 1), \\
u(x, 0) = \varphi_\epsilon^*(x) & \text{in } \Omega,\n\end{cases}
$$
\n(4.12)

and blows up at $s = 1$. Furthermore, it holds

$$
0 \leqslant \varphi_{\epsilon}^*(x) \leqslant \tilde{\varphi}_{\epsilon}(x) \quad \text{in } \Omega. \tag{4.13}
$$

On the other hand, it follows from (4.9) that

$$
T_{\epsilon}-(1-\nu_{\epsilon})\geqslant \frac{\nu_{\epsilon}}{2},
$$

and by (4.10) we have

$$
\limsup_{\epsilon \to 0} \|\tilde{\varphi}_{\epsilon}\|_{L^{\infty}(\Omega')} = \limsup_{\epsilon \to 0} \nu_{\epsilon}^{\frac{1}{p-1}} \|v_{\epsilon}(1 - \nu_{\epsilon})\|_{L^{\infty}(\Omega')}
$$
\n
$$
\leq \limsup_{\epsilon \to 0} 2^{\frac{1}{p-1}} \left(T_{\epsilon} - (1 - \nu_{\epsilon}) \right)^{\frac{1}{p-1}} \|v_{\epsilon}(1 - \nu_{\epsilon})\|_{L^{\infty}(\Omega')} < \infty.
$$
\n(4.14)

Similarly, by (4.11) we have

$$
\lim_{\epsilon \to 0} (\epsilon \nu_{\epsilon})^{\frac{1}{2}} \| \nabla \tilde{\varphi}_{\epsilon} \|_{L^{\infty}(\Omega')} = \lim_{\epsilon \to 0} \epsilon^{\frac{1}{2}} \nu_{\epsilon}^{\frac{1}{2} + \frac{1}{p-1}} \| \nabla v_{\epsilon} (1 - \nu_{\epsilon}) \|_{L^{\infty}(\Omega')}
$$
\n
$$
\leq \lim_{\epsilon \to 0} 2^{\frac{1}{2} + \frac{1}{p-1}} \epsilon^{\frac{1}{2}} \left(T_{\epsilon} - (1 - \nu_{\epsilon}) \right)^{\frac{1}{2} + \frac{1}{p-1}} \| \nabla v_{\epsilon} (1 - \nu_{\epsilon}) \|_{L^{\infty}(\Omega')} = 0.
$$
\n(4.15)

Furthermore, since the blow-up of *u* is of type I, there exists a constant *C* such that

$$
(1-s)^{\frac{1}{p-1}} \|u_{\epsilon}^{*}(s)\|_{L^{\infty}(\Omega)} = (1-s)^{\frac{1}{p-1}} v_{\epsilon}^{\frac{1}{p-1}} \epsilon^{\frac{1}{p-1}} \|u(T-\epsilon+\epsilon(1-\nu_{\epsilon}+\nu_{\epsilon}s))\|_{L^{\infty}(\Omega)}
$$

$$
\leq C(1-s)^{\frac{1}{p-1}} v_{\epsilon}^{\frac{1}{p-1}} \epsilon^{\frac{1}{p-1}} \cdot (\epsilon \nu_{\epsilon}(1-s))^{-\frac{1}{p-1}} = C
$$
(4.16)

for all $s \in (0, 1)$. Therefore, by [\(4.9\)](#page-14-0), [\(4.13\)](#page-14-0), [\(4.14\)](#page-14-0), [\(4.15\)](#page-14-0), and (4.16) we apply Proposition [2.1](#page-4-0) to u_{ϵ}^* , which is a solution of problem [\(4.12\)](#page-14-0), and obtain

$$
B(u) \subset \left\{ x \in \overline{\Omega'} : \tilde{\varphi}_{\epsilon}(x) \geqslant \kappa/2 \right\} \tag{4.17}
$$

for all sufficiently small $\epsilon > 0$. Here we remark that the blow-up set of u_{ϵ}^* coincides with $B(u)$. On the other hand, since $a \in \partial \Omega'$, we have $\tilde{\varphi}_{\epsilon} = 0$ at $x = a$ and

$$
a \notin \left\{ x \in \overline{\Omega'} : \tilde{\varphi}_{\epsilon}(x) \geqslant \kappa/2 \right\}
$$

for all sufficiently small $\epsilon > 0$. This together with (4.17) implies $a \notin B(u)$. This contradicts [\(4.5\)](#page-13-0), and Theorem [1.3](#page-2-0) follows. \Box

References

- [1] [X.-Y. Chen, H. Matano, Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations, J. Dif](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib632D6Ds1)[ferential Equations 78 \(1989\) 160–190.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib632D6Ds1)
- [2] [C. Cortazar, M. Elgueta, J.D. Rossi, The blow-up problem for a semilinear parabolic equation with a potential, J. Math. Anal. Appl. 335 \(2007\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib632D652D72s1) [418–427.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib632D652D72s1)
- [3] [F. Dickstein, Blowup stability of solutions of the nonlinear heat equation with a large life span, J. Differential Equations 223 \(2006\) 303–328.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib64s1)
- [4] [M. Fila, M. Winkler, Single-point blow-up on the boundary where the zero Dirichlet boundary condition is imposed, J. Eur. Math. Soc. 10](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D77s1) (2008) [105–132.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D77s1)
- [5] M. Fila, P. Souplet, [The blow-up rate for semilinear parabolic problems on general domains, NoDEA Nonlinear Differential Equations Appl.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D73s1) [8 \(2001\) 473–480.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D73s1)
- [6] A. Friedman, B. [McLeod, Blow-up of positive solutions of semilinear heat equations, Indiana Univ. Math. J. 34 \(1985\) 425–447.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6Ds1)
- [7] [Y. Fujishima, Location of the blow-up set for a superlinear heat equation with small diffusion, Differential Integral Equations 25 \(2012\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib66s1) [759–786.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib66s1)
- [8] [Y. Fujishima, K. Ishige, Blow-up set for a semilinear heat equation with small diffusion, J. Differential Equations 249 \(2010\) 1056–1077.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6930s1)
- [9] [Y. Fujishima, K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6931s1) **R***^N* , J. Differential Equations 250 (2011) [2508–2543.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6931s1)
- [10] [Y. Fujishima, K. Ishige, Blow-up for a semilinear parabolic equation with large diffusion on](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6933s1) **R***^N* . II, J. Differential Equations 252 (2012) [1835–1861.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib662D6933s1)
- [11] Y. Fujishima, K. Ishige, Blow-up set for a semilinear heat equation and pointedness of the initial data, Indiana Univ. Math. J., in press.
- [12] [V.A. Galaktionov, S.P. Kurdyumov, A.A. Samarskii, Asymptotic stability of invariant solutions of nonlinear equations of heat conduction with](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6B2D73s1) a source, Differential [Equations 20 \(1984\) 461–476.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6B2D73s1)
- [13] V.A. Galaktionov, S.A. Posashkov, The equation $u_t = u_{xx} + u^{\beta}$. Localization, asymptotic behavior of unbounded solutions, Keldysh Inst. Appl. Math. Acad. Sci., USSR, preprint No. 97, 1985.
- [14] [Y. Giga, R.V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math. 38 \(1985\) 297–319.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6B31s1)
- [15] [Y. Giga, R.V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J. 36 \(1987\) 1–40.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6B32s1)
- [16] [Y. Giga, R.V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math. 42 \(1989\) 845–884.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6B33s1)
- [17] [Y. Giga, S. Matsui, S. Sasayama, Blow up rate for semilinear heat equations with subcritical nonlinearity, Indiana Univ. Math. J. 53 \(2004\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6D2D73s1) [483–514.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib672D6D2D73s1)
- [18] [K. Ishige, Blow-up time and blow-up set of the solutions for semilinear heat equations with large diffusion, Adv. Difference Equ. 8 \(2002\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib69s1) [1003–1024.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib69s1)
- [19] [K. Ishige, N. Mizoguchi, Blow-up behavior for semilinear heat equations with boundary conditions, Differential Integral Equations 16 \(2003\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib692D6D30s1) [663–690.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib692D6D30s1)
- [20] [K. Ishige, N. Mizoguchi, Location of blow-up set for a semilinear parabolic equation with large diffusion, Math. Ann. 327 \(2003\) 487–511.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib692D6Ds1)
- [21] [K. Ishige, H. Yagisita, Blow-up problems for a semilinear heat equation with large diffusion, J. Differential Equations 212 \(2005\) 114–128.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib692D7967s1)
- [22] [H. Matano, F. Merle, Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 256 \(2009\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib4D4D31s1) [992–1064.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib4D4D31s1)
- [23] [H. Matano, F. Merle, Threshold and generic type I behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 261 \(2011\) 716–748.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib4D4D32s1)
- [24] [F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math. 45 \(1992\) 263–300.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6Ds1)
- [25] [F. Merle, H. Zaag, Stability of the blow-up profile for equations of the type](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6D2D7A31s1) $u_t = \Delta u + |u|^{p-1}u$, Duke Math. J. 86 (1997) 143–195.
- [26] [F. Merle, H. Zaag, Optimal estimates for blowup rate and behavior for nonlinear heat equations, Comm. Pure Appl. Math. 51 \(1998\) 139–196.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6D2D7A32s1)
- [27] [F. Merle, H. Zaag, A Liouville theorem for vector-valued nonlinear heat equations and applications, Math. Ann. 316 \(2000\) 103–137.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6D2D7A33s1)
- [28] [N. Mizoguchi, Blowup rate of solutions for a semilinear heat equation with the Dirichlet boundary condition, Asymptot. Anal. 35 \(2003\)](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6D7A31s1) [91–112.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib6D7A31s1)
- [29] P. Polàčik, P. Quittner, [P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. Part II: parabolic](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib702D712D73s1) [equations, Indiana Univ. Math. J. 56 \(2007\) 879–908.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib702D712D73s1)
- [30] [P. Quittner, P. Souplet, Superlinear Parabolic Problems, Blow-up, Global Existence and Steady States, Birkhäuser Adv. Texts, Basler](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib5153s1) [Lehrbücher Birkhäuser Verlag, Basel, 2007.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib5153s1)
- [31] J.J.L. Velázquez, Estimates on the *(n* − 1*)*-dimensional Hausdorff measure [of the blow-up set for a semilinear heat equation, Indiana Univ.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib76s1) [Math. J. 42 \(1993\) 445–476.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib76s1)
- [32] [F.B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations 55 \(1984\) 204–224.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib77s1)
- [33] [H. Yagisita, Blow-up profile of a solution for a nonlinear heat equation with small diffusion, J. Math. Soc. Japan 56 \(2004\) 993–1005.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib7931s1)
- [34] [H. Zaag, On the regularity of the blow-up set for semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 19 \(2002\) 505–542.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib7A31s1)
- [35] [H. Zaag, Determination of the curvature of the blow-up set and refined singular behavior for a semilinear heat equation, Duke Math. J. 133](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib7A32s1) [\(2006\) 499–525.](http://refhub.elsevier.com/S0294-1449(13)00045-0/bib7A32s1)