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Abstract

The operator involved in quasiconvex functions is L(u) = min|y|=1,y·Du=0 yD2uyT and this also arises as the governing op-
erator in a worst case tug-of-war (Kohn and Serfaty (2006) [7]) and principal curvature of a surface. In Barron et al. (2012) [4]
a comparison principle for L(u) = g > 0 was proved. A new and much simpler proof is presented in this paper based on Barles
and Busca (2001) [3] and Lu and Wang (2008) [8]. Since L(u)/|Du| is the minimal principal curvature of a surface, we show by
example that L(u)− g|Du| = 0 does not have a unique solution, even if g > 0. Finally, we complete the identification of first order
evolution problems giving the convex envelope of a given function.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

In the paper [5] we introduced a degenerate elliptic, second order operator which is critical in studying functions
with convex level sets, known as quasiconvex (or level-convex functions). The equations considered in [5] were of the
form

L(u) ≡ L
(
Du,D2u

) − g(x) := min{|y|=1,y·Du=0}y · D2uyT − g(x) = 0, x ∈ Ω ⊂R
n.

If Du = 0, L(0,D2u) = λ1(D
2u) is the first eigenvalue of D2u. This equation is considered in the viscosity sense

which can deal with problems like the lack of continuity of L = L(p,M) in the vector p ∈ R
n at p = 0. Viscosity

solution theory employs upper and lower semicontinuous envelopes of L to get around this problem. Another way to
write L is

L(p,M) =
{

λ1((I − p ⊗ p)M), p �= 0,

λ1(M), p = 0.
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If we replace the eigenvalue operator by the trace operator we do indeed get the mean curvature operator. In R
2, L is

the mean curvature operator since the first eigenvalue will lead to the trace. We proved in [5] that L(u) − g = 0 has
a unique viscosity solution assuming g > 0. If g ≡ 0, we proved that there is a unique quasiconvex viscosity solution
of L(u) = 0. That is the most one can say if g = 0 because we constructed a simple example in [5] of nonuniqueness
in general. Apart from the connection with quasiconvexity, we also established the connection with stochastic target
problems, and some problems in differential geometry arising in mean curvature and tug-of-war games. In fact, in a
worst case tug-of-war game introduced by Kohn and Serfaty [7], we start with the equation

u(x) = max
b=±1

min|y|=1
u(x + εb · y)

and expand to second order to get

0 = max
b=±1

min|y|=1
εby · Du(x) + ε2

2
y · D2u · yT + o

(
ε2).

Dividing by ε2 > 0 implies

0 = min|y|=1

1

ε

∣∣y · Du(x)
∣∣ + y · D2u(x) · yT + oε(1)

and sending ε → 0,

0 = min{|y|=1, y·Du=0}y · D2u(x) · yT ≡ L(u).

L is the limit operator in Kohn–Serfaty’s tug-of-war which is a deterministic game.
In this paper we present a new and much shorter and simpler proof of the uniqueness theorem with g > 0. It is

based on an idea introduced in the important paper by Barles and Busca [3] and expanded upon in [8–10] in which
one wants to exploit the fact that any nonconstant subsolution cannot attain a strict interior maximum. Lu and Wang
showed that this approach could be used to treat the infinity Laplacian with inhomogeneous signed terms as well as
more general nonlinear degenerate elliptic operators.

One question which arose in [5] is whether or not one has uniqueness of the principal curvature equation. This
equation involves our quasiconvexity operator and is given by L(u)/|Du|. The question is whether there is a unique
viscosity solution of L(u) − g(x)|Du| = 0. The answer is negative even with g > 0 as we show in a simple example
in the next section.

We also complete the introduction of equations generating the convex envelope and quasiconvex envelopes of a
given function g. The second order obstacle problem giving the quasiconvex envelope was studied in [5] and is given
by min{L(u), g − u} = 0. This was motivated by a paper by Oberman [12] and Oberman and Silvestre [11] in which
they showed that the solution of max{−λ1(D

2u),u − g} = 0 is g∗∗, the convex envelope of g. In the present paper,
we formulate the first order obstacle problems giving the convex and quasiconvex envelopes. This is based on the fact
that first order conditions are sufficient to determine if a function is convex, or quasiconvex, and is an extension of a
paper involving first order conditions in [4]. The new wrinkle is that the first order obstacle problems for the envelopes
are not local. Unfortunately, the most we can say for the direct first obstacle problem is that the convex envelope is
the maximal subsolution since the obstacle problem itself does not have unique solutions.

Thus we are led to consider an iterative scheme to construct the convex envelope motivated by a similar construction
for quasiconvex envelopes in [4]. The scheme considers the nonlocal equation

un+1(x) + max
z∈Ω

(
Dun+1(x) · (z − x) − un+1(z)

) = un(x),

u0(x) = g(x).

We prove that limn→∞ un(x) = g∗∗(x).

2. The quasiconvexity operator

Let Ω be an open bounded domain in R
n, B1(0) ⊂ R

n the surface of the unit ball, and S(n) the space of n × n

symmetric matrices. Throughout this paper we assume g : Ω → R is a continuous function. Consider the equation

L(u) − g(x) = 0, x ∈ Ω, u(x) = h(x) ∈ C(∂Ω), x ∈ ∂Ω,
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where L(u) = L(Du,D2u) and

L(p,M) :=
{

min{yMyT | y ∈ B1(0), y · p = 0}, p �= 0,

min{yMyT | y ∈ B1(0)}, p = 0.
(2.1)

By definition L(0,M) is the first eigenvalue, λ1(M) of the symmetric matrix M ∈ S(n).
We also have the following formula.

Lemma 2.1. We have for any (p,M) ∈ B1(0) × S(n),

L(p,M) = λ1
(
(I − p ⊗ p)M

)
the first eigenvalue of the matrix (I − p ⊗ p)M .

From the lemma we see that

L
(
Du,D2u

) =
{

λ1((I − Du⊗Du

|Du|2 )D2u), if Du �= 0;

λ1(D
2u), if Du = 0.

For viscosity solutions we need the upper and lower semicontinuous envelopes of L given in the following lemma.

Lemma 2.2. Let p ∈ R
n, M ∈ S(n), and L(p,M) given in (2.1). Then L(p,M) is lower semicontinuous,

L∗(p,M) ≡ lim inf
q→p,N→M

L(q,N) = L(p,M), p ∈R
n, M ∈ S(n),

and the upper semicontinuous envelope of L, labeled L∗ is

L∗(p,M) =
{

min{yMyT | y ∈ B1(0), y · p = 0}, if p �= 0;

sup|q|=1 min{yMyT | y ∈ B1(0), y · q = 0}, if p = 0,

=
{

λ1((I − p⊗p

|p|2 )M), if p �= 0;

sup|q|=1 λ1((I − q ⊗ q)M), if p = 0.

With this lemma we have the definition.

Definition 2.3. A locally bounded function u : Ω → R is a viscosity solution of L(Du,D2u) − g(x) = 0 if
1. u is a subsolution, i.e., if x0 ∈ arg maxu∗ − ϕ implies

g(x0) � L∗(Dϕ(x0),D
2ϕ(x0)

) =
{

min{yD2ϕ(x0)y
T | y ∈ B1(0), y · Dϕ(x0) = 0}, if Dϕ(x0) �= 0;

sup|q|=1 min{yD2ϕ(x0)y
T | y ∈ B1(0), y · q = 0}, if Dϕ(x0) = 0.

2. u is a supersolution, i.e., if x0 ∈ arg minu∗ − ϕ implies

g(x0) � L
(
Dϕ(x0),D

2ϕ(x0)
) =

{
min{yD2ϕ(x0)y

T | y ∈ B1(0), y · Dϕ(x0) = 0}, if Dϕ(x0) �= 0;

λ1(D
2ϕ(x0)), if Dϕ(x0) = 0,

where u∗ and u∗ denote the upper and lower semicontinuous envelopes of u, respectively. The boundary condition
u = h on ∂Ω , means x ∈ arg max∂Ω u − ϕ implies max{L∗(ϕ) − g,h − u∗} � 0 and x ∈ arg min∂Ω u − ϕ implies
min{L∗(ϕ) − g,h − u∗}� 0.

Theorem 2.4. Assume that u is an upper semicontinuous subsolution bounded from above of L(u) − g(x) � 0 and v

is a lower semicontinuous supersolution bounded from below of L(v) − g(x) � 0. Assume g(x) > 0 and g ∈ C(Ω).
Assume u(x) � v(x) on ∂Ω . Then u(x) � v(x) on Ω .

Proof. Begin by observing that for any σ > 0 we may set uσ = u − σ(maxx∈∂Ω u(x) − u(x)) and then uσ � u � v

on ∂Ω as well as

L(uσ ) = (1 + σ)L(u) � (1 + σ)g(x) := gσ (x) > g(x).
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Step 1. We want to transform uσ and v into semiconvex functions. The way to do that is to take the convolution of
each function:

vε(x) = inf
z∈Ω

{
v(z) + 1

2ε
|x − z|2

}
and uε

σ (x) = sup
y∈Ω

{
uσ (y) − 1

2ε
|x − y|2

}
.

Let K = supx∈Ω u(x) ∨ v(x), and set Ωδ = {x ∈ Ω | dist(x, ∂Ω) > δ}. It is standard to prove the following lemma
(see [8] for details for a general inhomogeneous degenerate elliptic operator).

Lemma 2.5. If uσ is a subsolution of L(uσ )−gσ � 0 and v is a supersolution of L(v)−g � 0, then uε
σ is a subsolution

of

L
(
uε

σ

)
� gσ,ε(x) := (1 + σ) inf

{
g(x + z)

∣∣ |z| � 2
√

Kε
}
,

and vε is a supersolution of

L(vε) � gε(x) := sup
{
g(x + z)

∣∣ |z| � 2
√

Kε
}

for x ∈ Ωδ, δ = 3
√

Kε. Furthermore, uε
σ is semiconvex and vε is semiconcave, and they converge as ε → 0+ to uσ , v,

respectively, and both uε
σ and vε are differentiable at max points of uε

σ − vε . In addition gσ,ε and gε are continuous
functions on Ωδ .

We have shown that uε
σ and −vε are semiconvex, and uε

σ is a subsolution of

L
(
uε

σ

) − gσ,ε � 0, x ∈ Ωδ, (SUB)

and vε is a supersolution of

L
(
vε

) − gε � 0, x ∈ Ωδ. (SUP)

Since g > 0 we may also assume

gσ,ε(x) = (1 + σ)gε(x) > gε(x), x ∈ Ωδ

for all ε > 0 and σ > 0 sufficiently small depending only on ‖g‖L∞(Ωδ)
. Now we drop the ε in our notation and assume

that uσ is a semiconvex subsolution of L(uσ ) − gσ � 0, v is a supersolution of L(v) � g in Ω and gσ > g > 0.
Step 2. Suppose uσ (x0) > v(x0) and x0 ∈ arg maxΩ(uσ − v).
There is a δ > 0 so that v(x0) < uσ (x0 +ξ) for any |ξ | < δ and uσ (x+ξ) < v(x), x ∈ Ω \Ωδ as well as gσ (x+ξ) >

g(x), x ∈ Ωδ . Make the definitions for ε > 0, ξ ∈ Bδ(0),

w(x,y) := uσ (x + ξ) − v(y) − 1

2ε
|x − y|2, ε > 0, |ξ | < δ,

M(0) := max
x∈Ω

(uσ − v) = uσ (x0) − v(x0) > 0,

M(ξ) := max
x∈Ωδ

(
uσ (x + ξ) − v(x)

)
> 0,

M(ε, ξ) := max
(x,y)∈Ωδ×Ωδ

w(x, y),

(xε,ξ , yε,ξ ) ∈ arg max
(x,y)∈Ωδ×Ωδ

w(x, y),

M(ε, ξ) = uσ (xε,ξ + ξ) − v(yε,ξ ) − 1

2ε
|xε,ξ − yε,ξ |2.

Refer to Crandall, Ishii and Lions [6] for the proofs of the following results.

M(ε, ξ) → M(ξ),
1

2ε
|xε,ξ − yε,ξ |2 → 0, uσ (xε,ξ + ξ) − v(yε,ξ ) → M(ξ), as ε → 0 + .

Also,

M(ξ) > 0 � max
(
uσ (x + ξ) − v(x)

) 
⇒ xε,ξ , yε,ξ ∈ Ω1 � Ωδ, ∀ small ε > 0.

∂Ωδ
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There are symmetric matrices X,Y (which depend on ε, ξ ) so that(
xε,ξ − yε, ξ

ε
,X

)
∈ D2+u(xε,ξ + ξ),

(
xε,ξ − yε,ξ

ε
, Y

)
∈ D2−v(yε,ξ )

and

−3

ε

[
I 0
0 I

]
�

[
X 0
0 −Y

]
� 3

ε

[
I −I

−I I

]

in the sense of matrices. This implies X � Y .
Now we consider cases corresponding to zero gradient, or nonzero gradient.

Case 1 (Nonzero gradient): There are ξ ∈ Bδ(0) and a subsequence (still denoted by ε) ε → 0 so that xε,ξ −
yε,ξ �= 0, ∀ε > 0.

In this case, since uσ is a subsolution and v is a supersolution and the gradient is nonzero,

gσ (xε,ξ + ξ) � L∗(u(xε,ξ + ξ)
) = min

{
q · X · qT

∣∣∣ |q| = 1, q · xε,ξ − yε,ξ

ε
= 0

}

� min

{
q · Y · qT

∣∣∣ |q| = 1, q · xε,ξ − yε,ξ

ε
= 0

}
= L∗(v(yε,ξ )

)
� g(yε,ξ )

and this gives us

gσ (xε,ξ + ξ)� g(yε,ξ ).

Since |xε,ξ − yε,ξ | → 0, ε → 0+ we know that on a subsequence of {ε} we have xε,ξ → xξ and yε,ξ → xξ . Hence,
sending ε → 0+ we get gσ (xξ +ξ) = (1+σ)g(xξ +ξ)� g(xξ ) which is a contradiction to gσ (x +ξ) > g(x), x ∈ Ωδ .

Case 2 (Zero gradient): For every ξ ∈ Bδ(0), xε,ξ = yε,ξ for all small ε > 0 and a pair (xε,ξ , yε,ξ ).
Observe, that in these circumstances

(1 + σ)g(xε,ξ + ξ) � L∗(uσ (xε,ξ + ξ)
)

= max
|q|=1

min|y|=1, q·y=0
yXyT

� max
|q|=1

min|y|=1, q·y=0
yYyT

= L∗(v(yε,ξ )
)

and that is as far as we can go with this since we know L∗(v(yε,ξ )) � g(yε,ξ ) but not L∗. We need another approach.
In case 2, we have

M(ε, ξ) = uσ (xε,ξ + ξ) − v(xξ ) = M(ξ).

Recall that z �→ uσ (z + ξ) and z �→ −v(z) are both semiconvex and xε,ξ is the maximum point of uσ (z + ξ) − v(z).
Therefore each function is differentiable at xε,ξ . Since xε,ξ ∈ arg maxw we have for any y ∈ Ωδ

uσ (xε,ξ + ξ) − v(xε,ξ )� uσ (y + ξ) − v(xε,ξ ) − 1

2ε
|xε,ξ − y|2


⇒ uσ (xε,ξ + ξ)� uσ (y + ξ) − 1

2ε
|xε,ξ − y|2

for all small ε > 0. That implies that Duσ (xε,ξ + ξ) = Dv(xε,ξ ) = 0.
Next we claim: M(ξ) = M(0) for all ξ sufficiently small.
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To prove the claim choose ξ, η ∈ Bδ(0). By definition of the point xε,ξ

M(ξ) = uσ (xε,ξ + ξ) − v(xε,ξ )

� uσ (xε,η + ξ) − v(xε,η)

= M(η) + uσ (xε,η + ξ) − uσ (xε,η + η)

� M(η) − o
(|ξ − η|)

since Duσ (xε,η +η) = 0. We may reverse the roles of ξ, η and use the fact that M(ξ) is Lipschitz (and so differentiable
almost everywhere) to conclude that DM(ξ) = 0 almost everywhere in Bδ(0). But then M(ξ) is constant in Bδ(0)

and M(ξ) = M(0) for all x ∈ Bδ(0), and δ > 0 small.
Consider the point x0. At this point we have that gσ (x0) = (1 + σ)g(x0) > 0. Then L(uσ ) � (1 + σ)g(x) >

g(x) > 0 in a neighborhood of x0. If |ξ | < δ, we have from the fact M(ξ) = M(0)

uσ (x0 + ξ) − v(x0) � uσ (xε,ξ + ξ) − v(xε,ξ ) = uσ (x0) − v(x0) 
⇒ uσ (x0 + ξ) � uσ (x0).

This says x0 ∈ Ωδ is a local maximum point of uσ . That conclusion will contradict the following lemma when applied
to the domain Ωδ .

Lemma 2.6. Let u ∈ C(Ω) be a semiconvex subsolution of L(u) − g � 0, with g ∈ C(Ω), g > 0. Then

max
x∈Ω

u(x) = max
x∈∂Ω

u(x) > u(x), for any x ∈ Ω.

That is, u cannot attain an interior local maximum.

Proof. Assume there is a point x0 ∈ Ω with x0 ∈ arg maxx∈Ω u(x) and that u(x0) > max∂Ω u. If that is the case,
then there is a smooth function ϕ(x) ≡ u(x0) such that u − ϕ has a zero (local) maximum at x0. Since Dϕ(x0) =
D2ϕ(x0) = 0, we have

L∗(ϕ(x0)
) − g(x0) = sup

|p|=1
min

{
yD2ϕ(x0)y

T
∣∣ |y| = 1, p · y = 0

} = −g(x0) < 0,

a contradiction. �
Finally, we have shown that uσ (x) � v(x), x ∈ Ωδ for all small σ > 0 and δ. Consequently, sending σ → 0 and

δ → 0 we conclude that u � v in Ω . �
Example 2.7. The problem L(u)

|Du| = g(x) is the problem of prescribed principal curvature. The question arises as to
whether this problem possesses a unique solution. The answer is no, in general. This example shows that in general
the problem L(u) − g(x)|Du| = 0 with given boundary values does not have a unique solution.

Define Ω = {|x| < 2} ⊂R
n, and

g(x) =
{

1, if 0 � |x| � 1;
1
|x| , if 1 � |x| � 2.

The function g > 0 is continuous. Now take ϕ : [0,2] →R

ϕ(r) =
{

0, if r � 1;

(r − 1)3, if 1 � r � 2

and u(x) := ϕ(|x|), x ∈ Ω . The boundary data is u(x) = 1, |x| = 2. It is a calculus exercise to show that L(u,Du) −
g(x)|Du| = 0 in Ω . However, it is trivial that v(x) ≡ 1 is also a solution. In fact u and v as classical solutions are also
viscosity solutions.

It is actually true, as the reader can verify, that if we take ϕ(r) to be any smooth strictly increasing function on
[1,2], with ϕ(2) = 1, the function u(x) = ϕ(|x|) will be a solution.

This example shows that the equation of prescribed principal curvature L(u)
|Du| = g, is not enough to completely

specify the function u even if we assume g(x) > 0. On the other hand it is feasible that some conditions on g could
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lead to uniqueness (such as g as a positive constant). However, it should be noted that our proof of uniqueness fails
for the problem L(u) − c|Du| = 0, c > 0. We leave this as an open problem. Furthermore, determining conditions
yielding uniqueness for equations of the form L(u) − g(x,Du) = 0 is also open.

3. The first order equation for the convex envelope

In this section we will take Ω ⊂ R
n to be a convex and bounded domain and g : Ω → R a continuous function.

The greatest convex minorant of g is the function

g∗∗(x) = sup
p∈Ω

{
p · x − g∗(p)

}
, where g∗(p) = sup

x∈Ω

{
p · x − g(x)

}
.

It is also known that

g∗∗(x) = sup
{
λ(x)

∣∣ λ(x) = α · x + β, ∃α ∈R
n, β ∈ R, λ(x) � g(x), ∀x ∈ Ω

}
,

i.e., g∗∗(x) is the pointwise supremum of all linear functions lying below g(x). It was proved in [11] and [12] that g∗∗
is the viscosity solution of the second order obstacle problem

min
{
λ1

(
D2u

)
, g − u

} = 0, x ∈ Ω, u = g, x ∈ ∂Ω. (3.1)

Our goal is to find a first order partial differential equation construction of g∗∗ which arises in a completely natural
way from the first order convexity condition. We begin by showing the following.

Lemma 3.1. (1) Let u : Ω → R be upper semicontinuous. Then u is convex if and only if for any ϕ ∈ C2 and x ∈
arg max(u − ϕ) we have

u(x) + max
z∈Ω

Dϕ(x) · (z − x) − u(z) = 0. (3.2)

(2) Let u : Ω → R be lower semicontinuous. Then u is convex if and only if for any ϕ ∈ C2 and x0 ∈ arg min(u−ϕ)

we have

u(x) + max
z∈Ω

Dϕ(x) · (z − x0) − u(z) = 0. (3.3)

Proof. Suppose u is convex and x ∈ arg max(u − ϕ). If a smooth function contacts u from above at x it must be the
case that Du(x) exists and Dϕ(x) = Du(x).

Indeed, let q ∈ ∂u(x), the convex subdifferential of u, be arbitrary. Then

u(x) + q · (y − x) � u(y) � ϕ(y) = u(x) + Dϕ(x) · (y − x) + o
(|y − x|).

Sending |y − x| → 0 gives us that q = Dϕ(x) and thus u is differentiable at x with Du(x) = Dϕ(x). Then, convexity
says

u(x) + Du(x) · (z − x) � u(z) ∀z ∈ Ω.

This gives (3.2). Note that we do obtain equality in (3.2) by taking z = x.
Conversely, suppose (3.2) holds in viscosity sense but u is not convex. We may assume

x = (x1,0, . . . ,0), z = (z1,0, . . . ,0), x1 < z1,

and that the set of maximizers of u along [x, z] is a closed set Z in the relative interior of [x, z]. Let the maximum value
be M . By upper semicontinuity of u, there exists a compact neighborhood V of 0 ∈ R

n−1 such that u(x1,V ) < M ,
u(z1,V ) < M . Let

ϕi(x1, x2, . . . , xn) = 1

i
x1 + i

(
x2

2 + · · · + x2
n

)
.

The epigraphical limit of u − ϕ is given by u if x2 = · · · = xn = 0, −∞ otherwise. The maximum of the limit,
relative to the compact set [x, z] + (0,V ), is attained on Z. Then, for some large enough i, the maximum of u − ϕi
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relative to [x, z] + (0,V ) is attained at some ξ = (ξ1, . . . , ξn) with ξ1 ∈ (x1, z1), and u(ξ) > u(z1,V ). Considering
y = (z1, ξ2, . . . , ξn) yields

u(ξ) − u(y) + Dϕi(ξ) · (y − ξ) = u(ξ) − u(y) + 1

i
(z1 − ξ1) > 0.

This contradicts the fact that u is a subsolution of (3.2).
The proof of (2) follows from the fact that a lower semicontinuous function is convex if and only if

u(z) � u(x) + p · (z − x), ∀x, y ∈ Ω

for every p ∈ ∂u(x). For any p ∈ ∂u(x), there is ϕ ∈ C1 such that u − ϕ has a zero minimum at x and p = Dϕ(x).
Hence, u is convex if and only if (3.3) holds in the viscosity sense. Notice that by taking z = x the left side of (3.3) is
identically zero. �
Remark 3.2. One might suspect that the equation giving the convex envelope is

max
{
u(x) + max

y∈Ω

[
Du(x) · (y − x) − u(y)

]
, u(x) − g(x)

}
= 0, x ∈ Ω. (3.4)

However, (3.4) does not have a unique solution. For example if we take g(x) = 0, 0 � x � 1
2 , and g(x) = 1, 1

2 � x � 1,
it is obvious that

g∗∗(x) =
{

0, if 0 � x � 1
2 ;

1 + 2(x − 1), if 1
2 � x � 1

and this solves (3.4). It is easy to check that

u(x) =
{

0, if 0 � x � 3
4 ;

1 + 4(x − 1), if 3
4 � x � 1

is also a solution. That means that (3.4) is not sufficient to uniquely characterize the convex envelope in the usual
sense. Incidentally, one can make g in this example continuous by connecting (1/2,0) and (1/2 + ε,1) with a steep
linear piece.

On the other hand, g∗∗ is the maximal subsolution of (3.4). To see that, if v is any subsolution of (3.4), then v � g

on Ω and

v(x) + max
y∈Ω

[
Dv(x) · (y − x) − v(y)

]
� 0,

in the viscosity sense. Then Lemma 3.1 implies that v is convex. Consequently, v � g∗∗ � g. Finally, g∗∗ is clearly a
subsolution of (3.4) again using Lemma 3.1.

The problem with (3.4) is that the equation seems to be coercive, but it is not coercive enough. We can fix that in
the following way.

Let λ > 1. Consider the Dirichlet problem with continuous boundary condition u(x) = g(x) on ∂Ω , and

λu(x) + max
y∈Ω

[
Du(x) · (y − x) − u(y)

] = h(x), x ∈ Ω. (3.5)

The boundary condition is considered in the viscosity sense.
In what follows we shall use the notation

F
(
x,u(x),p

) = max
y∈Ω

[
p · (y − x) − (

u(y) − u(x)
)]

.

Our problem becomes

(λ − 1)u(x) + F
(
x,u(x),Du(x)

) = h(x), x ∈ Ω, u(x) = g(x), x ∈ ∂Ω. (3.6)
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Remark 3.3. Since we do not want to carry along minus signs, a viscosity subsolution (supersolution) of (3.6) is an
upper (lower) semicontinuous function u such that x ∈ arg maxu − ϕ (x ∈ arg minu − ϕ) implies

(λ − 1)u(x) + F
(
x,u(x),Dϕ(x)

)
� h(x),

(
� h(x)

)
.

These inequalities are reversed from the second order case in the first section.
As for the boundary condition, if x ∈ arg maxu − ϕ with x ∈ ∂Ω , then

min
{
(λ − 1)u(x) + F

(
x,u(x),Dϕ(x)

) − h(x),u − g
}
� 0,

and x ∈ arg minu − ϕ, x ∈ ∂Ω ,

max
{
(λ − 1)u(x) + F

(
x,u(x),Dϕ(x)

) − h(x),u − g
}
� 0.

The next lemma gives a sufficient condition so that a given function coincides with it’s convex envelope at the
boundary. This lemma is due to Alvarez, Lasry and Lions [1].

Lemma 3.4. Let Ω ⊂ R
n be a convex open bounded domain and u : Ω → R lower semicontinuous. If either Ω is

strictly convex or there is a convex, lower semicontinuous function Ψ on Ω such that u = Ψ on ∂Ω , then u∗∗ = u

on ∂Ω .

We start by proving that (3.6) has only one viscosity solution. This follows from the following comparison theorem.

Theorem 3.5. Let Ω ⊂ R
n be open and bounded. Suppose that g,h : Ω → R is continuous; u : Ω → R is an upper

semicontinuous subsolution to (3.6); v : Ω → R is a lower semicontinuous supersolution to (3.6); Then, u(x) � v(x)

for all x ∈ ∂Ω implies u(x) � v(x) for all x ∈ Ω .

Proof. For ε > 0, consider the upper semicontinuous function wε : Ω × Ω →R given by

wε(x, y) = u(x) − v(y) − 1

2ε
|x − y|2

and pick (xε, yε) ∈ arg max{wε(x, y) | (x, y) ∈ Ω × Ω}. When ε ↘ 0, wε(x, y) converges pointwise to a function
given by

wε(x, y)
ε→0−−−→

{
u(x) − v(x), if x = y;

−∞, if x �= y.

Consequently,

max
(x,y)∈Ω×Ω

wε(x, y) → max
x∈Ω

u(x) − v(x) = u(x) − v(x), (3.7)

with x ∈ arg max{u(x) − v(x) | x ∈ Ω}. In particular for small enough ε,

u(xε) − v(yε) − 1

2ε
|xε − yε|2 � u(x) − v(x). (3.8)

Then, because u is bounded above and v is bounded below, the quantity 1
2ε

|xε −yε|2 is bounded above. In particular,
|xε − yε| → 0.

Consider a sequence ε ↘ 0 and, without loss of generality, suppose that sequences {xε}, {yε} are convergent, to
some x0 = y0. First, consider the case of x0 ∈ ∂Ω . Then

lim supu(xε) − v(yε) − 1

2ε
|xε − yε|2 � lim supu(xε) − v(yε)

� u(x0) − v(y0) = u(x0) − v(x0) � 0

because we assumed u(x) � v(x) for all x ∈ ∂Ω . This and (3.7)–(3.8) implies that maxx∈Ω u(x) − v(x) � 0, which
says u� v on Ω .
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Second, consider the case of x0 ∈ Ω , which ensures that xε, yε ∈ Ω for small enough ε. Then ϕ touches u from
above at xε and ψ touches v from below at yε , where

ϕ(x) = v(yε) + 1

2ε
|x − yε|2, ψ(y) = uσ (xε) − 1

2ε
|xε − y|2.

Since Dϕ(xε) = Dψ(yε) = 1
ε
(xε − yε), the assumptions about u being a subsolution and v being a supersolution

imply

(λ − 1)u(xε) + F

(
xε,u(xε),

1

ε
(xε − yε)

)
� h(xε), (3.9)

and

(λ − 1)v(yε) + F

(
yε, v(yε),

1

ε
(xε − yε)

)
� h(yε). (3.10)

Then, for all z ∈ Ω ,

u(z) − v(z)� u(xε) − v(yε) − 1

2ε
|xε − yε|2 � u(xε) − v(yε),

and consequently u(z) − v(z) � u(xε) − v(yε) for all z ∈ Ω .
Then (3.9) implies

λu(xε) + max
z∈Ω

[
1

ε
(xε − yε) · (z − xε) − u(z)

]
− h(xε) � 0, (3.11)

while (3.10) yields zε ∈ Ω such that

λv(yε) +
[

1

ε
(xε − yε) · (zε − yε) − v(zε)

]
− h(yε)� 0.

Use this zε in (3.11)

−λu(xε) −
[

1

ε
(xε − yε) · (zε − xε) − u(zε)

]
+ h(xε) � 0.

Add the two preceding inequalities results in

λ
[
v(yε) − u(xε)

] + 1

ε
|xε − yε|2 − [

v(zε) − u(zε)
]
� h(yε) − h(xε). (3.12)

Using u(zε) − v(zε) � u(xε) − v(yε) we get

1

ε
|xε − yε|2 � h(yε) − h(xε) + (1 − λ)

(
v(yε) − u(xε)

)
. (3.13)

We know that

max
x∈Ω

u(x) − v(x) = u(x) − v(x)� u(xε) − v(yε) − 1

2ε
|xε − yε|2 � u(xε) − v(yε),

which implies

1

2ε
|xε − yε|2 � u(xε) − v(yε) − (

u(x) − v(x)
)
.

Since xε − yε → 0, and u(xε)− v(yε)− (u(x)− v(x)) → 0, we know that 1
2ε

|xε − yε|2 → 0. Sending ε → 0 in (3.13)
we get (using λ > 1)

0 � (1 − λ)
(
v(x) − u(x)

) 
⇒ u(x) − v(x) = max
x∈Ω

u(x) − v(x) � 0,

which says u(x) � v(x), x ∈ Ω . �
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The proof of the following theorem is similar to the preceding.

Theorem 3.6. Let u and v denote upper (lower) semicontinuous subsolution (supersolution) of

∂u

∂t
+ F

(
x,u(t, x),Du(t, x)

) = 0, (t, x) ∈ (0,∞) × Ω, (3.14)

u(t, x) = g(x), (t, x) ∈ ({0} × Ω
) ∪ ([0, T ] × ∂Ω

)
, ∀T > 0. (3.15)

Then

u� v, (t, x) ∈ ({0} × Ω
) ∪ ([0, T ] × ∂Ω

) 
⇒ u� v, (t, x) ∈ [0, T ] × Ω, ∀T > 0.

3.1. Construction of the convex envelope

Let Ω ⊂ R
n be a nonempty, bounded, convex, and open set. If g : Ω → R is continuous, then g∗∗ : Ω → R the

convex envelope of g, is also continuous. Furthermore, if we assume either that Ω is strictly convex or there is a lower
semicontinuous convex Ψ on Ω so that g = Ψ on ∂Ω , then g = g∗∗ on ∂Ω .

Consider the problem

u(x) + F
(
x,u(x),Du(x)

) = h(x), x ∈ Ω,

u(x) = g(x), x ∈ ∂Ω.

}
(3.16)

This is (3.6) with λ = 2.

Lemma 3.7. If g � h � g∗∗ then (3.16) has a unique viscosity solution u and g∗∗ � u � g, x ∈ Ω . If g or Ω satisfies
the conditions of Lemma 3.4, then u = g = g∗∗, x ∈ ∂Ω .

Proof. It is easy to check that the function g is a supersolution since g + F(x,g,Dg) � g � h. Furthermore, g∗∗ is
a subsolution since g∗∗ + F(x,g∗∗,Dg∗∗) = g∗∗ � h. By Perron’s method (which is easily extended to this problem,
see [2], for example), there is a solution. Uniqueness follows from the comparison theorem as does the inequality
g∗∗ � u� g. If g or Ω satisfies the conditions of Lemma 3.4 then u = g on ∂Ω . �

The next theorem provides an iterative method for construction of the convex envelope. It does have the drawback
of requiring the solution of a sequence of nonlocal equations.

Theorem 3.8. Let

u0(x) = g(x), x ∈ Ω

and, for n = 0,1, . . . , let un+1 be the solution to

un+1 + F
(
x,un+1(x),Dun+1(x)

) = un, x ∈ Ω,

un+1(x) = g(x), x ∈ ∂Ω. (3.17)

Then, for n = 1,2, . . . , un is continuous, g∗∗(x) � un(x) � g(x) for all x ∈ Ω ; the sequence {un} is nonincreasing;
and the function W : Ω → R defined by

W(x) = lim
n→∞un(x) = inf

n=1,2,...
un(x) (3.18)

satisfies W(x) = g∗∗(x) for every x ∈ Ω . If g or Ω satisfies the conditions of Lemma 3.4, then un(x) = g∗∗(x) =
g(x) = W(x), x ∈ ∂Ω .

Proof. It is standard that if un solves the problem then un is continuous on Ω for n = 0,1, . . . . Indeed, if un is a
solution to (3.17) then the upper semicontinuous envelope (un)

∗(x) � g(x) and the lower semicontinuous envelope
(un)∗(x) � g(x) for all x ∈ ∂Ω , and thus for such x, (un)

∗(x) � (un)∗(x). Then, if un−1 is continuous, Theorem 3.5
implies that (un)

∗(x) � (un)∗(x) for all x ∈ Ω , and because (un)∗ � un � (un)
∗, it must be that (un)

∗ = un = (un)∗,
which means that un is continuous.
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Claim 1. The sequence g∗∗ � un � g, n = 0,1, . . . .

By induction note that g∗∗ � u0 = g and hence u1 exists by Lemma 3.7 and g∗∗ � u1 � g. Now suppose g∗∗ �
un � g. Then by Lemma 3.7 un+1 exists and g∗∗ � un+1 � g.

Claim 2. The sequence un is nonincreasing on Ω .

Since F(x,u(x),p) � 0 for any u and p ∈ R
n, and un+1 is a subsolution to (3.17),

un+1(x) � un+1(x) + F
(
x,un+1(x),Dϕ(x)

)
� un(x),

for every smooth ϕ touching un+1 from above. Thus un+1(x) � un(x).

Claim 3. W(x) = limn→∞ un(x) = infn=1,2,... un(x) is convex.

The limit defining W exists and is finite, because the sequence un is nonincreasing and bounded below by g∗∗. The
function W is upper semicontinuous because un are. To show that W is convex suppose it is not. Then there exists a
smooth ϕ touching W from above at x ∈ Ω so that

F
(
x,W(x),Dϕ(x)

)
� δ > 0.

Then for some z ∈ Ω Dϕ(x) · (z − x) − (W(z) − W(x)) � δ/2. Since W = limn→∞ un, there is a sequence xn ∈ Ω

such that ϕ touches un from above at xn, xn → x, ϕ(xn) → ϕ(x), and un(xn) → W(x).
For large enough n, Dϕ(xn) · (z − xn) − (un(z) − un(xn)) > δ/3. Hence

F
(
xn,un(xn),Dϕ(xn)

)
>

δ

3
.

Because un is a subsolution of (3.17),

un(xn) + F
(
x,un(xn),Dϕ(xn)

)
� un−1(xn) � un−1(xn−1) + ϕ(xn) − ϕ(xn−1),

since xn−1 ∈ arg max(un−1 − ϕ) gives

un−1(xn−1) − ϕ(xn−1)� un−1(xn) − ϕ(xn).

Thus

δ

3
< F

(
xn,un(xn),Dϕ(xn)

)
� un−1(xn−1) − un(xn) + ϕ(xn) − ϕ(xn−1).

Sending n → ∞, the right-hand side of this inequality goes to 0, because un(xn) → W(x), ϕ is continuous, and
xn → x. This is a contradiction and we conclude W is convex.

From the preceding claims we know g∗∗ � W � g and W is convex. However, g∗∗ is the greatest convex minorant
of g and hence W = g∗∗. �

In a similar way it is easy to establish the following.

Theorem 3.9. Let u(t, x) denote the unique viscosity solution of

∂u

∂t
+ F

(
x,u(t, x),Du(t, x)

) = 0, (t, x) ∈ (0,∞) × Ω,

u(0, x) = g(x), x ∈ Ω, u(t, x) = g(x), (t, x) ∈ [0,∞) × ∂Ω.

⎫⎬
⎭ (3.19)

Then limt→∞ u(t, x) = g∗∗(x).

Observe that the function w(t, x) = g(x) is a supersolution, and w(t, x) = g∗∗(x) is a subsolution of (3.19) and an
easy extension of Perron’s method implies the existence of a viscosity solution to (3.19) with g∗∗(x) � u(t, x) � g(x),
x ∈ Ω , t � 0.
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Remark 3.10. Vese in [13] has considered a second order construction of the convex envelope. The model considered
is

ut =
√

1 + |Du|2 min
{
0, λ1

(
D2u

)}
, (t, x) ∈ (0,∞) × Ω,

u(0, x) = g(x), x ∈ {0} × Ω ∪ [0,∞) × ∂Ω.

Vese proves that limt→∞ u = g∗∗.
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