Available online at www.sciencedirect.com

SciVerse ScienceDirect

ANNALES
DE LINSTITUT
HENRI
POINCARE

ANALYSE
NON LINEAIRE

ELSEVIER Ann. L. H. Poincaré — AN 31 (2014) 267-279

www.elsevier.com/locate/anihpc

On the Cauchy problem of a weakly dissipative
n-Hunter—Saxton equation

Jingjing Liu**, Zhaoyang Yin"
& Department of Mathematics and Information Science, Zhengzhou University of Light Industry, 450002 Zhengzhou, China
b Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China

Received 23 August 2011; received in revised form 9 February 2013; accepted 16 February 2013
Available online 14 March 2013

Abstract

In this paper, we study the Cauchy problem of a weakly dissipative p-Hunter—Saxton equation. We first establish the local
well-posedness for the weakly dissipative u-Hunter—Saxton equation by Kato’s semigroup theory. Then, we derive the precise
blow-up scenario for strong solutions to the equation. Moreover, we present some blow-up results for strong solutions to the
equation. Finally, we give two global existence results to the equation.
© 2013 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the p-Hunter—Saxton (also called pu-Camassa—Holm) equation

() — gy = =2ty + 2uxUx + Ullxxy,
which is originally derived and studied in [21] attracts a lot of attention. Here u(¢, x) is a time-dependent function
on the unit circle S =R/Z and u(u) = fS udx denotes its mean. In [21], the authors show that if interactions of
rotators and an external magnetic field is allowed, then the p-Hunter—Saxton (wHS) equation can be viewed as a
natural generalization of the rotator equation. Moreover, the wHS equation describes the geodesic flow on D*(S) with
the right-invariant metric given at the identity by the inner product [21]

<u,v>=u(u>u(v)+/uxvxdx.
S

In [21,25], the authors showed that the £ HS equation admits both periodic one-peakon solution and the multi-peakons.
Moreover, in [13,15], the authors also discussed the wHS equation.
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One of the closest relatives of the £ HS equation is the Camassa—Holm equation

Up — Upyx + 33Uty =2Ux Uy + Ullyyy,

which was introduced firstly by Fokas and Fuchssteiner in [12] as an abstract equation with a bihamiltonian struc-
ture. Meanwhile, it was derived by Camassa and Holm in [2] as a shallow water approximation independently. The
Camassa—Holm equation is a model for shallow water waves [2,9,18] and a re-expression of the geodesic flow both
on the diffeomorphism group of the circle [8] and on the Bott—Virasoro group [23]. The Camassa—Holm equation has
a bi-Hamiltonian structure [12] and is completely integrable [3]. The possibility of the relevance of Camassa—Holm
to the modeling of tsunamis was raised in [7]. It is worth to point out that a long-standing open problem in hydro-
dynamics was the derivation of a model equation that can capture breaking waves as well as peaked traveling waves,
cf. the discussion in [30]. The quest for peaked traveling waves is motivated by the desire to find waves replicating a
feature that is characteristic for the waves of great height-waves of largest amplitude that are exact traveling solutions
of the governing equations for water waves, whether periodic or solitary, cf. [5]. Breaking waves are solutions that
remain bounded but their slope becomes unbounded in finite time, cf. [6]. Both these aspects are modeled by the
Camassa—Holm equation. Recently, the Camassa—Holm equation has been studied extensively, cf. [1,26,34,35]. The
other closest relatives of the wHS equation is the Hunter—Saxton equation [16]

Upex + 2Uxlyy +Ultyy =0,

which is an asymptotic equation for rotators in liquid crystals and modeling the propagation of weakly nonlinear
orientation waves in a massive nematic liquid crystal. The orientation of the molecules is described by the field of unit
vectors (cosu(t, x), sinu(t, x)) [37]. The Hunter—Saxton equation also arises in a different physical context as the
high-frequency limit [17] of the Camassa—Holm equation. Similar to the Camassa—Holm equation, the Hunter—Saxton
equation also has a bi-Hamiltonian structure [18,27] and is completely integrable [17]. The initial value problem of
the Hunter—Saxton equation also has been studied extensively, cf. [16,24,37].

In general, it is difficult to avoid energy dissipation mechanisms in a real world. So, it is reasonable to study the
model with energy dissipation. In [14] and [28], the authors discussed the energy dissipative KdV equation from
different aspects. Weakly dissipative CH equation and weakly dissipative DP equation have been studied in [33] and
[11,31,32] respectively. Recently, some results for a weakly dissipative uDP equation are proved in [22]. It is worthy
to note that the local well-posedness result in [22] is obtained by using a method based on a geometric argument.

In this paper, we will discuss the Cauchy problem of the following weakly dissipative uHS equation:

Ve +uyy +2u,y+iy=0, t>0, xeR,
= () — tyy, t>0, x eR,
y=puu) —txx (L1
u(0, x) =uo(x), x eR,
u(t,x +1)=ul(t, x), t>0, xeR,
or in the equivalent form:
W) — Upxx + 20U Uy — 2UxUyy — Ullyxx —i—k(u(u) — u“) =0, >0, xeR,
u(0,x) =ug(x), x eR, (1.2)
u(t,x +1)=u(t, x), t>0, xeR.

Here the constant A is assumed to be positive and the term Ay = A(u(u) — uy,) models energy dissipation. For
wu(u) =0, (1.2) becomes weakly dissipative Hunter—Saxton equation, which has been studied in [29].

The paper is organized as follows. In Section 2, we establish the local well-posedness of the initial value problem
associated with Eq. (1.1). In Section 3, we derive the precise blow-up scenario. In Section 4, we present two explosion
criteria of strong solutions to Eq. (1.1) with general initial data. In Section 5, we give two new global existence results
of strong solutions to Eq. (1.1).

Notation. Given a Banach space Z, we denote its norm by || - || z. Since all spaces of functions are over S = R/Z, for
simplicity, we drop S in our notations if there is no ambiguity. We let [A, B] denote the commutator of linear operator
A and B. For convenience, we let (+|-)sx, and (:|-)y denote the inner products of H® x H", s,r e Ry and H®, s e R,



J. Liu, Z. Yin / Ann. I. H. Poincaré — AN 31 (2014) 267-279 269

respectively. Moreover, we denote by G(X, M, B) the set of all linear operators A in X such that —A generates a
Co-semigroup {e~'4} with |le™!4|| < MeP". In particular, A is quasi-m-accretive if A € G(X, 1, B).

2. Local well-posedness

In this section, we will establish the local well-posedness for the Cauchy problem of Eq. (1.1) in H?, s > % by
applying Kato’s theory.

For convenience, we state here Kato’s theory in the form suitable for our purpose. Consider the abstract quasi-linear
equation:

dv
dt

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X and let O : Y — X be a
topological isomorphism. Let L(Y, X) denote the space of all bounded linear operators from Y to X (L(X),if X =7Y).
Assume that:

(i) A(y) € L(Y, X) for y € Y with

+ A(w)v= f(v), >0, v0)=uvp. (2.1)

(A — A@)w|y <milly —zlxllwlly, y.z,weY,

and A(y) € G(X, 1, B) (i.e. A(y) is quasi-m-accretive), uniformly on bounded sets in Y.
(i) QA(») Q™! = A(y) + B(y), where B(y) € L(X) is bounded, uniformly on bounded sets in Y. Moreover,

|(BO) = B@)w|y < mally —zliyllwlx, y.ze¥, weX.

@iii) f : Y — Y and extends also to a map from X to X. f is bounded on bounded sets in Y, and

lro = r@lly <wslly —zly, y.zev,
lfFO) = @] <mally —zllx. y.zeY.
Here w1, (2, 13 and pq depend only on max{||y|ly, ||z|ly}

Theorem 2.1. (See [19].) Assume that (i), (ii) and (iii) hold. Given vy € Y, there exist a maximal T > 0 depending
only on ||volly and a unique solution v to Eq. (2.1) such that

v=1(-,v9) € C([0, T); Y) N C'([0, T); X).
Moreover, the map vo — v(-, vg) is continuous from Y to

c([0,7); Y) nc'([0, 7); X).

On one hand, with y = (1) — u,,, the first equation in (1.2) takes the form of a quasi-linear evolution equation of
hyperbolic type:

1
U +uny = —3, A" <2;L(u)u + §u§> —u, (2.2)

where A = — 83 is an isomorphism between H* and H*~? with the inverse v = A~'w given explicitly by [10,21]

_(x* x 13 N [T dsd
v(x)—(7—§+ﬁ),u(w)+(x—§>f/w(s) sdy
00

x Yy 1y
—/[w(s)dsdy+///w(r)drdsdy. (2.3)
00 00 0

Since A~! and d, commute, the following identities hold
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1 X 1 x
A9 w(x) = (x— %)/w(x)dx —/w(y)dy+//w(y)dydx, (2.4)
0 0 0 0
and
1
A—lafw(x)z—w(x)Jr/w(x)dx. (2.5)
0

On the other hand, integrating both sides of the first equation in (1.2) with respect to x on S, we obtain

d
— () = —Auu).

dt
Then it follows that

() = po)e ™ := poe ™, (2.6)
where

po = u(ug) = / up(x)dx.
S
Combining (2.2) and (2.6), Eq. (1.2) can be rewritten as

1
U +uu, = —E)XA71 (2uoemu + Eui) —Au, t>0,xeR,

(0, x) = uo(x), x eR, 2.7

u(t,x+1)=u(t, x), t>0, xeR.

The remainder of this section is devoted to the local well-posedness result. Firstly, we will give a useful lemma.

Lemma 2.1. (See [19].) Let r, t be real numbers such that —r <t < r. Then
) 1
Nfgllm: <cllfllarligla:, ifr> x

) 1
1fell sy S cllfllarliglae  ifr <2,

1
2

where c is a positive constant depending on r, t.

Theorem 2.2. Given upg € H®, s > %, then there exists a maximal T =T (;, ug) > 0, and a unique solution u to (2.7)

(or (1.1)) such that
u=u(-,up) € C([0,T); H)NC' ([0, T); H*).

Moreover, the solution depends continuously on the initial data, i.e., the mapping
uo— u(-,ug): H® — C([O, T); Hs) N Cl([O, T); HS_I)

is continuous.

Proof. For u € H, s > %, we define the operator A(u) = ud,. Similar to Lemma 2.6 in [36], we have that A(u)
belongs to G(H'™!, 1, B), that is, —A(u) generates a Co-semigroup 7' (t) on H*~! and 1Tl s-1y) < e'P for all

t > 0. Analogous to Lemma 2.7 in [36], we get that A(u) € L(H", H’ 1) and

I(AG) = A)w| oot < millz = yllgs—1 1wl s

forall z, y,w € H®.
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Let 0=A=(1— ag)%. Define B(z) = QA(z) Q™! — A(z) for z € H*, s > 3. Similar to Lemma 2.8 in [36], we
deduce that B(z) € L(H*~') and

[(B@ = BO)w e < allz = yllaslwll e,

forall z, y € H* and w € H*~'. Where 111, > are positive constants.
Set

_ 1
fu) =—0y (,u — 3)%) I(ZMQE_MM + §u§> — Al
Lety,ze H%, s > % Since H*~! is a Banach algebra, it follows that

+Ally = zllas

- 1
[ £ o) = f@ ] e < H —0e (1 — ) l<2uoe—“<y — 0+ 505 - zi))
H

+Ally —zllas
Hs—l

1
< HZ,uoeM(y -2+ E(yx + 2x) (Yx — 2x)

1
< 2|pollly — zll gs—1 + EHYX + 2xllgs-tllyx — zxllgs—1 + Ally — zllms
< 2luol + Iylas + lzlas +A) Iy =zl as.

Furthermore, taking z = 0 in the above inequality, we obtain that f is bounded on bounded set in H*. Moreover,

+Ally =zl gs

- 1
|10 = £ @] o < H 0 (u = 7) " <2uoe—“<y —9+507 - zi))
Hs—!1

_ 1
< H2Moe My —z)+ E(yx + 2x) (Yx — 2x) +Ally — zll gs—1

Hs—2

C
<2|pollly — zll gs—1 + E“Yx + 2l gs—1llyx — 2xll gs—2 +Ally — zll gs—1
< (2lwol 4+ c(llyllas + Izl as) + )1y — 2l gs-1,

here we applied Lemma 2.1 with r =s — 1, t =5 — 2. Set Y = H*, X = H*~ 1. 1t is obvious that Q is an iso-
morphism of Y onto X. Applying Theorem 2.1, we obtain the local well-posedness of Eq. (1.1) in H®, s > %, and
ueC(0,T); H)NC' ([0, T); H*~). This completes the proof of Theorem 2.2. O

Remark 2.1. Similar to the proof of Theorem 2.3 in [36], we have that the maximal time of existence 7 > 0 in
Theorem 2.2 is independent of the Sobolev index s > %

3. The precise blow-up scenario

In this section, we present the precise blow-up scenario for strong solutions to Eq. (1.1). We first recall the following
lemmas.

Lemma 3.1. (See [20].) If r > 0, then H" N L™ is an algebra. Moreover

Ifglmr <c(Iflizelighar +1fImrlglie),

where c is a constant depending only on r.

Lemma 3.2. (See [20].) If r > O, then

(A", £lgll 2 < c(ldxfllee | A gl 2 + [ A7 £ 2 Igllzes).

where c is a constant depending only on r.
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Lemma 3.3. (See [4,13].)If f € HY(S) is such that /S f(x)dx =0, then we have

max f2(x) < ifﬂ(x)dx
xe$ S12) 0 '
S

Next we prove the following useful result on global existence of solutions to (1.1).

Theorem 3.1. Let ug € H®, s > %, be given and assume that T is the maximal existence time of the corresponding
solution u to (2.7) with the initial data u. If there exists M > O such that

||ux(t9)||Loo<M9 IE[O,T),

then the H® -norm of u(t, -) does not blow up on [0, T).

Proof. Let u be the solution to (2.7) with the initial data ug € H®, s > 3, and let T be the maximal existence time of
the corresponding solution u#, which is guaranteed by Theorem 2.2. Throughout this proof, ¢ > 0 stands for a generic
constant depending only on s.

Applying the operator A® to the first equation in (2.7), multiplying by A’u, and integrating over S, we obtain

d _ 1
ol =200, =200, = ) (20t 302 ) ) =260 6.
Let us estimate the first term of the right hand side of (3.1).
|(uux, u)S’ = |(A‘Y(u8xu), A‘Yu)o‘
= |([AS, u]Bxu, Asu)o + (uAsaxu, A‘Yu)0|

1
<" o] o] 4] s+ 2. a%) |

1
2
< (C||“x||L°° + §||Mx||L°°) llae s
2
< clluxlie llullys, (3.2)

where we used Lemma 3.2 with » = 5. Furthermore, we estimate the second term of the right hand side of (3.1) in the
following way:

—1 _ 1 1 _ 1
<u, 3x(M - 83) (Z;L()e My 4 Eui)) < ax(,u - Bf) (2,uoe My 4 Eui) lee]| s
K HS

1

< H2Mo€_mu + ~u? lull s
2 Hs—l

< c(lmolllull gs + Nuwxll Lo e | gs—1) llll s

< c(lpol + Nl o) lull s (3.3)

where we used Lemma 3.1 with » = s — 1. Combining (3.2) and (3.3) with (3.1), we get

d 2 2
Ellullm < c(liol + lluxll oo 4 2) ull s -
An application of Gronwall’s inequality and the assumption of the theorem yield

s < eCUrol+M~+20)t

2 2
llull g ol gs -

This completes the proof of the theorem. O

The following result describes the precise blow-up scenario for sufficiently regular solutions to Eq. (1.1).
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Theorem 3.2. Let ug € H®, s > % be given and let T be the maximal existence time of the corresponding solution u
to (2.7) with the initial data ug. Then the corresponding solution blows up in finite time if and only if

liminf{ min, (¢, x)} - .
t—T L xeS

Proof. Applying a simple density argument, Remark 2.1 implies that we only need to consider the case s = 3. Multi-
plying the first equation in (1.1) by y and integrating over S with respect to x yield

d
E/yzdx = Z/y(—uyx —2uyy — hy)dx
S

S
=—2/uyyxdx—4/uxy2dx—2A/y2dx
S S S
:—3/uxy2dx—2)L/y2dx.
S S

So, if there is a constant M > A > 0O such that

uy(t,x)>—-M, V(t,x)€l0,T) xS,

then

d 2 2
7 ydx < (BM —2)) | y“dx.
S S

Gronwall’s inequality implies that

/y2 dx < eBM=201 / yz(O, x)dx.
S S
Note that

/yzdx = p()’ + / i dx > |luxel?.
S S
Since u, € H> c H! and fS uy dx =0, Lemma 3.3 implies that

1 BM=2M)t
ol 2o < mnumnm <e 7 ||y0,0)] .-
Theorem 3.1 ensures that the solution u# does not blow up in finite time.
On the other hand, by Sobolev’s embedding theorem it is clear that if

liminf{ minu, (¢, x)] =—00,
t—T | xeS

then T < oo. This completes the proof of the theorem. O
4. Blow-up

In this section, we discuss the blow-up phenomena of Eq. (1.1) and prove that there exist strong solutions to (1.1)
which do not exist globally in time.

Firstly, for ugp € H®, s > %, we will give some useful estimates for the corresponding solution u. By the first
equation of (1.2) and (2.6), a direct computation implies that
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d 2 _
ar ] =

S

u(—usxy)dx

2

G— m\

M(_M(u)l =2 (W)tty + 2uxttyy + Ullyxxy — Ap(u) + )\«Mxx) dx

=—=2u(u)u(u) — 2)»(,u(u))2 — 2)‘/”)2; dx

S
=—2)L/u§ dx.
S
It follows that
/u% dx :/u%’x dx e M .= ,u%efzm, 4.1)

S S
where p1 = (fs u(z)’x dx)%. Note that [(u(r, x) — pu(u)) dx = pu(u) — pu(u) = 0. By Lemma 3.3, we find that
max[u(t x) — ,u(u)] ! /u (t,x)dx < ! /Lz
es 12 12"

S

So we have
3
e, )| o < litol + £m 42)

Lemma 4.1. (See [6].) Let tg > 0 and v € C'([0, 19); H2(R)). Then for every t € [0, ty) there exists at least one point
E(t) € R with

m(t) = GR{vx(t X)) = (t,6(),

X

and the function m is almost everywhere differentiable on (0, ty) with

d
Em(t) = Uy (t, E(t)) a.e. on (0, 1p).

Theorem 4.1. Let ug € H®, s > % ug £ c for Ve € R and T be the maximal time of the solution u to (1.1) with the
initial data ug. If ug satisfies the following condition

/ug’x dx < =3aud — 1y 9A2ud + 2K,
S

where K = 610|147 2(|ol + /Ll) then the corresponding solution to (1.1) blows up in finite time.

Proof. As mentioned earlier, here we only need to show that the above theorem holds for s = 3. Differentiating the
first equation of Eq. (2.7) with respect to x, we have

1 1
Upy = —Eui — Uy + 2;1,06_Mu — AUy — Z/L%e_nt — Eu%e_”". 4.3)
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Then, it follows that

d
E/uidx = /3u)2€uxtdx
S

S

2 X

1 1
=3 / u? <——u2 — ity + 2p0e M u — Ay — 2ude ™M — Eu%e_nl) dx

S

3
< —E/uidx—3fuu)2€uxxdx+6uoe_“/uu)2€dx—3)L/u)3€dx
S

S N

| =

ui dx+6,uoe_M/uuﬁ dx —SA/ui dx
S S

1
< —=
2 6

4 3
xdx—3k/uxdx+l(.
S

N =

Using the following inequality

1
P
‘/uidx <(/uidx> </u,2(dx>
S S

S
and letting

m(t) = / u?c dx,
S

D=

Y
< </deX> K1,
S

we have

d r .,
—m(i) < ——— t) — 3 m(t K
dtm() 2M%m () m(t) +

1
= —2—2(m(t) 4303+ 192202 +2K)(m(t) 4302 — w1y /9N23 + 2K).
M1

Taking A =3Au?, B = pu1,/9223 + 2K . Then, we have

d 1

V3
ui dx — 3)L/u)3c dx + 6|M0|M%(|ILO| + — i

)

S

275

(4.4)

Note that if m(0) < —A — B thenm(t) < —A — B forall ¢t € [0, T'). In fact, if not, since m(¢) is continuous on [0, T'),

there exists a point #p € (0, T') such that m(#p) = —A — B and m(t) < —A — B, a.e. on (0, tp). By (4.4), we have

dm(t)
dt

Integrating this inequality, we have

<0, a.e. (0,1).

m(ty) <m(0) <—A — B.

This is a contradiction. From the inequality (4.4), we obtain

B

m@0)+ A+ B P 2B

TP g —22 <o,
m@O0)+A— B m(t)+A— B



276 J. Liu, Z. Yin / Ann. 1. H. Poincaré — AN 31 (2014) 267-279

Since 0 < % < 1, there exists

- " m(0) +3au? — pu1,/922u? +2K
<T<

In ,
VOAZuZ + 2K m(0) +3au? + 14/ 922u? + 2K

such that lim;_, 7 m(t) = —oo. On the other hand,

/ui dx 2minux(t,x)/u§ dx =minu,(t, x) -/L%efz)“l.
x€S x€S
S S

Applying Theorem 3.2, the solution u blows up in finite time. O

Theorem 4.2. Let ug € H®, s > % and T be the maximal time of the solution u to (1.1) with the initial data ug. If
minug(x) < —2 =32 42K,

with K = 2| ol (|pol + %,ul), then the corresponding solution to (1.1) blows up in finite time.

Proof. As mentioned earlier, here we only need to show that the above theorem holds for s = 3. Define now
m(t) :=min[u,(t,x)], 1€[0,T)
xeS
and let £(7) € S be a point where this minimum is attained by using Lemma 4.1. It follows that

m(t) = u,(t,£(@1)).

Clearly uy,(t,£(t)) =0 since u(t, -) € H3(S) c C3(S). Evaluating (4.3) at (¢, £(¢)), we obtain

dm(t 1 1
m(@) = ——mz(t) + 2/L0€7Mu(l‘, é(t)) —Aam(t) — 2/1(2)672)” — —u%efzm
dt 2 2
1 NE]
< —Emz(t) — Aam(t) + 2|M0|<|M0| + ?ILl)

1 2
= —Em ) —am@)+ K
= —%(m(t) + A+ VA2 +2K)(m(@t) + 1 — VA2 +2K).

Note that if m(0) < —A — +/A2 4+ 2K then m(¢) < —A — /A2 + 2K for all ¢ € [0, T). From the above inequality we
obtain

0 A+ VA2 42K 222 4+ 2K
m(0) + A+ + V2K _ | +

< <0.
m(0) + 1 — /A2 +2K m(t) + A — /A2 4+2K
Since 0 < m(0)+A+vA2+2K

< 1, then there exists
m(0)+r—v/A24+2K

0-T< 1 lnm(0)+x—«/)\2+21<
< RS )
VA242K  m(0) + A+ A2+ 2K

such that lim;_,7 m(t) = —oo. Theorem 3.2 implies the solution « blows up in finite time. O
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5. Global existence

In this section, we will present some global existence results. Firstly, we give a useful lemma.
Given ug € H® with s > % Theorem 2.2 ensures the existence of a maximal 7 > 0 and a solution u to (2.7) such
that
u=u(-,up) € C([0, T); H)NC' ([0, T); H ).

Consider now the following initial value problem

{q, =u(t,q), t€[0,T),

q0,x)=x, xeR. 5.1

Lemma 5.1. Let ug € H® with s > % T > 0 be the maximal existence time. Then Eq. (5.1) has a unique solution
g € C'([0, T) x R; R) and the map q(t, ) is an increasing diffeomorphism of R with
t
gx(t,x) = exp(/ ux(s, q(s, x)) ds) >0, (t,x)el0,T)xR.
0
Moreover, with y = (1) — uyxx, we have

y(t,q(t,x))qs = yo(x)e ™.

Proof. The proof of the first conclusion is similar to the proof of Lemma 4.1 in [38], so we omit it here. By the first
equation in (1.1) and Eq. (5.1), we have

d
(6, ))qz = O+ Yxq)qs + V- 244
=y + ”)’x)q)% + 2)’”)(%%
= (v + uyx + 2yux)q; = —Ayq;.
It follows that y(¢, ¢(t, x))g2 = yo(x)e ™. O

Theorem 5.1. If yo(x) = o — uo xx(x) € H U does not change sign, then the corresponding solution u of the initial
value uq exists globally in time.

Proof. Note that given ¢ € [0, T), there is a £(¢) € S such that u, (¢, £(¢)) = 0 by the periodicity of u to x-variable. If
yo(x) = 0, then Lemma 5.1 implies that y(¢, x) > 0. For x € [£(¢), £(¢) + 1], we have

—uy(t,x)=— / 8fu(t,x)dx = / (y — /,L(M)) dx = / ydx — u(u)(x — E(t))
£() ) @)

< /ydx @) (x = E0) = ) (1 — x +£0) < Iol.
S

It follows that u, (¢, x) > —|uo|. On the other hand, if yp(x) < 0, then Lemma 5.1 implies that y(¢, x) < 0. Therefore,
for x € [£(t), £(¢) + 1], we have

x x x
—uy(t,x)=— / 8fu(t,x)dx = / (y — [,L(M)) dx = / ydx — /L(u)(x — E(t))
E() () £@)
< —p)(x — @) < |pol-
It follows that u (¢, x) > —|uol|. This completes the proof by using Theorem 3.3. O
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Corollary 5.1. If the initial value ug € H> such that

0, xxx Il 12 < 283110l

then the corresponding solution u of uq exists globally in time.

Proof. Since u is periodic to x-variable, fS Uo xx dx =uo x |(1) = 0. Lemma 3.3 implies that

0, xxll Lo < ?”uo,xxx 72

If o > 0, then

V3

6 llo,xxxll 2 = o — Iol = 0.

Yo(x) = o — uo,xx (x) 2 po —
If wo <0, then

\/_5

6 ”MO,xxx”L2 < o+ |M0| =0.

Yo(x) = po — u0,xx (x) < po + 1o, xx [l Lo < po +

This completes the proof by using Theorem 5.1. O
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