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Abstract

In this paper, we study the Cauchy problem of a weakly dissipative μ-Hunter–Saxton equation. We first establish the local
well-posedness for the weakly dissipative μ-Hunter–Saxton equation by Kato’s semigroup theory. Then, we derive the precise
blow-up scenario for strong solutions to the equation. Moreover, we present some blow-up results for strong solutions to the
equation. Finally, we give two global existence results to the equation.
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1. Introduction

Recently, the μ-Hunter–Saxton (also called μ-Camassa–Holm) equation

μ(u)t − utxx = −2μ(u)ux + 2uxuxx + uuxxx,

which is originally derived and studied in [21] attracts a lot of attention. Here u(t, x) is a time-dependent function
on the unit circle S = R/Z and μ(u) = ∫

S
udx denotes its mean. In [21], the authors show that if interactions of

rotators and an external magnetic field is allowed, then the μ-Hunter–Saxton (μHS) equation can be viewed as a
natural generalization of the rotator equation. Moreover, the μHS equation describes the geodesic flow on Ds(S) with
the right-invariant metric given at the identity by the inner product [21]

(u, v) = μ(u)μ(v) +
∫
S

uxvx dx.

In [21,25], the authors showed that the μHS equation admits both periodic one-peakon solution and the multi-peakons.
Moreover, in [13,15], the authors also discussed the μHS equation.
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One of the closest relatives of the μHS equation is the Camassa–Holm equation

ut − utxx + 3uux = 2uxuxx + uuxxx,

which was introduced firstly by Fokas and Fuchssteiner in [12] as an abstract equation with a bihamiltonian struc-
ture. Meanwhile, it was derived by Camassa and Holm in [2] as a shallow water approximation independently. The
Camassa–Holm equation is a model for shallow water waves [2,9,18] and a re-expression of the geodesic flow both
on the diffeomorphism group of the circle [8] and on the Bott–Virasoro group [23]. The Camassa–Holm equation has
a bi-Hamiltonian structure [12] and is completely integrable [3]. The possibility of the relevance of Camassa–Holm
to the modeling of tsunamis was raised in [7]. It is worth to point out that a long-standing open problem in hydro-
dynamics was the derivation of a model equation that can capture breaking waves as well as peaked traveling waves,
cf. the discussion in [30]. The quest for peaked traveling waves is motivated by the desire to find waves replicating a
feature that is characteristic for the waves of great height-waves of largest amplitude that are exact traveling solutions
of the governing equations for water waves, whether periodic or solitary, cf. [5]. Breaking waves are solutions that
remain bounded but their slope becomes unbounded in finite time, cf. [6]. Both these aspects are modeled by the
Camassa–Holm equation. Recently, the Camassa–Holm equation has been studied extensively, cf. [1,26,34,35]. The
other closest relatives of the μHS equation is the Hunter–Saxton equation [16]

utxx + 2uxuxx + uuxxx = 0,

which is an asymptotic equation for rotators in liquid crystals and modeling the propagation of weakly nonlinear
orientation waves in a massive nematic liquid crystal. The orientation of the molecules is described by the field of unit
vectors (cosu(t, x), sinu(t, x)) [37]. The Hunter–Saxton equation also arises in a different physical context as the
high-frequency limit [17] of the Camassa–Holm equation. Similar to the Camassa–Holm equation, the Hunter–Saxton
equation also has a bi-Hamiltonian structure [18,27] and is completely integrable [17]. The initial value problem of
the Hunter–Saxton equation also has been studied extensively, cf. [16,24,37].

In general, it is difficult to avoid energy dissipation mechanisms in a real world. So, it is reasonable to study the
model with energy dissipation. In [14] and [28], the authors discussed the energy dissipative KdV equation from
different aspects. Weakly dissipative CH equation and weakly dissipative DP equation have been studied in [33] and
[11,31,32] respectively. Recently, some results for a weakly dissipative μDP equation are proved in [22]. It is worthy
to note that the local well-posedness result in [22] is obtained by using a method based on a geometric argument.

In this paper, we will discuss the Cauchy problem of the following weakly dissipative μHS equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

yt + uyx + 2uxy + λy = 0, t > 0, x ∈R,

y = μ(u) − uxx, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R,

u(t, x + 1) = u(t, x), t � 0, x ∈ R,

(1.1)

or in the equivalent form:⎧⎪⎨
⎪⎩

μ(u)t − utxx + 2μ(u)ux − 2uxuxx − uuxxx + λ
(
μ(u) − uxx

) = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

u(t, x + 1) = u(t, x), t � 0, x ∈R.

(1.2)

Here the constant λ is assumed to be positive and the term λy = λ(μ(u) − uxx) models energy dissipation. For
μ(u) = 0, (1.2) becomes weakly dissipative Hunter–Saxton equation, which has been studied in [29].

The paper is organized as follows. In Section 2, we establish the local well-posedness of the initial value problem
associated with Eq. (1.1). In Section 3, we derive the precise blow-up scenario. In Section 4, we present two explosion
criteria of strong solutions to Eq. (1.1) with general initial data. In Section 5, we give two new global existence results
of strong solutions to Eq. (1.1).

Notation. Given a Banach space Z, we denote its norm by ‖ · ‖Z . Since all spaces of functions are over S =R/Z, for
simplicity, we drop S in our notations if there is no ambiguity. We let [A,B] denote the commutator of linear operator
A and B . For convenience, we let (·|·)s×r and (·|·)s denote the inner products of Hs ×Hr , s, r ∈R+ and Hs , s ∈R+,
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respectively. Moreover, we denote by G(X,M,β) the set of all linear operators A in X such that −A generates a
C0-semigroup {e−tA} with ‖e−tA‖� Meβt . In particular, A is quasi-m-accretive if A ∈ G(X,1, β).

2. Local well-posedness

In this section, we will establish the local well-posedness for the Cauchy problem of Eq. (1.1) in Hs , s > 3
2 , by

applying Kato’s theory.
For convenience, we state here Kato’s theory in the form suitable for our purpose. Consider the abstract quasi-linear

equation:

dv

dt
+ A(v)v = f (v), t > 0, v(0) = v0. (2.1)

Let X and Y be Hilbert spaces such that Y is continuously and densely embedded in X and let Q : Y → X be a
topological isomorphism. Let L(Y,X) denote the space of all bounded linear operators from Y to X (L(X), if X = Y ).
Assume that:

(i) A(y) ∈ L(Y,X) for y ∈ Y with∥∥(
A(y) − A(z)

)
w

∥∥
X
� μ1‖y − z‖X‖w‖Y , y, z,w ∈ Y,

and A(y) ∈ G(X,1, β) (i.e. A(y) is quasi-m-accretive), uniformly on bounded sets in Y .
(ii) QA(y)Q−1 = A(y) + B(y), where B(y) ∈ L(X) is bounded, uniformly on bounded sets in Y . Moreover,∥∥(

B(y) − B(z)
)
w

∥∥
X
� μ2‖y − z‖Y ‖w‖X, y, z ∈ Y, w ∈ X.

(iii) f : Y → Y and extends also to a map from X to X. f is bounded on bounded sets in Y , and∥∥f (y) − f (z)
∥∥

Y
� μ3‖y − z‖Y , y, z ∈ Y,∥∥f (y) − f (z)

∥∥
X
� μ4‖y − z‖X, y, z ∈ Y.

Here μ1,μ2,μ3 and μ4 depend only on max{‖y‖Y ,‖z‖Y }.

Theorem 2.1. (See [19].) Assume that (i), (ii) and (iii) hold. Given v0 ∈ Y , there exist a maximal T > 0 depending
only on ‖v0‖Y and a unique solution v to Eq. (2.1) such that

v = v(·, v0) ∈ C
([0, T );Y ) ∩ C1([0, T );X)

.

Moreover, the map v0 → v(·, v0) is continuous from Y to

C
([0, T );Y ) ∩ C1([0, T );X)

.

On one hand, with y = μ(u) − uxx , the first equation in (1.2) takes the form of a quasi-linear evolution equation of
hyperbolic type:

ut + uux = −∂xA
−1

(
2μ(u)u + 1

2
u2

x

)
− λu, (2.2)

where A = μ − ∂2
x is an isomorphism between Hs and Hs−2 with the inverse v = A−1w given explicitly by [10,21]

v(x) =
(

x2

2
− x

2
+ 13

12

)
μ(w) +

(
x − 1

2

) 1∫
0

y∫
0

w(s)ds dy

−
x∫

0

y∫
0

w(s)ds dy +
1∫

0

y∫
0

s∫
0

w(r)dr ds dy. (2.3)

Since A−1 and ∂x commute, the following identities hold
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A−1∂xw(x) =
(

x − 1

2

) 1∫
0

w(x)dx −
x∫

0

w(y)dy +
1∫

0

x∫
0

w(y)dy dx, (2.4)

and

A−1∂2
xw(x) = −w(x) +

1∫
0

w(x)dx. (2.5)

On the other hand, integrating both sides of the first equation in (1.2) with respect to x on S, we obtain

d

dt
μ(u) = −λμ(u).

Then it follows that

μ(u) = μ(u0)e
−λt := μ0e

−λt , (2.6)

where

μ0 := μ(u0) =
∫
S

u0(x) dx.

Combining (2.2) and (2.6), Eq. (1.2) can be rewritten as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut + uux = −∂xA
−1

(
2μ0e

−λtu + 1

2
u2

x

)
− λu, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R,

u(t, x + 1) = u(t, x), t � 0, x ∈ R.

(2.7)

The remainder of this section is devoted to the local well-posedness result. Firstly, we will give a useful lemma.

Lemma 2.1. (See [19].) Let r, t be real numbers such that −r < t � r . Then

‖fg‖Ht � c‖f ‖Hr ‖g‖Ht , if r >
1

2
,

‖fg‖
H

t+r− 1
2
� c‖f ‖Hr ‖g‖Ht , if r <

1

2
,

where c is a positive constant depending on r , t .

Theorem 2.2. Given u0 ∈ Hs , s > 3
2 , then there exists a maximal T = T (λ,u0) > 0, and a unique solution u to (2.7)

(or (1.1)) such that

u = u(·, u0) ∈ C
([0, T );Hs

) ∩ C1([0, T );Hs−1).
Moreover, the solution depends continuously on the initial data, i.e., the mapping

u0 → u(·, u0) : Hs → C
([0, T );Hs

) ∩ C1([0, T );Hs−1)
is continuous.

Proof. For u ∈ Hs , s > 3
2 , we define the operator A(u) = u∂x . Similar to Lemma 2.6 in [36], we have that A(u)

belongs to G(Hs−1,1, β), that is, −A(u) generates a C0-semigroup T (t) on Hs−1 and ‖T (t)‖L(Hs−1) � etβ for all
t � 0. Analogous to Lemma 2.7 in [36], we get that A(u) ∈ L(Hs,Hs−1) and∥∥(

A(z) − A(y)
)
w

∥∥
Hs−1 � μ1‖z − y‖Hs−1‖w‖Hs ,

for all z, y,w ∈ Hs .
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Let Q = Λ = (1 − ∂2
x )

1
2 . Define B(z) = QA(z)Q−1 − A(z) for z ∈ Hs, s > 3

2 . Similar to Lemma 2.8 in [36], we
deduce that B(z) ∈ L(Hs−1) and∥∥(

B(z) − B(y)
)
w

∥∥
Hs−1 � μ2‖z − y‖Hs ‖w‖Hs−1,

for all z, y ∈ Hs and w ∈ Hs−1. Where μ1, μ2 are positive constants.
Set

f (u) = −∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λtu + 1

2
u2

x

)
− λu.

Let y, z ∈ Hs , s > 3
2 . Since Hs−1 is a Banach algebra, it follows that

∥∥f (y) − f (z)
∥∥

Hs �
∥∥∥∥−∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λt (y − z) + 1

2

(
y2
x − z2

x

))∥∥∥∥
Hs

+ λ‖y − z‖Hs

�
∥∥∥∥2μ0e

−λt (y − z) + 1

2
(yx + zx)(yx − zx)

∥∥∥∥
Hs−1

+ λ‖y − z‖Hs

� 2|μ0|‖y − z‖Hs−1 + 1

2
‖yx + zx‖Hs−1‖yx − zx‖Hs−1 + λ‖y − z‖Hs

�
(
2|μ0| + ‖y‖Hs + ‖z‖Hs + λ

)‖y − z‖Hs .

Furthermore, taking z = 0 in the above inequality, we obtain that f is bounded on bounded set in Hs . Moreover,

∥∥f (y) − f (z)
∥∥

Hs−1 �
∥∥∥∥−∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λt (y − z) + 1

2

(
y2
x − z2

x

))∥∥∥∥
Hs−1

+ λ‖y − z‖Hs−1

�
∥∥∥∥2μ0e

−λt (y − z) + 1

2
(yx + zx)(yx − zx)

∥∥∥∥
Hs−2

+ λ‖y − z‖Hs−1

� 2|μ0|‖y − z‖Hs−1 + c

2
‖yx + zx‖Hs−1‖yx − zx‖Hs−2 + λ‖y − z‖Hs−1

�
(
2|μ0| + c

(‖y‖Hs + ‖z‖Hs

) + λ
)‖y − z‖Hs−1,

here we applied Lemma 2.1 with r = s − 1, t = s − 2. Set Y = Hs , X = Hs−1. It is obvious that Q is an iso-
morphism of Y onto X. Applying Theorem 2.1, we obtain the local well-posedness of Eq. (1.1) in Hs , s > 3

2 , and
u ∈ C([0, T );Hs) ∩ C1([0, T );Hs−1). This completes the proof of Theorem 2.2. �
Remark 2.1. Similar to the proof of Theorem 2.3 in [36], we have that the maximal time of existence T > 0 in
Theorem 2.2 is independent of the Sobolev index s > 3

2 .

3. The precise blow-up scenario

In this section, we present the precise blow-up scenario for strong solutions to Eq. (1.1). We first recall the following
lemmas.

Lemma 3.1. (See [20].) If r > 0, then Hr ∩ L∞ is an algebra. Moreover

‖fg‖Hr � c
(‖f ‖L∞‖g‖Hr + ‖f ‖Hr ‖g‖L∞

)
,

where c is a constant depending only on r .

Lemma 3.2. (See [20].) If r > 0, then∥∥[
Λr,f

]
g
∥∥

L2 � c
(‖∂xf ‖L∞

∥∥Λr−1g
∥∥

L2 + ∥∥Λrf
∥∥

L2‖g‖L∞
)
,

where c is a constant depending only on r .
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Lemma 3.3. (See [4,13].) If f ∈ H 1(S) is such that
∫
S
f (x)dx = 0, then we have

max
x∈S

f 2(x) � 1

12

∫
S

f 2
x (x) dx.

Next we prove the following useful result on global existence of solutions to (1.1).

Theorem 3.1. Let u0 ∈ Hs , s > 3
2 , be given and assume that T is the maximal existence time of the corresponding

solution u to (2.7) with the initial data u0. If there exists M > 0 such that∥∥ux(t, ·)
∥∥

L∞ � M, t ∈ [0, T ),

then the Hs -norm of u(t, ·) does not blow up on [0, T ).

Proof. Let u be the solution to (2.7) with the initial data u0 ∈ Hs , s > 3
2 , and let T be the maximal existence time of

the corresponding solution u, which is guaranteed by Theorem 2.2. Throughout this proof, c > 0 stands for a generic
constant depending only on s.

Applying the operator Λs to the first equation in (2.7), multiplying by Λsu, and integrating over S, we obtain

d

dt
‖u‖2

Hs = −2(uux,u)s − 2

(
u, ∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λtu + 1

2
u2

x

))
s

− 2λ(u,u)s . (3.1)

Let us estimate the first term of the right hand side of (3.1).∣∣(uux,u)s
∣∣ = ∣∣(Λs(u∂xu),Λsu

)
0

∣∣
= ∣∣([Λs,u

]
∂xu,Λsu

)
0 + (

uΛs∂xu,Λsu
)

0

∣∣
�

∥∥[
Λs,u

]
∂xu

∥∥
L2

∥∥Λsu
∥∥

L2 + 1

2

∣∣(uxΛ
su,Λsu

)
0

∣∣
�

(
c‖ux‖L∞ + 1

2
‖ux‖L∞

)
‖u‖2

Hs

� c‖ux‖L∞‖u‖2
Hs , (3.2)

where we used Lemma 3.2 with r = s. Furthermore, we estimate the second term of the right hand side of (3.1) in the
following way:∣∣∣∣

(
u, ∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λtu + 1

2
u2

x

))
s

∣∣∣∣�
∥∥∥∥∂x

(
μ − ∂2

x

)−1
(

2μ0e
−λtu + 1

2
u2

x

)∥∥∥∥
Hs

‖u‖Hs

�
∥∥∥∥2μ0e

−λtu + 1

2
u2

x

∥∥∥∥
Hs−1

‖u‖Hs

� c
(|μ0|‖u‖Hs + ‖ux‖L∞‖ux‖Hs−1

)‖u‖Hs

� c
(|μ0| + ‖ux‖L∞

)‖u‖2
Hs , (3.3)

where we used Lemma 3.1 with r = s − 1. Combining (3.2) and (3.3) with (3.1), we get

d

dt
‖u‖2

Hs � c
(|μ0| + ‖ux‖L∞ + 2λ

)‖u‖2
Hs .

An application of Gronwall’s inequality and the assumption of the theorem yield

‖u‖2
Hs � ec(|μ0|+M+2λ)t‖u0‖2

Hs .

This completes the proof of the theorem. �
The following result describes the precise blow-up scenario for sufficiently regular solutions to Eq. (1.1).
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Theorem 3.2. Let u0 ∈ Hs , s > 3
2 be given and let T be the maximal existence time of the corresponding solution u

to (2.7) with the initial data u0. Then the corresponding solution blows up in finite time if and only if

lim inf
t→T

{
min
x∈S ux(t, x)

}
= −∞.

Proof. Applying a simple density argument, Remark 2.1 implies that we only need to consider the case s = 3. Multi-
plying the first equation in (1.1) by y and integrating over S with respect to x yield

d

dt

∫
S

y2 dx = 2
∫
S

y(−uyx − 2uxy − λy)dx

= −2
∫
S

uyyx dx − 4
∫
S

uxy
2 dx − 2λ

∫
S

y2 dx

= −3
∫
S

uxy
2 dx − 2λ

∫
S

y2 dx.

So, if there is a constant M > λ > 0 such that

ux(t, x) � −M, ∀(t, x) ∈ [0, T ) × S,

then

d

dt

∫
S

y2 dx � (3M − 2λ)

∫
S

y2 dx.

Gronwall’s inequality implies that∫
S

y2 dx � e(3M−2λ)t

∫
S

y2(0, x) dx.

Note that∫
S

y2 dx = μ(u)2 +
∫
S

u2
xx dx � ‖uxx‖2

L2 .

Since ux ∈ H 2 ⊂ H 1 and
∫
S
ux dx = 0, Lemma 3.3 implies that

‖ux‖L∞ � 1

2
√

3
‖uxx‖L2 � e

(3M−2λ)t
2

∥∥y(0, x)
∥∥

L2 .

Theorem 3.1 ensures that the solution u does not blow up in finite time.
On the other hand, by Sobolev’s embedding theorem it is clear that if

lim inf
t→T

{
min
x∈S ux(t, x)

}
= −∞,

then T < ∞. This completes the proof of the theorem. �
4. Blow-up

In this section, we discuss the blow-up phenomena of Eq. (1.1) and prove that there exist strong solutions to (1.1)
which do not exist globally in time.

Firstly, for u0 ∈ Hs , s > 3
2 , we will give some useful estimates for the corresponding solution u. By the first

equation of (1.2) and (2.6), a direct computation implies that
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d

dt

∫
S

u2
x dx = 2

∫
S

u(−utxx) dx

= 2
∫
S

u
(−μ(u)t − 2μ(u)ux + 2uxuxx + uuxxx − λμ(u) + λuxx

)
dx

= −2μ(u)tμ(u) − 2λ
(
μ(u)

)2 − 2λ

∫
S

u2
x dx

= −2λ

∫
S

u2
x dx.

It follows that∫
S

u2
x dx =

∫
S

u2
0,x dx · e−2λt := μ2

1e
−2λt , (4.1)

where μ1 = (
∫
S
u2

0,x dx)
1
2 . Note that

∫
S
(u(t, x) − μ(u)) dx = μ(u) − μ(u) = 0. By Lemma 3.3, we find that

max
x∈S

[
u(t, x) − μ(u)

]2 � 1

12

∫
S

u2
x(t, x) dx � 1

12
μ2

1.

So we have

∥∥u(t, ·)∥∥
L∞ � |μ0| +

√
3

6
μ1. (4.2)

Lemma 4.1. (See [6].) Let t0 > 0 and v ∈ C1([0, t0);H 2(R)). Then for every t ∈ [0, t0) there exists at least one point
ξ(t) ∈R with

m(t) := inf
x∈R

{
vx(t, x)

} = vx

(
t, ξ(t)

)
,

and the function m is almost everywhere differentiable on (0, t0) with

d

dt
m(t) = vtx

(
t, ξ(t)

)
a.e. on (0, t0).

Theorem 4.1. Let u0 ∈ Hs , s > 3
2 , u0 �≡ c for ∀c ∈ R and T be the maximal time of the solution u to (1.1) with the

initial data u0. If u0 satisfies the following condition∫
S

u3
0,x dx < −3λμ2

1 − μ1

√
9λ2μ2

1 + 2K,

where K = 6|μ0|μ2
1(|μ0| +

√
3

6 μ1), then the corresponding solution to (1.1) blows up in finite time.

Proof. As mentioned earlier, here we only need to show that the above theorem holds for s = 3. Differentiating the
first equation of Eq. (2.7) with respect to x, we have

utx = −1

2
u2

x − uuxx + 2μ0e
−λtu − λux − 2μ2

0e
−2λt − 1

2
μ2

1e
−2λt . (4.3)
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Then, it follows that

d

dt

∫
S

u3
x dx =

∫
S

3u2
xuxt dx

= 3
∫
S

u2
x

(
−1

2
u2

x − uuxx + 2μ0e
−λtu − λux − 2μ2

0e
−2λt − 1

2
μ2

1e
−2λt

)
dx

� −3

2

∫
S

u4
x dx − 3

∫
S

uu2
xuxx dx + 6μ0e

−λt

∫
S

uu2
x dx − 3λ

∫
S

u3
x dx

= −1

2

∫
S

u4
x dx + 6μ0e

−λt

∫
S

uu2
x dx − 3λ

∫
S

u3
x dx

� −1

2

∫
S

u4
x dx − 3λ

∫
S

u3
x dx + 6|μ0|μ2

1

(
|μ0| +

√
3

6
μ1

)

:= −1

2

∫
S

u4
x dx − 3λ

∫
S

u3
x dx + K.

Using the following inequality

∣∣∣∣
∫
S

u3
x dx

∣∣∣∣�
(∫

S

u4
x dx

) 1
2
(∫

S

u2
x dx

) 1
2

�
(∫

S

u4
x dx

) 1
2

μ1,

and letting

m(t) =
∫
S

u3
x dx,

we have

d

dt
m(t) � − 1

2μ2
1

m2(t) − 3λm(t) + K

= − 1

2μ2
1

(
m(t) + 3λμ2

1 + μ1

√
9λ2μ2

1 + 2K
)(

m(t) + 3λμ2
1 − μ1

√
9λ2μ2

1 + 2K
)
.

Taking A = 3λμ2
1, B = μ1

√
9λ2μ2

1 + 2K . Then, we have

d

dt
m(t) � − 1

2μ2
1

(
m(t) + A + B

)(
m(t) + A − B

)
. (4.4)

Note that if m(0) < −A − B then m(t) < −A − B for all t ∈ [0, T ). In fact, if not, since m(t) is continuous on [0, T ),
there exists a point t0 ∈ (0, T ) such that m(t0) = −A − B and m(t) < −A − B , a.e. on (0, t0). By (4.4), we have

dm(t)

dt
< 0, a.e. (0, t0).

Integrating this inequality, we have

m(t0)� m(0) < −A − B.

This is a contradiction. From the inequality (4.4), we obtain

m(0) + A + B
e

B

μ2
1
t − 1 � 2B � 0.
m(0) + A − B m(t) + A − B
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Since 0 <
m(0)+A+B
m(0)+A−B

< 1, there exists

0 < T � μ1√
9λ2μ2

1 + 2K

ln
m(0) + 3λμ2

1 − μ1

√
9λ2μ2

1 + 2K

m(0) + 3λμ2
1 + μ1

√
9λ2μ2

1 + 2K

,

such that limt→T m(t) = −∞. On the other hand,∫
S

u3
x dx � min

x∈S ux(t, x)

∫
S

u2
x dx = min

x∈S ux(t, x) · μ2
1e

−2λt .

Applying Theorem 3.2, the solution u blows up in finite time. �
Theorem 4.2. Let u0 ∈ Hs , s > 3

2 , and T be the maximal time of the solution u to (1.1) with the initial data u0. If

min
x∈S u′

0(x) < −λ −
√

λ2 + 2K,

with K = 2|μ0|(|μ0| +
√

3
6 μ1), then the corresponding solution to (1.1) blows up in finite time.

Proof. As mentioned earlier, here we only need to show that the above theorem holds for s = 3. Define now

m(t) := min
x∈S

[
ux(t, x)

]
, t ∈ [0, T )

and let ξ(t) ∈ S be a point where this minimum is attained by using Lemma 4.1. It follows that

m(t) = ux

(
t, ξ(t)

)
.

Clearly uxx(t, ξ(t)) = 0 since u(t, ·) ∈ H 3(S) ⊂ C2(S). Evaluating (4.3) at (t, ξ(t)), we obtain

dm(t)

dt
= −1

2
m2(t) + 2μ0e

−λtu
(
t, ξ(t)

) − λm(t) − 2μ2
0e

−2λt − 1

2
μ2

1e
−2λt

� −1

2
m2(t) − λm(t) + 2|μ0|

(
|μ0| +

√
3

6
μ1

)

:= −1

2
m2(t) − λm(t) + K

= −1

2

(
m(t) + λ +

√
λ2 + 2K

)(
m(t) + λ −

√
λ2 + 2K

)
.

Note that if m(0) < −λ − √
λ2 + 2K then m(t) < −λ − √

λ2 + 2K for all t ∈ [0, T ). From the above inequality we
obtain

m(0) + λ + √
λ2 + 2K

m(0) + λ − √
λ2 + 2K

e

√
λ2+2Kt − 1 � 2

√
λ2 + 2K

m(t) + λ − √
λ2 + 2K

� 0.

Since 0 <
m(0)+λ+

√
λ2+2K

m(0)+λ−
√

λ2+2K
< 1, then there exists

0 < T � 1√
λ2 + 2K

ln
m(0) + λ − √

λ2 + 2K

m(0) + λ + √
λ2 + 2K

,

such that limt→T m(t) = −∞. Theorem 3.2 implies the solution u blows up in finite time. �
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5. Global existence

In this section, we will present some global existence results. Firstly, we give a useful lemma.
Given u0 ∈ Hs with s > 3

2 . Theorem 2.2 ensures the existence of a maximal T > 0 and a solution u to (2.7) such
that

u = u(·, u0) ∈ C
([0, T );Hs

) ∩ C1([0, T );Hs−1).
Consider now the following initial value problem{

qt = u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈R.
(5.1)

Lemma 5.1. Let u0 ∈ Hs with s > 3
2 , T > 0 be the maximal existence time. Then Eq. (5.1) has a unique solution

q ∈ C1([0, T ) ×R;R) and the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

( t∫
0

ux

(
s, q(s, x)

)
ds

)
> 0, (t, x) ∈ [0, T ) ×R.

Moreover, with y = μ(u) − uxx , we have

y
(
t, q(t, x)

)
q2
x = y0(x)e−λt .

Proof. The proof of the first conclusion is similar to the proof of Lemma 4.1 in [38], so we omit it here. By the first
equation in (1.1) and Eq. (5.1), we have

d

dt
y
(
t, q(t, x)

)
q2
x = (yt + yxqt )q

2
x + y · 2qxqxt

= (yt + uyx)q
2
x + 2yuxq

2
x

= (yt + uyx + 2yux)q
2
x = −λyq2

x .

It follows that y(t, q(t, x))q2
x = y0(x)e−λt . �

Theorem 5.1. If y0(x) = μ0 − u0,xx(x) ∈ H 1 does not change sign, then the corresponding solution u of the initial
value u0 exists globally in time.

Proof. Note that given t ∈ [0, T ), there is a ξ(t) ∈ S such that ux(t, ξ(t)) = 0 by the periodicity of u to x-variable. If
y0(x) � 0, then Lemma 5.1 implies that y(t, x) � 0. For x ∈ [ξ(t), ξ(t) + 1], we have

−ux(t, x) = −
x∫

ξ(t)

∂2
xu(t, x) dx =

x∫
ξ(t)

(
y − μ(u)

)
dx =

x∫
ξ(t)

y dx − μ(u)
(
x − ξ(t)

)

�
∫
S

y dx − μ(u)
(
x − ξ(t)

) = μ(u)
(
1 − x + ξ(t)

)
� |μ0|.

It follows that ux(t, x) � −|μ0|. On the other hand, if y0(x) � 0, then Lemma 5.1 implies that y(t, x) � 0. Therefore,
for x ∈ [ξ(t), ξ(t) + 1], we have

−ux(t, x) = −
x∫

ξ(t)

∂2
xu(t, x) dx =

x∫
ξ(t)

(
y − μ(u)

)
dx =

x∫
ξ(t)

y dx − μ(u)
(
x − ξ(t)

)

� −μ(u)
(
x − ξ(t)

)
� |μ0|.

It follows that ux(t, x) � −|μ0|. This completes the proof by using Theorem 3.3. �
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Corollary 5.1. If the initial value u0 ∈ H 3 such that

‖u0,xxx‖L2 � 2
√

3|μ0|,
then the corresponding solution u of u0 exists globally in time.

Proof. Since u is periodic to x-variable,
∫
S
u0,xx dx = u0,x |10 = 0. Lemma 3.3 implies that

‖u0,xx‖L∞ �
√

3

6
‖u0,xxx‖L2 .

If μ0 � 0, then

y0(x) = μ0 − u0,xx(x) � μ0 −
√

3

6
‖u0,xxx‖L2 � μ0 − |μ0| = 0.

If μ0 � 0, then

y0(x) = μ0 − u0,xx(x) � μ0 + ‖u0,xx‖L∞ � μ0 +
√

3

6
‖u0,xxx‖L2 � μ0 + |μ0| = 0.

This completes the proof by using Theorem 5.1. �
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