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Abstract

In this paper we investigate the small time heat kernel asymptotics on the cut locus on a class of surfaces of revolution, which are
the simplest two-dimensional Riemannian manifolds different from the sphere with non-trivial cut-conjugate locus. We determine
the degeneracy of the exponential map near a cut-conjugate point and present the consequences of this result to the small time heat
kernel asymptotics at this point. These results give a first example where the minimal degeneration of the asymptotic expansion at
the cut locus is attained.
© 2013

1. Introduction

The study of the heat kernel and the geometric analysis of the Laplace–Beltrami operator on Riemannian manifolds
is a very old problem and it has been an object of an increasing attention during the last century.

In particular it has undergone a strong development in the last three decades during which many results have been
obtained relating the properties of the heat kernel (such as Gaussian bounds, asymptotics, etc.) to the geometry of the
manifold itself (optimality of geodesics, bounds on curvature, etc.). A comprehensive introduction to the subject can
be found in [11,20] and references therein.

In this spirit, the fundamental relation between the metric structure of the manifold and the properties of the heat
kernel is provided by a result of Varhadan, stating that the main term in the small time asymptotic expansion of the heat
kernel is given by the Riemannian distance.

Theorem 1. (See [22].) Let M be a complete Riemannian manifold, d be the Riemannian distance and pt its heat
kernel. For x, y ∈ M we have

lim
t→0

4t logpt(x, y) = −d2(x, y),

uniformly for (x, y) in every compact subset of M × M .
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Besides this result, which gives the basic estimate for the heat kernel and holds for every pair of points on the
manifold, one can study how the small time asymptotics of the heat kernel reflects the singularities of the Riemannian
distance, to get refined results. By singularities of the distance here we mean the set of points where the Riemannian
distance is not smooth. In particular we are interested in how the presence of the cut locus (the set of points where the
geodesics lose global optimality) and the conjugate locus (the set of points where the differential of the exponential
map is not invertible) can affect the asymptotic expansion of the heat kernel.

This relation has already been established in the case of Riemannian geometry, as stated in [2,17,19] (see also [13]
for a probabilistic approach to the Riemannian heat kernel). We recall here a corollary of these results that is contained
in [2] (where the results are stated in the more general framework of sub-Riemannian geometry [1,18]), saying that
the leading term in the expansion of pt(x, y) for t → 0 other than the exponential one depends on the structure of the
minimal geodesics connecting x and y.

Theorem 2. (See [2].) Let M be a complete Riemannian manifold, let d denote the Riemannian distance and pt the
heat kernel. For x, y ∈ M we have the bounds

C1

tn/2
e−d2(x,y)/4t � pt(x, y)� C2

tn−(1/2)
e−d2(x,y)/4t , for 0 < t < t0,

for some t0 > 0, where C1,C2 > 0 depend on M , x, and y. Moreover:

(i) If x and y are not conjugate along any minimal geodesic joining them, then

pt(x, y) = C + O(t)

tn/2
e−d2(x,y)/4t , for 0 < t < t0.

(ii) If x and y are conjugate along at least one minimal geodesic connecting them, then

pt(x, y) � C

t(n/2)+(1/4)
e−d2(x,y)/4t , for 0 < t < t0. (1)

Note that (i) holds in particular for y close enough to x since the exponential map starting from a point is always a
local diffeomorphism in a neighborhood of the point itself.

The goal of this paper is to show some explicit examples of two-dimensional manifolds (that include ellipsoids of
revolution as a particular case) where the inequality (ii) in Theorem 2 is sharp at some point y that is both cut and
conjugate with respect to x (in the sense that the exponent α in the asymptotics pt(x, y) ∼ t−αe−d2(x,y)/4t satisfies
α = n/2 + 1/4).

To this end, we analyze the small time asymptotics on some particular class of two-dimensional surfaces which are
the simplest perturbations of the two-dimensional sphere. Indeed the first non-trivial example of a complete Rieman-
nian manifold where an asymptotic expansion at the cut locus is computed is given by the standard two-dimensional
sphere S2. In this case the cut locus of a point x coincides with the conjugate locus and collapses to the antipodal
point x̂ to x. The heat kernel on the two-sphere was first computed in [9] and an elementary computation shows that
the small time asymptotics at these points is given by

pt(x, x̂) ∼ 1

t3/2
e−d2(x,x̂)/4t , for t → 0. (2)

Since, to the authors’ best knowledge, there is no explicit proof of this expansion (although it is stated in [17]) we
wrote it in Appendix A. Notice that in this case n = 2, thus the exponent in the expansion pt (x, y) ∼ t−αe−d2(x,y)/4t is
not the minimal one (cf. (1)), as a consequence of the fact that the cut-conjugate point is reached by a one-parametric
family of optimal geodesics. (See also Remark 19.)

The next class of examples that is natural to consider is the one of two-dimensional surfaces of revolution, in which
of course ellipsoids of revolution are the main model.

The determination of the cut and conjugate loci on a complete surface, even a two-dimensional surface of revolu-
tion, is a classical but difficult problem in Riemannian geometry. Even on an ellipsoid of revolution, the computation
is not a standard exercise. In [5], the foreseen conjugate and cut loci were given as a conjecture and the first proof
appeared only recently in [14]. For other results about the conjugate and cut locus on surfaces of revolution (and some
generalizations) one can see also [7,15,21].
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On an oblate ellipsoid of revolution the cut locus of a point different from the pole is a subarc of the antipodal
parallel. On a prolate ellipsoid it is a subarc of the opposite meridian. In the first case the Gaussian curvature is
monotone increasing from the north pole to the equator and decreasing in the second case.

This result is also a particular case of a more general one contained in [21] about the cut locus of a so-called
two-sphere of revolution.

Theorem 3. (See [21].) Given a smooth metric on S2 of the form dr2 + m2(r)dθ2, where r is the distance along the
meridian and θ the angle of revolution and m is smooth, assume the following:

(i) m(2a − r) = m(r) (i.e. reflective symmetry with respect to the equator, where 2a is the distance between poles).
(ii) The Gaussian curvature is monotone non-decreasing (resp. non-increasing) along a meridian from the north pole

to the equator.

Then the cut locus of a point different from the pole is a simple branch located on the antipodal parallel (resp. opposite
meridian).

In this paper we will deal only with the cut locus of a point that belongs to the equator of the two-sphere of
revolution. Due to this restriction we can require the reflective symmetry with respect to the equator only locally, that
means that our result is stated under the following assumptions:

(A1) m(r) = ψ((a − r)2) in some neighborhood of r = a, where ψ is a smooth function.
(A2) The Gaussian curvature is monotone non-decreasing along a meridian from the pole to the equator.

Notice that in the condition (A2) we specify the Gaussian curvature to be monotone increasing. For instance, in the
class of ellipsoid of revolution, this means that we are considering only the oblate ones.

To prove our result about the asymptotics of the heat kernel, we also need a nonsingularity assumption of the
two-sphere, that is the following:

(A3) K ′′(a) �= 0 where K(r0) is the Gaussian curvature (that is constant) along the parallel r = r0.

Notice that an oblate ellipsoid of revolution is a typical example of a two-sphere of revolution satisfying all the three
assumptions (A1), (A2) and (A3). (See also Section 3.3.)

Using these results, we analyzed the structure of the degeneracy of the exponential map on such a two-sphere of
revolution around a cut-conjugate point on the equator proving that, under these assumptions, the following asymptotic
expansion holds.

Theorem 4. Let M be a complete two-sphere of revolution satisfying assumptions (A1)–(A3) above, and let d be
its Riemannian distance and pt its heat kernel. Fix x ∈ M along the equator and let y be a cut-conjugate point with
respect to x. Then we have the asymptotic expansion

pt(x, y) ∼ 1

t5/4
e−d2(x,y)/4t , for t → 0.

This result is a consequence of the fact that the degeneracy of the exponential map is in relation with the asymptotics
of the heat kernel via the asymptotic expansion of the so-called hinged energy function (see Section 2.1 for the precise
definition and [2, Theorem 24] for the aforementioned relation) which in the two-dimensional case can be explicitly
analyzed.

1.1. Structure of the paper

In Section 2 we introduce some preliminary material. In particular Section 2.1 contains the results about the relation
between the heat kernel asymptotics and the degeneracy of the exponential map, while Section 2.2 recalls the formal
definition and the basic properties of the two-spheres of revolution. Sections 3.1 and 3.2 contain the proof of the
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main result of the paper. In Section 3.3 these results are expressed in terms of the geometry of ellipsoids. Finally
in Appendix A, given the formula for the heat kernel on S2, we compute its expansion at the cut locus, while in
Appendix B we prove some technical lemmas that are needed in the proof of the main result.

2. Preliminary material

In this section we introduce some preliminary material that is needed for the proof of our main theorem. In par-
ticular we recall the main results about the relation between the heat kernel asymptotics and the degeneracy of the
exponential map. For more details one can see [2]. A description of these results in the Riemannian case can be also
found in [17,19].

2.1. Hinged energy function and cut-conjugate points

In what follows, wherever not specified, M is an n-dimensional complete Riemannian manifold and d denotes the
Riemannian distance.

Notation. If x ∈ M and v ∈ TxM we denote by γv(t) the geodesic starting from x with initial velocity v. Moreover
we denote by exp : T M → M the exponential map defined by exp(v) = γv(1). If the initial point is fixed, we use the
notation expx = exp|TxM .

Definition 5. Let x ∈ M . The energy function from x is the function Ex : M →R defined by

Ex(y) := 1

2
d(x, y)2.

The gradient of the energy function at a point y ∈ M , at a differentiability point, is easily computed by means of
the unique geodesic joining x and y. We have the following proposition (see [10]):

Proposition 6. The function Ex is smooth in the set Vx ⊂ M of points that are reached from x by a unique minimizing
and non-conjugate geodesic. Moreover, if y = expx(v) ∈ Vx then ∇Ex(y) = γ̇v(1) ∈ TyM .

Now we define the main object that is involved in the asymptotics of the heat kernel.

Definition 7. Let x, y ∈ M . The hinged energy function hx,y : M →R is defined by

hx,y(z) := Ex(z) + Ey(z), z ∈ M.

Observe that the function hx,y is smooth on Vx ∩ Vy . In the next proposition we characterize its minima.

Proposition 8. Let x, y ∈ M and let γ : [0,2] → M be a minimal geodesic from γ (0) = x to γ (2) = y. Then
minhx,y = 1

4d(x, y)2 and this minimum is attained at the point z0 := γ (1). Moreover every global minimum of hx,y

is a midpoint of some minimal geodesic joining x and y.

Proof. Let z ∈ M , and set a := d(x, z0), b := d(z0, y), α := d(x, z), β := d(z, y). Then a = b = 1
2d(x, y), so

hx,y(z0) = 1
2a2 + 1

2b2 = 1
4d(x, y)2. From the triangle inequality we have α + β � d(x, y), thus

hx,y(z) = α2 + β2

2
�

(
α + β

2

)2

� 1

4
d(x, y)2. (3)

Suppose now that the equality in (3) holds. Then α2+β2

2 = (
α+β

2 )2 and α + β = d(x, y). From this we deduce that z

lies on a minimal curve from x to y and α = β . Then this curve is a geodesic and z is its midpoint. �
Remark 9. Notice that the midpoint of a minimal geodesic lies in the “good” set Vx ∩ Vy even if y ∈ Cut(x).
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The next proposition shows how the degeneracy of expx near y is reflected by the behavior of hx,y near the midpoint
of a geodesic joining them, which is assumed to lie in the “good” region.

Proposition 10. Fix x, y ∈ M and let α : (−ε, ε) → Vx ∩ Vy ⊂ M be a smooth curve such that α(0) is a critical point
of hx,y . Assume moreover that ∃k ∈ N such that ∇hx,y(α(s)) = sku(s), where u is a smooth vector field along the
curve α with u(0) �= 0.

Let γv(s) be the minimal geodesic joining x to α(s) in time 1 and set β(s) := γv(s)(2).
Then β : (−ε, ε) → M is a smooth function, β(0) = y and

lim
s→0

β̇(s)

sk−1
= k d exp

(
γ̇v(0)(1)

)
u(0), (4)

where in the last formula we identify Tα(0)M with Tγ̇v(0)(1)(Tα(0)M).

Remark 11. Observe that under our assumptions v(s) is a smooth curve v : (−ε, ε) → TxM and every such curve v(s)

gives rise to the corresponding curve α(s) := γv(s)(1).

Remark 12. If α(s) is the curve of midpoints of a one-parameter family of optimal geodesics joining x to y then
β̇(s) ≡ 0y since the curve β(s) is constant.

Proof of Proposition 10. The first part is obvious, since β is a composition of smooth functions. Let γw(s) : R → M

be the optimal geodesic from γw(s)(0) = y to γw(s)(1) = α(s). It follows from Proposition 6 that

γ̇v(s)(1) = −γ̇w(s)(1) + ∇hx,y

(
α(s)

) = −γ̇w(s)(1) + sku(s). (5)

We want to use the Taylor expansion of exp near γ̇v(0)(1) = −γ̇w(0)(1) ∈ T M .
To this end we introduce on T M local canonical coordinates (z, v) ∈ R

2n in a neighborhood of 0α(0) ∈ T M . In
these coordinates we write

γ̇v(0)(1) = −γ̇w(0)(1) = (0, c),

γ̇v(s)(1) = (
z(s), c + a(s)

)
,

−γ̇w(s)(1) = (
z(s), c + b(s)

)
,

u(s) = (
z(s), u(s)

)
,

so that a(s) − b(s) = sku(s). Let

expi (z, c + h) = (
d exp(0,c)(z, h)

)
i
+ ϕ2(z, h)2 + · · · + ϕk(z,h)k + O

(∣∣(z, h)
∣∣k+1)

be the Taylor expansion of the i-th coordinate of exp near γ̇v(0)(1) = (0, c) (here ϕj is some j -linear map (R2n)j → R

for j = 2, . . . , k).
Observe that expi (z(s), c + b(s)) = yi and expi (z(s), c + a(s)) = βi(s). Also, for j = 2, . . . , k we have∣∣ϕj

(
z(s), a(s)

)j − ϕj

(
z(s), b(s)

)j ∣∣ = O
(
sk+1),

because |(z(s), a(s)) − (z(s), b(s))| = |sk(0, u(s))| = O(sk) and |(z(s), a(s))| + |(z(s), b(s))| = O(s). Hence

βi(s) = yi + (
d exp(0,c)

(
0, a(s) − b(s)

))
i
+ O

(
sk+1) = yi + sk

(
d exp(0,c)

(
0, u(s)

))
i
+ O

(
sk+1),

so that

β̇(s) = ksk−1d exp(0,c)

(
0, u(s)

) + O
(
sk

)
= ksk−1d exp(0,c)

(
0, u(0)

) + O
(
sk

)
= ksk−1d expγ̇v(0)(1)

(
u(0)

) + O
(
sk

)
,

and the conclusion follows. �
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Corollary 13. Let x, y ∈ M and let z0 ∈ M be a critical point of hx,y . Assume additionally that z0 ∈ Vx ∩ Vy . Then y

is conjugate to x along some geodesic if and only if z0 is a degenerate critical point of hx,y .

Proof. Suppose first that y is conjugate to x along γv(0). Then there exists a smooth curve v : (−ε, ε) → TxM such
that β̇(0) = 0. Let α : (−ε, ε) → M be the corresponding curve of midpoints (see Remark 11). Then in (4) we must
have k � 2. Thus Hesshx,y(α(0))(v, α̇(0)) = 0 for any v.

Conversely, if Hesshx,y(z0)(v,w) = 0 for all v, it suffices to take an arbitrary regular curve α : (−ε, ε) → Vx ∩ Vy

such that α(0) = z0 and α̇(0) = w to obtain β̇(0) = 0. �
Remark 14. Hesshx,y(z0) is never degenerate along the direction of a minimal geodesic connecting x and y (where
z0 is its midpoint). Indeed if γ : [0,2] → M is such a minimal geodesic, z0 is its midpoint and α(s) := γ (1 + s), then
hx,y(α(s)) = 1

4d(x, y)2(1 + s2).

Let x ∈ M and let γ :R → M be a geodesic with γ (0) = x. Suppose that γ (2) = y is a conjugate point of x along
γ and that γ |[0,2] is minimal (such a point is called a cut-conjugate point).

It follows from Proposition 8 and Corollary 13 that z0 := γ (1) is a global minimum of hx,y and a degenerate critical
point. Assume that M has dimension 2. Then, according to Remark 14, the degeneracy is only in one direction, which
allows us to use the following result, called Splitting Lemma or Refined Morse Lemma (it is a special case of [12,
Lemma 1]).

Lemma 15. Let f : U ⊂R
n →R be defined in an open neighborhood of 0 and assume that 0 is an isolated minimum

of f such that f (0) = df (0) = 0 and dim kerd2f (0) = 1. Then there exist coordinates (x1, . . . , xn−1, xn) around 0
such that f (x1, . . . , xn−1, xn) = x2

1 + · · · + x2
n−1 + g(xn), where g :R→ R+ is smooth and g(z) = O(z4).

Remark 16. The function g is not unique, but its order of vanishing at z = 0 is – this is the maximal order of vanishing
at z = 0 of functions s → f (α(s)) − f (z0) for a smooth curve s → α(s) such that α(0) = z0.

Applying Lemma 15 to hx,y , we obtain that there exists a smooth local coordinate system (z1, z2) near z0 such
that hx,y(z1, z2) = hx,y(z0) + z2

1 + g(z2), where g : R → R+ is a smooth function and g(z) = O(z4). Assume that g

vanishes at z = 0 with finite order k + 1 ∈N (thus k � 3).
We define in these coordinates the smooth curve α(s) := (0, s). It is immediate that ∇hx,y(α(s)) = sku(s) for some

smooth vector field u with u(0) �= 0. Conversely, there are no smooth curves α(s) such that ∇hx,y(α(s)) = sk+1u(s)

with a smooth vector field u. Combining this with Proposition 10 and Remark 11 we obtain the following result.

Corollary 17. Assume that M has dimension 2. Let x, y ∈ M and assume that y is a cut-conjugate point of x along
γ : [0,2] → M . Then there exists a smooth curve v : (−ε, ε) → TxM such that γv(0) = γ and

d
(
γv(s)(2), y

) = O
(
sk

)
,

where k + 1 is the order of vanishing at 0 of the function g described above. It is impossible to obtain a higher order
of vanishing.

This is the aforementioned relationship between the hinged energy function and the order of degeneracy of the
exponential map. We will show that for two-spheres of revolution satisfying assumptions (A1)–(A3), the order of
degeneracy is lowest possible, that is k + 1 = 4.

We now briefly describe how the order of vanishing of the function g is related to the small time asymptotics of
the heat equation on M .

Let M be a complete orientable n-dimensional Riemannian manifold. We denote dvol the volume form associated
with the Riemannian metric on M and compatible with the orientation (which means it equals 1 on a positively
oriented orthonormal frame).
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The Laplace–Beltrami operator on M is defined1 as 	f := div(∇f ), f ∈ C∞(M). The heat operator
et	 : L2(M) → L2(M) is defined by the formula

et	f (p) =
∫
M

pt(x, y)f (y)dvol(y), f ∈ L2(M),

where pt (x, y) ∈ C∞(R+ × M × M) is the heat kernel, i.e. the unique smooth function satisfying the following
conditions

(∂t − 	x)pt (x, y) = 0, (6)

lim
t→0

∫
M

pt(x, y)f (y)dvol(y) = f (x), ∀f ∈ C∞(M). (7)

Recall that the heat kernel exists and is unique. Moreover it satisfies pt (x, y) = pt(y, x) > 0.
It is well known that if M is compact then the operators 	 and et	 are simultaneously diagonalizable and the

proper vectors are smooth functions. Their spectra determine the long-time behavior of the heat flow and contain
topological information (see for instance [6,11,20]).

Here we investigate the short-time behavior, which turns out to be connected to the geometry of the manifold.

Theorem 18. Let x, y ∈ M and assume that there exists only one minimal geodesic joining x and y. Let z0 be the
midpoint of this geodesic and assume that there exists a coordinate system (z1, . . . , zn) near x such that

hx,y(z) = hx,y(z0) + z
2m1
1 + · · · + z2mn

n + o
(|z1|2m1 + · · · + |zn|2mn

)
,

for some integers 1 � m1 � · · ·�mn. Then there exists a constant C > 0 (depending on M , x and y) such that

pt(x, y) = C + o(1)

t
n−∑

i
1

2mi

exp

(
−d(x, y)2

4t

)
.

A full proof can be found in [19], whereas the main ideas are already in [17]. The result was extended to sub-
Riemannian manifolds in [2]. For other results about the small time asymptotics of the elliptic (and hypoelliptic) heat
kernel one can see also [3,4,16,22].

Remark 19. As explained in [2, Remark 2], if there exists a one-parameter family of minimal geodesics joining x

and y, the theorem is still valid, but it should be understood that some mi is infinite. For example let M = S2 be a
sphere of radius 1 and let x, x̂ be two opposite poles. Then we have m1 = 1, m2 = ∞, so the asymptotics is (see
Appendix A)

pt(x, x̂) = C + o(1)

t3/2
e−π2/4t .

In particular, let us return to the situation of Corollary 17. We obtain the following result.

Corollary 20. Let M be a two-dimensional orientable Riemannian manifold. Let x, y ∈ M and assume that there exists
only one minimal geodesic joining x and y. Assume further that there exists no smooth curve v : (−ε, ε) → TpM such
that γv(0) : [0,2] → M is the minimal geodesic from x to y and

d
(
γv(s)(2), y

) = o
(
s3).

Then there exists a constant C > 0 (depending on M , x and y) such that

pt(x, y) = C + o(1)

t5/4
exp

(
−d(x, y)2

4t

)
.

1 Recall that the divergence divX of a vector field X is the unique function satisfying LX dvol = (divX)dvol, LX being the Lie derivative.
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Fig. 1. Notational convention for a two-sphere of revolution.

2.2. Two-spheres of revolution

In this section we introduce the class of two-dimensional manifolds that we are going to study and we recall their
properties which are used in the sequel.

Definition 21. Let M be a compact Riemannian manifold homeomorphic to S2. M is called a two-sphere of revolution
if there exists a point p ∈ M called a pole such that for any q1, q2 ∈ M satisfying d(p,q1) = d(p,q2) there exists an
isometry f : M → M satisfying f (q1) = q2, f (p) = p.

Let M be a two-sphere of revolution and let p be a pole. It can be proved that p has a unique cut point q which is
also a pole [21, Lemma 2.1]. Therefore M \{p,q} can be parametrized by geodesic polar coordinates around p, which
we denote (r, θ). Let M ′ := M \ {p,q}. This allows to express the Riemannian metric on M ′ as ds2 = dr2 +m(r)2 dθ2

where m is a positive function satisfying limr→0 m(r) = 0 [8, p. 287, Proposition 3]. Geometrically, m is the distance
from the rotational axis (see also Fig. 1, which shows a section of M by a plane containing the rotational axis).

We denote a := 1
2d(p,q) and b := m(a). The set {(r, θ) ∈ M: r = a} is called the equator. Each set {(r, θ) ∈ M:

r = const} is called a parallel, while each set {(r, θ) ∈ M: θ = const} is called a meridian.
Next, we recall a standard result on geodesics on surfaces of revolution.

Proposition 22. (See [8].) Let γ (t) = (r(t), θ(t)) be a unit speed geodesic on M ′. There exists a constant ν, called
the Clairaut constant of γ , such that

m
(
r(t)

)2
θ̇ (t) = ν. (8)

Remark 23. Observe that m(r(t))θ̇ (t) = cosη(t), where η(t) is the angle between γ̇ (t) and ∂
∂θ

|γ (t). The constant ν

can be interpreted as the angular momentum of the geodesic.

We will study geodesics emanating from a point x on the equator. Without loss of generality we assume that
θ(x) = 0.

Proposition 24. Let ν ∈ R. Then we have the following properties:

1. If |ν| > b, then no geodesic on M ′ emanating from x satisfies (8).
2. If |ν| = b, then there is exactly one geodesic γ :R→ M ′ emanating from x satisfying (8). Its image is the equator.
3. If 0 < |ν| < b, then there is exactly one geodesic γ : R→ M ′ emanating from x satisfying (8) and r ′(0) < 0.

For ν ∈R this unique geodesic will be denoted by cν .

Proof. We assumed γ (t) to be unit speed, that is ṙ(t)2 + m(r(t))2θ̇ (t)2 = 1 for all t . Thus (8) is equivalent to

ṙ(t)2 = m(r(t))2 − ν2

m(r(t))2
, (9)

which for t = 0 gives

ṙ(0)2 = b2 − ν2

2
. (10)
b
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1. If |ν| > b, we clearly get a contradiction.
2. If |ν| = b, we get ṙ(0) = 0 and θ̇ (0) = ν

b2 . There is a unique geodesic with initial tangent vector (ṙ(0), θ̇ (0)) =
(0, ν

b2 ). By symmetry this geodesic will not quit the equator. By (8) θ̇ (t) is constant, so the geodesic covers the whole
equator.

3. If |ν| < b, we obtain ṙ(0) = −
√

b2−ν2

b2 (because we chose ṙ(0) to be negative) and θ̇ (0) = ν

b2 . This determines

the unique geodesic with Clairaut constant ν. We have |m(r(t))θ̇ (t)| = |cosη(t)| � 1, so m(r(t)) � |ν| > 0. This
ensures that the geodesic does not meet the poles. �
Assumptions. In what follows we make the following assumptions:

(A1) m(r) = ψ((a − r)2) in some neighborhood of r = a, where ψ is a smooth function.
(A2) The Gaussian curvature is monotone non-decreasing along a meridian from the pole to the equator.
(A3) K ′′(a) �= 0 where K(r0) is the Gaussian curvature (that is constant) along the parallel r = r0.

The assumption (A1) means that the metric is invariant by reflection with respect to the equator, in a neighborhood
of the equator itself.

From (A2) and the Gauss–Bonnet Theorem it follows that the Gaussian curvature on the equator is strictly positive.
Thus from Lemmas 2.2 and 2.3 in [21] one can obtain that m is strictly increasing on (0, a]. For every ν such that
0 < |ν| � b, we denote by R = R(ν) the unique R ∈ (0, a] such that m(R) = |ν|. It is the minimal geodesic distance
of cν(t) from the pole p.

Theorem 4.1 in [21] states that the cut locus of x is a subset of the equator. For 0 < |ν| < a the cut point along cν is
the first point of intersection of cν with the equator. This point is given by the formula [21, p. 385] (r, θ) = (a,ϕ(ν)),
where

ϕ(ν) := 2

a∫
R

ν dr

m(r)
√

m(r)2 − ν2
. (11)

From now on, we will assume that ν � 0 (the case ν � 0 is symmetric). It can be shown that ϕ(ν) is non-increasing
for ν ∈ (0, b) [21, Lemma 4.2]. Thus the cut-conjugate point of x has coordinates (r, θ) = (a, limν→b− ϕ(ν)). We note
θcut := limν→b− ϕ(ν) and tcut := bθcut, so that cb(tcut) is the cut-conjugate point.

Remark 25. The geodesic cν starting from x is determined by each of the parameters ν, R or η. We recall the
relationships between these parameters: ν = m(R) and cosη = ν

b
. In particular b − ν is of order η2 as η → 0.

3. Proof of Theorem 4

In what follows, we prove Theorem 4 in two steps. First we compute the asymptotic expansion of the function ϕ

and then we apply this result to investigate the geodesic variations of the equator.

3.1. Expansion of ϕ(ν)

We will now derive the asymptotic expansion of ϕ(ν) for ν close to b from the asymptotic expansion of m(r) near
r = a. Let

ψ(s) = b − αs + βs2 + O
(
s3),

be the Taylor expansion of ψ , so that

m(r) = ψ
(
(a − r)2) = b − α(a − r)2 + β(a − r)4 + O

(
(a − r)6).

Proposition 26. The following asymptotic expansion holds

ϕ(ν) = π√
2αb

+ (6bβ − α2)π

8
√

2b3/2α5/2
(b − ν) + O

(
(b − ν)2), for ν → b−. (12)
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As an immediate corollary we recover the formula for the cut point along the equator.

Corollary 27. The coordinates of the cut point along the equator satisfy θcut = π√
2αb

.

Remark 28. The Gaussian curvature K of a surface of revolution is constant on parallels, and is expressed as K(r) =
−m′′(r)

m(r)
(see [8, p. 162]). In particular K(a) = −m′′(a)

m(a)
= 2α

b
on the equator (from which one gets also α > 0) and one

can recover the first conjugate point along the equator via the Jacobi equation. Indeed it is a general fact that the first
conjugate point along γ is γ (tconj), where tconj is the first positive zero of the solution of the differential equation

ü(t) + K
(
γ (t)

)
u(t) = 0, u(0) = 0, u̇(0) = 1.

In our case K is constant and the solution of this equation is given by

u(t) =
√

b

2α
sin

(√
2α

b
t

)
,

whose first positive zero is tcut = tconj = πb√
2bα

. On the equator dt = b dθ , so we get indeed θcut = tcut
b

= π√
2bα

.

The proof of Proposition 26 requires two elementary lemmas, whose proofs are postponed to Appendix B.

Lemma 29. Let U ⊂ R
2 be a neighborhood of (0,0) and let f : U → R be a smooth function. Let f (x, y) =∑

i+j�n−1 aij x
iyj + O((x2 + y2)n/2) be its Taylor expansion. Then for y � 0 the function defined by

F(0) = π

2
f (0,0), F (y) =

y∫
0

f (x, y)dx√
y2 − x2

, for y > 0,

is smooth and satisfies

F(y) = b0 + b1y + · · · + bn−1y
n−1 + O

(
yn

)
, where bk =

k∑
j=0

aj,k−j

1∫
0

uj du√
1 − u2

. (13)

Lemma 30. Let g : (−ε, ε) → R be a smooth function. Let f : (−ε, ε)2 → R be defined as

f (x, y) :=
{

g(x)−g(y)
x−y

if x �= y,

g′(x) if x = y.

Then f is a smooth function. If g(x) = ∑n
k=0 akx

k + O(|x|n+1). Then

f (x, y) =
n∑

k=1

ak

∑
i+j=k−1

xiyj + O
((

x2 + y2)n/2)
.

Proof of Proposition 26. Recall that ν = m(R) and R → a− as ν → b−. Define R̂ := a − R. We have

ϕ(ν) =
a∫

R

2m(R)dr

m(r)
√

m(r)2 − m(R)2

=
R̂∫

0

2m(a − R̂)dr̂

m(a − r̂)

√
m(a − r̂) + m(a − R̂)

√
m(a − r̂) − m(a − R̂)

. (14)

Being b > 0, it is clear that the map
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(r̂, R̂) → 2m(a − R̂)

m(a − r̂)

√
m(a − r̂) + m(a − R̂)

,

is a smooth function of two variables in a neighborhood of (r̂, R̂) = 0. Its Taylor expansion can be easily computed
from the Taylor expansion of m. As for (m(a − r̂) − m(a − R̂))−1/2, it can be written as

1√
R̂2 − r̂2

√
R̂2 − r̂2

ψ(r̂2) − ψ(R̂2)

(recall that m(r) = ψ((a − r)2)). By Lemma 30 we know that ψ(R̂2)−ψ(r̂2)

R̂2−r̂2 is a smooth function of (r̂2, R̂2) and

ψ(R̂2) − ψ(r̂2)

R̂2 − r̂2
= −α + β

(
R̂2 + r̂2) + O

(
R̂4 + r̂4).

We have α > 0, so

√
R̂2−r̂2

ψ(r̂2)−ψ(R̂2)
is also a smooth function in a neighborhood of (r̂, R̂) = 0.

Summing up, the right-hand side of (14) has the form required in Lemma 29. Performing explicitly the long but
straightforward computation described above we get the expression

ϕ(ν) =
a∫

0

f (r̂, R̂)dr̂√
R̂2 − r̂2

,

with

f (x, y) =
√

2√
bα

+ 5α2 + 2bβ

2
√

2(bα)3/2
x2 + −3α2 + 2bβ

2
√

2(bα)3/2
y2 + O

(
x4 + y4).

Using the fact that
∫ 1

0
du√
1−u2

= π
2 , and

∫ 1
0

u2 du√
1−u2

= π
4 , we obtain the coefficients

b0 = π

2
a00 = π√

2bα
, b2 = π

2
a02 + π

4
a20 = (6bβ − α2)π

8
√

2(bα)3/2
.

In other words we have the expansion

ϕ(ν) = π√
2bα

+ (6bβ − α2)π

8
√

2(bα)3/2
(a − R)2 + O

(
(a − R)4). (15)

It follows from the fact that α > 0 that (a − R)2 is a smooth function of ν = m(R) in a neighborhood of ν = b. An
explicit computation gives

(a − R)2 = b − ν

α
+ β(b − ν)2

α3
+ O

(
(b − ν)3),

which together with (15) leads to (12). �
Remark 31. From this formula it is clear that the case 6bβ = α2 is going to be singular. It is easy to compute that this
is equivalent to K ′′(a) = 0, where K(r0) is the Gaussian curvature on the parallel r = r0.

3.2. Variations of the optimal geodesic

Recall that the geodesic cb(t) follows the equator and reaches the cut-conjugate point (r, θ) = (a, θcut) for t = tcut.
We are now interested in variations of this optimal geodesic. Such a variation is given by a smooth curve in the
space of parameters, that is a smooth curve s → (η(s), t (s)) ∈ R

2 such that η(0) = 0 and t (0) = tcut. Recall that
η(s) = arccos ν(s) is the angle between ċν(s)(0) and ( ∂ )(a,0).
b ∂θ
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Proposition 32. There exist variations of the optimal geodesic cb such that

d
(
cν(s)

(
t (s)

)
, (a, θcut)

) = O
(
s3).

If the two-sphere is nonsingular (that is K ′′(a) �= 0), then there exists no variation of the optimal geodesic cb such
that

d
(
cν(s)

(
t (s)

)
, (a, θcut)

) = o
(
s3).

Lemma 33. For 0 < ν < b let (rν, θcut) be the first point of intersection of cν with the meridian P := {θ = θcut}. Then

rν = a − (6bβ−α2)
√

bπ

16
√

2α5/2 η3 + O(η5).

Proof. We assume that cν(t) reaches r = R before it reaches θ = θcut (this will be true for η small enough). This
means that ṙ(t) � 0 for θ ∈ [θcut, ϕ(ν)]. Thus from (9) and the Clairaut relation we get

ṙ(t) =
√

m(r(t))2 − ν2

m(r(t))
, θ̇ (t) = ν

m(r(t))2
,

this permits to compute

dr

dθ
= ṙ(t)

θ̇ (t)
= m(r(t))

√
m(r(t))2 − ν2

ν
,

r̈(t) = ν2m′(r(t))
m(r(t))3

,

θ̈ (t) = −2ν
√

m(r(t))2 − ν2m′(r(t))
m(r(t))4

,

d2r

dθ2
= r̈(t)θ̇ (t) − ṙ(t)θ̈ (t)

(θ̇ (t))3
= (2m(r(t))2 − ν2)m(r(t))m′(r(t))

ν2
.

In particular(
dr

dθ

)
θ=ϕ(ν)

= b
√

b2 − ν2

ν
= b tan(η),

and

d2r

dθ2
= O(R) = O(η).

Thus

a − rν =
ϕ(ν)∫

θcut

(
dr

dθ

)
θ1

dθ1 =
ϕ(ν)∫

θcut

((
dr

dθ

)
ϕ(ν)

−
ϕ(ν)∫
θ1

(
d2r

dθ2

)
dθ

)
dθ1

= b tan(η)
(
ϕ(ν) − θcut

) +
ϕ(ν)∫

θcut

ϕ(ν)∫
θ1

O(η)dθ dθ1.

Recall that b − ν = b(1 − cosη) = bη2

2 + O(η4). The second term is O(η5) because we integrate twice on intervals

of length O(b − ν) = O(η2). The conclusion follows by substituting b − ν = bη2

2 + O(η4) in Proposition 26. �
Lemma 34. The distance between (a, θcut) and the geodesic segment cν([0, ϕ(ν)]) equals (6βb−α2)

√
bπ√

5/2 η3 + O(η4).

16 2α
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Proof. Let q̃ be a point on the geodesic segment under consideration.
Suppose that d(q̃, (a, θcut)) = O(η3). Meridians are minimal curves, so we obtain a − rq̃ = O(η3). Hence, by the

triangle inequality, |θq̃ − θcut| = O(η3). Repeating the computation from Lemma 33 with θq̃ instead of θcut gives

a − rq̃ = (6βb − α2)
√

bπ

16
√

2α5/2
η3 + O

(
η4).

Thus

d
(
q̃, (a, θcut)

)
� (6βb − α2)

√
bπ

16
√

2α5/2
η3 + O

(
η4). �

Proof of Proposition 32. The first statement is a direct consequence of Lemma 33.
Now let (η(s), t (s)) be a variation of the equator. By the Gauss Lemma we get t ′(0) = 0. Hence η(s) ∼ s. The

conclusion follows from Lemma 34. �
Theorem 4 follows now from Proposition 32 and Corollary 20.

3.3. Oblate ellipsoid as a two-sphere of revolution

Let M be an ellipsoid with semi-axes b, b, c, where b � c. We denote p, q its northern and southern pole respec-
tively. Let a be the distance from the equator to a pole, so that a and b have the same meaning as before. We will
express the expansion of the function r → m(r) and ν → ϕ(ν) in terms of the semi-axes b, c. We will see that an
oblate ellipsoid which is not a sphere is nonsingular.

Proposition 35. Let M be an oblate ellipsoid with axes b, b, c, where b > c, is a two-sphere of revolution which
satisfies assumptions (A1), (A2) and (A3). The function m has an expansion

m(r) = b − α(a − r)2 + β(a − r)4 + O
(
(a − r)6) (16)

where α = b

2c2 and β = b(4b2−3c2)

24c6 .

Proof. Clearly M is a two-sphere of revolution satisfying assumptions (A1) and (A2). It remains to prove (16) and
the fact M is nonsingular.

Let x be a point in the northern half of M and let ν be its distance from the rotational axis. Let R be the geodesic
distance from x to p. Then m(R) = ν. On the other hand, a − R is the length of an arc of an ellipse, which can be
expressed by means of an elliptic integral. In this way we obtain

a − R =
b∫

ν

√
b2 − c2

b2
+ c2

b2 − t2
dt.

Let Z = √
b − ν. After substitution t = b − z2 and some operations on power series the integral above transforms into

Z∫
0

c
√

2√
b

+ (4b2 − 3c2)z2

2
√

2b3/2c
+ O

(
z4)dz,

which results in the expansion

a − R =
√

2c√
b

Z + (4b2 − 3c2)

6
√

2b3/2c
Z3 + O

(
Z5).

By the Implicit Function Theorem Z is a smooth function of R in a neighborhood of R = a. It follows from the
expression above that
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√
b − ν = Z =

√
b√
2c

(a − R) −
√

b(4b2 − 3c2)

24
√

2c5
(a − R)3 + O

(
(a − R)5),

so finally, squaring both sides,

m(R) = ν = b − b(a − R)2

2c2
+ b(4b2 − 3c2)

24c6
(a − R)4 + O

(
(a − R)6).

This proves (16). Finally, notice that the singularity condition reads (see also Remark 31)

6bβ − α2 = b2(b2 − c2)

c6
= 0 if and only if b = c.

Hence spheres are the only singular oblate ellipsoids of revolution. �
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Appendix A. Heat kernel asymptotics on S2

Let x ∈ S2 be the north pole and x̂ ∈ S2 be the south pole of a standard sphere of radius 1. After suitable renormal-
izations we obtain from formula (1) in [9]

pt(x, x̂) = 1

8π

∞∑
n=−∞

(−1)n(2n + 1)e−(n2+n)t . (17)

Define f (y) = et/4

8t3/2π1/2 e−y2/4t iye−iy/2. Using standard rules of computing Fourier transforms it is easy to see that

ϕ(n) := 1

2π

∫
R

f (y)e−iny dy = 1

8π
(2n + 1)e−(n2+n)t .

By Poisson Summation Formula we know that
∑∞

n=−∞ ϕ(n)einy = ∑∞
k=−∞ f (y + 2kπ). Using this identity for

y = π we obtain

pt(x, x̂) =
∞∑

n=−∞
(−1)nϕ(n) =

∞∑
k=−∞

f
(
(2k + 1)π

)
.

Notice that for an asymptotic expansion only two terms in the sum on the right are significant. Hence we get

pt(x, x̂) � f (−π) + f (π) = et/4√π

4t3/2
e−π2/4t ∼ 1

t3/2
e−d2(x,x̂)/4t .

Appendix B. Proof of lemmas

In this section we give a proof of Lemma 29 and Lemma 30.

Proof of Lemma 29. The function G(y) = ∫ 1
0

f (ty,y)√
1−t2

dt is smooth on (−ε, ε). For y > 0 the change of variables

x = ty gives F(y) = G(y). Moreover, by definition F(0) = G(0), hence F is smooth on [0, ε).
We have f (ty, y) = c0(t) + c1(t)y + · · · + cn−1(t)y

n−1 + O(yn), where ck(t) = ∑k
j=0 aj,k−j t

j . Integrating with

respect to t we obtain F(y) = G(y) = b̂0 + b̂1y + · · · + b̂n−1y
n−1 + O(yn), where b̂k = ∫ 1

0
ck(t) dt√

1−t2
, which is exactly

the coefficient bk defined in the statement of the lemma.
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Proof of Lemma 30. Define h : [0,1] × (−ε, ε)2 →R by h(t, x, y) = g′(tx + (1 − t)y). Then h(t, ·) is a continuous
family of smooth functions. We have

f (x, y) =
1∫

0

h(t, x, y)dt,

which proves that f is smooth. The Taylor expansion of g is found by comparing the coefficients on both sides of the
equality (x − y)g(x, y) = f (x) − f (y).
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