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Abstract

In this article, we establish the weighted Trudinger–Moser inequality of the scaling invariant form including its best constant and
prove the existence of a maximizer for the associated variational problem. The non-singular case was treated by Adachi and Tanaka
(1999) [1] and the existence of a maximizer is a new result even for the non-singular case. We also discuss the relation between the
best constants of the weighted Trudinger–Moser inequality and the Caffarelli–Kohn–Nirenberg inequality in the asymptotic sense.
© 2013
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1. Introduction and main results

In this article, we shall establish the weighted Trudinger–Moser type inequality with its sharp constant and
consider the existence of a maximizer associated with the (weighted) Trudinger–Moser type inequality. As is well-
known, a function in H 1,N (RN) (N � 2) could have a local singularity and this causes the failure of the embedding
H 1,N (RN) �⊂ L∞(RN) although the continuous embedding H 1,N (RN) ↪→ Lq(RN) holds for all N � q < ∞.

As one of the characterizations of the critical embedding in H
1,N
0 (Ω), Moser [17] and Trudinger [25] established

the following: for any bounded domain Ω ⊂R
N with N � 2, there exists a positive constant C = C(N) such that, for

any 0 < α � αN := Nω
1

N−1
N−1, where ωN−1 denotes the surface area of the unit ball in R

N , there holds∫
Ω

exp
(
α
∣∣u(x)

∣∣N ′)
dx � C|Ω| (1.1)
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for all u ∈ H
1,N
0 (Ω) with ‖∇u‖LN(Ω) � 1, where N ′ := N

N−1 . Concerning the existence of a maximizer associated
with (1.1), Carleson and Chang [6] showed the existence of a maximizer when Ω is a ball, N � 2 and α � αN ,
although the problem suffers from a lack of the compactness when α = αN , see also Struwe [24] for related works.
After that, the existence of a maximizer was proved for any bounded domain by Flucker [8] when N = 2 and α =
α2 = 4π and by Lin [16] when N � 2 and α = αN .

There are several extensions of (1.1). As a scaling invariant form in R
N , Adachi and Tanaka [1] proved the follow-

ing: for N � 2 and 0 < α < αN , there exists a positive constant C = C(N,α) such that the inequality∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′)
dx � C‖u‖N

LN(RN)
(1.2)

holds for all u ∈ H 1,N (RN) with ‖∇u‖LN(RN) � 1, where

ΦN(t) :=
∞∑

j=N−1

tj

j ! for t � 0. (1.3)

In [1], it was also proved that (1.2) fails if α � αN . The inequality (1.2) was originally obtained by Ogawa [19] with
sufficiently small α when N = 2. Furthermore, (1.2) was extended to general critical Sobolev spaces in Ogawa and
Ozawa [20] and Ozawa [22], see also Kozono, Sato and Wadade [14], Nagayasu and Wadade [18] and Ozawa [21]
for related works. Moreover, another kind of the Trudinger–Moser type inequality is known. For N � 2, there exists a
positive constant C = C(N) such that for any 0 < α � αN , there holds∫

RN

ΦN

(
α
∣∣u(x)

∣∣N ′)
dx � C (1.4)

for all u ∈ H 1,N (RN) with ‖u‖H 1,N (RN) � 1. Li and Ruf [15] obtained (1.4) with the best constant αN for N � 3,
where the authors also proved the existence of a maximizer associated with (1.4) when α = αN . For N = 2, (1.4)
was proved by Cao [5], and Ruf [23] showed the sharpness of α = α2(= 4π). In Ruf [23] and in Ishiwata [13], the
existence of a maximizer associated with (1.4) was considered when N = 2 and it was also verified in [13] that the
non-existence of a maximizer occurs when N = 2 and α is sufficiently small.

Keeping the historical remarks above in mind, we investigate (1.2) of the scaling invariant form into two directions.
Our first aim is to extend (1.2) to the weighted inequality as follows: for N � 2 and −∞ < s � t < N ,∫

RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t � C‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)
(1.5)

for all u ∈ LN(RN ; |x|−s dx) ∩ Ḣ 1,N (RN) with ‖∇u‖LN(RN) � 1 with some positive constants α and C, where
LN(RN ; |x|−s dx) denotes the weighted Lebesgue space endowed with the norm

‖u‖LN(RN ;|x|−s dx) :=
( ∫
RN

∣∣u(x)
∣∣N |x|−s dx

) 1
N

,

see Theorem 1.1. This generalization from (1.2) to (1.5) is naturally motivated by the special case of the Caffarelli–
Kohn–Nirenberg inequality obtained in [4], which states that, for N � 2, −∞ < s � t < N and N � q < ∞, there
exists a positive constant C = C(N, s, t, q) such that the inequality

‖u‖Lq(RN ;|x|−t dx) � C‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
(1.6)

holds for all u ∈ LN(RN ; |x|−s dx) ∩ Ḣ 1,N (RN). We can regard (1.5) as a critical version of (1.6).
As another direction, we consider the existence of a maximizer associated with (1.5), which has not been discussed

even for the non-singular inequality (1.2) as far as we know. In Theorem 1.3, we shall establish the existence of a
maximizer to the above variational problem.

Next, we investigate the constant C in the Caffarelli–Kohn–Nirenberg inequality (1.6) including its asymptotic
sharp constant, see Theorem 1.5. Among others, in Ozawa [21], the author gave the explicit relation between the
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constants appearing in (1.2) and the non-singular case s = t = 0 of (1.6). We shall revisit the strategy developed
in [21] and apply it to the weighted inequalities obtained in Theorem 1.1.

Now we are in a position to give our main results. We often assume the condition for the exponents as follows:

N � 2, −∞ < s � t < N and 0 < α < αN,t := (N − t)ω
1

N−1
N−1. (1.7)

Theorem 1.1. (i) Assume (1.7). Then there exists a positive constant C = C(N, s, t, α) such that the inequality∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t � C‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)
(1.8)

holds for all radially symmetric functions u ∈ LN(RN ; |x|−s dx) ∩ Ḣ 1,N (RN) with ‖∇u‖LN(RN) � 1, where ΦN is
defined by (1.3).

(ii) Assume (1.7). The constant αN,t is sharp for the weighted Trudinger–Moser type inequality (1.8). Indeed, the
inequality (1.8) fails if α � αN,t .

We can remove the assumption of the radial symmetry on the functions for the special case s = 0 and 0 � t < N

in Theorem 1.1 by virtue of the rearrangement argument, which may not work for the case s �= 0, see Section 2 and
Appendix A for the details. As a result, we obtain the following corollary of Theorem 1.1.

Corollary 1.2. (i) Assume (1.7) with s = 0. Then there exists a positive constant C = C(N, t,α) such that the inequal-
ity ∫

RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t � C‖u‖N−t

LN (RN)
(1.9)

holds for all u ∈ H 1,N (RN) with ‖∇u‖LN(RN) � 1.
(ii) Assume (1.7) with s = 0. If α � αN,t , then the inequality (1.9) fails.

Remark. The non-singular case t = 0 in Corollary 1.2 coincides with the result in Adachi and Tanaka [1, The-
orems 0.1–0.2]. Moreover, the inequality (1.9) in Corollary 1.2 was obtained as a particular case of the result in
Nagayasu and Wadade [18, Corollary 1.3] which does not include the consideration for its sharp constant with respect
to α. However, both of Corollary 1.2(i) and (ii) are new results for the singular case 0 < t < N .

Next, we shall discuss the existence of a maximizer associated with the Trudinger–Moser type inequality (1.8). We
define the sharp constant μN,s,t,α(RN) for (1.8) by

μN,s,t,α

(
R

N
) := sup

u∈X
1,N
s,rad,

‖∇u‖
LN (RN )

=1

FN,s,t,α(u),

where

FN,s,t,α(u) :=
∫
RN ΦN

(
α|u(x)|N ′) dx

|x|t

‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)

, (1.10)

and the function spaces X
1,N
s and X

1,N
s,rad denote the weighted Sobolev spaces defined by{

X1,N
s := LN

(
R

N ; |x|−s dx
) ∩ Ḣ 1,N

(
R

N
)
,

X
1,N
s,rad := {

u ∈ X1,N
s ; u is radially symmetric

}
,

respectively. Though the variational problem associated with μN,s,t,α(RN) is a subcritical one from the view-
point of the exponent α since α < αN,t , the problem suffers from a lack of the compactness due to the scaling
invariance of the inequality. To explain the non-compactness, let us assume there exists a strongly convergent
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maximizing sequence (wn) for μN,s,t,α(RN) in X
1,N
s,rad with ‖∇wn‖LN(RN) = 1 (otherwise we already have the non-

compactness). Thus (wn) satisfies FN,s,t,α(wn) → μN,s,t,α(RN) and wn → w as n → ∞ strongly in X
1,N
s . It is

easy to see that w �= 0. Now let us define a sequence (un) by un(x) := wn(λnx) for x ∈ R
N with (λn) satisfying

λn → ∞ as n → ∞. Then by the scaling invariance, we obtain FN,s,t,α(un) = FN,s,t,α(wn) → μN,s,t,α(RN) and
‖∇un‖LN(RN) = ‖∇wn‖LN(RN) = 1. Furthermore, since ‖un‖LN(RN ;|x|−s dx) → 0 as λn → ∞, (un) is bounded in

X
1,N
s,rad and up to a subsequence un converges 0 weakly in X

1,N
s . However, we see as n → ∞,

‖un‖X
1,N
s

:= ‖un‖LN(RN ;|x|−s dx) + ‖∇un‖LN(RN)

� ‖∇un‖LN(RN) = ‖∇wn‖LN(RN) = ‖∇w‖LN(RN) + o(1) > 0,

which implies that un cannot converge to 0 strongly in X
1,N
s , and then we have the non-compactness of FN,s,t,α at the

level μN,s,t,α(RN).
In spite of this difficulty, we can prove the following existence result by using a suitable renormalization argument.

Theorem 1.3. (i) Assume (1.7). Then μN,s,t,α(RN) is attained.

(ii) Let N � 2 and 0 < α < αN = αN,0 = Nω
1

N−1
N−1, and define for any domain D ⊂R

N ,

μ̃N,α(D) := sup
u∈H

1,N
0 (D),

‖∇u‖
LN (D)

=1

∫
D

ΦN

(
α|u(x)|N ′)

dx

‖u‖N
LN(D)

,

where H
1,N
0 (D) denotes the completion of C∞

c (D) over the norm ‖ · ‖H 1,N (D). Then μ̃N,α(D) is attained if and only
if D =R

N .

We can remove the assumption of the radial symmetry on functions in Theorem 1.3(i) when s = 0 and 0 � t < N ,
see Lemma A.1 in Appendix A. As a consequence, we obtain the following corollary.

Corollary 1.4. Assume (1.7) with s = 0. Then

μN,0,t,α

(
R

N
) = sup

u∈H 1,N (RN),
‖∇u‖

LN (RN )
=1

∫
RN ΦN

(
α|u(x)|N ′) dx

|x|t
‖u‖N−t

LN (RN)

is attained.

Remark. (i) As far as we know, Corollary 1.4 is a new result even for the non-singular case t = 0, which corresponds
to (1.2).

(ii) Theorem 1.3(ii) shows that μ̃N,α(D) admits a maximizer only when D = R
N . We here consider the case

s = t �= 0 and D is a radially symmetric domain with 0 ∈ D. Let

μ̃N,t,α(D) := sup
u∈X

1,N
t,rad(D),

‖∇u‖
LN (D)

=1

∫
D

ΦN

(
α|u(x)|N ′) dx

|x|t
‖u‖N

LN(D;|x|−t dx)

,

where X
1,N
t,rad(D) denotes the closure of the class of radially symmetric functions in C∞

c (D) over the norm

‖ · ‖LN(D;|x|−t dx) + ‖∇ · ‖LN(D). Then Theorem 1.3(i) yields the attainability of μ̃N,t,α(RN) since μ̃N,t,α(RN) =
μN,t,t,α(RN) by definition. On the other hand, μ̃N,t,α(D) is not attained if D �= R

N . Indeed, assume that μ̃N,t,α(D)

is attained by u0 ∈ X
1,N
t,rad(D) for some radially symmetric domain D �= R

N with 0 ∈ D. By using the transformation

v(x) := (
N−t
N

)N−1
N ũ

(|x| N
N−t

)
with u(x) = ũ(|x|), see (2.3) and (2.4), we obtain μ̃N,t,α(D) = μ̃

N,0, N
N−t

α
(D̃), where

D̃ := {x ∈ R
N ; |x| N

N−t = |y| for some y ∈ D}. On the other hand, since 0 ∈ D̃, by the scaling and the rearrange-
ment argument, it holds (μ̃N,t,α(D) =) μ̃

N,0, N α
(D̃) = μ̃

N, N α
(D̃), which implies that μ̃

N, N α
(D̃) is attained by
N−t N−t N−t
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v0(x) := (
N−t
N

)N−1
N ũ0

(|x| N
N−t

) ∈ H
1,N
0 (D̃) with u0(x) = ũ0(|x|). However, this is a contradiction to Theorem 1.3(ii)

since D �=R
N yields D̃ �=R

N .
(iii) On the contrary, when (s, t) �= (0,0) and 0 /∈ D, we can guess that the corresponding assertion to Theo-

rem 1.3(ii) is not true. For instance, the attainability for the best constant of the Caffarelli–Kohn–Nirenberg inequal-
ity (1.6) was extensively studied, see e.g. Chern and Lin [7], Ghoussoub and Kang [9], Ghoussoub and Robert [10,11]
and Hsia, Lin and Wadade [12], where the authors proved the existence of a maximizer associated with the Caffarelli–
Kohn–Nirenberg inequality for D with 0 ∈ ∂D (e.g. the half-space) when (s, t) �= (0,0).

Next, we investigate the asymptotic behavior of the constant for the Caffarelli–Kohn–Nirenberg inequality (1.6)
with respect to the exponent q . Let us recall (1.6)

‖u‖Lq(RN ;|x|−t dx) � C‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)

for all u ∈ X
1,N
s , where C depends only on N,s, t and q . Hereafter we fix N , s and t . It is known that C = Cq behaves

like Cq � βq
1

N ′ as q → ∞ for some β > 0, see e.g., Nagayasu and Wadade [18]. Now we define

βN,t := lim sup
q→∞

sup
u∈X

1,N
s \{0}

‖u‖Lq(RN ;|x|−t dx)

q
1

N ′ ‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)

,

which we call the asymptotic best constant of (1.6), see Section 4 for the precise definition of βN,t . The next theorem
gives βN,t explicitly and we obtain

βN,t =
(

N − 1

eN(N − t)ω
1

N−1
N−1

)N−1
N

.

More precisely, under the assumption

N � 2, −∞ < s � t < N and β > βN,t , (1.11)

we obtain:

Theorem 1.5. Assume (1.11). Then there exists a positive constant q0 = q0(N, s, t, β) � N such that, for any q � q0
the inequality

‖u‖Lq(RN ;|x|−t dx) � βq
1

N ′ ‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
(1.12)

holds for all u ∈ X
1,N
s,rad. Furthermore, the constant βN,t is sharp for (1.12). Indeed, (1.12) fails if 0 < β < βN,t in the

above asymptotic sense.

In particular, the case s = 0 and 0 � t < N in Theorem 1.5 yields the following corollary by virtue of the rear-
rangement argument.

Corollary 1.6. Assume (1.11) with s = 0. Then there exists a positive constant q0 = q0(N, t, β) � N such that, for
any q � q0 the inequality

‖u‖Lq(RN ;|x|−t dx) � βq
1

N ′ ‖u‖
N−t

q

LN (RN)
‖∇u‖1− N−t

q

LN (RN)
(1.13)

holds for all u ∈ H 1,N (RN). Furthermore, the constant βN,t is sharp for (1.13). Indeed, the inequality (1.13) fails if
0 < β < βN,t in the above asymptotic sense.

Remark. In fact, we shall show the exact relation between the constants α in (1.8) and β in (1.12) explicitly given by

β = ( 1
eN ′α

) 1
N ′ , which was established in Ozawa [21] for the non-singular case of the critical Sobolev space with the

fractional derivatives. Then Theorem 1.5 will be proved by noting βN,t = ( 1′
) 1

N ′ .

eN αN,t
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Here, we describe the organization of this article. Section 2, Section 3 and Section 4 are devoted to prove Theo-
rem 1.1, Theorem 1.3 and Theorem 1.5, respectively. Moreover, we shall collect several lemmas in Appendix A for
the proof of the main theorems.

2. Proof of Theorem 1.1

First, we consider the case s = t in Theorem 1.1(i), and the general case s � t can be obtained by using the
Caffarelli–Kohn–Nirenberg interpolation inequality (1.6). The case s = t in Theorem 1.1(i) can be rewritten as fol-
lows. Throughout this paper, C is a positive constant independent of the function u and may vary from line to line.

Proposition 2.1. Assume (1.7) with s = t . Then there exists a positive constant C = C(N, t,α) such that the inequality∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t � C‖u‖N
LN(RN ;|x|−t dx)

(2.1)

holds for all u ∈ X
1,N
t,rad with ‖∇u‖LN(RN) � 1.

Once Proposition 2.1 has been established, Theorem 1.1(i) with s < t will be its immediate consequence through
the Caffarelli–Kohn–Nirenberg inequality (1.6) with q = N . Indeed, by combining the inequality

‖u‖LN(RN ;|x|−t dx) � C‖u‖
N−t
N−s

LN (RN ;|x|−s dx)
‖∇u‖1− N−t

N−s

LN (RN)
(2.2)

with the Trudinger–Moser type inequality (2.1), we obtain Theorem 1.1(i) with s < t .

Proof of Proposition 2.1. Let 0 < α < αN,t and let u ∈ X
1,N
t,rad with ‖∇u‖LN(RN) � 1. We define the function v ∈

H 1,N (RN) through the formula such as for x ∈ R
N ,

v(x) :=
(

N − t

N

)N−1
N

ũ
(|x| N

N−t
)
, (2.3)

where u(x) = ũ(|x|) for x ∈R
N . Then direct computations show that⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖∇u‖LN(RN) = ‖∇v‖LN(RN), ‖u‖LN(RN ;|x|−t dx) =
(

N

N − t

) 1
N ‖v‖LN(RN),∫

RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t = N

N − t

∫
RN

ΦN

(
N

N − t
α
∣∣v(x)

∣∣N ′
)

dx.

(2.4)

Thus substituting (2.4) into (2.1), we see that (2.1) is transferred to the non-singular form equivalently in terms of the

function v. Since 0 < N
N−t

α < N
N−t

αN,t = Nω
1

N−1
N−1, by the Trudinger–Moser type inequality (1.2), we have

∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t = N

N − t

∫
RN

ΦN

(
N

N − t
α
∣∣v(x)

∣∣N ′
)

dx

� C‖v‖N
LN(RN)

= C‖u‖N
LN(RN ;|x|−t dx)

,

where we used ‖∇v‖LN(RN) � 1, and we finish the proof of Proposition 2.1. �
Next, we proceed to the proof of the optimality for the constant αN,t stated in Theorem 1.1(ii). In order to show

this, we shall construct a sequence of functions in X
1,N so that the corresponding functional diverges.
s,rad



M. Ishiwata et al. / Ann. I. H. Poincaré – AN 31 (2014) 297–314 303
Proof of Theorem 1.1(ii). For k ∈ N, we define a sequence uk of radially symmetric functions in X
1,N
s,rad by

uk(x) :=

⎧⎪⎪⎨
⎪⎪⎩

0 if |x| � 1,(
N−t

ωN−1k

) 1
N log

( 1
|x|

)
if e− k

N−t < |x| < 1,( 1
ωN−1

) 1
N

(
k

N−t

) 1
N ′ if 0 � |x| � e− k

N−t .

For the non-singular case t = 0, this sequence of functions uk ∈ H 1,N (RN) was used in Adachi and Tanaka
[1, Theorem 0.2]. Then direct computations show that ‖∇uk‖LN(RN) = 1 for all k ∈ N and⎧⎪⎪⎨

⎪⎪⎩
‖uk‖LN(RN ;|x|−s dx) = o(1) as k → ∞,∫
RN

ΦN

(
αN,t

∣∣uk(x)
∣∣N ′) dx

|x|t �
ωN−1

N − t
ΦN(k)e−k = ωN−1

N − 1

(
1 − e−k

N−2∑
j=0

kj

j !

)
.

Thus we have∫
RN ΦN

(
αN,t |uk(x)|N ′) dx

|x|t

‖uk‖
N(N−t)

N−s

LN (RN ;|x|−s dx)

�
1 − e−k

∑N−2
j=0

kj

j !
o(1)

→ ∞

as k → ∞, which implies that (1.8) fails when α = αN,t , and we finish the proof of Theorem 1.1(ii). �
At the end of this section, we shall give a proof of Corollary 1.2 below. Since a particular case s = 0 and 0 � t < N

in Theorem 1.1(ii) directly implies Corollary 1.2(ii), it remains to prove Corollary 1.2(i).

Proof of Corollary 1.2(i). By taking s = 0 and 0 � t < N in Theorem 1.1(i), we see that (1.9) holds for all radially
symmetric functions u ∈ H 1,N (RN) with ‖∇u‖LN(RN) � 1. To remove the radially symmetric condition for the func-
tions, we utilize the Schwarz symmetrization. Let u# ∈ H 1,N (RN) be the Schwarz symmetrization of u ∈ H 1,N (RN).
Then we have, for any q � N ,

‖u‖Lq(RN ;|x|−t dx) �
∥∥u#

∥∥
Lq(RN ;|x|−t dx)

, (2.5)

and ∥∥∇u#
∥∥

LN(RN)
� ‖∇u‖LN(RN). (2.6)

Among others, we refer to Almgren and Lieb [2, Theorem 2.7] for (2.6) and Bennett and Sharpley [3] for abundant
information on the Schwarz symmetrization. We will prove (2.5) in Appendix A for the completeness of the paper,
see Lemma A.1.

Since the integral on the left-hand side of (1.9) consists of a countable sum of the weighted Lebesgue norms
‖u‖Lq(RN ;|x|−t dx) with q � N through Taylor’s expansion, by using (2.5), (2.6) and Theorem 1.1(i) with s = 0, we
see for any u ∈ H 1,N (RN) with ‖∇u‖LN(RN) � 1,

∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t =
∞∑

j=N−1

αj

j ! ‖u‖N ′j
LN ′j (RN ;|x|−t dx)

�
∞∑

j=N−1

αj

j !
∥∥u#

∥∥N ′j
LN ′j (RN ;|x|−t dx)

=
∫
RN

ΦN

(
α
∣∣u#(x)

∣∣N ′) dx

|x|t

� C
∥∥u#

∥∥N−t

LN (RN)
= C‖u‖N−t

LN (RN)
,

which completes the proof of Corollary 1.2(i). �
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3. Proof of Theorem 1.3

We distinguish two cases s = t and s �= t . The former case s = t is more difficult to deal with compared to the case
s �= t due to the non-compactness of the embedding X

1,N
s,rad ↪→ LN(RN ; |x|−s dx) for s < N . Keeping this difficulty

in mind, we first prepare the following lemma.

Lemma 3.1. Assume (1.7) and let (un) be a bounded sequence of X
1,N
s,rad with ‖∇un‖LN(RN) = 1. Moreover, assume

un ⇀ u weakly in X1,N
s

as n → ∞. Then it holds as n → ∞,∫
RN

(
ΦN

(
α
∣∣un(x)

∣∣N ′) − αN−1

(N − 1)!
∣∣un(x)

∣∣N)
dx

|x|t

→
∫
RN

(
ΦN

(
α
∣∣u(x)

∣∣N ′) − αN−1

(N − 1)!
∣∣u(x)

∣∣N)
dx

|x|t . (3.1)

Proof. Let ΨN,k,α(τ ) := eατN ′ − ∑k
j=0

αj

j ! τ
N ′j for τ � 0, where N � 2, k ∈ N ∪ {0} and 0 < α < αN,t . Then the

desired convergence (3.1) can be rewritten as∫
RN

ΨN,N−1,α

(|un|
) dx

|x|t →
∫
RN

ΨN,N−1,α

(|u|) dx

|x|t

as n → ∞. A direct computation shows for τ � 0,

Ψ ′
N,N−1,α(τ ) = αN

N − 1
τ

1
N−1 ΨN,N−2,α(τ ).

Thus, by the mean value theorem and the convexity of the function ΨN,N−2,α , we see for some θ ∈ [0,1],∣∣ΨN,N−1,α

(|un|
) − ΨN,N−1,α

(|u|)∣∣
� Ψ ′

N,N−1,α

(
θ |un| + (1 − θ)|u|)|un − u|

= αN

N − 1

(
θ |un| + (1 − θ)|u|) 1

N−1 ΨN,N−2,α

(
θ |un| + (1 − θ)|u|)|un − u|

� αN

N − 1

(
θ |un| + (1 − θ)|u|) 1

N−1
(
θΨN,N−2,α

(|un|
) + (1 − θ)ΨN,N−2,α

(|u|))|un − u|

� αN

N − 1

(|un| + |u|) 1
N−1

(
ΨN,N−2,α

(|un|
) + ΨN,N−2,α

(|u|))|un − u|. (3.2)

Take the numbers a, b, c > 1 satisfying 1
a

+ 1
b

+ 1
c

= 1, and then by (3.2) and the Hölder inequality, we have∣∣∣∣
∫
RN

(
ΨN,N−1,α

(|un|
) − ΨN,N−1,α

(|u|)) dx

|x|t
∣∣∣∣

� αN

N − 1

∫
RN

(|un| + |u|) 1
N−1

(
ΨN,N−2,α

(|un|
) + ΨN,N−2,α

(|u|))|un − u| dx

|x|t

� αN

N − 1

∥∥|un| + |u|∥∥ 1
N−1

L
a

N−1 (RN ;|x|−t dx)

× ∥∥ΨN,N−2,α

(|un|
) + ΨN,N−2,α

(|u|)∥∥
Lb(RN ;|x|−t dx)

‖un − u‖Lc(RN ;|x|−t dx). (3.3)

We now use



M. Ishiwata et al. / Ann. I. H. Poincaré – AN 31 (2014) 297–314 305
(
eτ −

N−2∑
j=0

τ j

j !

)b

� ebτ −
N−2∑
j=0

(bτ)j

j ! (3.4)

for τ � 0, see Lemma A.2 in Appendix A. Thus by using (1.8),

∥∥ΨN,N−2,α

(|un|
)∥∥

Lb(RN ;|x|−t dx)
=

( ∫
RN

(
ΨN,N−2,α

(|un|
))b dx

|x|t
) 1

b

�
( ∫
RN

ΨN,N−2,bα

(|un|
) dx

|x|t
) 1

b

� C‖un‖
N(N−t)
b(N−s)

LN (RN ;|x|−s dx)
� C, (3.5)

where we took b > 1 sufficiently close to 1 so that bα < αN,t , which is possible since α < αN,t . Similarly, we obtain∥∥ΨN,N−2,α

(|u|)∥∥
Lb(RN ;|x|−t dx)

� C. (3.6)

In the above arguments, we implicitly used

‖∇un‖LN(RN) = 1 and ‖∇u‖LN(RN) � 1.

Hence, by using (3.3), (3.5) and (3.6), we have∣∣∣∣
∫
RN

(
ΨN,N−1,α

(|un|
) − ΨN,N−1,α

(|u|)) dx

|x|t
∣∣∣∣

� C
∥∥|un| + |u|∥∥ 1

N−1

L
a

N−1
(
RN ;|x|−t dx

)‖un − u‖Lc(RN ;|x|−t dx). (3.7)

Furthermore, by the compactness of X
1,N
s,rad ↪→ Lc(RN ; |x|−t dx), we have the convergence

‖un − u‖Lc(RN ;|x|−t dx) → 0 (3.8)

as n → ∞ up to a subsequence for all c > N , see Lemma A.3 in Appendix A. Then by the boundedness of X
1,N
s ↪→

L
a

N−1 (RN ; |x|−t dx) for all a
N−1 � N , which comes from the Caffarelli–Kohn–Nirenberg inequality (1.6), we have∥∥|un| + |u|∥∥

L
a

N−1
(
RN ;|x|−t dx

) � C
(‖un‖X

1,N
s

+ ‖u‖
X

1,N
s

)
� C. (3.9)

Summing-up (3.7), (3.8) and (3.9), we obtain the required convergence. �
We are now in a position to prove Theorem 1.3(i) by using Lemma 3.1.

Proof of Theorem 1.3(i). Let (un) be a maximizing sequence for μN,s,t,α(RN), that is, (un) is a sequence of functions
in X

1,N
s,rad with ‖∇un‖LN(RN) = 1 and FN,s,t,α(un) → μN,s,t,α(RN) as n → ∞. Let us define a new sequence (vn) by

vn(x) := un

(‖un‖
N

N−s

LN (RN ;|x|−s dx)
x
)

for x ∈R
N . Then we easily see that

‖∇vn‖LN(RN) = ‖∇un‖LN(RN) = 1, ‖vn‖LN(RN ;|x|−s dx) = 1,

and

FN,s,t,α(vn) = FN,s,t,α(un) → μN,s,t,α

(
R

N
)

as n → ∞. Thus (vn) is also a maximizing sequence for μN,s,t,α(RN), which is a bounded sequence of functions
in X

1,N
s,rad . Therefore, up to a subsequence, vn converges to some v weakly in X

1,N
s , and then v satisfies

max
{‖v‖LN(RN ;|x|−s dx),‖∇v‖LN(RN)

}
� 1. (3.10)

In what follows, we distinguish two cases.
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Case 1. We assume s = t . Let μN,s,α(RN) := μN,s,s,α(RN) and FN,s,α(u) := FN,s,s,α(u) for u ∈ X
1,N
s,rad . By applying

Lemma 3.1, we see as n → ∞,

μN,s,α

(
R

N
) = FN,s,α(vn) + o(1) =

∫
RN

ΦN

(
α
∣∣vn(x)

∣∣N ′) dx

|x|s + o(1)

= αN−1

(N − 1)! +
∫
RN

(
ΦN

(
α
∣∣vn(x)

∣∣N ′) − αN−1

(N − 1)!
∣∣vn(x)

∣∣N)
dx

|x|s + o(1)

= αN−1

(N − 1)! +
∫
RN

(
ΦN

(
α
∣∣v(x)

∣∣N ′) − αN−1

(N − 1)!
∣∣v(x)

∣∣N)
dx

|x|s . (3.11)

Here, it is worth noting that μN,s,α(RN) > αN−1

(N−1)! . Indeed, pick up u0 ∈ X
1,N
s,rad satisfying ‖∇u0‖LN(RN) = 1 arbi-

trarily. Then we see

μN,s,α

(
R

N
)
� FN,s,α(u0) =

∫
RN ΦN

(
α|u0(x)|N ′) dx

|x|s
‖u0‖N

LN(RN ;|x|−s dx)

=
∑∞

j=N−1
αj

j ! ‖u0‖N ′j
LN ′j (RN ;|x|−s dx)

‖u0‖N
LN(RN ;|x|−s dx)

= αN−1

(N − 1)! +
∑∞

j=N
αj

j ! ‖u0‖N ′j
LN ′j (RN ;|x|−s dx)

‖u0‖N
LN(RN ;|x|−s dx)

>
αN−1

(N − 1)! .

Hence, (3.11) implies v �= 0 in X
1,N
s,rad , and then from (3.10) and (3.11), we obtain

μN,s,α

(
R

N
)
� αN−1

(N − 1)! +
∫
RN

(
ΦN

(
α|v(x)|N ′) − αN−1

(N−1)! |v(x)|N )
dx
|x|s

‖v‖N
LN(RN ;|x|−s dx)

=
∫
RN ΦN

(
α|v(x)|N ′) dx

|x|s
‖v‖N

LN(RN ;|x|−s dx)

= FN,s,α(v). (3.12)

Therefore, it remains to prove ‖∇v‖LN(RN) = 1. Since ‖∇v‖LN(RN) � 1 by (3.10), it suffices to show ‖∇v‖LN(RN) � 1.
By the definition of μN,s,α(RN) and (3.10), we see

μN,s,α

(
R

N
)
� FN,s,α

(
v

‖∇v‖LN(RN)

)

=
‖∇v‖N

LN(RN)

‖v‖N
LN(RN ;|x|−s dx)

∫
RN

ΦN

(
α

∣∣∣∣ v(x)

‖∇v‖LN(RN)

∣∣∣∣
N ′)

dx

|x|s

=
‖∇v‖N

LN(RN)

‖v‖N
LN(RN ;|x|−s dx)

∞∑
j=N−1

αj

j !
‖v‖N ′j

LN ′j (RN ;|x|−s dx)

‖∇v‖N ′j
LN(RN)

=
∞∑

j=N−1

αj

j !
‖v‖N ′j

LN ′j (RN ;|x|−s dx)

‖v‖N
LN(RN ;|x|−s dx)

‖∇v‖N−N ′j
LN(RN)

� αN−1

(N − 1)! + αN

N !
‖v‖N ′N

LN ′N (RN ;|x|−s dx)

‖v‖N
N N −s

‖∇v‖− N
N−1

LN(RN)
+

∞∑ αj

j !
‖v‖N ′j

LN ′j (RN ;|x|−s dx)

‖v‖N
N N −s
L (R ;|x| dx) j=N+1 L (R ;|x| dx)
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= αN−1

(N − 1)! +
∞∑

j=N

αj

j !
‖v‖N ′j

LN ′j (RN ;|x|−s dx)

‖v‖N
LN(RN ;|x|−s dx)

+ αN

N !
(

1

‖∇v‖
N

N−1

LN(RN)

− 1

)‖v‖N ′N
LN ′N(RN ;|x|−s dx)

‖v‖N
LN(RN ;|x|−s dx)

= FN,s,α(v) + αN

N !
(

1

‖∇v‖
N

N−1

LN(RN)

− 1

)‖v‖N ′N
LN ′N(RN ;|x|−s dx)

‖v‖N
LN(RN ;|x|−s dx)

. (3.13)

Thus by (3.12) and (3.13), we have

μN,s,α

(
R

N
)
� μN,s,α

(
R

N
) + αN

N !
(

1

‖∇v‖
N

N−1

LN(RN)

− 1

)‖v‖N ′N
LN ′N (RN ;|x|−s dx)

‖v‖N
LN(RN ;|x|−s dx)

,

which implies ‖∇v‖LN(RN) � 1, and then it follows ‖∇v‖LN(RN) = 1. As a consequence, (3.12) shows that v is a
maximizer for μN,s,α(RN).

Case 2. We assume s < t . By Lemma 3.1 and the compactness of the embedding X
1,N
s,rad ↪→ LN(RN ; |x|−t dx), see

Lemma A.3 in Appendix A, up to a subsequence, we obtain the convergence as n → ∞,

μN,s,t,α

(
R

N
) = FN,s,t,α(vn) + o(1)

=
∫
RN

ΦN

(
α
∣∣vn(x)

∣∣N ′) dx

|x|t + o(1) =
∫
RN

ΦN

(
α
∣∣v(x)

∣∣N ′) dx

|x|t ,

which implies v �= 0 in X
1,N
s,rad . Then in a quite same way as in Case 1, we can prove ‖∇v‖LN(RN) = 1 and v is a

maximizer for μN,s,t,α(RN). �
Proof of Corollary 1.4. Corollary 1.4 is an immediate consequence of the special case s = 0 in Theorem 1.3(i) and
the rearrangement inequalities (2.5) and (2.6). �

We proceed to the proof of Theorem 1.3(ii). Since the attainability of μ̃N,α(RN) = μN,0,0,α(RN) has been already
shown in Corollary 1.4 with t = 0, it remains to prove that μ̃N,α(D) admits a maximizer only when D =R

N .

Proof of Theorem 1.3(ii). Now assume that μ̃N,α(D) with D �=R
N is attained, and we derive a contradiction. With-

out loss of generality, we can assume u� 0 in D. Let v(x) := u(‖u‖LN(D)x) for x ∈R
N , where u is a zero-extension

of u to R
N . The scale-invariance of the problem yields μ̃N,α(D) = μ̃N,α(RN). Thus we have

‖v‖LN(RN) = 1 and
∞∑

j=N−1

αj

j ! ‖v‖N ′j
LN ′j (RN)

= F̃N,α(v) = μ̃N,α

(
R

N
)
, (3.14)

where F̃N,α(v) := FN,0,0,α(v) by (1.10). A direct computation yields

(dF̃N,α)w(ϕ) = 1

‖w‖2N
LN(RN)

(
N ′‖w‖N

LN(RN)

∞∑
j=N−1

αj

(j − 1)!
∫
RN

|w|N ′j−2wϕ dx

− N

∫
RN

|w|N−2wϕ dx

∞∑
j=N−1

αj

j ! ‖w‖N ′j
LN ′j (RN)

)

for all w ∈ H 1,N (RN) \ {0} and ϕ ∈ H 1,N (RN). The Lagrange multiplier rule together with (3.14) and the relation
above show the existence of λ ∈ R satisfying

−�Nv = λ

(
N ′

∞∑ αj

(j − 1)! |v|N ′j−2v − Nμ̃N,α

(
R

N
)|v|N−2v

)
in R

N, (3.15)

j=N−1
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where �Nv := ∇ · (|∇v|N−2∇v). Multiplying v by (3.15), integrating over RN and using (3.14), we see that

‖∇v‖N
LN(RN)

= λ

(
N ′

∞∑
j=N−1

αj

(j − 1)! ‖v‖N ′j
LN ′j (RN)

− N‖v‖N
LN(RN)

∞∑
j=N−1

αj

j ! ‖v‖N ′j
LN ′j (RN)

)

= λN

∞∑
j=N−1

αj

j !
(

j

N − 1
− 1

)
‖v‖N ′j

LN ′j (RN)
,

whence λ > 0 follows. Consequently, (3.15) gives

−�Nv + λNμ̃N,α

(
R

N
)|v|N−2v = λN ′

∞∑
j=N−1

αj

(j − 1)! |v|N ′j−2v � 0 in R
N.

This relation together with the strong maximum principle for the degenerate elliptic operator, see e.g., Vázquez
[26, Theorem 5], yields v > 0 in R

N , which is a contradiction since v ≡ 0 in {x ∈ R
N ; ‖u‖LN(D)x /∈ D}. This com-

pletes the proof of Theorem 1.3(ii). �
4. Proof of Theorem 1.5

Proof of Theorem 1.5. Let α0 be the supremum of α > 0 such that the inequality∫
RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t � C‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)
(4.1)

holds for all u ∈ X
1,N
s,rad for some C > 0. Also let βN,t be the infimum of β > 0 satisfying the following: there exists

q0 �N such that, for any q � q0 the inequality

‖u‖Lq(RN ;|x|−t dx) � βq
1

N ′ ‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
(4.2)

holds for all u ∈ X
1,N
s,rad . Then Theorem 1.1 implies α0 := αN,t = (N − t)ω

1
N−1
N−1, and hence, our goal is to prove the

exact relation between α0 and βN,t such as

βN,t =
(

1

eN ′α0

) 1
N ′

=
(

N − 1

eN(N − t)ω
1

N−1
N−1

)N−1
N

. (4.3)

The definition of α0 guarantees that for any 0 < α < α0, there exists a positive constant C such that (4.1) holds for
all u ∈ X

1,N
s,rad with ‖∇u‖LN(RN) � 1. By (4.1) without the normalization ‖∇u‖LN(RN) � 1, we have

C

(‖u‖LN(RN ;|x|−s dx)

‖∇u‖LN(RN)

)N(N−t)
N−s

�
∫
RN

ΦN

(
α

( |u(x)|
‖∇u‖LN(RN)

)N ′)
dx

|x|t

=
∞∑

k=N−1

αk

k!
(‖u‖

LN ′k(RN ;|x|−t dx)

‖∇u‖LN(RN)

)N ′k
� αj

j !
(‖u‖

LN ′j (RN ;|x|−t dx)

‖∇u‖LN(RN)

)N ′j

for all u ∈ X
1,N
s,rad \ {0} and all integers j � N − 1. Thus we obtain

‖u‖
LN ′j (RN ;|x|−t dx)

�
(

C
j !
αj

) 1
N ′j ‖u‖

N(N−t)

(N−s)N ′j
LN (RN ;|x|−s dx)

‖∇u‖1− N(N−t)

(N−s)N ′j
LN (RN)

(4.4)

for all u ∈ X
1,N
s,rad and for all integers j � N −1. Moreover, for any q � N , there exists an integer j � N −1 satisfying

N ′j � q < N ′(j + 1). Then by Hölder’s inequality, it holds

‖u‖Lq(RN ;|x|−t dx) � ‖u‖θ
N ′j N −t

‖u‖1−θ
N ′(j+1) N −t

, (4.5)

L (R ;|x| dx) L (R ;|x| dx)
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where the interpolation index θ ∈ (0,1] enjoys 1
q

= θ
N ′j + 1−θ

N ′(j+1)
. Combining (4.4) with (4.5) yields

‖u‖Lq(RN ;|x|−t dx) � C
1
q α

− 1
N ′ ((j + 1)!) 1

q ‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
(4.6)

for all u ∈ X
1,N
s,rad and for all q � N . Now we investigate the positive constant which appears in the right-hand side

of (4.6). Noting q
N ′ � j , we see

(
(j + 1)!) 1

q = Γ (j + 2)
1
q � Γ

(
q

N ′ + 2

) 1
q

,

where Γ denotes the Gamma function. Here let us recall Stirling’s asymptotic formula

lim
t→+∞

Γ (t + 1)√
2πt

(
t
e

)t = 1.

Thus we can compute as q → +∞,

Γ

(
q

N ′ + 2

) 1
q =

((
1 + o(1)

)√
2π

(
q

N ′ + 1

)( q
N ′ + 1

e

) q

N ′ +1) 1
q

= (
1 + o(1)

)( q

eN ′

) 1
N ′

. (4.7)

Hence, summing-up (4.6) and (4.7), we have as q → +∞,

‖u‖Lq(RN ;|x|−t dx) �
(
1 + o(1)

)( q

eN ′α

) 1
N ′

‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
,

which implies βN,t �
( 1

eN ′α
) 1

N ′ for all α ∈ (0, α0), and then we obtain

βN,t �
(

1

eN ′α0

) 1
N ′

. (4.8)

Next, we shall prove the reverse inequality of (4.8). Take β > βN,t arbitrarily. From the definition of βN,t , there
exists q0 � N such that (4.2) holds for all u ∈ X

1,N
s,rad and for all q � q0. Then for positive α which will be chosen

appropriately later, we see for any u ∈ X
1,N
s,rad with ‖∇u‖LN(RN) � 1,∫

RN

ΦN

(
α
∣∣u(x)

∣∣N ′) dx

|x|t

=
∫
RN

( ∑
N�N ′j<q0,

j∈N

αj

j !
∣∣u(x)

∣∣N ′j
)

dx

|x|t +
∫
RN

( ∑
N ′j�q0,

j∈N

αj

j !
∣∣u(x)

∣∣N ′j
)

dx

|x|t =: J1 + J2.

As for the estimate of J1, we have

J1 =
∑

N�N ′j<q0,
j∈N

αj

j ! ‖u‖N ′j
LN ′j (RN ;|x|−t dx)

,

which consists of finite weighted Lebesgue norms. For each integer j with N � N ′j < q0, it holds by Hölder’s
inequality,

‖u‖
LN ′j (RN ;|x|−t dx)

� ‖u‖θ
LN (RN ;|x|−t dx)

‖u‖1−θ

Lq0 (RN ;|x|−t dx)
, (4.9)

where the interpolation index θ ∈ (0,1] enjoys 1
N ′j = θ

N
+ 1−θ

q0
. Furthermore, by the assumption, (4.2) holds with

q = q0, that is, we have
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‖u‖Lq0 (RN ;|x|−t dx) � βq
1

N ′
0 ‖u‖

N(N−t)
q0(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q0(N−s)

LN (RN)

� βq
1

N ′
0 ‖u‖

N(N−t)
q0(N−s)

LN (RN ;|x|−s dx)
(4.10)

for all u ∈ X
1,N
s,rad with ‖∇u‖LN(RN) � 1. Thus by (2.2), (4.9) and (4.10), we obtain

‖u‖N ′j
LN ′j (RN ;|x|−t dx)

� C‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)

for all u ∈ X
1,N
s,rad with ‖∇u‖LN(RN) � 1 and for all integers j with N �N ′j < q0. Thus we can estimate J1 as

J1 � C

( ∑
N�N ′j<q0,

j∈N

αj

j !
)

‖u‖
N(N−t)

N−s

LN (RN ;|x|−s dx)
= C‖u‖

N(N−t)
N−s

LN (RN ;|x|−s dx)
. (4.11)

We proceed to the estimate of J2. Applying (4.2), we see

J2 =
∑

N ′j�q0,
j∈N

αj

j ! ‖u‖N ′j
LN ′j (RN ;|x|−t dx)

�
∑

N ′j�q0,
j∈N

αj

j !
(
β
(
N ′j

) 1
N ′ ‖u‖

N(N−t)

N ′j (N−s)

LN (RN ;|x|−s dx)

)N ′j

=
( ∑

N ′j�q0,
j∈N

jj

j !
(
αN ′βN ′)j

)
‖u‖

N(N−t)
N−s

LN (RN ;|x|−s dx)
. (4.12)

We now take positive α satisfying αN ′βN ′
< 1

e
so that the power series in (4.12) converges. Therefore, by (4.11) and

(4.12), we get α0 � 1
eN ′βN ′ for all β > βN,t , which implies

α0 �
1

eN ′βN ′
N,t

or equivalently βN,t �
(

1

eN ′α0

) 1
N ′

. (4.13)

Hence, by (4.8) and (4.13), the desired equality (4.3) can be obtained, and we finish the proof of Theorem 1.5. �
Proof of Corollary 1.6. Corollary 1.6 is an immediate consequence of the special case s = 0 in Theorem 1.5 and the
rearrangement inequalities (2.5) and (2.6). �
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Appendix A

In this section, we collect several lemmas for the proof of the main theorems.

A.1. For Corollary 1.2, Corollary 1.4 and Corollary 1.6

First, we establish the rearrangement inequality (2.5). Precisely, the Schwarz symmetrization will be defined as
follows. For a measurable function u on R

N , au : [0,∞) → [0,∞] denotes the distribution function of u, that is, for
λ� 0,

au(λ) := ∣∣{x ∈R
N ; ∣∣u(x)

∣∣ > λ
}∣∣,
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where |Ω| means the Lebesgue measure of a measurable set Ω ⊂ R
N . Then u∗: [0,∞) → [0,∞] and u#: R

N →
[0,∞] are defined as⎧⎪⎨

⎪⎩
u∗(t) := inf

{
λ > 0;au(λ) � t

}
for t � 0,

u#(x) := u∗
(

ωN−1

N
|x|N

)
for x ∈ R

N.

We call u∗ and u# the rearrangement and the Schwarz symmetrization of u, respectively. We now prove (2.5) below.

Lemma A.1. Let N � 2, 0 � t < N and q � N . Then it holds

‖u‖Lq(RN ;|x|−t dx) �
∥∥u#

∥∥
Lq(RN ;|x|−t dx)

(A.1)

for all functions u so that u# ∈ Lq(RN ; |x|−t dx). Furthermore, the inequality (A.1) becomes the equality for the
non-singular case t = 0.

Proof. Note that

‖u‖q

Lq(RN ;|x|−t dx)
=

∫
RN

∣∣u(x)
∣∣q dx

|x|t = q

∞∫
0

( ∫
{x∈RN ;|u(x)|>λ}

dx

|x|t
)

λq−1 dλ (A.2)

holds. Therefore, in order to obtain (A.1), by recalling the fact that the functions u and u# have the same distribution
function since they are equi-measurable, it is enough to show the following inequality∫

Ω

dx

|x|t �
∫

Ω#

dx

|x|t (A.3)

for all measurable sets Ω ⊂R
N with |Ω| < ∞, where Ω# denotes the ball centered at the origin satisfying |Ω| = |Ω#|.

Clearly, if t = 0, then the inequality (A.3) becomes the equality, and then by the representation (A.2), we obtain the
equality (A.1).

Therefore, it remains to prove (A.3) for 0 � t < N . By decomposing Ω = (Ω \ Ω#) ∪ (Ω ∩ Ω#) and Ω# =
(Ω# \ Ω) ∪ (Ω# ∩ Ω), (A.3) is equivalent to∫

Ω\Ω#

dx

|x|t �
∫

Ω#\Ω

dx

|x|t . (A.4)

Since x ∈ Ω \ Ω# implies |x|� diam(Ω#)
2 , we have∫

Ω\Ω#

dx

|x|t �
(

2

diam(Ω#)

)t ∣∣Ω \ Ω#
∣∣. (A.5)

On the other hand, since x ∈ Ω# \ Ω implies |x| < diam(Ω#)
2 , we have∫

Ω#\Ω

dx

|x|t �
(

2

diam(Ω#)

)t ∣∣Ω# \ Ω
∣∣. (A.6)

By noting |Ω \Ω#| = |Ω# \Ω| and combining (A.5) with (A.6), we obtain (A.4), and then we have proved (A.1). �
A.2. For Theorem 1.3

Next, we shall prove an inequality (3.4), which will be needed to show Lemma 3.1.
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Lemma A.2. It holds

fN(τ)b � fN(bτ) (A.7)

for all N � 2, b � 1 and τ � 0, where fN(τ) := eτ − ∑N−2
j=0

τ j

j ! .

Proof. For N = 2 and N = 3, it is easy to see that (A.7) holds. Now assume that (A.7) is true for N0 � 3. For τ � 0,
let

gN0+1(τ ) := fN0+1(bτ) − fN0+1(τ )b.

Since for any τ > 0 and N � 3,

f ′
N(τ) = eτ −

N−3∑
j=0

τ j

j ! = fN−1(τ ),

we obtain for any τ > 0,

g′
N0+1(τ ) = bf ′

N0+1(bτ) − bfN0+1(τ )b−1f ′
N0+1(τ )

= b
(
fN0(bτ) − fN0+1(τ )b−1fN0(τ )

)
� b

(
fN0(τ )b − fN0+1(τ )b−1fN0(τ )

)
= bfN0(τ )

(
fN0(τ )b−1 − fN0+1(τ )b−1)� 0,

where we use fN0(τ ) � fN0+1(τ ) for τ � 0. Also, we have gN0+1(0) = 0, hence the inequality above yields
gN0+1(τ ) � 0 for τ � 0, that is,

fN0+1(τ )b � fN0+1(bτ)

for all τ � 0. By the induction argument with respect to N � 3, we have (A.7) for all N � 3. �
Finally, we shall prove the compactness of the embedding corresponding to the Caffarelli–Kohn–Nirenberg in-

equality, which will be used to prove Theorem 1.3.

Lemma A.3. Let N � 2 and let (s, t, q) be exponents satisfying either

−∞ < s < t < N and N � q < ∞ or −∞ < s = t < N and N < q < ∞.

Then the embedding

X
1,N
s,rad ↪→ Lq

(
R

N ; |x|−t dx
)

is compact.

Remark. By the Caffarelli–Kohn–Nirenberg inequality in [4], the continuous embedding X
1,N
s,rad ↪→ Lq(RN ; |x|−t dx)

holds for all exponents (s, t, q) satisfying −∞ < s � t < N and N � q < ∞. However, Lemma A.3 fails if s = t and
q = N , which includes the well-known case of the non-compact embedding X

1,N
0,rad = {u ∈ H 1,N (RN);u is radial} ↪→

LN(RN).

Proof of Lemma A.3. The Caffarelli–Kohn–Nirenberg inequality in [4] states that for any N � 2, −∞ < s � t < N

and N � q < ∞, there exists a positive constant C such that the inequality

‖u‖Lq(RN ;|x|−t dx) � C‖u‖
N(N−t)
q(N−s)

LN (RN ;|x|−s dx)
‖∇u‖1− N(N−t)

q(N−s)

LN (RN)
(A.8)

holds for all u ∈ X
1,N
s . For any u ∈ X

1,N
s,rad , we define the radially symmetric function v by the formula

v(x) :=
(

N − s
)N−1

N

ũ
(|x| N

N−s
)
,

N
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where u(x) = ũ(|x|) for x ∈R
N . Then direct computations show that v ∈ H 1,N (RN) and⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖∇v‖LN(RN) = ‖∇u‖LN(RN),

‖v‖LN(RN) =
(

N − s

N

)
‖u‖LN(RN ;|x|−s dx),

‖v‖
Lq(RN ;|x|−

N(t−s)
N−s dx)

=
(

N − s

N

) 1
q
+ N−1

N ‖u‖Lq(RN ;|x|−t dx).

(A.9)

Thus by plugging (A.9) into (A.8) and by letting t̃ := N(t−s)
N−s

∈ [0,N), (A.8) can be transferred equivalently to

‖v‖
Lq(RN ;|x|−t̃ dx)

� C‖v‖
N−t̃

q

LN (RN)
‖∇v‖1− N−t̃

q

LN (RN)

for all radially symmetric function u ∈ H 1,N (RN). Therefore, without loss of generality, we may assume s = 0 in
order to prove Lemma A.3.

When s = t = 0, it is well-known that the embeddings

X
1,N
0,rad = {

u ∈ H 1,N
(
R

N
);u is radial

}
↪→ Lq

(
R

N
)

are compact for all q > N . Thus in what follows, we consider the case 0 < t < N and N � q < ∞. Let (un) ⊂
H 1,N (RN) be a bounded sequence of radially symmetric functions, and take a number p arbitrarily so that 1 < p < N

t
.

By the compactness, up to a subsequence, we have{
un ⇀ u weakly in H 1,N

(
R

N
)
,

un → u strongly in Lqp′(
R

N
) (A.10)

as n → ∞, where we used qp′ > N . For any R > 0, we decompose ‖un − u‖Lq(RN ;|x|−t dx) as∫
RN

|un − u|q dx

|x|t =
∫

{|x|<R}
|un − u|q dx

|x|t +
∫

{|x|�R}
|un − u|q dx

|x|t .

Since t > 0, we see

( ∫
{|x|�R}

|un − u|q dx

|x|t
) 1

q

� R
− t

q ‖un − u‖Lq(RN) � R
− t

q
(‖un‖Lq(RN) + ‖u‖Lq(RN)

)

� CR
− t

q
(‖un‖H 1,N (RN) + ‖u‖H 1,N (Rn)

)
� CR

− t
q (A.11)

for all n ∈ N and all R > 0. On the other hand, by using the Hölder inequality and the latter convergence in (A.10),
we see for any R > 0,

∫
{|x|<R}

|un − u|q dx

|x|t �
( ∫

{|x|<R}
|un − u|qp′

dx

) 1
p′ ( ∫

{|x|<R}
|x|−tp dx

) 1
p

� CR
N
p

−t

( ∫
RN

|un − u|qp′
dx

) 1
p′

→ 0 (A.12)

as n → ∞, where we used 1 < p < N
t

for the local integrability. Thus combining (A.11) with (A.12), we have

lim sup
n→∞

∫
RN

|un − u|q dx

|x|t � CR
− t

q .

Then we have the desired strong convergence in Lq(RN ; |x|−t dx) by letting R → ∞. �



314 M. Ishiwata et al. / Ann. I. H. Poincaré – AN 31 (2014) 297–314
References

[1] S. Adachi, K. Tanaka, A scale-invariant form of Trudinger–Moser inequality and its best exponent, Proc. Amer. Math. Soc. 1102 (1999)
148–153.

[2] F.J. Almgren, E.H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989) 683–773.
[3] C. Bennett, R. Sharpley, Interpolation of Operators, Academic, New York, 1988.
[4] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weights, Compos. Math. 53 (1984) 259–275.
[5] D.M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in R

2, Comm. Partial Differential Equations 17 (1992)
407–435.

[6] L. Carleson, S.-Y.A. Chang, On the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math. (2) 110 (1986) 113–127.
[7] J.L. Chern, C.S. Lin, Minimizers of Caffarelli–Kohn–Nirenberg inequalities on domains with the singularity on the boundary, Arch. Ration.

Mech. Anal. 197 (2010) 401–432.
[8] M. Flucher, Extremal functions for the Trudinger–Moser inequality in 2 dimensions, Comment. Math. Helv. 67 (1992) 471–479.
[9] N. Ghoussoub, X. Kang, Hardy–Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Anal. Non Linéaire 21

(2004) 767–793.
[10] N. Ghoussoub, F. Robert, Concentration estimates for Emden–Fowler equations with boundary singularities and critical growth, IMRP Int.

Math. Res. Pap. 21867 (2006) 1–85.
[11] N. Ghoussoub, F. Robert, The effect of curvature on the best constant in the Hardy–Sobolev inequalities, Geom. Funct. Anal. 16 (2006)

1201–1245.
[12] C.H. Hsia, C.S. Lin, H. Wadade, Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal. 259 (2010) 1816–1849.
[13] M. Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger–Moser type inequalities in R

N ,
Math. Ann. 351 (2011) 781–804.

[14] H. Kozono, T. Sato, H. Wadade, Upper bound of the best constant of a Trudinger–Moser inequality and its application to a Gagliardo–
Nirenberg inequality, Indiana Univ. Math. J. 55 (2006) 1951–1974.

[15] Y. Li, B. Ruf, A sharp Trudinger–Moser type inequality for unbounded domains in R
n, Indiana Univ. Math. J. 57 (2008) 451–480.

[16] K.C. Lin, Extremal functions for Moser’s inequality, Trans. Amer. Math. Soc. 348 (1996) 2663–2671.
[17] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1970) 1077–1092.
[18] S. Nagayasu, H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010)

3725–3757.
[19] T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrodinger equation, Nonlinear Anal. 14 (1990) 765–769.
[20] T. Ogawa, T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrodinger mixed problem, J. Math.

Anal. Appl. 155 (1991) 531–540.
[21] T. Ozawa, Characterization of Trudinger’s inequality, J. Inequal. Appl. 1 (1997) 369–374.
[22] T. Ozawa, On critical cases of Sobolev’s inequalities, J. Funct. Anal. 127 (1995) 259–269.
[23] B. Ruf, A sharp Trudinger–Moser type inequality for unbounded domains in R

2, J. Funct. Anal. 219 (2005) 340–367.

[24] M. Struwe, Critical points of embeddings of H
1,n
0 into Orlicz spaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988) 425–464.

[25] N.S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967) 473–483.
[26] J.L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984) 191–202.

http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4154s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4154s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib414Cs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4253s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib434B4Es1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib43s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib43s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4343s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib436865724Cs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib436865724Cs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib46s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib474Bs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib474Bs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib475231s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib475231s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib475232s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib475232s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib484C576164s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib49s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib49s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4B5357s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4B5357s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4C52s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4Cs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4Ds1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4E57s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4E57s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4F67s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4F674F7As1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4F674F7As1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4Fs1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib4F32s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib52s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib53s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib54s1
http://refhub.elsevier.com/S0294-1449(13)00049-8/bib56s1

	On the sharp constant for the weighted Trudinger-Moser type inequality of the scaling invariant form
	1 Introduction and main results
	2 Proof of Theorem 1.1
	3 Proof of Theorem 1.3
	4 Proof of Theorem 1.5
	Acknowledgement
	References


