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Abstract

Duality methods are used to generate explicit solutions to nonlinear Hodge systems, demonstrate the well-posedness of boundary
value problems, and reveal, via the Hodge–Bäcklund transformation, underlying symmetries among superficially different forms
of the equations.
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1. Introduction

After well over a half-century, the equations of Hodge and Kodaira remain a fruitful approach to the theory of
irrotational fields, which they endow with the rich topological structure of de Rham cohomology. See, e.g., Ch. 7
of [12], or [16], for introductions. A solution to the Hodge–Kodaira equations is a k-form ω which is closed (dω = 0)
and co-closed (δω = 0) under the exterior derivative d , where δ is its formal adjoint.

Most of the interesting classical fields are quasilinear. The nonlinear Hodge theory conjectured by Bers and realized
by Sibner and Sibner [17] introduces Hodge-like equations which model irrotational velocity fields associated with
steady, ideal compressible flow. In that extension, the requirement of classical Hodge theory that the solution ω be
co-closed under exterior differentiation is weakened to the requirement that only the product of ω and a possibly
nonlinear term ρ must have this property.

Classical fields are frequently characterized by vortices. So although most conservative field theories are quasi-
linear, most quasilinear field theories are not conservative (even locally), and it is worthwhile to study the analytic
properties of equations in which the requirement that the solution be closed under exterior differentiation is also
weakened. Thus in a recent paper [9] we studied the invariantly defined system ([13, Sec. VI], [14, Sec. 4])

{
δ
(
ρ(Q)ω

) = 0,

dω = Γ ∧ ω
(1.1)
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for unknown ω ∈ Λk(Ω), k ∈ Z
+, with Ω a smooth open domain in R

n, and continuously differentiable Γ ∈ Λ1(Ω).
Here Q = |ω|2 = ∗(ω ∧ ∗ω), with ∗ denoting the Hodge duality operator ∗ : Λk(Ω) → Λn−k(Ω); ρ is a positive,
Hölder-continuously differentiable function of Q, which is generally given by the physical or geometric context. We
call (1.1) the nonlinear Hodge–Frobenius equations, as they generalize the nonlinear Hodge equations{

δ
(
ρ(Q)ω

) = 0,

dω = 0
(1.2)

introduced in [17]. In this paper we study (1.1) and also variants in which the term Γ in the second equation – the
Frobenius condition – may depend on ω, or in which the co-differential equation assumes a special inhomogeneous
form and ρ = ρ(x,Q) may depend explicitly on x ∈ Ω .

The Frobenius condition represents a weakening of the local conservation hypothesis dω = 0 in system (1.2). The
resulting field is no longer locally conservative, but generates a closed ideal. For this reason, it is completely integrable
(in the sense of Frobenius) for forms of degree or co-degree equal to 1, or for general k under the additional hypothesis
that Γ be exact; see, e.g., [4, Sec. 4-2]. The hypothesis that Γ be exact is automatically satisfied in the case k = 1 or
k = n − 1. If Γ is exact, say Γ = dη for η ∈ Λ0(Ω), solutions to Eqs. (1.1) are locally exact when multiplied by an
integrating factor; that is, they have the local form

eηω = dΨ

for Ψ ∈ Λk−1(Ω); see the discussions in Secs. 2.1 and 2.2 of [9] and in Sec. 1 of [10]. For many applications the
weaker condition

ω ∧ dω = 0 (1.3)

suffices in place of the Frobenius condition; see, e.g., Sec. 1.2 of [9]. In cases for which the Frobenius condition is
used only to imply (1.3), or for cases in which it is interpreted as a condition for an integrating factor, the 1-form Γ

need not be prescribed: any nonsingular Γ will do.
Diverse choices of the mass density ρ arise in models of classical fields. These models are reviewed in [15, Sec. 2.7

and Chs. 5 and 6]. Most classical fields which satisfy quasilinear partial differential equations are vectorial, and
these vectorial solutions correspond via isomorphism to 1-form solutions of (1.1) or (1.2). But occasionally there
are matrix-valued solutions of quasilinear field equations, and some of these correspond to 2-form-valued solutions
of the nonlinear Hodge or Hodge–Frobenius equations. Examples of equations having 1-form solutions include the
continuity equations for the velocity field of a steady, compressible fluid flow [17] and for certain models of shallow
hydrodynamic flow [15]. Examples of equations having 2-form solutions include nonlinear Maxwell’s equations for
electromagnetic fields [11], Born–Infeld fields [20], and certain twisted variants of these [13,19]. The variety of
applications discussed in [15] and the references cited therein suggest that Eqs. (1.1) and (1.2) are rather generic: they
apply, under various additional hypotheses, to a wide variety of models. For this reason, it is worthwhile to study their
analytic properties, as we do here and in [9], without focusing on any particular application.

1.1. Organization of the paper

In Section 2 we derive the existence of solutions to a Hodge–Frobenius system, in which the solution is co-closed
and the Frobenius condition is nonlinear, from the existence of an appropriate class of A-harmonic forms.

In Section 3 we give an algebraic criterion for inverting the operator A. That criterion can be applied also to the
hyperbolic range of the corresponding nonlinear Hodge–Frobenius system. We use this inversion to write an explicit
formula for the solutions to the system and generate a concrete example.

In Section 4 we show that certain superficially different models for classical fields can be shown to be Hodge–
Bäcklund transforms of each other. In that section we transform different types of nonlinear Hodge–Frobenius
systems, including a variational form of these systems, into nonlinear Hodge systems (1.2) of particular type.

In Section 5 we prove the existence and uniqueness of solutions to boundary value problems of Dirichlet and
Neumann type in the elliptic regime, for inhomogeneous nonlinear Hodge–Frobenius systems in which the 1-form
Γ in the Frobenius condition is exact. We do so for both linear and nonlinear Frobenius conditions. The results of
Section 5 are an application of the results obtained in Section 4 and of known results for the conventional nonlinear
Hodge equations (1.2) in the elliptic range.
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2. Relation to A-harmonic forms

It was observed in Section 1 that the Frobenius condition emerges as a natural weakening of the conservation
hypothesis dω = 0. But the Hodge–Frobenius equations also arise naturally from the nonlinear Hodge equations (1.2)
in a completely different way, as a dual, or conjugate form of the equations. The use of conjugate forms in nonlinear
Hodge theory goes back at least to [17]. Dirichlet and Neumann problems for Eqs. (1.2) were introduced in [18].

If u ∈ Λk−1 and v ∈ Λk+1, then the Cauchy–Riemann equations can be written in the form du = δv. More gen-
erally, we may consider A-harmonic extensions. We call the differential forms u ∈ Λk−1 and v ∈ Λk+1 conjugate
A-harmonic forms if they satisfy the equation

A(x,du) = δv, (2.1)

where A : Ω × Λk(Ω) → Λk(Ω) is a differential operator of order 0 and Ω is a domain of Rn; see, e.g., [1] for an
exposition and [5] for analytic properties.

We specify A to be given by

A(x,ω) = A(ω) = ρ
(|ω|2)ω, ω ∈ Λk(Ω), (2.2)

and impose further conditions on A or Ω as we require them. Our immediate goal is to define Hodge–Frobenius fields
in terms of conjugate A-harmonic k-forms. We say that A is invertible if there exists an operator B : Ω × Λk(Ω) →
Λk(Ω) such that

B
(
x,A(x,ω)

) = ω̃,

A
(
x,B(x, ω̃)

) = ω ∀ω, ω̃ ∈ Λk(Ω).

Associated to A is the differential operator Ã of order 1, Ã : Ω × Λk−1(Ω) → Λk(Ω), (x,u) → A(x,du), and
the second order differential equation δÃ(x,u) = 0 (with its inhomogeneous variants), of which the co-differential
equation in (1.1), in the special case of ω exact and ρ(Q) = Qp/2, is the p-harmonic equation.

Proposition 2.1. Let A be given by (2.2), with ρ sufficiently smooth and positive. Assume A to be invertible. Let
u ∈ Λk−1(Ω) and v ∈ Λk+1(Ω) be sufficiently smooth, conjugate A-harmonic forms. Then ω̃ ≡ δv = A(du) ∈ Λk(Ω)

is a solution to the Hodge–Frobenius equations in the form{
δω̃ = 0,

dω̃ = Γ ∧ ω̃
(2.3)

with Γ ≡ d lnρ(|B(ω̃)|2), where B ≡ A−1. Conversely, for any given ω̃ ∈ Λk(Ω) satisfying (2.3), with Γ ≡
d lnρ(|B(ω̃)|2), the k-form ω ≡ B(ω̃) satisfies Eqs. (1.2). If in addition Ω is contractible, then ω̃ = δv, ω = du

for some conjugate A-harmonic forms u ∈ Λk−1(Ω), v ∈ Λk+1(Ω).

Proof. To prove the first assertion we proceed as follows. The co-closedness of ω̃ comes directly from the fact
that the generalized Cauchy–Riemann equations (2.1) are satisfied and that δ2 = 0 on differential forms of class C2.
Furthermore,

du = 1

ρ(|du|2)A(du) = η
(|δv|2)δv, (2.4)

with η(|δv|2) (well) defined by the formula η(|δv|2)ρ(|B(δv)|2) = 1. We conclude that η(|δv|2) > 0, as ρ(|du|2) > 0
by hypothesis. Having set ω̃ ≡ δv, (2.4) implies 0 = d2u = d(η(|ω̃|2)ω̃). This yields the nonlinear Frobenius condition
in (2.3) with η̃(|ω̃|2) ≡ − lnη(|ω̃|2) = lnρ(|B(ω̃)|2).

Conversely, substituting A(ω) = ρ(|ω|2)ω for ω̃ in the first equation in (2.3), one obtains the first equation in (1.2).
Likewise, the second equation in (2.3) can be multiplied by e−η and rewritten as

0 = d
(
ω̃e−η̃(|ω̃|2)) = d

(
A(ω)

1
2

)
= dω.
ρ(|ω| )
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If Ω is a contractible domain, the application of the Poincaré Lemma and its adjoint version to ω and ω̃, respectively,
completes the proof. �

The following proposition gives a partial converse to Proposition 2.1. A systematic approach to the study of the
invertibility of the operator A, leading to a method to construct explicit solutions to Eqs. (1.1), is postponed until
Section 3.

Proposition 2.2. Let η̃ : R+ ∪ {0} → R
+ be a prescribed smooth function and I be an interval such that the function

f : t̃ → t ≡ t̃ exp[−2η̃(t̃ )] restricted to I is 1:1. Let ρ : f (I) → R
+ be defined by ρ(t) = exp[η̃(f −1(t))]. Then for

each ω̃ ∈ Λk(Ω̃) satisfying (2.3) with Γ = d[η̃(|ω̃|2)] there exists a unique ω ∈ Λk(Ω) satisfying A(ω) = ω̃, with
A defined as in (2.2). Such ω also satisfies (1.2) with ρ as prescribed. Conversely, if ω ∈ Λk(Ω) satisfies system
(1.2) with ρ as prescribed, then the differential form ω̃ ≡ A(ω) satisfies (2.3) with Γ = dη̃, η̃ as prescribed. If the
domains Ω and Ω̃ are contractible, our assertions are true with ω replaced by an exact form du and ω̃ replaced
by a co-exact form δv, yielding conjugate A-harmonic forms u, v. Moreover, ω satisfies homogeneous Dirichlet or
Neumann conditions on Ω if and only if ω̃ does as well.

Proof. Let ω̃ satisfy (2.3) with Γ = d[η̃(|ω̃|2)]. Then the differential form ω ≡ exp[−η̃(|ω̃|2)]ω̃ satisfies

A(ω) ≡ ρ
(|ω|2)ω ≡ eη̃(f −1(|ω|2))ω = ω̃.

For ρ as prescribed, suppose that the differential k-forms ω1, ω2 satisfy

ρ
(|ω1|2

)
ω1 = ω̃ = ρ

(|ω2|2
)
ω2, |ωj |2 ∈ f (I).

From this we see that ω1 = ω2 if and only if |ω1| = |ω2|. By taking absolute values and squaring that formula, we also
conclude that |ω1| = |ω2| is the unique inverse image under f of |ω̃|2. Thus ω1 = ω2.

As ω̃ = ρ(|ω|2)ω, homogeneous Dirichlet or Neumann boundary conditions for ω become homogeneous Dirichlet
or Neumann boundary conditions for ω̃.

The remainder of the proof is contained in the proof of Proposition 2.1. �
Remark 2.3. Proposition 2.2 gives a precise correspondence between solutions of the Hodge–Frobenius equations
(2.3) with nonlinear constraint and solutions of (1.2). Such a correspondence provides the basis to obtain existence
and uniqueness theorems for Dirichlet or Neumann problems from analogous theorems for the conventional nonlinear
Hodge theory; see [18]. In Section 4 this correspondence is extended to systems of the form (1.1) under conditions on
Γ and on the density function in (1.1) sufficient to guarantee the ellipticity condition

0 < ρ2(Q) + 2Qρ′(Q)ρ(Q) (2.5)

for the transformed system. It is necessary to assume appropriate smoothness of the boundary of the domain, of the
coefficients of the equation and of ω in order to guarantee the well-posedness of the Dirichlet and Neumann problems;
cf. Section 5, Theorems 5.2, 5.3, and Theorems 1 and 2 of [18].

3. The construction of solutions

We now want to use the operator A defined in (2.2) to prove results which are independent of equation type. In
Proposition 2.1 we assumed the existence of an inverse for the quasilinear coefficient A. In this section we define
conditions under which that hypothesis is satisfied.

Theorem 3.1. Let A be defined via the formula (2.2). Assume that ρ is such that the function

φρ(t) ≡ tρ2(t), (3.1)

when restricted to the connected interval (t1, t2), satisfies

dφρ
> 0 or

dφρ
< 0. (3.2)
dt dt
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Let Λk(Ω)t1,t2 denote the set of differential k-forms ω such that t1 � |ω|2 � t2, and let (r1, r2) be the image under φρ

of the interval (t1, t2). Then

A|Λk(Ω)t1,t2
: Λk(Ω)t1,t2 → Λk(Ω)r1,r2 , (3.3)

and its restriction to Λk(Ω)t1,t2 is invertible with inverse

B : Λk(Ω)r1,r2 → Λk(Ω)t1,t2 , ω̃ → ω̃/ρ
(
ψ

(|ω̃|2)),
with ψ ≡ φρ |(t1,t2)

−1 : (r1, r2) → (t1, t2). (3.4)

Proof. Condition (3.2) implies by monotonicity that there exists an inverse ψ : (r1, r2) → (t1, t2) of the map φρ

defined in (3.1) on the interval (t1, t2). Condition (3.3) is satisfied because
∣∣A(ω)

∣∣2 ≡ ∣∣ρ(|ω|2)ω∣∣2 = ρ2(|ω|2)|ω|2 ≡ φρ

(|ω|2),
with t1 � |ω|2 � t2. Similarly, for k-forms ω̃ ∈ Λk(Ω)τ1,τ2 and B defined by the formula in (3.4) one has

∣∣B(ω̃)
∣∣2 = |ω̃|2

ρ2(ψ(|ω̃|2)) = |ω̃|2ψ(|ω̃|2)
ρ2(ψ(|ω̃|2))ψ(|ω̃|2) . (3.5)

The denominator in (3.5) can be rewritten as

ψ
(|ω̃|2)ρ2(ψ(|ω̃|2)) = φρ

(
ψ

(|ω̃|2)) = |ω̃|2, (3.6)

yielding |B(ω̃)|2 = ψ(|ω̃|2) ∈ (t1, t2). That is, B : Λk(Ω)r1,r2 → Λk(Ω)t1,t2 . For k-forms ω ∈ Λk(Ω)t1,t2 we have

B
(
A(ω)

) = A(ω)

ρ(ψ(|A(ω)|2)) = ρ(|ω|2)ω
ρ(ψ(ρ2(|ω|2)|ω|2)) = ρ(|ω|2)ω

ρ(ψ(φρ(|ω|2))) = ω.

Likewise, for k-forms ω̃ ∈ Λk(Ω)r1,r2 we have

A
(
B(ω̃)

) = ρ
(∣∣B(ω̃)

∣∣2)
B(ω̃) = ρ

( |ω̃|2
ρ2(ψ(|ω̃|2))

)
ω̃

ρ(ψ(|ω̃|2)) = ω̃,

in which, for the last equality, we have divided (3.6) by ρ2(ψ(|ω̃|2)) and substituted the result into this equation. This
concludes the proof. �

Note that the conditions in (3.2) are precisely the conditions that make the system (1.2), and also (1.1) with linear
Frobenius condition, either elliptic (if dφρ/dt > 0) or hyperbolic (if dφρ/dt < 0); cf. (2.5).

Remark 3.2. We have divided by ρ at various steps of the proof of Theorem 3.1. Clearly this can be done if ρ =
ρ(t) > 0 ∀t ∈ R

+ ∪ {0}. Nonetheless, the milder assumption ρ(ψ(|ω̃|2)) 
= 0 is sufficient for the purpose of finding
smooth solutions to the equation A(ω) = ω̃ with prescribed ω̃. In some applications, this assumption can be weakened
furthermore; cf. [10].

Theorem 3.1 can be used to construct explicit k-form-valued solutions to the nonlinear co-differential equation
δ(ρ(|ω|2)ω) = 0 in (1.1). For a detailed exposition of the method and the construction of various examples, see [10].
Briefly, one argues by the Poincaré Lemma that a solution ω on a contractible domain of Rn always admits a “stream
(n − k − 1)-form” f , that is, a form f satisfying ρ(Q)ω = ∗df . Theorem 3.1 can then be applied directly to obtain
the solution formula

ω = ∗df

ρ(ψ(|df |2)) , (3.7)

where ψ denotes the inverse(s) of the function φρ given by (3.1). The classical solutions ω are well defined except
possibly at the sonic hypersurface dividing the elliptic from the hyperbolic regime. The singular set will depend on f ,
ρ and ψ . Sometimes it is possible to define ω with continuity, or even higher regularity, across the sonic hypersurface;
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cf. [10, Sec. 5.1.1]. In general such a property is not achieved (see Ch. 6 of [15] and references cited therein). On
non-contractible domains, one can still write (3.7) and produce examples of solutions to the co-differential equation
in (1.1). More generally, one can replace the exact forms df in (3.7) by prescribed closed (n − k)-forms. Satisfaction
of the Frobenius condition for some Γ can be shown and is equivalent to the existence of an integrating factor in the
cases k = 1, n − 1; cf. [10].

As an example, let us consider system (1.1) with prescribed density ρ(Q) = |Q − 1|−1/2, Q 
= 1, for a differential
form of degree 2 in 4 dimensions. This choice of ρ corresponds to the Euclidean Born–Infeld model if Q < 1 and
to the Lorentzian Born–Infeld model if Q > 1. All non-cavitating classical solutions ω can be expressed by (3.7) on
contractible domains Ω . Cavitating solutions may be expressed by (3.7) as a limit. In this example, the function φρ

appearing in (3.1) is

φρ(Q) = Q

|Q − 1| , Q 
= 1,

with inverses ψ+ ≡ [φρ |[0,1)
]−1 : [0,∞) → [0,1), ψ− ≡ φρ

−1
|(1,∞)

: (1,∞) → (1,∞), given by

ψ± : ξ → ξ

ξ ± 1
.

Corresponding to these inverses of φρ , one obtains the families of solutions

W± =
{
ω± = ∗df√|df |2 ± 1

with f ∈ Λ1(Ω)

}
, (3.8)

with the solutions in W+ being defined (and uniformly bounded) for smoothly prescribed generalized stream
1-forms f , and the solutions in W− requiring the additional condition |df | > 1. The family W− contains unbounded
solutions corresponding to choices of generalized stream forms which satisfy |df | = 1 at points of the domain Ω . One
may also prescribe generalized stream forms f such that |df | → ∞ when approaching a smooth manifold, say γ∞,
contained in Ω . As |ω±| → 1 when approaching γ∞, one may in some cases patch together the two types of solutions
with some regularity. But the co-differential equation in (1.1) would not be satisfied on γ∞ (as ρ would blow up).
Differential forms ω+ ∈ W+ and ω− ∈ W− that satisfy a linear Frobenius condition would then solve (1.1) in the
elliptic and hyperbolic regime, respectively.

4. Hodge–Bäcklund transformations of solutions

One finds in the literature a bewildering redundancy of choices for the mass density ρ; see Sec. 1 of [7], Sec. 2
of [8], and the pairs of densities discussed in [15, Sec. 2.7 and Ch. 6], in connection with the Born–Infeld and ex-
tremal surface equations. It is natural to wonder whether there is a mathematical operation underlying the varieties of
density. In this section we extend Theorem 6.1 of [9], which related two particular densities by an application of the
Hodge–Bäcklund transformation; see also the special cases studied in [2,3,6,19,20]. A different motivation for seeking
a relation between pairs of densities comes from the fact that when we introduce Hodge–Bäcklund transformations we
acquire an inhomogeneous right-hand side which has a natural variational interpretation. In fact, the Euler–Lagrange
equation for the nonlinear Hodge energy

ENH = 1

2

∫
M

Q∫
0

ρ(s) ds dM, (4.1)

where M is an n-dimensional Riemannian manifold and Γ is prescribed, is the inhomogeneous equation (cf.
[9, Sec. 5.1])

δ
[
ρ(Q)ω

] = (−1)n(k+1) ∗ (
Γ ∧ ∗ρ(Q)ω

)
.

Definition 4.1. We define the pair of continuously differentiable densities (ρ, ρ̂) to be a dual pair if ρ : I ⊂ R
+ ∪

{0} → R
+, ρ̂ : Î ≡ φρ(I ) → R

+, with φρ : t ∈ I → t̂ ≡ tρ2(t), and the pair (ρ, ρ̂) satisfies the identity

ρ(t)ρ̂( t̂ ) ≡ 1. (4.2)



A. Marini, T.H. Otway / Ann. I. H. Poincaré – AN 31 (2014) 339–348 345
Definition 4.1 implies that the functions φρ and φ̂ρ̂ , defined analogously, are inverses of one another; thus both
are 1:1. In fact, by squaring and multiplying by t throughout, one obtains t = tρ2(t)ρ̂2( t̂ ) = t̂ ρ̂2( t̂ ) = φ̂ρ̂ ( t̂ ). There-
fore, the relation of duality defined above is symmetric. For the same reason, ellipticity of the system (1.1) or (1.2) is
preserved under the transformation ρ → ρ̂. Moreover, the relation (4.2) defines ρ̂ in terms of ρ and vice versa.

An example of a dual pair of densities is the pair (ρ, ρ̂), with ρ(t) = 1/
√

1 + t – associated in the applications
with the Born–Infeld model and with the minimal surface equation – and ρ̂(t) = 1/

√
1 − t with t < 1, associated with

the maximal surface equation. The density ρ(t) = 1/
√

t − 1 with t > 1 is self-dual and is associated with extremal
surfaces in Minkowski space.

We find in the following proposition that systems having the form (4.3) can be related to each other by Hodge–
Bäcklund transformations.

Proposition 4.2. Let Σ , Γ be given, continuous differential 1-forms, (ρ, ρ̂) be a prescribed dual pair of densities.
Then the k-form ω satisfies the nonlinear Hodge–Frobenius system{

d ∗ (
ρ
(|ω|2)ω) = Σ ∧ ∗(

ρ(Q)ω
)
,

dω = Γ ∧ ω
(4.3)

if and only if the (n − k)-form ξ ≡ ∗(ρ(|ω|2)ω) satisfies the dual system{
d ∗ (

ρ̂
(|ξ |2)ξ) = Γ ∧ ∗(

ρ̂
(|ξ |2)ξ)

,

dξ = Σ ∧ ξ.
(4.4)

Proof. Multiplying the definition ξ ≡ ∗(ρ(|ω|2)ω) by ρ̂(|ξ |2) and using (4.2), we obtain ∗ρ̂(|ξ |2)ξ = ∗n−k ∗k ω ≡
σkω, where the value of σk = ±1 depends on the order k of the differential form ω and on the dimension n of the
domain Ω . By the second equation in (4.3) this yields

d
(∗ρ̂

(|ξ |2)ξ) = d(σkω) = σk dω = (σk)
2Γ ∧ ∗(

ρ̂
(|ξ |2)ξ) = Γ ∧ ∗(

ρ̂
(|ξ |2)ξ)

,

which is the first equation in the system (4.4). The second equation in (4.4) is the first equation in the system (4.3)
with a change in notation. �

If Γ = Σ ≡ 0, Proposition 4.2 yields the standard Hodge duality result for the conventional nonlinear Hodge
equations (1.2); see [5,17].

Theorem 4.3. Let η, ζ : I ⊂ R
+ ∪ {0} → R

+ ∪ {0} be prescribed continuously differentiable functions, with the
additional hypothesis on η that the function fη : t ∈ I → t exp[−2η(t)] ∈ R

+ ∪ {0} be invertible with inverse gη.
Let the terms Σ , Γ and the mass density ρ be prescribed by Σ = d[ζ(|ω|2)], Γ = d[η(|ω|2)], ρ = ρ1(x, |ω|2), for
|ω|2 ∈ I in (4.3). Then for every classical solution ω1 of system (4.3) there is a classical solution ω0 of the conventional
nonlinear Hodge equations (1.2) with mass density ρ0(x, |ω0|2), where ρ0 depends on ρ1, η and ζ and ω0 is related
to ω1 by C1 conformal transformations. The ellipticity condition for system (1.2) holds if and only if g′

η and ∂tφρ1e
−ζ

have the same sign. The converse also holds.

Proof. Let ω1 be a differential form satisfying |ω1|2 ∈ I and ρ = ρ1(x, |ω1|2) be a prescribed density function. Define

ω0 = e−η(|ω1|2)ω1. (4.5)

Then |ω0|2 ∈ f (I) and |ω1|2 = gη(|ω0|2). This enables us to define a density function

ρ0
(
x, |ω0|2

) = eη(gη(|ω0|2))−ζ(gη(|ω0|2))ρ1
(
x,gη

(|ω0|2
))

. (4.6)

Conversely, given a differential form ω0 satisfying |ω0|2 ∈ f (I), a prescribed density function ρ = ρ0(x, |ω0|2), and
functions η and ζ as defined in the hypotheses of this theorem, one can rewrite definition (4.5) as

ω1 = eη(gη(|ω0|2))ω0,
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and define ω1 in terms of ω0. Likewise, formula (4.6) can be rewritten as

ρ1
(
x, |ω1|2

) = eζ(|ω1|2)−η(|ω1|2)ρ0
(
x,fη

(|ω1|2
))

,

defining ρ1 in terms of ρ0.
It is easily seen that the differential form ω0 satisfies system (1.2) with density function ρ0(x, |ω0|2) if and only

if ω1 satisfies system (4.3) with density function ρ1(x, |ω1|2) and coefficients η and ζ as in the hypotheses of the
theorem. In fact,

eη dω0 = eη d
(
e−ηω1

) = −dη ∧ ω1 + dω1, with η = η
(|ω1|2

) = η
(
gη

(|ω0|2
))

,

and

eζ d ∗ (ρ0ω0) = eζ d ∗ (
e−ζ ρ1ω1

) = −dζ ∧ ∗(ρ1ω1) + d ∗ (ρ1ω1), with ζ = ζ
(|ω1|2

)
.

Finally, the ellipticity condition for system (1.2) with ρ = ρ0 is

∂φρ0(x, t̂ )

∂t̂
> 0, with φρ0(x, t̂ ) = t̂ρ2

0(x, t̂ ), t̂ ∈ fη(I ).

Squaring both sides of (4.6) and multiplying by t̂ , one obtains

φρ0(x, t̂ ) = t̂ρ2
0(x, t̂ ) = t̂ e2η(gη( t̂ ))

(
ρ1

(
x,gη( t̂ )

)
e−ζ(gη( t̂ ))

)2

= t̂ e2η(t)
(
ρ1(x, t)e−ζ(t)

)2 = t
(
ρ1(x, t)e−ζ(t)

)2 = φρ1e
−ζ (x, t), with t = gη( t̂ ).

Thus,

∂φρ0(x, t̂ )

∂t̂
= ∂φρ1e

−ζ (x, t)

∂t
g′

η( t̂ ), with t = gη( t̂ ). �
Proposition 4.4. Let η, ζ : Ω → R be prescribed continuously differentiable functions. Then for every classical so-
lution ω1 of (4.3) with mass density ρ1, coefficients Σ = dζ and Γ = dη, there is a classical solution ω0 of the
nonlinear Hodge equations (1.2) with density ρ0. Here ρ0 depends on ρ1, η and ζ ; ω0 is related to ω1 by C1 confor-
mal transformations. The converse also holds. Ellipticity is preserved by this correspondence.

Proof. Given a k-form ω1 and a density function ρ1(|ω1|2), define

ω0 = e−η(x)ω1 and ρ0
(
x, |ω0|2

) = eη(x)−ζ(x)ρ1
(
e2η(x)|ω0|2

)
.

If ω1 satisfies (4.3) with mass density ρ1 and coefficients Σ and Γ as in the hypotheses of the proposition, then ω0

satisfies (1.2) with density ρ0. In fact,

dω0 = d
(
e−ηω1

) = e−η(−dη ∧ ω1 + dω1) = 0,

d ∗ (ρ0ω0) = d
(
e−ζ ∗ ρ1ω1

) = e−ζ
(−dζ ∧ ∗(ρ1ω1) + d ∗ (ρ1ω1)

) = 0.

The converse, for prescribed ω0 and ρ0 holds with ω1 and ρ1 defined by

ω1 = eη(x)ω0 and ρ1
(
x, |ω1|2

) = eζ(x)−η(x)ρ0
(
e−2η(x)|ω1|2

)
. �

The prescription η(x) = ζ(x) in Proposition 4.4, yielding the simpler relation between densities ρ0 =
ρ1(exp[2η(x)]|ω0|2), corresponds to the variational equations for the nonlinear Hodge–Frobenius theory for gradient-
recursive k-forms (that is, with prescribed exact Γ ).
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5. Boundary value problems

Theorem 4.3 – with nonlinear Frobenius condition – and Proposition 4.4 allow us to extend the existence and
uniqueness theorem for the Dirichlet and Neumann problems established in [18] for the conventional nonlinear Hodge
theory (proven in their strongest formulation for 1-forms) to system (4.3) for gradient-recursive forms. For this ap-
plication we use the results in [18] in their general formulation for density functions which may depend explicitly
on x. Here M denotes an oriented, finite Riemannian manifold of dimension n with C∞ boundary [5]. The following
theorems correspond to Theorems 1, 2 in [18]. We establish the following definition.

Definition 5.1. The triplet of functions (ρ, ζ, η) is said to be an admissible system if the following conditions hold:
(a) fη : t ∈ R

+ ∪ {0} → t̂ ≡ t exp[−2η(t)] ∈ R
+ ∪ {0} is 1:1 and onto; (b) ρ0 ≡ ρ(x, t) exp[η(t) − ζ(x, t)] ∈ [k,1/k]

for some constant k > 0, ∀(x, t); (c) there exists T > 0 s.t. (∂tφρe−ζ )g′
η > 0, ∀x, ∀t ∈ (0, T ); here gη denotes the

inverse of fη. The sonic speed associated with an admissible system (ρ, ζ, η) is Qs ≡ sup{T } such that (c) is satisfied.
A k-form ω is said to be subsonic if maxx∈M |ω|2 < Qs .

Following [18], the inhomogeneous Dirichlet boundary data are given by an element of the space D = kerd ⊕
C1+α(M̄), while inhomogeneous Neumann data are given by an element of the space N = kerd ⊕N2, with N2 = ker δ
if n � 3, N2 = 0 if n > 3. We denote by T ω, Nω respectively, the restriction to the boundary of the tangential
component, normal component respectively, of ω.

Theorem 5.2. Let (ρ, ζ, η) be an admissible system of class C2+α in x and C1+α in t , with sonic speed Qs . There is
an open connected set O ∈ D containing the origin such that for each pair of 1-forms (γ, σ ) ∈ O, there is a unique
subsonic 1-form ω ∈ C1+α(M̄) having the same relative periods as γ , satisfying

⎧⎨
⎩

d ∗ (
ρ
(|ω|2)ω) = dζ ∧ ∗(

ρ(Q)ω
) + d ∗ σ,

dω = dη ∧ ω,

T
(
e−η(|ω|2)ω

) = T γ on ∂M.

(5.1)

Moreover, for any given continuous path (γ (τ ), σ (τ )) on D, the solution ω(τ) will also depend continuously on τ in
the uniform norm and, either is subsonic ∀τ or there exists a number τs such that supx∈M |ω|2(τ ) → Qs as τ → τs .

Proof. By Theorem 4.3, system (5.1) is transformed into

⎧⎨
⎩

d ∗ (
ρ0

(
x, |ω0|2

)
ω0

) = d ∗ σ,

dω0 = 0,

T ω0 = T γ on ∂M,

(5.2)

with ρ0(x, t̂ ) = exp[η(g( t̂ )) − ζ(x, g(t̂))]ρ(x, g( t̂ )). By Theorem 4.3, ρ0 is admissible as defined in [18]; that is,
ρ0(x, t) ∈ [k,1/k] and ∂t̂φρ0 > 0 ∀t̂ ∈ (0, fη(T )). Therefore, the conclusions in Theorem 1 of [18] extend to (5.1).
By Theorem 4.3 the 1-form ω = exp[η(g(|ω0|2))]ω0 is the unique solution to (5.1) as required. �
Theorem 5.3. Let (ρ, ζ, η) be an admissible system of class C2+α in x and C1+α in t , with sonic speed Qs . There is
an open connected set O ∈ N containing the origin such that for each pair of 1-forms (γ, ν) ∈ O, there is a unique
subsonic 1-form ω ∈ C1+α(M̄) having the same absolute periods as γ , satisfying

⎧⎨
⎩

d ∗ (
ρ
(
x, |ω|2)ω) = dζ ∧ ∗(

ρ(Q)ω
)
,

dω = dη ∧ ω,

N
(
ρe−ζ ω

) = Nν on ∂M.

(5.3)

Moreover, for any given continuous path (γ (τ ), ν(τ )) on O, the same conclusions as in Theorem 5.2 hold for the path
of solutions ω(τ).
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Proof. By Theorem 4.3, system (5.3) is transformed into⎧⎨
⎩

d ∗ (
ρ0

(
x, |ω0|2

)
ω0

) = 0,

dω0 = 0,

N(ρ0ω0) = Nν on ∂M,

(5.4)

with ρ0(x, t̂ ) = exp[η(g( t̂ )) − ζ(x, g(t̂))]ρ(x, g( t̂ )), satisfying the hypotheses of Theorem 2 of [18]. Again, by
Theorem 4.3 ω = exp[η(g(|ω0|2))]ω0 is the unique solution to (5.3) as required. �
Remark 5.4. For a linear Frobenius condition, that is, if η = η(x), simpler versions of Theorems 5.2 and 5.3 hold and
their proofs are a direct application of Proposition 4.4 to Theorems 1, 2 in [18]. For simplicity, we have not addressed
the question on whether the surjectivity hypothesis on fη can be removed in Theorems 5.2 and 5.3.

Remark 5.5. It is natural to expect that, at least in the case of the variational equation (4.1), Theorem 4.3 and Propo-
sition 4.4 would lead to decomposition theorems for gradient-recursive differential forms, mirroring the conventional
nonlinear Hodge decomposition theorems. Furthermore, the duality result of Proposition 4.2 has potential importance
in extending nonlinear Hodge decomposition theorems to include differential forms satisfying the nonlinear Hodge–
Frobenius equations that are not necessarily gradient-recursive. Because all recursive forms of degree or co-degree 1
are gradient-recursive, this investigation would be of special interest for applications to forms of degree k 
= 1, n − 1.
In this regard, we observe that the Frobenius theorem for 1-forms, stating that 1-forms that generate a closed ideal are
integrable, does not extend to k-forms with k 
= 1, n − 1.
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