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Abstract

We study the new geometric flow that was introduced in the paper [12] of Topping and the author that evolves a pair of map and
(domain) metric in such a way that it changes appropriate initial data into branched minimal immersions. In the present paper we
focus on the existence theory as well as the issue of uniqueness of solutions. We establish that a (weak) solution exists for as long
as the metrics remain in a bounded region of moduli space, i.e. as long as the flow does not collapse a closed geodesic in the domain
manifold to a point. Furthermore, we prove that this solution is unique in the class of all weak solutions with non-increasing energy.
This work complements the paper of Topping and the author [12] where the flow was introduced and its asymptotic convergence
to branched minimal immersions is discussed.
© 2013

Résumé

Nous étudions le nouveau flot géométrique introduit dans l’article [12] de Topping et de l’auteure, qui transforme un couple
formé d’une application d’une surface vers une variété riemannienne et d’une métrique riemannienne du domaine. Ce flot change
des données initiales appropriées en des immersions minimales ramifiées. Nous prouvons qu’une solution faible existe tant que le
flot ne contracte pas une géodésique fermée du domaine en un point. De plus, nous montrons que cette solution est unique dans
la classe des solutions faibles avec énergie décroissante. Ce travail complète l’article de Topping et de l’auteure [12] où le flot est
introduit et où sa convergence asymptotique est étudiée.
© 2013

1. Introduction

Let M be a smooth closed orientable surface and let (N,GN) be a (fixed) closed smooth Riemannian manifold of
arbitrary dimension that we view as being isometrically immersed in R

K for some K ∈ N.
For g a Riemannian metric on M and a map u : (M,g) → (N,GN) the Dirichlet energy is defined as

E(u,g) := 1

2

∫
M

|du|2 dvg.
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We remark that (u, g) is a critical point of E if and only if u is harmonic and weakly conformal, i.e. a branched
minimal immersion or a constant map. In the present paper we establish the existence theory for the natural gradient
flow of E (considered as a function of both the map and the domain metric) which was introduced in [12]. We refer
to this joint paper of Topping and the author for the construction and the geometric background of this flow, but for
convenience here recall the main points that led to the definition in [12].

We consider the negative gradient flow of E considered as a function of both the map and the domain metric, but
taking into account the symmetries of E, that is the invariance under conformal variations of the domain as well as
under the pull-back by diffeomorphisms applied simultaneously to the metric and the map component. That is we
consider E and its gradient flow on the set

A= {[
(u, g)

]; g ∈Mc, u ∈ C∞(M,N)
}

of equivalence classes where we identify (u, g) ∼ (u ◦ f,f ∗g) for smooth diffeomorphisms f : M → M homotopic
to the identity. Here Mc stands for the set of smooth metrics of constant (Gauss-)curvature c = 1,0,−1 for surfaces
of genus γ = 0,1 respectively γ � 2, with unit area in case γ = 1.

The tangent space of Mc splits orthogonally into a horizontal part consisting of the real parts of holomorphic
quadratic differentials and a vertical part along the fibres of the action of diffeomorphisms on Mc, i.e. the space
of Lie-derivatives of the metric, compare Lemma 2.5 below. This canonical splitting allows us in [12] to represent
solutions of the L2-negative gradient flow of E on A by the solutions of the system

∂tu = τg(u), (1.1a)

dg

dt
= η2

4
Re

(
P H

g

(
Φ(u,g)

))
. (1.1b)

Here τg(u) = trg(∇g(du)) = �gu + Ag(u)(∇u,∇u), A the second fundamental form of N ↪→ R
K , denotes the

tension field of u : (M,g) → (N,GN) and Φ(u,g) stands for the Hopf-differential, i.e. the quadratic differential given
in conformal coordinates z = x+ iy of (M,g) as Φ(u,g) = φ dz2 for φ = |ux |2 −|uy |2 −2i〈ux,uy〉. Furthermore P H

g

denotes the L2-orthogonal projection from the space of quadratic differentials onto the finite dimensional subspace
of holomorphic quadratic differentials on (M,g). Finally η > 0 is a free coupling constant related to the choice of
L2-metric on A.

As the main result of this paper we prove the following existence and uniqueness theorem.

Theorem 1.1. To any given initial data (u0, g0) ∈ C∞(M,N) × Mc there exists a weak solution (u, g) of (1.1)
defined on a maximal interval [0, T ), T � ∞, that satisfies the following properties:

(i) The solution (u,g) is smooth away from at most finitely many singular times Ti ∈ (0, T ) at which ‘harmonic
spheres bubble off’. More precisely as t ↗ Ti energy concentrates at a finite number of points S(Ti) ⊂ M and
suitable rescalings of the maps u(t) around points in S(Ti) converge as t ↗ Ti to (a bubble-tree of) non-trivial
harmonic maps from R

2 ∪ {∞} ∼= S2 to N .
(ii) As t → Ti the maps u(t) converge weakly in H 1 and smoothly away from the set S(Ti) to a limit u(Ti) ∈

H 1(M,N). Furthermore, the metrics g(t) converge smoothly to an element g(T ) ∈ Mc; in fact, the flow of
metrics is Lipschitz-continuous with respect to all Cm metrics on Mc across singular times.

(iii) The energy t �→ E(u(t), g(t)) is non-increasing.
(iv) The solution exists as long as the metrics do not degenerate in moduli space; i.e. either T = ∞ or the length


(g(t)) of the shortest closed geodesic in (M,g(t)) converges to zero as t ↗ T .

Furthermore, the solution is uniquely determined by its initial data in the class of all weak solutions with non-
increasing energy.

Definition 1.2. We call (u,g) ∈ H 1
loc(M × [0, T ),N) × C0([0, T ),M−1) a weak solution of (1.1) if u solves (1.1a)

in the sense of distributions and if g is piecewise C1 (viewed as a map from [0, T ) into the space of symmetric (0,2)

tensors equipped with any Ck metric, k ∈N) and satisfies (1.1b) away from times where it is not differentiable.
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We remark that the assumption on the initial data in Theorem 1.1 can be weakened to u0 ∈ H 1(M,N) with the
resulting solution being smooth away from finitely many times, possibly including T1 = 0.

On intervals where the obtained solution (u, g) is smooth, the energy decays by

d

dt
E

(
u(t), g(t)

) = −
∫
M

∣∣τg(u)
∣∣2

dvg − η2

16

∥∥Re
[
P H

g

(
Φ(u,g)

)]∥∥2
L2(M,g(t))

, (1.2)

so that if T = ∞, both the tension field as well and the holomorphic part of the Hopf-differential converge to zero
as t → ∞ suitably. In the joint paper [12] of Topping and the author we indeed prove that if the metric does not
degenerate even as t → ∞, then the full Hopf-differential (sub)converges to zero, resulting in a limit that is both
harmonic and weakly conformal and thus, if non-constant, a minimal immersion away from at most finitely many
branch-points [6]. More precisely, in [12], we prove

Theorem 1.3. (See [12, Thm. 1.4].) In the setting of Theorem 1.1, if the length 
(g(t)) of the shortest closed geodesic
of (M,g(t)) is uniformly bounded below by a positive constant, then there exist a sequence of times ti → ∞ and a
sequence of orientation-preserving diffeomorphisms fi : M → M such that

f ∗
i g(ti) → ḡ and u(ti) ◦ fi → ū

converge to a metric ḡ ∈ Mc and a branched minimal immersion ū or a constant map. Here the convergence of
metrics is smooth, while the maps converge weakly in H 1(M,N) and strongly in W

1,p
loc (M\S) for any p ∈ [1,∞)

away from a finite set of points where energy concentrates.

For suitable initial data, such as incompressible maps, a degeneration of metrics can be excluded so that the flow
(sub)converges (up to reparametrisations) to a branched minimal immersion. In [12] we thus recover the well known
results on the existence of branched minimal immersions with given action on the level of fundamental groups of
Schoen and Yau [15] and Sacks and Uhlenbeck [14] with a flow approach.

Solutions of (1.1) that degenerate in moduli space as time tends to infinity are analysed in a recent paper [13] by
Topping, Zhu and the author.

Remark 1.4. For surfaces of genus less than two the structure of the flow (1.1) is simplified considerably and the
existence of solutions is known; for spheres the space of holomorphic quadratic differentials is trivial so (1.1) reduces
to the harmonic map flow of Eells and Sampson [3] for which existence of global weak solutions was proven in the
seminal paper of Struwe [16]. For maps from a surface of genus 1 it is shown in [12] that (1.1) agrees with a flow
that was introduced and studied by Ding, Li and Liu in [1]. In this special case the flow of metrics is reduced to
two scalar ODEs for parameters describing a global horizontal submanifold of the space of metrics. Furthermore, the
completeness of Teichmüller space prevents a degeneration of the metric at finite times, leading to the existence of
global (weak) solutions for all initial data as obtained in [1].

In this paper we thus focus on the analysis of the flow from general surfaces of genus γ � 2.
Outline of the paper. The paper consists of three main parts. In the first section we study the properties of hori-

zontal curves, i.e. curves that move in the direction of the real part of holomorphic quadratic differentials. Using ideas
from Teichmüller theory, we obtain strong estimates for all horizontal curves, and thus in particular for the metric
component of the flow, under the sole condition that we stay away from the boundary of moduli space.

In the second section we prove the existence of solutions as claimed in Theorem 1.1. First we obtain short-time
existence of smooth solutions based on the properties of horizontal curves derived in the first section. In a second step
we then analyse the possible finite time singularities of the flow. On the one hand, we prove that the only way for the
metric component to become singular is by a degeneration in moduli space. On the other hand, we obtain that as long
as the metric component remains regular, the behaviour of solutions to (1.1a) is similar to the one of solutions of the
harmonic map flow as described by Struwe in [16]; the singularity is caused by the bubbling off of harmonic spheres
and the flow can be continued past the singular time by a weak solution.

Finally we consider the question of uniqueness. We show uniqueness not just for solutions of (1.1) satisfying prop-
erties (i)–(iii) of Theorem 1.1 but in the general class of weak solutions with non-increasing energy. This represents
the analogue of the uniqueness results [4] and [5] of Freire for the harmonic map flow.
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Remark 1.5. For general curves within M−1, satisfying an L2 bound on the velocity such as (1.2), singularities can
form without the metrics degenerating in moduli space. For the flow

∂tu = τg(u),
dg

dt
= η2

4
Re

(
Φ(u,g)

)
, (1.3)

which we would obtain if we were to consider the gradient flow of E without taking into account the symmetries, we
thus would not have a characterisation of the maximal existence time of solutions as statement (iv) of Theorem 1.1.
For (1.3) we thus could not expect to obtain the global solutions needed to evolve pairs (u, g) to critical points of the
energy, i.e. to branched minimal immersions, even for incompressible initial data.

2. Horizontal curves

We consider general horizontal curves, that is curves moving in the direction

d

dt
g = Re

(
Ψ (t)

)
of holomorphic quadratic differentials Ψ (t) = ψ(t) dz2 on (M,g(t)), z = z(t) a complex coordinate on (M,g(t)).
The key for the analysis of such curves is a good understanding of the dependence on the metric g ∈ M−1 of the
horizontal space

H(g) := {
Re(Φ): Φ = φ dz2 holomorphic quadratic differential on (M,g)

}
and of the corresponding L2-orthogonal projection P H

g . What we essentially need is a quantified version of the idea
that a smooth variation of the metric leads to a smooth variation of the complex structure, which in turn results in a
smooth change of the space of holomorphic quadratic differentials and of P H

g .
We remark that there are several equivalent points of view that one can take to study horizontal tensors and curves

as well as to study the flow (1.1). Here we follow the differential geometrical approach to Teichmüller theory as
presented in the book of Tromba [18]. We view the space of horizontal tensors as a subspace H(g) of the space
Sym2(M) of all real symmetric (0,2) tensors of class L2, with H(g) characterised by

H(g) = {
h ∈ Sym2(M): trg(h) = 0 and δgh = 0

}
,

δg the divergence operator (induced by the Levi-Civita connection ∇g). We then consider the projection

Pg : Sym2(M) → H(g)

that is orthogonal with respect to the L2(M,g)-inner product

〈k,h〉L2(M,g) :=
∫
M

gijglmkilhjm dvg.

This projection Pg , for which we shall derive an explicit formula later on, is related to the projection P H
g from the

space of quadratic differentials to the space of holomorphic quadratic differentials by

Pg

(
Re

(
ψ dz2)) = Re

(
P H

g

(
ψ dz2)) (2.1)

for any quadratic differential ψdz2 on (M,g).
We first remark that the set of hyperbolic metrics M−1 with smooth coefficients (in the given coordinate charts) is

not a manifold. On the other hand for any s > 3 the set Ms
−1 of hyperbolic metrics with coefficients in the Sobolev

space Hs(M) is a smooth submanifold of the (half-)space of all Hs metrics on M , see [18, Theorem 1.6.1].
We shall think of the projection Pg as a map from this Banach manifold Ms

−1 into the space L(Sym2(M),TMs
−1)

of linear functions mapping symmetric (0,2)-tensors into the tangent bundle of Ms
−1 and prove that it is locally

Lipschitz.

Proposition 2.1. For any smooth hyperbolic metric g0 ∈ M−1 and every s > 3 there exist a neighbourhood W of g0
in the Banach manifold Ms

−1 and a constant C = C(g0, s) < ∞ such that the following holds true: For every tensor

k ∈ Sym2(M) and every curve g ∈ C1([0, T ),Ms
−1) contained in W we have∥∥Pg(k)

∥∥
s � C · ‖k‖L2(M,g) (2.2)
H
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and ∥∥∥∥ d

dt
Pg(t)(k)

∥∥∥∥
Hs

� C ·
∥∥∥∥ d

dt
g(t)

∥∥∥∥
Hs

· ‖k‖L2(M,g). (2.3)

Here and in the following the Sobolev norms ‖ · ‖Hs are to be computed in fixed local coordinate charts of M .
Based on this local statement about the projection Pg , we then derive the following result for horizontal curves

contained in compact regions of moduli space.

Proposition 2.2. For every ε > 0 and every s > 3 there exists a number θ = θ(ε, s) > 0 such that the following
holds true. Let g0 ∈ Ms

−1 be any hyperbolic metric of class Hs for which the length 
(g0) of the shortest closed
geodesic in (M,g0) is no less than ε. Then there is a number C = C(g0, s) < ∞ such that for any horizontal curve
g ∈ C1([0, T ),Ms

−1) with g(0) = g0 and of L2-length

L(g) =
T∫

0

∥∥∥∥ d

dt
g(t)

∥∥∥∥
L2(M,g(t))

dt � θ

we have∥∥∥∥ d

dt
g(t)

∥∥∥∥
Hs

� C

∥∥∥∥ d

dt
g(t)

∥∥∥∥
L2(M,g(t))

for every t ∈ [0, T ). (2.4)

For tori the corresponding result is obtained as a consequence of the existence of a smooth global horizontal slice,
i.e. of a finite dimensional smooth submanifold of M0, parametrised over Teichmüller space, whose tangent space at
each point is horizontal and which thus contains all horizontal curves passing through g0.

While for surfaces of genus γ � 2 the space of horizontal tensors H(g) is still finite dimensional, dimR(H(g)) =
6γ − 6 by the Riemann–Roch theorem, the distribution g �→ H(g) is no longer integrable, compare [18, Section 5.3],
so Proposition 2.2 cannot be reduced to a statement about curves on a finite dimensional manifold.

Proof of Proposition 2.1. We prove Proposition 2.1 in two steps; we show first that estimates of the form (2.2) and
(2.3) hold true for metrics contained in a so-called slice and then in a second step pull-back these estimates to give the
claim of Proposition 2.1 for general metrics in a neighbourhood of g0. To do so we make use of ideas from Teichmüller
theory as explained in the book of Tromba [18, Chapter 2].

So let g0 ∈ M−1 be any given metric and let s > 3 be fixed. Following [18] we define a small slice around g0 by

S := {
g = ρ(h) · (g0 + h): h ∈ U ⊂ H(g0)

} ⊂M−1 (2.5)

for U = U(g0, s) a suitably small neighbourhood of 0 ∈ H(g0) chosen later on. Here the function ρ(h) : M →R is to
be chosen such that ρ(h) · (g0 + h) has constant curvature −1 and is uniquely determined by this property according
to Poincaré’s theorem.

The key feature of this finite dimensional submanifold of Ms
−1 is that it provides a local model of Ms

−1/D
s+1
0 ,

with Ds+1
0 the set of Hs+1-diffeomorphisms that are homotopic to the identity:

Theorem 2.3. (See [18, Thm. 2.4.3].) For any number s > 3, any g0 ∈M−1 and S = S(g0, s) a sufficiently small slice
around g0, there are neighbourhoods W ⊂Ms

−1 of g0 and V ⊂Ds+1
0 of id for which the map

S × V � (g, f ) �→ f ∗g ∈ W

is a diffeomorphism.

For a proof of this theorem as well as for further insight into Teichmüller theory we refer to the book of Tromba [18].
We remark that the above result remains valid if we replace the slice S by a smaller slice defined by (2.5), for
appropriate new neighbourhoods of id in Ds+1

0 and of g0 in Ms
−1, but that the theorem does not give the existence of

a uniform slice for which the statement is valid for all numbers s > 3. We furthermore stress that the theorem demands
that the metric g0 is not only in Ms

−1 but smooth; this in turn implies that all metrics contained in a small slice S are
smooth and thus satisfy stronger estimates than just Hs bounds, in particular:
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Lemma 2.4. For a sufficiently small slice S around g0 ∈ M−1 there exists a constant C = C(s, g0) < ∞ such that for
all metrics g1,2 ∈ S

‖g1 − g2‖Hs+1 � C · dS(g1, g2). (2.6)

Here we denote by dS the Hs metric on S, i.e. consider S as a submanifold of the Banach manifold Ms
−1.

Apart from the finite dimensionality of H(g0), and thus of S, the essential observation leading to the above es-
timate is that the conformal factor ρ(h) can be characterised as the unique solution of an elliptic PDE, compare
[18, Section 1.5], leading to a smooth dependence of ρ(h) on h ∈ U .

Based on these stronger estimates on elements of the slice, we can analyse the dependence of Pg on g ∈ S using
an explicit formula for Pg that we shall derive now.

We first recall the following canonical splitting of the tangent space TgMs
−1 into the horizontal and vertical space,

see Theorem 2.4.1 of [18].

Lemma 2.5. For any g ∈ M−1 the tangent space TgMs
−1 splits L2-orthogonally into H(g) and the space {LXg} of

Lie-derivatives. More precisely, given any k ∈ TgMs
−1 there is a unique vector field X (of class Hs+1) such that

trg(k − LXg) = 0 and δg(k − LXg) = 0

and X can be characterised as the unique solution of the elliptic PDE

δgδ
∗
gX = −δgk, (2.7)

δ∗
gX = −LXg the L2(M,g)-adjoint of δg .

In order to define the orthogonal projection of a general symmetric (0,2) tensor k onto the horizontal space H(g),
we first map k onto an element of TgMs

−1 using

Lemma 2.6. For any g ∈ M−1 and any symmetric (0,2) tensor k of class Hs there exists a unique function μ ∈
Hs(M,R) such that

k − μ · g ∈ TgMs
−1.

The function μ is characterised as the unique solution of the equation

−�gμ + 2μ = 2DR(g)(k), (2.8)

R(g) the Gauss curvature of (M,g).

Given any g ∈M−1, we now claim that the orthogonal projection Pg : Sym2(M) → H(g) is given by

Pg(k) := k − μ(k,g) · g − LX(k−μ(k,g)·g,g)g (2.9)

where X(·) and μ(·) stand for the corresponding solutions of (2.7) and (2.8). Indeed, Pg|H(g) = id and for general
k ∈ Sym2(M) the tensor given by (2.9) is well defined and divergence- as well as trace-free with respect to g, i.e. an
element of H(g). Furthermore, k − Pg(k) stands orthogonal to any h ∈ H(g) as

〈
h, k − Pg(k)

〉
L2(M,g)

= 〈h,μ · g〉L2 + 〈h,LXg〉L2 =
∫
M

μ · trg(h) dvg + 〈
h,−δ∗

gX
〉
L2

= −〈δgh,X〉L2 = 0.

To analyse the dependence of Pg on g we now use that X and μ are characterised by elliptic PDEs for which the
following uniform estimates apply:

Lemma 2.7. Let s > 3 and g0 ∈ M−1 be given and let S = S(g0, s) be a sufficiently small slice. Then there exists a
constant C = C(s, g0) < ∞ such that the following claims hold true for every g ∈ S. For every vector field Y there is
a unique solution of the equation

δgδ
∗
gX = Y (2.10)
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and for any 0 � l � s + 1 we have

‖X‖Hl � C · ‖Y‖Hl−2 .

Similarly, the unique solution μ of

−�gμ + 2μ = f ∈ Hl−2(M,R), (2.11)

satisfies

‖μ‖Hl � C · ‖f ‖Hl−2 , 0 � l � s.

We remark that the occurring Sobolev norms with negative exponent are to be understood as the norms of the
coefficients in the dual spaces H−k(Ω) = (Hk

0 (Ω))∗, Ω ⊂R
2.

The reason why the solution X of (2.10) is unique is that we work on a surface that has negative curvature. Thus
the kernel of δgδ

∗
g , which agrees with the space of Killing-fields, is trivial, see e.g. [7, Thm. 5.3]. Elliptic regularity

theory combined with the Fredholm alternative theorem then immediately gives the estimates for each individual
g ∈ S. These estimates are indeed uniform since all metrics in S are contained in a small (Hs ) neighbourhood of g0.

We can now give the proof of Proposition 2.1, first for metrics contained in the slice.
Let g0 ∈ M−1, s > 3 and let S = S(g0, s) be a small slice as defined above. Combining the elliptic estimates

of Lemma 2.7 with (2.9) and the bounds on g given in Lemma 2.4, we find that for every 0 � l � s and every
k ∈ Sym2(M)∥∥Pg(k)

∥∥
Hl � ‖k‖Hl + C‖μ‖Hl + C‖X‖Hl+1

� ‖k‖Hl + C
(∥∥DR(g)(k)

∥∥
Hl−2 + ‖δgk‖Hl−1

)
� C‖k‖Hl . (2.12)

Here and in the following we crucially use that Lemma 2.4 gives bounds on s + 1 derivatives of g so that we may
estimate the Hs and not just the Hs−1 norm of Lie-derivatives LXg.

Similarly, given any C1 curve g in the slice, we differentiate the corresponding equations (2.7) and (2.8) character-
ising X and μ. This leads to elliptic PDEs of the form (2.10) and (2.11) for d

dt
X(t) and d

dt
μ(t). Applying Lemma 2.7

and making use of the bound ‖ d
dt

g‖Hs+1 � C · ‖ d
dt

g‖Hs of Lemma 2.4, we obtain∥∥∥∥ d

dt
Pg(t)(k)

∥∥∥∥
Hl

� C

∥∥∥∥ d

dt
g

∥∥∥∥
Hs

· ‖k‖Hl (2.13)

for any (sufficiently smooth) tensor k ∈ Sym2(M) and any 0 � l � s.
In order to establish the estimates (2.2) and (2.3) claimed in Proposition 2.1 we now need to prove that the two

estimates (2.12) and (2.13) obtained above remain valid with the Hl norm on the right hand side replaced with the L2

norm. We use

Claim. There exists C < ∞ such that for all g ∈ S and all h ∈ H(g)

‖h‖Hs � C‖h‖L2(M,g).

Proof. The estimate trivially holds true for g = g0 (or indeed for any one fixed metric) since H(g0) is a finite dimen-
sional space of smooth tensors. For general g ∈ S we can parametrise H(g) over H(g0) by restricting the projection Pg

onto H(g0). Using estimate (2.12), we then get∥∥Pg(k)
∥∥

Hs � C‖k‖Hs � C‖k‖L2 for every k ∈ H(g0), g ∈ S, (2.14)

with ‖ · ‖L2 denoting one of the equivalent L2(M,g) norms, g ∈ S, say ‖ · ‖L2(M,g0)
.

On the other hand, integrating (2.13) for l = 0 along a suitable curve of metrics connecting g0 to g and making use
of the fact that Pg0 |H(g0) = id, we obtain that for any k ∈ H(g0)

‖k‖L2 �
∥∥Pg(k) − k

∥∥
L2 + ∥∥Pg(k)

∥∥
L2 � CdS(g, g0) · ‖k‖L2 + ∥∥Pg(k)

∥∥
L2

� 1‖k‖L2 + ∥∥Pg(k)
∥∥

L2
2
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provided the slice is chosen small enough. Combined with estimate (2.14) this implies the claim for tensors in the
image Pg(H(g0)) ⊂ H(g) which must agree with H(g) because Pg|H(g0) is injective and dim(H(g)) = dim(H(g0)).

Combining this claim with the estimate (2.12) for l = 0 we have thus proven the first claim (2.2) of Proposition 2.1
for general tensors k ∈ Sym2(M) and for metrics g ∈ S in the slice.

To obtain an improved version of (2.13), we write

Pg(t)(k) = Pg(t)

(
Pg(t0)(k)

) + Pg(t)

(
Pg(t)(k) − Pg(t0)(k)

)
and estimate the derivative of the right hand side at t = t0. Estimate (2.13), applied first for l = s and then for l = 0,
combined with the estimate (2.2) we just proved then implies that for any k ∈ Sym2(M)∥∥∥∥

(
d

dt
Pg(t)(k)

)
(t0)

∥∥∥∥
Hs

�
∥∥∥∥ d

dt
g

∥∥∥∥
Hs

· ∥∥Pg(t0)(k)
∥∥

Hs +
∥∥∥∥Pg(t0)

(
d

dt
Pg(t)(k)

)∥∥∥∥
Hs

� C

∥∥∥∥ d

dt
g

∥∥∥∥
Hs

· ‖k‖L2 +
∥∥∥∥ d

dt
Pg(t)(k)

∥∥∥∥
L2

� C

∥∥∥∥ d

dt
g

∥∥∥∥
Hs

· ‖k‖L2 .

This completes the proof of Proposition 2.1 for metrics g contained in the slice. We now pull back these estimates
to the full Hs neighbourhood W of g0 given by the slice-theorem 2.3. The key observation allowing us to do so is that
the projection onto the horizontal space commutes with the pull-back

f ∗Pg(k) = Pf ∗g
(
f ∗k

)
.

Thus, given a C1 curve g in W , we write it (uniquely) in the form g(t) = f (t)∗ḡ(t), for f (t) ∈ V ⊂ Ds+1
0 and

ḡ(t) ∈ S and recall that ‖ d
dt

ḡ‖Hs and ‖ d
dt

f ‖Hs+1 are controlled by ‖ d
dt

g‖Hs , see Theorem 2.3. Indeed, since the
diffeomorphisms f are contained in a neighbourhood of the identity, also ‖ d

dt
f −1‖Hs+1 is bounded in this way.

Applying estimates (2.2) and (2.3) for ḡ ∈ S, we thus find∥∥Pg(k)
∥∥

Hs = ∥∥f ∗(Pḡ

((
f −1)∗

k
))∥∥

Hs � C · ∥∥Pḡ

((
f −1)∗

k
)∥∥

Hs � C‖k‖L2

as well as∥∥∥∥ d

dt
Pg(t)(k)

∥∥∥∥
Hs

� C ·
∥∥∥∥ d

dt
f

∥∥∥∥
Hs+1

· ∥∥Pḡ

((
f −1)∗

k
)∥∥

Hs + C

∥∥∥∥ d

dt

(
Pḡ(t)

((
f (t)−1)∗

k
))∥∥∥∥

Hs

� C ·
(∥∥∥∥ d

dt
f

∥∥∥∥
Hs+1

+
∥∥∥∥ d

dt
ḡ

∥∥∥∥
Hs

+
∥∥∥∥ d

dt
f −1

∥∥∥∥
Hs+1

)
· ‖k‖L2

� C ·
∥∥∥∥ d

dt
g

∥∥∥∥
Hs

· ‖k‖L2

for any tensor k ∈ Sym2(M) and any curve in W as claimed in Proposition 2.1. �
Proof of Proposition 2.2. For any number s > 3 we define a function θ : Ms

−1 → [0,∞] as follows. For any metric
g0 ∈ Ms

−1 we let θ(g0) be the supremum of all numbers θ � 0 such that there exists a number C < ∞ for which
estimate (2.4) holds true for all (piecewise) horizontal curves in Ms

−1 of length LL2(g) � θ and with g(0) = g0. We
stress that both this constant C, as well as the constant in Proposition 2.2, are allowed to depend on the metric g0.

We first claim that the function θ is strictly positive for all smooth metrics. So let g0 ∈ M−1 and let W be the
neighbourhood of g0 in Ms

−1 for which Proposition 2.1 applies. Writing the velocity of any horizontal curve as
d
dt

g = Pg(
d
dt

g) and applying Proposition 2.1 we find that∥∥∥∥ d

dt
g

∥∥∥∥
Hs

� C

∥∥∥∥ d

dt
g

∥∥∥∥
L2(M,g)

for as long as the curve is contained in W . But W is an Hs neighbourhood, so this estimate implies that any curve of
small enough L2 length and with g(0) = g0 is fully contained in W and thus that indeed θ(g0) > 0.

Secondly, we observe that θ is invariant under the pull-back by diffeomorphisms. More precisely let Ds+1 be the set
of all diffeomorphism of class Hs+1 (not necessarily homotopic to the identity). Then we claim that for any g ∈ Ms

−1
and any f ∈Ds+1

θ
(
f ∗g0

) = θ(g0).
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Indeed, pulling-back any horizontal curve g in Ms
−1 by a fixed diffeomorphism f ∈Ds+1 results in another horizontal

curve of the same L2-length and with velocity bounded by ‖ d
dt

(f ∗g(t))‖Hs � C · ‖ d
dt

g(t)‖Hs , with C < ∞ a constant
depending on f . But we defined θ(g) asking only for an estimate of the form (2.4) to be satisfied for some constant
C < ∞, allowed to depend on the considered metric, so the claim follows.

We conclude that θ induces a positive map θ̄ on moduli space M−1/D and now want to prove that this function is
continuous with respect to the Weil–Petersson metric dWP.

We recall that the length of a C1 curve [g] in moduli space (with respect to the Weil–Petersson metric) is given by

LWP
([g]) = 1

2
LL2(g̃)

for g̃ a ‘horizontal lift’ of [g], that is a horizontal curve g̃ ∈ M−1 with [g̃(t)] = [g(t)] for each t .
Given any two points [g1] and [g2] in M−1/D we now claim that

θ̄
([g2]

)
� θ̄

([g1]
) − 2 · dWP

([g1], [g2]
)
,

and thus switching the roles of [g1] and [g2] that θ̄ is Lipschitz continuous on moduli space (M−1/D, dWP). So let
δ > 0 be any fixed number and choose a (piecewise) horizontal path g̃ of L2-length less than 2 · dWP([g1], [g2]) +
δ/2 that connects a representative f ∗g1 of [g1] with g2. Let now g be any given (piecewise) horizontal curve with
g(0) = g2 and of length LL2(g) � θ̄ ([g1]) − 2dWP([g1], [g2]) − δ. Precomposing it with g̃ we obtain a curve G of
length LL2(G) � θ̄ ([g1]) − δ/2 = θ(f ∗g1) − δ/2 and with starting point G(0) = f ∗g1. By definition of θ(f ∗g1), the
estimate (2.4) is satisfied for the extended curve G and thus in particular for g itself, with a constant C depending on
f ∗g1 and possibly δ but not on g. We obtain the claim since δ > 0 can be chosen arbitrarily small.

Given any number ε > 0 we now consider the subset Kε of moduli space consisting of the equivalence classes
of smooth metrics with shortest closed geodesic of length no less than ε. This set Kε is compact by the Mumford
compactness theorem, see e.g. [18, p. 75]. As a positive and continuous function, θ̄ is thus bounded away from zero
uniformly on Kε which implies Proposition 2.2 for smooth metrics.

For non-smooth metrics g ∈ Ms
−1 \M−1, we finally obtain the claim of Proposition 2.2 using the invariance of θ

under Hs+1 diffeomorphisms as well as

Lemma 2.8. Given any g ∈ Ms
−1 there exist a smooth metric ḡ ∈ M−1 and a diffeomorphism f of class Hs+1 such

that

g = f ∗ḡ.

For the sake of completeness we provide a proof of this fact in Appendix A. This completes the proof of Proposi-
tion 2.2. �

For most arguments in the rest of the paper the estimates of Propositions 2.1 and 2.2, controlling the L2-orthogonal
projection in terms of the L2 norms of the involved tensors, would be sufficient, though would in some cases lead to
slightly weaker regularity results. For the proof of uniqueness of weak solutions carried out in Section 4 it is however
crucial that we can extend Pg continuously onto the space of tensors with finite L1 norm:

Lemma 2.9. For any g0 ∈M−1 and any s > 3 there exists a neighbourhood W of g0 in Ms
−1 such that the following

holds true. The map Pg is Lipschitz-continuous as a map from W to the space of linear maps from (Sym2(M),‖ ‖L1)

to the tangent bundle TMs
−1, i.e. there exists a constant C = C(g0, s) < ∞ such that for all g1, g2 ∈ W and k ∈

Sym2(M)∥∥Pg1(k)
∥∥

Hs � C · ‖k‖L1 and
∥∥Pg1(k) − Pg2(k)

∥∥
Hs � C · dMs−1

(g1, g2) · ‖k‖L1 . (2.15)

We remark that there is no need to specify with respect to which metric g ∈ W the L1 norm is computed as all
metrics in W are equivalent.

We prove these refined estimates on Pg using the following consequence of Proposition 2.1.
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Lemma 2.10. For any g0 ∈ M−1 and any s > 3 there exist a neighbourhood W of g0 in Ms
−1 and a constant C < ∞

so that we can assign to each metric g in W an L2(M,g)-orthonormal basis {Θj(g)}6γ−6
j=1 of H(g) satisfying∥∥Θj(g1) − Θj(g2)

∥∥
Hs � C · dMs−1

(g1, g2), gi,2 ∈ W, j = 1 . . .6γ − 6 = dim
(
H(g)

)
.

Lemma 2.9 then immediately follows from Pg(k) = ∑
j 〈k,Θj (g)〉L2(M,g)Θ

j (g).

Proof of Lemma 2.10. Let g0 ∈ Ms
−1 and let W be the neighbourhood of g0 given by Proposition 2.1. We fix any

L2(M,g0)-orthonormal basis Θj(g0), j = 1 . . .6γ − 6, of H(g0) and define

Θ
j

0 (g) := Pg

(
Θj(g0)

)
.

According to Proposition 2.1 this auxiliary family of tensors depends continuously on g,∥∥Θ
j

0 (g1) − Θ
j

0 (g2)
∥∥

Hs � C · dMs−1
(g1, g2)

so that {Θj

0 } is a basis of H(g) provided the neighbourhood W is chosen sufficiently small. Furthermore, as the map
assigning to each metric g the inner products

g �→ 〈
Θ

j

0 (g),Θk
0 (g)

〉
L2(M,g)

is also Lipschitz-continuous on W , so are the coefficients a
j
i of the orthonormal basis Θj(g) = ∑j

i=1 a
j
i (g)Θi

0(g) of
H(g) obtained by Gram–Schmidt orthogonalisation and thus the basis itself. �
3. Existence of solutions

In this section we establish the existence of weak solutions to (1.1) satisfying the properties claimed in Theorem 1.1,
in particular existing for all times unless the metric component degenerates in moduli space. As a first step, we prove
the following short-time existence result.

Lemma 3.1. For any initial metric g0 ∈ M−1 and any initial map u0 ∈ C∞(M,N) there exists a smooth solution
(u, g) of Eq. (1.1) to initial data (u(0), g(0)) = (u0, g0) defined on an interval [0, T ), T = T (u0, g0) > 0.

Proof. We first recall that the metric evolves by

dg

dt
= η2

4
Re

(
P H

g

(
Φ(u,g)

)) = η2

4
Pg

(
k(u,g)

)
, (3.1)

where k(u,g) = Re(Φ(u,g)), compare (1.1b) and (2.1).
To simplify notations and without loss of generality, we shall from now on consider the flow with coupling constant

η = 2. We also remark that computing the variation

d

ds
E(u,g + sl)

∣∣∣
s=0

= −1

4

〈
Re

(
Φ(u,g)

)
, l

〉
L2 for all l ∈ Sym2(M)

in local coordinate charts, allows us to write the real part of the Hopf-differential in general (not necessarily conformal)
coordinate charts as

k(u,g) = Re
(
Φ(u,g)

) = 2u∗GN − 2e(u, g)g,

e(u,g) = 1
2 |∇u|2g = 1

2gij ∂xi
u · ∂xj

u the energy density.
Using the results of the previous section we can consider Eq. (1.1) as a system consisting of a semilinear parabolic

PDE coupled with a differential equation on a Banach manifold Ms
−1 that is defined by a locally Lipschitz con-

tinuous vector field. In such a setting we obtain the existence of a classical solution on a short time interval
using a standard iteration argument, which, for the sake of completeness, we outline in Appendix A. Given any
(u0, g0) ∈ C2,α(M,N) ×M−1 and any number s > 3 we obtain a solution

(u, g) ∈ C2,1,α
([0, Ts) × M,N

) × C1([0, T ),Ms
−1

)
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of (1.1), defined on a maximal interval [0, Ts). This interval might a priori depend not only on (u0, g0) but also on
the Banach manifold Ms

−1 on which we solve (1.1b). Indeed, the key step needed to prove that the obtained solution
(u, g) is actually smooth is to show that this is not the case. So suppose that for some 3 < s1 < s2 we have Ts1 �= Ts2 .
Since classical solutions of (1.1) are uniquely determined by their initial data, compare Section 4, we remark that the
two solutions obtained for the different values of s agree for as long as they both exist, that is until time Ts2 < Ts1 .
Since the metric component is continuous (as a map into Ms1−1) up to time Ts1 there exists a number ε > 0 such that
the length 
(g(t)) of the shortest closed geodesic of (M,g(t)) is no less than ε on the smaller interval [0, Ts2]. Using
the Hs estimates of Proposition 2.2 this allows us to conclude that g is C1 as a curve into Ms2−1 on the closed interval
[0, Ts2], compare with the proof of Lemma 3.2 below.

Using Lemma 2.8, we then write g(Ts2) ∈ Ms2−1 in the form g(Ts2) = f ∗ḡ(Ts2) for an Hs2+1 diffeomorphism f

and a smooth metric ḡ ∈ M−1. Restarting the flow with the pulled-back initial data (ū(Ts2), ḡ(Ts2)) = (u(Ts2) ◦
f −1, (f −1)∗g(Ts2)) ∈ C2,α × M−1 we obtain a solution (ū, ḡ) of (1.1) in C2,1,α(M × I ) × C1(I,Ms2−1) on a time
interval I = [Ts2, Ts2 + δ). But Eq. (1.1) is invariant under the pull-back by diffeomorphisms applied simultaneously
to both the map and the metric component and solutions of (1.1) are unique. Thus the pull-back of (ū, ḡ) by f is
nothing else than our original solution (u, g) so that g is in C1([0, Ts2 + δ),Ms2−1), leading to a contradiction.

At this point we are now in a position to argue by a standard bootstrapping argument, using parabolic regularity
theory to improve the regularity of u, as well as the explicit formula for Pg given in (2.9) to analyse higher order time
derivatives of g. We obtain that (u, g) is indeed smooth. �

We remark that the results of Section 2 allow us not only to establish short-time existence of solutions to (1.1) but
already give the following characterisation of the behaviour of the metric component at a singular time.

Lemma 3.2. Let (u, g) be a smooth solution of (1.1) defined (and smooth) on a maximal interval [0, T1). Then one of
the following three statements holds

(i) T1 = ∞, or
(ii) T1 < ∞ but as t ↗ T1 the metrics g(t) converge smoothly to a limit g(T1) ∈ M−1; indeed g can be extended to

a Lipschitz continuous curve from the closed interval [0, T1] into each of the Banach manifold Ms
−1, s > 3, or

(iii) the metrics degenerate in moduli space at a finite time T1, i.e. limt↗T1 
(g(t)) = 0.

Proof. Assume that T1 < ∞ and that the length of the shortest closed geodesic in (M,g(t)) does not converge to zero

lim sup
t↗T1



(
g(t)

)
> ε > 0.

Then given any number s > 3 we let θ = θ(s, ε) > 0 be the constant of Proposition 2.2. We recall that according to
the energy identity (1.2) the L2-length of the curve g is finite on intervals of finite length. We may thus choose t0 < T1
with 
(g(t0)) � ε and close enough to T1 such that LL2(g|[t0,T1)) < θ . Proposition 2.2 then implies that g(t) is a
Cauchy sequence in Ms

−1 and thus converges to a limit g(T1) in Ms
−1 as t ↗ T1. Indeed, combining Proposition 2.2

with the energy identity (1.2) gives C1/2-Hölder estimates in time for g considered as map into Ms
−1. Moreover,

thanks to the uniform bound on the energy of u and thus on the L1 norm of the Hopf-differential∥∥k(u,g)
∥∥

L1 � C · ‖∇u‖2
L2 � C · E(u,g)� C · E(u0, g0),

the improved estimates on Pg stated in Lemma 2.9 give uniform bounds on ‖ d
dt

g(t)‖Hs . Thus g is not only C1/2 but
indeed Lipschitz continuous with respect to each Hs metric on the closed interval [0, T1]. �

We remark that the possibility of solutions degenerating in moduli space will be addressed in future work and that
here we focus on the analysis of singularities of the second type, essentially due to the map component becoming
singular.

So let (u, g) be a smooth solution of (1.1) on a maximal interval [0, T ). Assume that the metrics do not degenerate
in moduli space as we approach the singular time and thus that g(t) → g(T1) ∈ M−1 smoothly as t ↗ T1. We remark
that the evolution of the metric component is uniformly controlled,∥∥∥∥ d

dt
g

∥∥∥∥ � C
∥∥k(u,g)

∥∥
L1 � C · ‖∇u‖2

L2 � C · E0 (3.2)

Hs
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for times in an interval of length δ = δ(g(T1), s) > 0 not just for the one solution (u, g) of (1.1) that becomes singular,
but also for all solutions evolving from an initial data (ū, g(T1)) with energy bounded by E0. Thanks to this strong
bound on the metric component we can carry out the analysis of the map component of solution to (1.1) near singular
times using methods familiar from the work of Struwe [16] on the harmonic map flow. Since our analysis closely
follows the ideas of [16] we shall omit some details and calculations in the following presentation. We also remark
that a similar argument was outlined in [1] in the special case of maps from a torus.

Notation: We let g1 ∈M−1 be a fixed metric that should be thought of as a limiting metric of a solution of (1.1) at a
singular time. Then, unless indicated otherwise, all occurring objects such as norms, operators (like �), integrals, balls
and so on are to be understood as the corresponding objects on the fixed Riemannian surface (M,g1). Furthermore,
we denote generic constants (allowed to change from line to line) by C in case they depend only on g1 and E0 and
will indicate any dependence on additional quantities accordingly.

Based on (3.2) we henceforth restrict our attention to solutions of (1.1) satisfying∥∥g1 − g(t)
∥∥

Hs � ε1 (3.3)

for some fixed number s > 3 and a small ε1 = ε1(g1, s) > 0, chosen in particular such that Lemma 2.9 applies on this
Ms

−1 neighbourhood of g1.
We first remark that the evolution of the local energy is controlled by

Lemma 3.3. For solutions (u,g) of (1.1) satisfying (3.3) the following local energy bounds hold true for any point
x ∈ M and any radius 0 < r < rinj

E
(
u(t),Br/2(x)

)
� 2E

(
u(0),Br(x)

) + C
t

r2

and

E
(
u(t),Br(x)

)
� 1

2
E

(
u(0),Br/2(x)

) − 4

t∫
0

∫
M

ϕ2|∂tu|2 dv dt − C
t

r2
.

Sketch of proof. Given x ∈ (M,g1) and 0 < r < rinj (M,g1) we let ϕ ∈ C∞
0 (Br(x), [0,1]) be a standard cut-off

function, i.e. such that ϕ ≡ 1 on Br/2(x) and |∇ϕ| � C
r

. A short calculation shows that for a solution (u, g) of (1.1)

0 =
∫

ϕ2|∂tu|2 dv −
∫

ϕ2∂tu · �g(t)udv

=
∫

ϕ2|∂tu|2 dv + 1

2

d

dt

∫
ϕ2|∇u|2g(t) dv + R

(
u(t), g(t)

)
(3.4)

with an error term that is bounded by

∣∣R(u,g)
∣∣ � (

C

r2
+ C

∥∥∥∥ d

dt
g

∥∥∥∥
C0

)
· E(

u,Br(x)
) + 1

8

∫
M

ϕ2|∂tu|2 dv.

Since ‖ d
dt

g‖C0 is uniformly bounded, this estimate integrates to give an upper and a lower bound on
∫

ϕ2|∇u|2g(t) −∫
ϕ2|∇u(0)|g(0). Combined with the fact that 1

2g � g̃ � 2g for all g, g̃ satisfying (3.3), we obtain the claims of
Lemma 3.3. �

An important consequence of the previous calculation is

Corollary 3.4. Suppose (u,g) is a smooth solution of (1.1) defined on a maximal interval [0, T1) for which (3.3) is
satisfied. Then for any ε0 > 0 the set of points

S :=
{
x ∈ M: lim sup

t↗T1

E
(
u(t),BR(x)

)
� ε0 for all R > 0

}
,

is finite.
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In fact, as in [16], we have #S � E0/ε0, since energy concentrates near points of S not just along a suitable
sequence tj ↗ T1 but indeed for all sequences t ↗ T1, compare (3.4).

Away from the finite set S we control the map component of the flow using the following lemma which should be
seen as the analogue of Lemmas 3.10 and 3.10′ of [16].

Lemma 3.5. There exists a number ε0 > 0 depending only on g1 and E0 such that the following statement holds true.
Let (u, g) be a smooth solution of (1.1) on an open interval (0, T ) and assume that (3.3) is satisfied. Let M ′ ⊆ M be
an open set such that there exists a number R > 0 with

E
(
u(t),BR(x)

)
� ε0 for all (x, t) ∈ M ′ × (0, T ). (3.5)

Then the parabolic Hölder-norms of u and its spatial derivatives (upto order s − 2) are bounded uniformly on the sets
[τ, T ] × M ′, τ > 0, with bounds depending only on τ , R, g1, T , s, M ′ and the energy bound E0.

Remark 3.6. If the initial map u(0) is smooth on a neighbourhood of M ′ then the above result can be extended to give
bounds on the Hölder norms of u|M ′ and its spatial derivatives on M ′ up to time t = 0, now with bounds depending
additionally on u(0), compare with Remarks 3.11 and 3.11′ of [16].

Remark 3.7. Because of the non-local nature of the projection operator Pg these estimates on u|M ′ allow us to improve
the regularity of g|M ′ from the a priori known C0,1 dependence on time only in case M = M ′. For M ′ �= M we can
improve the bounds of Lemma 3.5 to give C1,α bounds in time on u|M ′ and its spatial derivatives while for M = M ′,
i.e. away from singular times, a bootstrapping argument gives estimates on any Ck norm (in space and time) of (u, g)

in terms of the quantities specified in Lemma 3.5.

Proof of Lemma 3.5. For the proof of this lemma we follow largely the ideas of [16]. We make use of the well known
interpolation estimate, see e.g. [2]:

Lemma 3.8. There are numbers ε0 > 0 and C < ∞ (depending on (M,g1) and the target manifold) such that for all
maps u ∈ H 2(M,N), a bound on the local energy of

E
(
u,Br(x)

)
� ε0

implies an H 2-bound of the form∫
ϕ2

∣∣∇2u
∣∣2

dv � C

r2
E

(
u,Br(x)

) + C

∫
ϕ2

∣∣τ(u)
∣∣2

dv, (3.6)

as well as an estimate of∫
ϕ2|∇u|4 dv � CE

(
u,Br(x)

) ·
[

1

r2
E

(
u,Br(x)

) +
∫

ϕ2
∣∣τ(u)

∣∣2
dv

]
. (3.7)

Here ϕ ∈ C∞
0 (Br(x)) denotes a cut-off function.

Let now (u,g), M ′ and R > 0 be as in Lemma 3.5, let x ∈ M ′ and choose a cut-off function ϕ ∈ C∞
0 (BR/2(x)).

We first remark that for ε1 > 0 sufficiently small, the pointwise bound |τg(u) − τ(u)| � Cε1(|∇2u| + |∇u|2) implies
that (3.6) and (3.7) remain valid with τ(u(t)) replaced by τg(t)(u(t)) = ∂tu(t).

As in [16] we now differentiate Eq. (1.1a) in time and multiply with ϕ2∂tu. After carefully analysing all occurring
terms, in particular the terms due to the time-dependence of the metric, we find

1

2

d

dt

∫
ϕ2|∂tu|2 +

∫
ϕ2|∇∂tu|2 �

(
1

4
+ Cε1

)
·
∫

ϕ2|∇∂tu|2 + C

∫
ϕ2|∂tu|2|∇u|2

+ C(R)

(
1 +

∥∥∥∥dg

dt

∥∥∥∥
2

+
∫

|∂tu|2
)

.

C2
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Since we know that the Hs norm, and thus also the C2 norm, of d
dt

g is uniformly bounded by a multiple of the energy,
we obtain that for ε1 = ε1(g1) > 0 chosen small enough

d

dt

∫
ϕ2|∂tu|2 +

∫
ϕ2|∇∂tu|2 � C(R)

(
1 + dE

dt

)
+ C

∫
ϕ2|∂tu|2|∇u|2. (3.8)

Using the Sobolev embedding W 1,1 ↪→ L2 as well as Lemma 3.8, we find

C

∫
ϕ2|∂tu|2|∇u|2 � C

∥∥ϕ|∂tu|2∥∥
L2 ·

(∫
ϕ2|∇u|4

)1/2

� C
(∥∥∇(

ϕ|∂tu|2)∥∥
L1 + ∥∥|∂tu|2∥∥

L1

)
ε

1/2
0

[
C(R) +

∫
ϕ2|∂tu|2

]1/2

�
∫

ϕ2|∇∂tu|2 + Cε0
dE

dt

∫
ϕ2|∂tu|2 + C(R) ·

(
dE

dt
+ 1

)
.

Integrating the resulting estimate (3.8) over any interval [t1, t2] ⊂ (0, T ) we thus obtain∫
ϕ2|∂tu|2 dv|t2t1 � Cε0 · sup

t∈[t1,t2]

∫
ϕ2|∂tu|2 dv + C(R,T ).

After possibly reducing ε0 = ε0(E0, g1) > 0 so that the factor Cε0 � 1
2 , we conclude that for any τ > 0

sup
t∈[τ,T )

∫
BR/4(x)

|∂tu|2 dv � 2 inf
t∈[0,τ )

∫
ϕ2

∣∣∂tu(t)
∣∣2

dv + C(R,T )

� 2
E0

τ
+ C(R,T ).

Repeating the above argument for a finite cover of balls BR/4(xi) of M ′ we obtain a uniform estimate of∫
U

∣∣∂tu(t)
∣∣2

dv � C for all t ∈ [τ, T )

on a small neighbourhood U of M ′. According to Lemma 3.8 this implies a bound on
∫
U ′ |∇2u(t)|2 dv on a slightly

smaller neighbourhood of M ′. Applying Sobolev’s embedding theorem we then conclude that for any exponent p < ∞∫
U ′

∣∣∇u(t)
∣∣p dv � Cp, t ∈ [τ, T ).

Then, still following [16], we think of (1.1a) as an inhomogeneous heat equation

∂tu − �gu = Ag(u)(∇u,∇u) ∈ Lp
(
U ′ × [τ, T )

)
allowing us to apply standard regularity results for parabolic equations, see e.g. [8, Chapter VII]; we get bounds in
the parabolic Sobolev-spaces W

2,1
p , and thus in the parabolic Hölder spaces Cα , on sets M ′ × [τ ′, T ], τ ′ > τ . We

finally obtain estimates on the Hölder norms of spatial derivatives of u (up to order s − 2) by a standard bootstrapping
argument which relies on the strong bounds on the velocity of horizontal curves given in Lemma 2.9. �

Let now (u, g) be a smooth solution of (1.1) on [0, T1) whose metric component does not degenerate and thus
smoothly converges g(t) → g(T1) =: g1 ∈ M−1 as t ↗ T1. We first remark that the uniform bounds on the energies
E(u(t)) � 2E(u(t), g(t)) � 2E0 combined with the fact that ∂tu ∈ L2([0, T1) × M) imply that the maps u(t) con-
verges weakly in H 1(M) to a limit u(T1) as t ↗ T1. Additionally, Lemma 3.5 gives uniform Hölder bounds on u and
its spatial derivatives away from the finite set S of concentration points so that u(t) converges also in C∞

loc(M \ S).
We now remark that any concentration of energy must be due to the so-called bubbling off of (at least) one harmonic

sphere. Indeed, the analysis carried out in [16] (p. 578/9) remains unchanged as long as the local energy estimates and
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H 2 bounds used in [16] are replaced by Lemmas 3.3 and 3.8. We obtain the following: For any point x0 ∈ S there are
sequences of times ti ↗ T1, radii ri → 0 and points xi → x0 with energies on balls of

sup
x∈Br0 (x0)

E
(
u(ti),B2ri (x)

)
� ε0 and E

(
u(ti),Bri (xi)

)
� cε0, c = c(M,g1) > 0

and with tension satisfying

sup
x∈Br0 (x0)

r2
i

∫
B2ri

(x)

∣∣τ(
u(ti)

)∣∣2 → 0 as i → ∞.

The rescaled maps ui(x) = u(expxi
(rix), ti), defined on larger and larger subsets of R2 are then bounded uniformly

in H 2 and subconverge (weakly in H 2, strongly in W 1,p , p < ∞) to a non-constant harmonic map of finite energy
that is defined on R

2 ∪{∞} ∼= S2, called a harmonic sphere or bubble. The amount of energy that concentrates near x0,
and that is consequently lost as we pass to the limit t ↗ T1, is no less than ε∗ = ε∗(N), the minimal energy of such a
non-constant harmonic map from S2 to the target.

Finally, as in [16], we (weakly) continue the flow past any such singular time by restarting from initial data g(T1) ∈
M−1 and u(T1) ∈ H 1(M,N) ∩ C∞

loc(M \ S) as follows: let uj,0 ∈ C∞(M,N) be a sequence of maps that converge to
u(T1) in H 1(M) as well as in C∞

loc(M \S) and let (uj , gj ) be the smooth solution of (1.1) corresponding to initial data
(uj,0, g(T1)) that exists at least on some interval [T1, T1 + δj ) according to Lemma 3.1. We remark that the metrics gj

are uniformly Lipschitz continuous and thus that the estimates derived above can be applied on [T1, T1 + min(δj , δ0))

for a number δ0(g(T1)) > 0 independent of j .
We now choose r > 0 such that supx∈M E(uj,0,Br(x)) < ε0/4, which is possible due to the strong H 1-convergence

of the initial maps. Then the local energy estimates of Lemma 3.3 imply that there is no concentration of energy and
thus in particular no blow-up for any of the maps uj , on a uniform interval I = [T1, T1 + cr2], c = c(g1) > 0, in the
sense that

E
(
uj (t),Br/2(x)

)
< ε0 for all j ∈N, x ∈ M, t ∈ I.

According to Lemma 3.5 as well as Remarks 3.6 and 3.7 we thus obtain uniform C1,α estimates in time for the maps uj

(and their spatial derivatives) in every compact subset of M × [T1, T1 + cr2] \ (S × {T1}). Away from the singular
time, we furthermore get uniform bounds on all Ck norms of (uj , gj ) in space–time. We conclude that a subsequence
of (uj , gj ) converges smoothly on M × (T1, T1 + cr2] to a pair (u, g) which solves (1.1) classically on (T1, T1 + cr2]
and weakly on [T1, T1 + cr2]. This solution achieves the initial data (u(T1), g(T1)) in the sense that for t ↘ T1 the
maps u(t) converges to u(T1) weakly in H 1(M) and smoothly away from the set S while the metric component g

is Lipschitz-continuous across the singular time. Since the energy of the approximating solutions (uj , gj ) is no more
than E(uj,0, g(T1)) → E(u(T1), g(T1)), the extended weak solution (u, g) has non-increasing energy also across the
singular time T1. In particular the total number of all singular points

⋃
i S(Ti) × {Ti} of such a solution is bounded by

E(u(0),g(0))
ε∗ . After possibly repeating the above argument to analyse any further singularities, we thus obtain a weak

solution satisfying the properties (i)–(iii) of Theorem 1.1 and existing for as long as the metrics do not degenerate in
moduli space.

4. Uniqueness of weak solutions

We finally discuss the issue of uniqueness of weak solutions. We prove that the solution (u, g) of (1.1) constructed
in the previous section is uniquely determined by its initial data, not only among all solutions satisfying the properties
of Theorem 1.1, but in the natural class of all weak solutions with non-increasing energy. We remark that a further
argument as carried out in [11] actually gives uniqueness under the weaker assumption that the total energy does not
instantaneously increase by more than a certain quantum at any time. We also remark that it is necessary to impose
restrictions on the evolution of the total energy in view of the possibility of reverse bubbling, see [17].

So let (ui, gi)i=1,2 be two weak solutions of (1.1) defined on an interval [0, T ) that evolve from the same initial
data

(u1, g1)(0) = (u0, g0) = (u2, g2)(0) ∈ H 1(M,N) ×M−1
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and assume that the total energies t �→ E(u1,2(t), g1,2(t)) are non-increasing. Since

I := {
t ∈ [0, T ): (u1, g1) ≡ (u2, g2) on [0, t]}

is trivially closed in [0, T ), we need to prove that I is also open.
Given any t0 ∈ I we recall that gi(t) → gi(t0) in each Ms

−1 and thus certainly uniformly as t ↘ t0. Combined with
the fact that ui(t) → ui(t0) strongly in L2 and weakly in H 1, we thus obtain

E
(
ui(t0), gi(t0)

)
� lim

t↘t0
E

(
ui(t), gi(t)

) = lim
t↘t0

E
(
ui(t), gi(t0)

)
� E

(
ui(t0), gi(t0)

)
,

where we used the assumption on the evolution of the energy in the first step. Thus ui(t) → ui(t0) indeed strongly in
H 1(M,g0), which implies in particular that local energies, say on balls, converge as t ↘ t0. Choosing a finite cover
of balls Br(xi), i = 1 . . .K , of (M,gi(t0)) such that E(ui(t0), gi(t0),B2r (xi)) � ε0/2, we may thus choose δ > 0 so
small that

E
(
ui(t), gi(t0),B2r (xi)

)
� ε0 for t ∈ [t0, t0 + δ], i = 1,2.

Here we let ε0 > 0 be the constant of Lemma 3.8.
It is now crucial to remark that on almost every time slice the functions ui(t) weakly solve an almost harmonic map

equation, that is an equation of the form τgv = f for a function f ∈ L2 and a metric g, here of course g = gi(t) and
f = ∂tui(t). Since any weak solution of such an elliptic equation is contained in the Sobolev space H 2, see e.g. [10]
or [11, Proposition 2.1], we may apply Lemma 3.8 on almost every time slice resulting in an estimate of∫

M

∣∣∇ui(t)
∣∣4 + ∣∣∇2ui(t)

∣∣2
dvg0 � C(r) ·

(
1 +

∫
M

∣∣∂tu(t)
∣∣2

dvg(t)

)

for t ∈ [t0, t0 + δ) and i = 1,2. We can thus reduce the uniqueness statement in the general class of weak solutions
with non-increasing energy to the following lemma whose analogue for the harmonic map flow was proven in [16].

Lemma 4.1. Let (u1, g1) and (u2, g2) be weak solutions of (1.1) to the same initial data (u1, g1)(0) = (u2, g2)(0)

and suppose that

∇ui ∈ L4(M × [0, T )
)

and ∇2ui ∈ L2(M × [0, T )
)
, i = 1,2. (4.1)

Then (u1, g1) ≡ (u2, g2).

Proof. Using an open–closed argument as above it is enough to prove that the solutions agree on a possibly smaller
interval [0, δ), which we can choose in particular such that the metrics g1,2 are contained in an Hs neighbourhood of
g0 = g1(0) = g2(0) for which Lemma 2.9 applies. Here s can be chosen to be any fixed number s > 3.

Notation: For the following computations we denote by ‖ · ‖Lp the Lp(M,g0) norm and by d(·,·) the metric
on Ms

−1 respectively by ‖ · ‖ the Hs norm on TMs
−1. Furthermore, we use the short-hand notation of |∇V | :=

max{|∇u1|, |∇u2|} which, by assumption, is a function in L4(M × [0, T ]) with L2 norm on time-slices bounded by
the energy, ‖∇V (t)‖2

L2(M)
� C · (E(u1, g1) + E(u2, g2)) � CE(u0, g0).

Subtracting Eq. (1.1a) for the map components ui we obtain that the difference w = u1 − u2 satisfies

∂tw − �g1w = (�g1 − �g2)(u2) + Ag1(u1)(∇u1,∇u1) − Ag2(u2)(∇u2,∇u2) (4.2)

where A denotes the second fundamental form of the target N ↪→R
N , Ag(u)(∇u,∇u) := gijA(u)(∂iu, ∂ju).

Following [16] we multiply Eq. (4.2) with w, integrate over the fixed surface (M,g0) and estimate the resulting
terms using Hölder’s inequality. This leads to

1

2

d

dt
‖w‖2

L2 + ‖∇w‖2
L2 � C · d(g1, g0) · ‖∇w‖2

L2 + C · d(g1, g2) · (‖∇w‖L2 + ‖w‖L2 · (1 + ‖∇V ‖2
L4

))
+ C‖∇w‖L2 · ‖∇V ‖L4 · ‖w‖L4 + C‖∇V ‖2

L4 · ‖w‖2
L4

�
(

1 + C · t
)

‖∇w‖2
L2 + C · d(g1, g2)

2 + C
(
1 + ‖∇V ‖2

L4

) · ‖w‖2
L4 . (4.3)
4
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Using the Sobolev embedding W 1,1 ↪→ L2, we may furthermore estimate

‖w‖2
L4 = ∥∥w2

∥∥
L2 � C

(∥∥∇(
w2)∥∥

L1 + ∥∥w2
∥∥

L1

)
� C · ‖w‖L2 · (‖w‖L2 + ‖∇w‖L2

)
so that the last term on the right hand side of (4.3) is bounded by

C
(
1 + ‖∇V ‖2

L4

) · ‖w‖2
L4 �

1

8
‖∇w‖2

L2 + Cψ(t) · ‖w‖2
L2,

for ψ(t) = (‖∇V (t)‖4
L4 + 1) ∈ L1([0, T ]).

In order to estimate the distance of the metric components g1 and g2 in terms of w we recall that the evolution of
the tensor g1 − g2 is given by

d

dt
(g1 − g2) = Pg1

(
k(u1, g1)

) − Pg2

(
k(u2, g2)

)
,

k(u, g) = 2u∗GN − 2e(u,g)g. We have a pointwise estimate of the difference of the involved tensors of∣∣k(u1, g1) − k(u2, g2)
∣∣ � C · d(g1, g2) · |∇V |2 + C · |w| · |∇V |2 + C · |∇w| · |∇V |.

Remark, that any L2 estimate of this tensor would involve integrals of the form
∫ |∇V |4|w|2 and

∫ |∇V |2 · |∇w|2
which are not controlled by the quantities of the left hand side of (4.3). It thus crucial at this point that the improved
bounds on Pg given in Lemma 2.9 only ask for L1 bounds on the involved tensors, allowing us to estimate

d

dt
d(g1, g2)� C · d(g1, g2) · ∥∥k(u1, g1)

∥∥
L1 + C · ∥∥k(u1, g1) − k(u2, g2)

∥∥
L1

� C · d(g1, g2) + C · ‖∇w‖L2 + C · ψ(t)1/2‖w‖L2 . (4.4)

Gronvall’s lemma thus leads to an estimate of

d(g1, g2)(t)
2 � C ·

( t∫
0

∥∥∇w(s)
∥∥

L2(M)
ds

)2

+ C

( t∫
0

ψ(s)1/2 · ∥∥w(s)
∥∥

L2(M)
ds

)2

� t ·
t∫

0

∫
M

|∇w|2 + C

t∫
0

ψ(s) ds ·
t∫

0

∫
M

w2, (4.5)

which we insert into (4.3). Integrating the resulting estimate over time, we find

∥∥w(t)
∥∥2

L2 +
t∫

0

∫
|∇w|2 � C ·

t∫
0

ψ(s) ds · sup
s∈[0,t]

∥∥w(s)
∥∥2

L2 + Ct2

t∫
0

∫
|∇w|2.

Since ψ is integrable, we conclude that for all t sufficiently small, say t ∈ (0, t0),∫ ∣∣w(t)
∣∣2 � 1

2
sup

s∈[0,t]

∫ ∣∣w(s)
∣∣2

.

Thus w must vanish identically on (0, t0) so u1 ≡ u2 and g1 ≡ g2 as desired. �
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Appendix A

A.1. Solving the equation on a fixed Banach manifold

Let (u0, g0) ∈ C2,α(M) × M−1, α > 0 be given and let s > 3 be a fixed number. Here we outline an iteration
argument that can be used to obtain a solution (u, g) ∈ C2,1,α([0, δ) × M) × C1([0, δ),Ms

−1) of (1.1) for such initial
data.
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For δ0 = δ0(u0, g0, s) > 0 to be determined later, we extend u0 to a constant in time map defined on M × [0, δ2
0)

and define iteratively for i = 1 . . .

• gi ∈ C1([0, δ2
i−1],Ms

−1) as the solution of d
dt

gi = Pgi
(k(ui−1, gi)) with gi(0) = g0;

• ui ∈ C2,1,α(Mδi
) as the solution of ∂tui = τgi

(ui), ui(0) = u0, defined and smooth on a maximal domain Mδi
:=

M × [0, δ2
i ), δi � δi−1.

Here we use the Lipschitz-continuity of the map Pg on the Banach manifold Ms
−1 in the first step. We also remark

that the equation for ui is a semilinear parabolic equation so standard methods, see e.g. [9, Theorem 5.2.1], lead to the
existence of a solution ui of the above equation, defined on all of [0, δ2

i−1) unless there is a blow-up in the gradient at
some time δ2

i , 0 < δi < δi−1.
We claim that for δ0 initially chosen small enough, the iterates are all defined on [0, δ2

0) and satisfy

‖ui+1 − ui‖∗
C2,1,α(Mδ0 )

� 1

2
‖ui − ui−1‖∗

C2,1,α(Mδ0 )
,

‖gi+1 − gi‖∗
C1([0,δ2

0 ],Ms−1)
� C · δ0‖ui+1 − ui‖∗

C2,1,α(Mδ0 )
, (A.1)

thus converging to a classical solution (u, g) ∈ C2,1,α([0, δ2
0) × M) × C1([0, δ2

0),Ms
−1) in the limit i → ∞. Here,

we use scaling invariant versions of the standard parabolic Hölder norms, defined by ‖u‖∗
C0,α(Mδ)

= ‖u‖C0(Mδ)
+

δα[u]Cα(Mδ) and more generally

‖u‖∗
Ca,b,α(Mδ)

=
∑

k+2j�a
j�b

δ2j+k
∥∥∂

j
t ∇ku

∥∥∗
Cα(Mδ)

, Mδ = [
0, δ2) × M.

We remark that the second estimate of (A.1) immediately follows from Proposition 2.1 and the Gronvall lemma,
compare with (4.4). To estimate wi = ui − ui−1, we observe that

∂twi − Liwi = fi (A.2)

for the elliptic linear operator

Liw := �gi
w + Agi

(ui−1)(∇ui−1,∇w) + (
dAgi

(ui−1)
)
(w)(∇ui−1,∇ui−1)

and a right hand side that is bounded in C0,α(Mδ) for any δ � δi by

δ2‖fi‖∗
C0,α(Mδ)

� C‖gi − gi−1‖∗
C1([0,δ2],Ms−1)

+ C
(‖wi‖∗

C2,1,α(Mδ)

)2

with a constant depending on a C2,1,α bound on the previous iterate ui−1 but not on ui . We then apply the following
scaling invariant version of parabolic Schauder estimates.

Proposition A.1. Let M be a closed manifold and let λ > 0, A < ∞ be fixed. Then there exists a number C < ∞ such
that the following holds true. Let L be any second order differential operator on Mδ , δ ∈ (0,1) any number, that is
given in local coordinate charts as Lu = ∂xi

(aij ∂xj
u) + bi∂xi

u + cu with

aij (x, t)ξiξj � λ|ξ |2 for all ξ ∈ R
m and (x, t) ∈ Mδ,∥∥aij

∥∥∗
C1,0,α(Mδ)

+ δ
∥∥bi

∥∥∗
Cα(Mδ)

+ δ2‖c‖∗
Cα(Mδ)

� A.

Then the solution u ∈ C2,1,α(Mδ) of ∂tw − Lw = f ∈ Cα(Mδ), w(0) = 0 satisfies

‖w‖∗
C2,1,α(Mδ)

� Cδ2‖f ‖∗
Cα(Mδ)

.

In terms of giving a proof of this result, we remark that standard Schauder estimates combined with a scaling
argument give in a first step an estimate of the form

‖w‖∗
2,1,α � Cδ2‖f ‖∗

Cα(M ) + C‖w‖C0(M ) (A.3)

C (Mδ) δ δ
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for constants C independent of δ. To retain this scaling invariance, we can then use the Ehrling lemma and a further
rescaling argument to estimate the second term of (A.3) by∥∥w(t)

∥∥
C0(M)

� ε · ‖w‖∗
Cα(Mδ)

+ Cε sup
x∈M

δ−1
∥∥w(t)

∥∥
L2(Bδ(x))

on every time slice. Finally considering the evolution of local energy quantities of the form
∫

ϕ2[aij ∂xi
w(t)∂xj

w(t)+
δ−2w(t)2]dx, ϕ a cut-off function supported on balls of radius 2δ, gives that the last term in this estimate is bounded
by a fixed (independent of δ) multiple of δ2‖f ‖L∞ , completing the proof of Proposition A.1.

Turning back to Eq. (A.2) satisfied by wi , this Schauder-estimate allows us to conclude that for any δ < δi

‖wi‖∗
C2,1,α(Mδ)

� Cδ‖wi−1‖∗
C2,1,α(Mδ)

+ C
(‖wi‖∗

C2,1,α(Mδ)

)2
.

Since wi(0) = 0, the norm ‖wi‖∗
C2,1,α(Mδ)

is small at least for δ small (a priori depending on i). We conclude that the
first estimate of (A.3) holds true, initially for δ small and then, by a continuity argument, indeed for as long as the
solution exists (provided δ0 = δ0(u0, g0) was initially chosen small enough). But this very estimate prevents a blow-up
before time δi−1, so that δi = δi−1 = · · · = δ0, completing the proof.

A.2. Proof of Lemma 2.8

We finally provide a proof of the fact that any metric in Ms
−1 can be written in the form f ∗ḡ with f ∈ Ds+1 and

ḡ ∈M−1.
Let s > 3 and let Ω ⊂ Ms

−1 be the subset of all metrics which can be written in the form g = f ∗ḡ for a smooth
metric ḡ ∈M−1 and a diffeomorphism f of class Hs+1.

We first prove that Ω is an open subset of Ms
−1 using the slice-theorem. Given any metric of the form g0 = f ∗

0 g̃0,
f0 ∈Ds+1 and g̃0 ∈ M−1 we apply the slice-theorem 2.3 to the smooth metric g̃0 resulting in an Ms

−1-neighbourhood

W̃ of g̃0, consisting only of metrics of the form f ∗gS , gS an element of a slice S around g̃0 and thus in particular
smooth. The pull-back W = f ∗

0 W̃ is then an Ms
−1-neighbourhood of the original metric g0 ∈ Ms

−1, containing only
metrics of the form g = f ∗

0 (f ∗gS) = (f ◦ f0)
∗gS , gS ∈ S ⊂ M−1 and f ◦ f0 ∈ Ds+1. So indeed W ⊂ Ω and Ω is

open.
To see that Ω is also closed, we can use a result due to Ebin and Palais which says that the action of Ds+1 on Ms

−1
is proper, see e.g. Theorem 2.3.1 in [18]; in practice this means that if we are given a sequence of diffeomorphisms
fi ∈ Ds+1 and a convergent sequence of metrics gi → g in Ms

−1 then knowing that f ∗
i gi → ḡ ∈ Ms

−1 converges (in
Hs topology) is enough to conclude that also (a subsequence of) the diffeomorphisms fi converge, fi → f in Ds+1.

Let now g ∈ Ms
−1 be such that there are diffeomorphisms fi ∈ Ds+1 and metrics gi ∈ M−1 with f ∗

i gi → g

(in Ms
−1). This convergence implies in particular that the length 
(gi) = 
(f ∗

i gi) of the shortest closed geodesic of
(M,gi) is bounded away from zero. Thus the Mumford compactness theorem implies that after pulling back gi by a
smooth family of diffeomorphisms f̃i , a subsequence of gi converges smoothly

(f̃i)
∗gi = (

f −1
i ◦ f̃i

)∗(
f ∗

i gi

) → ḡ ∈M−1.

We conclude that the diffeomorphisms f −1
i ◦ f̃i converge to another diffeomorphism f ∈ Ds+1 and thus that g =

(f −1)∗ḡ ∈ Ω .
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