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Abstract

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (α < 1/2) dissipa-
tion (−�)α : If a Leray–Hopf weak solution is Hölder continuous θ ∈ Cδ(R2) with δ > 1 − 2α on the time interval [t0, t], then it is
actually a classical solution on (t0, t].
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1. Introduction

We discuss the surface 2D quasi-geostrophic (QG) equation

∂t θ + u · ∇θ + κ(−�)αθ = 0, x ∈ R2, t > 0, (1.1)

where α > 0 and κ � 0 are parameters, and the 2D velocity field u = (u1, u2) is determined from θ by the stream
function ψ via the auxiliary relations

(u1, u2) = (−∂x2ψ,∂x1ψ), (−�)1/2ψ = −θ. (1.2)

Using the notation Λ ≡ (−�)1/2 and ∇⊥ ≡ (∂x2 ,−∂x1), the relations in (1.2) can be combined into

u = ∇⊥Λ−1θ = (−R2θ, R1θ), (1.3)

where R1 and R2 are the usual Riesz transforms in R2. The 2D QG equation with κ > 0 and α = 1
2 arises in geo-

physical studies of strongly rotating fluids (see [5,16] and references therein) while the inviscid QG equation ((1.1)
with κ = 0) was derived to model frontogenesis in meteorology, a formation of sharp fronts between masses of hot
and cold air (see [7,10,16]).
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The problem at the center of the mathematical theory concerning the 2D QG equation is whether or not it has a
global in time smooth solution for any prescribed smooth initial data. In the subcritical case α > 1

2 , the dissipative
QG equation has been shown to possess a unique global smooth solution for every sufficiently smooth initial data (see
[8,17]). In contrast, when α � 1

2 , the issue of global existence and uniqueness is more difficult and has still unanswered
aspects. Recently this problem has attracted a significant amount of research ([1–6,9,11–15,18–24]). In Constantin,
Córdoba and Wu [6], we proved in the critical case (α = 1

2 ) the global existence and uniqueness of classical solutions
corresponding to any initial data with L∞-norm comparable to or less than the diffusion coefficient κ . In a recently
posted preprint in arXiv [14], Kiselev, Nazarov and Volberg proved that smooth global solutions exist for any C∞
periodic initial data, by removing the L∞-smallness assumption on the initial data of [6]. Caffarelli and Vasseur
(arXiv reference [1]) establish the global regularity of the Leray–Hopf type weak solutions (in L∞((0,∞);L2) ∩
L2((0,∞); H̊ 1/2)) of the critical 2D QG equation with α = 1

2 in general Rn.
In this paper we present a regularity result of weak solutions of the dissipative QG equation with α < 1

2 (the

supercritical case). The result asserts that if a Leray–Hopf weak solution θ of (1.1) is in the Hölder class Cδ with
δ > 1 − 2α on the time interval [t0, t], then it is actually a classical solution on (t0, t]. The proof involves representing
the functions in Hölder space in terms of the Littlewood–Paley decomposition and using Besov space techniques.
When θ is in Cδ , it also belongs to the Besov space B̊

δ(1−2/p)
p,∞ for any p � 2. By taking p sufficiently large, we have

θ ∈ Cδ1 ∩ B̊
δ1
p,∞ for δ1 > 1−2α. The idea is to show that θ ∈ Cδ2 ∩ B̊

δ2
p,∞ with δ2 > δ1. Through iteration, we establish

that θ ∈ Cγ with γ > 1. Then θ becomes a classical solution.
The results of this paper can be easily extended to a more general form of the quasi-geostrophic equation in which

x ∈ Rn and u is a divergence-free vector field determined by θ through a singular integral operator.
The rest of this paper is divided into two sections. Section 2 provides the definition of Besov spaces and necessary

tools. Section 3 states and proves the main result.

2. Besov spaces and related tools

This section provides the definition of Besov spaces and several related tools. We start with a some notation. Denote
by S(Rn) the usual Schwarz class and S ′(Rn) the space of tempered distributions. f̂ denotes the Fourier transform
of f , namely

f̂ (ξ) =
∫
Rn

e−ix·ξ f (x) dx.

The fractional Laplacian (−�)α can be defined through the Fourier transform

̂(−�)αf = |ξ |2αf̂ (ξ).

Let

S0 =
{
φ ∈ S,

∫
Rn

φ(x)xγ dx = 0, |γ | = 0,1,2, . . .

}
.

Its dual S ′
0 is given by

S ′
0 = S ′/S ⊥

0 = S ′/P,

where P is the space of polynomials. In other words, two distributions in S ′ are identified as the same in S ′
0 if their

difference is a polynomial.
It is a classical result that there exists a dyadic decomposition of Rn, namely a sequence {Φj } ∈ S(Rn) such that

supp Φ̂j ⊂ Aj , Φ̂j (ξ) = Φ̂0(2
−j ξ) or Φj(x) = 2jnΦ0(2

j x)

and
∞∑

Φ̂k(ξ) =
{

1 if ξ ∈ Rn \ {0},
0 if ξ = 0,
k=−∞



P. Constantin, J. Wu / Ann. I. H. Poincaré – AN 25 (2008) 1103–1110 1105
where

Aj = {
ξ ∈ Rn: 2j−1 < |ξ | < 2j+1}.

As a consequence, for any f ∈ S ′
0,

∞∑
k=−∞

Φk ∗ f = f. (2.1)

For notational convenience, set

�jf = Φj ∗ f, j = 0,±1,±2, . . . . (2.2)

Definition 2.1. For s ∈ R and 1 � p,q � ∞, the homogeneous Besov space B̊s
p,q is defined by

B̊s
p,q = {

f ∈ S ′
0: ‖f ‖

B̊s
p,q

< ∞}
,

where

‖f ‖
B̊s

p,q
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(∑
j

(
2js‖�jf ‖Lp

)q
)1/q

for q < ∞,

sup
j

2js‖�jf ‖Lp for q = ∞.

For �j defined in (2.2) and Sj ≡ ∑
k<j �k ,

�j�k = 0 if |j − k| � 2 and �j(Sk−1f �kf ) = 0 if |j − k| � 3.

The following proposition lists a few simple facts that we will use in the subsequent section.

Proposition 2.2. Assume that s ∈ R and p,q ∈ [1,∞].

(1) If 1 � q1 � q2 � ∞, then B̊s
p,q1

⊂ B̊s
p,q2

.

(2) (Besov embedding) If 1 � p1 � p2 � ∞ and s1 = s2 + n( 1
p1

− 1
p2

), then B̊
s1
p1,q (Rn) ⊂ B̊

s2
p2,q (Rn).

(3) If 1 < p < ∞, then

B̊s
p,min(p,2) ⊂ W̊ s,p ⊂ B̊s

p,max(p,2),

where W̊ s,p denotes a standard homogeneous Sobolev space.

We will need a Bernstein type inequality for fractional derivatives.

Proposition 2.3. Let α � 0. Let 1 � p � q � ∞.

(1) If f satisfies

supp f̂ ⊂ {
ξ ∈ Rn: |ξ | � K2j

}
,

for some integer j and a constant K > 0, then∥∥(−�)αf
∥∥

Lq(Rn)
� C122αj+jn( 1

p
− 1

q
)‖f ‖Lp(Rn).

(2) If f satisfies

supp f̂ ⊂ {
ξ ∈ Rn: K12j � |ξ | � K22j

}
(2.3)

for some integer j and constants 0 < K1 � K2, then

C122αj‖f ‖Lq(Rn) �
∥∥(−�)αf

∥∥
Lq(Rn)

� C222αj+jn( 1
p

− 1
q
)‖f ‖Lp(Rn),

where C1 and C2 are constants depending on α,p and q only.
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The following proposition provides a lower bound for an integral that originates from the dissipative term in the
process of Lp estimates (see [21,4]).

Proposition 2.4. Assume either α � 0 and p = 2 or 0 � α � 1 and 2 < p < ∞. Let j be an integer and f ∈ S ′. Then∫
Rn

|�jf |p−2�jf Λ2α�jf dx � C22αj‖�jf ‖p
Lp

for some constant C depending on n, α and p.

3. The main theorem and its proof

Theorem 3.1. Let θ be a Leray–Hopf weak solution of (1.1), namely

θ ∈ L∞([0,∞);L2(R2)
) ∩ L2([0,∞); H̊ α(R2)

)
. (3.1)

Let δ > 1 − 2α and let 0 < t0 < t < ∞. If

θ ∈ L∞([t0, t];Cδ(R2)
)
, (3.2)

then

θ ∈ C∞(
(t0, t] × R2).

Proof. First, we notice that (3.1) and (3.2) imply that

θ ∈ L∞([t0, t]; B̊δ1
p,∞(R2)

)
,

for any p � 2 and δ1 = δ(1 − 2
p
). In fact, for any τ ∈ [t0, t],

∥∥θ(·, τ )
∥∥

B̊
δ1
p,∞

= sup
j

2δ1j‖�jθ‖Lp

� sup
j

2δ1j‖�jθ‖1− 2
p

L∞ ‖�jθ‖
2
p

L2

�
∥∥θ(·, τ )

∥∥1− 2
p

Cδ

∥∥θ(·, τ )
∥∥ 2

p

L2 .

Since δ > 1 − 2α, we have δ1 > 1 − 2α when

p > p0 ≡ 2δ

δ − (1 − 2α)
.

Next, we show that

θ ∈ L∞([t0, t]; B̊δ1
p,∞ ∩ Cδ1

)
implies

θ(·, t) ∈ B̊δ2
p,∞ ∩ Cδ2

for some δ2 > δ1 to be specified. Let j be an integer. Applying �j to (1.1), we get

∂t�j θ + κΛ2α�jθ = −�j(u · ∇θ). (3.3)

By Bony’s notion of paraproduct,

�j(u · ∇θ) =
∑

|j−k|�2

�j(Sk−1u · ∇�kθ) +
∑

|j−k|�2

�j(�ku · ∇Sk−1θ)

+
∑ ∑

�j(�ku · ∇�lθ). (3.4)

k�j−1 |k−l|�1
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Multiplying (3.3) by p|�jθ |p−2�jθ , integrating with respect to x, and applying the lower bound∫

Rd

|�jf |p−2�jf Λ2α�jf dx � C22αj‖�jf ‖p
Lp

of Proposition 2.4, we obtain

d

dt
‖�jθ‖p

Lp + Cκ22αj‖�jθ‖p
Lp � I1 + I2 + I3, (3.5)

where I1, I2 and I3 are given by

I1 = −p
∑

|j−k|�2

∫
|�jθ |p−2�jθ · �j(Sk−1u · ∇�kθ)dx,

I2 = −p
∑

|j−k|�2

∫
|�jθ |p−2�jθ · �j(�ku · ∇Sk−1θ) dx,

I3 = −p
∑

k�j−1

∫
|�jθ |p−2�jθ ·

∑
|k−l|�1

�j(�ku · ∇�lθ)dx.

We first bound I2. By Hölder’s inequality

I2 � C‖�jθ‖p−1
Lp

∑
|j−k|�2

‖�ku‖Lp‖∇Sk−1θ‖L∞ .

Applying Bernstein’s inequality, we obtain

I2 � C‖�jθ‖p−1
Lp

∑
|j−k|�2

‖�ku‖Lp

∑
m�k−1

2m‖�mθ‖L∞

� C‖�jθ‖p−1
Lp

∑
|j−k|�2

‖�ku‖Lp 2(1−δ1)k
∑

m�k−1

2(m−k)(1−δ1)2mδ1‖�mθ‖L∞ .

Thus, for 1 − δ1 > 0, we have

I2 � C‖�jθ‖p−1
Lp ‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp 2(1−δ1)k.

We now estimate I1. The standard idea is to decompose it into three terms: one with commutator, one that becomes
zero due to the divergence-free condition and the rest. That is, we rewrite I1 as

I1 = −p
∑

|j−k|�2

∫
|�jθ |p−2�jθ · [�j,Sk−1u · ∇]�kθ dx − p

∫
|�jθ |p−2�jθ · (Sju · ∇�jθ)dx

− p
∑

|j−k|�2

∫
|�jθ |p−2�jθ · (Sk−1u − Sju) · ∇�j�kθ dx

= I11 + I12 + I13,

where we have used the simple fact that
∑

|k−j |�2 �k�jθ = �jθ , and the brackets [] represent the commutator,
namely

[�j,Sk−1u · ∇]�kθ = �j(Sk−1u · ∇�kθ) − Sk−1u · ∇�j�kθ.

Since u is divergence free, I12 becomes zero. I12 can also be handled without resort to the divergence-free condition.
In fact, integrating by parts in I12 yields

I12 =
∫

|�jθ |p∇ · Sjudx � ‖�jθ‖p
Lp‖∇ · Sju‖L∞ .

By Bernstein’s inequality,
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|I12| � ‖�jθ‖p
Lp

∑
m�j−1

2m‖�mu‖L∞

= ‖�jθ‖p
Lp 2(1−δ1)j

∑
m�j−1

2(1−δ1)(m−j)2mδ1‖�mu‖L∞ .

For 1 − δ1 > 0,

|I12| � C‖�jθ‖p
Lp 2(1−δ1)j‖u‖Cδ1 � C‖�jθ‖p−1

Lp 2(1−2δ1)j‖θ‖
B̊

δ1
p,∞

‖u‖Cδ1 .

We now bound I11 and I13. By Hölder’s inequality,

|I11| � p‖�jθ‖p−1
Lp

∑
|j−k|�2

∥∥[�j,Sk−1u · ∇]�kθ
∥∥

Lp .

To bound the commutator, we have by the definition of �j

[�j,Sk−1u · ∇]�kθ =
∫

Φj(x − y)
(
Sk−1(u)(x) − Sk−1(u)(y)

) · ∇�kθ(y)dy.

Using the fact that θ ∈ Cδ1 and thus∥∥Sk−1(u)(x) − Sk−1(u)(y)
∥∥

L∞ � ‖u‖Cδ1 |x − y|δ1,

we obtain∥∥[�j,Sk−1u · ∇]�kθ
∥∥

Lp � 2−δ1j‖u‖Cδ1 2k‖�kθ‖Lp .

Therefore,

|I11| � Cp‖�jθ‖p−1
Lp 2−δ1j‖u‖Cδ1

∑
|j−k|�2

2k‖�kθ‖Lp .

The estimate for I13 is straightforward. By Hölder’s inequality,

|I13| � p‖�jθ‖p−1
Lp

∑
|j−k|�2

‖Sk−1u − Sju‖Lp‖∇�jθ‖L∞

� Cp‖�jθ‖p−1
Lp 2(1−δ1)j‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp .

We now bound I3. By Hölder’s inequality and Bernstein’s inequality,

|I3| � p‖�jθ‖p−1
Lp

∥∥∥∥�j∇ ·
( ∑

k�j−1

∑
|l−k|�1

�lu�kθ

)∥∥∥∥
Lp

� p‖�jθ‖p−1
Lp 2j‖u‖Cδ1

∑
k�j−1

2−δ1k‖�kθ‖Lp . (3.6)

Inserting the estimates for I1, I2 and I3 in (3.5) and eliminating p‖�jθ‖p−1
Lp from both sides, we get

d

dt
‖�jθ‖Lp + Cκ22αj‖�jθ‖Lp � C2(1−2δ1)j‖θ‖

B̊
δ1
p,∞

‖u‖Cδ1 + C2−δ1j‖u‖Cδ1

∑
|j−k|�2

2k‖�kθ‖Lp

+ C‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp 2(1−δ1)k + C2(1−δ1)j‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp

+ C2j‖u‖Cδ1

∑
k�j−1

2−δ1k‖�kθ‖Lp . (3.7)

The terms on the right can be further bounded as follows.
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C2−δ1j‖u‖Cδ1

∑
|j−k|�2

2k‖�kθ‖Lp = C2(1−2δ1)j‖u‖Cδ1

∑
|j−k|�2

2δ1k‖�kθ‖Lp 2(k−j)(1−δ1)

� C2(1−2δ1)j‖u‖Cδ1 ‖θ‖
B̊

δ1
p,∞

,

C‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp 2(1−δ1)k = C2(1−2δ1)j‖θ‖Cδ1

∑
|j−k|�2

2δ1k‖�ku‖Lp 2(k−j)(1−2δ1)

� C2(1−2δ1)j‖θ‖Cδ1 ‖u‖
B̊

δ1
p,∞

,

C2(1−δ1)j‖θ‖Cδ1

∑
|j−k|�2

‖�ku‖Lp = C2(1−2δ1)j‖θ‖Cδ1

∑
|j−k|�2

2δ1k‖�ku‖Lp 2(j−k)δ1

� C2(1−2δ1)j‖θ‖Cδ1 ‖u‖
B̊

δ1
p,∞

and

C2j‖u‖Cδ1

∑
k�j−1

2−δ1k‖�kθ‖Lp = C2(1−2δ1)j‖u‖Cδ1

∑
k�j−1

2−2δ1(k−j)2δ1k‖�kθ‖Lp

� C2(1−2δ1)j‖u‖Cδ1 ‖θ‖
B̊

δ1
p,∞

.

We can write (3.7) in the following integral form∥∥�jθ(t)
∥∥

Lp � e−Cκ22αj (t−t0)
∥∥�jθ(t0)

∥∥
Lp

+ C

t∫
t0

e−Cκ22αj (t−s)2(1−2δ1)j
(‖θ‖Cδ1 ‖u‖

B̊
δ1
p,∞

+ ‖u‖Cδ1 ‖θ‖
B̊

δ1
p,∞

)
ds.

Multiplying both sides by 2(2α+2δ1−1)j and taking the supremum with respect to j , we get∥∥θ(t)
∥∥

B̊
2δ1+2α−1
p,∞

� sup
j

{
e−Cκ22αj (t−t0)2(δ1+2α−1)j

}∥∥θ(t0)
∥∥

B̊
δ1
p,∞

+ Cκ−1 sup
j

{(
1 − e−Cκ22αj (t−t0)

)}
max

s∈[t0,t]
∥∥θ(s)

∥∥
B̊

δ1
p,∞

∥∥θ(s)
∥∥

Cδ1 .

Here we have used the fact that

‖u‖Cδ1 � ‖θ‖Cδ1 and ‖u‖
B̊

δ1
p,∞

� ‖θ‖
B̊

δ1
p,∞

.

Therefore, we conclude that if

θ ∈ L∞([t0, t]; B̊δ1
p,∞ ∩ Cδ1

)
,

then

θ(·, t) ∈ B̊2δ1+2α−1
p,∞ . (3.8)

Since δ1 > 1−2α, we have 2δ1 +2α −1 > δ1 and thus gain regularity. In addition, according to the Besov embedding
of Proposition 2.2,

B̊2δ1+2α−1
p,∞ ⊂ B̊δ2∞,∞,

where

δ2 = 2δ1 + 2α − 1 − 2

p
= δ1 +

(
δ1 −

(
1 − 2α + 2

p

))
.

We have δ2 > δ1 when

p > p1 ≡ 2
.

δ1 − (1 − 2α)
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Noting that

B̊δ2∞,∞ ∩ L∞ = Cδ2 ,

we conclude that, for p > max{p0,p1},
θ(·, t) ∈ B̊δ2

p,∞ ∩ Cδ2

for some δ2 > δ1. The above process can then be iterated with δ1 replaced by δ2. A finite number of iterations allow
us to obtain that

θ(·, t) ∈ Cγ

for some γ > 1. The regularity in the spatial variable can then be converted into regularity in time. We have thus
established that θ is a classical solution to the supercritical QG equation. Higher regularity can be proved by well-
known methods. �
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