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Abstract

We present a regularity result for weak solutions of the 2D quasi-geostrophic equation with supercritical (¢ < 1/2) dissipa-
tion (—A)“: If a Leray—Hopf weak solution is Holder continuous 6 € ct (]Rz) with § > 1 — 2« on the time interval [7g, ¢], then it is
actually a classical solution on (g, ¢].
© 2007 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We discuss the surface 2D quasi-geostrophic (QG) equation
30 +u-VO+rk(—A)*0=0, xeR> >0, (1.1)

where « > 0 and x > 0 are parameters, and the 2D velocity field u = (u1, u2) is determined from 6 by the stream
function i via the auxiliary relations

(i, u2) = (=09, 0 ¥),  (=A)Py =—6. (1.2)
Using the notation A = (—A)!/2 and V* = (d,,, —dy,), the relations in (1.2) can be combined into

u=vV+ATlo = (-Ry0,R16), (1.3)

where R and R, are the usual Riesz transforms in R2. The 2D QG equation with ¥ > 0 and & = % arises in geo-

physical studies of strongly rotating fluids (see [5,16] and references therein) while the inviscid QG equation ((1.1)
with k = 0) was derived to model frontogenesis in meteorology, a formation of sharp fronts between masses of hot
and cold air (see [7,10,16]).
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The problem at the center of the mathematical theory concerning the 2D QG equation is whether or not it has a
global in time smooth solution for any prescribed smooth initial data. In the subcritical case o > %, the dissipative
QG equation has been shown to possess a unique global smooth solution for every sufficiently smooth initial data (see
[8,17]). In contrast, when o < % the issue of global existence and uniqueness is more difficult and has still unanswered
aspects. Recently this problem has attracted a significant amount of research ([1-6,9,11-15,18-24]). In Constantin,
Coérdoba and Wu [6], we proved in the critical case (¢ = %) the global existence and uniqueness of classical solutions
corresponding to any initial data with L°°-norm comparable to or less than the diffusion coefficient «. In a recently
posted preprint in arXiv [14], Kiselev, Nazarov and Volberg proved that smooth global solutions exist for any C*
periodic initial data, by removing the L°-smallness assumption on the initial data of [6]. Caffarelli and Vasseur
(arXiv reference [1]) establish the global regularity of the Leray—Hopf type weak solutions (in L% ((0, 00); L?) N
L?((0, 00); 1-011/2)) of the critical 2D QG equation with o = % in general R”.

In this paper we present a regularity result of weak solutions of the dissipative QG equation with o < % (the

supercritical case). The result asserts that if a Leray—Hopf weak solution 6 of (1.1) is in the Holder class C® with
8 > 1 — 2« on the time interval [#g, ¢], then it is actually a classical solution on (7, ¢]. The proof involves representing
the functions in Holder space in terms of the Littlewood—Paley decomposition and using Besov space techniques.

When 6 is in C?, it also belongs to the Besov space Bg(; 2/P) gor any p > 2. By taking p sufficiently large, we have

9 eCin éf,{oo for §; > 1 — 2. The idea is to show that & € C%2n laif,z,oo with 6, > 81. Through iteration, we establish
that 0 € C¥ with y > 1. Then 6 becomes a classical solution.

The results of this paper can be easily extended to a more general form of the quasi-geostrophic equation in which
x € R" and u is a divergence-free vector field determined by 6 through a singular integral operator.

The rest of this paper is divided into two sections. Section 2 provides the definition of Besov spaces and necessary
tools. Section 3 states and proves the main result.

2. Besov spaces and related tools

This section provides the definition of Besov spaces and several related tools. We start with a some notation. Denote
by S(R") the usual Schwarz class and S’(R") the space of tempered distributions. f denotes the Fourier transform
of f, namely

f&= / e S (x)dx.
]Rn
The fractional Laplacian (—A)* can be defined through the Fourier transform
(=) f =15 f&).
Let

Soz{¢68,/¢(x)xydx:0, |y|:0,1,2,...}.
RV!

Its dual S, is given by
S =8'/Sy=S'/P,

where P is the space of polynomials. In other words, two distributions in S’ are identified as the same in S;) if their

difference is a polynomial.

It is a classical result that there exists a dyadic decomposition of R", namely a sequence {®;} € S(R") such that

supp®; C Aj, D) =Do27/E) or @j(x) =2/"Dy(2'x)

and

o
o )1 ifEeR"\ {0},

2 )= {o if £ =0,

k=—o00
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where
Aj={geRm 277 <jg| <2/H1)

As a consequence, for any f € S,

Y dixf=f 2.1

k=—o00

For notational convenience, set

Ajf=®jxf, j=0,%£1,£2,.... (2.2)

Definition 2.1. For s € R and 1 < p, ¢ < 0o, the homogeneous Besov space B;, q is defined by
By ={f €Sp: £l < oo},

where

) 1/q
(Z(z/SuAjfan)q) for ¢ < o0,
1y, =4 7
sup2’*|Aj flire for g = oo.
J

For A; defined in (2.2) and §; = Zk<j Ak,
AiANe=0 if|j—k|2>22 and A;(Si—1fAf)=0 if|j—k|=3.

The following proposition lists a few simple facts that we will use in the subsequent section.
Proposition 2.2. Assume that s € R and p, q € [1, oo].

(D) If1 < g1 < g2 <00, then éfa,ql C é;’qz_

(2) (Besov embedding) If 1 < p1 < pp < ooand sy =53 + n(% - é), then é;ll,q(R”) C Bgi,zzyq(R”).
3) If1 < p < oo, then

D c V‘i/s,p c Bﬁs

BS
p,min(p,2) p,max(p,2)’

where WP denotes a standard homogeneous Sobolev space.
We will need a Bernstein type inequality for fractional derivatives.

Proposition 2.3. Leta« > 0. Let 1 < p < g < o0.

(1) If f satisfies
supp f C {& e R™: |£] < K2/},

for some integer j and a constant K > 0, then

2ai+in(L—1
[0 £l gy < C2 N f o,
(2) If f satisfies
supp f C {£ € R": K12/ < |€] < K227} 2.3)

for some integer j and constants 0 < K| < K3, then

2 I f N <[ 2 F any < C22 072N o,

where C| and C, are constants depending on o, p and q only.
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The following proposition provides a lower bound for an integral that originates from the dissipative term in the

process of L? estimates (see [21,4]).

Proposition 2.4. Assume either a« > 0and p =2 or0<a <1and?2 < p < occ. Let j be an integer and f € S'. Then

/ A FIP2A A A fdx > C2 A £,
Rl’l

for some constant C depending on n, a and p.

3. The main theorem and its proof

Theorem 3.1. Let 6 be a Leray—Hopf weak solution of (1.1), namely

0 € L=([0, 00); L*(R?*)) N L*([0, 00); H*(R?)).
Let§>1—20andlet0 <ty <t <oo. If

0 € L™([to, t1; C°(RY)),
then

0 € C™((10, 1] x R?).

Proof. First, we notice that (3.1) and (3.2) imply that
0 € L®([to. 1]: BY)  (RY)),

forany p >2and 6 =46(1 — %). In fact, for any 7 € [#9, t],

10C, D] 200 =sup227 || A6l L
Byls .
’ J

. 1-2 2

1)
< sup2 1]”AjO”Loop ||A]9||£2
J

-2 2
<[oC D" [0C D -
Since § > 1 — 2«, we have §; > 1 — 2o when
28
§—(1—-2a)
Next, we show that

0 € L™ ([t 1]; BY' ., N C*")

P=>Do=

implies

po I
6(.1eB nck

for some 8, > §; to be specified. Let j be an integer. Applying A ; to (1.1), we get

HAO+KkAA 0 =—A;u-V0).

By Bony’s notion of paraproduct,

Aj-VO) = Y AjSi—iu-VAO) + Y Aj(Au-VSi_16)

[J—kI<2 |j—k|<2

+ )Y Aj(Awu-VAW).

k>j—11k—1|<1

3.1

(3.2)

(3.3)

(3.4)
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Multiplying (3.3) by p|A;0|? —2A ;j0, integrating with respect to x, and applying the lower bound

/|Ajf|l7—2Aij2aAjfdx P> C22aj||Ajf”£P
R4

of Proposition 2.4, we obtain

d .

T NAOIL + C2T 801 ST + B+ I, (3.5)
where I, I and I3 are given by

L=-p Z |A;01P72A160 - Aj(Sp—1u - VALH) dx,

<2

h=-p > /|AA,~9|P—2A,-9-A.,(Aku-vsk_le)dx,
k<2

L=-p Y fIAjBI”‘ZA,H- 3 Aj(Au- VAB)dx.
k=j—1 lk—1|1<1

We first bound 5. By Holder’s inequality

-1
L<CIABIL, D I AulLr |V Sio18]lLe.
lj—kI<2

Applying Bernstein’s inequality, we obtain

-1
L<CIABN7," > Aulie Y 2" A0 Lx

lj—kI<2 m<k—1
<CIA017 " ST NAul|p2070F 37 pe=RA=S0gmiii A, g .
1j—kI<2 m<k—1

Thus, for 1 — §; > 0, we have
-1 —
L<CIAONT, 10les Y I Aku] p20 720k,
[J—kI<2

We now estimate /7. The standard idea is to decompose it into three terms: one with commutator, one that becomes
zero due to the divergence-free condition and the rest. That is, we rewrite I as

L=-p Y /|AJ-9|P*2AJ»9.[A,-,Sk_lu-V]Akedx—p/mjw*%je-(S,-u-VAje)dx
j—kI<2

-p Y /|A,9|P—2A,9-(Sk_lu—sju)-VA,Akedx
j—kI<2
=l + 2+ 13,

where we have used the simple fact that } <, AxAj0 = A;6, and the brackets [] represent the commutator,
namely

[Aj, Sk—1u - VIAD = Aj(Sk—1u - VARO) — Sp—1u - VA AH.

Since u is divergence free, /12 becomes zero. /1, can also be handled without resort to the divergence-free condition.
In fact, integrating by parts in /12 yields

112=f|Aj9|PV~Sjudx< 18,015,117 - Sjul .

By Bernstein’s inequality,
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(L2l <NA;ON17, Y 2" Apu] Lo
m<j—1

= 114,617,207 3 7 20D A ov.
m<j—1

For1—-6; >0,
12| < CIIA;O12 2070 [l sy < ClIA;0)1D, 207200 g g lellen

We now bound /1] and /3. By Holder’s inequality,

Il < plao1y" > 1A, Scoau- VIAWG] .
lj—kI<2

To bound the commutator, we have by the definition of A ;
[Aj, Sk—1u - V]AO = / @ (x — ¥)(Sk—1W)(x) — Sk—1(W) () - VAO(y) dy.

Using the fact that § € C?' and thus

[ Sk-1@) @) = Se1 @D oo < Nlutll ooyl = yI7,
we obtain

1A, Sk—ru- VIAWG|,, <270 |lull o5, 211 kOl o
Therefore,

. .
1Ll < CpllaoNy, 27 lullesy Y 24 1AkblIe.
lj—kI<2

The estimate for /13 is straightforward. By Holder’s inequality,
I3l < pllAelL, " > ISk — SjullLe VA6 L
j—k|<2

<CplAOIL, 200 e Y Akl e
lj—kI<2

We now bound /3. By Holder’s inequality and Bernstein’s inequality,

1131 < pllA;oIL, (Z 3 AmAkH)
k>j—11|1—k|<1 Lr
1 _
<pIAoNT, 2lules D 27 1Ak0] Lo (3.6)
k>j—1

Inserting the estimates for 1, I; and I3 in (3.5) and eliminating p||A ;0 ||€;1 from both sides, we get

—||A Ollr + Cie2? 18 6llLr < C2U2VTN61 oy Nl + €27 llullen 3 2 01A0 Ly

lj—k|<2
+CIOles Y Akl r20 K+ 2000 s Y Akl
lJ—kI<2 lj—kI<2
+C2 ullesy Y 27 A0 Lo (3.7)

k>j—1

The terms on the right can be further bounded as follows.
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C2 W ullen Y 2 NAubllLr = C20 T ullgs, Y 20K A0 o2
lj—kI<2 |j—k|<2

1-281)j
<20 lullen 191

Cllolesn Y IApul 2070k = 2072000 s Y 25K A p 2k =D0=200
lj—kI<2 |j—k|<2

(1-281)j
SN0l ea llulign s

C2000 N0l sy Y Al = C2U20 0] D 25K Agu]| p2 TR
[j—kI<2 [J—kI<2

< C2U720TN6]| ooy ull gy
pP,o0
and
Collulles Y 270K AkOLr = C20 20 u sy Y 272 EED2IK A
kzj-1 kzj—1

< 20720 | sy 0] o1 -
p,©
We can write (3.7) in the following integral form

12,600, <e S0 A0a0)] ,,
t

— 2] (f— — i
+C / e QXTI (0l co Nl gy + Nl 1011 g3, ) ds.
fo

Multiplying both sides by 2(2¢+281=1j and taking the supremum with respect to j, we get

||0(t) ” oo < Sup{e—ckzzﬂf' (1—10) p(B1+20—1) } ||9(t0) ” 4
P, / P,

-1 _ —Cx2% (t—19) .
+ Ck SIJl_p{(l e )}Sfe?g’ft]||9(s)||3§{m”Q(S)”céu~

Here we have used the fact that
lullcor <N1Olcar and lullgo, <Ol oy -
p,oo p,00
Therefore, we conclude that if
0 € L®([to. t]; B, N C*),
then

281 +20—1
(1) € Byl

1109

(3.8)

Since §1 > 1 —2«, we have 261 + 2« — 1 > §; and thus gain regularity. In addition, according to the Besov embedding

of Proposition 2.2,

281 +2a—1 D&
Bp,oo c Boo,oo’

where
2 2
Hh=201+20—1——=61+ (61— (1 —20+ — .
p p

We have 8, > §; when
2

P=Pr=5""0 2a)
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Noting that
B2  NL>®=C%,

we conclude that, for p > max{po, p1},
0(.1)e B2 NC»

for some 8> > §1. The above process can then be iterated with §; replaced by 8,. A finite number of iterations allow
us to obtain that

0(,1)eCY

for some y > 1. The regularity in the spatial variable can then be converted into regularity in time. We have thus
established that 6 is a classical solution to the supercritical QG equation. Higher regularity can be proved by well-
known methods. O
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