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Abstract

Attention is given to the initial-boundary-value problems (IBVPs)

ut + ux + uux + uxxx = 0, for x, t � 0,

u(x,0) = φ(x), u(0, t) = h(t)

}
(0.1)

for the Korteweg–de Vries (KdV) equation and

ut + ux + uux − uxx + uxxx = 0, for x, t � 0,

u(x,0) = φ(x), u(0, t) = h(t)

}
(0.2)

for the Korteweg–de Vries–Burgers (KdV-B) equation. These types of problems arise in modeling waves generated by a wavemaker
in a channel and waves incoming from deep water into near-shore zones (see [B. Boczar-Karakiewicz, J.L. Bona, Wave dominated
shelves: a model of sand ridge formation by progressive infragravity waves, in: R.J. Knight, J.R. McLean (Eds.), Shelf Sands and
Sandstones, in: Canadian Society of Petroleum Geologists Memoir, vol. 11, 1986, pp. 163–179] and [J.L. Bona, W.G. Pritchard,
L.R. Scott, An evaluation of a model equation for water waves, Philos. Trans. Roy. Soc. London Ser. A 302 (1981) 457–510] for
example). Our concern here is with the mathematical theory appertaining to these problems. Improving upon the existing results
for (0.2), we show this problem to be (locally) well-posed in Hs(�+) when the auxiliary data (φ,h) is drawn from Hs(�+) ×
H

s+1
3

loc (�+), provided only that s > −1 and s �= 3m + 1
2 (m = 0,1,2, . . .). A similar result is established for (0.1) in Hs

ν (�+)

provided (φ,h) lies in the space Hs
ν (�+) × H

s+1
3

loc (�+). Here, Hs
ν (�+) is the weighted Sobolev space

Hs
ν

(�+)= {f ∈ Hs
(�+); eνxf ∈ Hs

(�+)}
with the obvious norm (cf. Kato [T. Kato, On the Cauchy problem for the (generalized) Korteweg–de Vries equations, in: Ad-
vances in Mathematics Supplementary Studies, in: Studies Appl. Math., vol. 8, 1983, pp. 93–128]). Both local and global in
time results are derived. An added outcome of our analysis is a very strong smoothing property associated with the problems
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(0.1) and (0.2) which may be expressed as follows. Suppose h ∈ H∞
loc and that for some ν > 0 and s > −1 with s �= 3m + 1

2
(m = 0,1,2, . . .), φ lies in Hs

ν (�+) (respectively Hs(�+)). Then the corresponding solution u of the IBVP (0.1) (respectively
the IBVP (0.2)) belongs to the space C(0,∞;H∞

ν (�+)) (respectively C(0,∞;H∞(�+))). In particular, for any s > −1 with
s �= 3m + 1

2 (m = 0,1,2, . . .), if φ ∈ Hs(�+) has compact support and h ∈ H∞
loc(�+), then the IBVP (0.1) has a unique solution

lying in the space C(0,∞;H∞(�+)).
© 2008
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1. Introduction

In this paper, we continue the study of the initial-boundary-value problem (IBVP) for the Korteweg–de Vries (KdV)
equation and the Korteweg–de Vries–Burgers (KdV-B) equation posed in a quarter plane, namely

ut + ux + uux − μuxx + uxxx = 0, for x, t � 0,

u(x,0) = φ(x), u(0, t) = h(t),

}
(1.1)

where μ = 0 for KdV and μ > 0 for KdV-B. These IBVP’s arise in mathematical descriptions of water waves gener-
ated by a wave maker in a channel and in other situations where a wavetrain is generated at or impinges upon one end
of a stretch of a medium of propagation that suffers both non-linear and dispersive effects in response to disturbances
(see [2,3,5,35]). Our main concern is the well-posedness of (1.1) in the sense to be specified now, in the classical
Sobolev spaces Hs(�+) for small values of s.

Definition 1.1 (Well-posedness). For a given real number s, the IBVP (1.1) is said to be well-posed in the space

Hs(�+) × H
s+1

3
loc (�+) if for any r > 0, there exists a T = T (r) > 0 depending only on s and r such that for

s-compatible (φ,h) ∈ Hs(�+) × H
s+1

3 (0, T ) satisfying∥∥(φ,h)
∥∥

Hs(�+)×H
s+1

3 (0,T )
� r,

the IBVP (1.1) admits a unique solution

u ∈ C
([0, T ];Hs

(�+)).
Moreover, the solution depends continuously in this latter space on variations of the auxiliary data in their respective
function spaces.

A pair (φ,h) ∈ Hs(�+) × H
s+1

3 (0, T ) is said to be s-compatible for (1.1) if, in case s > 1
2 ,

φk(0) = hk(0)

for k = 0,1, . . . , [s/3]−1 when s−3[s/3] � 1
2 and for k = 0,1, . . . , [s/3] when s−3[s/3] > 1

2 , where hk(t) ≡ h(k)(t)

is the kth order derivative of h,

φ0(x) = φ(x), and
φk(x) = −(φ′′′

k−1(x) + φ′
k−1(x) − μφ′′

k−1(x) +∑k−1
j=0

[
φj (x)φk−j−1(x)

]′) } (1.2)

for k = 1,2, . . . . Here, for non-negative numbers r , [r] is the largest integer less than or equal to r .
The well-posedness described by Definition 1.1 is usually called local well-posedness since the life-span T of the

solution depends on the size r of the auxiliary data. If, instead, T is independent of r , then (1.1) is said to be globally

well-posed in the space Hs(�+) × H
s+1

3
loc (�+). When s � 3, the term ‘solution’ in Definition 1.1 is understood to

refer to a strong solution, which is to say u satisfies the equation in (1.1) in the space L2(�+) for all t ∈ [0, T ]. When
s < 3, the solution u in Definition 1.1 is understood to be a mild solution as defined below in Definition 1.2. One of
the advantages of using the concept of mild solution instead of solution in the sense of distributions is that one does
not need to be concerned with whether or not the non-linear term uux in the equation makes sense in the relevant
function class, a point that is especially telling when s is negative.
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Definition 1.2 (mild solution). Let s ∈ � and T > 0 be given. For a given s-compatible pair (φ,h) ∈ Hs(�+) ×
H

s+1
3

loc (�+), a function u ∈ C([0, T ];Hs(�+)) is said to be a mild solution of the IBVP (1.1) on the time interval
[0, T ] if there exists a sequence {un}∞n=1 in the space

C
([0, T ];H 3(�+))∩ C1([0, T ];L2(�+))

with

φn(x) = un(x,0), hn(t) = un(0, t), n = 1,2, . . . ,

such that

(i) un solves the equation in (1.1) in L2(�+) for 0 < t < T ;
(ii) limn→∞ ‖un − u‖C([0,T ];Hs(�+)) = 0;

(iii) limn→∞ ‖φn − φ‖Hs(�+) = 0 and limn→∞ ‖hn − h‖
H

s+1
3 (0,T )

= 0.

Remark. If s � 3 and u is a strong solution of (1.1), then the constant sequence un = u for all n suffices to determine
u as a mild solution.

Boundary-value problems for non-linear, dispersive wave equations began with the work of Bona and Bryant [3]
for the BBM-equation. The study of the IBVP (1.1) with μ = 0 was initiated by Ton in [54], where existence and
uniqueness were established assuming that the initial data φ is smooth and the boundary data h ≡ 0. The first well-
posedness result in the sense of Definition 1.1 for the IBVP (1.1) was presented by Bona and Winther [13,14]; they
showed that the IBVP (1.1) is (globally) well-posed in the space H 3k+1(�+) with (φ,h) ∈ H 3k+1(�+) × Hk+1

loc (�+)

for k = 1,2, . . . . There have been many works on (1.1) since then. The reader is referred to [4,8–12,20,26–29,33,
32,31,30,34] and the references therein for an overall literature review. In particular Bona, Sun and Zhang in [8]
extended the theory of Kenig, Ponce and Vega in [41,42] on the initial value problem (IVP) for the KdV equation

posed on the whole line � to the IBVP (1.1), showing that it is well-posed in the space Hs(�+) × H
s+1

3
loc (�+) for

s > 3
4 . In [20], Colliander and Kenig demonstrated how the powerful theory developed by Kenig, Ponce and Vega,

Bourgain and others for the pure initial value problems for non-linear dispersive wave equations can be adapted to deal
with initial boundary value problems for the same equations. They showed in [20] that for a given s-compatible pair

(φ,h) ∈ Hs(�+)×H
s+1

3
loc (�+) with 0 � s � 1, s �= 1

2 , the IBVP (1.1) admits a solution u ∈ C([0, T ];Hs(�+)) which
depends continuously on (φ,h). This result was strengthened later by Holmer [34] to include the case − 3

4 < s < 0. In
a recent paper [12], Bona, Sun and Zhang showed that the IBVP (1.1) possesses a strong global smoothing property
that comes about because of the dissipative mechanism introduced through imposition of the boundary condition at
x = 0. With the aid of this boundary smoothing property and the use of restricted Bourgain spaces, they resolved
the uniqueness issue left open in [20] and showed that the IBVP (1.1) is unconditionally well-posed in the space

Hs(�+) × H
s+1

3
loc (�+) for any s > − 3

4 .

The following question then arises naturally.

Question 1.3. Is the IBVP (1.1) well-posed in the space Hs for any values of s < − 3
4 ?

The issue of how large can be the spaces of auxiliary data and still maintain well-posedness also arises for the pure
initial value problem (IVP) for the KdV-equation posed on the whole line �, viz.

ut + uux + uxxx = 0, x, t ∈ �
u(x,0) = φ(x),

}
(1.3)

or posed with periodic boundary conditions, which is to say, posed on the unit circle S in the plane,

ut + uux + uxxx = 0, x ∈ S, t ∈ �
u(x,0) = φ(x), x ∈ S.

}
(1.4)
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After considerable effort (see [7,6,15,17–19,21,22,37,39–44,46,50,51,53] and the references contained therein), it is
understood that the IVP (1.3) is well-posed in the space Hs(�) for s > − 3

4 and the IVP (1.4) is well-posed in the
space Hs(S) for s � − 1

2 . The analogue of Question 1.3 in the context of (1.3)–(1.4) is the following.

Question 1.4. Is the IVP (1.3) well-posed in Hs(�) for some s < − 3
4 or is the IVP (1.4) well-posed in Hs(S) for

some s < − 1
2 ?

The answer is instructive. For the IVP (1.3), when s < − 3
4 , the IVP (1.3) has been shown to be ill-posed in Hs(�)

in the sense that the solution map, if it were to exist, cannot be locally uniformly continuous (see [16,55,19,45]). The
same can be said for the IVP (1.4); it is ill-posed in Hs(S) when s < − 1

2 in the sense that the solution map cannot
be locally uniformly continuous. When s = − 3

4 , a weaker form of local well-posedness has been established for (1.3)
in [21]. Thus, the indications were that the answer to Question 1.4 was almost certainly negative. It came as quite
a surprise when Kappeler and Topalov [36] demonstrated recently that the IVP (1.4) is (globally) well-posed in the
space Hs(S) for s � −1. In addition, there is another recent and very interesting paper [47] of Molinet and Ribaud on
the pure initial-value problem

ut + uux + uxxx − uxx = 0, x ∈ �, t > 0

u(x,0) = ψ(x), x ∈ �

}
(1.5)

for the KdV–Burgers equation. They showed that (1.5) is well-posed in the space Hs(�) for s > −1 and is ill-posed
when s < −1 in the sense that the corresponding solution map is not C2. This is also a surprising result since the pure
initial-value problem for the Burgers equation, namely

ut + uux − uxx = 0, x ∈ �, t > 0

u(x,0) = ψ(x), x ∈ �,

}
(1.6)

is known to be well-posed in the space Hs(�) for s � − 1
2 and is ill-posed in Hs(�) for any s < − 1

2 [1,25]. Molinet
and Ribaud achieved their result by taking full advantage of the combination of the dispersion introduced through the
term uxxx and the dissipation inherent in the Burgers’ term −uxx , though their analysis is informed by the work of
Bourgain, and Kenig, Ponce and Vega. The corresponding solution map is real analytic when s > −1. In contrast, the
approach of Kappeler and Topalov is completely different from those of Bourgain and Kenig, Ponce and Vega, being
based on the classical inverse scattering transform. The corresponding solution map associated with the IVP (1.4) is
continuous, but not locally uniformly continuous when s < − 1

2 .
An implication of the work of Kappeler–Topalov and Molinet–Ribaud is that it is reasonable to conjecture the IBVP

(1.1) is well-posed in the space Hs(�+) for at least some range of s < − 3
4 . Indeed, their works not only indicate that

an affirmative answer to Question 1.3 is possible, but also suggest two possible approaches:

(a) seeking to use the dissipative mechanism inherent in imposing the boundary condition for (1.1) at x = 0 in a way
reminiscent of what Molinet and Ribaud did with the Burgers term in (1.6);

(b) using the inverse scattering methodology as did Kappeler and Topalov.

Recent work in the direction of an inverse scattering transform for (1.1) by Fokas, Its and Pelloni [33,32,31,30]
shows promise for its use in rigorous studies. In the present essay, we have elected approach (a), in part because results
obtained by such considerations are likely to have more scope as they rely upon a less rigid structure. A theory based
on the inverse scattering transform is being investigated separately.

There are two important auxiliary points arising in the present analysis that are worth singling out, as they have
independent interest. One is an accurate appraisal of the damping implied by imposition of the boundary condition at
x = 0. The other is a relation between the IBVP’s for the KdV-equation and the KdV–Burgers equation. These points
are explained now.

It is a simple matter to see that the imposition of the boundary condition u(0, t) = h(t) in (1.1) results in dissipation.
Indeed, suppose for example that h(t) ≡ 0 for all t � 0 and that u is a suitably smooth solution of (1.1) which, along
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with its first few partial derivatives, decays rapidly to zero as x → ∞. Multiplying the KdV-equation by u, integrating
over the half-line �+, and integrating by parts, leads to the formula

d

dt

∞∫
0

∣∣u(x, t)
∣∣2 dx = −1

2
u2

x(0, t) for all t � 0.

Thus the L2-norm of the solution is seen to be decreasing, and strictly so whenever ux(0, t) �= 0. This dissipative
mechanism is somewhat more subtle than that induced by a Burgers-type term in the equation itself, or other forms of
point dissipation. These have been studied and quantified in the works of Bona, Sun and Zhang [12] and Russell and
Zhang [48]. In particular, it was shown in [12] that the IBVP for the linear problem

ut + ux + uxxx = 0, x, t > 0,

u(x,0) = 0, u(0, t) = h(t), x, t > 0

}
(1.7)

associated to (1.1) has the following smoothing property; its solution u(x, t) is the restriction to �+ ×�+ of a function
w(x, t) defined on � × � which is such that( ∞∫

−∞

∞∫
−∞

(
1 + |ξ |)2s(1 + ∣∣τ − ξ3

∣∣)2b∣∣ŵ(ξ, τ )
∣∣2 dξ dτ

)1/2

� C‖h‖
H

3b+s−1/2
3 (�+)

(1.8)

where b is any value in [0, 1
2 − s

3 ) if − 3
2 � s < 1, b is any value in [0, 5

6 − s
3 ] if − 1

2 < s < 1 and C is a constant
depending only on s and b. As a direct consequence of this estimate, we derive the corollary that

h ∈ H
s+1

3
loc

(�+) implies that the solution u of (1.7) belongs to the space L2(0, T ;Hs+ 3
2
(�+)).

This is a much stronger smoothing result than the well-known Kato smoothing property which only implies that
u ∈ L2(0, T ;Hs+1

loc (�+)) (see [12]). This global boundary smoothing property is the key to our proof in [12] that the
IBVP (1.1) is unconditionally well-posed in Hs(�+) for any s > − 3

4 .
We also mention that it is not only the imposition of a boundary condition at x = 0 that can result in smoothing

of solutions of (1.1). Indeed, for both the pure initial-value problem (1.3) and the initial-boundary-value problem
for the KdV-equation ((1.1) with μ = 0), more rapid decay of the initial value as x → +∞ leads to an increase in
the smoothness of the solution for t > 0. This well-known fact (see, e.g. [23,24,26,27,38,46,49]) has, for example,
been exploited by Faminskii [26,27] and Kruzhkov and Faminskii [46] in their study of well-posedness issues for the
KdV-equation.

Now, attention is directed to a connection between the KdV equation and the KdV–Burgers equation. Let α,β ∈ �
be given and consider the transformation

u(x, t) = eαx+βtv(x, t).

A direct calculation shows that u is a solution of the KdV equation

ut + ux + uux + uxxx = 0 (1.9)

if and only if v is a solution of the equation

vt + (α + α3 + β
)
v + (3α2 + 1

)
vx + vxxx + 3αvxx + eβt+αx

(
αv2 + vvx

)= 0. (1.10)

If we choose

α < 0, β = −α − α3,

then v(x, t) is a solution of the IBVP for the KdV–Burgers type equation

vt + (3α3 + 1)vx + e−(α+α3)t+αx(vvx + αv2) + vxxx + 3αvxx = 0, x, t > 0,

v(x,0) = e−αxφ(x), x � 0,

v(0, t) = e(α+α3)th(t), t � 0

⎫⎪⎬
⎪⎭ (1.11)
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if and only if u(x, t) is a solution of (1.1). Thus, one is led to consider the IBVP for the variable-coefficient KdV–
Burgers equation posed on the half line �+, viz.

vt + ρvx + γ vvx + a1(x)b1(t)vvx + a2(x)b2(t)v
2 + vxxx − vxx = 0, x, t > 0,

v(x,0) = ψ(x), x � 0,

v(0, t) = g(t), t � 0

⎫⎪⎬
⎪⎭ (1.12)

where ρ > 0 and γ ∈ R are constants, aj ∈ H∞[0,∞) and bj ∈ C∞[0,∞) for j = 1,2. Note that well-posedness
of (1.12) in the space Hs(�+), the s-compatibility of the initial value ψ and the boundary value g, and the concept
of mild solution of the IBVP (1.12) can be defined just as described in Definitions 1.1 and 1.2 for the IBVP (1.1).
Using the approach developed in our earlier paper [12,56], we can extend Molinet and Ribaud’s work [47] on the pure
initial-value problem (1.5) to the IBVP (1.12) as follows.

Theorem 1.5 (local well-posedness). Let s > −1 be given with s �= 3m + 1
2 , m = 0,1,2, . . . . For any r > 0, there

exists a T = T (r) > 0 such that if (ψ,g) ∈ Hs(�+) × H
s+1

3 (0, T ) is s-compatible with respect to the equation in
(1.12) and satisfies∥∥(ψ,g)

∥∥
Hs(�+)×H

s+1
3 (0,T )

< r,

then the IBVP (1.12) admits a unique solution u ∈ C([0, T ];Hs(�+)). Moreover, the corresponding solution map is

(real) analytic from the space Hs(�+) × H
s+1

3 (0, T ) to the space C([0, T ];Hs(�+)).

Theorem 1.5 is a local result since the asserted life span (0, T ) of the solution depends on the size r of its initial
and boundary data. As in [8], the following global well-posedness results obtain for the IBVP (1.12).

Theorem 1.6 (global well-posedness). Assume that the system (1.12) satisfies

b2(t)a2(x) − 1

3
b1(t)a

′
1(x) ≡ 0 x, t ∈ (0,+∞). (1.13)

(i) Let s � 0 and T > 0 be given with s �= 3m + 1
2 , m = 0,1,2, . . . . For any s-compatible pair

(ψ,g) ∈ Hs
(�+)× H

s+1
3 +η(s)(0, T )

where

η(s) =
{

ε > 0, if 0 � s < 3,

0, if s � 3,

the IBVP (1.12) admits a unique solution u ∈ C([0, T ];Hs(�+)). Moreover, the corresponding solution map is

(real) analytic from the space Hs(�+) × H
s+1

3 +η(s)(0, T ) to the space C([0, T ];Hs(�+)).

(ii) Let s ∈ (−1,0) and T > 0 be given. For any (ψ,g) ∈ Hs(�+) × H
1
3 +ε(0, T ), the IBVP (1.12) admits a unique

solution u ∈ C([0, T ];Hs(�+))∩C((0, T ];L2(�+)). Moreover, if g ∈ H∞(0, T ), then u ∈ C((0, T ];H∞(�+)).

Introduce some natural weighted Sobolev-spaces following Kato [39]. For given ν > 0 and s ∈ �, let Hs
ν (�+)

denote the Hilbert space

Hs
ν

(�+)≡ {f ∈ Hs
(�+); eνxf ∈ Hs

(�+)}
with the norm

‖f ‖Hs
ν

(�+) ≡ (‖f ‖2
Hs(�+)

+ ∥∥eνxf
∥∥2

Hs(�+)

) 1
2 .

The following local well-posedness result for the IBVP (1.1) then follows as a corollary to Theorem 1.5.
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Theorem 1.7 (local well-posedness). Let ν > 0 and s > −1 be given with s �= 3m+ 1
2 , m = 0, 1,2, . . . . For any r > 0,

there exists a T = T (r) > 0 such that if an s-compatible pair

(φ,h) ∈ Hs
ν

(�+)× H
s+1

3 (0, T )

satisfying∥∥(φ,h)
∥∥

Hs
ν (�+)×H

s+1
3 (0,T )

< r

is posed as auxiliary data, then the IBVP (1.1) admits a unique solution u ∈ C([0, T ];Hs
ν (�+)). Moreover, the corre-

sponding solution map is (real) analytic from Hs
ν (�+) × H

s+1
3 (0, T ) to C([0, T ];Hs

ν (�+)).

In addition, the following global well-posedness result holds for the IBVP (1.1).

Theorem 1.8 (global well-posedness).

(i) Let s � 0 and T > 0 be given with s �= 3m + 1
2 , m = 0,1,2, . . . . For any (φ,h) ∈ Hs

ν (�+) × H
s+1

3 +η(s)(0, T ),
the IBVP (1.1) admits a unique solution

u ∈ C
([0, T ];Hs

ν

(�+)).
Moreover, the corresponding solution map is (real) analytic from the space Hs

ν (�+) × H
s+1

3 +η(s)(0, T ) to the
space C([0, T ];Hs

ν (�+)).

(ii) Let s ∈ (−1,0), ν > 0 and T > 0 be given. For ε > 0 and any (φ,h) ∈ Hs
ν (�+) × H

1
3 +ε(0, T ), the IBVP (1.1)

admits a unique solution

u ∈ C
([0, T ];Hs

ν

(�+))∩ C
(
(0, T ];L2

ν

(�+)).
Moreover, if h ∈ H∞(0, T ), then u ∈ C((0, T ];H∞

ν (�+)).

Note that Theorem 1.8 does not follow directly from Theorem 1.6 since system (1.11) does not satisfy assump-
tion (1.13). However, (1.11) can be rewritten in the form

vt + (3α3 + 1)vx + 1
2αuv + 1

2 (uv)x + vxxx + 3αvxx = 0, x, t > 0,

v(x,0) = e−αxφ(x), x � 0,

v(0, t) = e(α+α3)th(t), t � 0

⎫⎪⎬
⎪⎭ (1.14)

where u = u(x, t) is the solution of (1.1), which is known (cf. [12,29]) to exist globally in the space Hs(�+) if

(φ,h) ∈ Hs(�+) × H
s+1

3 +η(ε)

loc (�+) is s-compatible with respect to the system (1.1). Since the equation in (1.14) is a
linear equation with a variable coefficient u = u(x, t) that exists globally in the space Hs(�+), the solution v of (1.14)
exists globally in the space Hs(�+), from which Theorem 1.8 follows.

The paper is organized as follows. In Section 2, explicit representation formulas for solutions of initial-boundary-
value problems for the linear KdV–Burgers equation are presented. These are developed along the same lines as those
in our earlier paper [8]. Various estimates will be established for the linear problems associated to (1.1) and (1.12)
and these play a central role in the analysis of the non-linear problems. In Section 3, the well-posedness results for the
IBVP (1.1) and (1.12) as described in Theorems 1.5–1.8 are established. The last section is an Appendix A containing
explanations of some technical lemmas that are central to the analysis in Sections 2 and 3.

2. Linear problems

This section is divided into two subsections. In the first, consideration is given to linear problems associated to the
KdV–Burgers equation. As mentioned above, explicit representation formulas for solutions of initial-boundary-value
problems for this equation will be derived. Then, the boundary integral operator that arises in the solution formulas
will be extended from the quarter plane �+ ×�+ to the whole plane �×� using the approach developed in [12]. The
extended boundary integral operator will play a crucial role in our analysis. The second subsection contains a priori
estimates of norms of solutions of the linear problems and of norms of the boundary integral operators.
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2.1. Solution formulas for linear problems

Consider first the non-homogeneous problem

ut + ρux − uxx + uxxx = 0, for x, t � 0,

u(x,0) = 0, u(0, t) = h(t),

}
(2.1)

where ρ � 0 is a given constant.

Proposition 2.1. The solution of (2.1) may be written in the form

u(x, t) = [Wbdr(t)h
]
(x) = [Ub(t)h

]
(x) + [Ub(t)h

]
(x) (2.2)

where, for x, t � 0,

[
Ub(t)h

]
(x) = 1

2π

∞∫
√

ρ

eit (μ3−ρμ)e(α(μ)+iβ(μ))x
(
3μ2 − ρ

) ∞∫
0

e−iξ(μ3−ρμ)h(ξ) dξ dμ.

Here, both α(μ) and β(μ) are real-valued functions with α(μ) < 0 for all μ ∈ �+ and

α(μ) ∼ −
√

3μ2 − 4ρ

2
, β(μ) ∼ −μ

2
(2.3)

as μ → +∞.

Proof. Let ũ and h̃ denote the Laplace transform of u and h with respect to t , respectively. By applying the Laplace
transform to both sides of the equation in (2.1), one obtains

λũ(x,λ) + ρũx(x,λ) + ũxxx(x,λ) − ũxx(x,λ) = 0, ũ(0, λ) = h̃(λ).

As both ũ(x, λ) and ũx(x, λ) tend to zero as x → +∞, it is concluded that for any λ with Reλ > 0,

ũ(x, λ) = h̃(λ)er1(λ)x

where r1(λ) is the unique solution of

λ + r3 + ρr − r2 = 0

satisfying Re r1(λ) < 0. Thus, for any fixed γ > 0, one has the representation

u(x, t) = 1

2πi

i∞+γ∫
−i∞+γ

eλt h̃(λ)er1(λ)x dλ.

Using the fact that the right-hand side of this relation is continuous in γ up to γ = 0, there obtains the simpler looking
formula

u(x, t) = 1

2πi

i∞∫
0

eλt h̃(λ)er1(λ)x dλ + 1

2πi

0∫
−i∞

eλt h̃(λ)er1(λ)x dλ.

For each λ on the positive imaginary axis, write λ in the form λ = i(μ3 −ρμ) for the unique value of μ in the interval√
ρ � μ < +∞. In terms of μ, the quantity r1(λ) has the form

r1(λ) = α(μ) + iβ(μ)

with α(μ) < 0 and

α(μ) ∼ −
√

3μ2 − 4ρ
, β(μ) ∼ −μ
2 2
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as μ → +∞. Recalling that

h̃(λ) =
∞∫

0

e−λth(t) dt,

a change of variables and straightforward calculation then reveals that for x, t � 0,

1

2πi

i∞∫
0

eλt h̃(λ)er1(λ)x dλ = [Ub(t)h
]
(x)

and, similarly, that

1

2πi

0∫
−i∞

eλt h̃(λ)er1(λ)x dλ = [Ub(t)h
]
(x),

thus completing the proof. �
Next, consider the same linear problem posed with zero boundary condition, but non-trivial initial data, viz.

ut + ρux − uxx + uxxx = 0, for x, t � 0,

u(x,0) = φ(x), u(0, t) = 0.

}
(2.4)

By semigroup theory, its solution may be obtained in the form

u(t) = Wc(t)φ, (2.5)

where the spatial variable is suppressed and Wc(t) is the C0-semigroup in the space L2(�+) generated by the operator

Af = −f ′′′ − ρf ′ + f ′′

with the domain

D(A) = {f ∈ H 3(�+) | f (0) = 0
}
.

Moreover, by Duhamel’s formula, one may use the semigroup Wc(t) to formally write the solution of the forced linear
problem with zero auxiliary data,

ut + ρux − uxx + uxxx = f, for x, t � 0,

u(x,0) = 0, u(0, t) = 0,

}
(2.6)

in the form

u(t) =
t∫

0

Wc(t − τ)f (·, τ ) dτ. (2.7)

Recall the explicit solution formula for the pure initial-value problem for the linear KdV–Burgers equation posed
on the whole line �, viz.

ut + ρux − uxx + uxxx = 0, x, t ∈ �,

u(x,0) = φ(x), x ∈ �,

}
(2.8)

namely

u(x, t) = W�(t)φ(x) = 1

2π

∞∫
ei(ξ3−ρξ)t−ξ2t eixξ

∞∫
e−iyξφ(y) dy dξ, (2.9)
−∞ −∞
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obtained by taking the Fourier transform in the spatial variable x. As the formula for W�(t) is explicit and simple, it is
advantageous to give a representation of Wc(t) in terms of W�(t) with a correction that involves Wbdr (t). Because of
the Burgers-type term, notice that if φ ∈ Hs(�) for any s ∈ �, then u(x, t) is an H∞(�)-function of x for any t > 0,
and so is C∞ in the domain {(x, t): x ∈ �, t > 0}. Hence, the trace of u at x = 0, say, is a well-defined function.

Let a function φ be defined on the half line �+ and let φ∗ be an extension of φ to the whole line �. The mapping
φ �→ φ∗ can be organized so that it defines a bounded linear operator B from Hs(�+) to Hs(�). Henceforth, φ∗ = Bφ

will refer to the result of such an extension operator applied to φ ∈ Hs(�+). Assume that v = v(x, t) is the solution of

vt + ρvx − vxx + vxxx = 0, v(x,0) = φ∗(x),

for x ∈ �, t � 0. If g(t) = v(0, t), then vg = vg(x, t) = Wbdr (t)g is the corresponding solution of the non-
homogeneous boundary-value problem (2.1) with boundary condition h(t) = g(t) for t � 0. It is clear that for x > 0,
the function v(x, t)−vg(x, t) solves the IBVP (2.4), and this leads directly to a representation of the semigroup Wc(t)

in terms of Wbdr (t) and W�(t).

Proposition 2.2. For a given s and φ ∈ Hs(�+) with φ(0) = 0, if s > 1
2 , if φ∗ is its extension to � as described above,

then Wc(t)φ may be written in the form

Wc(t)φ = W�(t)φ∗ − Wbdr (t)g (2.10)

for any x, t > 0, where g is the trace of W�(t)φ∗ at x = 0.

In a similar manner, one may derive an alternative representation for solutions of the inhomogeneous IBVP (2.6).

Proposition 2.3. If f ∗(·, t) = Bf (·, t) is an extension of f from �+ ×�+ to �×�+, say, then the solution u of (2.6)
may be written in the form

u(·, t) =
t∫

0

W�(t − τ)f ∗(·, τ ) dτ − Wbdr (t)v

for any x, t � 0 where v ≡ v(t) is the trace of
∫ t

0 W�(t − τ)f ∗((·, τ ) dτ at x = 0.

The solution formulas in Propositions 2.2 and 2.3 hold only for x > 0 and t > 0. It will be convenient to extend
them in such a way that they hold for all x, t ∈ �. This will provide a context in which to establish the well-posedness
of the non-linear problem in the framework of Bourgain spaces. Note that the term W�(t) can be redefined to be

W�(t)φ = 1

2π

∞∫
−∞

ei(ξ3−ρξ)t−ξ2|t |eixξ

∞∫
−∞

e−iyξφ(y) dy dξ

for all x, t ∈ � without disturbing the validity of (2.10) in �+ × �+. Thus it is only necessary to extend the second
term in both formulas from �+ × �+ to � × � to effect an extension of Wc.

Presented now are two different types of extensions of the boundary integral operator Wbdr (t). To begin, rewrite
Wbdr (t) in the form

[
Wbdr (t)h

]
(x) = 1

2π
Re

∞∫
√

ρ

eit (μ3−ρμ)e(α(μ)+iβ(μ))x
(
3μ2 − ρ

) ∞∫
0

e−i(μ3−ρμ)ξh(ξ) dξ dμ

= 1

2π
Re

4
√

ρ∫
√

ρ

eiμ3t−iρμt e(α(μ)+iβ(μ))φ3(x)
(
3μ2 − ρ

)
φ1(μ)

∞∫
0

e−i(μ3−ρμ)ξh(ξ) dξ dμ

+ 1

2π
Re

∞∫
2
√

ρ√
3

eiμ3t−iρμt e(α(μ)+iβ(μ))x
(
3μ2 − ρ

)
φ2(μ)

∞∫
0

e−i(μ3−ρμ)ξh(ξ) dξ dμ

:= 1 {
I1(x, t) + I2(x, t)

}

2π
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where φ1(μ) and φ2(μ) are non-negative cut-off functions satisfying

φ1(μ) + φ2(μ) = 1 for all μ ∈ �+

with suppφ1 ⊂ (−1,4
√

ρ ), suppφ2 ⊂ (3
√

ρ,∞) and φ3(x) is a smooth function on � such that

φ3(x) =
{

x for x � 0,

0 for x � −1.

The integral I1(x, t) is naturally defined for all values of x and t and, viewed as a function defined on � × �, is in
fact C∞-smooth there, with all its derivatives decreasing rapidly as x → ±∞. Thus, no complicated extension of I1
is required as the obvious one suffices. It is otherwise for I2. To discuss I2(x, t), it is convenient to let μ(λ) denote
the positive solution of the cubic equation

μ3 − ρμ = λ

for λ � 0 and μ � √
ρ, while μ(λ) = −μ(−λ) for λ < 0. By a change of variables, the integral I2 can be rewritten in

the form

I2(x, t) = Re

∞∫
2
√

ρ

3
√

3

∞∫
0

eiλt e(αμ(λ)+iβμ(λ))xe−iλsφ2
(
μ(λ)

)
h(s) ds dλ

=
∞∫

2
√

ρ

3
√

3

∞∫
0

eαμ(λ)x cos
(
λ(t − s) + βμ(λ)x

)
φ2
(
μ(λ)

)
h(s) ds dλ

:= E(x, t)

for x � 0 with αμ(λ) := α(μ(λ)) and βμ(λ) := β(μ(λ)). Denote the extension of E(x, t) to x < 0 by g(x, t) so that

I2(x, t) =
{

E(x, t), x � 0,

g(x, t), x < 0,

where g(x, t) is to be defined. As in [12], the Fourier transform of I2 may be decomposed as follows:

Fx,t [I2] = Ft

[ ∞∫
0

(
E(x, t) cos(xξ) + g(−x, t) cos(xξ)

)
dx

]

+ i

π

∞∫
−∞

1

ξ − η
Ft

[ ∞∫
0

cos(ηx)E(x, t) dx −
∞∫

0

cos(ηx)g(−x, t) dx

]
dη.

Note that different choices of g(x, t) give different extensions of E(x, t) to x < 0. The following two choices of
g(x, t) will be used in this article.

(i) For x > 0, choose g(−x, t) such that

Ft

[ ∞∫
0

g(−x, t) cos(xξ) dx

]
(τ ) = −Ft

[ ∞∫
0

E(x, t) cos(xξ)

]
(τ )Θ(ξ, τ )

+ Ft

[ ∞∫
0

E(x, t) cos(xξ) dx

]
(τ )
(
1 − Θ(ξ, τ)

)
ν(ξ)ω(τ) (2.11)

where Θ(ξ, τ) = χ(|ξ | − δ|τ |1/3) with δ > 0 fixed, 0 � χ(ξ) � 1 everywhere,

χ(ξ) =
{

1, ξ < 0,
0, ξ > 0,
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whilst

ν(ξ) =
{

1 if |ξ | � 1,

0 if |ξ | < 1,

and ω(τ) is a smooth and bounded function to be specified momentarily. It is easy to see that such a g is a combination
of even and odd extensions, viz.

Fx,t [I2] := Î21(ξ, τ ) + Î22(ξ, τ )

where

Î21(ξ, τ ) = Ft

[ ∞∫
0

E(x, t) cos(xξ) dx

]
(τ )
(
1 − Θ(ξ, τ)

)(
1 + ν(ξ)ω(τ)

)

and

Î22(ξ, τ ) = i

π

∞∫
−∞

1

ξ − η
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]
(τ )
(
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ν(ξ)ω(τ)

))
dη

= i

π

∞∫
0

(
1

ξ − η
+ 1

ξ + η

)
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]
(τ )

× (2Θ(η, τ) + (1 − Θ(η, τ)
)(

1 + ν(ξ)ω(τ)
))

dη.

Because of the algebraic identity

1

ξ − η
+ 1

ξ + η
= 2

ξ

(
1 + η2

ξ2 − η2

)
,

we may write Î22(ξ, τ ) as

Î22(ξ, τ ) = 2i

πξ

∞∫
0

Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]
(τ )
(
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ν(ξ)ω(τ)

))
dη

+ 2i

πξ

∞∫
0

(η/ξ)2

1 − (η/ξ)2
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]
(τ )

× (2Θ(η, τ) + (1 − Θ(η, τ)
)(

1 + ν(ξ)ω(τ)
))

dη

:= Q1(ξ, τ ) + Q2(ξ, τ ).

Here, the Fourier transform Ft [
∫∞

0 E(x, t) cos(xη)dx] may be expressed in the form

Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]
(τ ) =

4∑
m=1

Km1(η, τ )φ2
(
μ(τ)

)
ĥ(τ ) +

4∑
m=1

Km2(η,−τ)φ2
(
μ(−τ)

)
ĥ(−τ) (2.12)

where

ĥ(τ ) =
∞∫

0

e−iτ sh(s) ds,

K11(η,λ) = −αμ(λ)

2(α2
μ(λ) + (η + βμ(λ))2)

,

K21(η,λ) = −αμ(λ)

2(α2 (λ) + (η − β (λ)2)
,

μ μ
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K31(η,λ) = α2
μ(λ)βμ(λ)i

(α2
μ(λ) + (η + βμ(λ))2)(α2

μ(λ) + (η − βμ(λ))2)
,

K41(η,λ) = (β2
μ(λ) − η2)βμ(λ)i

(α2
μ(λ) + (η + βμ(λ))2)(α2

μ(λ) + (η − βμ(λ))2)

and {
K12(η,λ) = K11(η,λ), K22(η,λ) = K21(η,λ),

K32(η,λ) = −K31(η,λ), K42(η,λ) = −K41(η,λ).

A straightforward calculation reveals that∣∣∣∣∣
∞∫

0

4∑
m=1

Km1(η, τ )
(
1 − Θ(η, τ)

)
dη

∣∣∣∣∣� C2 > 0,

for a fixed constant C2 independent of τ , and so one can choose a C∞ smooth function ω(τ) (see [12]) such that for
all τ ,

Q1(ξ, τ ) ≡ 0, for all |ξ | � 1.

Hence, for |ξ | > 1,

Î22(ξ, τ ) = Q2(ξ, τ ).

Thus, when |ξ | > 1 and τ � 0,

Î22(ξ, τ ) = 2iC2

ξ

∞∫
0

η2

ξ2 − η2

[
4∑

m=1

Km1(η, τ )φ2
(
μ(τ)

)
ĥ(τ )

](
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη,

whereas

Î22(ξ, τ ) = 2iC2

ξ

∞∫
0

η2

ξ2 − η2

[
4∑

m=1

Km1(η,−τ)φ2
(
μ(−τ)

)
ĥ(τ )

](
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη

when |ξ | � 1 and τ < 0. The boundary integral operator corresponding to this extension of Wbdr (t) is denoted
by B I 1(t).

(ii) Choose g(−x, t) such that

Ft

[ ∞∫
0

g(−x, t) cos(xξ) dx

]
(τ ) = −Ft

[ ∞∫
0

E(x, t) cos(xξ)

]
(τ )
(
1 − Θ(ξ, τ)

)

+ Ft

[ ∞∫
0

E(x, t) cos(xξ) dx

]
(τ )Θ(ξ, τ )ν(ξ)ω(τ) (2.13)

where Θ is as before. In this case, we have

Fx,t [I2] := Î ∗
21(ξ, τ ) + Î ∗

22(ξ, τ )

with

Î ∗
21(ξ, τ ) = Ft

[ ∞∫
0

E(x, t) cos(xξ) dx

]
Θ(ξ, τ)

(
1 + ν(ξ)ω(τ)

)

and
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Î ∗
22(ξ, τ ) = i

π

∞∫
−∞

1

ξ − η
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

](
2
(
1 − Θ(η, τ)

)+ Θ(η, τ)
(
1 + ν(ξ)ω(τ)

))
dη

= i

π

∞∫
0

(
1

ξ − η
+ 1

ξ + η

)
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

]

× (2(1 − Θ(η, τ)
)+ Θ(η, τ)

(
1 + ν(ξ)ω(τ)

))
dη

= 2iC2

ξ

∞∫
0

Ft

[ ∞∫
0

E(x, t) cos(xη)dx

](
2
(
1 − Θ(η, τ)

)+ Θ(η, τ)
(
1 + ν(ξ)ω(τ)

))
dη

+ 2iC2

ξ

∞∫
0

(η/ξ)2

1 − (η/ξ)2
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

](
2
(
1 − Θ(η, τ)

)+ Θ(η, τ)
(
1 + ν(ξ)ω(τ)

))
dη

:= Q∗
1(ξ, τ ) + Q∗

2(ξ, τ ).

As in case (i), one can choose an appropriate ω(τ) so that

Q∗
1(ξ, τ ) = 0 for |ξ | > 1 and any τ ∈ �.

The boundary integral operator corresponding to this extension of Wbdr (t) is denoted by B I 2(t).

2.2. Linear estimates

In this subsection, estimates are provided for solutions of the associated linear version of the KdV–Burgers equa-
tion. These are needed in establishing the well-posedness of the non-linear problems in the next section.

For given s ∈ �, 0 � b � 1 and any measurable function w ≡ w(x, t) :� × � → �, define

Λs,b(w) =
( ∞∫

−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣ŵ(ξ, τ )

∣∣2 dξ dτ

)1/2

(2.14)

where 〈·〉 = (1 + | · |2)1/2. Let Xs,b be the completion of the space of all functions w satisfying

‖w‖Xs,b
:= Λs,b(w) < ∞

and let

Xs,b ≡ C
(�;Hs(�)

)∩ Xs,b

with the norm

‖w‖Xs,b
=
(

sup
t∈�
∥∥w(·, t)∥∥2

Hs(�)
+ ‖w‖2

Xs,b

)1/2
.

First, consider the semigroup {W�(t)}t�0 associated to the linear KdV–Burgers equation posed on the whole line �.
Recall that for any φ ∈ S ′, the space of tempered distributions, and t � 0,

Fx

(
W�(t)φ

)
(ξ) = exp

[−ξ2t + i
(
ξ3 − ρξ

)
t
]
φ̂(ξ).

Extend W� to a linear operator defined on the whole real axis by setting

Fx

(
W�(t)φ

)
(ξ) = exp

[−ξ2|t | + i
(
ξ3 − ρξ

)
t
]
φ̂(ξ)

for all t ∈ �. The proof of the following proposition regarding {W�(t)}∞0 is a minor modification of arguments found
in [47].
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Proposition 2.4. Let s ∈ �, 0 < b � 1 and 0 < δ < 1
2 be given. Let ψ be a C∞ smooth function with compact support.

(i) There exists a constant C depending only on s, b and ψ such that∥∥ψ(t)W�(t)φ
∥∥

Xs,b
� C‖φ‖Hs(�). (2.15)

(ii) There exists Cδ such that for all u ∈ X
s,− 1

2 +δ
,

∥∥∥∥∥ψ(t)

t∫
0

W�(t − t ′)f (t ′) dt ′
∥∥∥∥∥

X
s, 1

2

� Cδ‖f ‖X
s,− 1

2 +δ
. (2.16)

(iii) There exists a constant C depending only on s such that

sup
x∈�
∥∥W�(t)φ

∥∥
H

s
3

t (�)
� C‖φ‖Hs(�). (2.17)

(iv) For all f ∈ X
s,− 1

2 +δ
, the correspondence

t �→
t∫

0

W�(t − t ′)f (t ′) dt ′

lies in C(�+,H s+2δ(�)). In addition, if {fn} is a sequence with fn → 0 in X
s,− 1

2 +δ
, then

∥∥∥∥∥
t∫

0

W�(t − t ′)fn(t
′) dt ′

∥∥∥∥∥
L∞(�+,H s+2δ(�)

) → 0 as n → ∞.

Next, attention is turned to the spatial traces of W�(t)φ and
∫ t

0 W�(t − t ′)f (·, t ′) dt .

Proposition 2.5. Let s ∈ [−1,5] be given. There exists a constant C depending only on s such that

sup
x∈�
∥∥W�(t)φ

∥∥
H

s+1
3

t (�)

� C‖φ‖Hs(�) (2.18)

and

sup
x∈�
∥∥∂xW�(t)φ

∥∥
H

s
3

t (�)
� C‖φ‖Hs(�) (2.19)

for any φ ∈ Hs(�).

The proof of this proposition is based on the following technical lemma which plays the same role in our arguments
as would a Plancherel Theorem. The proof of the lemma is postponed and provided in Appendix B.

Lemma 2.6. Suppose 0 < ν < 1 and let I be the integral operator defined by

[
I (f )

]
(t) :=

∞∫
−∞

eitη+μ(η)|t |f (η)dη, for t ∈ �,

where μ :� → (−∞,0] is a continuous function satisfying∣∣μ(η)
∣∣∼ ην as η → 0 and

∣∣μ(η)
∣∣∼ |η| 1

3 as |η| → ∞.

Then, I is a bounded linear operator on L2(�), which is to say, there exists a constant C such that∥∥I (f )
∥∥

L2(�)
� C‖f ‖L2(�)

for all f ∈ L2(�).
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Proof of Proposition 2.5. We only provide the proof of (2.18). The proof of (2.19) is very similar and is therefore
omitted. Let u(x, t) = W�(t)φ. Then, a change of variables reveals that

u(x, t) =
∞∫

−∞
eixξ e[i(ξ3−ρξ)]t−ξ2|t |φ̂(ξ) dξ

=
∫

|λ|�√
ρ

eixν(λ)eiλt−ν2(λ)|t |(3ν2(λ) − ρ
)−1

φ̂
(
ν(λ)

)
dλ,

where ξ = ν(λ) solves the equation

ξ3 − ρξ = λ

with ν(λ) ∼ λ
1
3 as λ → ∞. By Lemma 2.6, the inequality

∥∥u(x, ·)∥∥
L2(�)

� C

( ∞∫
−∞

∣∣(3ν2(λ) − ρ
)−1

φ̂
(
ν(λ)

)∣∣2 dλ

) 1
2

� C‖φ‖H−1(�)

holds for any x ∈ �. Note that

ut (x, t) =
∞∫

−∞
eixξ e[i(ξ3−ρξ)]t−ξ2|t |[i(ξ3 − ρξ

)+ κ(t)ξ2]φ̂(ξ) dξ,

where κ(t) = −1 if t � 0 and κ(t) = 1 if t < 0. Applying Lemma 2.6 again yields that∥∥u(x, ·)∥∥
H 1(�)

� C‖φ‖H 2(�)

for any x ∈ �. Similarly, one can show that∥∥u(x, ·)∥∥
H 2(�)

� C‖φ‖H 5(�)

for any x ∈ �. The inequality (2.18) then follows by interpolation. The proof is thereby completed. �
Proposition 2.7. Let 0 � b < 1/2, −1 � s � 2 − 3b, ψ ∈ C∞

0 (�) and

w(x, t) =
t∫

0

W�(t − t ′)f (·, t ′) dt ′.

Then, there exists C depending only on b, s and ψ such that

sup
x∈�
∥∥ψ(·)w(x, ·)∥∥

H
s+1

3
t (�)

� C‖f ‖Xs,−b
(2.20)

and

sup
x∈�
∥∥ψ(t)wx(x, t)

∥∥
H

s/3
t (�)

� C‖f ‖Xs,−b
. (2.21)

Proof. The proof presented below is based on the approach developed in [15,43], appropriately modified. As the
proof of (2.21) is similar to that of (2.20), only (2.20) is proved.

First, observe that

ψ(t)

t∫
0

W�(t − t ′)f (t ′) dt ′

= ψ(t)

∞∫ ∞∫
eixξ f̂ (ξ, τ )ψ

(∣∣τ − (ξ3 − ρξ
)∣∣+ ξ2) eiτ t − eit (ξ3−ρξ)−ξ2t

i[τ − (ξ3 − ρξ)] + ξ2
dξ dτ
−∞ −∞
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+ ψ(t)

∞∫
−∞

∞∫
−∞

eixξ f̂ (ξ, τ )
(
1 − ψ

(∣∣τ − (ξ3 − ρξ
)∣∣+ ξ2)) eiτ t − eit (ξ3−ρξ)−ξ2t

i[τ − (ξ3 − ρξ)] + ξ2
dξ dτ

:= A + B.

By a Taylor series expansion, we see that

A =
∞∑

k=1

1

k!ψk(t)W�(t)g

with

ĝ(ξ) =
∞∫

−∞
f̂ (ξ, τ )

(
i
(
τ − (ξ3 − ρξ

))+ ξ2)k−1
ψ
(∣∣τ − (ξ3 − ρξ

)∣∣+ ξ2)dτ

and

ψk(t) := tkψ(t), k = 1,2, . . . .

Note that

‖ψk‖
H

s+1
3 (�)

�
∞∫

−∞

∣∣ψ̂k(τ )
∣∣2(1 + |τ |)2 s+1

3 dτ � C(k + 1)2

and

‖g‖2
Hs(�) � C

∞∫
−∞

〈ξ〉2s

∣∣∣∣∣
∞∫

−∞
f̂ (ξ, τ )

(
i
(
τ − (ξ3 − ρξ

))+ ξ2)k−1
ψ
(∣∣τ − (ξ3 − ρξ

)∣∣+ ξ2)dτ

∣∣∣∣∣
2

dξ

� C

∞∫
−∞

〈ξ〉2s

∣∣∣∣∣
∫

|τ−(ξ3−ρξ)|+ξ2<1

f̂ (ξ, τ ) dτ

∣∣∣∣∣
2

dξ

� C

∞∫
−∞

〈ξ〉2s

∣∣∣∣∣
∞∫

−∞

f̂ (ξ, τ )

1 + |τ − (ξ3 − ρξ)| + ξ2
dτ

∣∣∣∣∣
2

dξ

because of the restriction on the support of ψ . Thus, applying (2.20) gives

sup
x∈�
∥∥A(x, ·)∥∥

H
s+1

3
t (�)

� C

∞∑
k=1

(k + 1)2

k! ‖g‖Hs(�)

� C

( ∞∫
−∞

〈ξ〉2s

∣∣∣∣∣
∞∫

−∞

f̂ (ξ, τ )

1 + |τ − (ξ3 − ρξ)| + ξ2
dτ

∣∣∣∣∣
2

dξ

) 1
2

� C‖f ‖Xs,−b

because 0 � b < 1
2 .

Next, consider the term B which can be written

B = B1 + B2

with

B1 = −ψ(t)

∞∫
ei(xξ+t (ξ3−ρξ))−ξ2t

( ∞∫
1 − ψ(|τ − (ξ3 − ρξ)| + ξ2)

i(τ − (ξ3 − ρξ)) + ξ2
f̂ (ξ, τ )

)
dξ
−∞ −∞
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and

B2 = ψ(t)

∞∫
−∞

ei(xξ+tτ )−ξ2t

( ∞∫
−∞

1 − ψ(|τ − (ξ3 − ρξ)| + ξ2)

i(τ − (ξ3 − ρξ)) + ξ2
f̂ (ξ, τ )

)
dξ.

For B1, Proposition 2.6 yields

sup
x∈R

∥∥B1(x, t)
∥∥2

H
s+1

2
t (R)

� C

∞∫
−∞

〈ξ〉2s

( ∞∫
−∞

|f̂ (ξ, τ )|
1 + |τ − (ξ3 − ρξ)| + ξ2

dτ

)2

dξ � C‖f ‖2
Xs,−b

.

As for B2(x, t), note that

sup
x∈R

∥∥B2(x, t)
∥∥2

H
s+1

3
t (�)

� C

∞∫
−∞

(
1 + |τ |) 2(s+1)

3

( ∞∫
−∞

|1 − ψ(|τ − (ξ3 − ρξ)| + ξ2)|
|τ − (ξ3 − ρξ)| + ξ2

f̂ (ξ, τ ) dξ

)2

dτ

� C

∞∫
−∞

(
1 + |τ |) 2(s+1)

3

( ∞∫
−∞

1

1 + |τ − (ξ3 − ρξ)| + ξ2
f̂ (ξ, τ ) dξ

)2

dτ

� C

∞∫
−∞

(
1 + |τ |) 2(s+1)

3 G(τ)

∞∫
−∞

|f̂ (ξ, τ )|2〈ξ〉2s

(1 + |τ − (ξ3 − ρξ)| + ξ2)2b
dξ dτ

where

G(τ) :=
∞∫

−∞

dξ

〈ξ〉2s(1 + |τ − (ξ3 − ρξ)| + ξ2)2(1−b)

� C

∞∫
−∞

dη

|η| 2
3 (1 + |η|) 2s

3 (1 + |τ − η|)2(1−b)
.

Therefore, it suffices to show that there exists a constant C such that for any τ ∈ �,

G(τ) � C

(1 + |τ |) 2(s+1)
3

. (2.22)

To see this true, write G(τ) as

G(τ) = G1(τ ) + G2(τ ) + G3(τ )

with

G1(τ ) =
∫

|η|� 1
2 |τ |

dη

|η| 2
3 (1 + |η|) 2s

3 (1 + |τ − η|)2(1−b)
,

G2(τ ) =
∫

|τ |/2<|η|<2|τ |

dη

|η| 2
3 (1 + |η|) 2s

3 (1 + |τ − η|)2(1−b)

and

G3(τ ) =
∫

2|τ |�|η|

dη

|η| 2
3 (1 + |η|) 2s

3 (1 + |τ − η|)2(1−b)
.

In the region 2|η| � |τ |, note that (1 + |τ − η|) � 1 (1 + |τ |) and |τ − η| � 1 |η|. Thus, for s � 0,
2 2
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G1(τ ) � C
(
1 + |τ |)− 2(s+1)

3

∞∫
−∞

dη

|η| 2
3 (1 + |η|)2(1−b)− 2

3

� C

(1 + |τ |) 2(s+1)
3

as b < 1
2 . When 0 � s � 2 − 3b,

G1(τ ) � C
(
1 + |τ |)− 2(s+1)

3

∞∫
−∞

dη

|η| 2
3 (1 + |η|) 2s

3 (1 + |τ − η|)2(1−b)− 2(s+1)
3

� C
(
1 + |τ |)− 2(s+1)

3

∞∫
−∞

dη

|η| 2
3 (1 + |η|)2(1−b)− 2

3

� C

(1 + |τ |) 2(s+1)
3

.

In the region |τ |/2 < |η| < 2|τ |,

G2(τ ) � C
(
1 + |τ |)− 2(s+1)

3

2|τ |∫
|τ |/2

dη

(1 + |τ − η|)2(1−b)
� C

(1 + |τ |)2 s+1
3

,

again because b < 1/2. In the region 2|τ | � |η|, it is the case that 1 + |τ − η| = O(1 + |η|). Thus, it transpires that

G3(τ ) � C

∫
|η|�2|τ |

dη

|η| 2(s+1)
3 (1 + |η|)2(1−b)

� C
(
1 + |τ |)− 2(s+1)

3 .

The inequality (2.20) has therefore been established for −1 � s � 2 − 3b. This completes the proof. �
Finally, attention is focused upon the boundary integral operators B I 1(t) and B I 2(t).

Proposition 2.8. Let ψ ∈ C∞
0 (�) be given and assume that 0 � b < 1

2 − s
3 with s � 0. Then there exists a constant C

such that∥∥ψ B I 1(h)
∥∥

Xs,b
� C‖h‖

H
3b+s−1/2

3 (�+)
(2.23)

for any h ∈ H
3b+s−1/2

3
0 (�+).

Proposition 2.9. Let ψ ∈ C∞
0 (�) be given and assume that 0 � b < 5

6 − s
3 with − 1

2 < s < 1. Then there exists a
constant C such that∥∥ψ B I 2(h)

∥∥
Xs,b

� C‖h‖
H

3b+s−1/2
3 (�+)

(2.24)

for any h ∈ H
3b+s−1/2

3
0 (�+).

Proposition 2.10. Let − 3
2 < α < 1

2 and − 1
2 < β < 1 be given. There exist constants Cα and Cβ such that

sup
t∈R

‖B I 1h‖Hα(�) � Cα‖h‖
H

α+1
3 (�+)

(2.25)

and

sup
t∈R

‖B I 2h‖Hβ(�) � Cβ‖h‖
H

β+1
3 (�+)

. (2.26)
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Observe that

‖w‖L2(0,T ;Hs(�)) � CΛs,b(ψw)

for any s ∈ � and b � 0, if ψ ∈ C∞
0 (�) and ψ(t) = 1 when t ∈ (0, T ). The following result, which follows from

Propositions 2.8 and 2.9, presents a boundary smoothing property of the linear KdV–Burgers equation, which is the
same as that obtained for the linear KdV equation in [12].

Corollary 2.11. For any given T > 0 and s � − 3
2 , there exists a constant C such that

‖Wbdrh‖
L2(0,T ;Hs+ 3

2 (�+))
� C‖h‖

H
1+s

3 (�+)
(2.27)

for any h ∈ H
1+s

3
0 (�+).

The boundary integral operator Wbdr also possesses the sharp Kato smoothing property, the final result of this
section.

Proposition 2.12. For any given T > 0 and s � − 3
2 , there exists a constant C such that

sup
x∈�+

‖∂x Wbdrh‖
H

s
3

t (�+)
� C‖h‖

H
s+1

3 (�+)
(2.28)

for any h ∈ H
1+s

3
0 (�+).

The proofs of Propositions 2.8–2.10 are similar to the results proved in Section 3 of [12]. A sketch of the proofs of
Propositions 2.8 and 2.9 is provided in Appendix A for the reader’s convenience. As for Proposition 2.12, its proof is
the same as the analogous result in [12] and is therefore omitted.

3. Well-posedness

In this section, we study the well-posedness of the IBVP

ut + ρux + γ uux + a1(x)b1(t)uux + a2(x)b2(t)u
2 + uxxx − uxx = 0, x, t > 0,

u(x,0) = φ(x), x � 0,

u(0, t) = h(t), t � 0,

⎫⎪⎬
⎪⎭ (3.1)

where ρ > 0 and γ ∈ R are constants, aj ∈ H∞(�+) and bj ∈ C∞(�+) for j = 1,2.
As mentioned earlier, for given s ∈ � and 0 � b � 1, Xs,b is the space of all distributions w satisfying

‖w‖Xs,b
:= Λs,b(w) < ∞

(see (2.14)) and

Xs,b ≡ C
(
R;Hs(R)

)∩ Xs,b.

In addition, for given T > 0, let Ds,T be the space of all pairs (φ,h) ∈ Hs(�+)×H
s+1

3 (0, T ) which are s-compatible

with respect to the IBVP (3.1), with norm inherited from the space Hs(�+) × H
s+1

3 (0, T ), i.e.,∥∥(φ,h)
∥∥

Ds,T
:= ∥∥(φ,h)

∥∥
Hs(�+)×H

s+1
3 (0,T )

for any (φ,h) ∈ Ds,T . Let Ys,b be the space of all functions w in Xs,b satisfying

sup
x∈�
∥∥wx(x, ·)∥∥

H
s
3

t (�)
< +∞.

For any w ∈ Ys,b , define

‖w‖Ys,b
=
(
‖w‖2

Xs,b
+ sup

∥∥wx(x, ·)∥∥2

H
s
3 (�)

) 1
2
.

x∈� t
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These Bourgain-type spaces are defined for distributions whose domain is the whole plane � × �. However, the
IBVP (3.1) is posed on the quarter plane �+ × �+ and we are seeking its solution in the space C(�+ : Hs(�+))

corresponding to a given initial value in the space Hs(�+) and boundary data in the space H
s+1

3
loc (�+). It is thus

natural to consider versions of the these Bourgain-type spaces restricted to the quarter plane �+ × �+. Let Ω denote
a subinterval of �; define a Bourgain space Xs,b restricted to the domain �+ × Ω as follows:

Xs,b

(�+ × Ω
)= Xs,b|�+×Ω

with the quotient norm

‖u‖Xs,b(�+×Ω) ≡ inf
w∈Xs,b

{‖w‖Xs,b
: w(x, t) = u(x, t) on �+ × Ω

}
.

The spaces Xs,b(�+ × Ω) and Ys,b(�+ × Ω) are defined similarly.
For the IBVP (3.1), the following well-posedness result obtains.

Theorem 3.1. Let s ∈ (−1, 1
2 ) and r > 0 be given. There exists T with T > 0 such that for a given pair (φ,h) ∈ Ds,T

satisfying∥∥(φ,h)
∥∥

Ds,T
� r,

the IBVP (3.1) admits a unique solution u ∈ Y
s, 1

2
(�+ × (0, T )). Moreover, the solution u depends Lipschitz continu-

ously on (φ,h) in the corresponding spaces.

The proof of Theorem 3.1 is based on the results in Section 2 and the following lemmas.
Consider the non-homogeneous linear problem

ut + ρux − uxx + uxxx = 0, for x, t � 0,

u(x,0) = 0, u(0, t) = h(t).

}
(3.2)

Recall its solution may be written in the form

u(x, t) = [Wbdr (t)h
]
(x)

for x, t � 0, as expounded in Section 2.

Lemma 3.2. For a given pair (b, s) satisfying⎧⎪⎨
⎪⎩

0 � b < 1
2 − s

3 if s � 0,

0 � b < 5
6 − s

3 if − 1
2 < s < 1,

b = 1
2 if 1 � s � 3,

(3.3)

there exists a constant C such that for any T > 0 and any h ∈ H
s+1

3
0 (0, T ), the corresponding solution u of (3.2)

belongs to the restricted Bourgain space Ys,b(�+ × (0, T )) and satisfies the bounds

‖u‖Xs,b(�+×(0,T )) � C‖h‖
H

3b+s−1/2
3 (0,T )

, (3.4)

‖u‖X
s, 1

2
(�+×(0,T )) � C‖h‖

H
s+1

3 (0,T )
(3.5)

and

‖u‖Y
s, 1

2
(�+×(0,T )) � C‖h‖

H
s+1

3 (0,T )
. (3.6)

Proof. For T > 0, let h1 ∈ H
s+1

3 (�+) such that h1 ≡ h in the space H
s+1

3 (0, T ) and let ψ1 ∈ C∞
0 (R) be such that

ψ1(t) = 1 for all t ∈ [0, T ]. Define

u1(x, t) =
{ [B I 1(t)h1](x) if 0 � b < 1

2 − s
3 and s < 0,

[B I (t)h ](x) if 0 � b < 5 − s and 0 � s < 1.
2 1 6 3
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Observing that

u(x, t) = u1(x, t) for (x, t) ∈ �+ × [0, T ],
and using Propositions 2.8–2.10, one arrives at the inequalities

‖u‖X
s, 1

2
(�+×(0,T )) � ‖ψ1u1‖X

s, 1
2

� C‖h1‖
H

s+1
3 (�+)

from which (3.5) with −1 < s < 1 follows. In particular,

‖u‖X
0, 1

2
(�+×(0,T )) � C‖h‖

H
1
3 (�+)

. (3.7)

When 1 � s � 3, let v = ut . Then v solves

vt + ρvx − vxx + vxxx = 0, for x, t � 0,

v(x,0) = 0, v(0, t) = h′(t).

}

Thus

‖v‖X
0, 1

2
(�+×(0,T )) � C‖h′‖

H
1
3 (�+)

� c‖h‖
H

4
3 (�+)

.

Since v = ut = −ρux + uxx − uxxx , it follows that

‖u‖X
3, 1

2
(�+×(0,T )) � C‖h‖

H
4
3 (�+)

. (3.8)

The inequality (3.5) with 1 � s � 3 follows by interpolation of the estimates (3.7) and (3.8). The proof is complete. �
Consider the same linear equation posed with zero boundary conditions, but non-trivial initial data, viz.

ut + ρux − uxx + uxxx = 0, for x, t � 0,

u(x,0) = φ(x), u(0, t) = 0.

}
(3.9)

As mentioned earlier, its solution can be written as

u(x, t) = [Wc(t)φ
]
(x)

for x, t � 0.

Lemma 3.3. For a given s ∈ (−1, 1
2 ), there exists a constant C such that for any T > 0 and any φ ∈ Hs

0 (�+),
the corresponding solution u of (3.9) belongs to the restricted Bourgain space Y

s, 1
2
(�+ × (0, T )) and satisfies the

inequality

‖u‖Y
s, 1

2
(�+×(0,T )) � C‖φ‖Hs(�+). (3.10)

Proof. According to Proposition 2.2, one may write Wc(t)φ as

Wc(t)φ = W�(t)φ∗ − Wbdr (t)g

for any x, t > 0, where g is the trace of W�(t)φ∗ at x = 0, φ∗ ∈ Hs(�) and φ∗ equals φ when restricted on �+. The
estimate (3.10) follows from Propositions 2.4, 2.5 and Lemma 3.2. �

We turn now to consideration of the forced linear problem

ut + ρux − uxx + uxxx = f, for x, t � 0,

u(x,0) = 0, u(0, t) = 0.

}
(3.11)

Its solution can be written in the form

u(·, t) =
t∫

0

Wc(t − τ)f (·, τ ) dτ.
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Lemma 3.4. Assume that −1 < s � 3 − 2b and 0 < b < 1
2 . There exists a constant C such that for any T > 0 and

any f ∈ Xs,−b(�+ × (0, T )), the corresponding solution u of (3.11) belongs to the space Xs,1/2(�+ × (0, T )) and
satisfies the estimate

‖u‖Y
s, 1

2
(�+×(0,T )) � C‖f ‖Xs,−b(�+×(0,T )). (3.12)

Proof. By Proposition 2.3,

u(·, t) =
t∫

0

W�(t − τ)f (·, τ ) dτ − Wbdr (t)v

for any x, t > 0 where v ≡ v(t) is the trace of
∫ t

0 W�(t − τ)f (·, τ ) dτ at x = 0. The estimate (3.12) then follows from
Propositions 2.4, 2.7 and Lemma 3.2. �

The next lemma presents a version of so-called bilinear estimates in the restricted Bourgain space Xs,b(�+ ×
(0, T )) which follows directly from Lemma 3.1 in [47].

Lemma 3.5. Given s > −1 and T > 0, there exist positive constants C, μ, δ such that∥∥∂x(uv)
∥∥

Xs,−1/2+δ(�+×(0,T ))
� CT μ‖u‖Xs,1/2(�+×(0,T ))‖v‖Xs,1/2(�+×(0,T )) (3.13)

for any u,v ∈ Xs,1/2(�+ × (0, T )).

We are now prepared to present a proof of Theorem 3.1.

Proof of Theorem 3.1. By applying Lemmas 3.2–3.5, Theorem 3.1 can be established by the standard contraction
mapping principle.

Let φ ∈ Hs(�+) and h ∈ H
s+1

3
loc (�+) be given with s ∈ (−1, 1

2 ). For given θ with 0 < θ � 1 (to be chosen precisely
momentarily) and v,w ∈ Y

s, 1
2
(�+ × (0, θ)), define

F(w) = Wc(t)φ + Wbdr (t)h −
t∫

0

Wc(t − τ)
(
a1b1wxw + a2b2w

2)(τ ) dτ.

Using Lemmas 3.2–3.5, it is seen that∥∥F(w)
∥∥

Y
s, 1

2
(�+×(0,θ))

� C1
(‖φ‖Hs(�+) + ‖h‖

H
s+1

3 (0,T )

)+ C2θ
μ‖w‖2

Y
s, 1

2
(�+×(0,θ))

and ∥∥F(v) − F(w)
∥∥

Y
s, 1

2
(�+×θ)

� C2θ
μ‖v − w‖Y

s, 1
2
(�+×(0,θ))‖v + w‖Y

s, 1
2
(�+×(0,θ))

where the constants C1 and C2 are independent of θ , v and w. Let Br be the ball centered at the origin in the space
Y

s, 1
2
(�+ × (0, θ)) with radius r where

r = 2C1
(‖φ‖Hs(�+) + ‖h‖

H
s+1

3 (0,θ)

)
,

and choose θ = T small enough that

2C2T
μr ≡ β < 1.

In this case, it follows readily that F maps Br into itself and that for w,v ∈ Br ,∥∥F(w) − F(v)
∥∥

Y
s, 1 (�+×(0,T ))

� β‖w − v‖Y
s, 1 (�+×(0,T )).
2 2
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Thus, the mapping F is a contraction mapping of the ball Br . The fixed point u in Br of this map F is the advertised
solution. �

The well-posedness result presented in Theorem 3.1 is conditional since uniqueness is established in the space
Y

s, 1
2
(�+ × (0, T )) instead of in the space C([0, T ];Hs(�+)). However, following the procedure developed in [11],

one can show that in fact, uniqueness holds in the space C([0, T ];Hs(�+)).

Proposition 3.6. Let s ∈ (−1, 1
2 ) and r > 0 be given. There exists a T > 0 depending only on s and r such that for a

given (φ,h) ∈ Ds,T satisfying

‖φ‖Ds,T
� r,

the IBVP (3.1) admits a unique solution u ∈ C([0, T ];Hs(�+)). Moreover, the solution u depends Lipschitz continu-
ously in the space C([0, T ];Hs(�+)) on (φ,h) in the space Ds,T .

This well-posedness result can be extended to be valid for any s � 1
2 .

Theorem 3.7. Let s > −1 and r > 0 be given with s �= 3m + 1
2 , m = 0,1,2, . . . . There exists a T > 0 depending only

on s and r such that for a given (φ,h) ∈ Ds,T satisfying

‖φ‖Ds,T
� r,

the IBVP (3.1) admits a unique solution u ∈ C([0, T ];Hs(�+)). Moreover, the solution u depends Lipschitz continu-
ously on (φ,h) in their respective spaces.

Proof. The proof is provided only for the case wherein 0 � s � 3. The proof of the remaining case is similar and so
is omitted.

First note that according to Theorem 3.1, for a given r0 > 0, there exists a T0 > 0 depending only on r0 such that if
(φ,h) ∈ D0,T0 satisfying ‖(φ,h)‖D0,T0

� r0, the IBVP (3.1) admits a unique solution u ∈ Y0,T0 and

‖u‖Y0,T0
� Cr0

∥∥(φ,h)
∥∥

D0,T0
(3.14)

where Cr0 is a constant which depends only on r0. (This dependence can be taken to be continuous if we like.)
Moreover, for any (φj , hj ) ∈ D0,T0 with ‖(φj , hj )‖D0,T0

� r0 for j = 1,2, the corresponding solutions uj , j = 1,2,

to the IBVP (3.1) satisfy

‖u1 − u2‖Y0,T0
� Cr0

∥∥(φ1, h1) − (φ2, h2)
∥∥

D0,T0
.

Next suppose given (φ,h) ∈ D3,T0 satisfying∥∥(φ,h)
∥∥

D0,T0
� r0.

Applying Theorem 3.1 gives a solution u ∈ Y0,T0 satisfying the estimate (3.14). We claim this solution u, in fact,
belongs to the space C([0, T0];H 3(�+)) and

‖u‖C([0,T0];H 3(�+)) � Cr0

∥∥(φ,h)
∥∥

D3,T0
.

To see this, let v = ut . Then v satisfies

vt + ρvx + (γ + a1b1)(uv)x + 2a2b2uv − vxx + vxxx = f, x, t ∈ �+,

v(x,0) = φ1(x), v(0, t) = h1(t).

}
(3.15)

Here, f = −a1(x)b′
1(t)uux −a2(x)b′

2(t)u
2, h1(t) = h′(t) and φ1 is defined as in (1.2). This is an IBVP for a linearized

KdV–Burgers equation with variable coefficients. The same argument as presented in support of Theorem 3.1 yields
that there exists a T ′ ∈ (0, T0] such that the IBVP (3.15) has a unique solution v ∈ Y0,T ′ since φ1 ∈ L2(�+) and

h1 ∈ H
1
3 (0, T0). This, in turn, implies that u ∈ C([0, T ′];H 3(�+)) since

v = ut = −uxxx + uxx − γ uux − ρux − a1(x)b1(t)uux − a2(x)b2(t)u
2.
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Note that T ′ only depends on ‖u‖Y0,T0
and therefore only on r0 according to (3.14). By a standard argument, one may

extend T ′ so that T ′ = T0.
Thus, Theorem 3.7 holds for s = 0 and s = 3. To see it is also true for 0 < s < 3, for any (φ,h) ∈ Ds,T0 , define

Ir0(φ,h) =
{

(φ,h) if ‖(φ,h)‖D0,T0
� r0,

r
‖(φ,h)‖D0,T0

(φ,h) if ‖(φ,h)‖D0,T0
� r0.

Then, the IBVP (3.1) defines a non-linear map K from Dj,T0 to the space C([0, T ];Hj(�+)) for j = 0,3 by

K(φ,h) = u

where u is the solution of the IBVP (3.1) with (φ,h) replaced by Ir (φ,h). Moreover, K is Lipschitz continuous from
the space D0,T0 to the space C([0, T0];L2(�+)) and there exists a constant C∗ depending only on ‖(φ,h)‖D0,T0

such
that ∥∥K(φ,h)

∥∥
C([0,T0];H 3(�+))

� C∗∥∥(φ,h)
∥∥

D0,T0

for any (φ,h) ∈ D3,T0 . Invoking non-linear interpolation theory as in [52], it is deduced that the operator K is also
well defined from the space Ds,T0 to the space C([0, T0];Hs(�+)) for any s ∈ (0,3). Thus, for any (φ,h) ∈ D∫ ,T ′
with ‖(φ,h)‖D0,T0

� r0 and 0 < s < 3, one concludes that the corresponding solution u ∈ C([0, T ];Hs(�+)). �
Next, attention is given to the issue of global well-posedness of the IBVP (3.1). The arguments used in [12] can be

applied here to give the following global well-posedness result.

Theorem 3.8. Let s � 0 and T > 0 be given with s �= 3m+ 1
2 , m = 0,1,2, . . . . Assume that the coefficients a1(x)b1(t)

and a2(x)b2(t) in the system (3.1) satisfy

a2(x)b2(t) ≡ 1

3
a′

1(x)b1(t) for any t, x > 0. (3.16)

Then, for any s-compatible (φ,h) ∈ Hs(�+) × H
s+1

3 +η(s)

loc (�+), the IBVP (3.1) admits a unique solution u ∈
C([0, T ];Hs(�+)), where η(s) = 0 when s � 3 and η(s) = ε when 0 � s < 3 for an arbitrarily small ε > 0. More-
over, the solution u depends analytically on φ and h in their respective function classes.

Note that as a consequence of the assumption (3.16), the system (3.1) has the following global a priori estimate:
any smooth solution u of the IBVP (3.1) with boundary data h ≡ 0 satisfies

sup
0�t�T

∥∥u(·, t)∥∥
L2(�+)

≡ ‖φ‖L2(�+). (3.17)

When −1 < s < 0, Molinet and Ribaud [47] showed that the IVP for the KdV–Burgers equation is also globally
well-posed in the space Hs(�) by taking the advantage of the dissipative term −uxx . We have a similar global well-
posedness result for the IBVP (3.1).

Theorem 3.9. Assume that the coefficients a1(x)b1(t) and a2(x)b2(t) in the system (3.1) satisfy condition (3.16). Let

−1 < s < 0 and T > 0 be given. For any given (φ,h) ∈ Hs(�+)×H
1+
3

loc (�+), the IBVP (3.1) admits a unique solution

u ∈ C([0, T ];Hs(�+)). Moreover, for any ε > 0, this solution also lies in the class L2([ε,T ];H 3
2 (�+)).

The following lemma is needed in the proof.

Lemma 3.10. Suppose to be given s > −1 and T > 0. There exists a δ > 0 such that for all u ∈ X
s, 1

2
(�+ × (0, T )),

w =
t∫

0

Wc(t − τ)(uux)(τ ) dτ ∈ L2(0, T ;Hs+δ
(�+)).
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Proof. By Proposition 2.3, we may rewrite w as w = w1 + w2 with

w1 =
t∫

0

W�(t − τ)(uux)(τ ) dτ and w2 = Wbdr (t)g

where g is the trace of w1 at x = 0. According to Lemma 3.5, there exists a δ > 0 such that uux ∈ X
s,− 1

2 +δ
(�+ ×

(0, T )). Thus, w1 ∈ L2(0, T ;Hs+δ(�+)) by Proposition 2.4. In addition, it follows from Proposition 2.5 that g ∈
H

s+1
3 (�) which yields that w2 ∈ L2(0, T ;Hs+δ(�+)) by Corollary 2.11. The proof is complete. �

Proof of Theorem 3.9. By Theorem 3.1, the IBVP (3.1) admits a unique solution

u ∈ C
([

0, T ∗];Hs
(�+))

for some T ∗ � T . Moreover, u can be decomposed in the form

u(x, t) = u1(x, t) + u2(x, t) + u3(x, t)

with

u1(x, t) = Wc(t)φ, u2(x, t) = Wbrd(t)h, u3(x, t) = −
t∫

0

Wc(t − τ)
(
a1b1uux + a2b2u

2)(τ ) dτ.

According to Corollary 2.11, u2 ∈ L2(0, T ;H 3
2 (�+)). By Proposition 2.2,

u1 = W�(t)φ∗ − Wbdr (t)h1

with h1 being the trace of WR(t)φ∗ at x = 0. As remarked before, for any ε > 0, u1 ∈ C([ε,T ];H∞(�+)). As
for u3, it follows from Lemma 3.10 that u3 ∈ L2(0, T ∗;Hs+δ(�+)) for some δ > 0. Consequently, for any ε1 with
0 < ε1 � T ∗, one can find a t1 ∈ (0, ε1) such that u(·, t1) ∈ Hs+δ(�+). Taking ψ(x) = u(x, t1) as a new initial value
for the IBVP (3.1), it follows from the same argument that u(·, t2) ∈ Hs+2δ(�+) for some t1 < t2 < ε1. Repeating

this procedure, one eventually arrives at the conclusion that u(·, t ′) ∈ H
3
2 (�+)) for some 0 < t ′ < ε1. The proof is

completed by invoking Theorem 3.8. �
For the pure initial value problem (1.6), if ψ ∈ Hs(�) for some s > −1, then the corresponding solution u lies in

C([ε,T ];H∞(�)). There is a similar result for (3.1), which follows directly from Theorem 3.9.

Corollary 3.11. Let s > −1 and T > 0 be given. Assume that (φ,h) ∈ Hs(�+)×H∞(0, T ). Then, the corresponding
solution of the IBVP (3.1) belongs to the space C([ε,T ];H∞(�+)) for any ε with 0 < ε < T .
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Appendix A

In this appendix, the proofs of Propositions 2.8 and 2.9 are presented. Since the development is very similar to that
appearing in [12], we content ourselves with sketches. The reader is referred to [12] for details.

Proof of Proposition 2.8. Recall that[
B I 1(t)h

]
(x) = I1(x, t) + I2(x, t),

where I1(x, t) is a function defined on the whole plane � × � and is, in fact, a C∞-smooth function of x and t . For
any t ∈ �,
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∥∥I1(x, t)
∥∥

L2
x(�)

� C

∥∥∥∥∥(3μ2 − ρ
)
φ1(μ)

∞∫
0

e−i(μ3−ρμ)ξh(ξ) dξ

∥∥∥∥∥
L2

μ(�)

� C‖h‖L2(�+).

This type of inequality is also valid for ∂
j
x ∂l

t I1 for any j, l � 0. Thus, it is straightforward to see that if h ∈ L2(�+),
then

Λs,b(ψI1) � C‖h‖L2(�+) (A.1)

for any given b � 0 and s ∈ � where the constant C depends only on ψ , b and s.
To analyze I2(x, t), remember that

Fx,t [I2](ξ, τ ) = Î21(ξ, τ ) + Î22(ξ, τ )

where, for |ξ | > 1,

Î21(ξ, τ ) = Ft

[ ∞∫
0

E(x, t) cos(xξ) dx

](
1 − Θ(ξ, τ)

)(
1 + ω(τ)

)
,

Î22(ξ, τ ) = iC2

∞∫
0

(
1

ξ − η
+ 1

ξ + η

)
Ft

[ ∞∫
0

E(x, t) cos(xη)dx

](
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη.

Since the relevant estimates in the region |ξ | < 1 are straightforward, in what follows it is always assumed that |ξ | � 1.
First, consider the term

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉−2s
∣∣Î21(ξ, τ )

∣∣2 dξ dτ.

Proposition A.1. Let s � 0 and 0 < b < 1
2 − s

3 be given. There exists a constant C such that

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î21(ξ, τ )

∣∣2 dξ dτ < C‖h‖2

H
3b+s−1/2

3 (�+)

(A.2)

for any h ∈ H
3b+s−1/2

3 (�+).

Proof. According to (3.11),

Ft

[ ∞∫
0

E(x, t) cos(x, ξ) dx

]
=

4∑
m=1

K1(ξ, λ)φ2
(
μ(λ)

)
ĥ(λ) +

4∑
m=1

Km2(ξ,−λ)φ2
(
μ(−λ)

)
ĥ(−λ).

In the following, detailed analysis is given for terms containing K21; the estimates for the other terms follow similar
lines. Suppose ξ � 0 in what follows. The case ξ < 0 is entirely analogous. Write

Am1(ξ, τ ) = Km1(ξ, τ )φ2
(
μ(τ)

)
ĥ(τ ), m = 1,2,3.

For fixed s � 0 and b > 0, we have
∞∫

−∞

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣A21(ξ, τ )

(
1 + ω(τ)

)(
1 − Θ(ξ, τ)

)∣∣2 dξ dτ

� C

∞∫
φ2
(
μ(τ)

)∣∣∣∣∣
∞∫

h(s)e−isτ ds

∣∣∣∣∣
2

B21(τ ) dτ
−∞ 0
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with

B21(τ ) =
∞∫

0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣(1 + ω(τ)

)(
1 − Θ(ξ, τ)

)∣∣2 α2
μ(τ)φ2(μ(τ))

(α2
μ(τ) + (ξ − βμ(τ))2)2

dξ.

Claim. If b < 1/2 − s/3, then as τ → ∞,

B21(τ ) ∼ τ (6b+2s−1)/3.

To see the claim is valid, note that in fact

B21(τ ) =
∞∫

δ|τ |1/3

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
α2

μ(τ)φ2(μ(τ))

(α2
μ(τ) + (ξ − βμ(τ))2)2

(
1 + ω(τ)

)2(1 − Θ(ξ, τ)
)2

dξ

since Θ(ξ, τ) = 1 when ξ < δ|τ | 1
3 , where δ > 0 is fixed, but arbitrary for the nonce. Let ξ = η(ζ ) be the real solution

of the equation

ξ3 − ξ = ζ, 0 � ζ < ∞,
1√
3

� ξ < ∞,

that connects continuously to the unique real root as ζ becomes large. Note that

η(ζ ) ∼ ζ 1/3 as ζ → ∞.

For large τ , it is also the case that

μ(τ) ∼ τ 1/3,
∣∣αμ(τ)

∣∣∼
√

3

2
τ 1/3,

∣∣βμ(τ)
∣∣∼ 1

2
τ 1/3.

Thus, for τ > 0 large enough,

B21(τ ) � C

∞∫
δ3τ

τ 2/3〈τ − ζ 〉2b

(1 + 3τ 2/3 + (2η(ζ ) − τ 1/3)2)2
〈ζ 〉2s/3 1

3η2(ζ ) − 1
dζ

= C

2τ∫
δ3τ

τ 2/3〈τ − ζ 〉2b

(1 + 3τ 2/3 + (2η(ζ ) − τ 1/3)2)2
〈ζ 〉2s/3 1

3η2(ζ ) − 1
dζ

+ C

∞∫
2τ

τ 2/3〈τ − ζ 〉2b

(1 + 3τ 2/3 + (2η(ζ ) − τ 1/3)2)2
〈ζ 〉2s/3 1

3η2(ζ ) − 1
dζ

:= G21−1(τ ) + G21−2(τ ).

Continuing this sequence of inequalities, note further that

G21−1(τ ) � C
τ 2/3

(1 + τ 2/3)2

2τ∫
δ3τ

〈τ − ζ 〉2b

(1 + |ζ |)−2s/3

1

3η2(ζ ) − 1
dζ

� C
τ 2/3(1 + τ)2b

(1 + τ 2/3)2

2τ∫
δ3τ

1

(1 + ζ )(2−2s)/3
dζ

� Cτ(6b+2s−1)/3

and
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G21−2(τ ) � Cτ 2/3

∞∫
2τ

〈τ − ζ 〉2b

(1 + τ 2/3 + ζ 2/3)2(1 + ζ )−2s/3ζ 2/3
dζ

� Cτ 2/3

∞∫
2τ

ζ 2b

ζ 2(1−s/3)
dζ

� Cτ
6b+2s−1

3

if b < 1/2 − s/3. The claim is thereby established.
As a consequence, the following estimate emerges. For given s � 0 and b < 1/2 − s/3, there exists a constant C

such that
∞∫

2
3
√

3

φ2
(
μ(τ)

)∣∣∣∣∣
∞∫

0

h(s)e−isτ ds

∣∣∣∣∣
2

B21(τ ) dτ � C

∞∫
2

3
√

3

φ2
2

(
μ(τ)

)
τ 2(3b+s−1/2)/3

∣∣∣∣∣
∞∫

0

h(s)e−isτ ds

∣∣∣∣∣
2

dτ

� C‖h‖2
H(3b+s−1/2)/3(�+)

(A.3)

for any h ∈ H(3b+s−1/2)/3(�+). The proof of Proposition 5.1 is complete. �
Next, attention is given to the term

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î22(ξ, τ )

∣∣2 dξ dτ.

Proposition A.2. Let s and b be given satisfying s > − 3
2 and 0 � b < 5

6 − s
3 . Then there is a constant C such that

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î22(ξ, τ )

∣∣2 dξ dτ < C‖h‖2

H
(3b+s− 1

2 )/3
(�+)

(A.4)

for any h ∈ H(3b+s− 1
2 )/3(�+).

Proof. As before, we only explicitly estimate one term in Ft [
∫∞

0 E(x, t) cos(xη)dx], say the term

A11(ξ, τ ) = K11(ξ, τ )φ2
(
μ(τ)

)
ĥ(τ ).

Notice that A11(−ξ, τ ) = A21(ξ, τ ). Hence, we may consider only the case where ξ � 0. Denote by q2 the quantity

q2(ξ, τ ) = 1

α2
μ(τ) + (ξ + βμ(τ))2

and, for ξ � 1, let D2 be given by

D2(ξ, τ ) = 2

∞∫
−∞

η2Θ(η, τ)

ξ(ξ2 − η2)
q2(η, τ ) dη + (1 + ω(τ)

) ∞∫
−∞

η2(1 − Θ(η, τ))

ξ(ξ2 − η2)
q2(η, τ ) dη

for ξ � δ1μ(τ) and

D2(ξ, τ ) = 2

∞∫
−∞

ξΘ(η, τ)

ξ2 − η2
q2(η, τ ) dη + (1 + ω(τ)

) ∞∫
−∞

ξ(1 − Θ(η, τ))

ξ(ξ2 − η2)
q2(η, τ ) dη

for 0 � ξ � δ1μ(τ), where δ1 > 0 is a small positive constant. The relevance of these functions will become clear
presently. First, note that

A11(ξ, τ ) = q2(ξ, τ )φ2
(
μ(τ)

)
ĥ(τ )

∣∣α(μ(τ)
)∣∣.
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As for D2, changing variables in the integrals of its definition shows it to have the form

D2(ξ, τ ) = 2

∞∫
0

η2

ξ(ξ2 − η2)
Θ(η, τ )q2(η, τ ) dη + (1 + ω(τ)

) ∞∫
0

η2

ξ(ξ2 − η2)

(
1 − Θ(η, τ)

)
q2(η, τ ) dη

= 2

μ2(τ )

a0∫
0

η2

y(y2 − η2)
Θ
(
μ(τ)η, τ

)
p2(η, τ ) dη

+ 1 + ω(τ)

μ2(τ )

∞∫
a1

η2

y(y2 − η2)

(
1 − Θ

(
μ(τ)η, τ

))
p2(η, τ ) dη

:= D21(y, τ ) + D22(y, τ )

where

a0 = δ|τ |1/3 + 1

μ(τ)
, a1 = δ|τ |1/3

μ(τ)
, y = ξ

μ(τ)
, p2(η, τ ) =

(
α2

μ(τ)

μ(τ)2
+
(

η + βμ(τ)

μ(τ)

)2)−1

.

We have similar definitions for 0 � y � δ1. Remark that a0 is bounded independently of τ and so for y large enough,
y2 − η2 is bounded below for η ∈ [0, a0]. Thus,

D21(y, τ ) = 2

y3μ2(τ )

a0∫
0

η2

1 − (η/y)2
Θ
(
μ(τ)η, τ

)
p2(η, τ ) dη

:= 1

y3μ2(τ )
D21,2(τ, y)

with ∣∣D21,2(τ, y)
∣∣< C for all τ and y.

Turning to D22, note that Θ(μ(τ)η, τ ) = 0 for η � a1, so

∞∫
a1

η2

y(y2 − η2)

(
1 − Θ

(
μ(τ)η, τ

))
p2(η, τ ) dη =

∞∫
a1

η2

y(y2 − η2)
p2(η, τ ) dη

= 1

y2

∞∫
a1
y

1

1 − z2
z2y2p2(zy, τ ) dz

= 1

y2

∞∫
a1
y

1

1 − z2

(
z2y2p(zy, τ ) − 1

4

)
dz + 1

4y2

∞∫
a1
y

1

1 − z2
dz

:= 1

y2

(
D22,1(y, τ ) + D22,2(y, τ )

)
.

Of course,

D22,2(y, τ ) = 1

4

∞∫
a1
y

1

1 − z2
dz = −

a1
y∫

0

1

1 − η2
dη
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since
∞∫

0

1

1 − η2
dη = 0

as a principal-value integral. It is therefore clear that

∣∣D22,2(y, τ )
∣∣� C

y

for some constant C independent of τ when y is large. As for D22,1(y, τ ), note that

η2y2p(ηy, τ ) − 1 = 1

y

(
2η − α2

μ(τ) + β2
μ(τ)

μ(τ)2

1

y

)((
αμ(τ)

μ(τ)y

)2

+
(

η + βμ(τ)

μ(τ)y

)2)−1

:= 1

y
p∗(η, y, τ ).

Rewrite D22,1(y, τ ) as

D22,1(y, τ ) = 1

y

( 1/2∫
a1/y

+
2∫

1/2

+
∞∫

2

)
p∗(η, y, τ )

1 − η2
dη

to obtain∣∣∣∣∣
( 2∫

1/2

+
∞∫

2

)
p∗(η, y, τ )

1 − η2
dη

∣∣∣∣∣� C

and ∣∣∣∣∣
1/2∫

a1/y

p∗(η, y, τ )

1 − η2
dη

∣∣∣∣∣� C(1 + lny)

where C is independent of τ and y for μ(τ) � 3 and y large. Thus, if y > y0, then

∣∣D2
(
μ(τ)y, τ

)∣∣� C

y3
(1 + lny)

1

μ2(τ )

where C is independent of τ and y. The following calculation shows the relevance of D2;

∞∫
0

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s

∣∣∣∣∣
∞∫

−∞

1

ξ − η
A11(η, τ )

(
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη

∣∣∣∣∣
2

dξ dτ

=
∞∫

0

1

π2
φ2

2

(
μ(τ)

)|ĥ|2(τ )α2
μ(τ)

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s

×
∣∣∣∣∣

∞∫
−∞

1

ξ − η
q2(η, τ )

(
2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη

∣∣∣∣∣
2

dξ dτ

=
∞∫

0

1

π2
φ2

2

(
μ(τ)

)|ĥ|2(τ )α2
μ(τ)

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣D2(ξ, τ )

∣∣2 dξ dτ.

Appropriate bounds on D2 yield bounds on the left-hand side of the last formula. Consider the quantity
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E2(τ ) := α2
μ(τ)

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉−2s
∣∣D2(ξ, τ )

∣∣2 dξ

= α2
μ(τ)

( δ1μ(τ)∫
0

+
y0μ(τ)∫

δ1μ(τ)

+
∞∫

y0μ(τ)

)〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2sD2
2(ξ, τ ) dξ

:= E21(τ ) + E22(τ ) + E23(τ ),

where δ1 is again a small positive constant. By our choice of ω(τ),

∣∣E23(τ )
∣∣� Cτ 2/3

∞∫
y0μ(τ)

ξ6b+2s−6 dξ

� Cτ 2/3μ(τ)6b+2s−3

∞∫
y0

ξ6b+2s−6 dξ

� Cτ 2b+2s/3−1/3

for large τ , provided 6b + 2s − 6 < 1, which is to say, b < (−2s + 5)/6. For δ1 � y � y0, say,

|D2| � C

μ2(τ )

(∣∣∣∣∣
a0∫

0

1

y − η
Θ
(
μ(τ)η, τ

)
p2(η, τ ) dη + (1 + ω(τ)

) ∞∫
a1

1

y − η

(
1 − Θ

(
μ(τ)η, τ

))
p2(η, τ ) dη

∣∣∣∣∣
)

.

Note that if δ1 � y � a0, then∣∣∣∣∣
a0∫

0

1

y − η
Θ
(
μ(τ)η, τ

)
p2(η, τ ) dη

∣∣∣∣∣�
∣∣∣∣∣

a0∫
0

Θ(μ(τ)η, τ )

y − η

(
p2(η, τ ) − p2(y, τ )

)
dη

∣∣∣∣∣
+
∣∣∣∣∣p2(y, τ )

a0∫
0

Θ(μ(τ)η, τ )

y − η
dη

∣∣∣∣∣� C.

The same bound is valid if a1 � y � y0; thus

|D2| � C

μ2(τ )

and

∣∣E22(τ )
∣∣� Cτ−2/3

y0μ(τ)∫
δ1μ(τ)

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s dξ

� Cτ−2/3

( τ 1/3/2∫
δ1μ(τ)

+
2τ 1/3∫

τ 1/3/2

+
y0μ(τ)∫

2τ 1/3

)〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s dξ

� Cτ−2/3

(
τ 2b

τ 1/3/2∫
δ1μ(τ)

〈ξ〉2s dξ +
2τ 1/3∫

τ 1/3/2

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b
ξ2s dξ +

y0μ(τ)∫
2τ 1/3

ξ6b+2s dξ

)

� Cτ−2/3

(
τ 2b+(1+2s)/3 +

2∫ (
1 + τ |ξ − 1|)2b

τ (1+2s)/3ξ2s dξ + τ (6b+2s+1)/3

)

1/2
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� Cτ−2/3(τ (6b+2s+1)/3 + τ 2b+(1+6s)/3)
� Cτ(6b+2s−1)/3

since b � 0. If 0 � y � ξ
μ(τ)

� δ1 in the decomposition D2 = D21 + D22, then

|D22| � C

μ2(τ )

∣∣∣∣∣
∞∫

a1

2y

y2 − η2

(
1 − Θ

(
μ(τ)η, τ

))
p2(η, τ ) dη

∣∣∣∣∣� C
|y|

μ2(τ )

and

D21 = 1

μ2(τ )

( a0∫
0

1

y − η

(
p2(η, τ ) − p2(y, τ )

)
Θ
(
μ(τ)η, τ

)
dη

+
a0∫

0

1

y + η

(
p2(η, τ ) − p2(−y, τ )

)
Θ
(
μ(τ)η, τ

)
dη

+
a0∫

0

(
1

y − η
p2(y, τ ) + 1

y + η
p2(−y, τ )

)
Θ
(
μ(τ)η, τ

)
dη

)

:= 1

μ2(τ )
(D21−1 + D21−2 + D21−3).

Recall that p2(η, τ ) = (v2(τ ) + (η + w(τ))2)−1 with

v(τ) = αμ(τ)

μ(τ)
, w(τ) = βμ(τ)

μ(τ)
,

so that

D21−1(y, τ ) + D21−2(y, τ ) =
a0∫

0

Θ(μ(τ)η, τ )

v2(τ ) + (η + w(τ))2

(
y + η + 2w(τ)

v2(τ ) + (y + w(τ))2
− η − y + 2w(τ)

v2(τ ) + (−y + w(τ))2

)
dη

=
a0∫

0

Θ(μ(τ)η, τ )

v2(τ ) + (η − w(τ))2

[ −4yw(τ)(η + 2w(τ))

(v2(τ ) + (y − w(τ))2)(v2(τ ) + (y + w(τ))2)

+ y

(
1

v2(τ ) + (y − w(τ))2
+ 1

v2(τ ) + (y + w(τ))2

)]
dη.

It thus transpires that

|D21−1 + D21−2| � C|y|.
We also note that

D21−3 = p2(y, τ )

a0∫
0

1

y − η
Θ
(
μ(τ)η, τ

)
dη + p2(−y, τ )

a0∫
0

1

y + η
Θ
(
μ(τ)η, τ

)
dη

= p2(y, τ )

( a1∫
0

1

y − η
dη +

a0∫
a1

1

y − η
Θ
(
μ(τ)η, τ

)
dη

)

+ p2(−y, τ )

( a1∫
1

y + η
dη +

a0∫
1

y + η
Θ
(
μ(τ)η, τ

)
dη

)

0 a1
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= p2(y, τ )
(− ln|a1 − y| + ln|y|)+ p2(−y, τ )

(
ln|a1 + y| − ln|y|)

+ p2(y, τ )

a0∫
a1

1

η

Θ(μ(τ)η, τ ) dη

y/η − 1
+ p2(−y, τ )

a0∫
a1

1

η

Θ(μ(τ)η, τ ) dη

y/η + 1

= (−p2(y, τ ) + p2(−y, τ )
)(

ln|a1| − ln|y|)+ p2(y, τ )

(
− ln

∣∣∣∣1 − y

a1

∣∣∣∣
)

+ p2(−y, τ ) ln

(
1 + y

a1

)
+ p2(y, τ )

a0∫
a1

1

η

(
−1 + y/η

y/η − 1

)
Θ
(
μ(τ)η, τ

)
dη

+ p2(−y, τ )

a0∫
a1

1

η

(
1 − y/η

y/η + 1

)
Θ
(
μ(τ)η, τ

)
dη

= (−p2(y, τ ) + p2(−y, τ )
)(

ln|a1| − ln|y| +
a0∫

a1

1

η
Θ
(
μ(τ)η, τ

)
dη

)

+ p2(y, τ )

(
− ln

(
1 − y

a1

)
+

a0∫
a1

y

(y − η)η
Θ
(
μ(τ)η, τ

)
dη

)

+ p2(−y, τ )

(
ln

(
1 + y

a1

)
−

a0∫
a1

y

(y + η)η
Θ
(
μ(τ)η, τ

)
dη

)
.

As a consequence,

|D21−3| � C|y|(ln|y| + 1
)

and

|D21| � C|y|(ln|y| + 1)

μ2(τ )
,

which implies that

|D2| � C|y|(ln|y| + 1)

μ2(τ )
.

Thus, it is apparent that

|E21| � Cτ 2/3

δ1μ(τ)∫
0

(
1 + |τ |)2b〈ξ〉2s ξ2

τ 2

(
1 + ln

∣∣∣∣ ξ

μ(τ)

∣∣∣∣
)

dξ

� Cτ−4/3(1 + |τ |)2b

δ1μ(τ)∫
0

〈ξ〉2s

(
1 + ln

∣∣∣∣ ξ

μ(τ)

∣∣∣∣
)

dξ

� Cτ−4/3(1 + |τ |)2b

δ1∫
0

(
1 + ∣∣μ(τ)

∣∣|ξ |)2s
μ3(τ )

(
1 + ln|ξ |)ξ2 dξ

� Cτ− 1
3 +2b+ 2s

3

δ1∫
0

ξ2+2s
(
1 + ln|ξ |)dξ

� Cτ 2b−(1−2s)/3
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if 2 + 2s > −1. Combining these estimates, there obtains∣∣E2(τ )
∣∣� Cτ 2b−(1−2s)/3

if s > −3/2 and 0 < b < 1
2 − s

3 . This in turn implies that

∞∫
−∞

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s

×
∣∣∣∣∣

∞∫
−∞

1

ξ − η
A21(η, τ ) × (2Θ(η, τ) + (1 − Θ(η, τ)

)(
1 + ω(τ)

))
dη

∣∣∣∣∣
2

dξ dτ

� C

∞∫
0

τ 2b−(1−2s)/3

∣∣∣∣∣
∞∫

0

h(s)e−isτ ds

∣∣∣∣∣
2

dτ

� C‖h‖2

H
b+ s

3 − 1
6
.

Similar estimates for other terms yield, in sum,

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î22(ξ, τ )

∣∣2 dξ dτ � C‖h‖2

H
b+ s

3 − 1
6

if − 3
2 < s � 0 and 0 � b < 1

2 − s
3 . This completes the proof of Proposition A.2. �

Combining the last two propositions completes the proof of Proposition 2.8. �
Proof of Proposition 2.9. As in the proof of Proposition 2.8, it suffices to establish the following two results.

Proposition A.3. Let s ∈ � and b � 0 be given. There exists a constant C such that

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î ∗

21(ξ, τ )
∣∣2 dξ dτ <

⎧⎪⎨
⎪⎩

C‖h‖2

H
(

9b+s−5/2
9

if s � − 1
2 ,

C‖h‖2

H
3b−1

3
if s � − 1

2 .
(A.5)

Proposition A.4. Let s and b be given satisfying 0 � b < 5
6 − s

3 . There exists a constant C such that

∞∫
−∞

∞∫
−∞

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣Î ∗

22(ξ, τ )
∣∣2 dξ dτ < C‖h‖2

H

3b+s− 1
2

3 (�+)

(A.6)

for any h ∈ H
3b+s− 1

2
3 (�+).

We only present a proof of Proposition A.3. The proof of Proposition A.4 follows the same line as that of Propo-
sition A.2 and may be safely omitted. As in the proof of Proposition A.1, detailed analysis is given for the term
containing K21; the estimates for the other terms are sufficiently similar that their proof do not require further elabo-
ration. Suppose ξ � 0 and τ � 0 in what follows. The other cases are entirely analogous. Define Am1 by

Am1(ξ, τ ) = Km1(ξ, τ )φ2
(
μ(τ)

)
ĥ(τ ), m = 1,2,3.
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For given s and b � 0, we have

∞∫
0

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣A21(ξ, τ )

(
1 + ω(τ)

)
Θ(ξ, τ)

∣∣2 dξ dτ

� C

∞∫
−∞

φ2
(
μ(τ)

)∣∣∣∣∣
∞∫

0

h(s)e−isτ ds

∣∣∣∣∣
2

B∗
21(τ ) dτ

with

B∗
21(τ ) =

∞∫
√

ρ

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣(1 + ω(τ)

)
Θ(ξ, τ)

∣∣2 α2
μ(τ)φ2(μ(τ))

(α2
μ(τ) + (ξ − βμ(τ))2)2

dξ

� C

δτ 1/3∫
√

ρ

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
α2

μ(τ)φ2(μ(τ))

(α2
μ(τ) + (ξ − βμ(τ))2)2

dξ

because of the properties of Θ , and where δ > 0 is, as before, fixed, but arbitrary for the moment. Let ξ = η(ζ ) be the
unique real solution of the equation

ξ3 − ρξ = ζ, 0 � ζ < ∞,
√

ρ � ξ < ∞,

η(ζ ) ∼ ζ 1/3 as ζ → ∞.

For large τ , note that μ(τ) ∼ τ 1/3. Thus, for τ > 0 large enough,

B∗
21(τ ) � C

δτ 1/3∫
0

(3μ2(τ ) − 4)〈τ − ζ 〉2b

(3μ2(τ ) − 4 + (2η(ζ ) − μ(τ))2)2

(
1 + |ζ |)2s/3 1

3η2(ζ ) − 1
dζ

� C

δτ 1/3∫
0

τ
2
3 〈τ − ζ 〉2b

(1 + 3τ
2
3 + (2η(ζ ) − τ

1
3 )2)2

(
1 + |ζ |) 2s

3
1

3η2(ζ ) − 1
dζ

� C
τ

2
3

(1 + τ
2
3 )2

( 1∫
0

+
δτ

1
3∫

1

)
〈τ − ζ 〉2b

(1 + |ζ |)− 2s
3

1

3η2(ζ ) − 1
dζ

� C
τ

2
3

(1 + τ
2
3 )2

(
(1 + τ)2b

1∫
0

1

ζ
2
3

dζ +
δτ

1
3∫

1

〈τ − ζ 〉2b

(1 + ζ )
2−2s

3

dζ

)

� Cτ
6b−2

3

(
1 + τ

1+2s
9

)

�
{

Cτ
18b+2s−5

9 if s � − 1
2 ,

Cτ
6b−2

3 if s � − 1
2 .

In consequence,

∞∫
0

∞∫
0

〈
i
(
τ − (ξ3 − ρξ

))+ ξ2〉2b〈ξ〉2s
∣∣A21(ξ, τ )

(
1 + ω(τ)

)
Θ(ξ, τ)

∣∣2 dξ dτ

� C

∞∫
φ2
(
μ(τ)

)∣∣∣∣∣
∞∫

h(s)e−isτ ds

∣∣∣∣∣
2

B∗
21(τ ) dτ
0 0
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� C

∞∫
0

φ2
(
μ(τ)

)∣∣∣∣∣
∞∫

0

h(s)e−isτ ds

∣∣∣∣∣
2{

Cτ
18b+2s−5

9 dτ if s � − 1
2 ,

Cτ
6b−2

3 dτ if s � − 1
2

=

⎧⎪⎨
⎪⎩

C‖h‖2

H
9b+s−5/2

9
if s � − 1

2 ,

C‖h‖2

H
3b−1

3
if s � − 1

2 .

The proof is complete. �
Appendix B

Proof of Lemma 2.6. Let [Î (f )](k) denote the cosine transform of [I (f )](t), which is to say,

[
Î (f )

]
(k) =

∞∫
0

coskt

∞∫
−∞

eitη+μ(η)tf (η) dη dt.

Since

‖I‖L2
t (�+) � ‖Î‖L2

k(�),

it is sufficient to estimate only the terms

∞∫
0

coskt

∞∫
−∞

e±ikt+itη+μ(η)tf (η) dη dt =
∞∫

−∞

f (η)

i(η ± k) + μ(η)
dη.

We only consider

[
II(f )

]
(k) =

∞∫
−∞

f (η)

i(η − k) + μ(η)
dη

as the other case follows by making the change of variables η → −η. Rewrite II(k) as[
II(f )

]
(k) = [II1(f )

]
(k) − i

[
II2(f )

]
(k)

with

[
II1(f )

]
(k) =

∞∫
−∞

μ(η)

μ2(η) + (η − k)2
f (η)dη

and

[
II2(f )

]
(k) =

∞∫
−∞

η − k

μ2(η) + (η − k)2
f (η)dη.

To show that ‖II1(g)‖L2(R) � C‖f ‖L2(R), it suffices to show that

sup
η

∞∫
−∞

∣∣K(η, k)
∣∣dk < C and sup

k

∞∫
−∞

∣∣K(η, k)
∣∣dη < C

where

K(η, k) = μ(η)

2 2
.

μ (η) + (η − k)
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It is straightforward to see that for any η,
∞∫

−∞

|μ(η)|
μ2(η) + (η − k)2

dk =
∞∫

−∞

1

ν2 + 1
dν = C.

Moreover, for k bounded,
∞∫

−∞

∣∣K(η, k)
∣∣dη � C

∞∫
−∞

η2/3

η4/3 + (η − k)2
dη � C

∞∫
−∞

η2/3

η4/3 + η2
dη < ∞.

For k > 0 large,

∞∫
−∞

η2/3

η4/3 + (η − k)2
dη =

( 0∫
−∞

+
k/2∫
0

+
2k∫

k/2

+
∞∫

2k

)
η2/3

η4/3 + (η − k)2
dη

� C

( 0∫
−∞

1

η2/3 + η4/3
dη +

k/2∫
0

η2/3

k2 + η4/3
dη

+
2k∫

k/2

k2/3

(η − k)2 + k4/3
dη +

∞∫
2k

η2/3

η2 + η4/3
dη

)
� C < ∞.

Thus, for any f ∈ L2(�),∥∥II1(f )
∥∥

L2(�)
� C‖f ‖L2(�). (B.1)

Remark. Inequality (B.1) is also true if

K(η) =
∞∫

−∞

y0 + η2/3

(η − k)2 + (y0 + η2/3)2
dk.

To study II2, let 0 < a � ∞ be given and consider the function

Φa(z) =
a∫

−a

f (t)

i(t − z) − μ(t)
dt.

It is analytic in the region Im z > 0 since the zeros of i(t −z)+μ(t) are z = t + iμ(t). In addition, if f (t) is compactly
supported, then

Φa(z) ∼ O

(
1

|z|
)

as |z| → ∞
and the implied constant is independent of a.

For given r > 0 and y0 > 0, let Cr denote the closed curve in the z-plane which is taken along the line from −r + iy0
to r + iy0 with y0 > 0 and then around the semicircle above it of radius r centered at iy0 in the counterclockwise
direction. By Cauchy’s theorem,∫

Cr

Φa(z)
2 dz = 0

which, upon taking the limit as r → ∞, yields
∞∫

Φ1(x + iy0)
2 dx = 0.
−∞
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Since

Φa(x + iy0) = Ua(x + iy0) + iVa(x + iy0)

with

Ua(x + iy0) =
a∫

−a

y0 − μ(t)

(t − x)2 + (y0 − μ(t))2
f (t) dt

and

Va(x + iy0) = −
a∫

−a

t − x

(t − x)2 + (y0 − μ(t))2
f (t) dt,

it follows that
∞∫

−∞
U2

a (x + iy0) dx =
∞∫

−∞
V 2

a (x + iy0) dx

and hence by Fubini’s theorem,

∞∫
−∞

V 2
a (x + iy0) dx �

∞∫
−∞

( ∞∫
−∞

y0 − μ(t)

(t − x)2 + (y0 − μ(t))2

∣∣f (t)
∣∣dt

)2

dx

� C‖f ‖2
L2(�)

.

Taking y0 → 0 and applying Fatou’s Lemma leads to the conclusion

∞∫
−∞

( a∫
−a

t − x

(t − x)2 + μ2(t)

∣∣f (t)
∣∣dt

)2

dx � C‖f ‖2
L2(�)

.

Then, letting a → ∞ and using Fatou’s Lemma again yields

∞∫
−∞

( ∞∫
−∞

t − x

(t − x)2 + μ2(t)

∣∣f (t)
∣∣dt

)2

dx � C‖f ‖2
L2(�)

for all compactly supported f . The proof is complete. �
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