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Abstract

In this paper we study the asymptotic behaviour, as € tends to zero, of a class of boundary optimal control problems [Pg, set in
e-periodically perforated domain. The holes have a critical size with respect to e-sized mesh of periodicity. The support of controls
is contained in the set of boundaries of the holes. This set is divided into two parts, on one part the controls are of Dirichlet type;
on the other one the controls are of Neumann type. We show that the optimal controls of the homogenized problem can be used as
suboptimal ones for the problems P.
© 2007 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let 2 C R", n > 2, be a bounded open domain, and let ¢ be a small positive parameter. To define a perforated
domain 2., we introduce the following sets: ¥ = [—1/2,+1/2)"; O and K are compact subsets of ¥ such that
0OeintKNoaQ,

Oy ={k=(ki,kp,....kn) €Z": (¢Y +ek) N Q2 #0}; (1.1)
Ye= e +w}) o= [J D0 +ek); (1.2)
ke®; ke®,

M A e/ =D ), n>

E_{EXP(—l/SZ)K08(8"/("_1)Q), n—2 (1.3)

3
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Fg’:’:[ U {Sg—i—sk}}ﬁf_.?, rN=[01.\r’ina. (1.4)
ke®,
Then we set £2, = §2 \ T. The principal feature of the perforated domain 2, is the fact that the size of the holes
Q¢ + ¢k and their boundaries I';”, I’V are not proportional to the size of the periodicity cell e¥. In £2; we consider
the following boundary value problem:

—Aye +ye = fe, in £2,,

dvye = —koye + pe,  on IV, (1.5)
Ye = Ug, on FeDv ’
ye =0, on X, =08 NaJs2,,

where f, € L?(£2) is a given function, kg is a positive constant, 3, = 3/dv is the outward normal derivative.
In (1.5) u. and p, are the control functions which act on the system through the set of boundaries of the holes. We
say that the control functions u, and p, are admissible if the following conditions hold:

pe € LX), ue €Uy ={alpp: a € Hy(2) N H*(2), llall g2(o) < Co}- (1.6)

Then the optimal control problem P, can be formulated as follows: Given z, € LZ(SZ), Co > 0, find a triple
@, p?, y?) € B, such that

IE(”S’ P(g), }’g) = inf Le(ug, pe, Ye)s 1.7)

(e, pe,ye)EES

where the cost functional /; and the set of admissible triplets &, are defined as

15:/|Vy8|2dx+/|ye—zglza’x—i-/p?dH"_l—i-ﬂ(s)/u?dH”_], (1.8)
2 2 ry rp
8e = { (e, pe, ye) € HU(ITP) x LAIN) x H' (2 )t (us, pe, ye) satisfies (1.5)~(1.6)}. (1.9)

Here H'(£2,:; Xs) = {y: € H'(82,): y. =0o0n X}, B(e) =™/ if n >3, and B(e) = &2 exp(a_z) ifn=2.

The asymptotic analysis of the boundary value problems in perforated domain with small holes (without controls)
has been widely studied by many authors. We mainly could mention Cioranescu and Donato and Murat and Zuazua
[7], Cioranescu and Saint Jean Paulin [10], Cioranescu and Murat [9], Dal Maso and Murat [14], Marchenko and
Khruslov [23], Zhikov and Kozlov and Oleinik [29], Scrypnik [27]. It is well known the interesting effect of ho-
mogenization of the Poisson equation with (zero) Dirichlet conditions on the boundary of the holes, when a "strange
term" appears in the limit equation (see [9,23]). Another effect of homogenization of the same equation with a crit-
ical size of the holes, when nonhomogeneous Neumann conditions on the boundary of the holes are assumed, was
studied by Conca and Donato [11]. In this case some constant that is proportional to the limit of the total flux of the
solution through the boundary of the holes, appears in the limit equation. Cardone and D’ Apice and De Maio in [5]
and Corbo Esposito and D’ Apice and Gaudiello in [12] examined the same equation with mixed boundary conditions
on the holes. As proved in [12], in the context of perforated domains with a rather simple geometry of the holes, an
interference phenomenon in the homogenization of such boundary value problems is present.

Optimal control problems in perforated domains have been the object of intensive research in the past years [8,18,
24,26]. The numerical computation of such problems is very complicated through thick perforations of £2,. Therefore,
the asymptotic analysis is one of the main approaches to the study of optimization problems in perforated domains.
The goal of this paper is to obtain an appropriate approximation for the optimal solutions to the problem P, for small
enough values of ¢. Using the ideas of the I"-convergence theory and the concept of the variational convergence of
constrained minimization problems (see [2,3,19,20]), we show that the homogenized problem for the original one can
be recovered in the following analytical form:

/(Vy-Vso)derp*/(y—a)qodu*Jr(1 +ko|8Q|H)/y<pdx
2 2 2

=/f<pdx+|aQ|H/p<pdx, Vo € H}(2) N L*(2,du*). (1.10)
2 2
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yeH(2), pel*(2), aeH*(2)NH(R), (1.11)
y—aeL*(2,du*),  laly2g < Co. (1.12)

Io(a,p,y)=/IVylzder/Iy—zalzderp*/(y—a)zdu*
22 22 2

+|aQ|H/p2dx+|KmaA|H/a2dx—>inf. (1.13)
2 2

Here the parameters p*, [0Q|y, |K N dA|g € R and the Borel measure pu* are coming from the geometry of control
zones. In contrast to [P, the limit control problem (1.10)—(1.13) contains two independent distributed control func-
tions. We show that this problem has a unique optimal solution, derive the corresponding optimality conditions, and
establish that the optimal solution for the homogenized problem can be used as a suboptimal control for the original
one.

2. Preliminaries and notation

Throughout the paper we suppose that §2 is a measurable set in the sense of Jordan; the small parameter ¢ varies
in a strictly decreasing sequence of positive numbers which converges to 0; Q and K are compact subsets of ¥ such
that 0 € int K N 0 Q; the set Q has Lipschitz boundary 9 Q, int Q is a strongly connected set, Q C {x = (xq, ..., x,) €
R": x1 > 0}, and its boundary d Q contains the origin; A = B(0, r) is an open ball centered at the origin with a radius
ro <1/2,sothat A € Y and K € A (see Fig. 1 for 2-d example); Co > 0 is a constant independent of ¢; the functions
fo € L3(2), zo € L?(82) are such that f, — f and z, — z° in L?(£2) as ¢ — 0. For any subset E C §2 we denote by
| E| its n-dimensional Lebesgue measure £" (E), whereas |0 E |y denotes the (n — 1)-dimensional Hausdorff measure
of manifold d E on R”. We suppose that the sets K N9 QS and dQ \ (K N3 Q%) have nonzero capacity for any ¢ > 1,
where Q% = {¢x,Vx = (x1, ..., x,) € Q} is the homothetic stretching of Q by a factor of ¢. Hence |K NdQS |y #0
forall ¢ > 1.

Let M (£2) be the space of bounded Borel measures on §2 with values in [0, +oc]. Let Mg‘ (£2) be the cone of
all nonnegative Borel measures n on §2 such that u(B) = 0 for every set B C §2 with cap(B, £2) =0, and u(B) =
inf{u(U): U quasi open, B C U} for every Borel set B C £2. Note that if u € MS‘(Q), then the functions of H!(£2)
are defined p-almost everywhere and are p-measurable in §2, hence the space H Lyn L2(.Q, d ) is well defined.

In view of [21] (see Theorems 1.1 and 2.2, Chapter IV), the following result can be easily proved: for every fixed
¢ and for any control functions u, € H! (FeD) and pg € L2(1"€N) there exists a unique function y, = y:(Ug, pe) such
that

X

\ |
*"Dirichlet control zonc

Fig. 1. Example of perforation scheme.
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ye —as € H'(2:; TP U 3y),

/(Vys~V<p)dX+/yssodx+ko/ygwdH"_l

£2¢ 2 FSN
:/f8¢dx+ / pepdH"™™ ' Vo e HY(2:; TP U X, 2.1)
2 FN
1yell i1, < CLIfell 2y + Di@luell gigroy + D2l pell2rm ] (2.2)

where C, Dj(¢), and D (¢) are some positive constants, C is independent of €, and the function a, € H(} (2)NH*(2)
is such that ||a; || y2(o) < Co and a, |FSD = u,. In the sequel we call the function y. weak solution to the problem (1.5)
and identify y, with its quasi continuous representative [14].

Let {(u}, pZ, y2)} C E¢ be a minimizing sequence for the problem IP. Then, using the compact embedding result
HY(IP) < H'(I,”) which implies u? — u? = a?|rp strongly in H'(I;”) and the direct method of Calculus of
variation, we come to the following conclusion (for details see [16], [13]):

Theorem 2.1. For every ¢ there exists a unique solution (ug, pg, yg) € & of the optimal control problem P,.
3. On formulation of the homogenization problem

We begin this section with the description of the geometry of the perforated domain £2,. We describe the class
of admissible solutions to problem PP, in the terms of singular periodic Borel measures on R”. To do so, we use the
approach of Zhikov, Bouchitté and Fragala (see [1,28]).

Let us denote by K* and Q" the homothetic contractions of the sets K and Q at A~! and ~~! times. In what
follows it is assumed that 0 < A < h < 1. Let the sets I'*” and A*" be defined as follows:

r>"=xk*ngyo", AR =90\ M. (3.1)

Let u*" and v*" be the normalized periodic Borel measures on R” with the periodicity cell ¥ such that u*-" is con-
centrated on F)"h, v*M is concentrated on A)"h, and both these measures are proportional to the (n — 1)-dimensional
Hausdorff measure. Since these measures are concentrated and uniformly distributed on the corresponding sets, it
follows that u*" (Y \ I'*") =0

For any function ¢ € C*°(R") we have

[ o =irthy [t =2k 000 [ i, (62)
hh Y Y
/ pdH""! =|A*’h|H/<odv"”= (190" 11 ~ |r“*”|H)/<odv*’h
Ak Y Y
=(n"""90Qu —A"—1|Kmth/*|H)/<pdvW. (3.3)
Y

We introduce also the scaling measures ,ué" and v)‘ h by setting wu}’ MRy = e"urh(e1B), v h(B) =
my*h (=1 B) for every Borel set B C R”, and relate the parameters A, &, and & by the rule

h(e) ="V A@e)=e""2 ifn>3, and A(e)=exp(—e?) ifn=2. (3.4)

Then [, dul" =¢" [, du*" =", [, dv}" =&" [, dv**" = ¢". It means that the measures 1" and v}*" weakly
converge to the Lebesgue measure: d ,u”’ —~dx,d v“’ — dx, that is for every ¢ € Cg°(R") we have

hm/(pdy, _/wdx hm/‘wdvkh /(pdx (3.5)
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Remark 3.1. It is easy to see that the scaling measures ué'h and vé’h belong to the class ./\/lg (£2). Hence the spaces
Hi(2)NH*(2)N LY (2,dpk") and H'(2; Z,) N L*(2, dv}") are well defined [14].

Now we turn back to the definition of the set of admissible solutions of the problem P, (see (1.9)). We see that

FsD _ U [Kk(s) N th(S) + 8k], FeN — U [3 Qh(s) \ (K)»(E) N 8Qh(6)) + Sk].
ke®, ke®,

Then, using properties (3.2)—(3.3) and setting
a(e) = (h(©)" '18QIn — ()" 'K N3 Q" ), (3.6)

the term [y pepd H"~! of the integral identity (2.1) can be rewritten in the form

[roawt=% [ ppar

FSN kEG)Sa Qh(s)\[‘)»(s),h(a)_;’_sk
=o(e) Y. / P dv™ M (x/e) = 6 o (e) / pepdv}” (3.7)
ke@gg(Y+k) o

for every function ¢ € C(R"; X, UI'P) ={y € CPR"): ¢y =0o0n X, UL}
Here p. is a function of L?($2, dvg"h) taking the same values as p, € L2(F8N) on FEN. It is clear that for every
boundary control p; € LZ(FSN), one can find a function p, € L?($2, dvg\’h) such that p, = p. on FSN. Hence

/p?dH"“ =8‘"a(8)/ﬁ§dv§’h, (3.8)
ry Q
where
901y — "2 (K A9 0hE /e ifn>3
00| — zexp(—3)|IKNIQ lg, ifn=2.
By analogy we obtain
ko/ygsodH”’l =e’"0(e)ko/§g<pdv§”’, (3.10)
ry 2
[ugdH”—l =e"Ae)" MK N th@)/W)m/ag dut", (3.11)
rp 2

Here y, € H 1(§2; X,) is an extension of the weak solution ye to the problem (1.5) to the whole of domain 2, and the
function a, € HOl (2)NH?*(£2) N L*(£2, dué*h) is a prototype of the Dirichlet control u, € U, (see (1.6)).

Remark 3.2. In view of our initial suppositions, the measure vg”’h is supported on the set with nonzero capacity for
every ¢ > 0. Since every element v of the space H'(£2; X)) N L?(£2,d vé"h) can be interpreted as a quasi continuous
function, it is reasonable to suppose that for every element v € H'!(£2), one can find a sequence {v; € C(£2)}ren such
that

sup lim sup/(v — vk)2 dvé'h <400 and lim cap(Vg, £2) =0,
keN &—0 k— 00
Vi
where Vi = {x € £2: v # vr}. We assume that the same property is valid for the elements of the space HO1 )N
L2(22,dul").
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As a result, we can reformulate the original optimal control problem P, (1.7)—(1.9) as follows: Find some
@2, p?, y?) € X, such that

@2, p, v = inf  l(ae, pe, ye), (3.12)

(“S’PS;yS)Eés
X, =[Hy (2) N H*(2) N L*(2,dpl")] x L2 (2, dvi") x [H'(2; Zp) N L* (2, dv}™)],

where

ig(ag,ps,yg)=/xs|vys|2dx+f|x8y5—zf§|2dx
2 2
+s—"a(a)/p§ dvh 4+ K N th(S)/’\(s)m/afdué'h, (3.13)
2 2
Ve —ac € H'(2: TP U o), llall g2 < Co
f_Q Xe(Vye - Vo) dx + fg XeVe@ dx

+koe "o (¢) f_Q )u’a(pd‘)?’h - fg Xe fe dx
=&""0(¢) [ pedv}", Vo e H'(2; TP U X,).

Ee =\ (ac, e, Ye) (3.14)

We denote with ]ng the optimal control problem (3.12)—(3.14). It is clear that I@’g has a unique solution (ag, pg, y?) for

every ¢ [16,22]. This solution can be viewed as a prototype of the optimal triplet to P.-problem. Moreover, in this
case a priori norm estimate (2.2) takes the form

15elli1 @, e oy + VETTENe 20 ity < CIVETT@Pell 2 gty + I fell 202y

HIK NI ety a0 i) G19)
To end this section, we list some auxiliary results that will be useful in the sequel. Let
exp(—=—=1Ing) ifn >3,
- 2 — n=—3n+2 3.16
s(® (©)/1 &) { &2 exp(siz) if n=2. ( )

Then ¢(¢) € (1, 400) Ve and lim,_.0 s(e) = +00. We are interested in the limit behaviour of the sequence {|K N
905 (e)|y} as e — 0. We recall that the set Q¢ (e) = {c(e)x,Vx = (x1, ..., Xx,) € Q} is the homothetic stretching of
Q by a factor of ¢(¢).

Proposition 3.3. There exists an open cone A C {x € R": x; > 0} such that

lim|K N3QS(e)|, =K NIA|g. (3.17)
e—0

Proof. Indeed, by the initial assumptions, the origin is a Lipschitz point of the boundary 0 Q and int Q is a strongly
connected set in the classical sense. Hence, there is a neighbourhood ¢/(0) such that Z/(0) Nint Q is a convex set
[4,15]. Then A = {x € ¢t[U{/(0) Nint Q] V¢ € (0, +00)} is a nonempty open cone.

Assume that the origin does not belong to a smooth part of the boundary 8 Q. Then the inclusion K N A ¢ KN Q<®
holds true for ¢ small enough, and it immediately implies the existence of a value gy > 0 such that |[K NdA|yg =
|[K N0Q%(e)|lg Ye < gp. If a part of the boundary d Q containing the origin is smooth, then it follows that there is
a neighbourhood ¢/ (0) of the origin such that Z/(0) N 9 Q is the graph of a smooth function whose epigraph contains
U(0) N Q. So that, we may always suppose that there is a function ¥: R*~1 — R satistying ¥ € C{° (R"1) and
x1 =¥ (x2,...,x,) forevery x = (x1,x2,...,x,) €eU(0)NIQ.

Let A ={x € R": x; > 0}. Then 9A = {x € R": x; =0} and we deduce: x = (x1,x2,...,x,) € K N¢(e)aQ for
small enough ¢ if and only if x € ¢(¢)(U(0) N dQ). Hence

x| = %W(g(s)xz, .. 5(e)x,) forevery x € K Ng(£)dQ.
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Since limg_ ¢~ (e)¥ (c(e)x, ..., c(g)x,) = 0 by the definition of the Hausdorff measure " !, we immediately
obtain the required result. O

Remark 3.4. As follows from Proposition 3.3 and its proof, the cone A can be recovered in an explicit form in the case
when the origin belongs to a smooth part of the boundary d Q. Moreover, in view of (3.6) we have lim,_,go (¢)/e" =

[0Q]|H.
In a similar way the following statement can be proved:

Proposition 3.5. Ler {p, € R}.~ be a sequence of numbers such that

oL =1A\ Q5@ |/|Al Ve>O0. (3.18)

Then the sequence {p}}e=0 is monotone and there exists a value p* € [1/2, 1) such that limg_.¢ p, = p*.

4. Convergence in the variable space X,

Let us recall the main types of convergence in variable spaces occurring in the homogenization theory (see [28]).
We cite them with respect to the family of the periodic Borel measure ,ug’h. Here the parameters . = A(e) and h = h(¢)
are defined by (3.4). Let {v}" € L?(£2, dul*")} be a bounded sequence, i.e. limsup,_, [, (v2")? duk" < +o0.

1. The weak convergence v" — vin L?(£2, du}'") means that v € L*(£2) and limg— [, v} @ dul" = [, vpdx
for any ¢ € C3°(£2);

2. The strong convergence vé’h — v in LZ(Q,dué'h) means that v € L2(£2) and lim,_¢ fQ vg"hziﬁ’h dué"h =
[ovzdx if Z2" — zin L2(2,dpul").

The following properties of the convergence in variable spaces hold:

(a) Compactness criterium: if a sequence is bounded in L>(£2, d ué*h), then this sequence is compact in the sense of
the weak convergence;
(b) Property of lower semicontinuity: if vé"h —vin L%(£2, d/,Lé’h), then

liminf/(vg"h)zdui"h 2/v2dx;
e—>0
2 2

Ah
£

(d) Since /,Lé’h — dx, it follows that lim,_,q fg <pd,ué"h = frz pdx Yo € C(£2) and limsup,_, ué’h(F) < |F| for
any compact set F C £2.

(c) Criterium of strong convergence: vy'" — v if and only if vé’h — v and lim,_, ¢ fQ(vi}’h)zdué*h = fg v2dx;
We begin with the following concept:

Definition 4.1. Let {v?*h € H& (2)NLAR,d Mé'h)} be a bounded sequence. We say that this sequence converges
weakly in H} (£2) N L}(2,dp>") tov e HY(R2) if

vt~y in H)(2) and v~ in L2(2,dul"). 4.1)
In order to check the correctness of this definition we make use of the following auxiliary statements:
Lemma 4.2. If v € H} (£2), then lim,_,¢ [, vpdul" = [, vpdx Vo € C°(£2).

Proof. If v € Co(£2), then the weak convergence ,u‘);’h — dx of the measures immediately implies this relation. Let
v be an arbitrary element of HOl (£2). Then for every § > 0 there exist a set A% c £2 and a function v® € Co(£2) such
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that cap(A°, £2) <8, and v® = v on 2 \ A°. In what follows, we suppose that the set 4% is closed. We now consider

the following estimate:
' / (w—v)pdul"

’/v(pdu /v(pdx
+‘/v5¢du§’h—/v5¢dx +‘/(v—v‘s)<pdx
Q Q Q

Owing to the weak convergence ug’h — dx, we have J; — 0 as ¢ — 0. By Lusin’s Theorem we may suppose that
there is a constant d; > 0 such that ||v — v‘3||Lz(_Q) < did. Hence J3 < dill¢ll 2(p)3. As for the value J;, we note

=Ji+ L+ J5.

that each of the measure /L’;’h is supported on a set with nonzero capacity. So, there is a constant d» > 0 such that
lv—v® ||L2(Q A < d; for any § > 0 small enough (see Remark 3.2). It implies the following estimate:

= ’/(v —)pdul”
2

As aresult, we have:
@) hmsupsﬁou h(A%) < | A% by property (d); (i) |A%| < dicap™ =2 (A%) by the properties of capacity

1/2
< dllpllc[pd" 4],

(see [15]); (iii) cap(A‘S) < & by the initial assumption. Hence, summing up all estimates that were obtained before,
we conclude | f_Q v dué"h - fg v dx| < dé for any § > 0 small enough (here the constant d does not depend on §).
This completes the proof. O

We now consider a more delicate situation.

Lemma 4.3. Let {vf;*h € H& £2)N Lz(.Q,d,ué‘*h)} and v € L*(2) be such that v?’h —vin Hé (£2) and hence
v — vin L2(2). Then

g%[/ v d —/v?’hdx] =0. (4.2)
2 2

Proof. As in the previous lemma, we introduce two functions v v h e C(§2) and ¥ € C(£2) such that v)“ h = vA h and
U = v quasi everywhere Let us partition the set £2 into cubes ¢Y W1th edges € and denote these cubes W1th sY/ Then
there are points x5 A e gyJ such that

/53”@5’122/ﬁgvh(x)duguz / ot () d "

2 eYJ 2NeYJ
~Ah o Ak Ah ~\h A
:sz (] )fdua +Z / Rty du,
&Y/ 2NeYi

where the second sum is calculated over the set of the “boundary” cubes. By the definition of the measure ué’h, we
have [, ,; dul" =" [, dut" = e". Hence

/6;\*hd,u =Y e+ / e ey dpd " (4.3)

2 2NeYi
It is clear that an analogous representation takes place for the second term in (4.2), namely,

/ﬁi"hdx=25£"h(xj)/dx+z / o2 (x) dx
2

eyJ 2NeYJ

= e+ Y / 58 () d, (44)

2NeYJ
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for some x; € eY/. Note that

‘Z / f)g’h(x) dui"h

< sup( sup Iﬁ?’h(x)l)e"-D(e),

. JED(e) “xef2NeYJ
2NeYJ
‘Z / D(x)dx| < sup ( sup |f)(x)‘>8”~D(8)
) J€D(e) “xeRneY’
2NeYJ

where D(¢) is the quantity of the “boundary” cubes, and ¢" D(e) — 0 by Jordan’s measurability property of the
set 3§2. Moreover, since vg"h, Ve H(; (£2), it follows that

sup ( sup |f)(x)|><+oo and  sup ( sup |ﬁ§’h(x)|><+oo
JjeD(e) *xeRneY/ JeD(e) xeQneY/

for & small enough.
Then, substituting (4.3) and (4.4) in (4.2), we come to the following relation:

: Ahog Ak Ah : ~hh Ay <Ak
615)%(/1)E du; —/vs dx)éggr%)Z(ve (x5 — v (xj))e"

2 2

+max[ sup ( sup ]ﬁé’h(x)

), sup( sup |l7(x)’)]limsup(8”-D(s))
JED(e) “xeneY/ e—0

jeD(e) “xef2neYJ
. . kg Ahy  =Ah
+ lim (J; + J2) = 81%(2(1)8 My — 5 (xj))s”), 4.5)
where J; = fQ (vé"h — f)é‘*h)d,ué"h, S = fg (vé*h — 52"h)dx and by the arguments of the previous lemma and Re-

mark 3.2, we may suppose that lim,_,o(J; + J2) =0.
We now use the fact that v} — v in L?(£2). One has

lim [@3»’* —v)?dx <2lim /(ﬁg»h — §)2dx + 2 lim Jo(e)
e—0 e—0 e—0
2 Q
_ : ~Ah o % ~ %\ 2 _
= 2811_% E (v‘S (x7) — v(xj)) e" =0, (4.6)

lim [ ("% dx —[vzdx = lim /(5§’h)2dx —/52dx + lim J(¢)
e—0 e—0 e—0
2 2

0 2
= lim Y008 )" ~ iy (50

= lim Y [(52" () — ;)" (4.7)

e—0

where, as usual, we suppose that the values Jy(e) = fg(f)é’h — vé’h +v— 17)2 dx and J(e) = fQ[(vé’h)2 —
(@2M?21dx + [,[v? — 9*]dx are arbitrarily small.
Hence, by (4.5), the construction of Riemann sum, and the fact that v € HOl (£2), we conclude

: ~Ah Ak ~\,h
812)1})‘/1)5 duy —/v,s dx
2 Q

Yo([E " = oG]+ [5G = 5] + [0 = 5" (ep])e”

< lim
e—0

. Ak . W N
<2121 lim " — iz +limsup S [5( — o

timsup((Y_ 5 ")e" - Zﬁ(x,-)g”)‘ = ’/ﬁdx —/ﬁdx
2 2

<

=0. a

e—0



1082 C. D’Apice et al. / Ann. I. H. Poincaré — AN 25 (2008) 1073—-1101

Taking into account the proof of the previous lemmas and relations (4.6)—(4.7), the following statement is readily
ascertained:

Lemma 4.4. Let {vé’h € H(} ()N L%(£2, dué'h)} andv € HO1 (£2) be such that vé'h —vin Hé (82). Then

lim [/(v“’)zdu —/(v?’h)zdx} =0; (4.8)
2
815% vzdug’h:/vzdx Yv e Hy (£2). (4.9)
2 2

Remark 4.5. Since the set £2 is bounded and [982 \ Z.|g ~ ¢! 7"h"~!(e) = ¢, it follows that | Zs|y — |382|n as
& — 0. Hence, by property (d), the statements of the Lemmas 4.2-4.4 remain valid if the space HO1 (£2) is changed to
HY (2, X,).

Theorem 4.6. Every bounded sequence {vg’h € H(} (£2)N L* (82, dué"h)} is relatively compact with respect to the
weak convergence in the variable space HO1 (£2) N L%(£2, dué“h).

Proof. Since the sequence { A h} is bounded in HO1 (£2), we may suppose that there is an element v € HO1 (£2) such
that v)‘ h — v weakly in H (£2). Then the compact embedding HOl (£2) — L?(£2) implies the strong convergence

)‘ h — vin L2($2). Hence, for every ¢ € C3°($2), we have
+ ‘/vé’hgodx—fv(pdx .
Q Q

’/ Ah(pd,u /vq)dx ’/ Ah(pdx /vé"hgodui"h

2
Passing to the limit in the right-hand part of this inequality as ¢ — 0, we obtain | [, v oV hod wh o vé’hw dx| —
0 (by Lemma 4.3), and | [, (v*" — v)p dx| — 0 as a weak limit in L*(£2). The proof1s complete. O

Using the above results, we introduce the concept of the weak convergence for the following sequences {y, €
H'(2:; Z0): ye € HY(2; o) N L2(2,dv")}e~0. Here . is some extension of the function y. on the whole of 2.
Let us recall that the perforated domain §2; considered here, satisfies the so-called “condition of strong connectedness”
(see [23]). It means that there exist a family {P.}.~o of extension operators P, : H l(.QS; X)) —> H l(.Q; X,) and
a constant C independent of &, such that [|V(Peye)ll12(2) < Cllyell gi(g,) for every y, € H'(£2,: %,). So, we can
assume that y, := P, y, for some extension operator with the above properties.

Definition 4.7. We say that a sequence {ye € H! (82 28)}8>0 is weakly convergent in H! (£2; X.)N Lz(s?, dvé’h) if
there exists an element y € H (£2) such that j; — y inH'(£2), and y. — y in L?(2, dv}").

We are now in a position to verify the correctness of this definition.

Theorem 4.8. Every bounded sequence {y. € H 1 (£2¢; Xe)}eso is relatively compact with respect to the weak conver-
gence in the variable space H'(2; ;) N L*($2, dvg"h).

Proof. Taking into account Remark 4.5 and the fact that

/§E¢XQadxﬂ>)/y¢dx and /ysqodv?’ /ygwdv“ Vo € C3°(£2),
2 2 2 2

this theorem can be established in complete analogy with the proof of Theorem 4.6. The main difference is the addition
of the property v € HO1 (£2). However, | X;|g — |082|y as € — 0, and we obtain the required result. O

In fact, we can prove a more precise result.
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Theorem 4.9. Let {yé"h e HY(2,; ) n Lz(.Q,dU)" h)}£>0 be a bounded sequence such that )vzg‘h — vy in
HY (2:;Z)N LZ(Q,dvg’h). Then y € HO1 (£2) and y? — y strongly in L*(£2, dvk hy.

A h)

Proof. By the criterium of strong convergence in LZ(£2, dv;>"), to establish the convergence yé*h — y in

L2(£2, dvs’\ h) it is enough to show that

y h —y in L? (82, dv’\ h) and hm/(y’\ h)zah)“1 fy dx. 4.10)
2

The first statement in (4.10) is valid by Definition 4.7. In order to prove the second one, we apply the following

estimate:
‘/(y’”’)zdx / 2dx|.

V(yg’h)zdvj»h fy dx| <
2

The second term in right-hand side of (4.11) tends to zero as ¢ — 0 by the strong convergence of j)g’h to y in L*(£2).
The first one is equal to zero as € — 0 by applying Lemma 4.4, and this concludes the proof. O

@.11)

Let {(ae, ps, ye) € Xe}e=0 be a sequence of admissible solutions for the original problem. We assume that this
sequence is bounded. Then, summing up the above given reasonings, we may introduce the following concept of the
weak convergence in the variable space X;.

Definition 4.10. We say that a bounded sequence {(ac, ps, ¥e) € X¢}e=0 IS w-convergent to a triplet (a, p,y) €
[H*(22) N Hy (£2)] x L?(2) x H}(£2) in the variable space X, as ¢ tends to zero (in symbols, (de, pe, Ye) X
(a, p,y)), if: () ac — a in H*>(2) and a; — a in L*(2,du’"); (ii) p. — p in L?(2,dv}"); (iii) e — y in
H'(£2) and y. — y in L?(£2, dv}").

In view of Theorems 4.6, 4.8 we come to the following conclusion:

Theorem 4.11. Every bounded sequence of admissible solutions {(ag, pe, ye)}e>0 to problems P, is relatively compact
with respect to the w-convergence in X,.

We observe also that for the characteristic function x of the perforated domain 2., the following result is obvi-
ous [12].

Lemma 4.12. x, converges strongly to 1 both in L*>($2) and in the variable space L*($2, xedx) as € — 0.

To conclude this section, we present some new results which will be useful in the sequel and which we feel to be
interesting per se.

Proposition 4.13 (Property of homothetic mean value). Let g : R" — R be a Y-periodic function such that g €
L*(0Q,dH""). Then

1im/ (x) (L) dv”l=< ! f dH”‘)/ dx (4.12)
0o ) P8 ey ) e ooln ] ¢ ¢ ‘
2 a0 2

for any ¢ € C(82). In particular, limy_¢ [, g(#(s))dv:}’h = |[2|(m f(,,Q gdH" .

Proof. It is evident that we can restrict our attention to the case when g > 0. Let us partition the set £2 into cubes €Y
with edges & and denote these cubes by the symbols Y/ . Then
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!wmg(”’() - X [ oox()ant X[ otoe( )

eYJ 2NeYJ

:Z(p(xj-"h)/g(g}jig))dvﬁ’h—i—z / (p(x)g(bﬂhxm)dvé"h, 4.13)

eYJ 2NeYJ

where x* f Mg eyi and the second sum is calculated over the set of the “boundary” cubes. By the definition of the

scaling measure v} h and due to the Y -periodicity of g, we have

X A,h_i X ne 1
/g(eh(e)>dvs o) / (h(s)) an (4.14)

eYJ AA(E).h(e)

where the set A% i5 defined by (3.1). Since A*" =3 Q" \ I'*", it follows that

gdH'™ ' = / gdH"™' — / gdH"™".

AMe).h(e) P Qh(e) [A(e),h(e)

Then, due to the definition of the homothetic contraction and using formula (3.4), we have

f (h( ))dH” V= pn- 1(8)/gdH” F=gn /gdH" ! (4.15)

RYo 4G a0
/ (h( )) dH" ' = 1" (e) / gdH" L. (4.16)
FA(&).Iz(s) h—l (8)FA(8).h(£)

From the definition of the set ') (see (3.1)), we obtain h~!(g) *E:hE) = gAE/ME N 5O = A(e)(K N
3 Q"&/2)) Hence, by Proposition 3.3, we have

lim [A(e)(K N3 Q"@/*®)| =K NdA|p lim A"~ (e) =0.
e—0 e—0

Thus, combining relations (4.14)—(4.16), we conclude

X )\.,h_ 8" n n—1
/g<£h(8)>dv8 o)’ </g‘m +J(8))’ 4.17)
. g

ey
J(&) <18l 120 0.ar-1y | KXO/ MO na 0|~ = 0. (4.18)
As aresult, substituting (4.17) and (4.18) into (4.13), we have

X )\’h_i n—1 Ahy n
‘fw(x)g(—gh@)dva 0(8)</gdH )Zw(xj )e
2 a0

)."h) "4 _"(/ gdH" '+ J(s)) sup |ple" D(¢), (4.19)
J ( ) 5o xesf

where D(¢) is the quantity of the “boundary” cubes.
Since limg_0 ) ¢(x;’h)8” = f_Q ¢ dx by construction of the Riemann sum, lim;_,¢ J(¢) = 0 by (4.18),

1/2 =0

n
lim
e—00(¢g)

=100

by (3.4), lim,_,g&" D(e) = 0 by Jordan’s measurability property of 952, it follows that estimate (4.19) immediately
leads to the required result. O

In a similar way we can prove the following result:
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Proposition 4.14. Let A be a cone which is defined in Proposition 3.3, and let g :R" — R be a Y -periodic function
such that g € H'(K). Then

Ah_ 1 / n—1 [
hm/fp(x)g< e )>dﬂg _(|K08A|H gdH ) pdx (4.20)
KNaA 2

for any ¢ € C(82). In particular,
X 1
li duth = 12| ——— dH"1).
sfbfg<ex<e>> Het =l '<|KﬂaA|H / §
Q KNaA

Remark 4.15. The results of Propositions 4.13-4.14 are examples of bounded sequences in variable spaces whose
weak limits can be recovered in an explicit form.

5. Definition of a homogenized problem, and its property
We begin this section with the following notion:

Definition 5.1. We say that the space L?(£2) possesses the weak approximation property with respect to the family of
the Borel measures {77A M e~0, if for every 8 > 0 and any p € L?(£2) there exist an element g € L>(£2) and a sequence
{g>" € L*(£2,dn}")}e=0, such that |p — qll;2(o) < 8 and g}" — g in L?(22,dn*"). In this case, the sequence
{q’\ he L?(£2, dné‘ h)}s>0 is called §-realizing sequence.

Lemma 5.2. The weak approximation property for the L*(§2) with respect to the family of the Borel measures
(WMo is valid.

Proof. Let p be any element of L2(£2). Since the inclusion HOl (£2) C L2(£2) is dense with respect to the strong
topology for L?(2), it follows that for a given value § > O there is an element g € HOl (§2) such that || p — gl 12(o) < 6.
Let us construct the §-realizing sequence as follows: g1+ = g for every & > 0. In accordance with Lemmas 4.2,4.4 and
Theorem 4.9, we have lim, ¢ [, qp dv}*" = [, gpdx Vg € C*(2) and lim, ¢ [, > dv}" = [, ¢° dx. Hence, by
the criterium of strong convergence in LZ(SZ, d v? h), we obtain the required result. O

In view of the main question of this paper, our next intention is to study the asymptotic behaviour of the problem
PP, as & — 0. To do so, we represent P, - -problem for various values of ¢, in the form of the following sequence:

{< inf ig(as,pg,y5)>;€>0}. (5.1)
(a¢.pe.ye) €8¢

Then the definition of an appropriate homogenized optimal control problem to the family (3.12), can be reduced to
the analysis of the limit properties of the sequence (5.1) as ¢ — 0. To get this limit in the form of some constrained
minimization problem, we apply the scheme of the direct homogenization which was developed in [19,20]. However,
in contrast to the usual concept of variational convergence (see for instance [2,3,19]), we introduce another one. The
main reason for this, is the specific construction of the solution space X, and the absence of the strong approximation
property for the “w-limit space” Y = [H?(£2) N H(} ()] x L?(£2) x H(} (£2) [25]. This means that perhaps not for
every triplet (a, p,y) € [H*(£2) N Hy (22)] x L?(£2) x H}(£2) one can find a sequence {(de, pe, Ye): (@, Pe. Je) €

Xe}e>0 such that (ag, pe, ye) = (a,p,y).

Definition 5.3. We say that a minimization problem
[ inf _ 1o p.y) (5.2)
(a,p,y)€Ep

is the weak variational limit of the sequence (5.1) with respect to the w-convergence in the variable space X, (or
variational w-limit), if the following conditions are satisfied:
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(1) if a sequence {(ax, pk, Yx) € Xe}es0 w-converges to a triplet (a, p, y), and there exists a subsequence {¢;} of {¢}
such that &y — 0 as k — oo and (ag, pk, yk) € &y, for all k, then

(a,p,y) € Bo; Iola, p,y) <liminf Iy, (ax, pr, yi); (5.3)
k—o00

<Ak
(2) for every triplet (a, p,y) € &y and any value § > 0, there exists a §-realizing sequence {(&Q’h, ﬁé"h, V. )€
Xe}es0 such that

@, prh sty e B, ves=0, (@-" prt st S @, p. 9, (5.4)
@, p,y) — (@, p, 9lly <8, and Io(a, p,y) =limsup I @", i, 51 — 6. (5.5)
e—0

Theorem 5.4. Assume that the constrained minimization problem (5.2) is the weak variational limit of the sequence
(5.1), and has a unique solution (a°, p°, y°) € Ey. Let {(ag, pg, y?) € E¢}e=0 be the sequence of optimal triplets for
P, -problems. Then

(Cls, pg»yg) —> (a P y ) (56)
inf  Iy(a, p,y) = Io(a p yO) = lim inf I (ag, pe, Ye)- 5.7
(a,p,y)EED =0 (ae, e, J’s)e‘-'s

Proof. First, observe that in view of Theorem 4.11, the w-compactness property holds true for the sequence of opti-
mal solutions {(as , ps, yg) € ug}€>() So, we may suppose that there exist a subsequence {(a £ pSk, yek)}kEN of the

sequence of optimal solutions and a triplet (a*, p*, y*) such that (a - pSk ysk) LN (a*, p*, y*) as g — 0. Hence,
property (5.3) leads to the following conclusion: (a*, p*, y*) € &y, and

liminf min I;,{ (a,p,y)= liminfl;k (agk, pgk, ygk)
k=00 (q,p, >)€u€k k— 00

> Io(a*, p*,y*) > min _ Io(a, p,y) = Io@®, p°, y"). (5.8)
(a,p,y)EEy

Let us fix a value § > 0. Then by property (ii) of Definition 5.3 there exists a §-realizing sequence {(dc, ps, Ys) €
‘-‘6}8>0 such that (ae, pe, Je) = @, p,y,

@ p°y% — @ p.$)|y <8, and Io@®, p°,y°) > limsup I (@, pe. 9e) — 8.
e—0
Using this fact, we have
min  Iy(a, p,y)+8= Io(d®, po, yo) + 8 = limsup I (e, Pe, Ye)
(a,p,y)EED e—0
> limsup min fg(a, p,y) =limsup min I;k(a, P, y)
=0 (a,p,y)e&e k—o00 (a,p,y)e.:’f'gk
= lim sup I;k (agk, pgk, ygk). (5.9
k—o00
From this and (5.8) we deduce that
liminf Iy, (a7, . p3,. ¥6,) > > limsup I @l p2. yo) — 6.
Since this inequality holds true for sufficiently small § > 0, after combining (5.8) and (5.9) we get
Io(a*, p*, y") = Io(a®, po, yo) :( min _ Ilg(a, p,y) = lim  min I;k (a, p,y).

a,p,y)€&y k—00 (a,p, V)E"‘Fk

Using these relations and the fact that an optimal triplet for the problem (5.2) is unique we obtain (a¢*, p*, y*) =
@, p yO) Since this equality holds for the w-limits of all subsequences of {(ag, Pgs ys)}8>0, it follows that these

limits coincide and therefore, (a°, p°, y°) is the w-limit of the whole sequence {(ag, pg, ys)}8>0 Then, using the
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same argument for the sequence of minimizers as for the subsequence {(agk , pgk , ygk)}keN, we have

liminf min I(apy)_hmmfl @, p2,v%) > 1@, p°, y%)
e=0 (a,p,y)eE,

= min _ Io(a, p,y) = limsup I (ac, pe, ye) — 8

(a,p,y)EEp e—0

> limsup min fg(a, p,y) — & =limsup ig(ag, pg, yg) -5 V56=>0
e—>0 (a,p,y)e&; e—=0

and this concludes the proof. O

Definition 5.5. We say that the optimal control problem (1.5) admits homogenization as ¢ tends to zero with respect
to the w-convergence in the variable space X, if for the corresponding sequence of the constrained minimization
problems (5.1), there exists a weak variational limit which can be recovered in the form of some optimal control
problem.

6. Convergence theorem and correctors

The main question of this section is the homogenization of the boundary value problem (1.5). Let H_..(Y) be the

Sobolev space of Y -periodic functions. We begin with the following result:

per

Lemma 6.1. There exists a sequence of functions {w*"},=,~0 satisfying

H1) whh e Hl_(¥), w*"=00n K*N3dQ" 0 <w*" < 1;

per
H2) whh=1inY\ A",
(H3) w)"h(xl,xz,...,xn)—w)‘h( —X1,X2,...,xp) Vx € A", Vh > 1 > 0;

(H4) whh 1 weakly in H,..(Y) and strongly in Lper(Y)

per
Proof. Let us define the following objects
{{v)‘ h} v"=0o0n K* N BQ )"h(xl,xz, ey Xp) = v)"h(—xl,xz, ey Xn)
Vx € A" Vh>n1>00"" = Tin H, (V) " =1in Y\ A"},

o =inf{ liminf /|Vv’\’h|2dx: ! EA}.
(h>1)—0

Ah

Note that the set A is not empty. Indeed, if we define the functions v*'" as follows

heH! (), AvP=0 A"\ A* =0 AN M =1 iny\A"

per

one has immediately {v*"} € A. For any k € N, we consider a sequence {v,f’h} € A such that

1
liminf / |Vv,)c"h|2dx <o+ -.
(h>2)—0 k

Let f),’} h— T(v,’}’h), where T'(s) = |s| if —1 <s < 1, and T'(s) = 1 otherwise. Then {ﬁ,’}’h} eA 0< 6,’(\’}’ <1, and

1
liminf /|Vﬁ,§’1| dx < hmmf /|Vv,§”’|2dx<a+—.
(h>2)—0 >A)— k
Y Y
By Rellich—Kondrashov’s compactness and Lebesgue’s dominated convergence theorems, we conclude that the em-

bedding leer(Y) NL*®(Y)— L9(Y) (1 < g < +00) is compact. As a result, the sequence {6,’(\’}'} converges strongly



1088 C. D’Apice et al. / Ann. I. H. Poincaré — AN 25 (2008) 1073—-1101

to 1in L2(Y) as (h > 1) — O for every fixed k. Then it is possible to define a subsequence (Ax, hx) of (A, h) which is
decreasing and tends to 0, such that

/|v9,§k”’k|2dx <a+2/k, 15" 1y < 1k
Y

Ak

Then the desired sequence {w*""}, ;- is defined by w*" = o} O

From now on, we suppose that each of the functions w*” satisfying conditions (H1)—(H4), is extended by Y-
periodicity onto R”. We set

we (x) = w OO (x/e)  Vx e R, Ve > 0.

From Lemma 6.1, we have

(P1) we € H'(2),0<we < 13

(P2) we =00n IP =Uyco, [K*® N9IQ"® + ek];

(P3) we =11in 2\ Upcp, (A" +£k);

P4) we(x1,x2,...,%,) =we(—x1,%2,...,%,) VX € AM® Vk e ©, and ¢ > 0;
(P5) we — 1 weakly in H'(£2) and strongly in L2(2) as e — 0.

Note that the sequence {IVw,|?} is bounded in L!(£2). So that, extracting if necessary, a subsequence, we can
suppose the existence of a bounded nonnegative Radon measure p* such that |Vw,|? converges to u* in the weak
sense of the space M (§2). Following in many aspects Casado-Diaz ([6], Theorem 2.1), the following quite similar
result can be proved:

Theorem 6.2. Let {w, € H'(£2)} be a sequence satisfying the properties (P1)—(P5). Then

(L1) |Vwe|* — p* weakly in Mp($2), where u* € My, i.e. [ o|Vw,|*dx — [, @du* for any ¢ € C5°(2);
(L2) forany v, € H'(£2; I"ED U Xy), and for any v € H(} (£2) such that v, — v in H'(2), we have

veL*(R,du"), /(p(Vvs -Vwg)dx — /(pv dp* Ve e CyP(R2). (6.1)
2 2

In fact, the measure u* € /\/l(J)r that appeared as the weak limit of |Vw,|? in the space Mj,(£2), can be recovered
in an explicit form. For this, we recall some properties of capacity (see Theorem 2 of Section 4.7.1 of [15]).

Lemma 6.3. Let D be an open subset of R" and B be a compact subset of D. Then

(i) if{D;}ien is an increasing sequence of open sets such that UieN D; = D, then lim;_, o, cap(B, D;) = cap(B, D);
(ii) if {D; C E};eN is a decreasing sequence of compact sets such that NjenD; = clD, then lim;_, o cap(D;, E) =
cap(D, E);
(iii) if D1 C Dy, then cap(D1, E) < cap(D», E);
(iv) ift > 0, then cap(t B, tD) = t"2cap(B, D).

We now give the recovery result of the measure p*.

Lemma 6.4. Assume that the origin belongs to a smooth part of the boundary 3 Q (3 Q(0) € C*®). Then for a sequence
{we € HY(2)} which satisfies properties (P1)—(P5), we have |Vw‘,;|2 — w* weakly in Mp(82), where

p*=cap(K N{x eR": x; =0}) ifn=>3, w =2 ifn=2. (6.2)
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Proof. The proof follows standard techniques in such situations (see [15]) and, in some aspects, it is similar to the one
given in [12]. First of all, we note that for any function ¢ € C§°(£2), & > 0, and every k € ©; we have the following
inequality:

P(x) / Ve |*dx < / |Vwe*¢ dx < p(y) / Vwe|? dx, (6.3)
eY+ek eY+ek eY+ek
where xli, yli ceY +¢k.
Let us begin with the case n > 3. From the definition of the capacity and Theorem 6.2, it readily follows that

fEYJrsk |Vw, |2 dx = cap(K*® N9 Q"&) AM®)) Then, taking into account property (iv) of Lemma 6.3 and relation
(3.4), we have

|Vw,|*dx = cap(A(e)[K N Q5] AM®)
eY+ek
= )Lnfl(e)cap([K N 8Q§(e)], AE(S)) — gncap([K ) an(s)L Ag(s))7 6.4)

where ¢(¢) = h(e)/A(e) =exp(—n lne/(n2 —3n+2)) forn > 3.

Now we interpret the sequence {cap([K N 9Q5®], AS®))},_o as a two parametric one: {Ase = cap([K N
00 @1, As (6))}5, ¢>0. Since this sequence is monotone with respect to the parameter ¢, it follows that lims 0 A5, =
limg_, ¢ Ase),s for every sequence {5(¢)} converging to zero. Then due to the following inequality:

|cap(IK N3 QSD1, AS®)) — cap(K N D)| < |cap((K N3 Q5®]) — cap(K N D)|
+ |cap(IK N9Q5®1, AS®) —cap(IK N3QSD])| =1/ (8) + J" (5, ¢) (6.5)
and using property (i) of Lemma 6.3, we have limg_,.¢ J” (8, ¢) = 0 for every § > 0.
To examine the limit properties of the sequence {J'(8)}s>0, we have to perform its analysis in a more precise

form. Namely, since a part of boundary d Q containing the origin is smooth, it follows that there is a neighbourhood
U(0) of the origin such that /(0) N3 Q is a graph of a smooth function whose epigraph contains ¢/(0) N Q. So, we

may suppose that there is a function ¥ :R"*~! — R> such that ¥ € CSO(R"_l) and x; = ¥ (x2,...,x,) for every
x=(x1,Xx2,...,x,) €eU0)NIQ.

Then the following conclusion is valid: x = (x1,x2,...,x,) € KN s_laQ for ¢ small enough if and only if x €
e~ (U(0)N3Q) and hence x| = ¥ (x, /€, ..., xn/€). As aresult, for any sufficiently small g, there exists a constant

C’ > 0 such that
KNe 'daQ C KNI, Ve <eo, withr = C'eoll¥ |l et ru))

where 1, = {x € R": 0 < x; < r}. Then by properties (ii)—(iii) of Lemma 6.3, we have the following implication:

. . -1
rll_r)r(l)cap(K NIT,)=cap(KND) and KNe 'dQCKN HEC/HW”C(R”*IHM(O)) Ve >0
implies that lim,_,g cap(K N g1 dQ) =cap(K N D). Hence
J'(8) = |cap([K N3Q™]) — cap(K N D)| < C'II¥ | ¢mn-1)nua(0)S (8) (6.6)

for § small enough.
Summing up relations (6.3) for every k € @, and taking into account (6.4)—(6.6), we come to

[cap(K N D) = C' @)W [l a1y — I 6)] Y e"px) < Y / |V ¢ dx
ke®, kE@'EeY+sk

<[eap(K N D)+ C's O ¥ llc@n1, + "G 0] Y o). ©6.7)
ke®,

Therefore, if we consider the construction of the Riemann sum for f ovdx, setting § = ¢, and passing to the limit in
(6.8) as ¢ — 0, we immediately obtain the required result lim,_, ¢ f_Q IVwe|?@dx = cap(K N D) f_q pdx.
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If n = 2, then we have a similar situation to the previous one. The only difference concerns the following obvious
equality

/ |Vw, |2dx = cap(exp(—1/e>)K N3 Q, A)
eY+ek
= cap(K Nexp(1/6%)dQ, exp(1/e*)A).

For the sequence {As5 . = cap(K N exp(1/82)8 0, eXp(l/Sz)A)}5>0,g>0, we can apply the above arguments. Therefore,
there is a constant C” > 0 such that for ¢ small enough

| As.e — cap(K N D, exp(1/e*)A)| < C"exp(—1/8%). (6.8)
However, as follows from [12] (see Lemma 3.3), we have

cap(K N D, exp(1/e*)A) =2me*(1 +c;), where lim ¢ =0. (6.9)

Then, summing up relations (6.4) for all k € &, and taking into account (6.8) and (6.9), we obtain

[27m(1 4+ ¢0) — C"e 2exp(=1/8%)] Y ep(xf) < > / |Vwe|?p dx
ke®, k€@55Y+sk

<[27(1 4 ¢) — C"e 2exp(—1/8%)] Z e2o(yp).  (6.10)
ke®,

Setting § = ¢ and passing to the limit as ¢ — 0, we get lim,_,¢ fQ |[Vwe2pdx =2m. O
Corollary 6.5. Under the assumptions of Lemma 6.4 concerning the local smoothness property of the boundary 0 Q,

item (L2) of Theorem 6.2 can be made more precise in the following way: for any v, € H'(£2; FED U X,), and for any
vE HO1 (£2) such that v, — v in H'(2), we have

/@(Vve -Vw,)dx — ,u*f(pvdx Vo € C;°(£2), 6.11)
2 2

where the multiplier 1* is defined by (6.2). Moreover, in this case we have (see Proposition 3.3) |[K N 0A|g =
|[KNDl|g.

The following result is crucial in this section:

Theorem 6.6. Let {v, € H' (2 T ED U X))} be a bounded sequence such that ve — v in the variable space
H($2,; FSD U X,) N L%($2, dvg"h). Let {p.}e=0 be the sequence of numbers that was defined in Proposition 3.5
and p* be its limit. Then for the sequence {ws € H'(£2)} with properties (P1)~(P5) we have

veL*(2,du"), f(p(va -Vw,)dx — p*/(pvd,u* Vo € C°(£2). (6.12)
2 2

Proof. Denote by v, € H 1 (£2; T, 8D U X;) some extensions of the functions v., and define the following sets:

Jo=1{k=(ki,... . ky) € Z": (Y + k) C 2},

ke®, keJ, ke®\Je

It is clear that for any bounded sequence {z, € H 1(£2)}, we have
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f‘P(VZs -Vw,)dx = / ©(Vze - Vw,)dx
2 Q2NA,

= f o(Vze - Vwg) dx + / o(V2e - Viwg)dx
(£2\2:)NAg 2:NAg

= / ©(Vze - Vwe)dx + / ©(Vze - Vwe)dx
(2\82:)NA, 2.NA,

+ / ¢©(Vze - Vwg)dx + / ©(Vze - Vwg) dx. (6.13)
(2\2:)NAY 2.NA7

Since each of the sets (£2 \ §2;) N A7 and £2, N A/ is located along the boundary 342, it follows that |(£2\ £2,) N A| —
0 and |£2, N AY| — 0 as ¢ — 0. Hence, in view of the boundedness of {z, € H'(£2)} and {w, € H'(£2)} we conclude

/ 0(Vze - Vwg)dx =90, / 0(Vze - Vwg)dx 290, (6.14)
(82\$2e)NAY 2:NAY
1ir%|:/ ©(Vze - Vwg)dx — / ©(Vze - Vwe)dx — / o(Vzg - ng)dx:| =0. (6.15)
E—>

12 (2\2:)NA; 2.NA,

For {v; € H'(£2;: FgD U X¢)} and ¢ € C3°($2), let us define a function ¥ € C§°($2) in the following way (always
possible by the property (P4) of w, and some freedom of choosing of the extension operators v, = P, (v,), [5,12])

oy / @(Vve - Vwe)dx = p, / Y (Vg - Vwg)dx, Ve > 0.

2:NA; (£2\82:)NA,
Here
o — |AME) \ Qhle) AN QhE)/1e)) o — [A*E) N Qhle)) _]An Qh@)/1e))
’ |A®)] Al ’ ‘ |AM®)| | Al

It is clear that p, + p =1 for every ¢ > 0. Then

f o(Vvg - Vw,)dx = ,o; [ / o(Vv, - Vwg)dx + / Y (Vg - ng)dx:|

2:NAL 2:NA (2\82:)NA,
=p, / @(Vig - Vwe) dx + / I/I(Vlv)g-sz)dx:|
2:NA. (£2\£2:)NA,

=p; / (Ve - Vwg)dx + / ©(VU, - Vwg) dx]

Q2:NA (£2\82:)NA,
+p;< / (¥ — @)(Ve - Vwadx). (6.16)
(2\82:)NA,

Since the sequences {¥;} and {w,} are equibounded in H'!(£2), p, tends to p* as ¢ — 0, and dy = max{|y (x) —
o(¥)]: |x — y| < ¥} tends to zero as ¥+ — 0, we easily obtain
(¥ —@)(Vie - Vwg) dx

o e—0
Pe <NVl 2(2) I Ve | 2@y 26y — O (6.17)

(£2\82:)NA,

As a result, taking properties (6.14)—(6.17) into account, we come to the following relation:
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lim | ¢(Vve - Vwe)dx = lin})|: / ©(Vve - Vw)dx + / (Vg - ng)dx:|
£—

e—0
2 2:NA] £2:NA]

= lim ¢o(Vve - Vw,) dx
e—0
2:NAL

£—0

= lim p] - lir%|: f (V. - Vw,)dx + / (Vg - sz)dxi|
E—>
2.NAL (2\2:)NA,
=p* lirr(l)/ (Vg - Vwg) dx. (6.18)
e—
2

In order to complete this proof it only remains to apply property (6.1) of Theorem 6.2 and the fact that v € Hol(.Q)
due to Theorem 4.8. O

Remark 6.7. As follows from Proposition 3.5, the condition p* € [1/2, 1) is always valid. In particular, using the
suppositions of Lemma 6.4 concerning the smoothness of the boundary 9 Q in a neighbourhood of the origin, we have

oL =1A\ Q" @) /A =9 p* =1/2. So, the main result of Theorem 6.6 can be viewed as follows:

/(p(va -Vwg)dx — (I/Z)M*/(pvdx Vo € C°(£2),
2 Q

where ©* is defined by (6.2).

We are now in a position to prove the main result of this section concerning the passage to the limit as ¢ — 0 in the
following integral identity:

/Xs(vj’s'V‘P)dx+/ij’s§0dx+k08_n0(8)/)u’8§0dvé’h
2 2 2

=/ng€¢dx +8_"0(8)/p8¢dv£"h, Voe H (2; TP U x,). (6.19)
2 2

Here {(a., pe, Ve) € Xe}eso is an equibounded sequence of admissible triplets, and o (¢) is defined by (3.9).
By Theorem 4.8, this sequence is relatively compact with respect to the weak convergence in the variable
space X,. So, we may suppose that there exists a triplet (a, p, y) € [H*(£2) N H}(£2)] x L*(2) x H} (£2) such

w
that (ag, pe, ye) — (a, p, y).

Theorem 6.8. Let p* be a limit of the sequence (3.18) as ¢ — 0, and let
las € Hy (2) N H*(2) N L*(2,dpul™)) and {p. € L*(£2,dv}")) (6.20)
be any bounded sequences of admissible controls for ]f”s -problems such that
ac —a in HX(2)NH (2)N L (2, dut"); (6.21)
pe—p in L}(2,dv"). (6.22)

Let {y. = ye(ae, pe) € HY (2,X)Nn LZ(Q,dvg"h)}g>o be the corresponding solutions to problem (1.5). Then

(ag, pe, Ye) X (a,p,y)ase — 0,y —ae L>(2,du*), and y is the unique function in HO1 (82) satisfying the fol-
lowing integral identity:

/(Vy Veydx + (1 +k0|3Q|H)/y(pdx +p*f<y —a)pdu*
2 2 2
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=ff<pdx+|aQ|H/p<pdx, Vo € H} (2) N L2(2,du*). (6.23)
2 2

Proof. Let {w, € H! (£2)}¢>0 be a sequence defined by Theorem 6.2. Let ¢ € Cgo(.Q) be a fixed function. It is clear
that wep € H'(£2; FsD U X,) for every ¢ > 0. Take w,¢ as test functions in (6.19). Then the following integral identity
holds true for every ¢ > 0

/Xs(v()v’s — Q) - V(ws§0)) dx + / Xa(vaa : V(wg(p)) dx + / XeVewe@ dx +koe "o (¢) / iawd”d‘}?'h
2 2 2 2
= f Xe fewe@dx + &0 (&) / pewepdv™", Vo e H' (2, TP U X,). (6.24)
2 2

Observe that in view of the boundedness of { f, € L%(£2)}, by using estimate (3.15) and Theorem 4.11, we may

suppose that there is a function y € HO1 (£2) such that (ag, pe, ye) X (a, p,y) as e > 0. We now pass to the limit in
(6.24) as ¢ — 0. We do it for each term of (6.24) separately. Observe first that

/Xs(v()v’a —ag) - V(wa‘l))) dx = / Xsws(v()v’s —ag) - Vw) dx + / Xs(p(v(}v’s —ag) - sz) dx.
2 2 2

Take into account the following facts: x,w, — 1 strongly in L?(£2) (see Lemma 4.12), y; —a; — v=y —a in
H}(R2), v =Ys —a, € H'($2,; [P U X,) for every & > 0. Then, by Theorem 6.6 we have

o —0
/Xewg (V(y5 —ag) - V(p) dx == f(V(y —a)- V(p) dx, (6.25)
2 2
fxsw(v(ie —ag) - Vwg)dx =2 p*/w(y —a)dp*, y-—aeLl*(R2,du"). (6.26)
2 2

By (3.14) it follows that {a,} is bounded in H*(£2) N Hy} (£2), so
as — a weakly in HZ(SZ) and hence Va, — Va strongly in [LZ(.Q)]".

Then, due to (6.21)—(6.22) and since Vw, — 0 in [L%(£2)]", we obtain

/XE(VIJS . V(wggo)) dx E—_)QO, /ng)gwgwdx e29 /ygodx, (6.27)
2 2 2

kos_”G(S)ﬂkolanH by (3.4), /Xefswewdxs—_)g/f(ﬂdx, (6.28)

2 2

f Vewe dvEHE e / yodx as weak limit in (82, dv}"), (6.29)
2 2

87”0(8)/p5w8<pdv2‘(8)’h(8) e>0 |8Q|H/pg0dx. (6.30)

2 Q

Thus the required relation (6.23) is established for any function ¢ € C3°($§2). Moreover, from the fact that y, —a. €
HY(, FSD U X,.) and a, — a in HO1 (£2), we conclude that (3, — a,) — (y —a) in H'(£2), and hence y € HO1 (£2).

To conclude, we note that the integral identity (6.23) can always be interpreted as the variational formulation of the
problem

—Ay + (1 +koldQIm)y + p*(y —a)u* = f + plaQlu, 63
yeHN(2), y—ael?(2,du"), .
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with respect to which the following result is well known: for every a € H*(2) N H} (2) N L*(2,du*), p € L*(£2),
and f € L?(£2) there exists a unique solution of (6.31) (see [14]). This completes the proof. O

The following statement is a direct consequence of well known results of the theory of boundary value prob-
lems [21].

Corollary 6.9. Let (a1, p1,y1). (a2, p2, ¥2) € [H*(£2) N H} (£2)] x L2(2) x HJ (2) be any triplets satisfying the
relation (6.31). Then there exists a constant C>0 (é = é’(.Q, 1001, p*)) such that

Iy — y2||H(}(Q)mL2(QVdM*) < CA‘[”al - a2”[—[2(9)ﬁ[-101((2) +llp1 — P2||L2(.Q) +lla; — 112||L2(Q,du*)]~ (6.32)
7. Identification of the homogenized optimal control problem

In this section we show that for the sequence (5.1), there exists a weak variational limit with respect to the w-
convergence, and it can be recovered in an explicit form. We begin with the following result:

Lemma 7.1. Let {(ac, pe, ye) € Xe}e=0 be a bounded sequence of admissible solutions, assumed to be w-convergent
to a triplet (a, p, y) € [H*(£2) N Hy (2)] x L*(2) x H}(£2). Then

hng)f|Vyg|2dx=/|Vy|2dx+p*f(y—a)2du*, (7.1)
£—
2: 2 2

where the measure * and value p* are defined in Theorems 6.2 and 6.6, respectively.

Proof. We first observe that
f |V yel?dx = / Xel Ve — Vae|* dx +2/ Xe (Ve - Vag)dx — / XelVae|* dx. (7.2)
2 2 Q Q

Then, taking into account the facts that Va, — Va in [L2(£2)]", y. — y in H'(£2), and x, — 1 in L?>(£2), we have
/XS(V)”)E -Vag)dx g__>()) / Vy-Vadx, /X8|Va5|2dx 8—_>(>) / |Va|2dx. (7.3)
2 Q 2 Q

Since (¥, —a,) € H'(£2, FSD U X,) for every ¢ > 0, it follows that we can take y. — a. as a test function ¢ in (6.19).

Then the following equality is ensured:

/X£|v57£ - Va8|2dx = / XxeVag - (V}\;a —Vag)dx — / XE)V’a()u’s —ag)dx

2 2 2
—kos_"G(S)f)v’s(is _aa)dvéyh'F/Xsfa()v’s —ag)dx
2 2
+e o) / Pe(Ge — ag) dvih. (7.4)
2

By properties (6.25)-(6.30), we obtain

lir%/X8|V5)8—Va5|2dx=—fVa-(Vy—Va)dx—/y(y—a)dx
E—>
2 2 2

~HoldQln fim [ 5.5 —advi? + [ o = @dx-+1001n tim [ peG - a) a2
2 2 2
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Since (Je — a;) € H' (2, I'° U X,) N L*(2,dv}"), we have: J, — a. — y — a strongly in L?(£2, dv}>") (by
Theorem 4.9), ¥, — y in L>(£2,d vé’h) (by Theorem 4.8). Hence, in view of the definition of the strong convergence

in variable spaces, we conclude
s”i’%f Fe(Fe — ar) dv}" = f y(y —a)dx, g%/ pe(Fe —ag)dv} " = / p(y—a)dx.
Q Q 2 Q

As aresult, we get

lir%/X8|V)78—Va5|2dx:—fVa-(Vy—Va)dx—/y(y—a)dx
e—
Q Q Q

—ko|aQ|H/y<y—a)dx+/f(y—a>dx+ |aQ|H/p<y—a>dx.
22 2 22

Let us consider the integral identity (6.23) with the test function ¢ = y — a. By a rearrangement, we have

vy =vatas+ o [yo-araw o [av-aan
2 Q Q
= —/Va ~(Vy—=Va)dx — (1 +koI3Q|H)/y(y —a)dx
2 Q
+/f(y —a)dx + |3Q|H/p(y —a)dx.
2 2
The comparison of (7.5) with (7.6) leads to the following equality:
im [ 761V5. = VaiPdr = [ 19y = VaP dr 57 [ - ardu
&—>
Q Q 2
which, together with (7.2)—(7.3), concludes the proof. O

(7.5)

(7.6)

We are now in position to establish the identification result of the weak variational limit for the sequence of

constrained minimization problems (5.1).

Theorem 7.2. For the sequence (5.1) there exists a unique weak variational limit with respect to the w-convergence
which can be represented in the form (5.2), where the cost functional Iy and the set of admissible solutions Eq are

defined as follows:

Io(a. p.y) = / VyPdx + / y — 2 dx +p*/<y o) dp?
2 2 2

+|8Q|H/p2dx+|KﬂaA|H/a2dx,
2 2

yEH (2), pel*(R),
a€ H*(2)NH) (), y—aeL*R,du"),
@ p.y) lallg22) < Co,

T [o(Vy - Ve)dx + p* [o(y —a)pdp*

+(1+koldQln) [qypdx = [ fodx +100|u [ pedx,
Vo € H} (2) N L*(2,dp*)

|6}
(=}
I

Here A is a cone in R" (see Proposition 3.3).

(7.7)

(7.8)
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Proof. The proof of this theorem is divided into two steps each of them concerns the verification of the corresponding
item of Definition 5.3.
STEP 1: Statement (1) of Definition 5.3 is valid.

Let {(ak, pk, k) € X¢}e=0 be a bounded sequence which is w-convergent to a triplet (u, p,y) € [HZ(.Q) N
H (£2)] x L2(£2) x H (£2). Let {g} be a subsequence of {¢} such that & — 0 as k — oo and (ax, pk, yx) € &5, for
all k € N. Then, due to Theorem 6.8, we have that the w-limit triplet (u, p, y) satisfies integral identity (6.23), and
moreover

Co > liminf |lax || 20y = lall g2
k— 00

by the lower semicontinuity of || - || 72,y With respect to the weak convergence in H 2(£2). So, inclusion (5.3) holds
true.

We now turn back to the test inequality (5.3). By the property of the lower semicontinuity of the weak convergence
in variable spaces, Proposition 3.3, and relation (3.4), we have

lim [gk G(Sk)/pgkdvuak)h(sk) n |K03Qg<ak)|Hfa€k duk(ewh(sw]
2

>|aQ|H/p2dx+|KmaA|H[a2dx.
2 2

To conclude it remains only to apply Lemma 7.1.
STEP 2: Statement (2) of Definition 5.3 holds true.

Let (a, p, y) € Ep be an admissible triplet for the minimization problem (5.2). As readily follows from (7.7), for
any triplet (a, p, y) € &) there exists a constant y > 0 depending on £2, za, p*, p,y,and [0Q|x, such that

Let 1 > § > 0 be a given value. Using the density of the embedding H'(§2) — L?(£2), we can choose an element
p € H'(£2) such that ||p — Pll2(e) < 0, where

o <max[8/\/y(1+C),8/C). (7.10)

Let y = y(a, p) be the corresponding solution of the boundary value problem (6.31). Then due to estimates (6.32) and
(7.9), we have

|[To(a, p,y) = Io(a, p, H| <y A+ O)llp = plija g, <9, (7.11)
ly — y”HOl(_Q)mLZ(_QVdM*) = C||P - ﬁ”LZ(Q) <é.
We now construct the §-realizing sequence {(a>", p2", $") € X, }¢~¢ as follows: a*" = a, prh = ﬁ, and we

take 93» as the corresponding solution of the original boundary value problem (1.5). Hence (a7 o pr o Yoo sy e B,

for every € > 0. It is clear that this sequence in equibounded in X,. Moreover, by Lemma 4.2 and Theorems 4.8—4.9,
we have

ah ~a inL*(2,dpt") and f(a“’ ) du “’ /a dx; (7.12)
ﬁ;\*h —p in Lz(Q,dvé"h) and /(ﬁ;\’h)zdv:}’h i [ﬁzdx. (7.13)
2 2

Then, applying Theorem 4.11, we conclude that the sequence {(& , pg , yg »M)} is compact with respect to the w-
convergence. Let (a, p, 3*) be its w-limit. Due to Theorem 6.8 we have (a, p, y*) € &p. Since the boundary Value
problem (6.31) has a unique solution for every fixed a and p, it follows that 3* = y, and hence (a , pé‘ o+ )7? h) —
(a,p,y)ase— 0.



C. D’Apice et al. / Ann. 1. H. Poincaré — AN 25 (2008) 1073-1101 1097

Consequently, properties (5.4) are fulfilled. It remains only to verify inequality (5.5). To do so, we use properties
(7.12)~(7.13) and Lemma 7.1. Then lim, .o I (aX", p2", $2") = Io(a, p, $). To conclude we apply inequality (7.11).
This yields the required result

/’l’ ’\)\,,/’l ’\).,h) _5

Ip(a, p,y) > lim I;(&i" pat,ye
e—>0

end this ends the proof. O

It is now clear that the constrained minimization problem (5.2) can be interpreted as an optimal control problem.
So, in accordance with Definition 5.5, we can give the following deduction: for the optimal control problem (1.5)—
(1.9) (so-called P.-problem) there exists a unique homogenized one with respect to w-convergence as ¢ — 0 and it
can be represented in the form (1.10)—(1.13).

Proposition 7.3. The limit optimal control problem (1.10)—(1.13) has a unique solution.

Proof. The proof is quite similar to that given in Theorem 2.1. The main difference is the choice of the topology for
the space of admissible solutions [H2(£2)N H(; ()] x L2(2) x H(} (£2) with respect to which the set &y and the cost
functional I possess the required topological properties, one of which has to guarantee the inclusion (1.12). It is clear
that this topology can be taken as t = (sz(Q)mHOl (_Q)) X (sz(m) X (wHO1 (Q)), where w(.) denotes the weak topology
of the corresponding Banach space. Indeed, due to the fact that u* ./\/l(')F (£2), the space HO1 (2)NL2(£2, dp*) is well
defined (see Remark 3.1). Hence, if y, — y in HO1 (£2) and a, — a in H2(£2) N HO1 (£2), then (y, —a,) = (y —a) in
L2(82, du*). Moreover, it can be easily checked (by passing to the limit in (1.10), (1.12)) that the set & is T-closed

and the cost functional Iy is T-lower semicontinuous. In another aspects we do not modify the proof of Theorem 2.1
is then valid with any more modifications. O

Thus, combining the results of Theorems 2.1, 5.4, and Proposition 7.3, we come to the following conclusion
concerning the variational properties of the homogenized optimal control problem (1.10)—(1.13):

Theorem 7.4. Let {(ag, pg, yg) € B, }o0 be the optimal solutions of the problems I@’g. Then

lim 7o (a. p2.y9) = inf _ Io(a. p.y) = Io@”, p°.y°), (7.14)
e—0 (a,p,y)e&y

and
(ag, pg, y?) LN (ao, po, yo) in the variable space X;. (7.15)

8. Optimality conditions for the homogenized problem and suboptimal controls for P, -problem

In this section we derive the optimality conditions for the problem (1.10)—(1.13) from which an optimal triplet may
be determined. For this, we use the Lagrange multiplier principle. We obtain the weak form of the optimality system
equations that an optimal triplet (a°, p°, y°) and Lagrange multipliers must satisfy. This optimality system can serve
as a basis for the construction of suboptimal solutions to the original problem in perforated domains.

We recall some central tenet of the Lagrange multiplier principle. Let Y, U, and V be the Banach spaces. Let
1:Y x U— R be a cost functional, and let F(y,u):Y x U — V be a mapping. Let Uj be a closed subset of U with
a nonempty interior. We have the following minimization problem:

I(y,u) — inf, F(y,u)=0, ueU,. (8.1)
The Lagrange functional for the problem (8.1) is defined by
Ly u, 2y ) =M (y,u) +(F(y,u), ), whereAeRy, ¢y eV, (8.2)

Theorem 8.1. (loffe and Tikhomirov [17].) Let (°,u%) € Y x U be a solution of (8.1). Assume that the mappings
y — I(y,u) and y — F(y,u) are continuously differentiable at y € O(y°) and ImF§ (%, u%) = V. Assume that the
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mapping u — 1(y,u) is convex, I is differentiable at (y°, u®), and that the mapping u — F(y, u) is continuous and
affine. Then ) can be taken as 1 and there exists a r € V' such that

(£,0%u’, 1,9).h)=0 VheV and (£,0°u’. 1,9).u—u’)>0 VueU,. (8.3)
We now apply the Lagrange principle to the optimal control problem (1.10)—(1.13).

Theorem 8.2. A triplet
@, p°,y") e [HX(2)NHy ()] x L2(2) x [H*(2)n H} ()], y* —a® e L?(2,du™)

is an optimal solution to the problem (1.10)—(1.13) if and only if there exists a function ¥ € H>(§2) N H(} )N
L2(2, du*) such that the quaternary (a®, p°, y°, ¥) satisfies the following optimality system:

Jo(Vy?-Ve)ydx + p* [o (" —a®edu* + 1+ kold Qln) [ y'pdx 8.4)
= [ fodx+130|u [, PPpdx, Vo€ H}(2)NL*(2,du*). '
Jo (VY +2Vy0) - Vo dx + [o[20° —2%) + (1 + kold Q)Y |p dx ®5)
+0* [ +20° —a")pdu* =0 Vo € Hy(2) N LA (82, dp"), '

P’=v/2 aeinf, (8.6)

20K N3 Ay [ga’(a—a®)ydx —p* [o¥(a—a®)du* —2p* [o(3° —a®)(a —a®)du* >0, &7
Va € {a € H*(2) N Hy(2): |lall 2y < Co}- '

Proof. Let (a°, p°, y°) be an optimal solution to problem (1.10)—(1.13). To apply the Lagrange principle, we set
Y = H*(2) N Hy(£2), U=[H*(2) N Hj(2)] x L*(2), V=L*(2), and F(a, p,y) =—Ay + (1 + kol Q|m)y +
p*(y—a)yu*— f—10Q|gp-Since f € LZ(Q), it follows that the boundary value problem (6.31) has a unique solution
y € HX(2) N H} (2) for any a € H*(2) N H} (2) and p € L*(£2), and moreover, in this case y — a € L*(£2, dp*)
(see [21,14]). Hence ImF. y/ = V. Thus all the assumptions of Theorem 8.1 are fulfilled. We now define the Lagrange
function as follows

E(a,p,y,w)=fIVylzdx+/|y—z3|2dx+p*/(y—a)2du*
2 2 2

+|8Q|H/p2dx~|—|K08A|Hfa2dx+/(Vy-V1ﬂ)dx—/fwdx
2 2 2

2

+p*f(y—a>wdu*+(1+ko|aQ|H)fywdx—|aQ|prwdx
2 2 2
VY € HY(2) N L*(2,dp*).

In accordance with Theorem 8.1, there exists a function ¢ € HO1 (£2) N L?(£2, dp*) such that relations (8.2)—(8.3)
are valid. In this case relation (8.3) takes the form (8.6)—(8.7), whereas (8.2) can be written as (8.5). Since yo €
H*(2) N Hy(£2) and 7% € L?(£2), it follows that the bilinear form (V/, V) 2y + (1 + kol Q) (¥, @) 22y +
(Y, ®)12(2,aux) 18 coercive on the space HOl (£2) N L2(£2, du*). So, by the Riesz representation theorem we im-
mediately conclude that there exists a unique function ¥ € HO1 (£22) N L*(£2) satisfying equality (8.5) and such that
W € H?(£2). Thus, the first part of Theorem 8.1 is proved, i.e. (8.4)—(8.7) are the necessary optimality conditions.
Since the mapping y — Ip(a, p, y) is convex and the mapping (a, p) — F(a, p,y) is continuous and affine, rela-
tions (8.4)—(8.7) are also sufficient optimality conditions for the problem (1.10)—(1.13). As this problem is uniquely
solvable, the proof is complete. O

As an evident consequence of this theorem we have the following result.
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Corollary 8.3. If (a°, p°, y°) is an optimal solution to (1.10)—(1.13) then
P’ e HX(2)NH) (2) N L*(2,du™). (8.8)

Now using (8.8) and applying Lemmas 4.2 and 4.4, we immediately establish the following approximation property
for the optimal controls:

Proposition 8.4. If p° € H*(£2) N HO1 (82)NL2(82,dp*) and a° € H2(£2) N HO1 (82) are the optimal controls to the
homogenized problem (1.10)—(1.13), then

@, p% e L2(2,du") x L2(2,dv") Ve>o0, (8.9)
a®—~a® inL*(2,dul"), 11%/(510)2(1,,@* =/(a0)2dx, (8.10)
E—>
2 2
PP = p¥ in L3(2,dv"), lirr})/(po)zdvg"hzf(po)zdx. (8.11)
E—>
2 2

The next question we are going to consider in this section concerns the approximation of the optimal solutions of

the original problem PP, for ¢ small enough. We focus our attention on the possibility to define the so-called suboptimal

solutions which have to guarantee the closeness of the corresponding value of the cost functional I, (a$*®, p3t®, ysub)

to its minimum if ¢ is small enough. To do so, we introduce the following concept:

Definition 8.5. We say that a sequence of pairs {(Zzg, ﬁg)}s>0 is asymptotically suboptimal for the problem P, if for
every § > 0, there is 9 > 0 such that

inf  Io(ag, pe, ve) — 1:(@°, p2, 3¢)| <8 Ve < g0, (8.12)

(as»])s»y.e')egj‘s

where y, = y, (&2, ﬁg) denote the corresponding solutions of the boundary value problem (1.5).
Proposition 8.4 leads to the following final result:

Theorem 8.6. Let po € H2(.Q) N H& (2)N L3($2, du*) and al e H2(.Q) N HO1 (£2) be the optimal controls for the
homogenized problem (1.10)~(1.13). Then the sequence of the pairs {@®, p°)}e=0 is asymptotically suboptimal for
the original optimal control problem P,.

Proof. Let us consider the sequence of triplets {(a’, p°, §8) € X¢}e=0. where 3 = 7. (a?, p°) are the corresponding
solutions of the boundary value problem (1.5). Each of these triplets is admissible for the problem 1@5. Moreover,
due to estimate (3.15), this sequence is equibounded in X,. By Theorem 4.11 it is relatively compact with respect to
the w-convergence in X,. Hence, taking into account Proposition 8.4 and Theorem 6.8, we deduce: this sequence is
w-compact and (ao, po, Ve) s_—)()) (ao, pO, yO), where (ao, po, yo) is an optimal solution to the homogenized problem
(1.10)—(1.13). A

Let {(ag, pg, yg) € é'g}g>o be the optimal solutions to the P,. We observe that

0

inf R ia(aa Ds, Ye) — is(ao, PO’ Ve)| = |ia(aga Pg, yg) - is(aoa pO’ §£)|

(ae,pe,Ye)€EE,

<@, p2, y9) — 1o(@®, p°, yO| + | 10@a®, p°, y%) — I:@®, p°, 30|

< }fe(ag,pg,y,?)—lo(ao,po,yo)}+'/IVyolzderp*/(yO—ao)zdu*—/X5|V§g|2dx
2 2 2

+'/|y°—za|2dx—fxs|§g—z3|2dx +‘|aQ|H/<p°>2dx—s‘"o(s)/(p“)zdvé*h
22 2 2 2
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=Nl +h+ 3+ 4+ s

+ '|K NoA|g /(ao)zdx — KN 8Q§(5)|H/(a0)2du§’h
2 2

To conclude the proof, we note that for a given § > 0 one can always find: (1) &1 > 0 such that J; < §/5 for all
¢ < €1 by Theorem 7.4; (2) &3 > 0 such that J, < §/5 for all ¢ < ¢ by Lemma 7.1; (3) €3 > 0 such that J3 < §/5 for
all ¢ < &3 by the w-convergence (@, po, Ve) to (a®, po, yo); (4) 4 > 0O such that J4 < §/5 for all &€ < g4 by (3.9) and
(8.11); (5) &5 > O such that J5 < §/5 for all ¢ < ¢5 by (8.10) and (3.17). Thus, as expected, estimate (8.12) is valid for
all ¢ < min{ey, &7, €3, &4, &5}.

It should be stressed that a sequence of asymptotically suboptimal controls for the problem ]f”s has a particularly

simple and attractive form if the optimal control pair (a?, pg) for the problem I@’s is such that ag (x) = a*(s)j‘w),
pg(x) = p*(#(s)), where a* € H'(K) and p* € L*(3dQ, dH"") are some Y -periodic functions. Indeed, in this case

by Proposition 4.13 and Theorem 7.4, we have

1 1
0 * n—1 0 0 * n—1 0
-~ dH =a, — dH =
e <|K08A|H / a ) a Pe <|8Q|pr ) P

KNiA 30

in LZ(Q, d Mé’h) and LZ(Q, dvg)\’h), respectively, where (ao, po) are optimal controls for the homogenized problem
(1.10)—(1.13). Hence, the conclusion of Theorem 8.6 can be reformulated as follows: the constant sequence of pairs
{@®, p®) € R*}¢~0, where

1 1
0 * n—1 0 * n—1
= — dH and ' = — / a*dH ),
b <|aQ|H/” ) (|KﬂaA|H

00 KNoA

is a sequence of asymptotically suboptimal controls for the original problem P,.
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