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Abstract

In this paper we study the asymptotic behaviour, as ε tends to zero, of a class of boundary optimal control problems Pε , set in
ε-periodically perforated domain. The holes have a critical size with respect to ε-sized mesh of periodicity. The support of controls
is contained in the set of boundaries of the holes. This set is divided into two parts, on one part the controls are of Dirichlet type;
on the other one the controls are of Neumann type. We show that the optimal controls of the homogenized problem can be used as
suboptimal ones for the problems Pε .
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1. Introduction

Let Ω ⊂ R
n, n � 2, be a bounded open domain, and let ε be a small positive parameter. To define a perforated

domain Ωε , we introduce the following sets: Y = [−1/2,+1/2)n; Q and K are compact subsets of Y such that
0 ∈ intK ∩ ∂Q,

Θε = {
k = (k1, k2, . . . , kn) ∈ Z

n: (εY + εk)∩Ω �= ∅}; (1.1)

Yε =
⋃

k∈Θε

{
ε(Y + k)

}; Tε =
⋃

k∈Θε

{εn/(n−1)Q+ εk}; (1.2)

Sε =
{
εn/(n−2)K ∩ ∂(εn/(n−1)Q), n� 3,
exp(−1/ε2)K ∩ ∂(εn/(n−1)Q), n= 2,

(1.3)
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Γ D
ε =

[ ⋃
k∈Θε

{Sε + εk}
]

∩Ω, Γ N
ε = [∂Tε \ Γ D

ε ] ∩Ω. (1.4)

Then we set Ωε = Ω \ Tε . The principal feature of the perforated domain Ωε is the fact that the size of the holes
Qε + εk and their boundaries Γ D

ε , Γ N
ε are not proportional to the size of the periodicity cell εY . In Ωε we consider

the following boundary value problem:

−�yε + yε = fε, in Ωε,

∂νyε = −k0yε + pε, on Γ N
ε ,

yε = uε, on Γ D
ε ,

yε = 0, on Σε = ∂Ω ∩ ∂Ωε,

⎫⎪⎪⎬
⎪⎪⎭ (1.5)

where fε ∈ L2(Ω) is a given function, k0 is a positive constant, ∂ν = ∂/∂ν is the outward normal derivative.
In (1.5) uε and pε are the control functions which act on the system through the set of boundaries of the holes. We

say that the control functions uε and pε are admissible if the following conditions hold:

pε ∈ L2(Γ N
ε ), uε ∈Uε = {

a|Γ D
ε

: a ∈H 1
0 (Ω)∩H 2(Ω),‖a‖H 2(Ω) � C0

}
. (1.6)

Then the optimal control problem Pε can be formulated as follows: Given zε ∈ L2(Ω), C0 > 0, find a triple
(u0

ε,p
0
ε , y

0
ε ) ∈Ξε such that

Iε(u
0
ε,p

0
ε , y

0
ε )= inf

(uε,pε,yε)∈Ξε

Iε(uε,pε, yε), (1.7)

where the cost functional Iε and the set of admissible triplets Ξε are defined as

Iε =
∫
Ωε

|∇yε|2 dx +
∫
Ωε

|yε − zε|2dx +
∫
Γ N
ε

p2
εdHn−1 + β(ε)

∫
Γ D
ε

u2
εdHn−1, (1.8)

Ξε = {
(uε,pε, yε) ∈H 1(Γ D

ε )×L2(Γ N
ε )×H 1(Ωε;Σε): (uε,pε, yε) satisfies (1.5)–(1.6)

}
. (1.9)

Here H 1(Ωε;Σε)= {yε ∈H 1(Ωε): yε = 0 on Σε}, β(ε)= εn/(2−n) if n� 3, and β(ε)= ε2 exp(ε−2) if n= 2.
The asymptotic analysis of the boundary value problems in perforated domain with small holes (without controls)

has been widely studied by many authors. We mainly could mention Cioranescu and Donato and Murat and Zuazua
[7], Cioranescu and Saint Jean Paulin [10], Cioranescu and Murat [9], Dal Maso and Murat [14], Marchenko and
Khruslov [23], Zhikov and Kozlov and Oleinik [29], Scrypnik [27]. It is well known the interesting effect of ho-
mogenization of the Poisson equation with (zero) Dirichlet conditions on the boundary of the holes, when a "strange
term" appears in the limit equation (see [9,23]). Another effect of homogenization of the same equation with a crit-
ical size of the holes, when nonhomogeneous Neumann conditions on the boundary of the holes are assumed, was
studied by Conca and Donato [11]. In this case some constant that is proportional to the limit of the total flux of the
solution through the boundary of the holes, appears in the limit equation. Cardone and D’Apice and De Maio in [5]
and Corbo Esposito and D’Apice and Gaudiello in [12] examined the same equation with mixed boundary conditions
on the holes. As proved in [12], in the context of perforated domains with a rather simple geometry of the holes, an
interference phenomenon in the homogenization of such boundary value problems is present.

Optimal control problems in perforated domains have been the object of intensive research in the past years [8,18,
24,26]. The numerical computation of such problems is very complicated through thick perforations of Ωε . Therefore,
the asymptotic analysis is one of the main approaches to the study of optimization problems in perforated domains.
The goal of this paper is to obtain an appropriate approximation for the optimal solutions to the problem Pε for small
enough values of ε. Using the ideas of the Γ -convergence theory and the concept of the variational convergence of
constrained minimization problems (see [2,3,19,20]), we show that the homogenized problem for the original one can
be recovered in the following analytical form:∫

Ω

(∇y · ∇ϕ)dx + ρ∗
∫
Ω

(y − a)ϕ dμ∗ + (
1 + k0|∂Q|H

)∫
Ω

yϕ dx

=
∫
f ϕ dx + |∂Q|H

∫
pϕ dx, ∀ϕ ∈H 1

0 (Ω)∩L2(Ω,dμ∗). (1.10)
Ω Ω
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y ∈H 1
0 (Ω), p ∈L2(Ω), a ∈H 2(Ω)∩H 1

0 (Ω), (1.11)

y − a ∈ L2(Ω,dμ∗), ‖a‖H 2(Ω) � C0, (1.12)

I0(a,p, y)=
∫
Ω

|∇y|2 dx +
∫
Ω

|y − z∂ |2 dx + ρ∗
∫
Ω

(y − a)2 dμ∗

+ |∂Q|H
∫
Ω

p2 dx + |K ∩ ∂Λ|H
∫
Ω

a2 dx −→ inf . (1.13)

Here the parameters ρ∗, |∂Q|H , |K ∩ ∂Λ|H ∈ R and the Borel measure μ∗ are coming from the geometry of control
zones. In contrast to Pε , the limit control problem (1.10)–(1.13) contains two independent distributed control func-
tions. We show that this problem has a unique optimal solution, derive the corresponding optimality conditions, and
establish that the optimal solution for the homogenized problem can be used as a suboptimal control for the original
one.

2. Preliminaries and notation

Throughout the paper we suppose that Ω is a measurable set in the sense of Jordan; the small parameter ε varies
in a strictly decreasing sequence of positive numbers which converges to 0; Q and K are compact subsets of Y such
that 0 ∈ intK ∩ ∂Q; the set Q has Lipschitz boundary ∂Q, intQ is a strongly connected set, Q⊂ {x = (x1, . . . , xn) ∈
R
n: x1 � 0}, and its boundary ∂Q contains the origin; A= B(0, r0) is an open ball centered at the origin with a radius

r0 < 1/2, so that A� Y and K �A (see Fig. 1 for 2-d example); C0 > 0 is a constant independent of ε; the functions
fε ∈ L2(Ω), zε ∈ L2(Ω) are such that fε ⇀ f and zε → z∂ in L2(Ω) as ε → 0. For any subset E ⊂Ω we denote by
|E| its n-dimensional Lebesgue measure Ln(E), whereas |∂E|H denotes the (n− 1)-dimensional Hausdorff measure
of manifold ∂E on R

n. We suppose that the sets K ∩ ∂Qς and ∂Q \ (K ∩ ∂Qς) have nonzero capacity for any ς > 1,
where Qς = {ςx,∀x = (x1, . . . , xn) ∈Q} is the homothetic stretching of Q by a factor of ς . Hence |K ∩ ∂Qς |H �= 0
for all ς > 1.

Let Mb(Ω) be the space of bounded Borel measures on Ω with values in [0,+∞]. Let M+
0 (Ω) be the cone of

all nonnegative Borel measures μ on Ω such that μ(B) = 0 for every set B ⊆ Ω with cap(B,Ω) = 0, and μ(B) =
inf{μ(U): U quasi open,B ⊆U} for every Borel set B ⊆Ω . Note that if μ ∈ M+

0 (Ω), then the functions of H 1(Ω)

are defined μ-almost everywhere and are μ-measurable in Ω , hence the space H 1(Ω)∩L2(Ω,dμ) is well defined.
In view of [21] (see Theorems 1.1 and 2.2, Chapter IV), the following result can be easily proved: for every fixed

ε and for any control functions uε ∈H 1(Γ D
ε ) and pε ∈ L2(Γ N

ε ) there exists a unique function yε = yε(uε,pε) such
that

Fig. 1. Example of perforation scheme.
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yε − aε ∈H 1(Ωε;Γ D
ε ∪Σε),∫

Ωε

(∇yε · ∇ϕ)dx +
∫
Ωε

yεϕ dx + k0

∫
Γ N
ε

yεϕ dHn−1

=
∫
Ωε

fεϕ dx +
∫
Γ N
ε

pεϕ dHn−1 ∀ϕ ∈H 1(Ωε;Γ D
ε ∪Σε), (2.1)

‖yε‖H 1(Ωε)
� C

[‖fε‖L2(Ω) +D1(ε)‖uε‖H 1(Γ D
ε ) +D2(ε)‖pε‖L2(Γ N

ε )

]
, (2.2)

where C, D1(ε), and D2(ε) are some positive constants, C is independent of ε, and the function aε ∈H 1
0 (Ω)∩H 2(Ω)

is such that ‖aε‖H 2(Ω) � C0 and aε|Γ D
ε

= uε . In the sequel we call the function yε weak solution to the problem (1.5)
and identify yε with its quasi continuous representative [14].

Let {(unε ,pnε , ynε )} ⊂Ξε be a minimizing sequence for the problem Pε . Then, using the compact embedding result

H 3/2(Γ D
ε ) ↪→H 1(Γ D

ε ) which implies unε → u0
ε = a0

ε |Γ D
ε

strongly in H 1(Γ D
ε ) and the direct method of Calculus of

variation, we come to the following conclusion (for details see [16], [13]):

Theorem 2.1. For every ε there exists a unique solution (u0
ε,p

0
ε , y

0
ε ) ∈Ξε of the optimal control problem Pε .

3. On formulation of the homogenization problem

We begin this section with the description of the geometry of the perforated domain Ωε . We describe the class
of admissible solutions to problem Pε in the terms of singular periodic Borel measures on R

n. To do so, we use the
approach of Zhikov, Bouchitté and Fragala (see [1,28]).

Let us denote by Kλ and Qh the homothetic contractions of the sets K and Q at λ−1 and h−1 times. In what
follows it is assumed that 0 < λ� h < 1. Let the sets Γ λ,h and Λλ,h be defined as follows:

Γ λ,h =Kλ ∩ ∂Qh, Λλ,h = ∂Qh \ Γ λ,h. (3.1)

Letμλ,h and νλ,h be the normalized periodic Borel measures on R
n with the periodicity cell Y such thatμλ,h is con-

centrated on Γ λ,h, νλ,h is concentrated on Λλ,h, and both these measures are proportional to the (n− 1)-dimensional
Hausdorff measure. Since these measures are concentrated and uniformly distributed on the corresponding sets, it
follows that μλ,h(Y \ Γ λ,h)= 0.

For any function ϕ ∈C∞(Rn) we have∫
Γ λ,h

ϕ dHn−1 = |Γ λ,h|H
∫
Y

ϕ dμλ,h = λn−1|K ∩ ∂Qh/λ|H
∫
Y

ϕ dμλ,h, (3.2)

∫
Λλ,h

ϕ dHn−1 = |Λλ,h|H
∫
Y

ϕ dνλ,h = (|∂Qh|H − |Γ λ,h|H
)∫
Y

ϕ dνλ,h

= (
hn−1|∂Q|H − λn−1|K ∩ ∂Qh/λ|H

)∫
Y

ϕ dνλ,h. (3.3)

We introduce also the scaling measures μλ,hε and νλ,hε by setting μλ,hε (B) = εnμλ,h(ε−1B), νλ,hε (B) =
εnνλ,h(ε−1B) for every Borel set B ⊂ R

n, and relate the parameters λ, h, and ε by the rule

h(ε)= εn/(n−1), λ(ε)= εn/(n−2) if n� 3, and λ(ε)= exp(−ε−2) if n= 2. (3.4)

Then
∫
εY
dμλ,hε = εn

∫
Y
dμλ,h = εn,

∫
εY
dνλ,hε = εn

∫
Y
dνλ,h = εn. It means that the measures μλ,hε and νλ,hε weakly

converge to the Lebesgue measure: dμλ,hε ⇀ dx, dνλ,hε ⇀ dx, that is for every ϕ ∈C∞
0 (Rn) we have

lim
ε→0

∫
Rn

ϕ dμλ,hε =
∫
Rn

ϕ dx, lim
ε→0

∫
Rn

ϕ dνλ,hε =
∫
Rn

ϕ dx. (3.5)
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Remark 3.1. It is easy to see that the scaling measures μλ,hε and νλ,hε belong to the class M+
0 (Ω). Hence the spaces

H 1
0 (Ω)∩H 2(Ω)∩L2(Ω,dμλ,hε ) and H 1(Ω;Σε)∩L2(Ω,dνλ,hε ) are well defined [14].

Now we turn back to the definition of the set of admissible solutions of the problem Pε (see (1.9)). We see that

Γ D
ε =

⋃
k∈Θε

[
Kλ(ε) ∩ ∂Qh(ε) + εk

]
, Γ N

ε =
⋃

k∈Θε

[
∂Qh(ε) \ (Kλ(ε) ∩ ∂Qh(ε))+ εk

]
.

Then, using properties (3.2)–(3.3) and setting

σ(ε)= (
h(ε)n−1|∂Q|H − λ(ε)n−1|K ∩ ∂Qh(ε)/λ(ε)|H

)
, (3.6)

the term
∫
Γ N
ε
pεϕ dHn−1 of the integral identity (2.1) can be rewritten in the form

∫
Γ N
ε

pεϕ dHn−1 =
∑

k∈Θε

∫
∂Qh(ε)\Γ λ(ε),h(ε)+εk

pεϕ dHn−1

= σ(ε)
∑

k∈Θε

∫
ε(Y+k)

p̂εϕ dν
λ(ε),h(ε)(x/ε)= ε−nσ (ε)

∫
Ω

p̂εϕ dν
λ,h
ε (3.7)

for every function ϕ ∈C∞
0 (Rn;Σε ∪ Γ D

ε )= {ψ ∈ C∞
0 (Rn): ψ = 0 on Σε ∪ Γ D

ε }.
Here p̂ε is a function of L2(Ω,dνλ,hε ) taking the same values as pε ∈ L2(Γ N

ε ) on Γ N
ε . It is clear that for every

boundary control pε ∈ L2(Γ N
ε ), one can find a function p̂ε ∈ L2(Ω,dνλ,hε ) such that pε = p̂ε on Γ N

ε . Hence∫
Γ N
ε

p2
ε dHn−1 = ε−nσ (ε)

∫
Ω

p̂2
ε dν

λ,h
ε , (3.8)

where

ε−nσ (ε)=
{ |∂Q|H − εn/(n−2)|K ∩ ∂Qh(ε)/λ(ε)|H , if n� 3,

|∂Q|H − 1
ε2 exp(− 1

ε2 )|K ∩ ∂Qh(ε)/λ(ε)|H , if n= 2.
(3.9)

By analogy we obtain

k0

∫
Γ N
ε

yεϕ dHn−1 = ε−nσ (ε)k0

∫
Ω

y̆εϕ dν
λ,h
ε , (3.10)

∫
Γ D
ε

u2
ε dHn−1 = ε−nλ(ε)n−1|K ∩ ∂Qh(ε)/λ(ε)|H

∫
Ω

a2
ε dμ

λ,h
ε . (3.11)

Here y̆ε ∈H 1(Ω;Σε) is an extension of the weak solution yε to the problem (1.5) to the whole of domain Ω , and the
function aε ∈H 1

0 (Ω)∩H 2(Ω)∩L2(Ω,dμλ,hε ) is a prototype of the Dirichlet control uε ∈Uε (see (1.6)).

Remark 3.2. In view of our initial suppositions, the measure νλ,hε is supported on the set with nonzero capacity for
every ε > 0. Since every element v of the space H 1(Ω;Σε)∩L2(Ω,dνλ,hε ) can be interpreted as a quasi continuous
function, it is reasonable to suppose that for every element v ∈H 1(Ω), one can find a sequence {vk ∈ C(Ω)}k∈N such
that

sup
k∈N

lim sup
ε→0

∫
Vk

(v − vk)
2 dνλ,hε <+∞ and lim

k→∞ cap(Vk,Ω)= 0,

where Vk = {x ∈ Ω: v �= vk}. We assume that the same property is valid for the elements of the space H 1
0 (Ω) ∩

L2(Ω,dμλ,hε ).
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As a result, we can reformulate the original optimal control problem Pε (1.7)–(1.9) as follows: Find some
(a0
ε ,p

0
ε , y

0
ε ) ∈ Xε such that

Îε(a
0
ε ,p

0
ε , y

0
ε )= inf

(aε,pε,yε)∈Ξ̂ε

Îε(aε,pε, yε), (3.12)

Xε = [
H 1

0 (Ω)∩H 2(Ω)∩L2(Ω,dμλ,hε )
]×L2(Ω,dνλ,hε )× [

H 1(Ω;Σε)∩L2(Ω,dνλ,hε )
]
,

where

Îε(aε,pε, yε)=
∫
Ω

χε|∇y̆ε|2 dx +
∫
Ω

|χεy̆ε − z∂ε |2 dx

+ ε−nσ (ε)
∫
Ω

p2
ε dν

λ,h
ε + |K ∩ ∂Qh(ε)/λ(ε)|H

∫
Ω

a2
ε dμ

λ,h
ε , (3.13)

Ξ̂ε =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(aε,pε, yε)

∣∣∣∣∣∣∣∣∣

y̆ε − aε ∈H 1(Ω;Γ D
ε ∪Σε),‖a‖H 2(Ω) � C0,∫

Ω
χε(∇y̆ε · ∇ϕ)dx + ∫

Ω
χεy̆εϕ dx

+ k0ε
−nσ (ε)

∫
Ω
y̆εϕdν

λ,h
ε − ∫

Ω
χεfεϕ dx

= ε−nσ (ε)
∫
Ω
pεϕ dν

λ,h
ε , ∀ϕ ∈H 1(Ω;Γ D

ε ∪Σε).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.14)

We denote with P̂ε the optimal control problem (3.12)–(3.14). It is clear that P̂ε has a unique solution (a0
ε ,p

0
ε , y

0
ε ) for

every ε [16,22]. This solution can be viewed as a prototype of the optimal triplet to Pε-problem. Moreover, in this
case a priori norm estimate (2.2) takes the form

‖y̆ε‖H 1(Ω,χε dx)
+
√
ε−nσ (ε)‖yε‖L2(Ω,dν

λ,h
ε )

� Ĉ
[√

ε−nσ (ε)‖pε‖L2(Ω,dν
λ,h
ε )

+ ‖fε‖L2(Ω)

+
√

|K ∩ ∂Qh(ε)/λ(ε)|H‖aε‖H 1
0 (Ω)∩L2(Ω,dμ

λ,h
ε )

]
. (3.15)

To end this section, we list some auxiliary results that will be useful in the sequel. Let

ς(ε)= h(ε)/λ(ε)=
{ exp( −n

n2−3n+2
ln ε) if n� 3,

ε2 exp( 1
ε2 ) if n= 2.

}
(3.16)

Then ς(ε) ∈ (1,+∞) ∀ε and limε→0 ς(ε) = +∞. We are interested in the limit behaviour of the sequence {|K ∩
∂Qς(ε)|H } as ε → 0. We recall that the set Qς(ε)= {ς(ε)x,∀x = (x1, . . . , xn) ∈Q} is the homothetic stretching of
Q by a factor of ς(ε).

Proposition 3.3. There exists an open cone Λ⊂ {x ∈ R
n: x1 > 0} such that

lim
ε→0

∣∣K ∩ ∂Qς(ε)
∣∣
H

= |K ∩ ∂Λ|H . (3.17)

Proof. Indeed, by the initial assumptions, the origin is a Lipschitz point of the boundary ∂Q and intQ is a strongly
connected set in the classical sense. Hence, there is a neighbourhood U(0) such that U(0) ∩ intQ is a convex set
[4,15]. Then Λ= {x ∈ t[U(0)∩ intQ] ∀t ∈ (0,+∞)} is a nonempty open cone.

Assume that the origin does not belong to a smooth part of the boundary ∂Q. Then the inclusionK∩Λ⊂K∩Qς(ε)

holds true for ε small enough, and it immediately implies the existence of a value ε0 > 0 such that |K ∩ ∂Λ|H =
|K ∩ ∂Qς(ε)|H ∀ε < ε0. If a part of the boundary ∂Q containing the origin is smooth, then it follows that there is
a neighbourhood U(0) of the origin such that U(0) ∩ ∂Q is the graph of a smooth function whose epigraph contains
U(0) ∩Q. So that, we may always suppose that there is a function Ψ : R

n−1 → R� satisfying Ψ ∈ C∞
0 (Rn−1) and

x1 = Ψ (x2, . . . , xn) for every x = (x1, x2, . . . , xn) ∈ U(0)∩ ∂Q.
Let Λ= {x ∈ R

n: x1 > 0}. Then ∂Λ = {x ∈ R
n: x1 = 0} and we deduce: x = (x1, x2, . . . , xn) ∈K ∩ ς(ε)∂Q for

small enough ε if and only if x ∈ ς(ε)(U(0)∩ ∂Q). Hence

x1 = 1
Ψ
(
ς(ε)x2, . . . , ς(ε)xn

)
for every x ∈K ∩ ς(ε)∂Q.
ς(ε)
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Since limε→0 ς
−1(ε)Ψ (ς(ε)x2, . . . , ς(ε)xn) = 0 by the definition of the Hausdorff measure Hn−1, we immediately

obtain the required result. �
Remark 3.4. As follows from Proposition 3.3 and its proof, the cone Λ can be recovered in an explicit form in the case
when the origin belongs to a smooth part of the boundary ∂Q. Moreover, in view of (3.6) we have limε→0 σ(ε)/ε

n =
|∂Q|H .

In a similar way the following statement can be proved:

Proposition 3.5. Let {ρ′
ε ∈ R}ε>0 be a sequence of numbers such that

ρ′
ε = |A \Qς(ε)|/|A| ∀ε > 0. (3.18)

Then the sequence {ρ′
ε}ε>0 is monotone and there exists a value ρ∗ ∈ [1/2,1) such that limε→0 ρ

′
ε = ρ∗.

4. Convergence in the variable space Xε

Let us recall the main types of convergence in variable spaces occurring in the homogenization theory (see [28]).
We cite them with respect to the family of the periodic Borel measure μλ,hε . Here the parameters λ= λ(ε) and h= h(ε)

are defined by (3.4). Let {vλ,hε ∈ L2(Ω,dμλ,hε )} be a bounded sequence, i.e. lim supε→0

∫
Ω
(vλ,hε )2 dμλ,hε <+∞.

1. The weak convergence vλ,hε ⇀ v inL2(Ω,dμλ,hε ) means that v ∈L2(Ω) and limε→0
∫
Ω
vλ,hε ϕ dμλ,hε = ∫

Ω
vϕ dx

for any ϕ ∈ C∞
0 (Ω);

2. The strong convergence vλ,hε → v in L2(Ω,dμλ,hε ) means that v ∈ L2(Ω) and limε→0
∫
Ω
vλ,hε zλ,hε dμλ,hε =∫

Ω
vzdx if zλ,hε ⇀ z in L2(Ω,dμλ,hε ).

The following properties of the convergence in variable spaces hold:

(a) Compactness criterium: if a sequence is bounded in L2(Ω,dμλ,hε ), then this sequence is compact in the sense of
the weak convergence;

(b) Property of lower semicontinuity: if vλ,hε ⇀ v in L2(Ω,dμλ,hε ), then

lim inf
ε→0

∫
Ω

(vλ,hε )2 dμλ,hε �
∫
Ω

v2 dx;

(c) Criterium of strong convergence: vλ,hε → v if and only if vλ,hε ⇀ v and limε→0
∫
Ω
(vλ,hε )2dμλ,hε = ∫

Ω
v2 dx;

(d) Since μλ,hε ⇀ dx, it follows that limε→0
∫
Ω
ϕ dμλ,hε = ∫

Ω
ϕ dx ∀ϕ ∈ C(Ω) and lim supε→0μ

λ,h
ε (F ) � |F | for

any compact set F ⊂Ω .

We begin with the following concept:

Definition 4.1. Let {vλ,hε ∈ H 1
0 (Ω) ∩ L2(Ω,dμλ,hε )} be a bounded sequence. We say that this sequence converges

weakly in H 1
0 (Ω)∩L2(Ω,dμλ,hε ) to v ∈H 1(Ω) if

vλ,hε ⇀ v in H 1
0 (Ω) and vλ,hε ⇀ v in L2(Ω,dμλ,hε ). (4.1)

In order to check the correctness of this definition we make use of the following auxiliary statements:

Lemma 4.2. If v ∈H 1
0 (Ω), then limε→0

∫
Ω
vϕ dμλ,hε = ∫

Ω
vϕ dx ∀ϕ ∈C∞

0 (Ω).

Proof. If v ∈ C0(Ω), then the weak convergence μλ,hε ⇀ dx of the measures immediately implies this relation. Let
v be an arbitrary element of H 1(Ω). Then for every δ > 0 there exist a set Aδ ⊂Ω and a function vδ ∈ C0(Ω) such
0
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that cap(Aδ,Ω) < δ, and vδ = v on Ω \ Aδ . In what follows, we suppose that the set Aδ is closed. We now consider
the following estimate:∣∣∣∣

∫
Ω

vϕ dμλ,hε −
∫
Ω

vϕ dx

∣∣∣∣�
∣∣∣∣
∫
Ω

(v − vδ)ϕ dμλ,hε

∣∣∣∣
+
∣∣∣∣
∫
Ω

vδϕ dμλ,hε −
∫
Ω

vδϕ dx

∣∣∣∣+
∣∣∣∣
∫
Ω

(v − vδ)ϕ dx

∣∣∣∣= J1 + J2 + J3.

Owing to the weak convergence μλ,hε ⇀ dx, we have J2 → 0 as ε → 0. By Lusin’s Theorem we may suppose that
there is a constant d1 > 0 such that ‖v − vδ‖L2(Ω) � d1δ. Hence J3 � d1‖ϕ‖L2(Ω)δ. As for the value J1, we note
that each of the measure μλ,hε is supported on a set with nonzero capacity. So, there is a constant d2 > 0 such that
‖v − vδ‖

L2(Ω,dμ
λ,h
ε )

� d2 for any δ > 0 small enough (see Remark 3.2). It implies the following estimate:

J3 =
∣∣∣∣
∫
Ω

(v − vδ)ϕ dμλ,hε

∣∣∣∣� d2‖ϕ‖C(Ω)

[
μλ,hε (Aδ)

]1/2
.

As a result, we have:
(i) lim supε→0μ

λ,h
ε (Aδ) � |Aδ| by property (d); (ii) |Aδ| � d3capn/(n−2)(Aδ) by the properties of capacity

(see [15]); (iii) cap(Aδ) < δ by the initial assumption. Hence, summing up all estimates that were obtained before,
we conclude | ∫

Ω
vϕ dμλ,hε − ∫

Ω
vϕ dx| � dδ for any δ > 0 small enough (here the constant d does not depend on δ).

This completes the proof. �
We now consider a more delicate situation.

Lemma 4.3. Let {vλ,hε ∈ H 1
0 (Ω) ∩ L2(Ω,dμλ,hε )} and v ∈ L2(Ω) be such that vλ,hε ⇀ v in H 1

0 (Ω) and hence
vλ,hε → v in L2(Ω). Then

lim
ε→0

[∫
Ω

vλ,hε dμλ,hε −
∫
Ω

vλ,hε dx

]
= 0. (4.2)

Proof. As in the previous lemma, we introduce two functions ṽλ,hε ∈ C(Ω) and ṽ ∈ C(Ω) such that ṽλ,hε = vλ,hε and
ṽ = v quasi everywhere. Let us partition the set Ω into cubes εY with edges ε and denote these cubes with εY j . Then
there are points xλ,hj ∈ εY j such that∫

Ω

ṽλ,hε dμλ,hε =
∑∫

εY j

ṽλ,hε (x) dμλ,hε +
∑ ∫

Ω∩εY j
ṽλ,hε (x) dμλ,hε

=
∑

ṽλ,hε (x
λ,h
j )

∫
εY j

dμλ,hε +
∑ ∫

Ω∩εY j
ṽλ,hε (x) dμλ,hε ,

where the second sum is calculated over the set of the “boundary” cubes. By the definition of the measure μλ,hε , we
have

∫
εY j

dμλ,hε = εn
∫
Y
dμλ,hε = εn. Hence∫

Ω

ṽλ,hε dμλ,hε =
∑

ṽλ,hε (x
λ,h
j )εn +

∑ ∫
Ω∩εY j

ṽλ,hε (x) dμλ,hε . (4.3)

It is clear that an analogous representation takes place for the second term in (4.2), namely,∫
Ω

ṽλ,hε dx =
∑

ṽλ,hε (xj )

∫
εY j

dx +
∑ ∫

Ω∩εY j
ṽλ,hε (x) dx

=
∑

ṽλ,hε (xj )ε
n +

∑ ∫
j

ṽλ,hε (x) dx, (4.4)
Ω∩εY
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for some xj ∈ εY j . Note that∣∣∣∣∑
∫

Ω∩εY j
ṽλ,hε (x) dμλ,hε

∣∣∣∣� sup
j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽλ,hε (x)

∣∣)εn ·D(ε),
∣∣∣∣∑

∫
Ω∩εY j

ṽ(x) dx

∣∣∣∣� sup
j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽ(x)∣∣)εn ·D(ε)

where D(ε) is the quantity of the “boundary” cubes, and εnD(ε) → 0 by Jordan’s measurability property of the
set ∂Ω . Moreover, since vλ,hε , v ∈H 1

0 (Ω), it follows that

sup
j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽ(x)∣∣)<+∞ and sup

j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽλ,hε (x)

∣∣)<+∞

for ε small enough.
Then, substituting (4.3) and (4.4) in (4.2), we come to the following relation:

lim
ε→0

(∫
Ω

vλ,hε dμλ,hε −
∫
Ω

vλ,hε dx

)
� lim

ε→0

∑(
ṽλ,hε (x

λ,h
j )− ṽλ,hε (xj )

)
εn

+ max
[

sup
j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽλ,hε (x)

∣∣), sup
j∈D(ε)

(
sup

x∈Ω∩εY j
∣∣ṽ(x)∣∣)] lim sup

ε→0

(
εn ·D(ε))

+ lim
ε→0

(J1 + J2)= lim
ε→0

(∑(
ṽλ,hε (x

λ,h
j )− ṽλ,hε (xj )

)
εn
)
, (4.5)

where J1 = ∫
Ω
(vλ,hε − ṽλ,hε ) dμλ,hε , J2 = ∫

Ω
(vλ,hε − ṽλ,hε ) dx and by the arguments of the previous lemma and Re-

mark 3.2, we may suppose that limε→0(J1 + J2)= 0.
We now use the fact that vλ,hε → v in L2(Ω). One has

lim
ε→0

∫
Ω

(vλ,hε − v)2 dx � 2 lim
ε→0

∫
Ω

(ṽλ,hε − ṽ)2 dx + 2 lim
ε→0

J0(ε)

= 2 lim
ε→0

∑(
ṽλ,hε (x∗

j )− ṽ(x∗
j )
)2
εn = 0, (4.6)

lim
ε→0

∫
Ω

(vλ,hε )2 dx −
∫
Ω

v2 dx = lim
ε→0

∫
Ω

(ṽλ,hε )2 dx −
∫
Ω

ṽ2 dx + lim
ε→0

J (ε)

= lim
ε→0

∑(
ṽλ,hε (x∗

j )
)2
εn − lim

ε→0

∑(
ṽ(xj )

)2
εn

= lim
ε→0

∑[(
ṽλ,hε (x∗

j )
)2 − (ṽ(xj ))

2]εn, (4.7)

where, as usual, we suppose that the values J0(ε) = ∫
Ω
(ṽλ,hε − vλ,hε + v − ṽ)2 dx and J (ε) = ∫

Ω
[(vλ,hε )2 −

(ṽλ,hε )2]dx + ∫
Ω

[v2 − ṽ2]dx are arbitrarily small.
Hence, by (4.5), the construction of Riemann sum, and the fact that v ∈H 1

0 (Ω), we conclude

lim
ε→0

∣∣∣∣
∫
Ω

ṽλ,hε dμλ,hε −
∫
Ω

ṽλ,hε dx

∣∣∣∣
� lim

ε→0

∣∣∣∣∑([
ṽλ,hε (x

λ,h
j )− ṽ(x

λ,h
j )

]+ [
ṽ(x

λ,h
j )− ṽ(xj )

]+ [
ṽ(xj )− ṽλ,hε (xj )

])
εn
∣∣∣∣

� 2
√|Ω| lim

ε→0
‖vλ,hε − v‖L2(Ω) + lim sup

ε→0

∣∣∣∑[
ṽ(x

λ,h
j )− ṽ(xj )

]
εn
∣∣∣

�
∣∣∣lim sup

ε→0

(∑
ṽ(x

λ,h
j )εn −

∑
ṽ(xj )ε

n
)∣∣∣=

∣∣∣∣
∫
ṽ dx −

∫
ṽ dx

∣∣∣∣= 0. �

Ω Ω
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Taking into account the proof of the previous lemmas and relations (4.6)–(4.7), the following statement is readily
ascertained:

Lemma 4.4. Let {vλ,hε ∈H 1
0 (Ω)∩L2(Ω,dμλ,hε )} and v ∈H 1

0 (Ω) be such that vλ,hε ⇀ v in H 1
0 (Ω). Then

lim
ε→0

[∫
Ω

(vλ,hε )2 dμλ,hε −
∫
Ω

(vλ,hε )2 dx

]
= 0; (4.8)

lim
ε→0

∫
Ω

v2 dμλ,hε =
∫
Ω

v2 dx ∀v ∈H 1
0 (Ω). (4.9)

Remark 4.5. Since the set Ω is bounded and |∂Ω \ Σε|H ∼ ε1−nhn−1(ε) = ε, it follows that |Σε|H → |∂Ω|H as

ε → 0. Hence, by property (d), the statements of the Lemmas 4.2–4.4 remain valid if the space H 1
0 (Ω) is changed to

H 1(Ω,Σε).

Theorem 4.6. Every bounded sequence {vλ,hε ∈ H 1
0 (Ω) ∩ L2(Ω,dμλ,hε )} is relatively compact with respect to the

weak convergence in the variable space H 1
0 (Ω)∩L2(Ω,dμλ,hε ).

Proof. Since the sequence {vλ,hε } is bounded in H 1
0 (Ω), we may suppose that there is an element v ∈ H 1

0 (Ω) such
that vλ,hε → v weakly in H 1

0 (Ω). Then the compact embedding H 1
0 (Ω) ↪→ L2(Ω) implies the strong convergence

vλ,hε → v in L2(Ω). Hence, for every ϕ ∈ C∞
0 (Ω), we have∣∣∣∣

∫
Ω

vλ,hε ϕ dμλ,hε −
∫
Ω

vϕ dx

∣∣∣∣�
∣∣∣∣
∫
Ω

vλ,hε ϕ dx −
∫
Ω

vλ,hε ϕ dμλ,hε

∣∣∣∣+
∣∣∣∣
∫
Ω

vλ,hε ϕ dx −
∫
Ω

vϕ dx

∣∣∣∣.
Passing to the limit in the right-hand part of this inequality as ε → 0, we obtain | ∫

Ω
vλ,hε ϕ dμλ,hε −∫

Ω
vλ,hε ϕ dx| →

0 (by Lemma 4.3), and | ∫
Ω
(vλ,hε − v)ϕ dx| → 0 as a weak limit in L2(Ω). The proof is complete. �

Using the above results, we introduce the concept of the weak convergence for the following sequences {yε ∈
H 1(Ωε;Σε): y̆ε ∈H 1(Ω;Σε)∩L2(Ω,dνλ,hε )}ε>0. Here y̆ε is some extension of the function yε on the whole of Ω .
Let us recall that the perforated domainΩε considered here, satisfies the so-called “condition of strong connectedness”
(see [23]). It means that there exist a family {Pε}ε>0 of extension operators Pε :H 1(Ωε;Σε) → H 1(Ω;Σε) and
a constant C independent of ε, such that ‖∇(Pεyε)‖L2(Ω) � C‖yε‖H 1(Ωε)

for every yε ∈ H 1(Ωε;Σε). So, we can
assume that y̆ε := Pεyε for some extension operator with the above properties.

Definition 4.7. We say that a sequence {yε ∈H 1(Ωε;Σε)}ε>0 is weakly convergent in H 1(Ω;Σε)∩L2(Ω,dνλ,hε ) if
there exists an element y ∈H 1

0 (Ω) such that y̆ε ⇀ y inH 1(Ω), and yε ⇀ y in L2(Ω,dνλ,hε ).

We are now in a position to verify the correctness of this definition.

Theorem 4.8. Every bounded sequence {yε ∈H 1(Ωε;Σε)}ε>0 is relatively compact with respect to the weak conver-
gence in the variable space H 1(Ω;Σε)∩L2(Ω,dνλ,hε ).

Proof. Taking into account Remark 4.5 and the fact that∫
Ω

y̆εϕχΩε dx
ε→0−→

∫
Ω

yϕ dx and
∫
Ω

yεϕ dν
λ,h
ε =

∫
Ω

y̆εϕ dν
λ,h
ε ∀ϕ ∈ C∞

0 (Ω),

this theorem can be established in complete analogy with the proof of Theorem 4.6. The main difference is the addition
of the property v ∈H 1

0 (Ω). However, |Σε|H → |∂Ω|H as ε → 0, and we obtain the required result. �
In fact, we can prove a more precise result.
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Theorem 4.9. Let {yλ,hε ∈ H 1(Ωε;Σε) ∩ L2(Ω,dνλ,hε )}ε>0 be a bounded sequence such that y̆λ,hε ⇀ y in
H 1(Ω;Σε)∩L2(Ω,dνλ,hε ). Then y ∈H 1

0 (Ω) and yλ,hε → y strongly in L2(Ω,dνλ,hε ).

Proof. By the criterium of strong convergence in L2(Ω,dνλ,hε ), to establish the convergence yλ,hε → y in
L2(Ω,dνλ,hε ) it is enough to show that

yλ,hε ⇀ y in L2(Ω,dνλ,hε ), and lim
ε→0

∫
Ω

(yλ,hε )2 dνλ,hε =
∫
Ω

y2 dx. (4.10)

The first statement in (4.10) is valid by Definition 4.7. In order to prove the second one, we apply the following
estimate:∣∣∣∣

∫
Ω

(yλ,hε )2 dνλ,hε −
∫
Ω

y2 dx

∣∣∣∣�
∣∣∣∣
∫
Ω

(yλ,hε )2 dνλ,hε −
∫
Ω

(yλ,hε )2 dx

∣∣∣∣+
∣∣∣∣
∫
Ω

(y̆λ,hε )2 dx −
∫
Ω

y2dx

∣∣∣∣. (4.11)

The second term in right-hand side of (4.11) tends to zero as ε → 0 by the strong convergence of y̆λ,hε to y in L2(Ω).
The first one is equal to zero as ε → 0 by applying Lemma 4.4, and this concludes the proof. �

Let {(aε,pε, yε) ∈ Xε}ε>0 be a sequence of admissible solutions for the original problem. We assume that this
sequence is bounded. Then, summing up the above given reasonings, we may introduce the following concept of the
weak convergence in the variable space Xε .

Definition 4.10. We say that a bounded sequence {(aε,pε, yε) ∈ Xε}ε>0 is w-convergent to a triplet (a,p, y) ∈
[H 2(Ω) ∩ H 1

0 (Ω)] × L2(Ω) × H 1
0 (Ω) in the variable space Xε as ε tends to zero (in symbols, (aε,pε, yε)

w
⇀

(a,p,y)), if: (i) aε ⇀ a in H 2(Ω) and aε ⇀ a in L2(Ω,dμλ,hε ); (ii) pε ⇀ p in L2(Ω,dνλ,hε ); (iii) y̆ε ⇀ y in
H 1(Ω) and yε ⇀ y in L2(Ω,dνλ,hε ).

In view of Theorems 4.6, 4.8 we come to the following conclusion:

Theorem 4.11. Every bounded sequence of admissible solutions {(aε,pε, yε)}ε>0 to problems P̂ε is relatively compact
with respect to the w-convergence in Xε .

We observe also that for the characteristic function χε of the perforated domain Ωε , the following result is obvi-
ous [12].

Lemma 4.12. χε converges strongly to 1 both in L2(Ω) and in the variable space L2(Ω,χεdx) as ε → 0.

To conclude this section, we present some new results which will be useful in the sequel and which we feel to be
interesting per se.

Proposition 4.13 (Property of homothetic mean value). Let g : R
n → R be a Y -periodic function such that g ∈

L2(∂Q,dHn−1). Then

lim
ε→0

∫
Ω

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε =

(
1

|∂Q|H
∫
∂Q

g dHn−1
)∫
Ω

ϕ dx (4.12)

for any ϕ ∈ C(Ω). In particular, limε→0
∫
Ω
g( x

εh(ε)
) dνλ,hε = |Ω|( 1

|∂Q|H
∫
∂Q

g dHn−1).

Proof. It is evident that we can restrict our attention to the case when g � 0. Let us partition the set Ω into cubes εY
with edges ε and denote these cubes by the symbols εY j . Then
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∫
Ω

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε =

∑∫
εY j

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε +

∑ ∫
Ω∩εY j

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε

=
∑

ϕ(x
λ,h
j )

∫
εY j

g

(
x

εh(ε)

)
dνλ,hε +

∑ ∫
Ω∩εY j

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε , (4.13)

where x
λ,h
j ∈ εY j and the second sum is calculated over the set of the “boundary” cubes. By the definition of the

scaling measure νλ,hε and due to the Y -periodicity of g, we have∫
εY j

g

(
x

εh(ε)

)
dνλ,hε = εn

σ (ε)

∫
Λλ(ε),h(ε)

g

(
x

h(ε)

)
dHn−1, (4.14)

where the set Λλ(ε),h(ε) is defined by (3.1). Since Λλ,h = ∂Qh \ Γ λ,h, it follows that∫
Λλ(ε),h(ε)

g dHn−1 =
∫

∂Qh(ε)

g dHn−1 −
∫

Γ λ(ε),h(ε)

g dHn−1.

Then, due to the definition of the homothetic contraction and using formula (3.4), we have∫
∂Qh(ε)

g

(
x

h(ε)

)
dHn−1 = hn−1(ε)

∫
∂Q

g dHn−1 = εn
∫
∂Q

g dHn−1, (4.15)

∫
Γ λ(ε),h(ε)

g

(
x

h(ε)

)
dHn−1 = hn−1(ε)

∫
h−1(ε)Γ λ(ε),h(ε)

g dHn−1. (4.16)

From the definition of the set Γ λ(ε),h(ε) (see (3.1)), we obtain h−1(ε)Γ λ(ε),h(ε) = Kλ(ε)/h(ε) ∩ ∂Q = λ(ε)(K ∩
∂Qh(ε)/λ(ε)). Hence, by Proposition 3.3, we have

lim
ε→0

∣∣λ(ε)(K ∩ ∂Qh(ε)/λ(ε))
∣∣
H

= |K ∩ ∂Λ|H lim
ε→0

λn−1(ε)= 0.

Thus, combining relations (4.14)–(4.16), we conclude∫
εY j

g

(
x

εh(ε)

)
dνλ,hε = εn

σ (ε)
εn
(∫
∂Q

g dHn−1 + J (ε)

)
, (4.17)

J (ε)� ‖g‖L2(∂Q,dHn−1)|Kλ(ε)/h(ε) ∩ ∂Q|1/2
H

ε→0−→ 0. (4.18)

As a result, substituting (4.17) and (4.18) into (4.13), we have∣∣∣∣
∫
Ω

ϕ(x)g

(
x

εh(ε)

)
dνλ,hε − εn

σ (ε)

(∫
∂Q

g dHn−1
)∑

ϕ(x
λ,h
j )εn

∣∣∣∣
� εn

σ (ε)
J (ε)

∑
ϕ(x

λ,h
j )εn + εn

σ (ε)

(∫
∂Q

g dHn−1 + J (ε)

)
sup
x∈Ω

|ϕ|εnD(ε), (4.19)

where D(ε) is the quantity of the “boundary” cubes.
Since limε→0

∑
ϕ(x

λ,h
j )εn = ∫

Ω
ϕ dx by construction of the Riemann sum, limε→0 J (ε)= 0 by (4.18),

lim
ε→0

εn

σ (ε)
= |∂Q|−1

H

by (3.4), limε→0 ε
nD(ε) = 0 by Jordan’s measurability property of ∂Ω , it follows that estimate (4.19) immediately

leads to the required result. �
In a similar way we can prove the following result:
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Proposition 4.14. Let Λ be a cone which is defined in Proposition 3.3, and let g : Rn → R be a Y -periodic function
such that g ∈H 1(K). Then

lim
ε→0

∫
Ω

ϕ(x)g

(
x

ελ(ε)

)
dμλ,hε =

(
1

|K ∩ ∂Λ|H
∫

K∩∂Λ
g dHn−1

)∫
Ω

ϕ dx (4.20)

for any ϕ ∈ C(Ω). In particular,

lim
ε→0

∫
Ω

g

(
x

ελ(ε)

)
dμλ,hε = |Ω|

(
1

|K ∩ ∂Λ|H
∫

K∩∂Λ
g dHn−1

)
.

Remark 4.15. The results of Propositions 4.13–4.14 are examples of bounded sequences in variable spaces whose
weak limits can be recovered in an explicit form.

5. Definition of a homogenized problem, and its property

We begin this section with the following notion:

Definition 5.1. We say that the space L2(Ω) possesses the weak approximation property with respect to the family of
the Borel measures {ηλ,hε }ε>0, if for every δ > 0 and any p ∈L2(Ω) there exist an element q ∈L2(Ω) and a sequence

{qλ,hε ∈ L2(Ω,dηλ,hε )}ε>0, such that ‖p − q‖L2(Ω) � δ and qλ,hε → q in L2(Ω,dηλ,hε ). In this case, the sequence
{qλ,hε ∈ L2(Ω,dηλ,hε )}ε>0 is called δ-realizing sequence.

Lemma 5.2. The weak approximation property for the L2(Ω) with respect to the family of the Borel measures
{νλ,hε }ε>0 is valid.

Proof. Let p be any element of L2(Ω). Since the inclusion H 1
0 (Ω) ⊂ L2(Ω) is dense with respect to the strong

topology for L2(Ω), it follows that for a given value δ > 0 there is an element q ∈H 1
0 (Ω) such that ‖p−q‖L2(Ω) � δ.

Let us construct the δ-realizing sequence as follows: qλ,hε = q for every ε > 0. In accordance with Lemmas 4.2, 4.4 and
Theorem 4.9, we have limε→0

∫
Ω
qϕ dνλ,hε = ∫

Ω
qϕ dx ∀ϕ ∈C∞

0 (Ω) and limε→0
∫
Ω
q2 dνλ,hε = ∫

Ω
q2 dx. Hence, by

the criterium of strong convergence in L2(Ω,dνλ,hε ), we obtain the required result. �
In view of the main question of this paper, our next intention is to study the asymptotic behaviour of the problem

P̂ε as ε → 0. To do so, we represent P̂ε-problem for various values of ε, in the form of the following sequence:{〈
inf

(aε,pε,yε)∈Ξ̂ε

Îε(aε,pε, yε)
〉
; ε > 0

}
. (5.1)

Then the definition of an appropriate homogenized optimal control problem to the family (3.12), can be reduced to
the analysis of the limit properties of the sequence (5.1) as ε → 0. To get this limit in the form of some constrained
minimization problem, we apply the scheme of the direct homogenization which was developed in [19,20]. However,
in contrast to the usual concept of variational convergence (see for instance [2,3,19]), we introduce another one. The
main reason for this, is the specific construction of the solution space Xε and the absence of the strong approximation
property for the “w-limit space” Y = [H 2(Ω) ∩H 1

0 (Ω)] × L2(Ω)×H 1
0 (Ω) [25]. This means that perhaps not for

every triplet (a,p, y) ∈ [H 2(Ω) ∩H 1
0 (Ω)] × L2(Ω)×H 1

0 (Ω) one can find a sequence {(aε,pε, yε): (aε,pε, y̆ε) ∈
Xε}ε>0 such that (aε,pε, yε)

w→ (a,p, y).

Definition 5.3. We say that a minimization problem〈
inf

(a,p,y)∈Ξ0
I0(a,p, y)

〉
(5.2)

is the weak variational limit of the sequence (5.1) with respect to the w-convergence in the variable space Xε (or
variational w-limit), if the following conditions are satisfied:
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(1) if a sequence {(ak,pk, y̆k) ∈ Xε}ε>0 w-converges to a triplet (a,p, y), and there exists a subsequence {εk} of {ε}
such that εk → 0 as k → ∞ and (ak,pk, yk) ∈ Ξ̂εk for all k, then

(a,p, y) ∈Ξ0; I0(a,p, y)� lim inf
k→∞ Îεk (ak,pk, yk); (5.3)

(2) for every triplet (a,p, y) ∈ Ξ0 and any value δ > 0, there exists a δ-realizing sequence {(âλ,hε , p̂λ,hε , ˘̂yλ,hε ) ∈
Xε}ε>0 such that

(âλ,hε , p̂λ,hε , ŷλ,hε ) ∈ Ξ̂ε ∀ε > 0, (âλ,hε , p̂λ,hε , ŷλ,hε )
w→ (â, p̂, ŷ), (5.4)

‖(a,p, y)− (â, p̂, ŷ)‖Y � δ, and I0(a,p, y)� lim sup
ε→0

Îε(â
λ,h
ε , p̂λ,hε , ŷλ,hε )− δ. (5.5)

Theorem 5.4. Assume that the constrained minimization problem (5.2) is the weak variational limit of the sequence
(5.1), and has a unique solution (a0,p0, y0) ∈Ξ0. Let {(a0

ε ,p
0
ε , y

0
ε ) ∈ Ξ̂ε}ε>0 be the sequence of optimal triplets for

P̂ε-problems. Then

(a0
ε ,p

0
ε , y

0
ε )

w−→ (a0,p0, y0), (5.6)

inf
(a,p,y)∈Ξ0

I0(a,p, y)= I0(a
0,p0, y0)= lim

ε→0
inf

(aε,pε,yε)∈Ξ̂ε

Îε(aε,pε, yε). (5.7)

Proof. First, observe that in view of Theorem 4.11, the w-compactness property holds true for the sequence of opti-
mal solutions {(a0

ε ,p
0
ε , y

0
ε ) ∈ Ξ̂ε}ε>0. So, we may suppose that there exist a subsequence {(a0

εk
,p0

εk
, y0

εk
)}k∈N of the

sequence of optimal solutions and a triplet (a∗,p∗, y∗), such that (a0
εk
,p0

εk
, y0

εk
)

w−→ (a∗,p∗, y∗) as εk → 0. Hence,
property (5.3) leads to the following conclusion: (a∗,p∗, y∗) ∈Ξ0, and

lim inf
k→∞ min

(a,p,y)∈Ξ̂εk

Îεk (a,p, y)= lim inf
k→∞ Îεk (a

0
εk
,p0

εk
, y0

εk
)

� I0(a
∗,p∗, y∗)� min

(a,p,y)∈Ξ0
I0(a,p, y)= I0(u

0,p0, y0). (5.8)

Let us fix a value δ > 0. Then, by property (ii) of Definition 5.3 there exists a δ-realizing sequence {(âε, p̂ε, ŷε) ∈
Ξ̂ε}ε>0 such that (âε, p̂ε, ŷε)

w→ (â, p̂, ŷ),∥∥(a0,p0, y0)− (â, p̂, ŷ)
∥∥

Y
� δ, and I0(a

0,p0, y0)� lim sup
ε→0

Îε(âε, p̂ε, ŷε)− δ.

Using this fact, we have

min
(a,p,y)∈Ξ0

I0(a,p, y)+ δ = I0(a
0,p0, y0)+ δ � lim sup

ε→0
Iε(âε, p̂ε, ŷε)

� lim sup
ε→0

min
(a,p,y)∈Ξ̂ε

Îε(a,p, y)� lim sup
k→∞

min
(a,p,y)∈Ξ̂εk

Îεk (a,p, y)

= lim sup
k→∞

Îεk (a
0
εk
,p0

εk
, y0

εk
). (5.9)

From this and (5.8) we deduce that

lim inf
k→∞ Îεk (a

0
εk
,p0

εk
, y0

εk
)� lim sup

k→∞
Îεk (a

0
εk
,p0

εk
, y0

εk
)− δ.

Since this inequality holds true for sufficiently small δ > 0, after combining (5.8) and (5.9) we get

I0(a
∗,p∗, y∗)= I0(a

0,p0, y0)= min
(a,p,y)∈Ξ0

I0(a,p, y)= lim
k→∞ min

(a,p,y)∈Ξ̂εk

Îεk (a,p, y).

Using these relations and the fact that an optimal triplet for the problem (5.2) is unique, we obtain (a∗,p∗, y∗)=
(a0,p0, y0). Since this equality holds for the w-limits of all subsequences of {(a0

ε ,p
0
ε , y

0
ε )}ε>0, it follows that these

limits coincide and therefore, (a0,p0, y0) is the w-limit of the whole sequence {(a0
ε ,p

0
ε , y

0
ε )}ε>0. Then, using the
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same argument for the sequence of minimizers as for the subsequence {(a0
εk
,p0

εk
, y0

εk
)}k∈N, we have

lim inf
ε→0

min
(a,p,y)∈Ξ̂ε

Îε(a,p, y)= lim inf
ε→0

Îε(a
0
ε ,p

0
ε , y

0
ε )� I0(a

0,p0, y0)

= min
(a,p,y)∈Ξ0

I0(a,p, y)� lim sup
ε→0

Îε(aε,pε, yε)− δ

� lim sup
ε→0

min
(a,p,y)∈Ξ̂ε

Îε(a,p, y)− δ = lim sup
ε→0

Îε(a
0
ε ,p

0
ε , y

0
ε )− δ ∀δ > 0

and this concludes the proof. �
Definition 5.5. We say that the optimal control problem (1.5) admits homogenization as ε tends to zero with respect
to the w-convergence in the variable space Xε , if for the corresponding sequence of the constrained minimization
problems (5.1), there exists a weak variational limit which can be recovered in the form of some optimal control
problem.

6. Convergence theorem and correctors

The main question of this section is the homogenization of the boundary value problem (1.5). Let H 1
per(Y ) be the

Sobolev space of Y -periodic functions. We begin with the following result:

Lemma 6.1. There exists a sequence of functions {wλ,h}h>λ>0 satisfying

(H1) wλ,h ∈H 1
per(Y ), w

λ,h = 0 on Kλ ∩ ∂Qh, 0 �wλ,h � 1;

(H2) wλ,h = 1 in Y \Ah;
(H3) wλ,h(x1, x2, . . . , xn)=wλ,h(−x1, x2, . . . , xn) ∀x ∈Ah, ∀h > λ > 0;
(H4) wλ,h ⇀ 1 weakly in H 1

per(Y ) and strongly in L2
per(Y ).

Proof. Let us define the following objects

A = {{vλ,h}: vλ,h = 0 on Kλ ∩ ∂Qh, vλ,h(x1, x2, . . . , xn)= vλ,h(−x1, x2, . . . , xn)

∀x ∈Ah,∀h > λ > 0, vλ,h ⇀ 1 in H 1
per(Y ), v

λ,h = 1 in Y \Ah
}
,

α = inf

{
lim inf
(h>λ)→0

∫
Y

|∇vλ,h|2 dx: {vλ,h} ∈ A
}
.

Note that the set A is not empty. Indeed, if we define the functions vλ,h as follows

vλ,h ∈H 1
per(Y ), �vλ,h = 0 in Ah \Aλ, vλ,h = 0 in Aλ,vλ,h = 1 in Y \Ah

one has immediately {vλ,h} ∈ A. For any k ∈ N, we consider a sequence {vλ,hk } ∈ A such that

lim inf
(h>λ)→0

∫
Y

|∇vλ,hk |2 dx < α + 1

k
.

Let v̂λ,hk = T (v
λ,h
k ), where T (s)= |s| if −1 � s � 1, and T (s)= 1 otherwise. Then {v̂λ,hk } ∈ A, 0 � v̂

λ,h
k � 1, and

lim inf
(h>λ)→0

∫
Y

|∇v̂λ,hk |2 dx � lim inf
(h>λ)→0

∫
Y

|∇vλ,hk |2 dx < α + 1

k
.

By Rellich–Kondrashov’s compactness and Lebesgue’s dominated convergence theorems, we conclude that the em-
bedding H 1

per(Y )∩L∞(Y ) ↪→ Lq(Y ) (1 � q <+∞) is compact. As a result, the sequence {v̂λ,h} converges strongly
k
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to 1 in L2(Y ) as (h > λ)→ 0 for every fixed k. Then it is possible to define a subsequence (λk,hk) of (λ,h) which is
decreasing and tends to 0, such that∫

Y

|∇v̂λk,hkk |2 dx < α + 2/k, ‖v̂λk,hkk − 1‖L2(Y ) < 1/k.

Then the desired sequence {wλ,h}h>λ>0 is defined by wλ,h = v̂
λk,hk
k . �

From now on, we suppose that each of the functions wλ,h satisfying conditions (H1)–(H4), is extended by Y -
periodicity onto R

n. We set

wε(x)=wλ(ε),h(ε)(x/ε) ∀x ∈Ω, ∀ε > 0.

From Lemma 6.1, we have

(P1) wε ∈H 1(Ω), 0 �wε � 1;
(P2) wε = 0 on Γ D

ε =⋃
k∈Θε

[Kλ(ε) ∩ ∂Qh(ε) + εk];
(P3) wε = 1 in Ω \⋃k∈Θε

(Ah(ε) + εk);
(P4) wε(x1, x2, . . . , xn)=wε(−x1, x2, . . . , xn) ∀x ∈Aλ(ε), ∀k ∈Θε and ε > 0;
(P5) wε ⇀ 1 weakly in H 1(Ω) and strongly in L2(Ω) as ε → 0.

Note that the sequence {|∇wε|2} is bounded in L1(Ω). So that, extracting if necessary, a subsequence, we can
suppose the existence of a bounded nonnegative Radon measure μ∗ such that |∇wε|2 converges to μ∗ in the weak
sense of the space Mb(Ω). Following in many aspects Casado-Díaz ([6], Theorem 2.1), the following quite similar
result can be proved:

Theorem 6.2. Let {wε ∈H 1(Ω)} be a sequence satisfying the properties (P1)–(P5). Then

(L1) |∇wε|2 → μ∗ weakly in Mb(Ω), where μ∗ ∈ M+
0 , i.e.

∫
Ω
ϕ|∇wε|2 dx → ∫

Ω
ϕ dμ∗ for any ϕ ∈ C∞

0 (Ω);
(L2) for any vε ∈H 1(Ω;Γ D

ε ∪Σε), and for any v ∈H 1
0 (Ω) such that vε ⇀ v in H 1(Ω), we have

v ∈ L2(Ω,dμ∗),
∫
Ω

ϕ(∇vε · ∇wε)dx →
∫
Ω

ϕv dμ∗ ∀ϕ ∈ C∞
0 (Ω). (6.1)

In fact, the measure μ∗ ∈ M+
0 that appeared as the weak limit of |∇wε|2 in the space Mb(Ω), can be recovered

in an explicit form. For this, we recall some properties of capacity (see Theorem 2 of Section 4.7.1 of [15]).

Lemma 6.3. Let D be an open subset of R
n and B be a compact subset of D. Then

(i) if {Di}i∈N is an increasing sequence of open sets such that
⋃

i∈N
Di =D, then limi→∞ cap(B,Di)= cap(B,D);

(ii) if {Di ⊂ E}i∈N is a decreasing sequence of compact sets such that ∩i∈NDi = clD, then limi→∞ cap(Di,E) =
cap(D,E);

(iii) if D1 ⊂D2, then cap(D1,E)� cap(D2,E);
(iv) if t > 0, then cap(tB, tD)= tn−2cap(B,D).

We now give the recovery result of the measure μ∗.

Lemma 6.4. Assume that the origin belongs to a smooth part of the boundary ∂Q (∂Q(0) ∈C∞). Then for a sequence
{wε ∈H 1(Ω)} which satisfies properties (P1)–(P5), we have |∇wε|2 ⇀μ∗ weakly in Mb(Ω), where

μ∗ = cap
(
K ∩ {x ∈ R

n: x1 = 0}) if n� 3, μ∗ = 2π if n= 2. (6.2)



C. D’Apice et al. / Ann. I. H. Poincaré – AN 25 (2008) 1073–1101 1089
Proof. The proof follows standard techniques in such situations (see [15]) and, in some aspects, it is similar to the one
given in [12]. First of all, we note that for any function ϕ ∈ C∞

0 (Ω), ε > 0, and every k ∈Θε we have the following
inequality:

ϕ(xεk)

∫
εY+εk

|∇wε|2 dx �
∫

εY+εk

|∇wε|2ϕ dx � ϕ(yεk)

∫
εY+εk

|∇wε|2 dx, (6.3)

where xεk, y
ε
k ∈ εY + εk.

Let us begin with the case n � 3. From the definition of the capacity and Theorem 6.2, it readily follows that∫
εY+εk |∇wε|2 dx = cap(Kλ(ε) ∩ ∂Qh(ε),Ah(ε)). Then, taking into account property (iv) of Lemma 6.3 and relation

(3.4), we have∫
εY+εk

|∇wε|2 dx = cap
(
λ(ε)[K ∩ ∂Qς(ε)],Ah(ε)

)

= λn−2(ε)cap
([K ∩ ∂Qς(ε)],Aς(ε)

)= εncap
([K ∩ ∂Qς(ε)],Aς(ε)

)
, (6.4)

where ς(ε)= h(ε)/λ(ε)= exp(−n ln ε/(n2 − 3n+ 2)) for n� 3.
Now we interpret the sequence {cap([K ∩ ∂Qς(ε)],Aς(ε))}ε>0 as a two parametric one: {Λδ,ε = cap([K ∩

∂Qς(δ)],Aς(ε))}δ,ε>0. Since this sequence is monotone with respect to the parameter ε, it follows that limδ,ε→0Λδ,ε =
limε→0Λδ(ε),ε for every sequence {δ(ε)} converging to zero. Then due to the following inequality:∣∣cap

([K ∩ ∂Qς(δ)],Aς(ε)
)− cap(K ∩D)

∣∣� ∣∣cap
([K ∩ ∂Qς(δ)])− cap(K ∩D)

∣∣
+ ∣∣cap

([K ∩ ∂Qς(δ)],Aς(ε)
)− cap

([K ∩ ∂Qς(δ)])∣∣= J ′(δ)+ J ′′(δ, ε) (6.5)

and using property (i) of Lemma 6.3, we have limε→0 J
′′(δ, ε)= 0 for every δ > 0.

To examine the limit properties of the sequence {J ′(δ)}δ>0, we have to perform its analysis in a more precise
form. Namely, since a part of boundary ∂Q containing the origin is smooth, it follows that there is a neighbourhood
U(0) of the origin such that U(0) ∩ ∂Q is a graph of a smooth function whose epigraph contains U(0) ∩Q. So, we
may suppose that there is a function Ψ : Rn−1 → R� such that Ψ ∈ C∞

0 (Rn−1) and x1 = Ψ (x2, . . . , xn) for every
x = (x1, x2, . . . , xn) ∈ U(0)∩ ∂Q.

Then the following conclusion is valid: x = (x1, x2, . . . , xn) ∈ K ∩ ε−1∂Q for ε small enough if and only if x ∈
ε−1(U(0)∩ ∂Q) and hence x1 = εΨ (x2/ε, . . . , xn/ε). As a result, for any sufficiently small ε0, there exists a constant
C′ > 0 such that

K ∩ ε−1∂Q⊂K ∩Πr ∀ε � ε0, with r = C′ε0‖Ψ ‖C(Rn−1∩U(0))

where Πr = {x ∈ R
n: 0 � x1 � r}. Then by properties (ii)–(iii) of Lemma 6.3, we have the following implication:

lim
r→0

cap(K ∩Πr)= cap(K ∩D) and K ∩ ε−1∂Q⊂K ∩ΠεC′‖Ψ ‖
C(Rn−1∩U(0))

∀ε > 0

implies that limε→0 cap(K ∩ ε−1∂Q)= cap(K ∩D). Hence

J ′(δ)= ∣∣cap
([K ∩ ∂Qς(δ)])− cap(K ∩D)

∣∣� C′‖Ψ ‖C(Rn−1)∩U(0)ς(δ) (6.6)

for δ small enough.
Summing up relations (6.3) for every k ∈Θε , and taking into account (6.4)–(6.6), we come to

[
cap(K ∩D)−C′ς(δ)‖Ψ ‖C(Rn−1) − J ′′(δ, ε)

] ∑
k∈Θε

εnϕ(xεk)�
∑

k∈Θε

∫
εY+εk

|∇wε|2ϕ dx

�
[
cap(K ∩D)+C′ς(δ)‖Ψ ‖C(Rn−1) + J ′′(δ, ε)

] ∑
k∈Θε

εnϕ(yεk). (6.7)

Therefore, if we consider the construction of the Riemann sum for
∫
Ω
ϕ dx, setting δ = ε, and passing to the limit in

(6.8) as ε → 0, we immediately obtain the required result limε→0
∫ |∇wε|2ϕ dx = cap(K ∩D)

∫
ϕ dx.
Ω Ω
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If n= 2, then we have a similar situation to the previous one. The only difference concerns the following obvious
equality∫

εY+εk

|∇wε|2dx = cap
(
exp(−1/ε2)K ∩ ∂Q,A

)

= cap
(
K ∩ exp(1/ε2)∂Q, exp(1/ε2)A

)
.

For the sequence {Λδ,ε = cap(K∩exp(1/δ2)∂Q, exp(1/ε2)A)}δ>0,ε>0, we can apply the above arguments. Therefore,
there is a constant C′′ > 0 such that for ε small enough∣∣Λδ,ε − cap

(
K ∩D, exp(1/ε2)A

)∣∣<C′′ exp(−1/δ2). (6.8)

However, as follows from [12] (see Lemma 3.3), we have

cap
(
K ∩D, exp(1/ε2)A

)= 2πε2(1 + cε), where lim
ε→0

cε = 0. (6.9)

Then, summing up relations (6.4) for all k ∈Θε and taking into account (6.8) and (6.9), we obtain

[
2π(1 + cε)−C′′ε−2 exp(−1/δ2)

] ∑
k∈Θε

ε2ϕ(xεk)�
∑

k∈Θε

∫
εY+εk

|∇wε|2ϕ dx

�
[
2π(1 + cε)−C′′ε−2 exp(−1/δ2)

] ∑
k∈Θε

ε2ϕ(yεk). (6.10)

Setting δ = ε and passing to the limit as ε → 0, we get limε→0
∫
Ω

|∇wε|2ϕdx = 2π . �
Corollary 6.5. Under the assumptions of Lemma 6.4 concerning the local smoothness property of the boundary ∂Q,
item (L2) of Theorem 6.2 can be made more precise in the following way: for any vε ∈H 1(Ω;Γ D

ε ∪Σε), and for any
v ∈H 1

0 (Ω) such that vε ⇀ v in H 1(Ω), we have∫
Ω

ϕ(∇vε · ∇wε)dx → μ∗
∫
Ω

ϕv dx ∀ϕ ∈C∞
0 (Ω), (6.11)

where the multiplier μ∗ is defined by (6.2). Moreover, in this case we have (see Proposition 3.3) |K ∩ ∂Λ|H =
|K ∩D|H .

The following result is crucial in this section:

Theorem 6.6. Let {vε ∈ H 1(Ωε;Γ D
ε ∪ Σε)} be a bounded sequence such that vε ⇀ v in the variable space

H 1(Ωε;Γ D
ε ∪ Σε) ∩ L2(Ω,dνλ,hε ). Let {ρ′

ε}ε>0 be the sequence of numbers that was defined in Proposition 3.5
and ρ∗ be its limit. Then for the sequence {wε ∈H 1(Ω)} with properties (P1)–(P5) we have

v ∈ L2(Ω,dμ∗),
∫
Ωε

ϕ(∇vε · ∇wε)dx → ρ∗
∫
Ω

ϕv dμ∗ ∀ϕ ∈C∞
0 (Ω). (6.12)

Proof. Denote by v̆ε ∈H 1(Ω;Γ D
ε ∪Σε) some extensions of the functions vε , and define the following sets:

Jε = {k = (k1, . . . , kn) ∈ Z
n: (εY + εk)⊂Ω},

Aε =
⋃

k∈Θε

[Ah(ε) + εk] =
( ⋃

k∈Jε
[Ah(ε) + εk]

)
∪
( ⋃

k∈Θε\Jε
[Ah(ε) + εk]

)
=A′

ε ∪A′′
ε .

It is clear that for any bounded sequence {zε ∈H 1(Ω)}, we have
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∫
Ω

ϕ(∇zε · ∇wε)dx =
∫

Ω∩Aε

ϕ(∇zε · ∇wε)dx

=
∫

(Ω\Ωε)∩Aε

ϕ(∇zε · ∇wε)dx +
∫

Ωε∩Aε

ϕ(∇zε · ∇wε)dx

=
∫

(Ω\Ωε)∩A′
ε

ϕ(∇zε · ∇wε)dx +
∫

Ωε∩A′
ε

ϕ(∇zε · ∇wε)dx

+
∫

(Ω\Ωε)∩A′′
ε

ϕ(∇zε · ∇wε)dx +
∫

Ωε∩A′′
ε

ϕ(∇zε · ∇wε)dx. (6.13)

Since each of the sets (Ω \Ωε)∩A′′
ε and Ωε∩A′′

ε is located along the boundary ∂Ω , it follows that |(Ω \Ωε)∩A′′
ε | →

0 and |Ωε ∩A′′
ε | → 0 as ε → 0. Hence, in view of the boundedness of {zε ∈H 1(Ω)} and {wε ∈H 1(Ω)} we conclude∫

(Ω\Ωε)∩A′′
ε

ϕ(∇zε · ∇wε)dx
ε→0−→ 0,

∫
Ωε∩A′′

ε

ϕ(∇zε · ∇wε)dx
ε→0−→ 0, (6.14)

lim
ε→0

[∫
Ω

ϕ(∇zε · ∇wε)dx −
∫

(Ω\Ωε)∩A′
ε

ϕ(∇zε · ∇wε)dx −
∫

Ωε∩A′
ε

ϕ(∇zε · ∇wε)dx

]
= 0. (6.15)

For {vε ∈H 1(Ωε;Γ D
ε ∪Σε)} and ϕ ∈C∞

0 (Ω), let us define a function ψ ∈ C∞
0 (Ω) in the following way (always

possible by the property (P4) of wε and some freedom of choosing of the extension operators v̆ε = Pε(vε), [5,12])

ρ′′
ε

∫
Ωε∩A′

ε

ϕ(∇vε · ∇wε)dx = ρ′
ε

∫
(Ω\Ωε)∩A′

ε

ψ(∇v̆ε · ∇wε)dx,∀ε > 0.

Here

ρ′
ε = |Aλ(ε) \Qh(ε)|

|Aλ(ε)| = |A \Qh(ε)/λ(ε)|
|A| , ρ′′

ε = |Aλ(ε) ∩Qh(ε)|
|Aλ(ε)| = |A∩Qh(ε)/λ(ε)|

|A| .

It is clear that ρ′
ε + ρ′′

ε = 1 for every ε > 0. Then∫
Ωε∩A′

ε

ϕ(∇vε · ∇wε)dx = ρ′
ε

[ ∫
Ωε∩A′

ε

ϕ(∇vε · ∇wε)dx +
∫

(Ω\Ωε)∩A′
ε

ψ(∇v̆ε · ∇wε)dx

]

= ρ′
ε

[ ∫
Ωε∩A′

ε

ϕ(∇v̆ε · ∇wε)dx +
∫

(Ω\Ωε)∩A′
ε

ψ(∇v̆ε · ∇wε)dx

]

= ρ′
ε

[ ∫
Ωε∩A′

ε

ϕ(∇v̆ε · ∇wε)dx +
∫

(Ω\Ωε)∩A′
ε

ϕ(∇v̆ε · ∇wε)dx

]

+ ρ′
ε

( ∫
(Ω\Ωε)∩A′

ε

(ψ − ϕ)(∇v̆ε · ∇wε)dx

)
. (6.16)

Since the sequences {v̆ε} and {wε} are equibounded in H 1(Ω), ρ′
ε tends to ρ∗ as ε → 0, and dϑ = max{|ψ(x) −

ϕ(y)|: |x − y|< ϑ} tends to zero as ϑ → 0, we easily obtain

ρ ′
ε

∣∣∣∣
∫

(Ω\Ωε)∩A′
ε

(ψ − ϕ)(∇v̆ε · ∇wε)dx

∣∣∣∣� ‖∇v̆ε‖L2(Ω)‖∇wε‖L2(Ω)d2λ(ε)r0
ε→0−→ 0. (6.17)

As a result, taking properties (6.14)–(6.17) into account, we come to the following relation:
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lim
ε→0

∫
Ωε

ϕ(∇vε · ∇wε)dx = lim
ε→0

[ ∫
Ωε∩A′

ε

ϕ(∇vε · ∇wε)dx +
∫

Ωε∩A′′
ε

ϕ(∇vε · ∇wε)dx

]

= lim
ε→0

∫
Ωε∩A′

ε

ϕ(∇vε · ∇wε)dx

= lim
ε→0

ρ′
ε · lim

ε→0

[ ∫
Ωε∩A′

ε

ϕ(∇v̆ε · ∇wε)dx +
∫

(Ω\Ωε)∩A′
ε

ϕ(∇v̆ε · ∇wε)dx

]

= ρ∗ lim
ε→0

∫
Ω

ϕ(∇v̆ε · ∇wε)dx. (6.18)

In order to complete this proof it only remains to apply property (6.1) of Theorem 6.2 and the fact that v ∈ H 1
0 (Ω)

due to Theorem 4.8. �
Remark 6.7. As follows from Proposition 3.5, the condition ρ∗ ∈ [1/2,1) is always valid. In particular, using the
suppositions of Lemma 6.4 concerning the smoothness of the boundary ∂Q in a neighbourhood of the origin, we have

ρ′
ε = |A \Qh(ε)/λ(ε)|/|A| ε→0−→ ρ∗ = 1/2. So, the main result of Theorem 6.6 can be viewed as follows:∫

Ωε

ϕ(∇vε · ∇wε)dx → (1/2)μ∗
∫
Ω

ϕv dx ∀ϕ ∈ C∞
0 (Ω),

where μ∗ is defined by (6.2).

We are now in a position to prove the main result of this section concerning the passage to the limit as ε → 0 in the
following integral identity:∫

Ω

χε(∇y̆ε · ∇ϕ)dx +
∫
Ω

χεy̆εϕ dx + k0ε
−nσ (ε)

∫
Ω

y̆εϕ dν
λ,h
ε

=
∫
Ω

χεfεϕ dx + ε−nσ (ε)
∫
Ω

pεϕ dν
λ,h
ε , ∀ϕ ∈H 1(Ω;Γ D

ε ∪Σε). (6.19)

Here {(aε,pε, y̆ε) ∈ Xε}ε>0 is an equibounded sequence of admissible triplets, and σ(ε) is defined by (3.9).
By Theorem 4.8, this sequence is relatively compact with respect to the weak convergence in the variable

space Xε . So, we may suppose that there exists a triplet (a,p, y) ∈ [H 2(Ω) ∩ H 1
0 (Ω)] × L2(Ω) × H 1

0 (Ω) such

that (aε,pε, yε)
w
⇀ (a,p,y).

Theorem 6.8. Let ρ∗ be a limit of the sequence (3.18) as ε → 0, and let{
aε ∈H 1

0 (Ω)∩H 2(Ω)∩L2(Ω,dμλ,hε )
}

and
{
pε ∈ L2(Ω,dνλ,hε )

}
(6.20)

be any bounded sequences of admissible controls for P̂ε-problems such that

aε ⇀ a in H 2(Ω)∩H 1
0 (Ω)∩L2(Ω,dμλ,hε ); (6.21)

pε ⇀ p in L2(Ω,dνλ,hε ). (6.22)

Let {yε = yε(aε,pε) ∈ H 1(Ω,Σε) ∩ L2(Ω,dνλ,hε )}ε>0 be the corresponding solutions to problem (1.5). Then

(aε,pε, yε)
w
⇀ (a,p,y) as ε → 0, y − a ∈ L2(Ω,dμ∗), and y is the unique function in H 1

0 (Ω) satisfying the fol-
lowing integral identity:∫

(∇y · ∇ϕ)dx + (
1 + k0|∂Q|H

)∫
yϕ dx + ρ∗

∫
(y − a)ϕ dμ∗
Ω Ω Ω
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=
∫
Ω

fϕ dx + |∂Q|H
∫
Ω

pϕ dx, ∀ϕ ∈H 1
0 (Ω)∩L2(Ω,dμ∗). (6.23)

Proof. Let {wε ∈H 1(Ω)}ε>0 be a sequence defined by Theorem 6.2. Let ϕ ∈ C∞
0 (Ω) be a fixed function. It is clear

that wεϕ ∈H 1(Ω;Γ D
ε ∪Σε) for every ε > 0. Take wεϕ as test functions in (6.19). Then the following integral identity

holds true for every ε > 0∫
Ω

χε
(∇(y̆ε − aε) · ∇(wεϕ)

)
dx +

∫
Ω

χε
(∇aε · ∇(wεϕ)

)
dx +

∫
Ω

χεy̆εwεϕ dx + k0ε
−nσ (ε)

∫
Ω

y̆εwεϕ dν
λ,h
ε

=
∫
Ω

χεfεwεϕ dx + ε−nσ (ε)
∫
Ω

pεwεϕ dν
λ,h
ε , ∀ϕ ∈H 1(Ω;Γ D

ε ∪Σε). (6.24)

Observe that in view of the boundedness of {fε ∈ L2(Ω)}, by using estimate (3.15) and Theorem 4.11, we may

suppose that there is a function y ∈H 1
0 (Ω) such that (aε,pε, yε)

w
⇀ (a,p, y) as ε → 0. We now pass to the limit in

(6.24) as ε → 0. We do it for each term of (6.24) separately. Observe first that∫
Ω

χε
(∇(y̆ε − aε) · ∇(wεϕ)

)
dx =

∫
Ω

χεwε

(∇(y̆ε − aε) · ∇ϕ)dx +
∫
Ω

χεϕ
(∇(y̆ε − aε) · ∇wε

)
dx.

Take into account the following facts: χεwε → 1 strongly in L2(Ω) (see Lemma 4.12), y̆ε − aε ⇀ v = y − a in
H 1

0 (Ω), vε = y̆ε − aε ∈H 1(Ωε;Γ D
ε ∪Σε) for every ε > 0. Then, by Theorem 6.6 we have∫

Ω

χεwε

(∇(y̆ε − aε) · ∇ϕ)dx ε→0−→
∫
Ω

(∇(y − a) · ∇ϕ)dx, (6.25)

∫
Ω

χεϕ
(∇(y̆ε − aε) · ∇wε

)
dx

ε→0−→ ρ∗
∫
Ω

ϕ(y − a)dμ∗, y − a ∈ L2(Ω,dμ∗). (6.26)

By (3.14) it follows that {aε} is bounded in H 2(Ω)∩H 1
0 (Ω), so

aε → a weakly in H 2(Ω) and hence ∇aε → ∇a strongly in
[
L2(Ω)

]n
.

Then, due to (6.21)–(6.22) and since ∇wε ⇀ 0 in [L2(Ω)]n, we obtain∫
Ω

χε
(∇aε · ∇(wεϕ)

)
dx

ε→0−→ 0,
∫
Ω

χεy̆εwεϕ dx
ε→0−→

∫
Ω

yϕ dx, (6.27)

k0ε
−nσ (ε) ε→0−→ k0|∂Q|H by (3.4),

∫
Ω

χεfεwεϕ dx
ε→0−→

∫
Ω

fϕ dx, (6.28)

∫
Ω

y̆εwεϕ dν
λ(ε),h(ε)
ε

ε→0−→
∫
Ω

yϕ dx as weak limit in L2(Ω,dνλ,hε ), (6.29)

ε−nσ (ε)
∫
Ω

pεwεϕ dν
λ(ε),h(ε)
ε

ε→0−→ |∂Q|H
∫
Ω

pϕ dx. (6.30)

Thus the required relation (6.23) is established for any function ϕ ∈C∞
0 (Ω). Moreover, from the fact that y̆ε −aε ∈

H 1(Ω,Γ D
ε ∪Σε) and aε → a in H 1

0 (Ω), we conclude that (y̆ε − aε)⇀ (y − a) in H 1(Ω), and hence y ∈H 1
0 (Ω).

To conclude, we note that the integral identity (6.23) can always be interpreted as the variational formulation of the
problem

−�y + (1 + k0|∂Q|H )y + ρ∗(y − a)μ∗ = f + p|∂Q|H ,
y ∈H 1(Ω), y − a ∈ L2(Ω,dμ∗),

}
(6.31)
0
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with respect to which the following result is well known: for every a ∈H 2(Ω)∩H 1
0 (Ω)∩L2(Ω,dμ∗), p ∈ L2(Ω),

and f ∈ L2(Ω) there exists a unique solution of (6.31) (see [14]). This completes the proof. �
The following statement is a direct consequence of well known results of the theory of boundary value prob-

lems [21].

Corollary 6.9. Let (a1,p1, y1), (a2,p2, y2) ∈ [H 2(Ω) ∩ H 1
0 (Ω)] × L2(Ω) × H 1

0 (Ω) be any triplets satisfying the

relation (6.31). Then there exists a constant Ĉ > 0 (Ĉ = Ĉ(Ω, |∂Q|, ρ∗)) such that

‖y1 − y2‖H 1
0 (Ω)∩L2(Ω,dμ∗) � Ĉ

[‖a1 − a2‖H 2(Ω)∩H 1
0 (Ω) + ‖p1 − p2‖L2(Ω) + ‖a1 − a2‖L2(Ω,dμ∗)

]
. (6.32)

7. Identification of the homogenized optimal control problem

In this section we show that for the sequence (5.1), there exists a weak variational limit with respect to the w-
convergence, and it can be recovered in an explicit form. We begin with the following result:

Lemma 7.1. Let {(aε,pε, yε) ∈ Xε}ε>0 be a bounded sequence of admissible solutions, assumed to be w-convergent
to a triplet (a,p, y) ∈ [H 2(Ω)∩H 1

0 (Ω)] ×L2(Ω)×H 1
0 (Ω). Then

lim
ε→0

∫
Ωε

|∇yε|2dx =
∫
Ω

|∇y|2 dx + ρ∗
∫
Ω

(y − a)2 dμ∗, (7.1)

where the measure μ∗ and value ρ∗ are defined in Theorems 6.2 and 6.6, respectively.

Proof. We first observe that∫
Ωε

|∇yε|2 dx =
∫
Ω

χε|∇y̆ε − ∇aε|2 dx + 2
∫
Ω

χε(∇y̆ε · ∇aε) dx −
∫
Ω

χε|∇aε|2 dx. (7.2)

Then, taking into account the facts that ∇aε → ∇a in [L2(Ω)]n, y̆ε ⇀ y in H 1(Ω), and χε → 1 in L2(Ω), we have∫
Ω

χε(∇y̆ε · ∇aε) dx ε→0−→
∫
Ω

∇y · ∇adx,
∫
Ω

χε|∇aε|2 dx ε→0−→
∫
Ω

|∇a|2 dx. (7.3)

Since (y̆ε − aε) ∈H 1(Ω,Γ D
ε ∪Σε) for every ε > 0, it follows that we can take y̆ε − aε as a test function ϕ in (6.19).

Then the following equality is ensured:∫
Ω

χε|∇y̆ε − ∇aε|2 dx = −
∫
Ω

χε∇aε · (∇y̆ε − ∇aε) dx −
∫
Ω

χεy̆ε(y̆ε − aε) dx

− k0ε
−nσ (ε)

∫
Ω

y̆ε(y̆ε − aε) dν
λ,h
ε +

∫
Ω

χεfε(y̆ε − aε) dx

+ ε−nσ (ε)
∫
Ω

pε(y̆ε − aε) dν
λ,h
ε . (7.4)

By properties (6.25)–(6.30), we obtain

lim
ε→0

∫
Ω

χε|∇y̆ε − ∇aε|2 dx = −
∫
Ω

∇a · (∇y − ∇a)dx −
∫
Ω

y(y − a)dx

−k0|∂Q|H lim
ε→0

∫
y̆ε(y̆ε − aε) dν

λ,h
ε +

∫
f (y − a)dx + |∂Q|H lim

ε→0

∫
pε(y̆ε − aε) dν

λ,h
ε .
Ω Ω Ω
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Since (y̆ε − aε) ∈ H 1(Ω,Γ D
ε ∪ Σε) ∩ L2(Ω,dνλ,hε ), we have: y̆ε − aε → y − a strongly in L2(Ω,dνλ,hε ) (by

Theorem 4.9), y̆ε ⇀ y in L2(Ω,dνλ,hε ) (by Theorem 4.8). Hence, in view of the definition of the strong convergence
in variable spaces, we conclude

lim
ε→0

∫
Ω

y̆ε(y̆ε − aε) dν
λ,h
ε =

∫
Ω

y(y − a)dx, lim
ε→0

∫
Ω

pε(y̆ε − aε) dν
λ,h
ε =

∫
Ω

p(y − a)dx.

As a result, we get

lim
ε→0

∫
Ω

χε|∇y̆ε − ∇aε|2 dx = −
∫
Ω

∇a · (∇y − ∇a)dx −
∫
Ω

y(y − a)dx

− k0|∂Q|H
∫
Ω

y(y − a)dx +
∫
Ω

f (y − a)dx + |∂Q|H
∫
Ω

p(y − a)dx. (7.5)

Let us consider the integral identity (6.23) with the test function ϕ = y − a. By a rearrangement, we have∫
Ω

|∇y − ∇a|2 dx + ρ∗
∫
Ω

y(y − a)dμ∗ − ρ∗
∫
Ω

a(y − a)dμ∗

= −
∫
Ω

∇a · (∇y − ∇a)dx − (1 + k0|∂Q|H )
∫
Ω

y(y − a)dx

+
∫
Ω

f (y − a)dx + |∂Q|H
∫
Ω

p(y − a)dx. (7.6)

The comparison of (7.5) with (7.6) leads to the following equality:

lim
ε→0

∫
Ω

χε|∇y̆ε − ∇aε|2 dx =
∫
Ω

|∇y − ∇a|2 dx + ρ∗
∫
Ω

(y − a)2 dμ∗.

which, together with (7.2)–(7.3), concludes the proof. �
We are now in position to establish the identification result of the weak variational limit for the sequence of

constrained minimization problems (5.1).

Theorem 7.2. For the sequence (5.1) there exists a unique weak variational limit with respect to the w-convergence
which can be represented in the form (5.2), where the cost functional I0 and the set of admissible solutions Ξ0 are
defined as follows:

I0(a,p, y)=
∫
Ω

|∇y|2 dx +
∫
Ω

|y − z∂ |2 dx + ρ∗
∫
Ω

(y − a)2 dμ∗

+ |∂Q|H
∫
Ω

p2 dx + |K ∩ ∂Λ|H
∫
Ω

a2 dx, (7.7)

Ξ0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
(a,p, y)

∣∣∣∣∣∣∣∣∣∣∣∣∣

y ∈H 1
0 (Ω), p ∈ L2(Ω),

a ∈H 2(Ω)∩H 1
0 (Ω), y − a ∈L2(Ω,dμ∗),

‖a‖H 2(Ω) � C0,∫
Ω
(∇y · ∇ϕ)dx + ρ∗ ∫

Ω
(y − a)ϕ dμ∗

+(1 + k0|∂Q|H )
∫
Ω
yϕ dx = ∫

Ω
fϕ dx + |∂Q|H

∫
Ω
pϕ dx,

∀ϕ ∈H 1
0 (Ω)∩L2(Ω,dμ∗)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(7.8)

Here Λ is a cone in R
n (see Proposition 3.3).
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Proof. The proof of this theorem is divided into two steps each of them concerns the verification of the corresponding
item of Definition 5.3.
STEP 1: Statement (1) of Definition 5.3 is valid.

Let {(ak,pk, y̆k) ∈ Xε}ε>0 be a bounded sequence which is w-convergent to a triplet (u,p, y) ∈ [H 2(Ω) ∩
H 1

0 (Ω)] ×L2(Ω)×H 1
0 (Ω). Let {εk} be a subsequence of {ε} such that εk → 0 as k → ∞ and (ak,pk, yk) ∈ Ξ̂εk for

all k ∈ N. Then, due to Theorem 6.8, we have that the w-limit triplet (u,p, y) satisfies integral identity (6.23), and
moreover

C0 � lim inf
k→∞ ‖ak‖H 2(Ω) � ‖a‖H 2(Ω)

by the lower semicontinuity of ‖ · ‖H 2(Ω) with respect to the weak convergence in H 2(Ω). So, inclusion (5.3) holds
true.

We now turn back to the test inequality (5.3). By the property of the lower semicontinuity of the weak convergence
in variable spaces, Proposition 3.3, and relation (3.4), we have

lim
k→∞

[
ε−n
k σ (εk)

∫
Ω

p2
εk
dνλ(εk),h(εk)εk

+ |K ∩ ∂Qς(εk)|H
∫
Ω

a2
εk
dμλ(εk),h(εk)εk

]

� |∂Q|H
∫
Ω

p2 dx + |K ∩ ∂Λ|H
∫
Ω

a2 dx.

To conclude it remains only to apply Lemma 7.1.
STEP 2: Statement (2) of Definition 5.3 holds true.

Let (a,p, y) ∈ Ξ0 be an admissible triplet for the minimization problem (5.2). As readily follows from (7.7), for
any triplet (a, p̂, ŷ) ∈Ξ0 there exists a constant γ > 0 depending on Ω , z∂ , ρ∗, p, y, and |∂Q|H , such that∣∣I0(a,p, y)− I0(a, p̂, ŷ)

∣∣� γ
(‖y − ŷ‖2

H 1
0 (Ω)∩L2(Ω,dμ∗) + ‖p− p̂‖2

L2(Ω)

)
. (7.9)

Let 1 > δ > 0 be a given value. Using the density of the embedding H 1(Ω) ↪→ L2(Ω), we can choose an element
p̂ ∈H 1(Ω) such that ‖p− p̂‖L2(Ω) < �, where

� < max
{
δ/

√
γ (1 + Ĉ), δ/Ĉ

}
. (7.10)

Let ŷ = ŷ(a, p̂) be the corresponding solution of the boundary value problem (6.31). Then due to estimates (6.32) and
(7.9), we have∣∣I0(a,p, y)− I0(a, p̂, ŷ)

∣∣� γ (1 + Ĉ)‖p− p̂‖2
L2(Ω)

< δ, (7.11)

‖y − ŷ‖H 1
0 (Ω)∩L2(Ω,dμ∗) ≤ Ĉ‖p− p̂‖L2(Ω) < δ.

We now construct the δ-realizing sequence {(âλ,hε , p̂λ,hε , ŷλ,hε ) ∈ Xε}ε>0 as follows: âλ,hε = a, p̂λ,hε = p̂, and we
take ŷλ,hε as the corresponding solution of the original boundary value problem (1.5). Hence (âλ,hε , p̂λ,hε , ŷλ,hε ) ∈ Ξ̂ε

for every ε > 0. It is clear that this sequence in equibounded in Xε . Moreover, by Lemma 4.2 and Theorems 4.8–4.9,
we have

âλ,hε ⇀ a in L2(Ω,dμλ,hε ) and
∫
Ω

(âλ,hε )2 dμλ,hε

ε→0−→
∫
Ω

a2 dx; (7.12)

p̂λ,hε ⇀ p̂ in L2(Ω,dνλ,hε ) and
∫
Ω

(p̂λ,hε )2 dνλ,hε

ε→0−→
∫
Ω

p̂2 dx. (7.13)

Then, applying Theorem 4.11, we conclude that the sequence {(âλ,hε , p̂λ,hε , ŷλ,hε )} is compact with respect to the w-
convergence. Let (a, p̂, ŷ∗) be its w-limit. Due to Theorem 6.8 we have (a, p̂, ŷ∗) ∈ Ξ0. Since the boundary value

problem (6.31) has a unique solution for every fixed a and p̂, it follows that ŷ∗ = ŷ, and hence (âλ,hε , p̂λ,hε , ŷλ,hε )
w
⇀

(a, p̂, ŷ) as ε → 0.
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Consequently, properties (5.4) are fulfilled. It remains only to verify inequality (5.5). To do so, we use properties
(7.12)–(7.13) and Lemma 7.1. Then limε→0 Îε(â

λ,h
ε , p̂λ,hε , ŷλ,hε )= I0(a, p̂, ŷ). To conclude we apply inequality (7.11).

This yields the required result

I0(a,p, y)� lim
ε→0

Îε(â
λ,h
ε , p̂λ,hε , ŷλ,hε )− δ

end this ends the proof. �
It is now clear that the constrained minimization problem (5.2) can be interpreted as an optimal control problem.

So, in accordance with Definition 5.5, we can give the following deduction: for the optimal control problem (1.5)–
(1.9) (so-called Pε-problem) there exists a unique homogenized one with respect to w-convergence as ε → 0 and it
can be represented in the form (1.10)–(1.13).

Proposition 7.3. The limit optimal control problem (1.10)–(1.13) has a unique solution.

Proof. The proof is quite similar to that given in Theorem 2.1. The main difference is the choice of the topology for
the space of admissible solutions [H 2(Ω)∩H 1

0 (Ω)]×L2(Ω)×H 1
0 (Ω) with respect to which the set Ξ0 and the cost

functional I0 possess the required topological properties, one of which has to guarantee the inclusion (1.12). It is clear
that this topology can be taken as τ = (wH 2(Ω)∩H 1

0 (Ω))× (wL2(Ω))× (wH 1
0 (Ω)), where w(·) denotes the weak topology

of the corresponding Banach space. Indeed, due to the fact that μ∗ ∈ M+
0 (Ω), the space H 1

0 (Ω)∩L2(Ω,dμ∗) is well
defined (see Remark 3.1). Hence, if yn ⇀ y in H 1

0 (Ω) and an ⇀ a in H 2(Ω)∩H 1
0 (Ω), then (yn − an)⇀ (y − a) in

L2(Ω,dμ∗). Moreover, it can be easily checked (by passing to the limit in (1.10), (1.12)) that the set Ξ0 is τ -closed
and the cost functional I0 is τ -lower semicontinuous. In another aspects we do not modify the proof of Theorem 2.1
is then valid with any more modifications. �

Thus, combining the results of Theorems 2.1, 5.4, and Proposition 7.3, we come to the following conclusion
concerning the variational properties of the homogenized optimal control problem (1.10)–(1.13):

Theorem 7.4. Let {(a0
ε ,p

0
ε , y

0
ε ) ∈ Ξ̂ε}ε>0 be the optimal solutions of the problems P̂ε . Then

lim
ε→0

Îε(a
0
ε ,p

0
ε , y

0
ε )= inf

(a,p,y)∈Ξ0
I0(a,p, y)= I0(a

0,p0, y0), (7.14)

and

(a0
ε ,p

0
ε , y

0
ε )

w−→ (a0,p0, y0) in the variable space Xε. (7.15)

8. Optimality conditions for the homogenized problem and suboptimal controls for Pε-problem

In this section we derive the optimality conditions for the problem (1.10)–(1.13) from which an optimal triplet may
be determined. For this, we use the Lagrange multiplier principle. We obtain the weak form of the optimality system
equations that an optimal triplet (a0,p0, y0) and Lagrange multipliers must satisfy. This optimality system can serve
as a basis for the construction of suboptimal solutions to the original problem in perforated domains.

We recall some central tenet of the Lagrange multiplier principle. Let Y, U, and V be the Banach spaces. Let
I : Y × U → R be a cost functional, and let F(y,u) : Y × U → V be a mapping. Let U∂ be a closed subset of U with
a nonempty interior. We have the following minimization problem:

I (y,u)−→ inf, F (y,u)= 0, u ∈U∂. (8.1)

The Lagrange functional for the problem (8.1) is defined by

L(y,u,λ,ψ)= λI (y,u)+ 〈
F(y,u),ψ

〉
, where λ ∈ R+,ψ ∈ V

′. (8.2)

Theorem 8.1. (Ioffe and Tikhomirov [17].) Let (y0, u0) ∈ Y × U be a solution of (8.1). Assume that the mappings
y → I (y,u) and y → F(y,u) are continuously differentiable at y ∈ O(y0) and ImF ′

y(y
0, u0)= V. Assume that the
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mapping u→ I (y,u) is convex, I is differentiable at (y0, u0), and that the mapping u→ F(y,u) is continuous and
affine. Then λ can be taken as 1 and there exists a ψ ∈ V

′ such that〈
L′
y(y

0, u0,1,ψ),h
〉= 0 ∀h ∈ V and

〈
L′
u(y

0, u0,1,ψ),u− u0〉� 0 ∀u ∈U∂. (8.3)

We now apply the Lagrange principle to the optimal control problem (1.10)–(1.13).

Theorem 8.2. A triplet

(a0,p0, y0) ∈ [H 2(Ω)∩H 1
0 (Ω)

]×L2(Ω)× [
H 2(Ω)∩H 1

0 (Ω)
]
, y0 − a0 ∈ L2(Ω,dμ∗)

is an optimal solution to the problem (1.10)–(1.13) if and only if there exists a function ψ ∈ H 2(Ω) ∩ H 1
0 (Ω) ∩

L2(Ω,dμ∗) such that the quaternary (a0,p0, y0,ψ) satisfies the following optimality system:∫
Ω
(∇y0 · ∇ϕ)dx + ρ∗ ∫

Ω
(y0 − a0)ϕ dμ∗ + (1 + k0|∂Q|H )

∫
Ω
y0ϕ dx

= ∫
Ω
fϕ dx + |∂Q|H

∫
Ω
p0ϕ dx, ∀ϕ ∈H 1

0 (Ω)∩L2(Ω,dμ∗).

}
(8.4)

∫
Ω
(∇ψ + 2∇y0) · ∇φ dx + ∫

Ω

[
2(y0 − z∂)+ (1 + k0|∂Q|)ψ]φ dx

+ρ∗ ∫
Ω
(ψ + 2(y0 − a0))φ dμ∗ = 0 ∀φ ∈H 1

0 (Ω)∩L2(Ω,dμ∗),

}
(8.5)

p0 =ψ/2 a.e. in Ω, (8.6)

2|K ∩ ∂Λ|H
∫
Ω
a0(a − a0) dx − ρ∗ ∫

Ω
ψ(a − a0) dμ∗ − 2ρ∗ ∫

Ω
(y0 − a0)(a − a0) dμ∗ � 0,

∀a ∈ {a ∈H 2(Ω)∩H 1
0 (Ω): ‖a‖H 2(Ω) � C0

}
.

}
(8.7)

Proof. Let (a0,p0, y0) be an optimal solution to problem (1.10)–(1.13). To apply the Lagrange principle, we set
Y =H 2(Ω)∩H 1

0 (Ω), U = [H 2(Ω)∩H 1
0 (Ω)] ×L2(Ω), V = L2(Ω), and F(a,p,y)= −�y + (1 + k0|∂Q|H )y +

ρ∗(y−a)μ∗ −f −|∂Q|Hp. Since f ∈ L2(Ω), it follows that the boundary value problem (6.31) has a unique solution
y ∈H 2(Ω) ∩H 1

0 (Ω) for any a ∈H 2(Ω) ∩H 1
0 (Ω) and p ∈ L2(Ω), and moreover, in this case y − a ∈ L2(Ω,dμ∗)

(see [21,14]). Hence ImF ′
y = V. Thus all the assumptions of Theorem 8.1 are fulfilled. We now define the Lagrange

function as follows

L(a,p, y,ψ)=
∫
Ω

|∇y|2 dx +
∫
Ω

|y − z∂ |2 dx + ρ∗
∫
Ω

(y − a)2dμ∗

+ |∂Q|H
∫
Ω

p2 dx + |K ∩ ∂Λ|H
∫
Ω

a2 dx +
∫
Ω

(∇y · ∇ψ)dx −
∫
Ω

fψ dx

+ ρ∗
∫
Ω

(y − a)ψ dμ∗ + (
1 + k0|∂Q|H

)∫
Ω

yψ dx − |∂Q|H
∫
Ω

pψ dx

∀ψ ∈H 1
0 (Ω)∩L2(Ω,dμ∗).

In accordance with Theorem 8.1, there exists a function ψ ∈ H 1
0 (Ω) ∩ L2(Ω,dμ∗) such that relations (8.2)–(8.3)

are valid. In this case relation (8.3) takes the form (8.6)–(8.7), whereas (8.2) can be written as (8.5). Since y0 ∈
H 2(Ω) ∩H 1

0 (Ω) and z∂ ∈ L2(Ω), it follows that the bilinear form 〈∇ψ,∇φ〉L2(Ω) + (1 + k0|∂Q|H )〈ψ,φ〉L2(Ω) +
ρ∗〈ψ,φ〉L2(Ω,dμ∗) is coercive on the space H 1

0 (Ω) ∩ L2(Ω,dμ∗). So, by the Riesz representation theorem we im-
mediately conclude that there exists a unique function ψ ∈ H 1

0 (Ω) ∩ L2(Ω) satisfying equality (8.5) and such that
ψ ∈ H 2(Ω). Thus, the first part of Theorem 8.1 is proved, i.e. (8.4)–(8.7) are the necessary optimality conditions.
Since the mapping y → I0(a,p, y) is convex and the mapping (a,p) → F(a,p,y) is continuous and affine, rela-
tions (8.4)–(8.7) are also sufficient optimality conditions for the problem (1.10)–(1.13). As this problem is uniquely
solvable, the proof is complete. �

As an evident consequence of this theorem we have the following result.
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Corollary 8.3. If (a0,p0, y0) is an optimal solution to (1.10)–(1.13) then

p0 ∈H 2(Ω)∩H 1
0 (Ω)∩L2(Ω,dμ∗). (8.8)

Now using (8.8) and applying Lemmas 4.2 and 4.4, we immediately establish the following approximation property
for the optimal controls:

Proposition 8.4. If p0 ∈H 2(Ω) ∩H 1
0 (Ω) ∩ L2(Ω,dμ∗) and a0 ∈H 2(Ω) ∩H 1

0 (Ω) are the optimal controls to the
homogenized problem (1.10)–(1.13), then

(a0,p0) ∈ L2(Ω,dμλ,hε )×L2(Ω,dνλ,hε ) ∀ε > 0, (8.9)

a0 ⇀a0 in L2(Ω,dμλ,hε ), lim
ε→0

∫
Ω

(a0)2dμλ,hε =
∫
Ω

(a0)2 dx, (8.10)

p0 ⇀p0 in L2(Ω,dνλ,hε ), lim
ε→0

∫
Ω

(p0)2 dνλ,hε =
∫
Ω

(p0)2 dx. (8.11)

The next question we are going to consider in this section concerns the approximation of the optimal solutions of
the original problem P̂ε for ε small enough. We focus our attention on the possibility to define the so-called suboptimal
solutions which have to guarantee the closeness of the corresponding value of the cost functional Iε(asub

ε ,psub
ε , ysub

ε )

to its minimum if ε is small enough. To do so, we introduce the following concept:

Definition 8.5. We say that a sequence of pairs {(ã0
ε , p̃

0
ε )}ε>0 is asymptotically suboptimal for the problem P̂ε if for

every δ > 0, there is ε0 > 0 such that∣∣∣ inf
(aε,pε,yε)∈Ξ̂ε

Îε(aε,pε, yε)− Îε(ã
0
ε , p̃

0
ε , ỹε)

∣∣∣< δ ∀ε < ε0, (8.12)

where ỹε = ỹε(ã
0
ε , p̃

0
ε ) denote the corresponding solutions of the boundary value problem (1.5).

Proposition 8.4 leads to the following final result:

Theorem 8.6. Let p0 ∈ H 2(Ω) ∩H 1
0 (Ω) ∩ L2(Ω,dμ∗) and a0 ∈ H 2(Ω) ∩H 1

0 (Ω) be the optimal controls for the
homogenized problem (1.10)–(1.13). Then the sequence of the pairs {(a0,p0)}ε>0 is asymptotically suboptimal for
the original optimal control problem P̂ε .

Proof. Let us consider the sequence of triplets {(a0,p0, ˘̃yε) ∈ Xε}ε>0, where ỹε = ỹε(a
0,p0) are the corresponding

solutions of the boundary value problem (1.5). Each of these triplets is admissible for the problem P̂ε . Moreover,
due to estimate (3.15), this sequence is equibounded in Xε . By Theorem 4.11 it is relatively compact with respect to
the w-convergence in Xε . Hence, taking into account Proposition 8.4 and Theorem 6.8, we deduce: this sequence is

w-compact and (a0,p0, ỹε)
ε→0−→ (a0,p0, y0), where (a0,p0, y0) is an optimal solution to the homogenized problem

(1.10)–(1.13).
Let {(a0

ε ,p
0
ε , y

0
ε ) ∈ Ξ̂ε}ε>0 be the optimal solutions to the P̂ε . We observe that∣∣∣ inf

(aε,pε,yε)∈Ξ̂ε

Îε(aε,pε, yε)− Îε(a
0,p0, ỹε)

∣∣∣= ∣∣Îε(a0
ε ,p

0
ε , y

0
ε )− Îε(a

0,p0, ỹε)
∣∣

�
∣∣Îε(a0

ε ,p
0
ε , y

0
ε )− I0(a

0,p0, y0)
∣∣+ ∣∣I0(a

0,p0, y0)− Îε(a
0,p0, ỹε)

∣∣
�
∣∣Îε(a0

ε ,p
0
ε , y

0
ε )− I0(a

0,p0, y0)
∣∣+ ∣∣∣∣

∫
Ω

|∇y0|2 dx + ρ∗
∫
Ω

(y0 − a0)2 dμ∗ −
∫
Ω

χε|∇ ˘̃yε|2 dx
∣∣∣∣

+
∣∣∣∣
∫

|y0 − z∂ |2 dx −
∫
χε| ˘̃yε − z∂ |2 dx

∣∣∣∣+
∣∣∣∣|∂Q|H

∫
(p0)2 dx − ε−nσ (ε)

∫
(p0)2 dνλ,hε

∣∣∣∣

Ω Ω Ω Ω
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+
∣∣∣∣|K ∩ ∂Λ|H

∫
Ω

(a0)2 dx − |K ∩ ∂Qς(ε)|H
∫
Ω

(a0)2 dμλ,hε

∣∣∣∣= J1 + J2 + J3 + J4 + J5.

To conclude the proof, we note that for a given δ > 0 one can always find: (1) ε1 > 0 such that J1 < δ/5 for all
ε < ε1 by Theorem 7.4; (2) ε2 > 0 such that J2 < δ/5 for all ε < ε2 by Lemma 7.1; (3) ε3 > 0 such that J3 < δ/5 for
all ε < ε3 by the w-convergence (a0,p0, ỹε) to (a0,p0, y0); (4) ε4 > 0 such that J4 < δ/5 for all ε < ε4 by (3.9) and
(8.11); (5) ε5 > 0 such that J5 < δ/5 for all ε < ε5 by (8.10) and (3.17). Thus, as expected, estimate (8.12) is valid for
all ε < min{ε1, ε2, ε3, ε4, ε5}.

It should be stressed that a sequence of asymptotically suboptimal controls for the problem P̂ε has a particularly
simple and attractive form if the optimal control pair (a0

ε ,p
0
ε ) for the problem P̂ε is such that a0

ε (x) = a∗( x
ελ(ε)

),

p0
ε (x)= p∗( x

εh(ε)
), where a∗ ∈H 1(K) and p∗ ∈L2(∂Q,dHn−1) are some Y -periodic functions. Indeed, in this case

by Proposition 4.13 and Theorem 7.4, we have

a0
ε ⇀

(
1

|K ∩ ∂Λ|H
∫

K∩∂Λ
a∗ dHn−1

)
= a0, p0

ε ⇀

(
1

|∂Q|H
∫
∂Q

p∗ dHn−1
)

= p0

in L2(Ω,dμλ,hε ) and L2(Ω,dνλ,hε ), respectively, where (a0,p0) are optimal controls for the homogenized problem
(1.10)–(1.13). Hence, the conclusion of Theorem 8.6 can be reformulated as follows: the constant sequence of pairs
{(a0,p0) ∈ R

2}ε>0, where

p0 =
(

1

|∂Q|H
∫
∂Q

p∗dHn−1
)

and a0 =
(

1

|K ∩ ∂Λ|H
∫

K∩∂Λ
a∗dHn−1

)
,

is a sequence of asymptotically suboptimal controls for the original problem P̂ε .
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