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Abstract

This paper deals with a phase transitions model describing the evolution of damage in thermoviscoelastic materials. The resulting
system is highly non-linear, mainly due to the presence of quadratic dissipative terms and non-smooth constraints on the variables.
Existence and uniqueness of a solution are proved, as well as regularity results, on a suitable finite time interval.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

This paper deals with the phenomenon of damage in thermoviscoelastic materials. It is known that a material loses
its stiffness during the damage process. Consequently, deformations become uncontrolled and the material breaks.
In the last years, Frémond has proposed a macroscopic model describing the damaging process in continuous media
using the phase transitions approach and accounting for microscopic movements [11]. In particular, a phase parameter
X characterizes the state of damage of the material. More precisely, the phase parameter x satisfies the constraint

x €10,1], (1.1)

where x = 1 and x = 0 correspond to the undamaged and completely damaged material, respectively. In an intermedi-
ate situation it is x € (0, 1). The resulting isothermal model consists into two partial differential equations describing
the evolution of the phase parameter and of the deformations. Some analytical results have been obtained both in the
one-dimensional setting and in the three-dimensional case [13,4,5]. However, all these results are local in time, as the
existence of a solution is proved still the damaging process is not complete. This is mainly due to the degeneracy of
the stiffness of the material during the process leading uncontrolled deformations. To overcome this difficulty, our idea
is to include some constitutive relation in the model characterizing the behaviour of the material once it is completely
damaged in some region. In a recent contribution [12] the authors introduce a model in which it is prescribed as a
constraint an uniform bound for the deformations velocity. In the present paper, we propose a model in which it is
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required that when the material is completely damaged some viscosity effects remain (cf. also [5]). In particular, we
are able to control deformations when the damaging process is completed in some region of the body, even if the
model itself does not ensure any a priori bound on the deformations velocity. Hence, dealing with viscoelastic mate-
rials (cf., e.g., [9,10]), it turns out to be interesting to extend the damage Frémond model to non-isothermal situations
accounting for thermal effects. Thus, a novelty of the present contribution, with respect to the others in the literature
concerning the Frémond model for damage, is the fact that we take thermal effects into account and, consequently, we
introduce an energy balance equation in the resulting system.

Now, let us briefly describe the derivation of the model (see also [3]). We consider a thermoviscoelastic material
located in a bounded smooth domain £2 C R, with boundary I" := 9£2, and investigate the damage evolution during
a finite time interval (0, 7). We use the notation Q := 2 x (0,T), and Q;, = 2 x (0,1), with t € (0, T). Let us
fix as state variables of our model the absolute temperature 6, the symmetric strain tensor ¢(u) (u stands for the
vector of small displacements), the phase parameter x related to the quantity of damaged material, and the gradient
of damage V x, accounting for local interactions. Then, we specify the free energy ¥ as follows

1 v
(0, x. VX, em) = —cs0logh + Exe(u)KE(u) +w(l—x)+ §|VX|2 +a@)x tre(m) + fjo.n(x).  (1.2)

The indicator function /I[o, 1] accounts for the constraint (1.1) on the phase parameter, as itis Ijo,11(x) = 01if x € [0, 1]
and Ijo,11()x) = +o0o otherwise. The term «(6)x, acting when the material is not completely damaged, represents a
thermal expansion coefficient, while K stands for the stiffness matrix. As it is natural, the energy terms associated to
deformations disappear once the material is completely damaged, i.e. when y = 0. Moreover, c; > 0 denotes the heat
capacity of the system, w > 0 is related to the cohesion energy of the material (which is considered independent of x ),
and v is a positive constant. On a second step, we introduce a pseudo-potential of dissipation @ depending on suitable
dissipative variables, describing the evolution of the thermomechanical system. We consider as dissipative variables
the macroscopic velocities €(u;), the gradient of the temperature V6 related to the heat flux, and the time derivatives
x: and V y; related to the microscopic velocities (see [11]).

Koo, 1 2, 0 A 2
®(V9,XI,VXI,8(uz))=§leI +5|VXr| +§8(ut)58(“1)+%|ve| + I(—00.01(X1)> (1.3)

where u, n, 6 and X are positive constants, and S is a symmetric and positive definite matrix. The indicator function
I(—0,01(x:) represents a constraint on the sign of x;, which is forced to be non-positive. Indeed, /(—s0,01(x/) =0
if x; <0, while I(_o 0](x;) = +00 otherwise. This corresponds to describe an irreversible damaging process as x
cannot increase, i.e. the material cannot repair itself once it is damaged (cf., e.g., [4] and [6]). Hence, before writing
the universal balance laws of continuum thermomechanics, i.e., the energy balance and the momentum balance, we
specify the constitutive relations for the involved physical quantities. They are derived by ¥ and @, in accordance
with the second principle of thermodynamics.
The entropy s is given by

ow
s=—¥=cx(log0+1)—a’(9)xtr8(u), (1.4)
and the internal energy e is
e=Y 4 0s. (1.5)

The heat flux q is assumed to be governed by the Fourier law. We derive it by the pseudo-potential of dissipation
introducing the dissipative vector

0P
d_ _
Q' ="5v0
related to q by q = Q<. Thus, we recover
q=—AV0. (1.6)

Then, we introduce the stress tensor o which is supposed to be the sum of non-dissipative and dissipative contributions
14 0P

+ _

de(u) de(uy)

o=0"+0%= = xKe() 4+ a0)x1+ 5Se(uy) (1.7)
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(1 denotes the identity matrix) and two internal microscopic forces given by the sum of non-dissipative and dissipative
components as well

o 0P
B=B"4+Bl="—" 4+ — (1.8)
Ix  Oxe
ov 0D
H=H"Y+H' = — + . (1.9)
dVyxy 0Vy
In particular, we have
1 .
B= ES(H)KS(H) —w+a@)diva+ dljo,11(x) + mxe + 0l (—00,01(Xt)s (1.10)
and
H=vVyx +1nVyx;. (1.11)

We recall that 91 1) is the subdifferential of the indicator function Ijo1; and it is defined for x € [0, 1] by:
aljp,11(x) =01if x € (0, 1), 91j0,11(0) = (=00, 0], and d1[p,11(1) = [0, +-00). Analogously, we have 91(—s,01(x;) =0
if x; <0, while 9/(_x0,01(0) = [0, 4+00).

Now, we write the balance laws of continuum thermomechanics. The energy balance equation reads

e, +divq=r+oe(u;))+ By + H- Vy;. (1.12)

Note on the right-hand side of (1.12) the heat source r and the mechanically induced heat sources, which are related
to macroscopic and microscopic stresses. In the sequel, for the sake of simplicity, we let » = 0. In the approach
by Frémond [11], (1.12) is derived through a generalization of the principle of virtual power including microscopic
movements responsible for the phase transition, i.e. in this case the damaging process. Then, the classical momentum
balance is written accounting also for macroscopic accelerations and assuming that no external volume forces act on
the body

ut[_diVU:O. (113)
Analogously, it is recovered a microscopic balance equation accounting for microscopic accelerations (see [7])
X1t + B —divH=0. (1.14)

The above equations (1.12), (1.13), and (1.14) are completed by suitable boundary conditions. We let (here n is the
outward normal unit vector to the boundary)

q-n=0 inI x(0,T), (1.15)
H-n=0 inl x(0,7), (1.16)
u=0 inl x(0,7T). (1.17)

Now, we substitute in (1.12)—(1.14), (1.15)—(1.17) the constitutive relations written in terms of ¥ and . Applying
the chain rule, we getin 2 x (0, T)

(cs — 0" () x divu)d;, — A0 — &' (0)0(x; divu + x divuy) = wlxe)? + 0Vl + 8Se(uy)e(uy), (1.18)

uy, — div(x Ke@) +a(@)x1 +8Se(u;)) =0, (1.19)
1 .

Xer Fuxe —nAxe —vAx +010,11(x) + 0L (—00,00(Xs) > W — Ee(u)Ke(u) —a(@)diva (1.20)

andin I" x (0, T)

0,0 =0, hx=0dx,=0, u=0. (1.21)
Then, we fix initial assumptions (holding in £2)

0(0) = 0y, (1.22)

x(0) = xo0 € (0, 1], x:(0) = x1, (1.23)
u(0) = uy, u (0) =u;. (1.24)
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Remark 1.1. Let us discuss the thermodynamical consistence of the model. Explicitly writing (1.12), accounting for
the prescribed constitutive relations (1.6)—(1.9), by the chain rule we have

9<s, +divQ? — g) =Bl +H - Vy +0%m)— Q% Vo

= a¢(vea Xt» VXI? 8(“[)) : (VQ, Xt» Vxl‘a 8(“1‘)) 2 0’ (125)

where 0@ denotes the subdifferential of @ with respect to the dissipative variables (V@, x;, V x;, €(u;)). Now, @ is a
convex, non-negative function, attaining its minimum O for (V8, x;, Vx;, e(w;)) = (0, 0, 0, 0). Thus, its subdifferential
is a maximal monotone graph with (0,0, 0,0) € d®(0, 0, 0, 0), from which the inequality in (1.25) easily follows.
Hence, as the absolute temperature is 8 > 0, (1.25) yields the Clausius—Duhem inequality

s +divQd — g >0.

Now, concerning the doubly non-linear character of (1.20), we actually observe that if x; < 0 and, e.g., xo = 1, we
have for any solution y < 1 a.e. in Q. Thus, if the solution x is sufficiently regular, we can deduce that there exists
f € (0, T] such that x € [0, 1] a.e. in Q; just proving that x > 0. Indeed (see [4]), provided the solution x is smooth
enough, we have

t

X —1=x0—1 +/xt(s)ds
0
from which it follows

t
lx — Uz, < / el o) < et lxell 207 52052 (1.26)
0

with ¢ denoting the embedding constant of H 2(£2) into L°°(£2) (in the three-dimensional case). Thus, to prove that

lx — Loy <1, (1.27)

it is sufficient to bound, e.g., x; in L2(0, T; H*(£2)) and choose ¢ sufficiently small in (1.26). In particular, restricting
our analysis to a suitable time interval (0, ), we are allowed to omit the constraint on x in (1.20) and deal directly
with the differential inclusion

1 .
Xee X —nAxe —VAX + 0 —00,01(Xs) W — Ea(u)Ks(u) —a(@)divu. (1.28)

By using a fixed point argument combined with an a priori estimates and passage to the limit technique we are able to
prove that there exists a solution to our initial and boundary value problem in a suitable time interval (Theorem 2.1).
Then, uniqueness follows by contracting estimates. Finally, further regularity results are established under suitable
assumptions on the data of the problem (Theorem 2.2). Let us remark that the local character of our results is essen-
tially related to the presence of highly non-linear terms in the resulting system (see also [3] and [7]). In Section 2
we derive the variational formulation of the problem and state the main results. Section 3 is devoted to the proof of
the existence result. In particular, it is proved the positivity of the temperature which is a crucial point in showing the
thermodynamic consistency of the model (cf. Remark 1.1). The uniqueness result is detailed in Section 4. Finally, in
Section 5, we get additional regularity on the solution.

2. Analytical formulation and main results

In this section, we present the analytical problem we are going to solve, which is recovered by (1.18)—(1.19),
(1.28) and (1.21), (1.22)—(1.24). We make some simplification. In particular, we consider u as a scalar quantity u (so
that Vu stands for deformation) and let «(0) = a8, with « € R and a = («, @, ). The physical constants are taken
¢cs =v=A=pu=aoa=23§=n=1.The stiffness matrix K and the viscosity matrix S are assumed equal to the identity
matrix. Hence, we introduce the Hilbert triplet V < H < V', with H := L?(£2) identified as usual with its dual
space, and V := H'(£). Moreover, we denote by (-,-) the scalar product in H and by x(-,-)x the duality pairing
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between the space X and its topological dual X’. Then, the associated Riesz isomorphism J : V — V’ is related to the
scalar product in V ((-,-)) and in V' ((-,-))4 as follows

vi{(Jur, v2)y = ((v1, v2)), (1, u2))s = yr(ur, J " ua)y,, (2.1)

forv; € V,u; € V', i =1,2. In addition, we set Vo = H& (£2) and W = {v € H*(2): 9,v =0 on I'}. We denote by
Il - |x both the norm in a Banach space X and in some power of it X?.
We aim to investigate the following PDE’s system

6, — A0 =0xa-Vu, +0xa-Vu+ x|+ |Vl + Vu?, (2.2)
1

Yoo X0 = A = Ax + 010001 0) 3w — S|Vl —6a- Vu, (23)

uy —div(Vu, + xVu +6xa) =0, 2.4)

combined with the initial and boundary conditions expressed by (1.21) and (1.22)—(1.24). Hence, to simplify notation,
we introduce the operator

B(xe) = (Ad+01(—00,0) (X1)- (2.5)

However, let us point out that our results can be applied to a fairly general maximal monotone operator not necessarily
coercive (see (2.9)—(2.10) below).

Actually, we address the above system in the duality between V' and V for (2.2)—(2.3) and between Vé and Vj
for (2.4). In particular, in this abstract framework, we have to specify the meaning of the operators —A and — div in
Egs. (2.2)-(2.3) and (2.4). More precisely, in (2.2)—(2.3) the operator —A stands for the realization of the Laplace
operator with homogeneous Neumann boundary conditions

—A:V >V, V/(—Au,v)\/:/Vu-Vv Yu,veV,
Q
while — div in (2.4) is defined by

—div: H® - V), v (= divy, u)y, =/v-w Vv e H?, Yu e V.
2

Let us observe that if # and x belong to H 2(£2) (this assumption could be relaxed), then there holds (here — A is the
Laplace operator)

—div(xVu)e H and —div(xVu)=—xAu—Vy-Vu.

This fact can be proved by means of an approximation-density procedure. Thus, in such a regularity framework,
the term —div(x Vv) makes sense in H, hence almost everywhere in £2. Analogously, also the term —Awv can be
understood as an L?-function once we have v € H?(2).

Now, concerning the Cauchy conditions (1.22)—(1.24), we assume the following hypotheses

GoeH, 6h>0ae.in2, 6;'eL(9), (2.6)
xo €W, X1€V, 2.7
uo € H>(2) N Vp, ui € Vp. (2.8)

Moreover, we suppose that

B:R— 2R is a maximal monotone operator, with 0 € 8(0) and dom g C (—o0, 0]. 2.9)
Standard convex analysis results (see, e.g., [2]) ensure that there exists a functional

;§ :R— [0, +00] proper, convex, lower semicontinuous, with § =29 ,3 and ,é(O) =0=min /§ (2.10)

Then, we can state the main result of the paper.
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Theorem 2.1. Let the assumptions (2.6)—(2.10) hold. Then, there exist T € (0, T] and a unique quadruple of functions
0, x,u, &) with regularity

0eH'(0,7;V)NCO([0,7l; H) N L*(0,7; V), (2.11)
07" e L>(0,7; L' (£2)), (2.12)
x € H*0,7: H)YNW5®0,7: V)N H' (0, 7; W), (2.13)
ue H*(0,7, H)yN W0, 7; Vo) N H' (0, 7; H*(£2)), (2.14)
£eL?0,1; H), (2.15)

fulfilling (1.22)—(1.24) and

(6, v) + (VO, Vo) = (Oxa- Vu, +0xa-Vu+ x> + Vx> + [Vus *,v) Yo eV ae in (0,7), (2.16)

1
— Ay — Ay +é=w—§|Vu|2—Qa-Vu a.e.in Qr, 2.17)
EeB(x) aeinQy, (2.18)
1 — Auy —div(yVu+6xa)=0 a.e in Q;, (2.19)

and such that
x €[0,1] a.e. in Q, (2.20)
0>0 aeinQ;. 2.21)

Now, by strengthening some hypotheses on the data, we address the improvement of the regularity of the solution
provided by Theorem 2.1. Hence, suppose moreover

GheV, (2.22)
x1 €W, xie€dompa.e.inS2, (2.23)
there exists £ € H such that & € 8(x1) a.e. in £2, (2.24)
ui € HX(2)NV,. (2.25)

Then, the following regularity result holds.

Theorem 2.2. Assume (2.22)—(2.25) in addition to (2.6)—(2.10). Then, there exist Te (0, T and a unique quadruple
of functions (0, x, u, §) with regularity

0 H'(0,T; HynC([0,T1; V) NL*O0,T; W), (2.26)

x € W20, T; HYNH20,T; V)N W-2(0,T; W), (2.27)

ue W2*0,T; H)YNH*0,T; Vo) N Wh°(0, T; H*(2)), (2.28)

£e€L®(0,T; H) (2.29)
fulfilling (1.22)~(1.24), (2.17)~(2.21), and

0 —ANO=0xa-Vu, +0xa-Vu+|x|*+|Vl* +|Vu)*  ae. in Q7. (2.30)

The proof of these results will be carried out throughout the remainder of the paper: the existence of a local solution
is derived by means of a fixed point technique; the uniqueness result is established by some contracting estimates and
the regularity result is obtained by performing proper a priori estimates.
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3. The existence result

To prove the existence result stated by Theorem 2.1, we apply the Schauder fixed point theorem to a suitable
operator 7 we are going to construct.

First step: definition of 7.
For R > 0, let

X={u, x) e H'(0,7; Wy *(£2)) x H'(0, 7; W4(£2)), x €10, 1 ae. in O,

| . X)”H‘(O,r;WOI’4(.Q))><H‘(0,I;W'»4(.Q)) <R}, G.D

where 7 € (0, T'] will be chosen later. First, we fix an arbitrary (&, x) € X and we substitute (u, x) in (2.16) by (i, ).
Note, in particular, that | K2+ VRN + Vi )? belongs to L0, 7; H). Standard results in the theory of parabolic
equations (see, e.g., [1]) ensure that there exists a unique

0:=Ti@@, %) e [W"'(0,7; H)+ H' (0, 7; V)] n C°([0, 71; H) N L*(0, 7,3 V) (3.2)

solving the corresponding equation (2.16) with the associated Cauchy condition (1.22). Then, we consider (2.19) and
replace 6 and x by 6 = 71 (i, x) and ¥, respectively. We denote by

w:="D(Ti@,X), %) € HO,7; HYNW"*(0, 7; Vo) N H' (0, 75 H*(2))

the corresponding solution satisfying (1.24) (see, e.g., [5] for existence and uniqueness results related to this kind of
equations). Finally, we consider = 71 (i1, x) and u = 7(6, x) in (2.17). The theory of evolution equations associated
to maximal monotone operators (see, e.g., [2]) ensure that the corresponding system (2.17)—(2.18)—(1.23) admits a
unique pair (), &) of solutions, with

x :=T30,u) € H*0,t; HYN W0, ; V)N H' (0, 7; W)

and £ € L?(0, ; H). By the above construction, it results well-defined an operator 7 obtained by the composition of
T, T2, Tz, ie.

T, 3)=w="76.%). x =T(0.u)), where 6 =T(i, }). (3.3)

Second step: a priori estimates.

Let us proceed by performing some (formal) a priori estimates on the above defined functions (8, x, u, £). Actually,
we should exploit the following estimates on suitable regularized versions of the equations and then passing to the
limit with respect to the approximating parameters. However, for the sake of simplicity, we prefer to formally proceed,
as the arguments we apply to prove compactness and continuity of 7 are mostly the same we should use to pass to
the limit in the regularized versions of the estimates.

First a priori estimate. We first deal with (2.16), in which we now intend that & and x are written in place of u and .
Test (2.16) by 6 and integrate over (0, t), with 7 € (0, 7) (cf. (3.1)). We have

3
1 1
SN0 +101720 .4y < 3160015 + D_|1;0]. (3.4)

j=l1

where the integrals /;(¢) are handled as follows. Using Holder’s and Young’s inequalities, the uniform bound of %
(cf. (3.1)), and Sobolev’s embedding V — L*(£2), we get

t t
ha = / / O5a- Vih <c / 101120 Vil oo 19111
02 0

t
<o, +e | IV, o 1013 (3.5)
4" L2 0.1;V) L4(£2)
0

We warn that here and in the sequel, we employ the same symbol ¢ for different positive constants even in the same

formula, in regard of simplicity. Now, note that by definition of X’ the function || Vi, ||i4 @) belongs to L0, 7). Then,

let us recall Sobolev’s embedding W!+4(§2) < L% (£2). Thus, analogously proceeding, we infer that
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t t
(1) = / f 03 Vi <c f 16011 sy IR 2o () 1Vl 2 1611 1
02 0

t
<ior2 +o | Ry 1007 (3.6)
X 4 LZ(O,t;V) Xt W1'4(.Q) H> .
0
as ||Vﬁ||Loo(O’T;L4(Q)) < ¢, by (3.1). In addition, there holds || x; ||%V1,4(Q) € L'(0, ). Finally, we specify the last inte-
gral as
t t
L@ = [ (%P + VAP 1V )0 < [ (15740, + IVl T4y + 1Vl 74 o)) 161 (3.7)
t t t S t L4(£2) t LA(£2) L4(£2) H, .
0 0
and we point out that ||%12, @+ IV %113 4 @t Ival?, (o, 15 bounded in L'(0, 7). Thus, combining (3.4) with
(3.5)—(3.7), summing up |6 ||i2 O H) to both sides of (3.4), we can apply a generalized version of Gronwall’s lemma
(see, e.g., [1]) to deduce
101 oo (0,2: HYNL2(0,2: V) < C- (3.8)

Now, let us deal with (2.19) in which x and 6 = 7 (i1, x) are introduced.
Second a priori estimate. We test (2.19) by —Au, and integrate over (0, #). We have

7
1 2 2 1 2
SNV Oy +18u0 g gy < S IV + ;‘\I,-m\. (3.9)
Jj=
Then, we handle the integrals /;(¢). By use of Holder’s and Young’s inequalities, we get

t t
14(t)=//|V)Z - VulAuy| gf”V)Z||L4(.Q)||Vu||L4(Q)”Aut||H
02 0

t
1
< gnAutniz(Omm + c(l - / 1A 20 5. ) ds), (3.10)
0

where we have exploited

S
|Vu) 740, gc”Au(s)”i,<C(1+/||Aut||%1>
0

and that

IVl Loo0,e:24(52)) S €

Analogously, on account of the uniform bound of x (cf. (3.1)), we obtain

t t
Is(l)=//|XAMAMzI <C/||AM||H||Auz||H
08 0

t
1
< g”Auz”%z(o,,;H) +c<1 - / 1A 4. ) ds). (3.11)
0

The last two integrals in (3.9) are treated as follows (cf. (3.1) and (3.8))
t

. 1 1
Is(1) = / f - VORI Al < SIAU T 0 1oy T MO0, 1) < g A2,y + € (3.12)
02
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and

! t
N 1 .
b = f f 102 VR Aur| < A2 )+ / 16151V R4 o)
0

0
< é”Auz”iz(O!t;H) +e. (3.13)
Thus, an application of Gronwall’s lemma to (3.9) combined with (3.10)—(3.13) leads to
lullwi.o,7: vo)nE! ©0,7: H2(2)) < C- (3.14)
Note that, by a comparison in (2.19), we also infer
el 120,00y < C- (3.19)

Further a priori estimates. Now, we perform some a priori estimates on (2.17) where u and 6 are fixed by the previous
arguments. We are still proceeding formally as, also in this case, we should deal with the regularized version of (2.17)
obtained introducing the Yosida approximation of the operator 8 and then passing to the limit with respect to the
approximating parameter. However, as it is a fairly standard procedure in the theory of (parabolic) equations associated
with maximal monotone operators we directly proceed formally.

We test (2.17) by — A x; and integrate over (0, ). We get

t
1 1
SO+ 180020, + 5 1221 + //-‘E(—Axt)
02

10

1 2 1 2
§§||VX1||H+§||AX0||H+Z;;|I]'(¢)| (3.16)
]:

where, in particular, the monotonicity of g8 yields for a.a. ¢ (the notation is formal)

[ean =0 (3.17)
Q
(see [15, Lemma 4.1], for a rigorous justification). Then, we estimate the right-hand side of (3.16) as follows
i 1
Is(1) = / / WA < 18K 20 ) (3.18)
02
t t
to) = [ [ L1vurax < Siax? o [ IVultig, < 1A 2 +e (3.19)
9 - 2 Xt X 4 Xt LZ(OJ;H) L4(.Q) X 4 Xt LZ(O,I;H) ) .
02 0

t t
1
Io(t) = / [ 6 Vutn < 18K Ry < [ 101191, o
0 0

1
< 18X 20,y +e (3.20)
thanks to (3.14) and (3.8). Now, we combine (3.17)—(3.20) in (3.16) and we obtain

IAX N 10,2y S € (3.21)
IVXllwico©r;my < C- (3.22)
Then, we test (2.17) by x;; and integrate over (0, t). We find
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12
1 2 A 1 "
DXiel G2y + 5 1V Oy + / Alu®) < 1Vl + / BOW + 1@ (3.23)
7] 7] j=1
where we have used the chain rule for ﬁ, see [8, Lemma 3.3]. Moreover, (3.21) leads to
t
@ = [ [ Ax st < Sl +elAxl; < Harl? +e (3.24)
11 == XXI[\4 Xtt Lz((),t;H) X Lz(O,t;H)\ 4 Xtt Lz(O,t;H) . .
02

Concerning I1»(t), we can argue as in the derivation of (3.18)—(3.20). We get

t
1 1
Ih(t) = // (w — §|Vu|2 —fa- Vu)th < Z”X””%Z(OJ;H) +c. (3.25)
0

Then, we combine (3.24)—(3.25) in (3.23) and we deduce that

I xeell 20,7 1) < € (3.26)
Note that, thanks to elliptic regularity results, (3.26), (3.21), and (3.22) yield

X N &20,7: YW -0 0,7: V)nET ©0,7: W) < € (3.27)
Finally, a comparison in (2.17) leads to
||$||L2(()’-[‘H) gc' (3.28)

Third step: the existence of a fixed point of 7.

Now, we are in the position of showing that 7 fulfills the assumptions of the Schauder Theorem (cf. (3.1) and
(3.3)). At first, we prove that it maps & into itself, at least for a suitable choice of . Thanks to (3.27), by using
standard interpolation tools (see, e.g., [16]), we get

||X||Wl,8/3(0’.[;wl.4(9)) <C1, (329)

where by c; (and then ¢;) we denote a positive constant depending on R. Thus, by Holder’s inequality, we obtain
XN a1 0wty < E1 T8I X lwrs. w142y < R, (3.30)

where the constant & is positive provided, e.g., T < R8(&1 c1)~8. Analogously proceeding, on account of (3.14), we
get

”u”WLS/}(O,T;W(}’A(.Q)) < e, 3.31)
and hence
~ 1
||u||Hl(0,‘L’;W(;'4(Q)) g T /8”u||W1'8/3(0,‘L’;W(;'4(.Q)) g R7 (332)

provided, e.g., T < R3(é2¢2) 78 (62 > 0).

Thus, to verify that 7 maps X into itself, it remains to show that x € [0, 1] a.e. in O, at least for a suitable choice
of T.

Recalling that dom 8 C (—o0, 0] and that xo € (0, 1], we only have to prove that x > 0 a.e. in Q, as x can-
not increase. To this aim, we may suppose that there exists § € (0, 1) such that yo(x) > § Vx € £2 and show that
lx — xollL=(o,) < 6 (cf. also [4] and [5]). Owing to the regularity of x, we proceed as follows (cf. (1.26)—(1.27)).
Let t to be chosen such that

T
Ix = xollzo(g.) < f el < cotlxell 20.0wiac0y < cot'PR <8, (3.33)
0

with cg denoting the embedding constant of W1#(£2) into L>(£2). Eventually, we may choose

t=min{R3@E c) ™%, R¥(2c2) 78, 8% (ca R) 2} (3.34)
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Let us point out that T depends only on the data of the problem (and on R).

Concerning the compactness of the operator 7 with respect to the topology induced on X by H'(0, t; Wé’4($’2)) X
H' (0, 7; Wh*(£2)), this easily follows by (3.14), (3.15), and (3.27).

Now, it remains to prove that 7 is continuous with respect to the topology induced on X by H'(0, t; Wé ’4(9)) X
HY (0, v; Wh4(£2)). We proceed as follows: we consider a sequence

(s Xn) = (4, X)) in kX, (3.35)
and show that
T ({in, {n) = T (i, %) inX.

Let us specify some notation. Let 6, be the solution of the problem (2.16)—(1.22), once i, and y, are fixed, i.e.
0, = T1(ly, Xn). Analogously, let u, := 75(6,, x,) be the solution of (2.19)—(1.24), with 6, and ¥, fixed; let
(xn := T3(0,, uy), &) be the solution of (2.17)—(2.18)—(1.23), once 6, and u, are fixed. By the above a priori es-
timates (cf. (3.8), (3.14), (3.15), (3.27), and (3.28)), we can find a constant ¢ independent of » such that

1001l oo 0,2: )N L2(0.2:v) S €5 (3.36)
lnll 20,0 YW 120 0,23 Vo) H 1 (0.7 H2(2)) < €5 (3.37)
Xl 20,2 YW 120 0,23 v)NE (0.2 W) S €5 (3.38)
”énHLz(O,r;H) <c. (3.39)
Thus, well-known weak and weak-star convergence results yield, at least for suitable subsequences,
0, =6 in L0, 7; H)N L0, 7: V), (3.40)
Uy —u in H*©0,7; H) N W20, 7; Vo) N H' (0, 7; HA(2)), (3.41)
Yu — x in H2(0,7; H) N W0, 7; V)N H' (0, 7; W), (3.42)
=& inL*0.7: H). (3.43)
In particular, by strong compactness (cf. [14,19]), we can also infer
up —uin H'((0,7); Wy (), (3.44)
xn— x  in H'((0,7); WH(2)). (3.45)

Now, we show that 6 = 71 (i, x). We use (3.40) and (3.35) to pass to the limit in (2.16), written for i,,, X,, and 6,,.

Hence, a comparison in (2.16) gives 6,; X 6; in LI(O, T; H) + L2(0, 7; V’). Thus, we get that 6 solves the limit
equation (where # and x are fixed), and, by uniqueness of the solution, it is identified with 71 (&, X).

Remark 3.1. Actually, we can conclude more on the convergence of 6,,. Indeed, let us take (2.16) written for i, and
X» and then for & and x. We take the difference between the corresponding equations and we test it by 6, — 71 (iZ, x).
After integrating over (0, 1), we get
s ) 19
(6 = T1 (@ D) O gy + [V (6n = 1@ ) 2000y < D 111
j=13

, (3.46)

1

J
where the integrals /;(z) are treated as follows. Applying Holder’s and Young’s inequalities, and Sobolev’s embed-
dings, we have

t
10 = [ [ (6~ T 20 foa Vi
02

t
< [16n = TiG@ 20160 = TiG0 20 1y IVl
0
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t
< 8“9}1 - 7—1(’27 )%)HEZ(O,I,V) +Cf ”Vﬁnt”i4(9) ”9}1 - ﬂ(ﬁ» XA)”?_I’
0

for a suitable positive constant § to be chosen later. Analogously proceeding, we infer that

t
114<r>=f[71<a,>2><)zn 8- Vi (6 — T, D))

02

t
<c/||71(ﬁ, O oy ln = Xllzoe@) 1 Vitne | Loy |60 — Ti @, 2
0

t
<ellin = A1 oo g | 71 D 20wy € f IV itne 2 ) 60 — Ti 2, 2|3
0

Next, we have

t
Ils(n://ma,@;zw (Vitns — Vi) (6n — T (@ )
02
t
g Cf||lfl(ﬁa )A()“L4(_Q)||V’2nt - Vﬁl”L“(Q) ”911 _ﬁ(ﬁa X)HH
0

t
<l = 0l sy + € [ 1T DI 6 = T DI
0

Analogously arguing, we infer that

t
16 = [ [0~ 716 ) - Vi,
08

(3.47)

(3.48)

(3.49)

13
< C/”Gn - 7](125 X)HHHG” - 7](127 )%)“L4(Q)“5€Fll||L°°(Q)”Vﬁn”L4(Q) g 8”6}1 - ﬁ(ﬁ’ )2)”%12(0’1;\/)
0

t
a2 52 A AN |12
+C"un”Loo(0)t;Wol,4(Q))/”Xnt”wlA(Q)”Gn_,]—l(uv X)“H’
0

for a suitable positive constant § to be chosen later. Moreover

t
1) = //mz, D) Gont — fa- Vit (60 — Ti(, )

02

(3.50)

t
<c f | 706, 0 o 1 e = Rellzo@) I Viinll o) |60 = TiGs D] gy < ellfnr = el 20wy

0

t
il sy [ 1T DI 16 = Tita DI,
0

(3.51)
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and

t
118<r>=f/ma,f<>x,a- (Vity — Vi) (6 — T (2. )

0
t

< c/||71(ﬁ, O 1o @) 1 Vit = Vil pag) |60 = TiGt 0| pa ) < 8160 — Ti(a, i)Hiz(Omv)
0

N a2 A )
+ C”/Tl (M, X)||L°°(O,t;H) ||Xt”L2(O,t;W1~4(Q)) ||Mn - u||L°°(0,t;W()I’4(Q))’ (352)

for a suitable positive constant § to be chosen later. Finally, we deal with the difference of the quadratic terms. For
simplicity, we let
o= 1Rl + 1V Rt + | Vi
and
F=12P+ VP + 1Vl
We have

t t
Lo(t) = //(fn — PO =T, ) < / I o= Flle |60 = TiG@a. 2] - (3.53)
08 0

Note that ||f,, — f||L1(0,,;H) — 0 as n — +o00, thanks to (3.35). Thus, we collect (3.47)—(3.53), on account of the
uniform bounds of &, ., 714, X), &, x (cf. (3.1) and (3.8)) and the convergence specified by (3.35). Choosing §
small enough (e.g. § < 1/4), we can apply Gronwall’s lemma to (3.46) and deduce
0, = Ti(ii, ) inL®0,7; HYNL*©O,7;V). O (3.54)
Now, we deal with (2.19) written for u,,, with 6,, and ¥, fixed. It is a standard matter to pass to the limit as n — 400
owing to (3.41), (3.35), and (3.54). Moreover, thanks to the uniqueness of the solution of the problem (2.19)—(1.24),
once 0 and x are fixed, we can identify with u = 75(0, x) and (3.44) holds for the whole sequence.
Next, let us consider (2.17) written for (x,, &,), once 8, and u,, are fixed. We pass to the limit as n — 400 in (2.17)
thanks to (3.42), (3.43), (3.44), and (3.54). Moreover, owing to (3.45) and (3.43), monotonicity arguments (cf. [8])
ensure that £ € 8(x;). Again, by the uniqueness result holding for the problem (2.17)—(2.18)—(1.23), once 6 and u are

fixed, we can identify with x = 73(6, u) and extend (3.45) to the whole sequence. Finally, (3.54), (3.44), (3.45) (and
the above argument) lead to

T (lin, fn) = TG, ) in HY(0, 75 Wy ' (2)) x HY(0, T; WhH(£2)), (3.55)

which concludes the proof of the continuity of the operator 7.

Finally, we complete the proof of the regularity specified by (2.11). To this aim, we perform the following estimate
on the component 6 of the solution provided by the fixed point procedure. After adding 6 to both sides of (2.16), we
test it by J —lg, and integrate over (0, 7). By the definition of J (cf. (2.1)), using Holder’s and Young’s inequalities,
Sobolev’s embeddings and owing to (2.13) and (2.14), we get

t
10100+ 1001y < cllntly +c [ 101150,
0

t

+e f (Il zoe ) 1 Ve Lz + el sy IVl L)) 10 Loy |20

0
t

+ C/(||Xt||L4(Q)||Xt||H H VXl s IV xell e + ||V“t||L4(Q)||VMt||H)”1_191 ”V
0
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||9,||L2(0t vy +€lOl72 v,

2 2 2
X ( + ”X||L°°(Q,)””1”L°°(O,t;vo) + ||u”L°°(0,t;Wol‘4(.Q))”Xt”LOC(O”;V))
2 2 2 2
+cllx: ||L°°(0,t;V) Il Xt ||L2(O,t;W1-4(Q)) +cllu ”LOC(O,z;VO) lluts ||L2(O,t;W01‘4(Q)) (3.56)
from which (2.11) easily follows.

Fourth step: positivity of 9.

In order to complete the proof of the existence part in Theorem 2.1, it remains to establish the positivity of the
temperature. The strategy of the proof relies on providing the non-negativity of 6 and a bound for the inverse of the
temperature 1/6 (cf. (2.12)). Preliminarily, we exploit a maximum principle argument. Thus, we test (2.16) by —67,
0~ denoting the negative part of 0, i.e. 6~ := max{0, —0}, and integrate over (0, ). Owing to (2.6) and using Holder’s
inequality, we can infer that

L, _ 2 _ _ _
5”9 O +11ve ||iz(0’t;H)<C/”9 N0 N a2y I Vuell Lo
0

¢ f e~ llulle™ ||L6(_Q) Il x: ||L6(_Q) Vu ||L6(_rz)- (3.57)
0

Hence, we handle the right-hand side of (3.57) by using Young’s inequality and Sobolev’s embeddings. Recalling that
IVullps(e) and |1 x:ll 6(s) are bounded in L*>(0, ) due to (2.13), (2.14), we get

t
1, _ 42 1 -
2 o=@ ||H + 5”9 ||iz(0’lgv) < C/(l + ||Vut||i4(9))||9 ||%1- (3.58)
0

Then, since || Vi, |2 belongs to L' (0, 7) (cf. (2.14)), we can apply to (3.58) Gronwall’s lemma and deduce

LY (2)
167 1 oo 0, 2: ynL20,7:v) < 0 (3.59)

which gives

60>0 ae.in Q;. (3.60)

Next step is to prove (2.12) (so that combining (2.12) with (3.60) we get (2.21)). For any ¢ > 0, let us define
= (0 —&)T 4+ & =max{6, ¢}. (3.61)
We choose v = —9’2 as test function in (2.16) and we integrate over (0, ). Applying the chain rule (see [18] for a

detalled]ustlﬁcatlon) and observing that 6 (0) > 6p a.e. in £2 and VO - VO, = |V6,|? a.e. in O, we get (cf. also (2.13),
(2.14))

t t t
/6{1(t)+8//|V98_1/2|2</90_1 —//ew,-axegz—//extvu-aeg‘z- (3.62)
2 0 2 0% 0

We handle the right-hand side of (3.62) recalling also that 0 < 6 < 6, a.e. in Q.. We obtain

//ew, a6’ //|Vu,|9 I'< /||Vut||L4(_Q)H9 1/2HL4(S2)H0 20,

g/”98_1/2”%/+C/ Vil a0, lo- 12| (3.63)
0 0
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Analogously, we can infer that

ffexNu a0, < /fmnww 1<c/||><,||L6(9)||vbt||m)||e 2 0o 1072

/ le 27, + / lo 1 G.64

where again we have used the fact that || Vull 6y and || x¢|l 16(s) are bounded in L*(0, ) due to (2.13), (2.14). Next,

adding 8 [ 6. /1%, to both sides of (3.62), on account of (3.63) and (3.64), we have
t t
-1 —1/212 -1 2 —1/212

[t [le 21 < o +e [0+ 10l )l 1y 3.69)

2 0 Q 0
On account of (2.6) and (2.14), we use Gronwall’s lemma and we deduce

-1
(A ||L°°(0,r;L1(Q)) se (3.66)

The constant ¢ in (3.66) is independent of ¢, thus we can apply the monotone convergence theorem as & — 0T
obtaining (2.12) and finally (2.21).

4. The uniqueness result

In this section we prove the uniqueness part in Theorem 2.1. Let us consider two families of solutions (6;, x;, u;, &),
i=1,2,to (2.16)—(2.19) with the associated Cauchy conditions (1.22)—(1.24) defined in some interval (0, 7) and
fulfilling the regularity prescribed by (2.11)—(2.15). Hence, let us denote the difference by

0=0—60, X=x1—x2 d=u—usy E=8—6.
To prove that = § =it = & =0, we exploit suitable contracting estimates on the solutions. Before proceeding, we
introduce some useful notation. By f we denote the difference of two functions f1, f>. Hence, there holds

fe=figi— her=he+ef=af+ fé.
so that, simplifying notation, in the sequel we omit the subscript writing

fe=rfe+af
We ﬁrst~consider (2.16) written for two families of solutions, take the difference, add 6 to both sides of it, and test it
by J~16. After integrating over (0, t), we get

29

v 16020y < D
j=20

—||9(f)| 4.1

where the integrals [;(¢) are treated as follows. By the definition of J (cf. (2.1)), we first have

t t
zzo(t)=//éf—lé=/||é||2v,. (4.2)
02 0

Moreover, using Holder’s and Young’s inequalities, the uniform bound of y (cf. (2.20)), and Sobolev’s embeddings,
we have

t t
121<r)=//éxa-wtrlé <c/ 1611 Vatell a2y |76 14
08 0

I / 12 1612 (4.3)
0
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for a suitable positive § to be chosen later. Note that ||u; || e L0, 7) (cf. (2.14)). Hence, we analogously proceed

H?(£2)
and we infer that

a0 = [ [ 072 Vus~'d < [ 10141711001Vl | 78]

<ellXNFag pcyy + MO 000,05 / leer 132 ) 19115
0

e [ 1x 2o . ods +c | luelZo o 813, (4.4)
L2(0,s:V) H=*(82)
0 0

where we have used the fact that ||0]| ;.5 (0,z; #) is bounded (cf. (2.11)). Moreover, we have

t
Lyt = [ [ 6xa-Via,J7'6 <c [ 101 s IVilul I '],
@) LY92)

<8NVl o pm + ¢ / o135 16175, (4.5)

for a suitable positive 8’ to be chosen later. Arguing similarly, we infer that

124<r>=// éx,a~VuJ—1é<cf 1612211 xe ooy 1Vl L2y |9 716 4

/||9||H||xt||w||u||Hz(m||e||w S0 20y 1) + c/nxtn%vnénzv,, (4.6)
0

where have used the fact that [lull .~ ;. g2(2)) < ¢. Moreover, we note that (2.13) yields | x; ||%,V e L'(0, ). Since
(2.11)~(2.13) imply that [|0]|  lu [l 572(s) is bounded in L>°(0, 7), we deduce

t t
bs) = [ [ 6xa-Vus 6 <c [ 101ull Xl Lo IVull o) |76 ] 6
(£2) (£2) LO(£2)

<X 720,00y F € / 1613, 4.7)
0

where the positive constant §” will be suitably chosen. Now, using that fact that || x; ”iw ©0.1:v) S €, we may infer

Do (t) = exta ViJ 6 < ||9||L69||x,||L69||W||H||J 6 6q
(£2) (£2) (£2)

/IIVMIIH +C/||9||V|I9IIV/

c / Va7 0.5: 45 + € / 161316175 - (4.8)
0 0
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Finally, we deal with the difference of quadratic nonlinearities. We get

t t
127<r)=2// xzxtrlé@/ 1oy el 9718 o
0 0

~ 12 An2
<Oy, + / 1812,
0

Secondly,

Iy(t) =2 f / Vi - VxJ'0<c / IV IV x| 710 s )

<8 NT gy + /nxtnwnenw

Finally, we have

Izg(t):Z// Vﬁ,-wtrlégc/ ||Vﬂ,||H||Vu,||L4(Q)||J’19~||L4(Q)
0

<NVl o gy + € / et 320 16117
0

Now, combining (4.2)—(4.11) in (4.1) and choosing § sufficiently small (e.g., § < 1/4), we eventually obtain
t

2 I - ~ -
vt 100,y <€ / (L 10115 + Nleee 2 ) + x5 ) IO1T: + 28" 1V 2 1.,
0

Lja)|
3 )

t

< 2 <2 ~ 2
+ 38//”)(1“[‘2(0![;‘/) + Cf("xt||L2(0’s;V) + ”VMI”L2(0’S;H))dS'
0

1203

(4.9)

(4.10)

@11

(4.12)

Now, we take the difference of (2.17) written for two families of solutions and test it by y;. After integrating over

(0, 1), we have

I, . -
SN OL, 419502 oy + 5 IVE O + //

]30

4.13)

where the integrals /;(¢) will be estimate as follows. Note first that f(; f o é X: in the left-hand side of (4.13) is non-

negative, due to the monotonicity of 8. Arguing as before, we get

130(t)=// VuVi i <cf IVully Va1 lly <8717 012201, +c/ 01 Vil
0

-2 2
<80y + € [ IV iy
0

(4.14)
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Moreover
Li(t) = / f fa-Vug <c f 161 IVullv % lv < 817320 vy + 11007200 1. 11y (4.15)

where ¢ depends also on [[ull ;. 7. g2(s2))- Similarly

t
132(r>=//9a Vi < /||9||v||w|m||xtnv
02

< 5//||Xt||L2(0t vt / ||9||v||Vuz||Lz(05 md (4.16)
Choosing in (4.14)—(4.16) 8" sufficiently small (e.g., §” < 1/4) and adding | %; ”L2(0 1 H) to both sides of (4.13), we
deduce
1. |
§||Xt(’)”H ||Xf||L2(0tV) §||VX(I)||H
t
<ctllflF 2 ) +€ / (L DO IVENT 2 4.y + N Fe 20 1.1y (4.17)

0

Finally, we write the difference of (2.19) written for two families of solutions and then test it by ;. Integrating in
time, we have

36

L. 2 -
Sl + 1V 32 4y = //(xw +xVii+afy +a0%) - Vi, > Y |1;(0)]. (4.18)
00Q j=33
Proceeding as above we handle the right-hand side of (4.18) as follows (cf. (2.14))
a0 < [ VRV IVul IV <8190, 4 [ 1700 0, 5 (4.19)
0
and (cf. (2.13))
(1) < / Iz IVl I Vidm <8I Vil 3o . + € / Vit 11720, 5: 7, 95 (4.20)
0
Now, it remains to treat the last two integrals
Bs()<c f 161l oo ) I Vit i < 81 Viie G20 1. gy + 2000720 1. 