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Abstract

The perturbations of complex polynomials of one variable are considered in a wider class than the holomorphic one. It is proved
that under certain conditions on a polynomial p of the plane, the Cr conjugacy class of a map f in a C1 neighborhood of p depends
only on the geometric structure of the critical set of f . This provides the first class of examples of structurally stable maps with
critical points and nontrivial nonwandering set in dimension greater than one.
© 2008

Résumé

Nous considérons les perturbations des polynômes complexes en une variable dans une classe plus vaste que la classe holo-
morphe. Si f est une application appartenant à un voisinage C1 d’un polynôme p du plan, nous prouvons, sous certaines conditions
sur p, que la classe de conjugaison Cr de f ne dépend que de la structure géométrique du lieu critique de f . Ceci fournit la pre-
mière classe d’exemples, en dimension supérieure à une, d’applications structurellement stables ayant des points critiques et un
ensemble nonerrant nontrivial.
© 2008
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1. Introduction

Given a manifold without boundary M , denote by Cr
W (M) the set of Cr endomorphisms of M , considered with

the strong (or Whitney) topology. The set of critical points of f ∈ Cr
W (M) is denoted by Sf . Two maps f and g

are topologically equivalent if there exists a homeomorphism h such that hf = gh. The problem of determining the
classes of topological equivalence is central in the theory of dynamical systems. In particular, a great effort has been
made to classify those maps that are topologically equivalent to its neighbors. If C is a topological space of self
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mappings, then f is C- structurally stable if there exists a neighborhood of f such that every g in that neighborhood
is topologically equivalent to f . Obviously, the concept depends on the space and topology under consideration.

The examples of structurally stable maps on manifolds without boundary that are already known are the following:

(1) A C1 diffeomorphism of a compact manifold is C1 structurally stable if and only if it satisfies Axiom A and
the strong transversality condition. This theorem is the result of the work of many authors, from the sixties to the
nineties. The “only if” part is due to C. Robinson [10] and the other direction was obtained by R. Mañé [6], fifteen
years later.
It is still not known if there exist Cr structurally stable diffeomorphisms that are not C1 structurally stable.

(2) Any Cr expanding map of a compact manifold is Cr structurally stable. This was proved by M. Shub [11] in the
sixties.

(3) In the case of one dimensional maps of the circle there are some possible combinations giving conditions for
structural stability.
The same occurs for rational maps of the Riemann sphere. This case will be specially considered in the sequel.
For example a polynomial map of degree d is stable in the d dimensional space of parameters corresponding to
its coefficients, if p is hyperbolic and satisfies the no critical relations property: pn(S′

p) ∩ pm(S′
p) = ∅ for every

0 � n < m, where S′
p is the set of finite critical points of p. It is not known, however, if the converse of this

assertion is true.

Therefore there are no examples of noninvertible nonexpanding structurally stable maps with or without critical
points, in dimensions greater than one. In the attempt to construct the simplest possible examples, we consider C1

W(C)

neighborhoods of polynomials and look for Cr
W (C) stable maps there. The theorem of Mañé, Sad and Sullivan of sta-

bility of rational mappings [7], implies the statement (3) above and also that within the family of degree d polynomials,
the stable ones are dense.

It will be clear later that no polynomial can be Cr
W (C) structurally stable, because the critical points of holomorphic

maps are nongeneric in those spaces of smooth maps. Indeed, let f and g be topologically equivalent (also called
conjugate) and h the conjugacy between them, i.e. the homeomorphism such that hf = gh; then h carries generic
critical points of f to critical points of g and critical values of f to critical values of g. Therefore, some geometric
conditions must be imposed on the critical sets of maps f and g in order to obtain the existence of a conjugacy
between them. The concept that will be used is the following:

Definition 1. Two maps f and g are geometrically equivalent if there exist orientation preserving C1 diffeomorphisms
of M , ϕ and ψ , such that ϕf = gψ .

If for some positive α, the map ψ is α close to the identity in C0 topology, then the maps f and g are said
α-geometrically equivalent.

This concept, introduced by R. Thom, is now a central concept in global analysis. It is a concept of geometric
nature: it implies, for example, that the set of (generic) critical points and critical values of f and g are diffeomorphic
and that the degree of the maps are the same. However, it has no dynamical meaning: for example, two quadratic poly-
nomials of the sphere are always geometrically equivalent. The concept of geometric equivalence has no significance
relative to future iterates of the map: the fact that two maps f and g are equivalent in this sense does not imply that
their iterates f 2 and g2 are also equivalent. It is clear, on the other hand, that if two maps are topologically equivalent,
then the homeomorphism realizing the conjugacy carries information about the local behavior of the maps; there-
fore, under generic conditions, topological equivalence implies geometric equivalence. The aim now is to establish
conditions implying the converse statement.

Note that if a polynomial p satisfies the no critical relations property (item (3) above) then no (finite) critical point
of p is periodic or preperiodic.

The main result in this work is the following; after its proof, in the last section, some other more general statements
will be discussed.

Theorem 1. Let p be a polynomial that satisfies the no critical relations property. The following conditions are
equivalent:
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(1) The Julia set of p is connected and hyperbolic.
(2) There exists a neighborhood U of p in C1

W(C), and α > 0 such that, if two maps belonging to U are
α-geometrically equivalent, then they are topologically equivalent.

The implication (1) ⇒ (2) is the most difficult part of the statement. It contains the proof that, under certain
conditions on the polynomial p, it suffices to prove that the sets of critical points and values of two maps C1 close to
p have the same geometry, to obtain that the maps are equivalent from the dynamical point of view. The reason why
α-geometric equivalence is needed is explained in an example in Section 3: it may happen that the diffeomorphism ψ

is identifying components of Sf and Sg that are not close to each other.
The dynamical structure of a polynomial p satisfying the hypothesis (1) of the theorem is well known. Recall that

the Julia set is connected if and only if every critical point (other than ∞) has bounded orbit. The hyperbolicity of p

is equivalent to the fact that every critical point is attracted to a periodic attractor or superattractor, and the hypothesis
of no critical relations implies that there are no finite superattractors. Within this context the polynomial is stable
under small perturbations of its coefficients. The proof of this fact is based on the construction of conjugacies in the
Fatou components of p, that come from the holomorphic local conjugacies at the periodic points (see the theorems of
Schröder and Böttcher in the references [12,8]). Then these conjugacies are glued together via the application of the
λ lemma [7]. When the perturbation is taken in the C1 Whitney topology, then nonholomorphic maps arise, including
some with wild critical sets. All the above techniques rely on the conformal structure of the maps in question and
therefore cannot be in general applied in this wider context. To deal with the structure of the nonwandering set one
has a basic result, a theorem by F. Przytycki [9], that implies that under the hypothesis (1), the polynomial p is C1 Ω-
stable. This means that for a small C1 perturbation f of p the restrictions of f and p to respective nonwandering sets
are topologically equivalent. This theorem is used in Section 2 to prove that the complement of the nonwandering set
of f is the union of the basins of the periodic attractors of f . This is a fundamental step in the proof. In particular, every
component of the complement of the nonwandering set of f is periodic or preperiodic. This extends Sullivan’s theorem
of nonexistence of wandering Fatou components, to Whitney C1 perturbations of hyperbolic polynomials. It justifies,
moreover, the denomination of Fatou component of f for a component of the complement of the nonwandering set
of f , and also the concept of analytic continuation for Fatou components.

Some work is needed to prove that geometrically equivalent maps f and g are conjugate when restricted to corre-
sponding Fatou components. The proof of this and that these conjugacies extend to the whole plane deserve Section 3.
As a consequence of this part of the theorem the first examples of C3-structurally stable maps having critical points
are shown:

Corollary 1. Let p be a hyperbolic polynomial map having connected Julia set. In each neighborhood U of p in
C∞

W (C) there exists some f that is C3 structurally stable.

The proof also implies the existence of C3 structurally stable maps in C3(S2) with uniform topology, see final
section. It will become clear in subsequent sections that no polynomial can be C1 approximated by a C2 structurally
stable map. See Remark 1 in Section 4.

For the proof of the converse ((2) ⇒ (1)): to prove hyperbolicity it will be shown that if a critical point of p belongs
to the Julia set of p, then there exists a C1 perturbation of p that is geometrically but not topologically equivalent to
it. Less evident is the fact that the Julia set of p must be connected in order to obtain the properties stated in part (2).
See Section 4. See the remarks at the end of the article concerning some questions about the problem of stability.

2. Whitney perturbations of p

In this section a polynomial p satisfying the hypothesis (1) of Theorem 1 is fixed and f is a small C1 Whitney
perturbation of p. The objective is to show that the picture of the dynamics of f is the same as that of p. The following
properties are satisfied by a polynomial p verifying the hypothesis (1) of Theorem 1:

(1) The point ∞ is an attractor. The basin of ∞, B∞(p), is connected and simply connected.
(2) Its boundary, ∂B∞(p), is a curve (not necessarily a Jordan curve), and is equal to Ω ′(p), the set of nonwandering

points of p that are not periodic attractors. (Clearly Ω ′(p) is the Julia set of p, also denoted Jp .)
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(3) Every component of the complement of the closure of B∞(p) is simply connected and its boundary is a Jordan
curve.

(4) The components of the Fatou set of p, are the periodic components and their preimages.

See for example [12] or [8].

Theorem 2. There exists a neighborhood U of p in C1
W(C), such that each f ∈ U satisfies conditions 1 to 4 above.

The remaining of this section is devoted to the proof of this theorem. The first result is trivial and one of the reasons
why Whitney topology is considered. See for example reference [4], where the properties of Whitney topology are
clearly exposed. If f were a Cr perturbation of p in the topology Cr(S2), then the intersection of the critical set of f

with a neighborhood of ∞ may possibly become a nonconnected set with d − 1 components, where d is the degree
of p, and the analytic continuation of the fixed point at ∞ may not be critical anymore.

Lemma 1. For every f in a neighborhood of p in C0
W(C), the point at ∞ is an attractor.

This means that under this hypothesis, f is a proper map of C and there exists a disc D with the property that
f (D) contains the closure of D and such that the future orbit of any point outside D diverges.

Now consider a C1
W perturbation f of p. The hypothesis on p imply that the Julia set of p is hyperbolic and hence

expanding, in the sense that |p′(z)| > 1 for every z ∈ Jp where the norm is considered with respect to a hyperbolic
metric in an open set containing Jp . This implies that p is C1-Ω stable by the theorem of Przytycki. For f close to
p define Ω ′(f ) = Ω(f ) \ {periodic attractors}. Obviously periodic attractors of p are carried by the conjugacy h to
attracting periodic points of f , so that h must carry Jp onto Ω ′(f ).

Lemma 2. If f is C1
W close to p, then Ω ′(f ) = ∂B∞(f ).

Proof. To prove that ∂B∞(f ) ⊂ Ω ′(f ), observe first that there exists a neighborhood U of Ω ′(p) and a neighborhood
U of p such that f −1(U) ⊂ U and

⋂
n�0 f −n(U) = Ω ′(f ) for every f ∈ U . This holds because p is a hyperbolic

polynomial and by C1 Ω-stability. If x /∈ Ω ′(f ), then there exists an n = nx � 0 such that f n(x) /∈ U , then x belongs
to the basin of an attractor and cannot belong to ∂B∞.

To prove the other inclusion take a point z ∈ Ω ′(f ) and V a neighborhood of z. It is known that the restriction of
p to Jp is locally eventually onto; by conjugation, this also holds for the restriction of f to Ω ′(f ). Using this and
the other inclusion, already proved, there exist n > 0 and x ∈ V ∩ Ω ′(f ) such that f n(x) belongs to the boundary of
B∞(f ). Let U ⊂ V be a neighborhood of z such that U ∩ Ω ′(f ) = V ∩ Ω ′(f ) and U does not intersect the set of
critical points of f n. Then x ∈ U and f n is open in U , so f n(U) ∩ B∞(f ) 
= ∅ and hence U , and also V , intersect
B∞(f ). �

Note that it was not used that the basin of ∞ is simply connected.

Proof of Theorem 2. The first assertion of (1) follows from Lemma 1. As the perturbation f is a proper map of the
plane, it follows that the restriction of f : C \ f −1(Sf ) → C \ f (Sf ) to a component of its domain is a covering map
(see [5], Proposition 2). Then the basin of ∞ must be connected. Simple connectivity is now a consequence of the
fact that the boundary of B∞(f ) is connected (by Lemma 2 and the theorem of Przytycki). Also (2) is an immediate
consequence of the above arguments.

Let V be a component of the complement of the closure of B∞(f ). It is clear that the boundary of V is contained
in the boundary of B∞(f ), from which it follows that V is simply connected. Moreover, the boundary of V is a Jordan
curve, because the contrary assumption implies that the complement of the unbounded component of the boundary
of V contains points of the boundary of V and this contradicts the fact that the boundary of V is contained in the
boundary of B∞(f ). This proves (3). To prove the remaining statement it is sufficient to show that every point in the
complement of the closure of B∞(f ) is attracted to a periodic attractor. For this an argument similar to that of the
proof of Lemma 2 works: indeed, if U is a small neighborhood of the boundary of B∞(p), then the complement of
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U is a compact set contained in the union of the basins of the periodic attractors of p, and the conclusion follows
because this condition is open in the topology under consideration. �

Given f in a small C1 neighborhood U of p, one can define Cf as the set of Fatou components of f , which are
the components of the complement of Ω(f ). The result above implies that given any g ∈ U there exists a natural map
a : Cf → Cg such that a(f (C)) = g(a(C)) for each C ∈ Cf . The bijection is defined first assigning immediate basins
of attractors of f to elements of Cg corresponding by analytic continuation.

3. Construction of conjugacies

In this section, the C1 Whitney perturbations of a polynomial p satisfying conditions (1) of the theorem will be
considered. By the theorem of Böttcher, any complex polynomial is holomorphically conjugate to z → zd locally
at ∞, where d is the degree of the polynomial; moreover, under the hypothesis of part (1) of the theorem (as the Julia
set is connected, ∞ is the unique critical point of p in B∞), the conjugacy extends to the whole basin of ∞.

The same proof of Böttcher theorem yields a conjugacy between f and p in a neighborhood of ∞. This local
conjugacy (obviously not holomorphic) dynamically extends to a conjugacy that is close to the identity in the whole
basin:

Lemma 3. Given any ε > 0 there exists a C1 neighborhood U of p such that for every f ∈ U there exists a map
h :B∞(f ) → B∞(p) such that hf = ph in B∞(f ) and |h(z) − z| < ε.

Proof. Let U be a neighborhood of Jp and U0 a C1 neighborhood of p such that for every f in U0, f −1(U) ⊂ U and
f is λ-expanding in U , where λ > 1.

Let H : {|z| > 1} → B∞(p), be Böttchers conjugacy between p and zd . By the same argument given in [8] to prove
Böttcher theorem, the following assertion holds:

Given ε > 0 and k > 0 there exists a neighborhood U1 ⊂ U0 such that, for every f ∈ U1, there exists a homeomor-
phism h :B∞(f ) → B∞(p) such that hf = ph and |h(z) − z| < ε for every z such that |H−1(z)| > 1 + k.

The number k is now chosen so that there is a fundamental domain D for the restriction of f to B∞(f ) contained
in U ∩ h−1(H({z: |z| > 1 + k})). It remains to prove that h is ε-close to the identity in the whole B∞(f ). Given any
z ∈ U such that f (z) ∈ D, let w be such that h(z) = w so that p(w) = h(f (z)). Let also w′ be close to z such that
p(w′) = f (z), and note that

|w − z| = |w − w′| + |z − w′| � λ−1ε + δ,

where it was used that h is ε-close to the identity in D and where δ is the distance between local inverses of f and p.
Now diminish the neighborhood U1 in such a way that δ � ε(1 − λ−1) to obtain that |h(z) − z| < ε also holds for z in
the preimage of D. Then continue for every f −n(D) by induction. �
3.1. Conjugacy in bounded domains

Let {c1, . . . , cr} be the set of finite critical points of p. These points are all contained in the basins of the bounded
attractors. For every i let Vi be a small neighborhood of ci , such that Vi ∩ Vj = ∅. Let α be a positive number
less than the distance between any two different Vi . Then there exists a C1

W neighborhood U of p, such that for
every f ∈ U , the critical set Sf is contained in V = ⋃

Vi , and so every critical point of f belongs to the basin of a
periodic attractor of f . Assume that f and g are α-geometrically equivalent maps C1 close to p. This means that
there exist diffeomorphisms of the plane ϕ and ψ such that ϕf = gψ , moreover, the choice of α assures that the map
ψ must carry Sf ∩ Vi to Sg ∩ Vi . Begin with a fixed attracting point of p and consider its smooth continuation xf for
f ∈ U . The basin of xf is denoted by Bf and the immediate basin by Uf . Note that Theorem 2 implies that Uf is
simply connected. The objective throughout this section is to prove that there exists a homeomorphism h realizing the
equivalence of f |Uf

and g|Ug . This map will be produced as an extension of the restrictions of ϕ to a neighborhood
of the set of critical values and of ψ to a neighborhood of the set of critical points of f in Uf .

Lemma 4. If f and g are geometrically equivalent maps C1 close to p, then their restrictions to Uf and Ug are
topologically equivalent.
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Fig. 1.

Proof. It will be assumed first that p has only one critical point c in Bp . Let Vf be a neighborhood of xf , such
that f |Vf

is a diffeomorphism and the annulus Af = Vf \ f (Vf ) is a fundamental domain. It is also possible to

choose Vf and a topological disc Wf , containing Sf , such that f (Wf ) is also a topological disc contained in the
interior of Af (see Fig. 1). For the map g define corresponding Vg , Ag and Wg . Moreover, Wg is chosen so that
ϕ(f (Wf )) = g(ψ(Wf )) = g(Wg).

Identifying the boundaries of the annulus Af (resp. Ag) via f (resp. g) one obtains tori Af |f and Ag|g. There
exists an orientation preserving homeomorphism h (that can be chosen C0 close to the identity because Wf and Wg

are arbitrary small):

h :Af |f → Ag|g, (1)

realizing a conjugacy between the maps induced by f and g to the given domains, and such that the restriction of h to
f (Wf ) is equal to ϕ (recall that ϕ is orientation preserving). Moreover, one can dynamically extend h to the whole Vf .
It is claimed now that there exists (a unique) extension of h to Uf \ W ′

f , where W ′
f = ⋃

m�0 f −m(f (Wf )). First

extend h to the preimage of Vf . Observe that f :f −1(Vf \ f (Wf )) → Vf \ f (Wf ) is a covering map of degree d ′,
from which it follows that hf :f −1(Vf \ f (Wf )) → Vg \ g(Wg) is a degree d ′ covering map. Also the restriction of
g to g−1(Vg \ g(Wg)) is a degree d ′ covering map onto Vg \ g(Wg). To show that there exists a lift h̃ of hf , one can
consider induced maps in homotopy groups. The domains of g and hf are open connected sets in the plane with the
same connectivity, and the proximity of the maps implies that the action on relative generators of the induced maps
are equal. This implies that there exists a unique lift h̃ of hf such that gh̃ = hf and h̃(xf ) = xg . The uniqueness of h̃

implies that it extends h.

The same argument shows how to extend h to the whole Uf \ W ′ . Finally one must extend h to Uf .
f
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To define h in Wf and its preimages, other details must be taken into account, relative to the fact that the restrictions
of h and ψ to the boundary of Wf may be equal or not. In the first case, h can be extended to Wf as equal to ψ and
then to the remaining part of Uf dynamically. But in the other case h and ψ differ in the boundary of Wf , so the
definition of h started in formula (1) must be changed. Note that the set of points of ∂Wf where h and ψ are equal is
open and closed in ∂Wf , so it suffices to find a way of make them coincide at just one point. Note that the definition of
h in Vf is somehow arbitrary; Let A be a small annulus contained in Vf and whose interior boundary is equal to the
boundary of f (Wf ). Let D be a Dehn twist supported on A, define hi = h ◦ Di and h̃i as the lift of hi . This implies
that if r is a point in the boundary of Wf , then h̃i (r) takes all the possible values of g−1(h(f (r))). So one can choose
i such that h̃i (r) = ψ(r). This finishes the proof in the case that there exists just one critical point in Bp .

If there are more than one critical point in the basin of xf then the arguments are similar, so we explain the
differences and omit the details. Let c1, . . . , cr be the critical points of p in that basin. Let f , xf , Vf and Af be as

above; let W
j
f j = 1, . . . , r be a small disc containing the components of Sf close to cj . For every 1 � j � r there

exists an nj � 1 such that f nj (W
j
f ) ⊂ Af . Define h in Vf in such a way that its restriction to f nj (W

j
f ) is equal to

gnj −1ϕf −(nj −1)|
f (W

j
f )

.

As above, h is extended to Vf and the same argument shows how to define it in

Uf \
⋃
n�0

f −n

(
r⋃

j=1

f nj
(
W

j
f

))
.

For each j , let A′
j be a small annulus whose interior boundary is equal to boundary of f nj (W

j
f ) and let Dj by a

Dehn twist supported on A′
j . To make h̃ coincide with ψ one just needs to compose h with adequate iterates of the

maps Dj . �
This previous result concerned with fixed domains. Suppose now that the polynomial p has an attracting cycle

αp = {x1
p, . . . , xn

p}. For every f close to p in C1 topology, denote by U1
f , . . . ,Un

f the components of the immediate

basin of the attractor αf = {x1
f , . . . , xn

f }, C1 continuation of αp . Define also Uf = ⋃
U

j
f . The following is an easy

generalization of the previous Lemma 4, and its proof is omitted.

Lemma 5. If f and g are geometrically equivalent maps C1 close to p, then they are also topologically equivalent
when restricted to the grand orbits of Uf and Ug .

Using that every component of the complement of the set Ω ′(f ) is preperiodic and the previous results, it follows
that:

Corollary 2. Given ε > 0 there exists a C1 neighborhood U of p such that, if f and g are geometrically equivalent
maps in U , then there exists h : R2 \ Ω ′(f ) → R

2 \ Ω ′(g), homeomorphism that conjugates f and g and such that
|h(z) − z| < ε.

Proof. It remains to show the uniform proximity to the identity in the bounded domains, but this is similar to the
unbounded case (Lemma 3); the main fact that makes the above arguments work is the following: given any neigh-
borhood U of ∂B∞(p) and given a fundamental domain Di in each periodic component of the Fatou set of f , there
exists a positive integer N such that f −N(

⋃
Di ∪F) ⊂ U , where F denotes the union of the nonperiodic components

of the Fatou set of f . �
Example. The reason why the α-geometric equivalence is needed is explained in the following example. Assume
that p is a polynomial with two attracting fixed points x1 and x2 with immediate basins B1 and B2. Assume that B1
contains a critical point c1 and B2 contains two critical points c2 and c3. Let f and g be C1 perturbations of p such
that the following holds:
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1. Sf ∩ B1 is homeomorphic to a circle and Sf ∩ B2 is equal to {c2, c3}.
2. Sg ∩ B1 = {c1} and Sg has two components in B2, one of them is a point and the other a circle.
The maps f and g may be chosen as geometrically equivalent, but cannot be topologically equivalent. Note that

necessarily the image under ψ of Sf ∩ B1 is contained in B2.

3.2. Extension to the boundary of B∞(f )

It is already known that there exists a conjugacy h between the restrictions of f and g to the Fatou components
of f . It was also explicit that the conjugacy h can be chosen as close to the identity as wished, by diminishing
the neighborhood U of p (see Lemma 3 and Corollary 2). On the other hand, the theorem of Przytycki provides a
conjugacy hp of these maps in the boundaries of the respective domains. It remains to prove that h can be continuously
extended to the closure of B∞(f ), and that in the boundary is equal to the conjugacy of Przytycki. We first show that
h extends continuously to the boundary and that it is close to the identity.

Let ε0 be a constant of expansivity of the restriction of p to its Julia set, that is, for every z 
= w in Jp there exists
N > 0 such that |pN(z) − pN(w)| > ε0.

Corollary 3. There exists a C1 neighborhood U of p such that, for geometrically equivalent maps f and g in U , it
holds that the conjugacy h of Corollary 2 extends to the boundary of B∞(f ) and is a homeomorphism.

Proof. Choose U such that the distance between the identity and h is less than ε0/2. Let x ∈ ∂B∞(f ) and xn → x,
where xn /∈ ∂B∞(f ). We claim that h(xn) converges. Otherwise, one can choose cluster points z 
= y of h(xn). By
the choice of ε0 there exists N > 0 such that |gN(y) − gN(z)| > ε0. Then hf N(xn) accumulates at gN(y) and gN(z),
but as f N(xn) converges to f N(x), a contradiction appears because h is ε0/2 close to the identity. Define h in the
boundary as the limit of h(xn). The claim implies that h is continuous and surjective. Finally h is injective because
two points z and w with the same image would verify that |f n(z)−f n(w)| eventually becomes greater than ε0, while
h(f n(z)) = h(f n(w)) for every n > 0. �
4. Proof of Theorem 1

Proof of (1) ⇒ (2). This has been already done in the previous section. Corollary 3, gives the map h, defined in
the whole plane, realizing the conjugacy between f and g. As h is close to the identity, then its restriction to the
nonwandering set must coincide with the conjugacy of Przytycki.

Proof of (2) ⇒ (1). The hypothesis give a C1
W neighborhood U of p such that geometric and topological equiva-

lence are the same in U . Maps of class C3 are dense in U and their critical points have a generic structure. The proof
of the following lemma can be found in [5].

Lemma 6. Let c be a simple critical point of p, that is, p′(c) = 0 
= p′′(0). There exist a neighborhood U of c, a C3

neighborhood U0 of p and an open and dense subset G of U0 such that, for every f ∈ G , the intersection Sf ∩ U is
diffeomorphic to a circle.

Moreover, there exists f ∈ G such that the restriction of f to Sf ∩U is injective and Sf ∩U contains exactly three
cusp type points.

Remark 1. Here we use some elementary facts about singularities of differentiable mappings in dimension two,
a classical reference is the book by Golubitsky and Guillemin [3].

We do not know if there exists a neighborhood U0 of p such that the restriction of every map f ∈ G ∩ U0 to Sf ∩U

is injective. It is known, however, that there exists at least one cusp type point in the boundary of the unbounded
component of the complement of Sf ∩ U .

The classification of critical points for generic maps is very easy in dimension two. Indeed, if c is a critical point
of a generic map f , then the kernel of Dfc has dimension one. The critical point c is a fold point if the kernel of Dfc

is not equal to the tangent space of Sf at c and is a cusp point otherwise. Moreover, normal forms are known for both
kind of critical points:

The normal form of a fold point is (x, y) → (x2, y).
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The normal form of a cusp point is (x, y) → (x3 − xy, y).
It can also be shown also that fold points are C2 persistent and cusp points are C3 persistent. As well as maps

having critical points cannot be C1 structurally stable, it can be concluded now that maps with cusp type points cannot
be C2 structurally stable, because a conjugacy between two maps must carry cusp critical points to critical points of
the same type.

As any generic perturbation of a polynomial has a cusp type point, it follows, as asserted in the introduction, that
in a small neighborhood of a polynomial no map can be C2 structurally stable.

It follows also that if f ∈ G and the restriction of f to Sf is injective, then the same holds in a C3 neighborhood
of f .

Suppose that every critical point of p is simple, and let Sp = {ci : 1 � i � d − 1}; for each i, let Ui be a small
neighborhood of ci , and Gi the generic set associated with ci as in Lemma 6.

Recall that p satisfies the noncritical relations property, so the degree of p is d , and the number of finite critical
values of p is d − 1.

Define G′ ⊂ U as the set of maps f such that f |Sf
is injective and f belongs to every Gi . It follows that Sf has

d − 1 connected components, each one of them homeomorphic to the circle and such that the restriction of f to Sf is
injective. The proof that G′ is nonempty is left to the last corollary. This, together with the following proposition, will
provide the examples of structurally stable maps.

Proposition 1. If f ∈ G′, then f is C3-geometrically stable.

Proof. Let g be a C3 perturbation of f , let {C1(g), . . . ,Cd−1(g)} be the components of the set of critical values of g.
Let ϕ be a diffeomorphism of the plane close to the identity that carries Ci(f ) onto Ci(g) preserving cusps. For

each i choose a curve αi joining the image of a cusp point zi ∈ Ci(f ) with infinity. This can be done without any
intersection, that is, the curves αi are simple, disjoint and the intersection of αi with

⋃
Ci(f ) is the set {zi}. Let

βi = ϕ(αi) and define H(f ) as the complement of the union of S̃f := f −1(f (Sf )) with
⋃

i f
−1(αi) and H(g) as the

union of the unbounded components of the complement of the union of S̃g with
⋃

i g
−1(βi). See Fig. 2 below with

d = 2.
Each component of H(f ) corresponds to a unique component of H(g) by proximity. Moreover, these components

of H(f ) are simply connected, and the restriction of f to each of them is a diffeomorphism onto its image. Therefore,
for each component Hj(f ) of H(f ) there exists a unique diffeomorphism ψj that satisfies ϕf = gψj , and whose
image is the corresponding component of H(g). These diffeomorphisms can be extended to a unique diffeomorphism
ψ of the plane such that ϕf = gψ . �
Proof of the connectedness of the Julia set of p. Observe that there exists a neighborhood of ∞ foliated by curves
homeomorphic to circles that are invariant under f . This foliation Ff is invariant and must be preserved by con-
jugacies. If Jp is not connected, then there exists a critical point c = c1 of p contained in B∞(p); c is the critical
point of p closest to ∞ (i.e. the circle of the foliation that contains c is the boundary of an open neighborhood
of ∞ that does not contain any other finite critical point). Assume first that c is a simple critical point of p. By
the proof of Proposition 1 two maps f and g in G1 that are equal outside the neighborhood U1 of c, are geo-
metrically equivalent. To arrive to a contradiction it suffices to find f and g as above that are not topologically
equivalent.

Let A be a p-invariant neighborhood of ∞ that contains p(c), does not intersect U1 and whose boundary
is a circle of the foliation Fp . If f is a perturbation of p with support U1 (f = p outside U1) then the fo-
liations Ff and Fp coincide in A. Perturb p in U1 such that the perturbation f belongs to G1 and such that
there exist two cusp points that belong to the component of Sf contained in U1 whose images belong to the
same leaf of the foliation Ff . This is possible but is not generic; a new perturbation g supported in U1 and
belonging to G1 can be found such that the image of the three cusps belong to different leaves of the folia-
tion.

To treat the case of c not simple, assume that the order of c is k. Given a neighborhood U0 of c there exists a C∞
perturbation q of p such that:
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Fig. 2.

• q = p outside U0.
• There exists an arbitrary small neighborhood U ′

0 ⊂ U0 of c such that q is holomorphic in U ′
0.

• q has k critical points in U0 all contained in U ′
0.

Once this q was obtained, one can proceed as above. �
Proof of the hyperbolicity of p. The first step is to prove that the Julia set cannot have critical points if some type
of C1 stability is required. The proof is very simple, which contrasts with the fact that the problem is open when only
holomorphic perturbations are allowed.

Proposition 2. If p has a critical point in its Julia set, then in every C1 neighborhood of p there exists an f that is
geometrically but not topologically equivalent to p.

Proof. Let U be a C1 neighborhood of p and c be a critical point of p in Jp . This implies that there exist expanding
periodic points accumulating at c. An argument based in J. Franks lemma [2] will imply the existence of a map f in
a C1 neighborhood of p such that f and p have the same sets of critical points but f has a new attracting periodic
orbit. Indeed, if ε is such that f ∈ U if the C1 distance between p an f is less than ε, then take a periodic orbit of
p contained in Jp and containing a point z close to c in such a way that |p′(z)| < ε. Let K = |(pn)′(z)|, where n is
the period of the orbit of z. Note that there exists a neighborhood of the orbit of z such that the restriction of p to this
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neighborhood is a diffeomorphism onto its image. Under these conditions, Franks’ lemma asserts that there exists a
map f ∈ U such that:

• The orbit of z under f is the same as that of p.
• For every 0 < j < n, the differential of f at f j (z) is equal to that of p at the same point. Moreover, f is also

conformal at z, and |f ′(z)| < |p′(z)|/K .
• The support of the perturbation is an arbitrary small neighborhood of the orbit of z not intersecting the critical set

of p or the set of periodic attractors of p.
• The perturbation f is a diffeomorphism onto its image when restricted to the support of the perturbation.

The first three items imply that f has a new periodic attractor (the orbit of z) and so it is not topologically equivalent
to p. It is geometrically equivalent to p because the support of the perturbation is disjoint with the set of critical points
of p. �

To conclude the proof of the hyperbolicity of p, one has to show that every critical point is attracted to a periodic
attractor. First of all note that every periodic point of p must be hyperbolic: under the contrary assumption one can
perturb in a neighborhood of the nonhyperbolic orbit to obtain a map that is geometrically but not topologically
equivalent to p. This implies that the Fatou set of p does not contain Leau components neither Siegel discs. Herman
rings are forbidden since the Julia set of p is connected. Finally, as the set of critical points do not intersect the Julia
set and there are no superattractors, the conclusion is immediate from the classification theorem of Sullivan, see [8]
or [12]. �
Proof of Corollary 1. First perturb p to a polynomial p0 having no critical relations. It suffices to show that in
every C∞ neighborhood of p0 there exists a map f ∈ G′, because by Proposition 1 this map will be geometrically
equivalent to every map g in a C3 neighborhood of it, and then (1) ⇒ (2) of Theorem 1 implies the topological
equivalence between f and g. It is very easy to give an example that is generic in the sense of Lemma 6 and such that
the restriction of f to Sf is injective. It suffices to do it locally, and as the critical points of p0 are nondegenerate, it
suffices to give just an example of a perturbation f of p(z) = z2 such that f ∈ G′. An explicit example is: (x, y) →
(x2 − y2 + λy,2xy), λ 
= 0. So to construct an example of a C3 structurally stable map, just take p(z) = z2 + ε

(ε small so that Jp is connected and hyperbolic) and then perturb in a neighborhood of 0 so that the new map f has
the representation above in that neighborhood. �
Example. We exhibit a map f that is C3 geometrically stable and C3 Ω-stable but cannot be C3 approximated by
a C3 structurally stable map. Begin with p(z) = z2 − 3 and perturb it, as in Corollary 1, to f (x, y) = (x2 − y2 +
λy − 3,2xy). It was shown that f is C3 geometrically stable and C3 Ω-stable. If g is C3 close to f , the critical
set Sg is a simple closed curve with three cusp type points contained in the basin of ∞. There exists a leave γ of
the foliation by circles that contains the image of a cusp c and another critical value f (z) (we can assume that z

is a critical point of fold type). As the set
⋃

n>0 f −n(f n(c)) is dense in γ , we can find a small perturbation g1 of
g supported in a neighborhood of c, such that for some n gn

1 (c) = gn
1 (z). Then perturb g to a map g2 such that

gn
2 (cg2) ∩ gn

2 (Sg2 \ cg2) = ∅, where cg2 is the set of cusps of g2. Then g1 and g2 cannot be topologically equivalent.

4.1. Further considerations

Throughout this discussion, M is a manifold of dimension at least two and I r (M) denotes the space of maps p

having a strong Cr neighborhood where geometric equivalence implies topological equivalence. So we have proved
that a polynomial without critical relations belongs to I 1(S2 \∞) iff its Julia set is hyperbolic and connected. However,
the arguments used imply also other results.

Theorem 3. If R is a hyperbolic rational map without critical relations (hence without superattractors), then
R ∈ I 1(S2). It follows that any rational map can be C∞ approximated by C3(S2) structurally stable maps.
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The first assertion follows directly from the arguments of the proof that (1) → (2). To prove the second one first
perturb to a rational map that has no critical relations.

Another corollary of the arguments of the proof of Theorem 1 give C1 structurally stable maps:

Corollary 4. The map z → zd is C1 structurally stable in C1
W(C \ 0).

About stability, some of the results here attained are now briefly commented. The case of compact M will be
now considered. Let Er(M) be the set of nonexpanding noninvertible endomorphisms, and Str (M) the set of Cr

structurally stable maps.
As far as we know, there exist no examples in St1(M) ∩ E1(M) if M has dimension at least two. Note that Sf = ∅

is a necessary condition for a map f to be C1 stable. The theorem of N. Aoki, K. Moriyasu and N. Sumi in [1] implies
that a map in St1(M) must satisfy Axiom A and, as is the case for diffeomorphisms, also the strong transversality
condition. However, these conditions are not sufficient for stability, as was shown by an example of F. Przytycki
in [9]. It seems difficult to find examples of structurally stable maps having saddle type basic pieces: indeed, unstable
manifolds of a basic piece may have self intersections and can also visit different basic pieces. On the other hand,
the arguments in this article seem to be extendable to prove stability in other situations, where the maps have only
expanding or attracting basic pieces. We conjecture that if a noninvertible Axiom A map has no saddle type basic
pieces, then there must be critical points in the immediate basin of any attractor. It would follow that a C1 structurally
stable map must have saddle type basic pieces.
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