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Abstract

In this paper we derive the high-electric-field limit of the three-dimensional Vlasov—Maxwell-Fokker—Planck system. We use
the relative entropy method which requires the smoothness of the solution of the limit problem. We obtain convergences of the
electro-magnetic field, charge and current densities.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider a plasma in which the dilute charged particles interact both through collisions and through the action
of their self-consistent electro-magnetic field. Actually, we are concerned with the evolution of the negative particles
which are described in terms of a distribution function in phase space while the charge and current of the positive
particles are given functions. Up to a dimensional analysis (postponed to Appendix A) the evolution of the plasma is
governed by the following equations

€0 fe+v- Vi fe) — (Ee +ae(wA Be)) -V fe = divy (vfe + Vy fe), (1)
for (¢, x,v) €10, T[ x R? x R3 and

0 E; —curly B, = —(J — je), )
ogd;Be +curl, E, =0, 3)
divy E; = D(t,x) — ps(t,x) and divy B, =0, “)
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for (¢t,x) €10, T[ x R3 and where we have set

Pe(t,x) = / fe(t, x,v)dv, Je(t,x) = / vfe(t, x,v)dv.
R3 R3
The system (1)—(4) is referred to as the Vlasov—Maxwell-Fokker—Planck (VMFP) system. Here f.(t,x,v) > 0 is
the distribution function of the negative particles, E,, B, stand for the electric and magnetic fields respectively while

D(t,x), J(t,x) are the (given) charge and current densities of positive particles. They are supposed to satisfy the
conservation law

D +div, J =0, (t,x)€]0,T[ xR>. (5)

The system is completed by prescribing initial conditions for the distribution function f; and the electro-magnetic
field (E¢, Be)

fe0,x, )= fO(x,v), (x,v) eR} xR, (6)
E:(0,x)=E%x),  B:(0,x)=B%»x), xeR> (7)

We suppose that initially the plasma is globally neutral, i.e.,

// ff(x,v)dvdx:/D(O,x)dx, (8)

R3R3 R3

and also that the initial conditions satisfy

divng’:D(o,x)—/f;’(x,u)du, divy B =0, xeR% )
R3

After integration of (1) with respect to v € R? we deduce that the charge density p, and the current density j, of the
negative particles verify the conservation law

dpe +divy je =0, (1,x) €10, T[ xR, (10)

By using (5), (10) and by taking the divergence with respect to x of Eqs. (2), (3) we deduce that (4) are consequences
of (9).

The problem is motivated from plasma physics, as for instance in the theory of semiconductors, the evolution
of laser-produced plasmas or the description of tokamaks. The coupling between the kinetic equation (1) and the
Maxwell system (2)—(4) describes how the local concentration and movements of charges create electric fields and
currents which, in turn, influence the motion of the electrons in the whole domain. The Fokker—Planck operator in the
right-hand side of (1) accounts for the collisions of the electrons with the background. These collisions produce both
a friction and a diffusion effect; we refer to [18] for the introduction of such an operator based on the principles of
Brownian motion and to e.g. [6] for specific applications to plasma physics. The dimensional analysis is detailed in
Appendix A. Let us only say that the dimensionless parameter ¢ = (%)2 is the square of the ratio between the mean
free path and the Debye length and o = (I.A—CO)2 is the square of the ratio between the Debye length and the distance
traveled by the light during the relaxation time due to collisions. We are interested in the asymptotic regime

0<e<«k1, «obounded.

(The parameter o might depend on & in our analysis and tend either to 0 or a positive constant.) It can be con-
venient to detail this regime by means of the characteristic time scales of the evolution of the plasma: 7, =
1/cyclotronic frequency, T), = 1/plasma frequency (definitions are recalled in Appendix A) and 7 the relaxation time
associated to the collisions which have to be compared to the time scale of light propagation Ty and the time scale of
observation 7. Then, the asymptotic regime we are interested in means that

TLT, KT

while the other time scales are governed by the behavior of « =T/T, = %(To /T)?. This kind of asymptotic problem
is crucial for applications such as the modeling of Inertial Confinement Fusion devices or in some delimited regions



M. Bostan, T. Goudon / Ann. I. H. Poincaré — AN 25 (2008) 1221-1251 1223

of tokamaks where there is a strong interplay between the collisional effects and the electro-magnetic effects, see for
instance [23,30].

The mathematical difficulty is related to the nonlinear term E; - V,, f; which appears in (1) with the same order of
magnitude than the diffusion Fokker—Planck term (it is due to the hypothesis that the mean free path [/ is much smaller
than the Debye length A). We call this asymptotic regime for & \ 0 the high-electric-field limit. Now, note that the
Fokker—Planck operator can be written as follows

. N o2
Lrp(f) :=divy (vf + Vy f) =divy(e” 2 Vy(fe 7)), (11)
and therefore the kinetic equation (1) becomes
1 . _ tEe o [v+Ee (1,02
8tf5~|—v~fo8—ot(v/\B€)-vag=Edlvv(e v(. c€ )) (12)

From (12) we can expect that when & N\ 0, the distribution function f, converges to

1  tE?

G (13)

fempt, x)Mgqx(v), MgQ)=

and therefore we can guess that

Je(t,x) = / vfedv~ —p(t, X)E(1, x).
R3
Using the charge conservation law (10) together with (2)—(4), we are thus formally led to the following limit system

3 p —divy(pE) =0, (t,x) €10, T[ x R3,
divy, E=D(t,x) — p(t, x), curl, E=0, (t,x)€]0, T[xR3, (14)
&E —curly, B=—J(t,x) — p(t,x)E(t,x), divy, B=0, (t,x)€]0,T[xR3.

We wish to justify rigorously this asymptotic behavior.

High-field asymptotics have been first analyzed in the kinetic theory of semiconductors in [37], see also [17]. Then,
further extensions and mathematical results for different physical models have been obtained in [1], with a discussion
based on numerical simulations, [5] for a derivation of so-called SHE models for charge transport in semiconduc-
tors and [21] for a derivation of energy-transport models, [34] for application to quantum hydrodynamics model.. ..
The problem combines the difficulty of hydrodynamic regimes with the treatment of the nonlinear acceleration term
E. -V, fe. The problem slightly simplifies in the electrostatic case where the electric field is simply defined through
the Poisson equation (complete (1) by E, = -V, &, Ay P, = p. — D and B, = 0). This actually means that the elec-
tric field E; is defined by a convolution with p, — D. The resulting Vlasov—Poisson—-Fokker—Planck (VPFP) system
can be seen, at least formally, as an asymptotic limit of the VMFP model in a physical regime where the light speed
is large compared to the thermal velocity, the other physical parameters being fixed. The high-field limit of the VPFP
system can be addressed by appealing to usual compactness methods; however, constraints on the space dimension
appear, due to the singularity of the convolution kernel. It turns out that the strategy works in dimension 1 [35] and
dimension 2 [26]. Another approach uses relative entropy (or modulated energy) methods, as introduced in [44]. With
such an approach, we try to evaluate how far the solution is from the expected limit. This method has been used to
treat various asymptotic questions in colisionless plasma physics, in particular the derivation of quasineutral regimes
[13,14,25,39], and for hydrodynamic limits in gas dynamics [40,7], or for fluid-particles interaction models [28]. ...
Further references and examples of applications of the method can be found with many deep comments in the re-
view [41]. Concerning the VPFP system, it allows to justify the L? strong convergence for the electric field and we
can pass to the limit for any space dimension [26]. However, this method requires some smoothness on the solutions
of the limit system. Eventually, we point out that a low-field regime, where diffusion dominates the transport terms,
can also be considered: for the VPFP system, we refer to [38,27] and for an attempt with the VMFP system to [8].

The aim of this paper is therefore to analyze the high-electric-field limit of the three-dimensional VMFP system by
using the relative entropy method. This extension is interesting both from the viewpoint of physics: we are dealing with
a more realistic and complete model; and those of mathematics: replacing the Poisson equation by the Maxwell system
we cannot expect too much regularizing effects from the coupling, and this also shows how robust the relative entropy
method is. By the way, the mathematical theory of the solutions of the VMFP is far from being completely known. By
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contrast, the theory for VPFP is well established: existence of weak solutions can be found in [42] with refinements
in [15], while for existence and uniqueness results of strong solutions we refer to [20,36] and the complete results of
[9,10]. The coupling with the Maxwell equations leads to a much more difficult analysis. The collisionless case has
been further investigated and global existence of classical solutions relies on the behavior of the tip of the support of
the solution, as shown by different approaches in [24,11,31], while the local well-posedness of smooth solutions is
due to [43]. It is also worth mentioning the recent result [16] concerning a reduced version of the Vlasov—Maxwell
equation. For the VMFP model but neglecting the friction forces, the global existence of renormalized solutions has
been obtained in [22]. Recently, the global existence and uniqueness of smooth solutions have been obtained for the
relativistic version of the VMFP system, in the specific one and one half dimensional framework [33]. Considering
the full Vlasov—Maxwell-Boltzmann system with data close to equilibrium stunning progress appear in [29], with
an extension to the Landau operator in [45]. However, it is still an open question to investigate if the Fokker—Planck
operator introduces some regularizing effects which would lead to the well-posedness of the full VMFP system in a
general framework or if we should definitely deal with renormalized solutions verifying the conservation laws up to
defect measures. These questions are clearly beyond the scope of this paper where we focus on the asymptotic ques-
tions, considering essentially smooth solutions of the VMFP system. Our main result states as follows. We establish
this result for smooth solutions but we will see that the same conclusions hold true in the framework of renormalized
solutions (cf. Appendix C).

Theorem 1. Let p° > 0 and D > 0 such that p° € WHI(R3Y) N Whoo(R3), with V,In(p®) € L®R3?) and
D e L®10, T[; WH(R3)) n whoe (1o, T[ x R3?), with 8, D € L]0, T[; L' (R3)). Let J € L*(10, T[; L>*(R?*))3 N
L>®(0, T[; LY(R3))3, with furthermore 8;J € L°°(10, T[; H~'(R3))3> n L>®0, T[; W—4(R3))3 for some q <
13, +oo[ and 8,2] € L>®(10, T[; H 2(R*)3 such that 3;D + div, J = 0. Consider (p, E, B) the unique solution
of (14) with the initial condition p°. Let fgo >0, Eg, BS be a sequence of smooth distribution functions and electro-
magnetic fields verifying

//fsodvdx:fD(O,x)dx, sup//|x|f80dvdx<+oo, (15)
R3R3 R3 g>()R3R3
nmi{g//f"ln 10 dudx+1/(\150—E012+ae|B°—B°|2)dx}=0 (16)
e\0 e £ pMg 2 € &

R3R3 R3

where E° is the solution of divy EY = D(0,x) — ,oo(x), curl, E9 = 0, x € R? and e/a — 0. We assume that
(fe, Es, Bg)e=o are strong solutions of the VMFP system (1)—(7). Then (Eg, B:)¢=0 converges to (E,B) in
L>(10, T[; L*(R?))®, whereas (pe, je)e=o converges to (p, —pE) in L=(10, T[, L' (R))*.

Let us make a couple of comments on the results and mention a few open questions. First of all, the scaling
assumption on ¢ in Theorem 1 is maybe not the most relevant on the physical viewpoint; but our analysis covers
much more general cases, as it will be detailed later on (see Theorem 15). Second, as already said the existence theory
of the full VMFP system is not complete; nevertheless we assume we have at hand a sequence of solutions of the
system, smooth enough to justify the manipulations below. Dealing with a more general class of solutions, involving
defect measures in the macroscopic conservation laws is possible by adapting the reasoning in [39]. We will give
some hints in this directions in Appendix C. The assumption on the initial data is necessary with the method we use,
which also requires the smoothness of the solution of the limit equations. In some sense this assumption means that
the initial state is already close to the shape of the limit, a shifted Maxwellian function. Of course it would be very
interesting to design a proof involving only compactness arguments. We also completely neglect (like most of the
papers on the topics which usually restrict to the whole space problem or the periodic framework) the difficulties
coming from boundary conditions, that induce delicate boundary layer analysis. Finally, a very important question
consists in dealing with the full system involving kinetic equations for both positive and negative particles. This leads
to a tough analysis and again most of the results in the literature are not able to deal with the two species model.

The paper is organized as follows. In Section 2 we establish some a priori estimates satisfied by smooth solutions
(fe, E¢, Bg) of the three-dimensional VMFP system. In the next section, we introduce the relative entropy and cal-
culate its time evolution. There, we also analyze the well-posedness of the limit equation. In Section 4 we detail the
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passage to the limit. The dimensional analysis of the equations, the physical meaning of the different parameters and
the extension to the renormalized solutions are detailed in Appendix C.

2. A priori estimates

In this section we establish a priori estimates for the smooth solutions (fe, E¢, B;) of VMFP, uniformly with
respect to ¢ > 0. These estimates are deduced from the natural conservation properties of the system and from the
dissipation mechanism due to the collisions.

Proposition 2. Let (f., E¢, Bs) be a smooth solution of the problem (1)—(4), (6), (7) where the initial conditions
satisfy fgo >0, and

M? ::// fldvdx < o0,
R3R3
2
v 1 ae
w? ::g/ %fgodvdx—i—§/|E?}2dx+7/|32|2dx < +o00,
R3R3 R3 R3
Lg :://|x|f£0dvdx<+oo,
R3R3
H? :=8/-/f80|1nf80|dvdx < +o00.
R3R3

We assume also that J € L' (0, T[; L2(R3))3. Then, we have forany 0 <t < T < o0

//fg(t,x,v)dvdx:/[fsodvdx<+oo,

R3R3 R3R3

T

2 1 2

sup {8/ ﬂfg(t,x,v)dvdx+—/|Eg(t,x)|2dx—|—a—8/|Bg(t,x)|2dx}+ / h)—lfedvdxdt

0<I<T 2 2 s 2 : J 2
R° R-

R3R3 R3R3
! 2
< ((2W£ + 6TM£)2 + ﬁ||J||L1(]O,T[;L2(R3))) )

Sup // |x|f€(t’ X, v)dvdx < CT(MS + Wgo + Lg + ||J”il(]0,T[;L2(R3)))’

0T
R3R3
T
sup s//fgllnf8|(t,x,v)dvdx+///|vv\/ﬁ|2dvdxdt
0<I<T
R3IR3 0 R3R3

<Cr(e+ M)+ W) +eL) + H) + ”‘[”il(]O,T[;LZ(R3)))'

Remark 2.1. As said above Mg (and its evolution counterpart) stands for the total negative charge, and the result
only states that it is conserved: indeed there is no production nor loss of electrons within the model. The quantity
WSO collects, taking into account the scaling, the kinetic energy of the particles and the energy of the electro-magnetic
fields. The quantity ¢ [ f. In f: dvdx represents the (scaled) entropy associated to the particles, and the collisions
induce a dissipation of this quantity. For technical purposes, we will be interested instead in the positive quantity Hf.
Finally Lg can be thought of as a measure of how particles spread in space.

Before starting our computations let us state the following lemma, based on classical arguments due to Carleman.
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Lemma 3. Assume that f = f(x,v) satisfies f >0, (|x| + [v|>+ |In f)) f € L'RYN x RN). Then for all k > 0 we
have

FIInFI< FInf 4 2k(lx] + [02) £ +2Ce™ 30D - yith ¢ = sup {—/yiny),
O<y<l1

and

//f|1nf|dudx<//flnfdudx+2k//(|x|+|v|2)fdudx+ck,

RN RN RN RN RN RN

with Cy =2C [ [gn e~ 5P gy g

Proof. Since f|Inf| = flnf + 2f(nf)_, it is sufficient to estimate f(In f)_. Take k > 0 and let C =
SUPg—y<1{—4/YIny} < +o0. We have

fnf)o=—fInf -1 o ey = S0 1 i < p oy
< Cem 1D L k(x| + ) £, V(x,v) eRY x RV,

Therefore
//f(lnf)fdvdxék//(|x|+|v|2)fdvdx+C/ /e_%(‘x|+|”|2)dvdx,
RN RN RN RN RN RN

and the conclusion follows easily. O

Proof of Proposition 2. Integrating (1) with respect to (x, v) € R? x R? yields

d
E/ffg(t,x,v)dvdxzo, t€l0, TI,
R3R3

which implies that

// fe(t,x,v)dvdx:// fldvdx=M°, 1€10,TI[. (17)
R3R3 R3IR3
Note that integrating (5) with respect to x implies % fR3 D(t, x)dx = 0 and therefore we deduce that if initially the
plasma is globally neutral, i.e., [p3 [z3 fgo dvdx = [p3 D(0, x) dx, then it remains globally neutral for all # €10, T[

//fg(t,x,v)dvdx:/D(t,x)dx_

R3R3 R3

v[?

Multiplying (1) by - and integrating with respect to (x, v) implies

2
e%// %fstdX‘i‘//Ee~Uf€dvdx:_//|U|2f8dvdx+3//fgdvd.x. (18)

R3R3 R3IR3 R3R3 R3R3
Multiplying (2), (3) by E,, respectively B, and integrating with respect to x yields
1d .
S (|E8|2+a8|BS|2)dx:—/E8-(J—]S)dx. (19)
R3 R3

By combining (18), (19) we obtain
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/flvl fedvdx + — < //' |2f€dvdx+2/(|E8|2+a£|88|z)dx)

R3R3 R3

—fE8~de+3//f§dvdx,

R3 R3R3

and therefore we have

'
2 1
///|v|2f8dvdxds+8/ ufgdvd)c—i—2/(|E8|2—}—ota2|Bg|2)d)c

0 R3R3 R3R3 R3
<e/ —fg dvdx + - /(}E°| +as|BY|) dx
R3R3 R3
‘ 1
+f</|Eg(s,x)|2dx>2 , (f’](s )| dx> ds+3t//f€ dvdx.
0 R3 R3 R3R3

By using Bellman’s lemma (see Appendix B) we obtain forall 0 <t < T

1

1 1
</|Es(t,x)|2dx>2 < <//(8|v|2+6T)f80dvdx+f(|ES|2+ozs|Bg|2)dx>2
R3

R3IR3 R3
T 1
2 2
+/(/|J(s,x)| dx) ds
0

= (2w2 + 6TM0) 1L o, L2®3)) -

Finally we get

T
1
///|v|2f£dvdxdt+ sup { //—fgdvdx—i- /(|E5|2+055|Bs|2)dx}
0<t<T 2

0 R3R3 R3R3 R3
1) 2
< (W2 +6TM2)2 + V21Tl 1o L2@3)) - (20)

We multiply now (1) by |x| and we obtain after integration with respect to (x, v)

d (v-x) _
E//|x|fedvdx—// N fedvdx =0.

R3R3 R3R3
We deduce that
T
sup //|x|f£dvdxé//|x|f80dvdx+/[/|v|f8dvdxdt
0T
R3R3 R3R3 0 R3R3
T
0 1.5
< |x| fy dvdx + 2(|v| +1)f6dvdxdt
R3R3 0 R3R3

<CT(M0+WO+LO+||J||L1 Q1)

10,T°[; LZ(R3)))
We multiply now (1) by (1 + In f;) and after integration with respect to (x, v) we get
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e%//fglnfsdvdx:—f/(vfs+vag)v}f8 dvdx

&€

R3R3 R3R3
:3//f€dvdx—4f/\vv\/ﬁ\2dudx.
R3R3 R3R3

Finally we deduce that

E/ffglnfgdvdx+4///|VU\/fT;|2dvdxds=s//f801nf80dvdx+3t//f50dvdx. (22)

R3R3 0 R3R3 R3R3 R3R3
Combining (20)—(22) and Lemma 3 with k = 1 yields

sup s//fsunfgmvdx+/T//|vv\/ﬁ|2dvdxdt

0<I<T
SIS R3R3 0 R3R3

<Cr(e+ MO+ W2+eLd+ HY+ T3, 0

(0, T[;LZ(R3)))'

3. The relative entropy method

In this section we introduce the relative entropy, according to the seminal works [13,44]: it will allows us to estab-
lish convergence results, uniformly on any finite time interval [0, 7']. The proof requires some regularity properties
of the limit solutions (p, E, B) of (14) as well as the convergence of the initial data like in particular for the electro-
magnetic field

(/yEQ(x) — E@0,x)| dx +ae/|B£(x) - B(o,x)|2dx) =0.
R3 R3

lim
e\0

We introduce the Maxwellian

_p v+ E)?
pMEg(v) = @R eXP<—T

parametrized by p, E so that p = fR3 pMEgdv, and pE = — fR3 voME dv. Given two nonnegative functions f, g
defined on R? x R3, we define the nonnegative quantity

st~ [[£0()- 2+ e
R3R3

which is a way to evaluate how far f is from g. We are interested in the evolution of

1
He() =eH (felpM) + 5 /(|E8 — EI’ +as|B: — BI*) dx
R3
where (fe, E¢, Be)e>0 are smooth solutions of (1)—(7) and (p, E, B) is a smooth solution of (14). This quantity splits

into the standard (rescaled) L2 norm of the electro-magnetic field plus the relative entropy between the solution
fe(t, x,v) and the leading term p(f, Xx) M x) (V).

3.1. Analysis of the limit system

We start with the analysis of the system (14). Note that this system can be split into two problems. First solve
for (p, E)

3 p —divy(pE) =0, (t,x) €10, T[ x R3,
divy E = D(t,x) — p(t,x), (t,x)€]0, T[ xR3, (23)
curl, E =0, (t,x) €10, T[ x R3,

p(0,x) = po(x), x eR3,
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and secondly find B solution of
{ &E —curly B=—J(t,x) — p(t,x)E(t,x), (t,x)€]0, T[xR3,
div, B =0, (t,x) €10, T[ x R3,

where the charge and current densities D, J are given functions satisfying 9, D +div, J = 0. We give here an existence
result for (23) which is a direct consequence of the existence result obtained in [35], see also [26].

(24)

Proposition 4. Let p° € WH(RHNWE2R3), D e L0, T[; WEHIRH)) N w0, T[ x R3), 8;D € L0, T[;
LY (R3)). Then there is a unique solution for (23) satisfying

peWh=(10,T[xR?),  EeW"™®(10,T[xR?) .

Proof. We introduce the exterior electric field Eqy given by divy Eg = D, curl, Eg = 0, so that divy(E — Eg) =
—p, curl, (E — Eg) = 0. The hypotheses imply that Eq € Wl*oo(]O, T[ x R3)3 . Following the arguments of The-
orem 3 and Lemma 8 of [35] we deduce that there is a unique strong solution (p, E) for (23) verifying p €
L®10,T[; WHeR3)), D — p € L*®(]0, T[; WH°(R?)), E € L>®(]0, T[; W>°(R?)). By differentiating the first
equation of (23) with respect to x we check that V,p € L*°(]0, T[; LY (R3))3 and since 8,p = E - Vop + p(D —
p) € L®(10, T[; LY(R3) N L>®(10, T[; L®(R?)) and 8, D € L>°(10, T[; L' (R3)) N L*=(]0, T[ x R?) we deduce that
8, E € L0, T[; WP (R3))3 ¢ L]0, T[; L>(R3))3 for all p > 3. Finally we obtain that p € W1 (]0, T[ x R?)
and E € W'°(]0, T[ x R3)3. In fact, since D — p € L0, T[; WHLR3)) N L0, T[; W (R3)) we have
E € L®(0, T[; W>P(R?))? for all 1 < p < 400. On the other hand since 3D — dp € L>®(]0, T[; L'(R3)) N
L0, T[ x R3) we have 0, E € L*°(10, T'[; Wl”'(]l@))3 for all 1 < p < 4o00. In particular we obtain that E, 9, E €
L0, T[; L*(R?))*.

Having disposed of this existence result, we can also show by looking at the system satisfied by the 9, In(p)’s that
these quantities are bounded on (0, T') x R3 when V, p° belongs to L®[®R3»3. O

Once we find (p, E) it is easy to solve (24).

Proposition 5. Under the hypotheses of Proposition 4 assume also that
J e L®(10, T[; LAX(R%))’ nL>(10, T[; L1 (R?))’,
8J € L(10, T H™'(RY)  nL>(0, T[; w—"4(R?))’,
27 € L®(10, T[; H2(RY))®,
for some q €13, +oo[ and 3;D + divy J =0 in D'(]0, T[ x R3). Then there is a unique solution B for (24) ver-

ifving B € L>®°(10, T[; H'(R3))> N L>®(10, T[; WH4(R*)3, 8, B € L>(10, T[; L2 R*))3 N L>(10, T[; LI(R3))3,
8?B € L>®(10, T[; H~'(R3))3. In particular B € L*(10, T[ x R?)3.

Proof. Observe that we have div,(8;E + pE + J) =0 and that &, E + pE + J € L]0, T[; L>(R3) N L4 (R3))3.
Therefore there is a unique B € L>°(]0, T[; H'(R*) N W14 (R3))? such that 8, E + pE + J = curl, B, div, B =0.
In order to estimate ;B in L°°(]0, T'[; L2(R3) N L7(R?))? it is sufficient to estimate 9;(;E + pE + J) in
L0, T[; H-YR3) n w—14(R3))3. We have

div, (37E) = 92(D — p) = 3 (—div, J — divy (pE)),

and thus

2
” 8t E”L"C(]O,T[;H*'(R%) < C” % (J +pE) ||L°°(]O,T[;H*1(R3))
< C{||3tJ||LOO(]0,T[;H71(R3)) +llolle - ||3tE||L00(]o,T[;L2(R3))
+ 9ol L - ||E||L00(]0,T[;L2(R3))}-

By the previous proof we already know that E € L*°(]0, T[; W2P(R3)3, 8,E € L0, T[; WP (R3?))3 for all
1 < p < +0o0 and we obtain similarly
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” 8t2EHL°°(]0,T[;W—1v‘7(R3)) S C” (J + 'OE)“LOO(]O,T[;W—L‘/(R3))
Sl | oo o, 7 w-1a @3y + 101 L 190 Ell oo g0, 71: Lo (R3)
0ol IE N oo o, 7 La oy |
It remains to estimate 8,23 in L0, T[; H 1(R3))3. As before we have
” aSEHLOO(]O,T[;H—Z(H@)) < C” atz(J +pE) ” L>(10,T[; H-2(R3))
<cf| BIZJ”LOO(]O,T[;H—2(R3)) + ol atzEHLOO(]O,T[;H—l(R3))
F 3ol 9 Ell oo o, 7i; 23y + ” 8t2'0E||L°°(]0,T[;H*2(R3))}'
And we are done if we bound the norm of Btz pEin L*°(0,T[; H “2(R3))3. By the continuity equation we have
32D 4 div, 8,J =0,
implying that BtzD € L0, T[; W—24(R3)). Therefore we deduce that
97 p=037D —divy 97E € L*(10, T[; W~ >1(R?)).
And finally taking po such that 1/¢’ =1/po + 1/2 with 1/q’ + 1/q = 1 and by observing that
|EO¢] y2a @) < CIED | yn @ 101 12 @3)
we obtain
[ 8tsz”Lm(]o,T[;IrZ(ﬂ@)) <C| 8t2p”L°°(]0,T[;W*2"1(R3))||E||L°°(]0,T[:W2‘p0(R3)) < Fo00. =
For further computations it is worth introducing the vector potential U such that
B=curl, U and div,U =0.
Since curl, B = curl, curl, U = —A, U the vector potential U has the regularity
U e L®(10, T[; HA(R?))’,
U e L=(10, T[; H'(R?) n w4 (R%))’,
92U € L®(10, T[; L*(RY))’.
In particular, since g > 3, we have 9;U € L*°(]0, T[ x R3)3.

3.2. Evolution of the relative entropy

This section is devoted to the study of the evolution of the relative entropy, deduced from

d lv+ E?
EH;;:S ot fe 1+1nf5+T dvdx +¢ fedE-(v+ E)dvdx

R3R3 R3R3

d 1d
—E(e//ﬁln(p)dvdx)+§E(/|E8—E|2+a€|Bg—B|2dx>,

R3R3 R3
where we used the charge conservation (17).

Proposition 6. Let fg0 > 0 verify the assumptions of Proposition 2. Let D >0, D € L*(]0, T[; L' (R3)) and
J € L0, T[; L'R3)3 verify 8;D + div, J = 0. Let (f:, E¢, Be) be a smooth solution of the VMFP system
(1)—(4) with the initial conditions fgo, Eg, Bg satisfying (9). Assume that the solution (p, E, B) of (14) verifies
E e Wh(10, T[xR?)?, B,3,U € L*(10, T[xR*)?, E,B,8E, 3B € L*(10,T[; L*®R%)%, 87B € L®(10, T[;

H~Y(R?))3. Then the balance of the relative entropy is given by
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%(H,g(t)—l—ae/((Eg—E)A(Bg—B))-de+a€/8,U~(Eg—E)dx>+// qulzdvdx
R3 R3 R3IR3
=/A(Eg—E,Ee—E)~de+aa/.A(Bs—B,Bs—B)-de
R3 R3
+a8f((E8—E)/\(BS—B))-B,de +a€f{83U+EAB,B—VX(8tU-E)}~(E8—E)dx

R3 R3

+8/{a(3,U+EAB)+8, — (DyE)

} qg\/gdx

R3
+a//qg-(DxE)(v+E)\/ﬁdvdx, (26)
R3R3

where, for a given u : R3 - R3, A(u, u) denotes the vector udivy, u — u A curly u and g. =/ fe(v + E) +2Vya/ fe.

We wish to establish from identity (26) an estimate like
He(t) KH:0)+w(e)+Cr / He(s)ds

for any 0 <t < T < 400 where the constant C7 depends on T and on various bounds on the data and the solution of
the limit problem while w(¢), which also depends on 0 < 7" < oo, tends to 0 as ¢ goes to 0. Having such an estimate
implies convergence properties by a simple application of the Gronwall lemma.

To start the proof of these statements, it is convenient to rewrite (1) as follows

€@ fe +v-Vife)— divv(fe(v +E)+ vvfs) - din{(Ea —E+as(vA Bs))fs} =0. (27)
Let (p, E, B) be a solution of (14), and let us multiply (1) by

lv+ E|?
2

so that we will recognize the first term in the right-hand side of (25). It thus makes the following quantities appear

1+Inf.+

v+ E|?
Q1<r)=eff(atfs V-V f)- (1 Finf + T) dvdx,

R3R3
2
Or(1) = —//divv(fg(v + E) + va8)<l +1In f; + %) dvdx,
R3R3
2
03(t) = —//divv((Eg —E+4as(wA BS))f8)<1 +Inf. + %) dvdx.
R3R3

We split the evaluation of these quantities into three lemma.

Lemma 7. Assume that E € W (10, T[ x R*)3. Then we have
+E|2
Ql(t)—s—/ Sfelln fe + dvdx—s/ fg(v~|—E)-(8,E+(DXE)v)dvdx,
R3R3

where Dy E stands for the Jacobian matrix of E.
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Proof. We can write
lv+ E|?
2

|v+E|2>

):at(fslnfe)+v'vx(felnfe)+at(fe )

@ fe+v-Vife)- <1 +In fo +

v+ E|?
2

+U'Vx<f8 )—fa(v+E)-(3tE+(DxE)v),

where D, E = (%)K i,j<3- After integration with respect to (x, v) we get
J

2
Ql(t):z?%//fg(lnfg—i— |v+2E| )dvdx—s/ffg(v—i—E)-(3,E+(DXE)v)dvdx. O

R3R3 R3R3

Lemma 8. We have
Qz(t)=//|\/ﬁ(v+E)+2vv\/ﬁ|2dvdx=f/|qs|2dvdx.

R3R3 R3R3

Proof. By using the formula

[v+E? lv+E2

divy (fe (0 + E) + Vo fe) =divp{e™ 2 Vy(fie 2 )],

we deduce that

[v+E[2

Qz(t)=—//divv{e*‘”z”zvv(fse‘”zmz)}ln(fge ) dvdx

R3R3

—lv+EP? vtE2
= [ [ e ) Pavas

2

://’\/ﬁ(v—i-E)—i—ZVU\/ﬁ‘zdvdx. O

R3R3

Lemma 9. Let (p, E, B) be a solution of (14) satisfying E € WH(10, T[ x R®)3, B, 3,U € L>°(]0, T[ x R3)3,
E,B,3E,dB e L>®(0, T[; L2(R>))3. Then, we have

d (1 oe
Q3(t)=E{§/|E8—E|2dx+7/|Bg—B|2dx}
]R3 ]R3

— /(A(Eg —E,E, —E)+asA(B, — B, B, — B)) - Edx

R3
—aeff(atUJrE/\B)~(v+E)f€dvdx+ae/(vx(a,U.E)—EAatB)-(Eg—E)dx
R3R3 R3
+asfa,U-a,(E8—E)dx+asfa,((Es—E)/\(BS—B)).de.
R3 R3

Proof. We can write
v+ E?
2

divy(fo(Es — E +as(v A Bg)))<1 +1In f; + ) =divy(feIn f;(Ee — E + ae(v A By)))

E2
+divy(fo(Ee — E + ae(v A By))) |”+2 C,
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After integration with respect to (x, v) we get

Qg(t)://fg(Eg—E—i—ae(v/\Bg))«(v—i-E)dvdx

R3R3
:/(Eg—E)~j£dx+/p£(E8—E)-de+a8/(j£/\B£)-de
R? R3 R?
:/(Eg—E)-(jg—}—pE)dx—i—/(pg—p)(Eg—E)-de
R3 R3
+oz8/((jg+pE)/\(Bg—B))-de+as/((js+ng)/\B)~de
R3 R?

=h+hL+ L+ 14
From (2), (3) and (14) we have
0/(Ec — E) — curly(B; — B) = j. + pE,
oed; (B — B) +curly (E;, — E) = —aeo; B.

By multiplying (28), (29) by E. — E, and B, — B respectively, we find after integration with respect to x

1d

2dt

R3 R3 R3
=1 —ae/i)tB~(Bg—B)dx.

R3

By using (28) and the vector potential U the last term in the above right-hand side can be written

—ozsz,B - (B — B)dx =—asf8,U -curly (B — B)dx

R3 R3
=Ol8/3;U . {]5 +,0E — 8,(E8 — E)}dx
R3
—ae [{AU- Gt 0B+ 0 = p)0U - E}dx
R3

—ae/B,U-at(Ee — E)dx.
R3
From (4), (14) we have div,(E, — E) = —(pe — p) and thus

L= f(pg —p)(E, —E)-Edx = —/divx(Eg — E)(E, — E) - Edx.

R3 R3
Now by using (2), (3) we deduce

I =058/((j8 +pE) A (B; — B)) - Edx
R3
=a€f((8,(E£ — E) —curly(B; — B)) A (B: — B)) - Edx

R3

(|Es—E|2+a8|Bg—B|2)dx:/(j8+,0E)-(EE—E)dx—ae/8,B~(Bg—B)dx

1233

(28)
(29)

(30)

€29

(32)
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:ozs/((Bg—B)/\curlx(Bg—B))-de+a8/3t((E8—E)/\(Bg—B))-de

R3 R3
—aa/((Eg —E)A3 (B, —B))-Edx
R3
:ozs/((B‘e — B) Acurly (B, — B)) -Edx —i—ocs/‘((E‘,3 —E)A B,B) -Edx
R3 R3
+ae/8,((Eg —EYA (B, — B)) -Edx +/((ES — E) Acurl, (E; — E)) -Edx.
R3 R3

Equalities (32) and (33) imply
12+I3=—/A(E8—E,Eg—E)-de—aa/A(Bs—B,Bs—B)~de
R3 R3
+as/ %((Ec —E) A (B; — B)) - Edx —i—ae/((Es — E)AB)- Edx.

R? R3
Finally we arrive at the formula for Q3 stated in Lemma 9. O

(33)

From (27) we know that Q1(t) + Q2(¢) + Q3(t) =0 for all 0 < ¢ < T. Therefore, combining Lemmas 7-9 yields

d 1 1d
g—f/fg Inf.+=|v+ EJ? dvdx+——/(|Eg—E|2+oz8|B£—B|2)dx+//|q£|2dvdx
dt 2 2dt
R3

R3R3 R3R3

=8//f€(v+E)-(8;E+(DXE)v)dvdx+a8ff(8tU+E/\B)~(v+E)f€dvdx

R3R3 R3R3

+/A(Eg—E,Es—E)-de—i—aa/.A(Bs—B,BS—B)-de
R3

R3

R3
—ots/é),U-a,(Eg — E)dx.
R3

The two last terms can be recast as

—ae%(/((Eg —E)A(Bs —B)-E+09,U - (E, —E))dx),
R3

—i—ae/((ES —E)A(By—B) - %E+3}U - (E. — E)) dx.

R3

—aef(Vx(atU~E)—E/\E),B)~(E8—E)dx—a£/8,((E5—E)/\(BE—B))~de
R’%

(34)

For computing the time derivative of the relative entropy we also need the expression of the third term in the

right-hand side of (29).

Lemma 10. We have

%(s//fsln(p)dvdx)=s[ff€((v+E)-Vxln(,o)+divxE)dvdx.

R3R3 R3R3
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Proof. Using the equations satisfied by f. and p, we obtain when integrating by parts
d
7 (// fe ln(p)dvdx) = // fev-Viln(p)dvdx + // E div,(pE)dvdx.
R3R3 R3R3 R3R3 g
We conclude by expanding %divx (pE)=divy E+ E -V, In(p). O

Combining (34) and Lemma 10 characterizes the evolution of the relative entropy and proves Proposition 6 with
the following observations (based on integration by parts with respect to v):

— On the one hand for any (vector valued) function ¥ depending only on (z, x), we have

//lI/(t,x)~(U+E)fgdvdx://lll(t,x)~qs Vf.dvdx.
R3R3 R3R3
— On the other hand, we have

8//(DXE)(U+E)~(v—i—E)fgdvdx—sfffedivxEdvdxzefqu'(DXE)(U—i-E)\/Edvdx,
R3R3 R3R3 R3R3

where we recognize one of the integrals produced in Lemma 10.

We intend to show that the terms in the right-hand side of (26) are dominated by the relative entropy and the entropy
production term fR_g fR3 |ge|*> dv dx up to a reminder term of order 2. This will allow us to conclude by the Gronwall
lemma.

Corollary 3.1. Under the hypotheses of Proposition 6 we have for any ¢ €10, 1]

sup He(1) < Cr(He(0) + 7 (1+ @),
t€l0,T]

T
f/f|q€|2dvdxdtgCT(H5(0)+52(1+a2)).
0 R3R3

Proof. The estimates are standard, except that of the term

1
//qg.(DXE)(v—i—E)\/ﬁdvdx <Zf/|qg|2dvdx+C82//|U+E|2f5dvdx,
R3R3

R3R3 R3R3

&

which actually needs a sharp estimate of &2 fR3 fR3 |v + E|*f: dvdx. This can be done by using the properties of
the entropic convergence, introduced in [4]. For the sake of the completeness we recall here the arguments. Let
h:]1—1, 4o0o[ — R be the strictly convex function

hz)=04+z)In(l+z)—z, z>-1,

which enters into the definition of the relative entropy. Indeed, let us denote by g the e-fluctuations of f; with respect
to the equilibrium p Mg (and normalized by p MEg)

Then, we get

H(folpM) = f / pMih(ege) dvdx.
R3R3

We shall make use of the following properties of the function /:
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e Its Legendre transform is explicitly given by
y)=e¢ —1—y, yeR.
e Reflection inequality
h(lzl) <h(z), z>-1.
e Super-quadratic homogeneity
h*(y) < AR*(y), y>0,0<A< L.
e Young inequality
vz < h(z2) +h* ().
Indeed, apply the Young inequality with
y:%(1+|v+E|2), 7 =¢lgel.

Using the reflection inequality and the super-quadratic homogeneity yields for 0 < e <a
€ 2 g2 (1 >
@(1+|U+E| )s|g8|<h(sg8)+;h Z(1+|v+E| ) )

Multiplying by asp Mg and integrating with respect to (x, v) € R® we deduce that

2 3

%//(1 + v+ E|2)|f‘,3 — pMg|dvdx <a8//,oMEh(8g8)dvdx +C8—

a

R3R3 R3R3
&3
<aHe(t) —I—C;. (3%5)
Consequently, choosing a = 1, we obtain
2 1 2 2

€ 2|v+E| fedvdx <C(Hs(t)+¢%), O0<e<l. (36)

R3R3

(Another choice of a will be useful later on.)
It remains to estimate the other terms in the right-hand side of (26). Using the formula

1
A(u, u) = divy (u Qu— E|u|213>,

we get easily after integration by parts that

‘/A(EE—E,ES—E).de <C/|E8—E|2dx<CHe(t),
R3 R3

and similarly

< Cozs/ |B. — B|?dx < CH,(1),

ae /A(BE—B,Bg—B)~de
R3 R3

where C depends on || E || y1,0. Next, we use the trivial inequalities

o

™

f((Eg —E)A(Be — B)) - % Edx| < c«/as/(wg — EI* +ae|B; — B|*)dx
R3 R3

< Clae He(1).
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By virtue of our assumptions on the limit solution, 3>U + E A & B — V,(3;U - E) belongs to L>(]0, T[; L*(R?))?

and therefore
1 2
=+ E |E e — E | d.x
R3

< Cae? + Ho(1).

e /{83U+EA8;B—VX(BIU~E)}-(EE—E)dx < Ca’e?

R3

Similarly, by using the charge conservation we get

{€@U +EAB)+§E — (D:E)E — Vilnp} - gs/fedvdx

R3R3
1

gZ// |gel* dvdx + Ce* (1 +a?). (37)
]R3R3

Plugging all these estimates in (26) we obtain

jt{Hg(t)—i-ocs/((Es — E) A (Bg —B))-de+a8/8,U (Eg — E)dx} +%// Iqslzdvdx
R3 R3 R3R3
C(He(0) +e*(1 +a?)).

Eventually the conclusion follows by integrating with respect to the time and by observing that

ae/((Eg—E)/\(Bg—B))~de+a8/8tU-(Eg—E)dx <

R3 R3

C(1+ae)Ho () + Ca?e’. O (38)

4. Asymptotics

In this section we analyze the asymptotic behavior of smooth solutions ( f, E¢, Bg)e>0 of the VMFP system (1)—(7)
when the parameter £ N\ 0 and we establish rigorously the connection to the system (14). We start with the following
consequence of Corollary 3.1.

Proposition 11. Under the hypotheses of Proposition 6, we assume moreover that

(i) limg\ 0 He(0) =0. Then, we have

E, —> E strongly in L°°(]0 T[; L (Rz))

///|qg| dvdxdt —> 0,

0 R3R3
fo — peMEg zoo strongly in L' (10, T[ x R? x R?).
&

(ii) limg\ o H:(0)/e = 0. Then, we have furthermore,
fe :TO,OME strongly in L°°(]0, T[; Ll(R3 X ]R3)),
&

. . 7 1 (m3
De S;)O,o and je Ez‘)o—pE strongly in L°°(]O, T[;L (R ))
(iii) limg\ 0 He(0)/(ae) =0, with limg\ o &/a = 0. Then, we have furthermore,

. 3
B E:TOB strongly in L (10, T[; L*(R?))”.
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Proof. The two first statements in (i) are obvious consequences of Corollary 3.1 since H(f:|oMg) > 0. Next, we
appeal to the logarithmic Sobolev inequality, see e.g. [3,2], which yields

Jfe ( fe ) fe } / ( fe )
0< In - +1tpeMgdv = In dv
[{peME PeME pPeME pellE . fe peME
R;

R3

2 A
<)»/|Vv\/f£/ME| MEdUZZ/|QS|2dUs
R3 R3

for some A > 0. Hence fOT H(f:|peME)dt tends to 0 as ¢ N\ 0. Eventually, we conclude by using the Csiszar—
Kullback-Pinsker inequality, see [19,32], which implies that

2
(//Ufmw@wmu><u/ﬁm<f5>dwn
e PeME

R3R3
with & > 0.
With the additional assumption in (ii), we strengthen also the behavior of the relative entropy:
He(t
lim sup () =0.

eNo0 o<t<T €
Now, let us go back to (35). Optimizing with respect to a, we arrive at

He (1)

//(l—l—lv—l—EIZ)lfg — pMg|dvdx < Cry| ——

R3R3

which tends to 0 uniformly with respect to 0 <7 < T as ¢ N\ 0. Therefore we readily check that

sup //|f8 —pMg|dvdx — O,
t€[0,T] e\O0
R3R3
Sw(ﬁ%—mw=swt”/U&mMmM
te[0,T] te[0,T]
R3 R3 R3

sup /|j8+,0E|dx= sup / /v(fs_PME)dU
1€[0,T] tel0,T]
R? R} R3
The control on the magnetic field under the strengthened assumption in (iii) follows from the simple remark

He(n) <
ae

dx — 0,
e\0

dx — 0.
e\0

C

He(0) + e2(1 + a?)
T . O

| Be — BII(#) p2r3) < we

Clearly, Proposition 11(iii) ends the proof of Theorem 1. However, we can still investigate the asymptotic behavior
of the solutions under the weaker hypothesis of (i). The difficulty comes from the fact that the relative entropy does
not provide useful information on H(f.|pMEg) and || By — B||i2 ®) due to the ¢ and a¢ in front of these terms in
the definition of the relative entropy. Nevertheless, we will be able to establish convergences in a weaker sense. For
instance, since p; — p = divx(E — E;) we obtain that limg\ g o = p in D’ (R3), uniformly for ¢ € [0, T']. Actually
we can prove that the previous convergence holds in the space of bounded measures. Throughout the paper we denote
by MU (R3) the set of bounded Radon measures on R, while M L(R3) stands for its positive cone. We recall some
definitions and compactness properties in measure spaces (see [12] for more details).

Definition 4.1. Let (p,),cN be a sequence in M (R3). We say that
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(1) (pn)nen converges vaguely to p iff

tim_ [ odp, = [ dp. (39)
n—-+00
R3 R3
for any continuous function with compact support ¢ € C? (R3) (actually the convergence holds for any continuous
function ¢ vanishing at infinity, i.e., limx|— 00 @(x) = 0);
(2) (pn)nen converges tightly to p iff (39) holds for any continuous and bounded function ¢ € COR3) N L™®(R3).

We have the following classical results.
Proposition 12.

(1) Let (on)nen be a sequence in ML_(I[@) which converges vaguely to p. Assume also that lim,_, ;oo Pp (]R3) =
0 (R3). Then (pn)nen converges to p tightly.

(2) Let (pn)neN be a sequence in MR verifying sup,, |p,1|(R3) < 400 and such that for any n > 0 there exists
a compact set K, C R3 satisfying sup,, | onl(R3 — Ky) < n. Then (pp)nen is relatively compact for the tight

topology.
We recall also the following compactness result, cf. [26].
Proposition 13. Assume that (0¢)e=0, (Je)es0 satisfy pe >0, 3 pe + divy je =0in D'(]0, T[ x R3), Ve > 0 and

sup sup /ps(t,x)(l + |x|)dx < 400,
e>01€[0.7]7
R

T

2
sup/(/ |j£(t,x)|dx> dt < 400,
>0

0 R3

T
sup//(1+ |x|)|j8(t»x)|dxdt<—|—oo_

e>0
0 R3

Then (pg)e=0 is relatively compact in CO([O, Tl; M}‘_(RS)-tight) and (je)e=o is relatively compact in M0, T x
R3)3-right.

Our goal is to complete Proposition 11 as follows.

Lemma 14. Let the assumptions of Proposition 11() be fulfilled. Then, we also have the following convergence
properties:

(@) pe converges to p in CO([0, T; M_I,_(R3)-tight),
(b) je converges to —pE in M0, T] x R3) tightly,
(c) B, convergesto B in D' (10, T[ x R?).

Proof. We observe that

/T//|U+E'2f€d”d“”</T/f(lvaElzfg+4|Vv\/ﬁ|2)dvdxdt

0 R3R3 0 R3R3

T
= f/(|45|2—2(v+E)-vag)dvdxdt

0 R3R3
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:/T//(|q8|2+6f8)dvdxdt.

0 R3R3

Hence, the charge conservation together with Corollary 3.1 imply that

sup ///|v| fedvdx dt < +oo.
0<e<l1

0 R3R3

Next, reasoning as in the proof of Proposition 2 (see (21)) we have

// +|x]) fedvdx < f/ 1+ |x]) 2 vdx+/ff|v|fsdvdxdt

R3R3 R3R3 0 R3R3
T
<//(1+|x|)f80dvdx+%///(l+|v|2)f8dvdxdt,
R3R3 0 R3R3

by using (15) and therefore

sup  sup /(1 + |x|),08(t,x) dx < 4o0.
0<e<11€[0,T] s
R

Moreover we have the inequalities

T

T

2
/”je(l)Hil(Rs)dt</<//|v|fgdvdx) di
0

0 R3R3

<j<[[lv|2fedvdX)( /fsdvdx>
(///m fgdvdxdt)</ff£dvdx>

0 R3R3 R3R3
<C, 0O0<e«l,

and

fT J (VR it ol avar < / [ [+ Viiyws avarar

0R3 0 R3R3

/// L+ o) + (Ix| + [v[*)} fe dvdx dt

0 R3R3
<C, O0<eg<l.

Therefore, by using Proposition 13 we deduce that (p;).~0 is relatively compact in C 010, T1; M#(R3)-tight) and
(Je)eo is relatively compact in M! ([0, T] x R3 )3—tight. Since div, (E; — E) = —(pe — p) we obtain that p, converges
to p in C°([0, T'1; M}F(RS)-tight). Next, we remark that
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T T
//|js+PsE|ddeS///\/Elqgldvdxdt

0 R3 0 R3R3
T % T %
<<///fgdvdxdt> (///mglzdvdxdt) , (40)
0 R3R3 0 R3R3

and thus we have for all continuous bounded function 6

T T T
f/(jg+pE>edxdz < //(je+peE)9dxdt + //m—pe)Eedxdr
0 R3 0 R3 0 R3
T T
<||9||Loo// e + peEl dxdi + ff(pg—mEedxdr. 1)
0 R3 0 R3

Since E6 is bounded and continuous we have lim,\ o fOT fR3 (pe — p)EO dx dt = 0 and thus Proposition 11 implies
that j, converges to —pE in M ([0, T] x R?)3-tight.
It remains to deal with the magnetic field: we aim at showing that

for all function ¢ € Cf(]O, T[xR3)3. Pick ¢ such a function and observe that in particular we have ¢, 3;¢ €
L%(]0, T[; H'(R?))3. By using the decomposition

¢ = Vi1 +curly ¢,
with ¢1, 01 € L2(]0, T[; H2(]R3)) and ¢y, 0, € L2(]0, T[; H2(R3))3, it is sufficient to prove that

T
lim //.(B‘9 — B)-Vyp1dxdt =0, (42)
&\0
0 R3
and
T
lim //(Bg — B) -curly o dx dt =0. 43)
e\0
0 R3

The convergence (42) is trivial since divy B, = divy B = 0. To justify (43) we use the equations
o E; —curly B; = jo — J, oE —curly B=—pE — J.

After multiplication by the test function ¢, we find

T T T
—//(ES—E)-B,gozdxdt—//(Bg—B)-curlx<p2dxdt=//(ja+,0E)-g02dxdt.
0 R3 0 R3 0 R3

Since 39> € L?(10, T[; L2(R*))? and lime\ 0 E: = E in L>®(]0, T[; L>(R*))? the first integral in the left-hand
side vanishes as ¢ N\ 0. To deal with the right-hand side, observe that ¢, is a continuous bounded function since
@2, 802 € L>(10, T[; H2(R?))? imply ¢, € CO([0, T]; H2(R3))3  €2([0, T] x R3)3> N L>®(J0, T x R3)3. By using
the convergence limg\ o jo = —pE in Ml([O, T] x ]R3)3-tight we deduce
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T
li i E)-@ydxdt =0,
8%//(]s+0 ) - prdx

0 R3

and therefore (43) holds.
Let us end with the following remark, which makes the formal result (13) clear:

e\0
0 R3 R3

T
lim/f‘/(fg(t,x,v) —,o(t,x)ME(t,x,v))ga(x)dx dvdt =0,

holds for any test function ¢ € C O(R3) N L% (R3). At first, we expand

fe—poMg = (fe — peME) + (pe — p)ME.

Consider ¢ € CO(R?) N L®(R3). Since E € WI*(J0, T[ x R})3, for all (r,v) € [0, T] x R? the function x —
ME(t, x, v)@(x) is continuous and bounded. We have already shown that p, — p tends to 0 in C 0o, T1; M! (R3)-tight)
and thus we have

li\r‘r(l)/(ps(t,x) — p(t,x))MEg(t, x,vV)p(x)dx =0, V(t,v) €[0,T] x R>.
]R3

Moreover we have the inequality |v + E(t,)c)|2 > %|v|2 — |E(t,)c)|2 > %|v|2 — ||E||%c>c> and thus Mg(t,x,v) <
C(||E||Loo)e_‘”|2/4, Y(t,x,v) € [0, T] x R3 x R3. We deduce that

<2c(||E||Loc)||<o||LocfD(o,x>dx P,

‘ / (0e(t,x) = p(t, 1)) ME (1, x, V)g(x) dx
R3 R3

and by using the dominated convergence theorem we obtain

T
li\r‘r(l)/‘/‘/‘(pg(t,x) —p(t,x))ME(t,x,v)q)(x)dx dvdt =0.

OR3 R3

The behavior of f, — p. Mg has been already discussed in Proposition 11. O

To conclude, we are led to the following statement.
Theorem 15. We assume that the assumptions of Theorem 1 are fulfilled, but we replace hypothesis (16) on the
initial relative entropy by limg\ 0 H¢(0) = 0. Then (E¢)e~o converges to E in L*°(]0, T[; LZ(R3))3, (VEBe)e=0
converges to 0 in L*°(]0, T[; L?2(R3))3, (By)e=0 converges to B in D'(]0, T x R3)3, (pe)e=0 converges to p in
co(o, T1; M}F(R3)-tight) and (jg)e=0 converges to —pE in M ([0, T x R?)3-tight.
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Appendix A. Dimensional analysis

We detail here the dimensional analysis of the equations and the physical meaning of the different parameters in-
troduced previously. Let us write the equations in physical variables. We distinguish the following physical constants:

— ¢&o the vacuum permittivity;
— Ko the vacuum permeability;
— o the vacuum light speed given by 80/Loc(2) =1;
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q the charge of (negative) particles;

— m the mass of particles;

— 7 the relaxation time which characterizes the interactions of the particles with the thermal bath;
K g the Boltzmann constant;

Ty, the temperature of the thermal bath.

Let f(¢, x, v) denote the particle distribution function, which depends on the time ¢ > 0, space coordinates x € R3
and velocity coordinates v € R3. The evolution of f is described by the Fokker—Planck equation

F
0 f +v-Vaf +—-Vof =Lep(f), (t,x,v) €10, 00l X R3 x R3,

where the Fokker—Planck collision operator is given by

L | KBTlh
FP(f)z;lev vf + Vo f ],

m

and F(t,x,v) =q(E(t,x) + v A B(t, x)) represents the Lorentz force. The evolution of the electro-magnetic field
(E, B) is given by the Maxwell equations

"
B,E—c(z)curlez—J( Y g B4cul, E=0. (r.x)€]0.+ool x B3,
&0
. p(ta-x) . 3
div, E = , div, B=0, (t,x)€]0,4o0o[ xR,
0]

where p =g ng fdvand j=¢q ng vf dv are respectively the charge and current densities. The plasma is char-

acterized by the mean free path [ =,/ % - 7, which is the average distance traveled by a particle between two

goKp Ty L3
N

successive collisions, and the Debye length A = , which is the typical length of perturbations of a quasi-

neutral plasma. Here A/ stands for a typical value for the number of particles in the plasma. In this paper we focus our
attention on asymptotic regimes where the mean free path is much smaller than the Debye length, i.e., / < A. We set

()

which is a small parameter. We introduce time, length and velocity units

! KT
=", L=, y= /28"
& £ m

Observe also that we have L = TV and A = /¢ L. We define dimensionless variables and unknowns by the relations

t=Tt¢, x=Lx, v=Vv,
N [t x v Un t x VU, t x
ts ) = e N ) Ets =_E/ 5 ) Btv = B/ P k)
. x.v) L3V3f<T L v) “0="7, (T L) ¢, x) 2Le (T L>

gN ([t x . qVN [t x
tv = —= P B t’ = T 7 |
p(t,x) L3p<T L) Jj(t,x) I\ T

KpTm
q

where Uy, = is the thermal potential. After changing variables and unknowns, we obtain dropping the primes

V2 .
e@r f+v-Vif)— (E(t,x) +—=vA B(t,x)) -V f =divy(vf +Vy, f),
€
VZ
oE —curly B=—j(t,x), —28[B+curle=O,
c
0
divy E = p(t, x), div, B=0,
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where p(1,x) = [ps f(t,x,v)dv, j(t,x) = [gs vf (z, x, v) dv. Notice that we have

v2 < ! )2 1 A%
—_— = — —- = —F =g,
2 \7)a~na
where o = (T—/C‘O)Z, so that we are interested in a regime where the light speed remains large compared to the velocity

unit of observation.
Let us define

the collision frequency =

RVEY

1 | Ng?
the plasma frequency r = LZ ,
b mL>ggy

L
the scale of light propagation Tp= —,
€0
. 1 KpTy 1
the cyclotronic frequency =
T: mCOT &

(the last definition takes into account the scaling of the magnetic field) while 1/t is the collision frequency. With
the previous scaling assumptions, we arrive at 7,/ T = /¢, To/ T = /e, T./T = 1/a. The assumption ¢ /o — 0 is
physically questionable since it means that 7y which is the time necessary for light to travel the distance L is large
compared to the time t between two collisions events. This remark justifies the analysis of the general situation.

Appendix B. Bellman’s lemma
In the proof of Proposition 2 we have used Bellman’s lemma. We recall here the statement

Lemma 16. Assume that x : [0, T] - R and a : [0, T] — R are given functions satisfying
t
1 2 1 5
SEOF < Sl + [ al)x(s)ds, 1€[0,T1
0

Then we have the inequality

t

lx(@)] < |xo|+/a(s)ds, tel0,T].
0

Appendix C. Renormalized solutions

We have investigated the high-electric-field limit of the VMFP system provided that the solutions (f;, E¢, Bs)e>0
are smooth. The global existence of smooth solution for the VMFP system is a largely open problem in general
situations. Therefore, following the ideas in [39] we intend to establish similar results in the framework of weaker
solutions for the VMFP equations. In order to simplify our computations we work in the space periodic setting: we
consider the space domain T3 = (R/Z)3. A weak solution is a triplet

(fer Ee. Be) € L(10. T L*(T° x BY)) x L(10, T1; L(T%))°
(0. T w2 < B (0. T w LT

which satisfies (1)—-(4), (6), (7) in the sense of distributions and verifies
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//<lnf8 |v|2)f8dvdx+ /(|E8|2+ae|B8|2)dx

T3R3
t
+//f|v\/ﬁ+2vv\/ﬁ|2dudxds+//1~E£dxds
0 T3R3 0T3
8//<lnf80+%|v| )fs dvdx + = /(|E0| +ae|BY)dx, 1el0,T].
T3R3 T

It is well known that such a solution satisfies the local conservation law of the charge

/fgdv—i—dlvx/vfsdv—

R3

1245

(C.1)

but whether the local conservation law of the momentum holds in the sense of distributions is still an open prob-
lem. We consider a particular type of weak solutions, i.e., the renormalized solutions for the VMFP equations, as
introduced by DiPerna and Lions [22]. Their construction yields a solution which satisfies in addition a conservation
law of momentum and a global energy equality with defect measures. The idea is to consider approximate solutions

(fl, EZ, Bl), (here ¢ is kept fixed) and to extract subsequences (still indexed by n) such that

fI= foo wx—L®(10, T[; L*(T° x RY)),
(EI. BY) = (Ee. Be).  wx—L®(10,T[: L*(T%))".

Therefore (after extraction eventually) there are symmetric nonnegative matrix-valued defect measures pu%, uf €

L>®(0, T[; MY(T?))°, ugp € L=(0, T[; M'(T?))3 such that for any ¢ € C°([0, T] x T?)

T T
liT //(EZ®E;’)<p(t,x)dxdt://(E€®Eg)w(t,x)dxdt—i—//(p(t,x)d;fE,
n——+0oo

0 T3 0 T3 0 T3

T T
niu}rloo//(Bg ®Bg)go(t,x)dxdt://(38 ®Bg)go(t,x)dxdt—i—//(p(t,x)du%,

0 T3 0 T3 0 T3

T T T
lir4r_1 //(E;’ ABZ)w(t,x)dxdt://(Ee /\Be)ga(t,x)dxdt+//¢(r,x)d/x§53.
n—+0o0

0 T3 0 T3 0 T3

Observe also that the sequence (fooo r4f£” (t,x,or)dr), is bounded in L*°(]0, T'[; /\/l#('ﬂ‘3 x S?)) and therefore

(after extraction eventually) there is a nonnegative measure m, € L*°(]0, T'[; /\/lﬂr(ﬂl"3

¥ e CO([0, T1 x T3 x S?) we have

T
lim ///|v|2f;¢<t,x,i>dvdxdt
n— 400 [v]

0 T3R3

///'”' v (ron. )dvdxdt+///lﬁ(t x.0)dm,.

Taking ¥ (¢, x,0) =0(t, x)(0 ® o) we deduce that

liT /(v@v)fg”dvz/(v@v)fgdv+/(0 Qo)dmy,
R3 3 2

x S?)) such that for any

(C2)
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in D’(J0, T[ x T3). Using the formula
prE} +agj! AB! =DE! +acJ AB} — A(E!, E!) —asA(B], B!') + agd;(E! A B}),
we deduce that the limit solution ( f, E., B.) satisfies the local conservation law of momentum in the sense of distri-

butions on [0, T[ x T3

£8t/vf5dv+8divx</(v®v)f€dv+f(a ®a)dm€> + DE; +aeJ A B
R3 R3 s?
— A(E;, Eg) — ae A(Bg, Bs) + agd; (Es A B)

1 1
— div, <;L% ~5 tr(u%)h) — aediv, <M% —5 tr(,u%)h) + agd Ep

=—/vfgdv. (C3)

R3
In the above formula the terms A(E,, E;), A(B., B;) must be understood in the sense of distributions accordingly to
the formula

. 1 . 1
A(E;, E¢) = divy (E ® E. — 5|E5|213), A(Bg, B:) = div, (Be ® B — 5|Bg|213).

For further computations it is convenient to transform (C.3) using the identities in D' ([0, T[ x T3)
aed;(Es A Be) = aed; ((Es — E) A (B — B)) +aed;(E A B)
+ ae(jo + pE + curly (B, — B)) A B+ as(E; — E) A ;B
+ agd E A (B; — B) + E A (—agd; B — curly (E; — E)), (C4)

A(E¢, Ec)=A(Ec —E,E.— E)+ A(E,E)+ (E, — E)div, E
+ Ediv,(E; — E) — E Acurl (E, — E), (C)5)

acA(Bg, B;) =aeA(B, — B, B — B) + ac A(B, B) — ae(B; — B) Acurl, B
—aeB Acurl, (B, — B), (C.6)

aed(EAB)— A(E,E) —acA(B,B)=E(p — D) —as(J + pE)ANB +acE N 0;B. (C.7)
Combining (C.4)—(C.7), (28), (29) we obtain
aed;(Es A By) — A(E;, E;) — ae A(Bg, B;)
=Ol£3;((Eg —EYA (B, — B)) -~ A(E, — E,E, — E)—acA(B. — B, B — B)
—(D—p)E; —ae(J +pE)ANB; +ac(E; — EYNO;B — Edivy(E; — E) +ae(je + pE) A B.

Therefore the conservation law of momentum (C.3) can be written

eat/vfsdv+£divx</(v®v)f5dv+/(a®a)dm€>

R3 R3 s2

+aed; ((Ec — E) A (B — B)) — A(E; — E,E; — E) —ag A(B; — B, B, — B)
+pEe —aepE A Be +ae(E; — E) N0 B — E(p — pe) tac(je + pE) A B

. 1 . 1
— div, (M% -3 tr(uij)lg) — aedivy (u% -3 tr(,u%)h) +eduEs

=—/vf8dv. (C.8)

R3
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Similarly the limit solution ( fe, E., B,) satisfies the free-energy decay

//<lnfs =|v| )fgdvdx—f- /(|Ea|2+a8|Bg dx+///|v\/ﬁ+2v fg| dvdxds

T3R3 0 T3R3
// dm, + —/ (tr(uf) + aetr(uy //J E.dxds
T3 §2 0 T3
1
8//<lnf§~l—§|v|2>f£dvdx+5/(|E§|2+a8|38|2)dx, tel0,T]. (C9)
T3 R3 T

We call renormalized solution of the VMFP system a weak solution satisfying (C.3) and (C.9). The above arguments
allow to construct a renormalized solution ( f;, E, B:) on any time interval [0, 7] and for any & > 0. In order to study
the asymptotic behavior of these solutions as & goes to zero, we introduce the relative entropy with defect measures.

Hs(t)—S/[fsln

1
dvdx + — 5 /(|ES — E|2 + ag|Bs — B|2)dx

T3 R3 3
5 [ [ dmes / (r(1) + e t(15)
T3 §2
=He(t) + = // dmg + f (tr(n) +aetr(uy)).
T3 §2
We have

fonL <1nf +£Iv|2)+f (v-E—i—llElz) — foln—L
& pME & & 2 & 2 & (27_[)3/27

and thus in order to evaluate H, we need to compute S[R3 |E\? fedvdx, Jrs [z E - vfedvdx, [13 [ps felnpdvdx
and to combine with (C.9). This will be done by using the conservation laws of charge (C.1) and momentum (C.8).
We obtain the following equalities in D’([0, T[)

//—|E| fedvdx—S// (:E + (DxE)v) fr dvdx =0, (C.10)
T3 R3 T3 R3
d
SE/‘/v-EfEdvdx—8//(BIE+(DXE)v)-vfgdvdx—S//a-(DxE)admg
T3 R3 T3R3 T3 §?
d
+aeE/((E8—E)/\(Bg—B)).de—as/((Es—E)A(BS—B))-a,de
T3 T3

—f(A(Eg —E,E;. —E)+asA(B; — B, B — B)) - Edx

3

& 1 & &€ 1 &€

+ [ DyE: ,uE—Etr(,uE)h dx +ae | DLE: MB_Etr(MB)I3 dx

T3 T3

+/pEg-de+a8/((E8—E)/\3,B)-de—/|E|2(p—pg)dx
3 3 3

d
+a£f(js/\B)-de+a85/E-d,u%B—aefB,E-dMSEB
T3 sl T3
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=—/j€-de. (C.11)
T
By standard computations using the Maxwell equations we obtain in D’ ([0, T[)

d

I 5 aE .
o E|E| —E€~E+7|B| —aeB.-B)dx= [ ((j—js)- E—acd;B- (B, — B))dx
T3

el

_/(j_J)'Esdx- (C.12)
T3

Summing up (C.9)—(C.11), (C.12) (the last three equalities being integrated over [0, 7]) yields after elementary ma-
nipulations

l 2 l _ 2 _ 2
g lnf8~|—2|v+E| fgdvdx—l—z (IEc — E|” + ag|B, — B|") dx

T3 R3 T3
t 1
&
+///|q8|2dudxds+§// dm8+§/d(tr(,u%)+aetr(u%))
0 T3R3 T §2 3
+a8/((Eg—E)/\(Bg—B))~de+ote/Eodu%de
T3 T3
1 1
<o f [(s+ Jre 80 ) v [ (180 £ +ac|8? - 5P)as
TR T3

t
+aef((Eg—E0)A(Bg—BO))-Eodx+8///(8tE+(DxE)v)-(v—i—E)fgdvdxds

T3 0 T3R3
l 1
_//<(E8_E)®(E8_E)_§|E5_E|2I3) :D,Edxds
0T
t 1
_a8/f<(B£_B)®(Be_B)_§|BS—B|2]3> :DyEdxds
0 T3

' t
+a£f/((E8—E)A(BS—B))-8,deds+a8f[8,E-du%deds

0 T3 0 T3

¢ t
—ae//B,B~(BE—B)dxds—ae//((Eg—E)/\BIB)-deds

0 T3 0 T3
1 t
—as//(ngB)-deds+8///o-(DXE)odmg
0 T3 0 T3§2
t 1 t l
_ //DXE : <M€E - Etr(u%)h) —as/fDxE : (,u% - 5“(“%)13)- (C.13)
0 T3 0 T3

It is easily seen, by introducing the vector potential U that
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t t
—/BtB~(Bs—B)dx—//((Es—E)/\B,B)-deds—//(ja/\B)~deds

T 0 T3 0 T3
:f/(atU+EAB)-(v+E)f£dvdx—/(Vx(a,U-E)—EAatB)~(E8—E)dx
T3 R3 T3
d
— E/atU-(Ee—E)dx+/a,2U-(Eg—E)dx. (C.14)
3 3

Combining (C.13), (C.14) yields the analogous version of (34) (integrated over [0, ]) with defect measure terms.
It remains to add the contribution of ng ng fe In((2m)~3/2 p)dvdx which is obtained by using one more time the
charge conservation law

t
0
//fgln(z;ﬁdvdx:/[fsoln(27':)3/2dvdx+///f5(8,+v.Vx)lnpdvdxds.

T3 R3 T3 R3 0 T3 R3

Performing now the same computations as in the proof of Proposition 6 leads to a relative entropy balance similar to
(26) with the following additional defect terms in the left-hand side

// dmg + / (r(ng) +aetr(u ))+as/E(r,x).dw;;B, (C.15)
T3 §2 3

and the additional defect terms in the right-hand side

ae//8,E dMEB+8///G (D E)o dmg — //D E: ( —%tr(ME)h)

0 T3 0 1382 0 T3

t
1
—ag//DxE: (M% — Etr(,u%)lg). (C.16)
0 T3

From now on we can use the same arguments as in the case of smooth solutions. The only new thing to do is to observe
that the above defect terms appearing under the time integration sign in (C.16) are dominated by the defect terms in
H, (see (C.15)). Taking into account that for any matrix A € C%(T?)? we have the inequalities

/A(x) du’; /|A(x)|dtr( ‘/A(x) dusy| < /|A(x)|dtr(MB)

3

we deduce that

[.: (b= Sl e [ Do (3t ) < [ aleluy) +as (i)

T3 T3 T3
< CHe (D).

Observe now that for any vector a € C 0(T3)3 we have

1
Jae /a(x) dugg| < /|a(x)|dtr( ) 5/|a(x)|a£dtr(u%),
T3 T3 T3
implying that
ae fa,E dpsg| < CJ_/ (tr(n) + e tr(nf)).

el
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Eventually observe that

//U'(DXE)Udmg QC// dmg.

T3 S2 T S2

Finally one gets the inequality

t t

~ 1 ~ ~

He(t) + 3 /// |q8|2dvdxds < C(’HS(O) + 82) + C/Hg(s)ds,
0 T3R3 0

and we conclude by the Gronwall lemma.
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