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Abstract

This article is concerned with the Zakharov–Kuznetsov equation

∂tu + ∂x�u + u∂xu = 0. (0.1)

We prove that the associated initial value problem is locally well-posed in Hs(R2) for s > 1
2 and globally well-posed in H 1(R×T)

and in Hs(R3) for s > 1. Our main new ingredient is a bilinear Strichartz estimate in the context of Bourgain’s spaces which allows
to control the high-low frequency interactions appearing in the nonlinearity of (0.1). In the R2 case, we also need to use a recent
result by Carbery, Kenig and Ziesler on sharp Strichartz estimates for homogeneous dispersive operators. Finally, to prove the
global well-posedness result in R3, we need to use the atomic spaces introduced by Koch and Tataru.
© 2014
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1. Introduction

The Zakharov–Kuznetsov equation (ZK)

∂tu + ∂x�u + u∂xu = 0, (1.1)

where u = u(x, y, t) is a real-valued function, t ∈ R, x ∈ R, y ∈ R, T or R2 and � is the laplacian, was introduced
by Zakharov and Kuznetsov in [9] to describe the propagation of ionic–acoustic waves in magnetized plasma. The
derivation of ZK from the Euler–Poisson system with magnetic field was performed by Lannes, Linares and Saut [11]
(see also [14] for a formal derivation). Moreover, the following quantities are conserved by the flow of ZK,

M(u) =
∫

u(x, y, t)2 dx dy, (1.2)
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and

E(u) = 1

2

∫ (∣∣∇u(x, y, t)
∣∣2 − 1

3
u(x, y, t)3

)
dx dy. (1.3)

Therefore L2 and H 1 are two natural spaces to study the well-posedness for the ZK equation.
In the 2D case, Faminskii proved in [4] that the Cauchy problem associated to (1.1) was well-posed in the energy

space H 1(R2). This result was recently improved by Linares and Pastor who proved well-posedness in Hs(R2), for
s > 3/4. Both results were proved by using a fixed point argument taking advantage of the dispersive smoothing
effects associated to the linear part of ZK, following the ideas of Kenig, Ponce and Vega [8] for the KdV equation.

The case of the cylinder R × T was treated by Linares, Pastor and Saut in [13]. They obtained well-posedness in
Hs(R×T) for s > 3

2 . Note that the best results in the 3D case were obtained last year by Ribaud and Vento [16] (see

also Linares and Saut [14] for former results). They proved local well-posedness in Hs(R3) for s > 1 and in B
1,1
2 (R3).

However it is still an open problem to obtain global solutions in R×T and R3.
The objective of this article is to improve the local well-posedness results for the ZK equation in R2 and R × T,

and to prove new global well-posedness results. In this direction, we obtain the global well-posedness in H 1(R× T)

and in Hs(R3) for s > 1. Next are our main results.

Theorem 1.1. Assume that s > 1
2 . For any u0 ∈ Hs(R2), there exist T = T (‖u0‖Hs ) > 0 and a unique solution of (1.1)

such that u(·,0) = u0 and

u ∈ C
([0, T ] : Hs

(
R2)) ∩ X

s, 1
2 +

T . (1.4)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood U of u0 in Hs(R2), such that the flow map data-solution

S : v0 ∈ U �→ v ∈ C
([

0, T ′] : Hs
(
R2)) ∩ X

s, 1
2 +

T ′ (1.5)

is smooth.

Theorem 1.2. Assume that s � 1. For any u0 ∈ Hs(R × T), there exist T = T (‖u0‖Hs ) > 0 and a unique solution
of (1.1) such that u(·,0) = u0 and

u ∈ C
([0, T ] : Hs(R×T)

) ∩ X
s, 1

2 +
T . (1.6)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood Ũ of u0 in Hs(R×T), such that the flow map data-solution

S : v0 ∈ Ũ �→ v ∈ C
([

0, T ′] : Hs(R×T)
) ∩ X

s, 1
2 +

T ′ (1.7)

is smooth.

Remark 1.1. The spaces X
s,b
T are defined in Section 2.

As a consequence of Theorem 1.2, we deduce the following result by using the conserved quantities M and E

defined in (1.2) and (1.3).

Theorem 1.3. The initial value problem associated to the Zakharov–Kuznetsov equation is globally well-posed in
H 1(R×T).

Remark 1.2. Theorem 1.3 provides a good setting to apply the techniques of Rousset and Tzvetkov [17,18] and prove
the transverse instability of the KdV soliton for the ZK equation.

Finally, we combine the conserved quantities M and E with a well-posedness result in the Besov space B
1,1
2 and

interpolation arguments to prove:
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Theorem 1.4. The initial value problem associated to the Zakharov–Kuznetsov equation is globally well-posed in
Hs(R3) for any s > 1.

Remark 1.3. Note that the global well-posedness for the ZK equation in the energy space H 1(R3) is still an open
problem.

The main new ingredient in the proofs of Theorems 1.1, 1.2 and 1.4 is a bilinear estimate in the context of
Bourgain’s spaces (see for instance the work of Molinet, Saut and Tzvetkov for the KPII equation [15] for similar
estimates), which allows to control the interactions between high and low frequencies appearing in the nonlinearity
of (1.1). In the R2 case, we also need to use a recent result by Carbery, Kenig and Ziesler [3] on sharp Strichartz
estimates for homogeneous dispersive operators. This allows us to treat the case of high-high to high frequency inter-
actions. With those estimates in hand, we are able to derive the crucial bilinear estimates (see Propositions 4.1 and 5.1
below) and conclude the proof of Theorems 1.1 and 1.2 by using a fixed point argument in Bourgain’s spaces. To prove
the global wellposedness in R3 we follows ideas in [2] and need to get a suitable lower bound on the time before the
norm of solution doubles. To get this bound we will have to work in the framework of the atomic spaces U2

S and V 2
S

introduced by Koch and Tataru in [10].
We saw very recently on the arXiv that Grünrock and Herr obtained a similar result [6] in the R2 case by using the

same kind of techniques. Note however that they do not need to use the Strichartz estimate derived by Carbery, Kenig
and Ziesler. On the other hand, they use a linear transformation on the equation to obtain a symmetric symbol ξ3 + η3

in order to apply their arguments. Since we derive our bilinear estimate directly on the original equation, our method
of proof also worked in the R×T setting (see the results in Theorems 1.2 and 1.3).

This paper is organized as follows: in the next section we introduce the notations and define the function spaces.
In Section 3, we recall the linear Strichartz estimates for ZK and derive our crucial bilinear estimate. Those estimates
are used in Sections 4 and 5 to prove the bilinear estimates in R2 and R× T. Finally, Section 6 is devoted to the R3

case.

2. Notation, function spaces and linear estimates

2.1. Notation

For any positive numbers a and b, the notation a � b means that there exists a positive constant c such that a � cb.
We also write a ∼ b when a � b and b � a. If α ∈ R, then α+, respectively α−, will denote a number slightly
greater, respectively lesser, than α. If A and B are two positive numbers, we use the notation A ∧ B = min(A,B) and
A ∨ B = max(A,B). Finally, mesS or |S| denotes the Lebesgue measure of a measurable set S of Rn, whereas #F or
|S| denotes the cardinal of a finite set F .

We use the notation |(x, y)| = √
3x2 + y2 for (x, y) ∈ R2. For u = u(x, y, t) ∈ S(R3), F(u), or û, will denote its

space–time Fourier transform, whereas Fxy(u), or (u)∧xy , respectively Ft (u) = (u)∧t , will denote its Fourier transform
in space, respectively in time. For s ∈ R, we define the Bessel and Riesz potentials of order −s, J s and Ds , by

J su = F−1
xy

((
1 + ∣∣(ξ,μ)

∣∣2) s
2 Fxy(u)

)
and Dsu = F−1

xy

(∣∣(ξ,μ)
∣∣sFxy(u)

)
.

Throughout the paper, we fix a smooth cutoff function η such that

η ∈ C∞
0 (R), 0 � η � 1, η|[−5/4,5/4] = 1 and supp(η) ⊂ [−8/5,8/5].

For k ∈ N� = Z∩ [1,+∞), we define

φ(ξ) = η(ξ) − η(2ξ), φ2k (ξ,μ) := φ
(
2−k

∣∣(ξ,μ)
∣∣)

and

ψ2k (ξ,μ, τ) = φ
(
2−k

(
τ − (

ξ3 + ξμ2))).
By convention, we also denote

φ1(ξ,μ) = η
(∣∣(ξ,μ)

∣∣) and ψ1(ξ,μ, τ) = η
(
τ − (

ξ3 + ξμ2)).
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Any summations over capitalized variables such as N , L, K or M are presumed to be dyadic with N , L, K or M � 1,
i.e., these variables range over numbers of the form {2k: k ∈N}. Then, we have that∑

N

φN(ξ,μ) = 1, supp(φN) ⊂
{

5

8
N �

∣∣(ξ,μ)
∣∣� 8

5
N

}
=: IN , N � 2,

and

supp(φ1) ⊂
{∣∣(ξ,μ)

∣∣� 8

5

}
=: I1.

Let us define the Littlewood–Paley multipliers by

PNu = F−1
xy

(
φNFxy(u)

)
, QLu = F−1(ψLF(u)

)
. (2.1)

Finally, we denote by e−t∂x� the free group associated with the linearized part of Eq. (1.1), which is to say,

Fxy

(
e−t∂x�ϕ

)
(ξ,μ) = eitw(ξ,μ)Fxy(ϕ)(ξ,μ), (2.2)

where w(ξ,μ) = ξ3 + ξμ2. We also define the resonance function H by

H(ξ1,μ1, ξ2,μ2) = w(ξ1 + ξ2,μ1 + μ2) − w(ξ1,μ1) − w(ξ2,μ2). (2.3)

Straightforward computations give that

H(ξ1,μ1, ξ2,μ2) = 3ξ1ξ2(ξ1 + ξ2) + ξ2μ
2
1 + ξ1μ

2
2 + 2(ξ1 + ξ2)μ1μ2. (2.4)

We make the obvious modifications when working with u = u(x, y) for (x, y) ∈ R×T and denote by q the Fourier
variable corresponding to y.

2.2. Function spaces

For 1 � p � ∞, Lp(R2) is the usual Lebesgue space with the norm ‖ · ‖Lp , and for s ∈R, the real-valued Sobolev
space Hs(R2) denotes the space of all real-valued functions with the usual norm ‖u‖Hs = ‖J su‖L2 . If u = u(x, y, t)

is a function defined for (x, y) ∈ R2 and t in the time interval [0, T ], with T > 0, if B is one of the spaces defined
above, 1 � p � ∞ and 1 � q �∞, we will define the mixed space–time spaces L

p
T Bxy , L

p
t Bxy , L

q
xyL

p
T by the norms

‖u‖L
p
T Bxy

=
( T∫

0

∥∥u(·,·, t)∥∥p

B
dt

) 1
p

, ‖u‖L
p
t Bxy

=
(∫

R

∥∥u(·,·, t)∥∥p

B
dt

) 1
p

,

and

‖u‖L
q
xyL

p
T

=
( ∫

R2

( T∫
0

∣∣u(x, y, t)
∣∣p dt

) q
p

dx

) 1
q

,

if 1 � p, q < ∞ with the obvious modifications in the case p = +∞ or q = +∞.
For s, b ∈ R, we introduce the Bourgain spaces Xs,b related to the linear part of (1.1) as the completion of the

Schwartz space S(R3) under the norm

‖u‖Xs,b =
( ∫

R3

〈
τ − w(ξ,μ)

〉2b〈∣∣(ξ,μ)
∣∣〉2s∣∣̂u(ξ,μ, τ)

∣∣2
dξ dμdτ

) 1
2

, (2.5)

where 〈x〉 := 1 + |x|. Moreover, we define a localized (in time) version of these spaces. Let T > 0 be a positive time.
Then, if u : R2 × [0, T ] → C, we have that

‖u‖ s,b = inf
{‖ũ‖Xs,b : ũ : R2 ×R→C, ũ|R2×[0,T ] = u

}
.

XT
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We make the obvious modifications for functions defined on (x, y, t) ∈ R × Z × R. In particular, the integration
over μ ∈R in (2.5) is replaced by a summation over q ∈ Z, which is to say

‖u‖Xs,b =
(∑

q∈Z

∫
R2

〈
τ − w(ξ, q)

〉2b〈∣∣(ξ, q)
∣∣〉2s∣∣̂u(ξ, q, τ )

∣∣2
dξ dτ

) 1
2

, (2.6)

where w(ξ, q) = ξ3 + ξq2.

2.3. Linear estimates in the Xs,b spaces

In this subsection, we recall some well-known estimates for Bourgain’s spaces (see [5] for instance).

Lemma 2.1 (Homogeneous linear estimate). Let s ∈R and b > 1
2 . Then∥∥η(t)e−t∂x�f

∥∥
Xs,b � ‖f ‖Hs . (2.7)

Lemma 2.2 (Non-homogeneous linear estimate). Let s ∈R. Then for any 0 < δ < 1
2 ,∥∥∥∥∥η(t)

t∫
0

e−(t−t ′)∂x�g
(
t ′
)
dt ′

∥∥∥∥∥
X

s, 1
2 +δ

� ‖g‖
X

s,− 1
2 +δ

. (2.8)

Lemma 2.3. For any T > 0, s ∈R and for all − 1
2 < b′ � b < 1

2 , it holds

‖u‖
X

s,b′
T

� T b−b′ ‖u‖
X

s,b
T

. (2.9)

3. Linear and bilinear Strichartz estimates

3.1. Linear Strichartz estimates on R2

First, we state a Strichartz estimate for the unitary group {e−t∂x�} proved by Linares and Pastor (cf. Proposition 2.3
in [12]).

Proposition 3.1. Let 0 � ε < 1
2 and 0 � θ � 1. Assume that (q,p) satisfy p = 2

1−θ
and q = 6

θ(2+ε)
. Then, we have

that ∥∥D
θε
2

x e−t∂x�ϕ
∥∥

L
q
t L

p
xy
� ‖ϕ‖L2 (3.1)

for all ϕ ∈ L2(R2).

Then, we obtain the following corollary in the context of Bourgain’ spaces.

Corollary 3.2. We have that

‖u‖L4
xyt

� ‖u‖
X

0, 5
6 + , (3.2)

for all u ∈ X0, 5
6 +.

Proof. Estimate (3.1) in the case ε = 0 and θ = 3
5 writes∥∥e−t∂x�ϕ

∥∥
L5

xyt
� ‖ϕ‖L2 (3.3)

for all ϕ ∈ L2(R2). A classical argument (see for example [5]) yields
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‖u‖L5
xyt

� ‖u‖
X

0, 1
2 + ,

which implies estimate (3.2) after interpolation with Plancherel’s identity ‖u‖L2
xyt

= ‖u‖X0,0 . �
In [3], Carbery, Kenig and Ziesler proved an optimal L4-restriction theorem for homogeneous polynomial hyper-

surfaces in R3.

Theorem 3.3. Let Γ (ξ,μ) = (ξ,μ,Ω(ξ,μ)), where Ω(ξ,μ) is a polynomial, homogeneous of degree d � 2. Then
there exists a positive constant C (depending on φ) such that( ∫

R2

∣∣f̂ (
Γ (ξ,μ)

)∣∣2∣∣KΩ(ξ,μ)
∣∣ 1

4 dξ dμ

) 1
2

� C‖f ‖L4/3, (3.4)

for all f ∈ L4/3(R3) and where∣∣KΩ(ξ,μ)
∣∣ = ∣∣det HessΩ(ξ,μ)

∣∣. (3.5)

As a consequence, we have the following corollary.

Corollary 3.4. Let |KΩ(D)| 1
8 and eitΩ(D) be the Fourier multipliers associated to |KΩ(ξ,μ)| 1

8 and eitΩ(ξ,μ), i.e.

Fxy

(∣∣KΩ(D)
∣∣ 1

8 ϕ
)
(ξ,μ) = ∣∣KΩ(ξ,μ)

∣∣ 1
8 Fxy(ϕ)(ξ,μ) (3.6)

where |KΩ(ξ,μ)| is defined in (3.5), and

Fxy

(
eitΩ(D)ϕ

)
(ξ,μ) = eitΩ(ξ,μ)Fxy(ϕ)(ξ,μ). (3.7)

Then, ∥∥∣∣KΩ(D)
∣∣ 1

8 eitΩ(D)ϕ
∥∥

L4
xyt

� ‖ϕ‖L2, (3.8)

for all ϕ ∈ L2(R2).

Proof. By duality, it suffices to prove that∫
R3

∣∣KΩ(D)
∣∣ 1

8 eitΩ(D)ϕ(x, y)f (x, y, t) dx dy dt � ‖ϕ‖L2
xy

‖f ‖
L

4/3
xyt

. (3.9)

The Cauchy–Schwarz inequality implies that it is enough to prove that∥∥∥∥∫
R

∣∣KΩ(D)
∣∣ 1

8 e−itΩ(D)f (x, y, t) dt

∥∥∥∥
L2

xy

� ‖f ‖
L

4/3
xyt

(3.10)

in order to prove estimate (3.9). But straightforward computations give

Fx,y

(∫
R

∣∣KΩ(D)
∣∣ 1

8 e−itΩ(D)f dt

)
(ξ,μ) = c

∣∣KΩ(ξ,μ)
∣∣ 1

8 Fx,y,t (f )
(
ξ,μ,Ω(ξ,μ)

)
,

so that estimate (3.10) follows directly from Plancherel’s identity and estimate (3.4). �
Now, we apply Corollary 3.4 in the case of the unitary group e−t∂x�.

Proposition 3.5. Let |K(D)| 1
8 be the Fourier multiplier associated to |K(ξ,μ)| 1

8 where∣∣K(ξ,μ)
∣∣ = ∣∣3ξ2 − μ2

∣∣. (3.11)
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Then, we have that∥∥∣∣K(D)
∣∣ 1

8 e−t∂x�ϕ
∥∥

L4
xyt

� ‖ϕ‖L2 (3.12)

for all ϕ ∈ L2(R2), and∥∥∣∣K(D)
∣∣ 1

8 u
∥∥

L4
xyt

� ‖u‖
X

0, 1
2 + (3.13)

for all u ∈ X0, 1
2 +.

Proof. The symbol associated to e−t∂x� is given by w(ξ,μ) = ξ3 + ξμ2. After an easy computation, we get that

det Hessw(ξ,μ) = 4
(
3ξ2 − μ2).

Estimate (3.12) follows then as a direct application of Corollary 3.4. �
Remark 3.1. It follows by applying estimate (3.1) with ε = 1/2− and θ = 2/3+ that∥∥D

1
6
x e−t∂x�ϕ

∥∥
L6−

xyt
� ‖ϕ‖L2,

for all ϕ ∈ L2(R2), which implies in the context of Bourgain’s spaces (after interpolating with the trivial estimate
‖u‖L2

xyt
= ‖u‖X0,0 ) that

∥∥D
1
8
x u

∥∥
L4

xyt
� ‖u‖

X
0, 3

8 +, (3.14)

for all u ∈ X0, 3
8 +.

Estimate (3.13) can be viewed as an improvement of estimate (3.14), since outside of the lines |ξ | = 1√
3
|μ|, it

allows to recover 1/4 of derivatives instead of 1/8 of derivatives in L4.

Remark 3.2. A similar estimate to (3.13) (with a loss of a small positive number ε) could also be deduced from the
decay estimates in [1].

Remark 3.3. it is interesting to observe that the resonance function H defined in (2.4) cancels out on the planes
(ξ1 = − μ1√

3
, ξ2 = μ2√

3
) and (ξ1 = μ1√

3
, ξ2 = − μ2√

3
).

3.2. Bilinear Strichartz estimates

In this subsection, we prove the following crucial bilinear estimates related to the ZK dispersion relation for func-
tions defined on R3 and R×T×R.

Proposition 3.6. Let N1, N2, L1, L2 be dyadic numbers in {2k: k ∈N�}∪{1}. Assume that u1 and u2 are two functions
in L2(R3) or L2(R×T×R). Then,∥∥(PN1QL1u1)(PN2QL2u2)

∥∥
L2

� (L1 ∧ L2)
1
2 (N1 ∧ N2)‖PN1QL1u1‖L2‖PN2QL2u2‖L2 . (3.15)

Assume moreover that N2 � 4N1 or N1 � 4N2. Then,∥∥(PN1QL1u1)(PN2QL2u2)
∥∥

L2

� (N1 ∧ N2)
1
2

N1 ∨ N2
(L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2 . (3.16)
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Remark 3.4. Estimate (3.16) will be very useful to control the high-low frequency interactions in the nonlinear term
of (1.1).

In the proof of Proposition 3.6 we will need some basic lemmas stated in [15].

Lemma 3.7. Consider a set Λ ⊂ R × X, where X = R or T. Let the projection on the μ axis be contained
in a set I ⊂ R. Assume in addition that there exists C > 0 such that for any fixed μ0 ∈ I ∩ X, |Λ ∩ {(ξ,μ0):
μ0 ∈ X}| � C. Then, we get that |Λ| � C|I | in the case where X = R and |Λ| � C(|I | + 1) in the case where
X = T.

The second one is a direct consequence of the mean value theorem.

Lemma 3.8. Let I and J be two intervals on the real line and f : J → R be a smooth function. Then,

mes
{
x ∈ J : f (x) ∈ I

}
� |I |

infξ∈J |f ′(ξ)| . (3.17)

In the case where f is a polynomial of degree 2, we also have the following result.

Lemma 3.9. Let a �= 0, b, c be real numbers and I be an interval on the real line. Then,

mes
{
x ∈ J : ax2 + bx + c ∈ I

}
� |I | 1

2

|a| 1
2

(3.18)

and

#
{
q ∈ Z: aq2 + bq + c ∈ I

}
� |I | 1

2

|a| 1
2

+ 1. (3.19)

Proof of Proposition 3.6. We prove estimates (3.15)–(3.16) in the case where (x, y, t) ∈ R3. The case (x, y, t) ∈
R×T×R follows in a similar way. The Cauchy–Schwarz inequality and Plancherel’s identity yield∥∥(PN1QL1u1)(PN2QL2u2)

∥∥
L2 = ∥∥(PN1QL1u1)

∧ � (PN2QL2u2)
∧∥∥

L2

� sup
(ξ,μ,τ)∈R3

|Aξ,μ,τ | 1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2, (3.20)

where

Aξ,μ,τ = {
(ξ1,μ1, τ1) ∈R3:

∣∣(ξ1,μ1)
∣∣ ∈ IN1,

∣∣(ξ − ξ1,μ − μ1)
∣∣ ∈ IN2,∣∣τ1 − w(ξ1,μ1)

∣∣ ∈ IL1,
∣∣τ − τ1 − w(ξ − ξ1,μ − μ1)

∣∣ ∈ IL2

}
it remains then to estimate the measure of the set Aξ,μ,τ uniformly in (ξ,μ, τ) ∈R3.

To obtain (3.15), we use the trivial estimate

|Aξ,μ,τ | � (L1 ∧ L2)(N1 ∧ N2)
2,

for all (ξ,μ, τ) ∈R3.
Now we turn to the proof of estimate (3.16). First, we get easily from the triangle inequality that

|Aξ,μ,τ | � (L1 ∧ L2)|Bξ μ,τ |, (3.21)

where

Bξ,μ,τ = {
(ξ1,μ1) ∈R2:

∣∣(ξ1,μ1)
∣∣ ∈ IN1,

∣∣(ξ − ξ1,μ − μ1)
∣∣ ∈ IN2,∣∣τ − w(ξ,μ) −H(ξ1, ξ − ξ1,μ1,μ − μ1)

∣∣� L1 ∨ L2
}

(3.22)
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and H(ξ1, ξ2,μ1,μ2) is the resonance function defined in (2.4). Next, we observe from the hypotheses on the dyadic
numbers N1 and N2 that∣∣∣∣∂H∂ξ1

(ξ1, ξ − ξ1,μ1,μ − μ1)

∣∣∣∣ = ∣∣3ξ2
1 + μ2

1 − (
3(ξ − ξ1)

2 + (μ − μ1)
2)∣∣� (N1 ∨ N2)

2.

Then, if we define Bξ,μ,τ (μ1) = {ξ1 ∈R: (ξ1,μ1) ∈ Bξ,μ,τ }, we deduce applying estimate (3.17) that∣∣Bξ,μ,τ (μ1)
∣∣ � L1 ∨ L2

(N1 ∨ N2)2
,

for all μ1 ∈R. Thus, it follows from Lemma 3.7 that

|Bξ,μ,τ |� N1 ∧ N2

(N1 ∨ N2)2
(L1 ∧ L2). (3.23)

Finally, we conclude the proof of estimate (3.16) gathering estimates (3.20)–(3.23). �
4. Bilinear estimate in RRR×RRR

The main result of this section is stated below.

Proposition 4.1. Let s > 1
2 . Then, there exists δ > 0 such that∥∥∂x(uv)

∥∥
X

s,− 1
2 +2δ

� ‖u‖
X

s, 1
2 +δ

‖v‖
X

s, 1
2 +δ

, (4.1)

for all u,v : R3 → R such that u,v ∈ Xs, 1
2 +δ .

Before proving Proposition 4.1, we give a technical lemma.

Lemma 4.2. Assume that 0 < α < 1. Then, we have that∣∣(ξ1 + ξ2,μ1 + μ2)
∣∣2 �

∣∣∣∣(ξ1,μ1)
∣∣2 − ∣∣(ξ2,μ2)

∣∣2∣∣ + f (α)max
{∣∣(ξ1,μ1)

∣∣2
,
∣∣(ξ2,μ2)

∣∣2}
, (4.2)

for all (ξ1,μ1), (ξ2,μ2) ∈R2 satisfying

(1 − α)
1
2
√

3|ξi |� |μi |� (1 − α)−
1
2
√

3|ξi |, for i = 1,2, (4.3)

and

ξ1ξ2 < 0 and μ1μ2 < 0, (4.4)

and where f is a continuous function on [0,1] satisfying limα→0 f (α) = 0. We also recall the notation |(ξ,μ)| =√
3ξ2 + μ2.

Proof. If we denote by �u1 = (ξ1,μ1), �u2 = (ξ2,μ2) and (�u1, �u2)e = 3ξ1ξ2 +μ1μ2 the scalar product associated to | · |,
then (4.2) is equivalent to

|�u1 + �u2|2 �
∣∣|�u1|2 − |�u2|2

∣∣ + f (α)max
{|�u1|2, |�u2|2

}
. (4.5)

Moreover, without loss of generality, we can always assume that

ξ1 > 0, μ1 > 0, ξ2 < 0, μ2 < 0 and |�u1|� |�u2|. (4.6)

Thus, it suffices to prove that

(�u1 + �u2, �u2)e �
f (α)

2
|�u1|2. (4.7)

By using (4.3) and (4.4), we have that
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(�u1 + �u2, �u2)e = 3(ξ1 + ξ2)ξ2 + (μ1 + μ2)μ2

� 6(ξ1 + ξ2)ξ2 − 3αξ1ξ2 + 3
(
(1 − α)−1 − 1

)
ξ2

2 . (4.8)

On the other hand, the assumptions ξ1 > 0, ξ2 < 0, |�u1|� |�u2| and (4.3) imply that

ξ1 = |ξ1| �
(
1 − g(α)

)|ξ2| = −(
1 − g(α)

)
ξ2 (4.9)

with

g(α) = 1 −
(

2 − α

2 + 3((1 − α)−1 − 1)

) 1
2 −→

α→0
0.

Thus, it follows gathering (4.8) and (4.9) that

(�u1 + �u2, �u2)e � 6g(α)ξ2
2 − 3αξ1ξ2 + 3

(
(1 − α)−1 − 1

)
ξ2

2 ,

which implies (4.7) by choosing

f (α) = 12g(α) + 6α + 6
(
(1 − α)−1 − 1

)−→
α→0

0. �
Proof of Proposition 4.1. By duality, it suffices to prove that

I � ‖u‖L2
x,y,t

‖v‖L2
x,y,t

‖w‖L2
x,y,t

, (4.10)

where

I =
∫
R6

Γ
ξ1,μ1,τ1
ξ,μ,τ ŵ(ξ,μ, τ )̂u(ξ1,μ1, τ1)̂v(ξ2,μ2, τ2) dν,

û, v̂ and ŵ are nonnegative functions, and we used the following notations

Γ
ξ1,μ1,τ1
ξ,μ,τ = |ξ |〈∣∣(ξ,μ)

∣∣〉s〈σ 〉− 1
2 +2δ

〈∣∣(ξ1,μ1)
∣∣〉−s〈σ1〉− 1

2 −δ
〈∣∣(ξ2,μ2)

∣∣〉−s〈σ2〉− 1
2 −δ,

dν = dξ dξ1 dμdμ1 dτ dτ1, ξ2 = ξ − ξ1, μ2 = μ − μ1, τ2 = τ − τ1,

σ = τ − w(ξ,μ) and σi = τi − w(ξi,μi), i = 1,2. (4.11)

By using dyadic decompositions on the spatial frequencies of u, v and w, we rewrite I as

I =
∑

N1,N2,N

IN,N1,N2, (4.12)

where

IN,N1,N2 =
∫
R6

Γ
ξ1,μ1,τ1
ξ,μ,τ P̂Nw(ξ,μ, τ)P̂N1u(ξ1,μ1, τ1)P̂N2v(ξ2,μ2, τ2) dν.

Since (ξ,μ) = (ξ1,μ1) + (ξ2,μ2), we can split the sum into the following cases:

(1) Low × Low → Low interactions: N1 � 2, N2 � 2, N � 2. In this case, we denote

ILL→L =
∑

N�4,N1�4,N2�4

IN,N1,N2 .

(2) Low × High → High interactions: 4 � N2,N1 � N2/4 (⇒ N2/2 � N � 2N2). In this case, we denote

ILH→H =
∑

4�N2,N1�N2/4,N2/2�N�2N2

IN,N1,N2 .
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(3) High × Low → High interactions: 4 � N1,N2 � N1/4 (⇒ N1/2 � N � 2N1). In this case, we denote

IHL→H =
∑

4�N1,N2�N1/4,N1/2�N�2N1

IN,N1,N2 .

(4) High × High → Low interactions: 4 � N1,N � N1/4 (⇒ N1/2 � N2 � 2N1) or 4 � N2,N � N2/4 (⇒ N2/2 �
N1 � 2N2). In this case, we denote

IHH→L =
∑

4�N1,N�N1/4,N2/2�N1�2N2

IN,N1,N2 .

(5) High × High → High interactions: N2 � 4, N1 � 4, N2/2 � N1 � 2N2, N1/2 � N � 2N1 and N2/2 � N � 2N2.
In this case, we denote

IHH→H =
∑

N2/2�N1�2N2,N1/2�N�2N1,N2/2�N�2N2

IN,N1,N2 .

Then, we have

I = ILL→L + ILH→H + IHL→H + IHH→L + IHH→H . (4.13)

1. Estimate for ILL→L. We observe from Plancherel’s identity, Hölder’s inequality and estimate (3.2) that

IN,N1,N2 �
∥∥∥∥(

P̂N1u

〈σ1〉 1
2 +δ

)∨∥∥∥∥
L4

∥∥∥∥(
P̂N2v

〈σ2〉 1
2 +δ

)∨∥∥∥∥
L4

‖PNw‖L2 � ‖PN1u‖L2‖PN2v‖L2‖PNw‖L2, (4.14)

which yields

ILL→L � ‖u‖L2‖v‖L2‖w‖L2 . (4.15)

2. Estimate for ILH→H . In this case, we also use dyadic decompositions on the modulations variables σ , σ1 and σ2,
so that

IN,N1,N2 =
∑

L,L1,L2

I
L,L1,L2
N,N1,N2

, (4.16)

where

I
L,L1,L2
N,N1,N2

=
∫
R6

Γ
ξ1,μ1,τ1
ξ,μ,τ

̂PNQLw(ξ,μ, τ) ̂PN1QL1u(ξ1,μ1, τ1) ̂PN2QL2v(ξ2,μ2, τ2) dν.

Hence, by using the Cauchy–Schwarz inequality in (ξ,μ, τ), we can bound I
L,L1,L2
N,N1,N2

by

N2N
−s
1 L− 1

2 +2δL
− 1

2 −δ

1 L
− 1

2 −δ

2

∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2‖PNQLw‖L2 .

Now, estimate (3.16) provides the following bound for ILH→H ,∑
L,L1,L2

L− 1
2 +2δL−δ

1 L−δ
2

∑
N∼N2,N1�N2/4

N
−(s− 1

2 )

1 ‖PN1QL1u‖L2‖PN2QL2v‖L2‖PNQLw‖L2 .

Therefore, we deduce after summing over L, L1, L2, N1 and applying the Cauchy–Schwarz inequality in N ∼ N2
that

ILH→H � ‖u‖L2

∑
N∼N2

‖PN2v‖L2‖PNw‖L2

� ‖u‖L2

(∑
N2

‖PN2v‖2
L2

) 1
2
(∑

N

‖PNw‖2
L2

) 1
2

� ‖u‖L2‖v‖L2‖w‖L2 . (4.17)
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3. Estimate for IHL→H . Arguing similarly, we get that

IHL→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.18)

4. Estimate for IHH→L. We use the same decomposition as in (4.16). By using the Cauchy–Schwarz inequality,
we can bound I

L,L1,L2
N,N1,N2

by

L− 1
2 +2δL

− 1
2 −δ

1 L
− 1

2 −δ

2
Ns+1

Ns
1Ns

2

∥∥( ˜PN1QL1u)(PNQLw)
∥∥

L2‖PN2QL2v‖L2, (4.19)

where f̃ (ξ,μ, τ) = f (−ξ,−μ,−τ). Moreover, observe interpolating (3.15) and (3.16) that∥∥( ˜PN1QL1u)(PNQLw)
∥∥

L2

� (N1 ∧ N)
1
2 (1+θ)

(N1 ∨ N)1−θ
(L1 ∨ L)

1
2 (1−θ)(L1 ∧ L)

1
2 ‖PN1QL1u‖L2‖PNQLw‖L2, (4.20)

for all 0 � θ � 1. Without loss of generality, we can assume that L = L∨L1 (the case L1 = L∨L1 is actually easier).
Hence, we deduce from (4.19) and (4.20) that

I
L,L1,L2
N,N1,N2

� L−δ
1 L

− 1
2 −δ

2 L2δ− θ
2 N

1
2 +θN

−(s−θ)
1 ‖PN1QL1u‖L2‖PNQLw‖L2‖PN2QL2v‖L2 . (4.21)

Now, we choose 0 < θ < 1 and δ > 0 satisfying 0 < 2θ < s − 1
2 and 0 < δ < θ

4 . It follows after summing (4.21) over
L, L1, L2 and performing the Cauchy–Schwarz inequality in N and N1 that

IHH→L �
∑
N1

N
−(s− 1

2 −2θ)

1 ‖PN1u‖L2

(∑
N

‖PNw‖2
L2

) 1
2 ‖v‖L2 � ‖u‖L2‖w‖L2‖v‖L2 . (4.22)

5. Estimate for IHH→H . Let 0 < α < 1 be a small positive number such that f (α) = 1
1000 , where f is defined in

Lemma 4.2. In order to simplify the notations, we will denote (ξ,μ, τ) = (ξ0,μ0, τ0). We split the integration domain
in the following subsets:

D1 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈R6: (1 − α)

1
2
√

3|ξi |� |μi |� (1 − α)−
1
2
√

3|ξi |, i = 1,2
}
,

D2 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈R6: (1 − α)

1
2
√

3|ξi |� |μi |� (1 − α)−
1
2
√

3|ξi |, i = 0,1
}
,

D3 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈R6: (1 − α)

1
2
√

3|ξi |� |μi |� (1 − α)−
1
2
√

3|ξi |, i = 0,2
}
,

D4 =R6 \
3⋃

j=1

Dj .

Then, if we denote by I
j
HH→H the restriction of IHH→H to the domain Dj , we have that

IHH→H =
4∑

j=1

I
j
HH→H . (4.23)

5.1. Estimate for I 1
HH→H . We consider the following subcases.

(i) Case {ξ1ξ2 > 0 and μ1μ2 > 0}. We define

D1,1 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈ D1: ξ1ξ2 > 0 and μ1μ2 > 0

}
and denote by I

1,1
HH→H the restriction of I 1

HH→H to the domain D1,1. We observe from (2.4) and the frequency
localization that

max
{|σ |, |σ1|, |σ2|

}
�

∣∣H(ξ1,μ1, ξ2,μ2)
∣∣� N3

1 (4.24)
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in the region D1,1. Therefore, it follows arguing exactly as in (4.14) that

I
1,1
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.25)

(ii) Case {ξ1ξ2 > 0 and μ1μ2 < 0} or {ξ1ξ2 < 0 and μ1μ2 > 0}. We define

D1,2 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈ D1: ξ1ξ2 > 0, μ1μ2 < 0 or ξ1ξ2 < 0, μ1μ2 > 0

}
and denote by I

1,2
HH→H the restriction of I 1

HH→H to the domain D1,2. Moreover, we use dyadic decompositions
on the variables σ , σ1 and σ2 as in (4.16). Plancherel’s identity and the Cauchy–Schwarz inequality yield

I
L,L1,L2
N,N1,N2

� N1−sL− 1
2 +2δL

− 1
2 −δ

1 L
− 1

2 −δ

2

∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2‖w‖L2 . (4.26)

Next, we argue as in (3.20) to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . Moreover, we observe that∣∣∣∣ ∂H

∂μ1
(ξ1, ξ − ξ1,μ1,μ − μ1)

∣∣∣∣ = 2|μ1ξ1 − μ2ξ2|� N2

in the region D1,2. Thus, we deduce from Lemma 3.7, estimates (3.17) and (3.20) and (3.21) that∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2 �N− 1
2 (L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ‖PN1QL1u‖L2‖PN2QL2v‖L2 . (4.27)

Therefore, we deduce combining estimates (4.26) and (4.27) and summing over L, L1, L2 and N ∼ N1 ∼ N2
that

I
1,2
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.28)

(iii) Case {ξ1ξ2 < 0 and μ1μ2 < 0}. We define

D1,3 = {
(ξ1,μ1, τ1,μ, ξ, τ ) ∈ D1: ξ1ξ2 < 0 and μ1μ2 < 0

}
and denote by I

1,3
HH→H the restriction of I 1

HH→H to the domain D1,3. Moreover, we observe due to the frequency
localization that there exists some 0 < γ � 1 such that∣∣∣∣(ξ2,μ2)

∣∣2 − ∣∣(ξ1,μ1)
∣∣2∣∣� γ max

{∣∣(ξ1,μ1)
∣∣2

,
∣∣(ξ2,μ2)

∣∣2} (4.29)

in D1,3. Indeed, if estimate (4.29) does not hold for all 0 < γ � 1
1000 , then estimate (4.2) with f (α) = 1

1000 would
imply that∣∣(ξ,μ)

∣∣2 � 1

500
max

{∣∣(ξ1,μ1)
∣∣2

,
∣∣(ξ2,μ2)

∣∣2}
which would be a contradiction since we are in the High × High → High interactions case. Thus, we deduce
from (4.29) that∣∣∣∣∂H∂ξ1

(ξ1, ξ − ξ1,μ1,μ − μ1)

∣∣∣∣ = ∣∣∣∣(ξ2,μ2)
∣∣2 − ∣∣(ξ1,μ1)

∣∣2∣∣� N2.

We can then reapply the arguments in the proof of Proposition 3.6 to show that estimate (4.27) still holds true in
this case. Therefore, we conclude arguing as above that

I
1,3
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.30)

Finally, estimates (4.25), (4.28) and (4.30) imply that

I 1
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.31)

5.2. Estimate for I 2
HH→H and I 3

HH→H . Arguing as for I 1
HH→H , we get that

I 2
HH→H + I 3

HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.32)
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We explain for example how to deal with I 2
HH→H . It suffices to rewrite IN,N1,N2 as

IN,N1,N2 =
∫
D2

Γ
ξ̃1,μ̃1,τ̃1
ξ,μ,τ P̂Nw(ξ,μ, τ)

̂̃
PN1u(ξ̃1, μ̃1, τ̃1)P̂N2v(ξ2,μ2, τ2) dν̃,

where

dν̃ = dξ dξ2 dμdμ2 dτ dτ2, ξ̃1 = ξ2 − ξ, μ̃1 = μ2 − μ, τ̃1 = τ2 − τ,

and Γ
ξ̃1,μ̃1,τ̃1
ξ,μ,τ is defined as in (4.11). Moreover, we observe that

H̃ =H(ξ, ξ2 − ξ,μ,μ2 − μ) = w(ξ2,μ2) − w(ξ,μ) − w(ξ2 − ξ,μ2 − μ)

satisfies∣∣∣∣∂H̃∂ξ

∣∣∣∣ = ∣∣3ξ2 + μ2 − (
3ξ̃2

1 + μ̃2
1

)∣∣ and

∣∣∣∣∂H̃∂μ

∣∣∣∣ = 2|ξμ − ξ̃1μ̃1|.

Therefore, we divide in the subregions {ξ ξ̃1 > 0,μμ̃1 > 0}, {ξ ξ̃1 < 0,μμ̃1 > 0}, {ξ ξ̃1 > 0,μμ̃1 < 0} and {ξ ξ̃1 < 0,

μμ̃1 < 0} and use the same arguments as above.

5.3. Estimate for I 4
HH→H . Observe that in the region D4, we have∣∣μ2

i − 3ξ2
i

∣∣ >
α

2

∣∣(ξi,μi)
∣∣2 and

∣∣μ2
j − 3ξ2

j

∣∣ >
α

2

∣∣(ξj ,μj )
∣∣2

, (4.33)

for at least a combination (i, j) in {0,1,2}. Without loss of generality,1 we can assume that i = 1 and j = 2 in (4.33).
Then, we deduce from Plancherel’s identity and Hölder’s inequality that

I 4
HH→H �

∑
N2∼N1

N
−(s− 1

2 )

1

∥∥∥∥K(D)
1
8

(
P̂N1u

〈σ1〉 1
2 +δ

)∨∥∥∥∥
L4

∥∥∥∥K(D)
1
8

(
P̂N2v

〈σ2〉 1
2 +δ

)∨∥∥∥∥
L4

‖w‖L2,

where the operator K(D)
1
8 is defined in Proposition 3.5. Therefore, estimate (3.13) implies that

I 4
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (4.34)

Finally, we conclude the proof of estimate (4.1) gathering estimates (4.13), (4.15), (4.17), (4.18), (4.22), (4.23),
(4.31), (4.32) and (4.34). �

At this point, we observe that the proof of Theorem 1.1 follows from Proposition 4.1 and the linear estimates (2.7),

(2.8) and (2.9) by using a fixed point argument in a closed ball of X
s, 1

2 +δ

T (see for example [15] for more details).

5. Bilinear estimate in RRR×TTT

The main result of this section is stated below.

Proposition 5.1. Let s � 1. Then, there exists δ > 0 such that∥∥∂x(uv)
∥∥

X
s,− 1

2 +2δ
� ‖u‖

X
s, 1

2 +δ
‖v‖

X
s, 1

2 +δ
, (5.1)

for all u,v : R×T×R→ R such that u,v ∈ Xs, 1
2 +δ .

1 In the other cases, we cannot use estimate (3.13) directly, but need to interpolate it with estimate (3.2) as previously.



L. Molinet, D. Pilod / Ann. I. H. Poincaré – AN 32 (2015) 347–371 361
Proof. By duality, it suffices to prove that

J � ‖u‖L2
x,y,t

‖v‖L2
x,y,t

‖w‖L2
x,y,t

, (5.2)

where

J =
∑

q,q1∈Z2

∫
R4

Γ
ξ1,q1,τ1
ξ,q,τ ŵ(ξ, q, τ )̂u(ξ1, q1, τ1)̂v(ξ2, q2, τ2) dν,

û, v̂ and ŵ are nonnegative functions, and we used the following notations

Γ
ξ1,q1,τ1
ξ,q,τ = |ξ |〈∣∣(ξ, q)

∣∣〉s〈σ 〉− 1
2 +2δ

〈∣∣(ξ1, q1)
∣∣〉−s〈σ1〉− 1

2 −δ
〈∣∣(ξ2, q2)

∣∣〉−s〈σ2〉− 1
2 −δ,

dν = dξ dξ1 dτ dτ1, ξ2 = ξ − ξ1, q2 = q − q1, τ2 = τ − τ1,

σ = τ − w(ξ, q) and σi = τi − w(ξi, qi), i = 1,2. (5.3)

By using dyadic decompositions on the spatial frequencies of u, v and w, we rewrite J as

J =
∑

N1,N2,N

JN,N1,N2 , (5.4)

where

JN,N1,N2 =
∑

q,q1∈Z2

∫
R4

Γ
ξ1,q1,τ1
ξ,q,τ P̂Nw(ξ, q, τ )P̂N1u(ξ1, q1, τ1)P̂N2v(ξ2, q2, τ2) dν.

Now, we use the decomposition

J = JLL→L + JLH→H + JHL→H + JHH→L + JHH→H , (5.5)

where JLL→L, JLH→H , JHL→H , JHH→L, respectively JHH→H , denote the Low × Low → Low, Low × High → High,
High × Low → High, High × High → Low, respectively High × High → High contributions for J as defined in the
proof of Proposition 4.1.

1. Estimate for JLH→H +JHL→H +JHH→L. Since Proposition 3.6 also holds in the R×T case, we deduce arguing
as in (4.17), (4.18) and (4.22) that

JLH→H + JHL→H + JHH→L � ‖u‖L2‖v‖L2‖w‖L2 . (5.6)

2. Estimate for JHH→H . We recall that N ∼ N1 ∼ N2 in this case. We divide the integration domain in several
regions.

2.1 Estimate for JHH→H in the region |ξ | � 100. We denote by J 1
HH→H the restriction of JHH→H to the region

|ξ |� 100 and use dyadic decompositions on the variables σ , σ1, σ2 and ξ , so that

JN,N1,N2 =
∑
k�0

∑
L,L1,L2

J
L,L1,L2
N,N1,N2,k

, (5.7)

where J
L,L1,L2
N,N1,N2,k

is given by the expression∑
q,q1∈Z2

∫
Ek

Γ
ξ1,q1,τ1
ξ,q,τ

̂PNQLw(ξ, q, τ ) ̂PN1QL1u(ξ1, q1, τ1) ̂PN2QL2v(ξ2, q2, τ2) dν,

with Ek = {(ξ, ξ1, τ, τ1) ∈ R4: 2−(k+1)100 � |ξ | � 2−k100}. Thus, by using the Cauchy–Schwarz inequality, we get
that

J
L,L1,L2 � 2−kN−sL− 1

2 +2δL
− 1

2 −δ
L

− 1
2 −δ∥∥(PN1QL1u)(PN2QL2v)

∥∥
2‖w‖L2 . (5.8)
N,N1,N2,k 1 1 2 L
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Next, we argue as in (3.20) to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . Moreover, we observe that∣∣∣∣∂2H

∂ξ2
1

(ξ, ξ1, q, q1)

∣∣∣∣ = 6|ξ | ∼ 2−k.

Thus, it follows from Lemma 3.7, estimates (3.18), (3.20) and (3.21) that∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2 � 2
k
4 N

1
2

1 (L1 ∧ L2)
1
2 (L1 ∨ L2)

1
4 ‖PN1QL1u‖L2‖PN2QL2v‖L2 . (5.9)

Therefore, we deduce combining (5.8) and (5.9) and summing over L, L1, L2, N ∼ N1 ∼ N2 and k ∈N that

J 1
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (5.10)

2.2 Estimate for JHH→H in the region |ξ | � 100, and |ξ1| ∧ |ξ2| � 100. We denote by J 2
HH→H the restriction of

JHH→H to this region and use dyadic decompositions on the variables σ , σ1, σ2, so that

JN,N1,N2 =
∑

L,L1,L2

J
L,L1,L2
N,N1,N2

, (5.11)

where J
L,L1,L2
N,N1,N2

is given by the expression∑
q,q1∈Z2

∫
R4

Γ
ξ1,q1,τ1
ξ,q,τ

̂PNQLw(ξ, q, τ ) ̂PN1QL1u(ξ1, q1, τ1) ̂PN2QL2v(ξ2, q2, τ2) dν. (5.12)

Thus, the Cauchy–Schwarz inequality implies that

J
L,L1,L2
N,N1,N2

� L− 1
2 +2δL

− 1
2 −δ

1 L
− 1

2 −δ

2

∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2‖w‖L2, (5.13)

where we used the bound |ξ | �N ∼ N1 ∼ N2 and s � 1. This time, we observe that∣∣∣∣∂2H

∂q2
1

(ξ, ξ1, q, q1)

∣∣∣∣ = 2|ξ | � 1

in order to estimate ‖(PN1QL1u)(PN2QL2v)‖L2 . Then, since |ξ1| ∧ |ξ2| � 1, it follows from Lemma 3.7, estimates
(3.19), (3.20) and (3.21) that∥∥(PN1QL1u)(PN2QL2v)

∥∥
L2 � (L1 ∧ L2)

1
2
(
1 + (L1 ∨ L2)

1
4
)‖PN1QL1u‖L2‖PN2QL2v‖L2 . (5.14)

Therefore, we deduce combining (5.13) and (5.14) and summing over L, L1, L2 and N ∼ N1 ∼ N2 (here we use the
Cauchy–Schwarz inequality in N1) that

J 2
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (5.15)

2.3 Estimate for JHH→H in the region |ξi | � 100 for i = 1,2,3. We denote by J 3
HH→H the restriction of JHH→H

to this region. Once again, we use dyadic decompositions on the variables σ , σ1 and σ2 as in (5.11). In order to
simplify the notations, we will denote (ξ, q, τ ) = (ξ0, q0, τ0). Next, for 0 < δ � 1, we split the integration domain in
the following subregions

F3.1 = {
(ξ, ξ1, τ, τ1, q, q1) ∈ R4 ×Z2: |ξi | � 100, ∀i ∈ {0,1,2}

and ∃(i, j) ∈ {0,1,2} with
∣∣∣∣(ξi, qi)

∣∣2 − ∣∣(ξj , qj )
∣∣2∣∣� NL6δ

}
,

F3.2 = {
(ξ, ξ1, τ, τ1, q, q1) ∈ R4 ×Z2: |ξi | � 100, ∀i ∈ {0,1,2}

and
∣∣∣∣(ξi, qi)

∣∣2 − ∣∣(ξj , qj )
∣∣2∣∣� NL6δ, ∀(i, j) ∈ {0,1,2}}

and denote by J
3,1
HH→H , respectively J

3,2
HH→H , the restriction of JHH→H to F3.1, respectively F3.2.

2.3.1 Estimate for J
3,1
HH→H . Without loss of generality, we can assume that∣∣∣∣(ξ, q)

∣∣2 − ∣∣(ξ1, q1)
∣∣2∣∣� NL6δ. (5.16)
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By using the Cauchy–Schwarz inequality and the fact that |ξ |� N ∼ N1 ∼ N2 and s � 1, we obtain that

J
L,L1,L2
N,N1,N2

� L− 1
2 +2δL

− 1
2 −δ

1 L
− 1

2 −δ

2

∥∥( ˜PN1QL1u)(PNQLw)
∥∥

L2‖PN2QL2v‖L2, (5.17)

where f̃ (ξ, q, τ ) = f (−ξ,−q,−τ). Moreover, we observe arguing exactly as in the proof of Proposition 3.6 and by
using (5.16) that∥∥( ˜PN1QL1u)(PNQLw)

∥∥
L2

� (N1 ∧ N2)
1
2

N
1
2 L3δ

(L1 ∨ L)
1
2 (L1 ∧ L)

1
2 ‖PN1QL1u‖L2‖PNQLw‖L2 . (5.18)

Therefore, we deduce combining (5.17) and (5.18) and summing over L, L1, L2 and N ∼ N1 ∼ N2 (by using the
Cauchy–Schwarz inequality in N ) that

J
3,1
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (5.19)

2.3.2 Estimate for J
3,2
HH→H . In the region F3,2, it holds that∣∣∣∣(ξi, qi)

∣∣2 − ∣∣(ξj , qj )
∣∣2∣∣� NL6δ, ∀(i, j) ∈ {0,1,2}. (5.20)

Then, we deduce from the definition of H in (2.3), the definition |(ξ, q)| = √
3ξ2 + q2 and the assumptions (5.20)

that

H(ξ, ξ1, q, q1) = (ξ − ξ1 − ξ2)
∣∣(ξi0, qi0)

∣∣2 − 6ξξ1ξ2 + Θ(ξ, ξ1, q, q1)

= −6ξξ1ξ2 + Θ(ξ, ξ1, q, q1), (5.21)

for i0 ∈ {1,2,3} such that |ξi0 | = max{|ξj |: j = 1,2,3} and Θ(ξ, ξ1, q, q1) satisfies∣∣Θ(ξ, ξ1, q, q1)
∣∣� ∑

i �=i0

|ξi |
∣∣∣∣(ξi, qi)

∣∣2 − ∣∣(ξj , qj )
∣∣2∣∣� |ξmed|NL6δ. (5.22)

It follows combining (5.21) and (5.22) that∣∣H(ξ, ξ1, q, q1)
∣∣ � |ξmed|

(
6|ξmax||ξmin| − NL6δ

)
. (5.23)

Then, we subdivide the region F1.2 in the following subregions

F3.2.1 = {
(ξ, ξ1, τ, τ1, q, q1) ∈ F1.2: |ξmax||ξmin| � NL6δ

}
,

F3.2.2 = {
(ξ, ξ1, τ, τ1, q, q1) ∈ F1.2: |ξmax||ξmin| � NL6δ

}
,

and denote by J
3,2,1
HH→H , respectively J

3,2,2
HH→H , the restriction of J

3,2
HH→H to F3.2.1, respectively F3.2.2.

2.3.2.1 Estimate for J
3,2,1
HH→H . Due to (5.23), we have that

max
{|σ |, |σ1|, |σ2|

}
� |ξmin||ξmax|2, (5.24)

in F3.2.1. Without loss of generality,2 we assume that max{|σ |, |σ1|, |σ2|} = |σ |. Then, by using the Cauchy–Schwarz
inequality, we deduce that

J
L,L1,L2
N,N1,N2

� N
− 1

2
1 L−δL

− 1
2 −δ

1 L
− 1

2 −δ

2

∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2‖w‖L2, (5.25)

where we used that ||ξ |N
1
2 −s

1 (|ξmax|2|ξmin|)− 1
2 +3δ|� 1 for s � 1 and 0 < δ � 1. Moreover, we use that

2 In the other cases we need to interpolate (5.26) with (3.15) as previously.
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∣∣∣∣∂2H

∂ξ2
1

(ξ, ξ1, q, q1)

∣∣∣∣ = 6|ξ | � 1,

Lemma 3.7, estimates (3.18), (3.20) and (3.21) lead to∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2 � N
1
2

1 (L1 ∧ L2)
1
2 (L1 ∨ L2)

1
4 ‖PN1QL1u‖L2‖PN2QL2v‖L2 . (5.26)

We deduce combining (5.25) and (5.26) and summing over L, L1, L2 and using the Cauchy–Schwarz inequality in
N1 ∼ N2 that

J
3,2,1
HH→H � ‖u‖L2‖v‖L2‖w‖L2 . (5.27)

2.3.2.2 Estimate for J
3,2,2
HH→H . This time, we perform also dyadic decompositions in the ξ1, ξ2 and ξ variables.

We denote by RK the Littlewood–Paley projectors, i.e. RK is defined by RKu = F−1
x (φ(K−1ξ)Fx(u)), for any dyadic

number K � 1. Then, we have that

J
L,L1,L2
N,N1,N2

=
∑

100�K1,K2,K3�N

J
L,L1,L2
N,N1,N2

(K1,K2,K3), (5.28)

where J
L,L1,L2
N,N1,N2

(K1,K2,K3) is defined by the expression

J
L,L1,L2
N,N1,N2

(K1,K2,K3) =
∑

q,q1∈Z2

∫
R4

Γ
ξ1,q1,τ1
ξ,q,τ (PNQLRKw)∧(ξ, q, τ )

× (PN1QL1RK1u)∧(ξ1, q1, τ1)(PN2QL2RK2v)∧(ξ2, q2, τ2) dν.

By using the Cauchy–Schwarz inequality, we can bound J
L,L1,L2
N,N1,N2

(K1,K2,K3) by

KK−1
minK

−1
maxN

1−sL− 1
2 +8δL

− 1
2 −δ

1 L
− 1

2 −δ

2

∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2‖w‖L2, (5.29)

since KminKmax � NL6δ in the region F3,2,2. Moreover, noticing that∣∣∣∣∂2H

∂q2
1

(ξ, ξ1, q, q1)

∣∣∣∣ = 6|ξ | � K,

Lemma 3.7, estimates (3.19), (3.20) and (3.21) yield∥∥(PN1QL1u)(PN2QL2v)
∥∥

L2

� (K1 ∧ K2)
1
2 (L1 ∧ L2)

1
2
(
1 + K− 1

4 (L1 ∨ L2)
1
4
)‖PN1QL1u‖L2‖PN2QL2v‖L2 . (5.30)

Now, we observe that

K(K1 ∧ K2)
1
2 K−1

minK
−1
max � K

− 1
2

min . (5.31)

Assume without loss of generality that Kmin = K . Therefore, it follows combining (5.28)–(5.31), summing over L,
L1, L2 and Kmin and applying Cauchy–Schwarz in K1 ∼ K2 and in N1 ∼ N2 that

J
3,2,2
HH→H �

∑
N∼N1∼N2

∑
100�K1∼K2�N

‖PN1RK1u‖L2‖PN2RK2v‖L2‖PNw‖L2

�
∑

N1∼N2

( ∑
K1�N1

‖PN1RK1u‖2
L2

) 1
2
( ∑

K2�N2

‖PN2RK2v‖2
L2

) 1
2 ‖w‖L2

�
(∑

N1

‖PN1u‖2
L2

) 1
2
(∑

N2

‖PN2v‖2
L2

) 1
2 ‖w‖L2

� ‖u‖L2‖v‖L2‖w‖L2 . (5.32)
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Thus, we deduce combining (5.10), (5.15), (5.19), (5.27) and (5.32) that

JHH→H � ‖u‖L2‖v‖L2‖w‖L2 . (5.33)

2.3 Estimate for JLL→L. We get arguing exactly as in the cases 2.1 and 2.2 that

JLL→L � ‖u‖L2‖v‖L2‖w‖L2 . (5.34)

Finally, we conclude the proof of estimate (5.1) gathering (5.5), (5.6), (5.33) and (5.34). �
We observe that the proof of Theorem 1.2 follows from Proposition 5.1 and the linear estimates (2.7), (2.8) and

(2.9) by using a fixed point argument in a closed ball of X
s, 1

2 +δ

T (see for example [15] for more details).

6. Global existence in Hs(RRR3) for s > 1

In this section we prove the global well-posedness in Hs(R3) for s > 1. To this aim we combine the conservation
laws (1.2) and (1.3), a well-posedness result in the Besov space B

1,1
2 (R3) and follow ideas in [2] (see [19] for the

same kind of arguments). One crucial tool will also be the atomic spaces U2 and V 2 introduced by Koch and Tataru
in [10]. Recall that the Besov space B

1,1
2 (R3) is the space of all functions g ∈ S′(R3) such that

‖g‖
B

1,1
2

:=
∑
N

N‖PNg‖L2 < ∞, (6.1)

where the Fourier projector PN is the R3-version of the one defined in (2.1).
Before stating the local existence theorem, we give the definition of a “doubling time”. Let be given a Cauchy

problem locally well-posed in some Banach space B with a minimum time of existence depending on the B-norm
of the initial data and let C0 � 1 be given. For any u0 ∈ B we call “doubling time”, the infinite or finite positive real
number

TC0(u0) = sup
{
t > 0:

∥∥u(θ)
∥∥

B
� 2C0‖u0‖B on [0, t]}.

Theorem 6.1. The Cauchy problem associated to (1.1) is locally well-posed in Hs(R3) for s > 1. Moreover, there
exist C0 � 1 and C > 0 such that for any u0 ∈ Hs(R3), the doubling time TC0 satisfies

TC0(u0) �
C

‖u0‖2
B

1,1
2

. (6.2)

Remark 6.1. The local well-posedness of ZK in Hs(R3) for s > 1 was already proven in [16]. The only new result
here is the estimate from below of the doubling time.

With Theorem 6.1 in hand we will now prove Theorem 1.4. The proof of Theorem 6.1 is postponed at the end of
this section.

Proof of Theorem 1.4. Let us fix s > 1. For any g ∈ Hs(R3) and any k � 1 it holds

‖g‖
B

1,1
2

=
k−1∑
j=0

2j‖P2j g‖L2 +
∞∑

j=k

2j (1−s)2js‖P2j g‖L2 �
√

k‖g‖H 1 + 2k(1−s)‖g‖Hs .

Therefore, taking k = ln(1+‖g‖Hs )
(s−1) ln 2 we get

‖g‖
B

1,1
2

� Cs

(
1 + ‖g‖H 1

[
ln

(
1 + ‖g‖Hs

)]1/2)
(6.3)

for some Cs > 0.
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Now, let u0 ∈ Hs(R3) and u be the solution of ZK emanating from u0. Combining Theorem 6.1 and (6.3) we get

TC0(u0) �
C

1 + ‖u0‖2
H 1 ln(1 + ‖u0‖Hs )

.

If TC0(u0) = +∞ then we are done. Otherwise we set u1 := u(TC0(u0)). In the same way as above we have

TC0(u1) �
C

1 + ‖u1‖2
H 1 ln(1 + ‖u1‖Hs )

.

From the definition of the doubling time, it holds ‖u1‖Hs = 2C0‖u0‖Hs . Moreover, we have from the definition of E

in (1.3) that

‖u1‖2
H 1 = ‖u1‖2

L2 + 2E(u1) + 1

3

∫
u3

1 dx.

Thus, by using the Gagliardo–Nirenberg inequality ‖u1‖L3 � ‖u1‖
1
2
L2‖∇u1‖

1
2
L2 , Young’s inequality and the conserva-

tion of the quantities M(u) and E(u), we infer that

‖u1‖2
H 1 � C′(‖u1‖2

L2 + ‖u1‖6
L2 + E(u1)

) = C′(‖u0‖2
L2 + ‖u0‖6

L2 + E(u0)
)

for some positive constant C′ independent of u1. Therefore, we obtain that

TC0(u1) �
C

1 + C′(E(u0) + ‖u0‖2
L2 + ‖u0‖6

L2) ln(1 + 2C0‖u0‖Hs )
.

Repeating this argument n-times (assuming that all doubling times TC0(uk), k = 1,2, . . . , n − 1, are finite, since
otherwise we are done), we get

TC0(un) �
C

1 + C′(E(u0) + ‖u0‖2
L2 + ‖u0‖6

L2) ln(1 + (2C0)n‖u0‖Hs )
� 1

n
. (6.4)

Since
∑

1/n = +∞ this ensures that for any given T > 0 there exists n � 1 such that
∑n−1

k=0 TC0(uk) > T and thus
the solution is global in time. �
Remark 6.2. Actually, it is not too hard to check that the lower bound (6.4) leads to a double exponential upper bound
on the solution u, i.e. there exist constants K1, K2 and K3 only depending on ‖u0‖Hs such that for all t � 0,∥∥u(t)

∥∥
Hs � K1 exp

(
K2 exp(K3t)

)
.

6.1. Proof of Theorem 6.1

6.1.1. Resolution spaces
We start by recalling the definition of the function spaces U2 and V 2 (see [10] and [7]).

Definition 6.2. Let Z be the set of finite partitions −∞ = t0 < t1 < · · · < tK = +∞. For {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂

L2(R3) with
∑K−1

k=0 ‖φk‖2
L2 = 1 and φ0 = 0 we call the function a : R→ L2(R3) given by

a =
K∑

k=1

1[tk−1,tk)φk−1

a U2-atom and we define the atomic space

U2 :=
{

u =
∞∑

j=1

λjaj : ajU
2-atom and λj ∈ R with

∞∑
j=1

|λj | < ∞
}

with norm
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‖u‖U2 := inf

{ ∞∑
j=1

|λj |: u =
∞∑

j=1

λjaj with λj ∈ R and ajU
2-atom

}
.

The function space V 2 is defined as the normed space of all functions v :R→ L2(R3) such that limt→∓∞ v(t) exists
and for which the norm

‖v‖V 2 := sup
{tk}Kk=0∈Z

(
K∑

k=1

∥∥v(tk) − v(tk−1)
∥∥2

L2

)1/2

is finite, where we use the convention that v(−∞) = limt→−∞ v(t) and v(+∞) = 0.

The spaces U2 and V 2 are Banach spaces. They will serve as substitutes of the Besov type spaces B̃
1/2,1
2 (L2(R3))

and B̃
1/2,∞
2 (L2(R3)) that where first used in [20] in the context of Bourgain’s method. Denoting by �j the Fourier

multiplier by3 φ(2−j τ ) for j � 1 and η(τ) for j = 0, these last spaces are respectively endowed with the norms

‖u‖
B̃

1/2,1
2 (L2(R3))

:=
∑
j�0

2j/2‖�ju‖L2(R4)

and

‖u‖
B̃

1/2,∞
2 (L2(R3))

:= sup
j�0

2j/2‖�ju‖L2(R4).

The crucial point for us will be that, from the definition of the function space V 2, for a smooth function ψ ∈ C∞
c (R)

and any 0 < T < 1, it holds∥∥ψ(·/T )f
∥∥

L2(R4)
� T 1/2‖f ‖L∞

t L2(R3) � T 1/2‖f ‖V 2, ∀f ∈ C∞
c

(
R4), (6.5)

whereas we only have∥∥ψ(·/T )f
∥∥

L2(R4)
� T 1/2| lnT |‖f ‖

B̃
1/2,∞
2 (L2(R3))

, ∀f ∈ C∞
c

(
R4).

This last inequality would lead to a lower bound

T (u0)�
1

‖u0‖2
B

1,1
2

| ln(‖u0‖B
1,1
2

)|2

of the doubling time that will not be sufficient to get the global existence result. This is the reason why we will
work with the couple of spaces U2 and V 2 and not with the more usual couple of spaces B̃

1/2,1
2 (L2(R3)) and

B̃
1/2,∞
2 (L2(R3)).

Then denoting by S(t) := e−t∂x� the linear group associated with ZK, we define the spaces

U2
S = S(·)U2 with norm ‖u‖U2

S
= ∥∥S(−·)u∥∥

U2 and

V 2
S = S(·)V 2 with norm ‖u‖V 2

S
= ∥∥S(−·)u∥∥

V 2 .

The properties of these spaces we need in the sequel are summarized in the following propositions (see [7]).

Proposition 6.3. Let ψ ∈ C∞
c (R) then∥∥ψS(·)u0

∥∥
U2

S
� ‖u0‖L2 , ∀u0 ∈ L2(R3)

and ∥∥∥∥∥ψ(t)

t∫
0

S
(
t − t ′

)
f

(
t ′, ·)dt ′

∥∥∥∥∥
U2

S

� sup
‖v‖

V 2
S

=1

∣∣∣∣ ∫
R4

f v

∣∣∣∣, ∀f ∈ C∞
c

(
R4).

3 See Section 2 for the definition of φ and η.
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Proposition 6.4. Let L0 : L2 × · · ·×L2 → L1
loc(R

3;R) be an n-linear operator. Assume that for some 2 � p,q �∞,

∥∥L0
(
S(·)φ1, . . . , S(·)φn

)∥∥
L

p
t (R;Lq(R3))

�
n∏

i=1

‖φi‖L2 .

Then there exists L : U2
S × · · · × U2

S → L
p
t (R;Lq(R3)) satisfying

∥∥L(u1, . . . , un)
∥∥

L
p
t (R;Lq(R3))

�
n∏

i=1

‖ui‖U2
S

such that L(u1, . . . , un)(t)(x, y, z) =L0(u1(t), . . . , un(t))(x, y, z) almost everywhere.

We are now ready to define our resolution spaces: we denote by Y 1,1 the space of all functions u ∈ S′(R4) such
that

‖u‖Y 1,1 :=
∑
N

N‖PNu‖U2
S

< ∞

and by Y s,2 the space of all functions u ∈ S′(R4) such that

‖u‖Y s,2 :=
(∑

N

N2s‖PNu‖2
U2

S

)1/2

< ∞.

Here, the Fourier projector PN is the R3-version of the one defined in (2.1), i.e. P1 localized in frequencies 3ξ2 +
μ2 + η2 � 1 while for N � 2, PN localized in frequencies 3ξ2 + μ2 + η2 ∼ N .

6.1.2. Local existence estimate
Note that Proposition 6.3 ensures that∥∥ψ(·)S(·)u0

∥∥
Y 1,1 � ‖u0‖B

1,1
2

, ∀u0 ∈ B
1,1
2

(
R3), (6.6)

and ∥∥ψ(·)S(·)u0
∥∥

Y s,2 � ‖u0‖Hs , ∀u0 ∈ Hs
(
R3). (6.7)

Moreover, Proposition 6.4 lead to the following estimates in U2
S :

Lemma 6.5. Let ψ ∈ C∞
c (R). For any u ∈ U2

S it holds

‖ψu‖L4 � ‖u‖U2
S
.

For any couple u,v ∈ U2
S and any couple (N1,N2) of dyadic number such that N1 � 4N2 it holds

‖ψPN1uPN2v‖L2 �
N2

N1
‖PN1u‖U2

S
‖PN2v‖U2

S
.

Proof. The first estimate is a direct combination of the Strichartz estimate for the ZK equation in R3 (see [14]4)∥∥ψS(·)g∥∥
L4(R4)

� ‖g‖L2(R3) (6.8)

with Proposition 6.4. To prove the second estimate we notice that since

4 Estimate (6.8) would correspond to the case ε = 0 and θ = 1/2 of Proposition 3.1 in [14], but the case ε = 0 is not included in the hypotheses.
Note however that this case follows by arguing exactly as in [14].
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∣∣∣∣∂H∂ξ1

(
ξ1, ξ − ξ1,μ1,μ − μ1, η1, (η − η1)

)∣∣∣∣
= ∣∣3ξ2

1 + μ2
1 + η2

1 − (
3(ξ − ξ1)

2 + (μ − μ1)
2 + (η − η1)

2)∣∣� N2
1 ,

where H is the resonance function in dimension 3, the R3-version of the bilinear estimate (3.16) reads∥∥(PN1QL1u1)(PN2QL2u2)
∥∥

L2 �
N2

N1
(L1 ∨ L2)

1
2 (L1 ∧ L2)

1
2 ‖PN1QL1u1‖L2‖PN2QL2u2‖L2 .

Since for ψ ∈ C∞
c (R), g ∈ L2(R3) and any dyadic number L� 1 it holds∥∥QLψS(·)g∥∥

L2 � L−4‖g‖L2

this ensures that∥∥(
ψPN1S(·)g)(

ψPN2S(·)f )∥∥
L2 �

N2

N1
‖PN1g‖L2‖PN2f ‖L2 .

The desired estimate follows by applying Proposition 6.4. �
We are now in position to prove the needed estimates on the retarded Duhamel operator.

Proposition 6.6. Let 0 < T < 1. For all u,v ∈ Y 1,1 with compact support in time in ] − T ,T [ it holds∥∥∥∥∥ψ(t/T )

t∫
0

S
(
t − t ′

)
∂x(uv)

(
t ′
)
dt ′

∥∥∥∥∥
Y 1,1

� T 1/2‖u‖Y 1,1‖v‖Y 1,1 . (6.9)

For all u,v ∈ Y s,2, s > 1, with compact support in time in ] − T ,T [ it holds∥∥∥∥∥ψ(t/T )

t∫
0

S
(
t − t ′

)
∂x(uv)

(
t ′
)
dt ′

∥∥∥∥∥
Y s,2

� T 1/2(‖u‖Y 1,1‖v‖Y s,2 + ‖u‖Y s,2‖v‖Y 1,1

)
. (6.10)

Proof. We separate the contributions of
∑

N1�N2
PN1uPN2v and

∑
N1∼N2

PN1uPN2v. We use Proposition 6.3,
Lemma 6.5 and (6.5). For the first one we assume without loss of generality that N1 � 4N2 to get

∑
N

∑
N1�4N2

N

∥∥∥∥∥ψ(t)

t∫
0

S
(
t − t ′

)
∂xPN(PN1uPN2v)

(
t ′
)
dt ′

∥∥∥∥∥
U2

S

� sup
‖w‖

V 2
S

=1

( ∑
N1�4N2

N1
∥∥∂x(PN1uPN2v)

∥∥
L2

∥∥∥∥ψ

( ·
T

)
PN1w

∥∥∥∥
L2

)

� T 1/2 sup
‖w‖

V 2
S

=1

( ∑
N1�4N2

N2
1
N2

N1
‖PN1u‖U2

S
‖PN2v‖U2

S
‖PN1w‖V 2

S

)
� T 1/2‖u‖Y 1,1‖v‖Y 1,1 .

Whereas the contribution of the second one is easily estimated by

∑
N

∑
N1∼N2�N

N

∥∥∥∥∥ψ(t)

t∫
0

S
(
t − t ′

)
∂xPN(PN1uPN2v)

(
t ′
)
dt ′

∥∥∥∥∥
U2

S

� sup
‖w‖

V 2
S

=1

(∑
N

N2
∑

N1∼N2�N

‖PN1u‖U2
S
‖PN2v‖U2

S

∥∥∥∥ψ

( ·
T

)
PNw

∥∥∥∥
L2

)
� T 1/2

∑
N1

N−2
1

∑
l�0

2−lN2
1

(
N1‖PN1u‖U2

S

)(
N1‖PN1v‖U2

S

)
� T 1/2‖u‖Y 1,1‖v‖Y 1,1 .

Finally the proof of (6.10) follows the same lines and thus it will be omitted. �
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Note that the definition of the function space U2
S ensures that for any 0 < T < 1 and any smooth function

ψ ∈ C∞
c (R) it holds∥∥ψ(·/T )u

∥∥
U2

S
� ‖u‖U2

S
, ∀u ∈ U2

S .

Therefore, combining (6.6) and Proposition 6.6, we deduce that for any 0 < T < 1, the functional

GT (w)(t, ·) := ψ(t)S(t)u0 − 1

2

t∫
0

S
(
t − t ′

)
∂x

(
ψ(·/T )w

)2(
t ′, ·)dt ′

maps Y 1,1 into itself and satisfies∥∥GT (w)
∥∥

Y 1,1 � ‖u0‖B
1,1
2

+ T 1/2‖w‖2
Y 1,1 .

This ensures that there exists C � 1 such that, for T � ‖u0‖−2
B

1,1
2

, GT is strictly contractive in the ball of Y 1,1 centered at

the origin of radius 2C‖u0‖B
1,1
2

. By the Banach fixed point theorem, it follows that GT has got a fixed point u satisfying

‖u‖Y 1,1 � 2C‖u0‖B
1,1
2

. Since Y 1,1 ↪→ L∞
t B

1,1
2 , this proves the local existence and uniqueness in the time restriction

space Y
1,1
T of the solution u ∈ C([−T ,T ];B1,1

2 (R3)) of ZK emanating from u0 ∈ B
1,1
2 (R3) with a doubling time

satisfying (6.2) for some constant C0 � 1. The result for u0 ∈ Hs(R3), s > 1, follows by noticing that (6.10) implies
that GT maps as well Y s,2 into itself with∥∥GT (w)

∥∥
Y s,2 � ‖u0‖Hs + T 1/2‖w‖Y 1,1‖w‖Y s,2 .

This completes the proof of Theorem 6.1.
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