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Abstract

We consider the Ginzburg—Landau functional with a variable applied magnetic field in a bounded and smooth two dimensional
domain. We determine an accurate asymptotic formula for the minimizing energy when the Ginzburg-Landau parameter and
the magnetic field are large and of the same order. As a consequence, it is shown how bulk superconductivity decreases in average
as the applied magnetic field increases.
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1. Introduction
1.1. The functional and main results

We consider a bounded open simply connected set £2 C R? with smooth boundary. We suppose that 2 models
a superconducting sample submitted to an applied external magnetic field. The energy of the sample is given by the
Ginzburg-Landau functional,

2
EK,H(I//,A)=/[|(v—iKHA)w|2—K2|xp|2+%Wr‘} dx+K2H2/|curlA—Bo|2dx. (1.1)
2

Here « and H are two positive parameters; k (the Ginzburg—Landau constant) is a material parameter and H measures
the intensity of the applied magnetic field. The wave function (order parameter) ¥ € H'(£2; C) describes the super-
conducting properties of the material. The induced magnetic field is curl A, where the potential A € H(}iv(.Q), with
H Jiv(.Q) is the space defined in (1.4) below. Finally, By € C*°(£2) is the intensity of the external variable magnetic
field and satisfies

|Bol +|VBg| >0 in£2. (1.2)
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The assumption in (1.2) implies that for any open set w relatively compact in §2 the set {x € w, Bp(x) = 0} will be
either empty, or consists of a union of smooth curves. Let F : 2 — R? be the unique vector field such that

divF=0 and curlF=Bgy in§2, v-F=0 onodf2. (1.3)

The vector v is the unit interior normal vector of 92. The construction of F is recalled in Appendix A. We define the
space

Hi, (2)={A=(A1,A2) e H'(2)* divA=0in 2, A-v=00n32}. (1.4)
Critical points (¥, A) € H'(£2; C) x HJ

i (§2) of E«.u are weak solutions of the Ginzburg—Landau equations

—(V =ik HA?* Y = (1= [y *) v in 2,
1 _
1 . .
—V-curl(A—-F) = mlm(xﬁ(V—zKHA)W) in £2, (1.5)
v-(V—ikHA)Y =0 on 052,
curl A = curl F on d52.

Here, curl A = d,,Ay — 3,,A1 and V+curl A = (3, (curl A), —dy, (curlA)). If divA =0, then V+curl A = AA. In
this paper, we study the ground state energy defined as follows:

Eo(k, H) = inf{ & (¥, A): (¥, A) € H'(2;C) x Hyy, ($2)}. (1.6)
More precisely, we give an asymptotic estimate which is valid in the simultaneous limit k — oo and H — oo in such
a way that % remains asymptotically constant. The behavior of E,(«, H) involves an auxiliary function g : [0, c0) —

[—%, 0] introduced in [9] whose definition will be recalled in (2.5) below. The function g is increasing, continuous,
g(b)=0forall b> 1 and g(0) = —3.

Theorem 1.1. Let 0 < Apin < Amax- Under assumption (1.2), there exist positive constants C, ko and to € (1, 2) such
that if

H

Ko S K, Amin < P < Amax,

then the ground state energy in (1.6) satisfies

E, (k, H)—KZ/g<§’Bo(x)}) dx| < Ck™. (1.7)
2

Theorem 1.1 was proved in [9] when the magnetic field is constant (Byp(x) = 1). However, the estimate of the
remainder is not explicitly given in [9].

The approach used in the proof of Theorem 1.1 is slightly different from the one in [9], and is closer to that in [4]
which studies the same problem when £2 C R? and By constant.

Corollary 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Then the magnetic energy of the minimizer
satisfies, for some positive constant C

(KH)2/|curlA — Bol*dx < Ck™. (1.8)
2

Remark 1.3. The value of 79 depends on the properties of By: we find 19 = % when By does not vanish in £2 and

0= % in the general case.

Theorem 1.4. Suppose the assumptions of Theorem 1.1 are satisfied. There exist positive constants C, ko and a
negative constant T\ € (—1, 0) such that, if k > ko, and D is regular set such that D C 2, then the following are true.
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M If(y, A e HY(£2;C) x H(}iv(.Q) is a solution of (1.5), then

1 . H .
E/le dxg_/g(?}BO(x)‘)dx-i-CK . (1.9)
D D

Q) If W,A) e H'(£2;C) x Hdliv(.Q) is a minimizer of (1.1), then

'/|w|4dx+2/g<g|30(x)|>dx
D D

Remark 1.5. The value of 7| depends on the properties of By: we find 71 = —% when By does not vanish in £2 and

1= —% in the general case.

< Ck™. (1.10)

1.2. Discussion of main result

If {x € 2: Bo(x) =0} # @ and H = bk, b > 0, then g(Z|By(x)]) £ 0 in D = {x € 2: Z|By(x)| < 1}, and
|D| # 0. Consequently, for « sufficiently large, the restriction of ¥ on D is not zero in L?(£2). This is a significant
difference between our result and the one for constant magnetic field. When the magnetic field is a non-zero con-
stant, then (see [3]), there is a universal constant ©g € (%, 1) such that, if H = bk and b > @6], then ¥ =0 in 2.
Moreover, in the same situation, when H = bk and 1 < b < Og 1, then ¥ is small everywhere except in a thin tubular
neighborhood of 952 (see [6]). Our result goes in the same spirit as in [8], where the authors established under the
assumption (1.2) that when H = bi? and b > by, then ¥ =0in 2 (b is a constant).

1.3. Notation
Throughout the paper, we use the following notation:

e We write & for the functional &, g in (1.1).

e The letter C denotes a positive constant that is independent of the parameters ¥ and H, and whose value may
change from a formula to another.

e If a(x) and b(x) are two positive functions, we write a(k) < b(k) if a(k)/b(k) — 0 as k — 00.

e If a(k) and b(k) are two functions with b(x) #£ 0, we write a(k) ~ b(x) if a(k)/b(k) — 1 as k — o0.

e If a(k) and b(k) are two positive functions, we write a(k) =~ b(x) if there exist positive constants cy, ¢z and ko
such that c;b(k) < a(k) < c2b(k) for all k > k.

e If x e R, we let [x]1 = max(x, 0).

e Given R > 0 and x = (x, x2) € R?, we denote by Or(x) =(—R/2+4x1,R/2+ x1) X (—R/2+ x2, R/2 + x3)
the square of side length R centered at x.

e We will use the standard Sobolev spaces W* . For integer values of s these are given by

WP (2) := {u e LP(2): D*u e LP(2) forall |a| < n}

e Finally we use the standard symbol H" (£2) = W"2(£2).
2. The limiting energy
2.1. Two-dimensional limiting energy

Given a constant 5 > 0 and an open set D C R?, we define the following Ginzburg—Landau energy

1
Gy pw) :/(b](v —ivo)u\z —ul>+ E|u|4> dx, Yue H} (D). (2.1)
D
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Here o € {—1, +1} and Ay is the canonical magnetic potential

Ao(x) = %(—XL X)), Va= (o x) € R (2.2)
that satisfies

curlAg=1 in RZ.
We write Qg = Qg (0) and let

mo(b, R)= inf G}l (). (2.3)
ueHg (Qr:C)

Remark 2.1. As G, (u) = G, 1, (i0), it is immediate that

inf  G,L wy= inf Gl (). (2.4)
weHl 00 PO uenliono)

The main part of the next theorem was obtained by Sandier and Serfaty [9] and Aftalion and Serfaty [ 1, Lemma 2.4].
However, the estimate in (2.7) is obtained by Fournais and Kachmar [4].

Theorem 2.2. Let mo(b, R) be as defined in (2.3).
(1) Forallb>1 and R > 0, we have mo(b, R) = 0.
(2) Forany b € [0, 00), there exists a constant g(b) < 0 such that

. mo(b, R) 1
b)=1 —_— d 0)=——. 2.5
g)= Jim ST and g(0)=— 2.5)
(3) The function [0, +00) > b +— g(b) is continuous, non-decreasing, concave and its range is the interval [—%, 0].

(4) There exists a constant o € (0, %) such that

1
Vo011, ab—D?<|g®)| < S — D% (2.6)
(5) There exist constants C and R such that
b, R C
VR Ro, whe 011, gt <™ <oy 1 T @)

3. A priori estimates

The aim of this section is to give a priori estimates for solutions of the Ginzburg—Landau equations (1.5). These
estimates play an essential role in controlling the errors resulting from various approximations. The starting point
is the following L°°-bound resulting from the maximum principle. Actually, if (v, A) € H 1(£2:C) x Hdliv(f.?) is a
solution of (1.5), then

¥ llLe2) < 1. (3.1)

The set of estimates below is proved in [2, Theorem 3.3 and Eq. (3.35)] (see also [7] for an earlier version).
Theorem 3.1. Let 2 C R? be bounded and smooth and By € C™®(£2).

(1) Forall p € (1, 00) there exists C,, > 0 such that, if (Y, A) € HY(£2,0) x HC}iV(Q) is a solution of (1.5), then

1 +kH +«?

curl A — B <C
l 0||lep(g) p H

W@ 19120 (3.2)
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(2) Forall a € (0, 1) there exists Cy > 0 such that, if (Y, A) € HY(2,0) x Hchv(.Q) is a solution of (1.5), then

14+xH+«2
W @) 1 20, (3.3)

(3) Forall p € [2,00) there exists C > 0 such that, ifk >0, H > 0 and (Y, A) € H (2, C) x Hdliv(.Q) is a solution
of (1.5), then

[[curlA — B()||Co,a(§) < Cy

|V =i HA Y|, <21, (3.4)
|V —ikHAYY |, <kl 2, (3.5)
C
[eurlA =By, @) < W oo (V=i HAYWY | . (3.6)
Remark 3.2.

(1) Using the WX -regularity of the curl-div system [3, Appendix A, Proposition A.5.1], we obtain from (3.2),

l+xH+«2
KH

The estimate is true for any p € [2, 00).
(2) Using the Sobolev embedding theorem we get, for all « € (0, 1)

IA = Flly2r @) <Cp IVllLe@) ¥l (3.7)

14« H + k>
— <H IV Lo 1V 2 2)- (3.8)

(3) Combining (3.5) and (3.6) (with p = 2) yields

A — F”Cl,a(ﬁ) < Co

C
[eurl(A =B)| o) < G 1V Il 1V 1 12(0)- (3.9)

Theorem 3.1 is needed in order to obtain the improved a priori estimates of the next theorem. Similar estimates are
given in [7].

Theorem 3.3. Suppose that 0 < Amin < Amax. There exist constants ko > 1, C1 > 0 and for any « € (0, 1), Cq4 >0

such that, if

H

K 2K, Amin < < Amax, (3.10)

and (Y, A) € H'(£2; C) x H} (82) is a solution of (1.5), then

|(V =ik HAYW | 3, < CLVEH [ (2. 3.11)
1
1A — F”HZ(_Q) <G <HC'~11'1(A -F) ”Lz(g) + ﬁ ||W||L2(.Q)||‘/f||L°°(Q))a (3.12)
1
IA = Fllcouz) < Ca <||cur1(A Pl + 71V e ||w||Loo<m>. (3.13)

Proof. Proof of (3.11): See [3, Proposition 12.4.4].
Proof of (3.12): Leta=A —F. Since diva =0 and a - v =0 on 952, we get by regularity of the curl-div system
(see Appendix A, Proposition A.1),

||a||H2(Q) < C”Curla”Hl(Q). (314)

The second equation in (1.5) reads as follows

1 — .
—V'tecurla = — Im(¥(V — ik HA)Y).
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The estimates in (3.11) and (3.14) now give

1
lall g2 <C(|lcurlall 2+ ——=I¥ll2 IIwIILoo:z>.
H2(2) X L2(2) m L2(2) (£2)

Proof of (3.13): This is a consequence of the Sobolev embedding of H2(£2) into C%*($2) for any @ € (0, 1)
and (3.12). O

4. Energy estimates in small squares

If (Y, A) € H'(£2;C) x H}. (£2), we introduce the energy density

2
. 2 K
(¥, M) =|(V —ik HAW[" = 1y ? + |y,
We also introduce the local energy of (1, A) in a domain D C £2:
Eo(u, A, D):/e(l/f,A)dx. 4.1)

D

Furthermore, we define the Ginzburg-Landau energy of (¥, A) in a domain D C £2 as follows,

EW, A; D)= E (¥, A; D) + (KH)2/|curl(A — F)\de. 4.2)
2

If D = §2, we sometimes omit the dependence on the domain and write £y (¥, A) for E(¥, A; £2). We start with a
lemma that will be useful in the proof of Proposition 4.2 below. Before we start to state the lemma, we define for all
(€, x0) such that Q,(xq) C £2,

Bo,xpy= sup |Bo(x)|, 4.3)

x€Qy(x0)
where By is introduced in (1.2). Later xo will be chosen in a lattice of R2.
Lemma 4.1. For any « € (0, 1), there exist positive constants C and kg such that if (3.10) holds, 0 < § < 1,0 < £ < 1,
and (Y, A) € H'(£2;C) x Hdliv(.Q) is a critical point of (1.1) (i.e. a solution of (1.5)), then, for any square Q¢ (xp)
relatively compact in §2 N {|Bg| > 0}, there exists ¢ € H'(£2), such that
Eo(V, A; Qe(x0)) = (1 = )& (e~ M99, 04 B g, (v0) A0 (x — x0), Qe (x0))
— Ck* (8712 + 571 +6) / lv|?dx, (4.4)
Qe (xo)

where oy denotes the sign of By in Qg (xo).

Proof. Construction of ¢: Let ¢, (x) = (A(xo) — F(xo)) - x, where F is the magnetic potential introduced in (1.3).
Using the estimate in (3.13), we get for all x € Q;(xg) and @ € (0, 1),

[A(x) = Vo, —F(x)| = (A = F)(x) — (A = F)(x0)|

<A =Fllcoe - [x —xol*

< C—1¢, 4.5)
KkH

where

2 2 1 2
= et (el = B, + 1 )
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Using the bound || ||cc < 1 and the estimate in (3.9), we get
A< Ck?, (4.6)

which implies that

o

¢
|A(x) = Voo (x) = F(x)| < cﬁ. 4.7)

We estimate the energy (¥, A; Q¢(xp)) from below. We will need the function ¢y introduced in Lemma A.3 and
satisfying

[F(x) — 0B g, (x0)A0(x — x0) — Vo (x)| < C€* i Q¢ (x0).
Let
U= e—iKH(p,(p’ 4.8)

where ¢ = @o + Py, -
Lower bound: We start with estimating the kinetic energy from below as follows. For any § € (0, 1), we write

(V= ik HAYW | = |(V — ik H(0¢B g, (xp) A0 (x — x0) + Vo)) — ik H(A — 0B g, (xp Ao (x — x0) — Vo)
> (1 = 8)|(V — ik H(0¢B 0, ) Ao (x — x0) + Vo) )|
+ (1 =87 H)?|(A = Vg — )Y + (F — 00 B g, (xgy Ao (x — x0) — Vo) |
Using the estimates in (4.7), (A.3) and the assumption in (3.10), we get, for any « € (0, 1)
(V= ik HAYY | > (1 = 8)|(V — i H (00 B 0, (o) Ao (x — x0) + Vo) ) ¥/ |
— CKA(57 1 + 8722 H) |y (4.9)

| 2

Remembering the definition of u in (4.8), then, we deduce the lower bound of &

2
. = 2 K
& (¥, A; Qelxo)) > / [(1 —|(V — ik H(0¢B g, x0) A0 (x — x0)) )u|” — i ul* + 7|u|4} dx
Q¢ (x0)
— Ok (572 0k 457 20%) / Y1 dx
Q¢ (x0)
> (1—8)&(u, 0¢B g, (xp)Ao(x — x0); Qe(x0))
—CiP (87 e 871 +6) / lv|? dx. (4.10)
Qe(xo)
This finishes the proof of Lemma 4.1. O

Proposition 4.2. For all « € (0, 1), there exist positive constants C, €y and kg such that, if (3.10) holds, k > ko, £ €
(0, 3), € € (0, €0), x%e > 1, (Y, A) € H'(2; C) x H}, (82) is a critical point of (1.1), and Q¢ (x0) C $2N{| Byl > €},
then

_
|Qe(x0)]

Here g(-) is the function introduced in (2.5), and EQK(XO) is introduced in (4.3).

H —
Eo(w, A; Qg(xo)) > g<?BQl(xO))K2 — C(€3lc2 + g2 4 (£K6)71 + 5671)1(2'

Proof. Using the inequality ||¥|lco < 1 and (4.4) to obtain
Eo(V, A; Qe(x0)) = (1 — 8)E(u, 0B g, () A0 (x — x0); Qe(x0))
— Ck* (87 M + 87107 +8) | Qe (x0)], 4.11)
where u is defined in (4.8).
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Let

H_ —
b=;BQe<xo>v R=4{\/kHBg,(x)-

Define the rescaled function

v(x) = u(%x +xo), Vx € Og.

Remember that o, denotes the sign of By in Q¢(xp). The change of variable y = R (x — xq) gives

Eo(u, 0¢B 0, (xp)A0(x — x0); Q¢ (x0))

R R 2
:/(‘(zvy—iongo(y)>v

Or

. 2 K 2 K 4
= [(Vy —ioeAg)|” — —= v|* + ——= v )dy
/< HB g, (x) 2HB 9, (xp)

Or

K . 2 1

:_—/b(|(Vy—long)v| —|v|2+§|v|4)dy
HBQ@(XO)Q

2
LS PARA

— + — —d
K7 |v| 2Iv|>Ry

R

1

=5Grlo, )

4.12)

4.13)

(4.14)

We still need to estimate from below the reduced energy GZ“ Or (v). Since v is not in Hé (Qr), we introduce a cut-off

function xr € C° (R?) such that

0<xr<l inR?’  suppxr CQr, xr=1 inQr_1, and |Vxg|<M inR%.
The constant M is universal.
Let
UR = XRV.
We have

. 2 1
GngR(v):/<b|(v—on)v| —|v|2+§|v|4)dx

Or
1
> f<b|xR(V—iaer>v|2—|va|2+§|v|4+(x,%—1)|v|2>dx
Or
>GZfQR(XRv)— /(1—X%)|v|2dx—2/|<(V—iang)va,Vva)}dy.

Or Or
Having in mind (4.13) and (4.8), we get

. £ ] _
’(Vy — 10@A0(y))v(y)| = EKVX —ikHoyB g, xp)Ao(x — xo))u(x)‘.
Using the estimate in (3.11), (4.7) and (A.3) we get

Y/ _
|(Vy —ioeAo)v (| < £ [ (Ve =ik HoeB o) (A + Vo) Ju(x)|
KkHY

|(A = 0¢B g, (x)Ao(x — x0) = Ve)u(x)]

< %(K + il + 1207,

(4.15)

(4.16)

4.17)

(4.18)
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From the definition of ug in (4.16) and g in (4.15) we get

lv] < 1. 4.19)
Using (4.19), (4.18) and the definition of xg in (4.15), we get

Ci¢
/|((V —io¢A0) xRV, VXRV)|dy < %(K +xl* + /<2£2) / IVxrldx

ORr ORrR\QRr-1
< Cr(kl+x +120%), (4.20)
and
/(1—x,%)|v|2dx< 0k \ Qs 1]
Or

<R. (4.21)
Inserting (4.20) and (4.21) into (4.17), we get
Gyl =Gyl (uR) — Coicl + 1kt 4120 1l /€)
> Gyl r) — Cakl(Ve+1) + K20%).

There are two cases:
Case 1: oy = +1, when By > 0, in Qg (xop).
Case 2: oy = —1, when By <0, in Qg (xp).
In Case 1, after recalling the definition of mq (b, R) introduced in (2.3), where b is introduced in (4.12) we get

G}, 0) = mo(b, R) — Ca(it(Ve + 1) + 20%). (4.22)
We get by collecting the estimates in (4.11)—(4.22):

1 (1-9) 2,3 14,2, s—1,2 2
—& (W, A; Qu(x0)) = ———=Z(mo(b, R) — Co(kl + k07 (e +1))) = C(6 €7 k* + 8 £°% +8)«
|Q€(X0)| (w 4 ) bEZ ( ( )) ( )

> 02D R~ r o) (4.23)
= béz molo, r), .
where
1
r(k) = Cs <5—154K4 + 871 + 8kt + o KWe+ D + K2e3)>. (4.24)

Theorem 2.2 tells us that mq(b, R) > R%g(b) for all b € [0, 1] and R sufficiently large. Here g(b) is introduced in
(2.5). Therefore, we get from (4.23) the estimate

1 (1-8)R?
— & —
[ Q¢ (x0)] bl
with b defined in (4.12). By choosing § = ¢ and using that Q¢ (xo) C {|Bo| > €}, we get

(¥, A; Qe(x0)) > < )g(b) — ), (4.25)

1
r (k) =0<z3/<2+e2“‘ + — ()™ +£)>K2. (4.26)
€
This implies that

1 H_
—& ,A, 2 —B ” z_C £3 2 £2a—1 ¢ —1 ) —1 2.
Dry A Qo) g<x Qf“”)" (Cx 4 E57 o ()™ + L)

Similarly, in Case 2, according to Remark 2.1, we get that

G;}QR(U) > mo(b, R) — Ca(il + k20 (e + 1)),

and the rest of the proof is as for Case 1. O
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5. Proof of Theorem 1.1
5.1. Upper bound

Proposition 5.1. There exist positive constants C and kg such that, if (3.10) holds, then the ground state energy
Eq(«, H) in (1.6) satisfies

H
Eg(k, H) glczfg<—‘Bo(x)’)dx+CK%.
K
2

Proof. Let £ = £(x) and € = € (k) be positive parameters such that klwtglandk ! «e«1ask— oco. For
some B € (0, 1), u € (0, 1) to be determined later, we will choose

e=x"P, €=k M. (5.1)

Consider the lattice Iy := £Z x £Z and write for y € I'y, Q) ¢ = Q¢(y). For any y € I'; such that @, , C 2 N
{|Bo| > €} let

Byi= Eigfﬂ|30<x)|. (5.2)
Let

Toe={y: QyeCR2n{|Bol >¢€}}.

N =CardZ; .,
and

2. :int( U m).

VEZZ,e
It follows from (1.2) that
N=|212+0(et™?)+0(¢") ast—0ande— 0.
Let

H
b=—B,,. R=t /[cHB,,, (5.3)

and u g be a minimizer of the functional in (2.1), i.e.

1
mo (b, R)=/<b|<V—iAo>uR|2—|uR|2+§|uR|4> dx.
ORr

We will need the function ¢,, introduced in Lemma A.3 which satisfies

[F(x) —0y.0B, ;Ao(x — y) — Voo, ()| < CL* in Q.

where o, ¢ is the sign of By in Q ;.
We define the function
e Heup(X(x —y)) ifxeQ,¢C{Bo>el,
V) =y e MU ER(F(x — ) ifx € Oy C{Bo < —e),
0 ifx e\ 2.
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Since ug € HO1 (QRr),thenve H 1(2). We compute the energy of the configuration (v, F). We get
2 i
EW,F) = f(|(v — ik HF)v|™ — k?v]* + 7|v|4> dx
Q

= Y & F; Q0. (5.4)

€Ly

We estimate the term & (v, F; O, ¢) from above and we write
2 2112 K2 4
Eow,F; Q)0 = / |(V—i/cHF)v| — k7| +7|v| dx
Qy.[

= / |(V —ikH(oy.B, jAo(x — ¥) + Vg, (X)))v
Qy,@
; 2 2012 i 4
—ikH(F—o0,B, Ao(x —y) — Vo, (0))v]|” —k*[v] +7|v| dx

2
< / (1+8)|(V —ikH(oy.eB, Aolx —y) + Vgoy(x)))v|2 — 2P+ %|v|4dx

Qy,/é
+C(1+57")H)? / |(F—o0y.¢B, [Ao(x —y) — Vo, (x))v|2dx
Qy‘(
<A +8)&(e v, 0y0B, (Ao(x —¥): Qye) + C (8> + 57 k*e) f lv[*dx. (5.5)
Qy,[

Having in mind that u g is a minimizer of the functional in (2.1), and using the estimate in (3.1) we get
f P dx < 1Qy.cl.
Qy,Z

Remark 2.1 and a change of variables give us

2
. b, R
/ <|(v —ikHoy (B, Ao(x —))e B )u|* — 2 jof? + %|v|4) dx = %.
R4
We insert this into (5.5) to obtain
b, R
oW, F; 0,0 < +8)% +C (82 + 5 ktet) 2, (5.6)

We know from Theorem 2.2 that my(b, R) < g(b)R2 + CR for all b € [0, 1] and R sufficiently large, where b intro-
duced in (5.3). We choose § = £ in (5.6). That way we get

H 1
E(v, F; <gl =B, )2?+C| —— + 0+ 1203 ) 022 5.7
00,0 <e( L, )t o o) -

Summing (5.7) over y in Iy ¢, we recognize the lower Riemann sum of x — g(%|Bo(x)|). By monotonicity of g, g
is Riemann-integrable and its integral is larger than any lower Riemann sum. Thus

H 1
5(v,F)<</g<?|30(x)})dx>;<2+c<dﬁ+e+/<2z3>;<2. (5.8)

£,e
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Notice that using the regularity of 92 and (1.2), there exists C > 0 such that
|2\ £2¢.¢| =O(£|8.Q|+Ce), (5.9)

as € and ¢ tend to O.
Thus, we get by using the properties of g in Theorem 2.2,

H H 1
/ g(—lBo(x)|)dx </g(—|Bo<x>|>dx+ S102\ ¢l
K K 2
2

e

This implies that

H ! 23,2
EW P < [ gl =|Bo@)| )dx+C ——=+€+e+« )« (5.10)
K K€
Q2
We choose in (5.1)
B S ! (5.11)
= - an =-. .
4 =3
With this choice, we infer from (5.10),
H 1s
E(U,F)g/g<—\30(x)|>dx+c1/<s, (5.12)
K
Q
and
Cile=kd > 1. (5.13)

This finishes the proof of Proposition 5.1. O

Remark 5.2. In the case when By does not vanish in 2, € disappears and {x € §2; |Bo(x)| > 0} = £2. Consequently,
the Ginzburg—Landau energy of (v, F) in (4.2) satisfies

H 1
EW,F) < /g<—|Bo(x)|> dx + c<7 +O+ K2z3);<2.
K K
2
We take the same choice of 8 as in (5.11), then the ground state energy Ey(x, H) in (1.6) satisfies

H
Ey(k, H) < KZ/g<—|Bo(x)|> dx + CrcH.
K
2

5.2. Lower bound

We now establish a lower bound for the ground state energy Eq(«, H) in (1.6). The parameters € and £ have the
same form as in (5.1).
Let

B, .= sup |Bo(x)|, (5.14)

)CEQV,[
and

H_ —
bye=—By 4, R=4{\/kHB, ;. (5.15)
K

If (4, A) is a minimizer of (1.1), we have

Eg(k, H) =& (Y, A; $20.¢) + Eo(W, A; 2\ £2¢.¢) + (KH)Z/’CUI‘I(A — F)‘zdx, (5.16)
2
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where, for any D C §2, the energy (¥, A; D) is introduced in (4.1). Since the magnetic energy term is positive, we
may write

Eg(k, H) = Eo (Y, A; $2¢.¢) + Eo (Y, A; 2\ $2¢.¢). (5.17)
Thus, we get by using (3.1), (3.11), and (5.9):

|Eo(¥, A; 2\ 2¢.6)| < f (v —icHAYY|* + 1y + 5 |1/f| dx
2\$2¢,¢

2
<2\ £2¢ e|(ClK ||¢||Loc(g) +K IIWIle(g) + = ||1/f||L00(_Q)>

< Cr(l + )2, (5.18)

To estimate E (Y, A; §2¢.¢), we notice that

S A e = ) &, A; Qy0).

VEIZ,e

Using Proposition 4.2 with & = % and (5.18) with 8 = 3 and = § in (5.1), we get

H _
WA= Y g(—BQl(xO))ﬂKZ—C(€3K2+€2°’1-{—((/(6)1+€€1)K2
VEIZ,e «
H 15
2 2 =2
) (; Qz(x()))@ —Cik¥,
VEI(,S
and
S0 A 2\ 20.0) > —Cokc ¥ (5.19)

As for the upper bound, we can use the monotonicity of g and recognize that the sum above is an upper Riemann sum
of g. In that way, we get

H
S, A; R0.0) > i / g<—|B0(x)|>dx—C1K185.
K

-Ql,e

Notice that §2¢  C §2 and that g < 0, we deduce that
Eo(W, A; 20.0) > K2/ (— |Bo(x)|> dx — Cik ¥ (5.20)
Q
Finally, putting (5.19) and (5.20) into (5.17), we obtain

Eg (k. H)>K2fg<%|30(x)|)dx—cx%. (5.21)
2

Remark 5.3. When Bj does not vanish, the local energy in Q¢ (xp) in Proposition 4.2 becomes

— ; E_ 2 _ 3,2 p2a—1 —1\ 2
|Qe<xo>|g°(‘/”A’Qe(xo>)>g<xBQM))" (B + 027 4 (00 )

. 3
Similarly, we choose o = % and £ =« 4, we get

Eo(Y,A; 2\ $2¢.¢) > —Cokd, (5.22)
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and

2 H 7
S A2 ) >k” [ g ?|Bo(x)] dx — Cik3.
Q
As a consequence of (5.22) and (5.23), (5.21) becomes

H
Eq(k, H) >K2fg<—‘Bo(x)’)dx —CK%.
K
2

5.3. Proof of Corollary 1.2
If (¢, A) is a minimizer of (1.1), we have

EW,A; 2)=E(W, A; 2) + (cH)? / |curl(A — F)|*dx.
2

Theorem 1.1 tells us that

2 H T
EWLA; 2)<k® | g —|Box)| ) dx + Ck™.
K
2
This implies that

Eo(r, A; 9)+(;<H)2/}cur1(A—F)|2dx <x2/g<5|30(x)|>dx+cmf0.
K
2

Q
Using (5.19), (5.20), (5.22) and (5.23), we get

H
oW, A; 2) > i / g(—|Bo(x)|) dx — Cokc™,
K
2
Putting (5.27) into (5.26), we get

—CHx ™0 2 E 2 _ 2
2w +k? [ gl —|Bo(x)| ) dx + («H)* [ |curl(A —F)| dx
K
2 2

H
< Kzfg<;|30(x)|) dx + Cik™.
2

By simplification, we obtain

(KH)2/|cur1(A — )| dx <Ck™.
2

6. Local energy estimates

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

The object of this section is to give an estimate to the Ginzburg—Landau energy (4.2) in the open set D C £2.

6.1. Main statements

Theorem 6.1. There exist positive constants k¢ such that if (3.10) is true and D C $2 is an open set, then the local

energy of the minimizer satisfies

H
‘w,A; D)—xzfg<;|Bo(x>|>dx
D

= o(x?).

6.1)
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For all (¢, xg) such that Q(xg) C £2 N{|By| > €}, we define

By, )= __inf |Bo(x)|, (6.2)

x€Qy(x0)

where By is introduced in (1.2).

Proposition 6.2. For all a € (0, 1), there exist positive constants C, €y and kg such that if (3.10) is true, k > ko, £ €
(0, %), € € (0, €0), €3k%€ > 1, (Y, A) € H'(2;C) x H} (82) is a minimizer of (1.1), and Q¢(x0) C 2 N {|Bo| > €},
then

H o )
o 000 s 000) < (B )i + (O + 847 4 b vE) )i

Here g(-) is the function introduced in (2.5) and & is the functional in (4.1).

Proof. As explained earlier in the proof of Lemma 4.1 in (4.5), we may suppose after performing a gauge transfor-
mation that the magnetic potential A satisfies
ZD{
|A(x) = F(x)| < Copr V€ Qulxo). (6.3)

Let

H
b="Boy:  R=4JKHBg, ), 64

and ug € HOI(Q r) be the minimizer of the functional G;}:lQR introduced in (2.1). Let xg € CSO(RZ) be a cut-off
function such that

0<xr<1 inR%  suppxrC Qrt1,  xg=1 in Qg,

and |V xg| < C for some universal constant C. ~
Let nr(x) =1 — xg (% (x —x0)) for all x € R? and € = £(1 + ).
This implies that

nr(x) =0 in Q¢(xo), (6.5)
0<nr(x) <1 in Qp(x0) \ Qe(x0), (6.6)
nr(x)=1 1in 2\ Qz(xo). (6.7)

Consider the function w(x) defined as follows,

wx) =nr(xX)¥(x) in 2\ Qr(xo),
and, if x € Q¢ (xp),
e Houp(R(x —x0)) if Qe(xo) C{Bo>e€}N,
v = { e<HeiR(E (x —x0)) if Q(x0) C (By < —€} N £2.

Notice that by construction, w = ¥ in §£2 \ Q7(xo). We will prove that, for any § € (0, 1) and « € (0, 1),

L
Ew,A; 2) <E(Y,A; 2\ Qexp)) + (1 + S)Emo(b, R) +ro(k)€?, (6.8)
and for some constant C, ro(x) is given as follows,
=C(s+57 M+ 102 + —— )i2 6.9
ro(k) <+ K”+ +£KJEK 6.9)

Proof of (6.8): With & defined in (4.1), we write
Eo(w,A; 2) =& + &, (6.10)
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where

=8 (w,A; 2\ Qu(x0)), & =& (w, A; Q¢(xp)). (6.11)

We estimate £; and &, from above. Starting with £ and using (6.7), we get

2
K
£ = / V=i HARY [ = ey P+ S nru* dx

2\ Q¢ (x0)
2

= / n%|(V —ic HAYW * + Vg 2+ 2R(nr(V — ik HAYW, Viir) — 0k l9 1% + %rﬁaw“dx

2\ Q¢ (x0)
=Eo(V, A; 2\ Qu(x0)) + R(Y¥, A), (6.12)

where
2
R, A) = / ((n%e —)(|(V = ic HAY|* = Py ) + [y Vel + %(n‘,‘e - 1)yt
O7(x0)\ Qe (x0)

+ 2R(nr(V — ik HA) Y, anR)> dx.

Noticing that [Q7(xo) \ Q¢(x0)| < \/% and using (6.6) together with the estimates in (3.1), (3.10), (3.11) and
KL0,(xp)

IVnrl < C%, we get

L
R, A)|<C—. 6.13
R <C~ (6.13)
Inserting (6.13) in (6.12), we get the following estimate
Uk
& <& (¥, A; 2\ Qu(xp)) + C—. (6.14)

N
We estimate the term &; in (6.11). We will need the function ¢q introduced in Lemma A.3 and satisfying |F(x) —

o B 0 K(XO)Ao(x —x0) — Voo(x)| < C 22 in Q¢ (x0), where oy denotes the sign of By. We start with the kinetic energy
term and write for any 6 € (0, 1):

&= / [(V —ikH(0¢B g, () A0(x — x0) + Vo (x)))w
Q¢ (x0)

2
— ik H(A — (0¢B g, (1 Ao(x — x0) + Vo (x)))|* + <—K2|w|2 + %|w|4> dx

2
< / (1+8)|(V — ik H(0¢B g, 5y A0 (x — x0) + Vo)) )w|* — 2 |w|? + %|w|4dx

Q¢ (x0)
_ 2
+ (145" H)? / [(A =V, = F)w + (F—0¢B, () Ao(x — x0) — Voo (x))w]|” dx.
Q¢ (x0)
(6.15)
Using the estimate in (6.3) together with (3.10) and (3.1), we deduce the upper bound
E <A +8)E (e ™ Hw, 0y B vy Ao(x — x0); Qe(x0)) + C (871 + 57 e*k? + 82, (6.16)

where « € (0, 1).
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There are two cases:
Case 1: If Byg > € in Q¢(xp), then o, = +1 and

B { e HOup(X(x —x0)) in Qe(xo),
w(x) = )
nR ()Y (x) in £2°\ Q¢(xo).
The change of variable y = %(x — x0) and (4.12) gives us

50(€_iKH(pU), UZEQZ(XO)AO(X —x0); Q¢ (XO))

R R 2
= [ (= a00)on

Or

. 2 K 2 K 4
= |(Vy—tA0(y))uR| — ———uRr|" + ———|urR| >dy
f ( HBy, () ZHB,(x)

1
- / b<|(Vy —iAo())ur|* — lurl? + 5|uR|4> dy

HB g, (xy) J

2
K V4
— i ugl* + 7|uR|4> =4

_ _G-bHQR(uR) (6.17)

where G+ b.0x is the functional from (2.1).
Case 2: 1f By < —e in Qg (xp), then oy = —1 and
wix) = {e’“HWR(7<x —x0))  in Q(x0).
nR(X) Y (x) in 2\ Q¢(xo).

Similarly, like in Case 1, we have

Eo(e ™ Mw, 04B y, () A0 (x — x0); Qe(x0)) = G,, 0, (ER) = Gb 0, UR):

b
In both cases we see that

mo(b, R)
Eo(e ™ Mw, 04B o, () A0 (x — x0); Qe(x0)) = bG},HQR( R)=0T- (6.18)
Inserting (6.18) into (6.16), we get
1
E < +8) mob, R) +C(5+ §TLe? + 87122 (6.19)
Inserting (6.14) and (6.19) into (6.10), we deduce that
Eo(p. A) <& (V. A: 2\ Qe(x0)) + (1 +8) mo(b R)
+C(E+8 e+ 162“K2+(5Kﬁ) e, (6.20)

This proves (6.8). Now, we show how (6.8) proves Proposition 6.2. By definition of the minimizer (v, A), we have
EW,A) <E(p,A; 2).
Since E(Y, A; 2) =EW, A; 2\ Q¢(x0)) + Eo(¥, A; Qr(x0)), the estimate (6.8) gives us
149
b

Eo(¥. A; Qe(x0)) < mo(b, R) +ro(x),

where rq (k) is defined in (6.9).
Dividing both sides by |Q(xp)| = 22, we get

1 (1+9)

A,
DG WA Q) < =5

~ mo(b, R)+C(5+8 T+ —— 45~ 152“) ) 6.21)

1
b€
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The inequality in (2.7) tell us that mo(b, R) < Rzg(b) + CR for all b € [0, 1] and R sufficiently large. We substitute
this into (6.21) and we select § = £, so that

ro(i) = k2 O((b/e) ™ + Cr? + 27,
Using (4.12) we get

1 (14 8)R?

CR 2 —1 3.2 2a—1
S A 0e0) £ T g B) s +PO(U )T + 07 4 £207))

be?
H 2 —1 43,2 a1y, 2
< g<;§Qe(XO)>K -{-C((ZK\/E) + 0k + 0 )K .
This establishes the result of Proposition 6.2. O
6.2. Proof of Theorem 6.1, upper bound

The parameters £ and € have the same form as in (5.1) and we take the same choice of 8 and p asin (5.11). Consider
the lattice Iy := €7 x £Z and write, for y € I'y, Q) ¢ = Q¢(y). Forany y € I'; such that Q,(y) C 2 N{|Boy| > €}, let

Tre(D)={y: Qye CDN{IBol >€}},  N=CardZy (D),
and
Dy = int( U QM).
y€Zy (D)
Notice that, by (1.2),
N=|D|t7>+0(et?)+0O(¢™") as¢—0ande— 0.
If (¢, A) is a minimizer of (1.1), we have
E(Y, A; D) =Eo(Y, A; Dy.o) + Eo(Y, A; D\ Dy.o) + (kH)? / |curl(A — F) |2 dx. (6.22)

2
Using Corollary 1.2, we may write

EW,A; D) <&, As Dee) + Eo(, A; D\ Dye) + Ckc ™. (6.23)
Here 79 € (1, 2). Notice that
|D\ Dg.e| =O(L|dDg | +€). (6.24)

We get by using (3.1) and (3.11):

2
K
|E0(¥, A; D\ De.o)| <D\ Dz,e|<C1K2||1/f||ioc(D) + Y ooy + 7||w||‘£oo<m>
< Cr(l + )2, (6.25)
To estimate & (¥, A; Dy ), we notice that

WA De)= Y &, A; Q).

v€ZLy,e(D)
Using Proposition 6.2 and the estimates in (6.25) with 8 = %, a=%5and u= %, we get

H
W, A D)< Y g(;ggﬁxo))wz +C(Cr* + 27 4 ()T )i + Crue®
VEIZ,G(D)

H
S ? Z é,(?Esz()C()))e2 + Cok™,
y€Zy (D)
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where

EQ[(){()) = sup BO(X)
x€Q¢(x0)

Recognizing the lower Riemann sum of x +— g(%Bo (x)), and using the monotonicity of g we get

H
W, A; D) < «? / g(;Bo(X)) dx + Crk™. (6.26)
Dl.e

Thus, we get by using (6.24) and the property of g in Theorem 2.2,

2 H 2 H T
K / g ?Bo(x) dx <« /g ?Bo(x) dx + C3k ™.
D

Dy.e

This finishes the proof of the upper bound.
6.3. Lower bound

We keep the same notation as in the derivation of the upper bound. We start with (6.22) and write

EW,A; D) 2 E (Y, A; Dye) 4+ E(Y,A; D\ Dy o). (6.27)

Similarly, as we did for the Lower bound Section 5.2, we get
2 H T
EW,A; D) >« g| —Bo(x) )dx — Ck™. (6.28)
K
D

This finishes the proof of Theorem 6.1.
7. Proof of Theorem 1.4
7.1. Proofof (1.9)
Let (v, A) be a solution of (1.5) and 71 = 79 — 2. Then ¥ satisfies

—(V—ikHA*Y =*(1 - |y |*)y in 2. (7.1)

We multiply both sides of the equation in (7.1) by ¥ then we integrate over D. An integration by parts gives us

f(|(v—iKHA)w|2—K2|w|2+K2|1/f|4)dx—/v.(v—iKHA)wada(x)zo. (7.2)
D oD

Using the estimates (3.1), (3.10) and (3.11), we get that the boundary term which is not necessary 0 if D # £2 above
is O(k). So, we rewrite (7.2) as follows,

—%K2/|1p|4dx:50(1ﬁ,A; D) + O(k). (7.3)
D

Using (6.28), we conclude that

1 . H .
5f|x/f| dxg—/g<730(x)>dx+cx ' (7.4)
D

D
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7.2. Proof of (1.10)

If (¢, A) is a minimizer of (1.1), then (7.3) is still true. We apply in this case Theorem 6.1 to write an upper bound
of &y (¥, A; D). Consequently, we deduce that

%/|W|4dx>—/g<g30(x)> dx — Cx™. (1.5)
D

D
Combining the upper bound in (7.5) with the lower bound in (7.4) finishes the proof of Theorem 1.4.
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Appendix A
A.l1. LP-regularity for the curl—div system

We consider the two dimensional case. We denote, for k € N, by ng’vp (£2) the space

WP (2)={A e WhP(2), divA=0and A-v=0o0nd2}.

Then we have the following L? regularity for the curl-div system.

Proposition A.1. Let 1 < p < co. If A € Wy:P () satisfies curl A € WP (82), for some k >0, then A € Wit P (£2).

iv

Proof. If A belongs to W(}i’vp (£2) and curl A € LP(£2), then there exists ¥ € W>?(£2) such that A = (=0x, ¥, Oy, ¥r),
— Ay =curl A, with ¢ =0 on 9£2. This is simply the Dirichlet L? problem for the Laplacian (see [2, Section A.1]).
The result we need for proving the proposition is then that if —A is in addition in W*?(£2) then ¥ € W27 ().
This is simply an L” regularity result for the Dirichlet problem for the Laplacian which is described in [2, Sec-
tion F4]. O

A.2. Construction of ¢y,

Lemma A.2. If By € L%(82), then there exists a unique F € Hdliv('Q) such that
curl F = By. (A.1)

axzf
_8,‘(1 f

—Af =By inf2. (A2)

Proof. The proof is standard, see [5]. Let F = [ ], where f € H2(£2) N Hé (£2) is the unique solution of

Then we deduce from the Dirichlet condition satisfied by f that t -V f =0 on 92 which is equivalent to v-F =0 on
d£2. This finishes the proof of Lemma A.2. O

We continue with a lemma that will be useful in estimating the Ginzburg—Landau functional.

Lemma A.3. There exists a positive constant C such that, if £ € (0, 1) and xo € §2 are such that Q¢(xg) C 2, then
for any xy € Qg (xq), there exists a function ¢y € H L) such that the magnetic potential F satisfies

[F(x) — Vo (x) — Bo(F0)Ao(x — x0)| < C€*  (x € Q¢(x0)), (A3)

where By is the function introduced in (1.2) and Ay is the magnetic potential introduced in (2.2).
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Proof. We use Taylor formula near xp to order 2 and get

F(x) =F(%0) + M(x — %) + O(|x — X~o|2), Vx € Q¢(xo), (A4)
where
E‘ a_F‘|
~ axy 1xg  9xp 1%
M = DF =
(x0) Ei ﬁ|
dxy Ixp  dx2 1Xp
We can write M as the sum of two matrices, M = M* + M, where M* = M+TM is symmetric and M** = M_TM is

antisymmetric.

. ~ 2 1
Notice that curl F(p) = & F

o %~ o

as __ 0 _B0/2
M _I:B()/Z 0 i|

5 = Bo(%0). Consequently,

Substitution into M gives as that

M (x — x0) = Vo (x) + Bo(¥0)Ao(x — x0),

where Ag(x) = %(—xz, x1) and the function ¢y is defined by

_ 1//M+M
Po(x) = §<<T> (x —xp), (x —X0)>-

Let ¢o(x) = ¢po(x) + (F(xX9) + M (xo — xp)) - x. Substitution into (A.4) gives as that
F = By(£0)Ao(x — x0) + Voo (x) + O(Ix — 51%).

Notice that, if x € Q¢ (xo), then |x — Xp| < £+/2. This finishes the proof of Lemma A.3. O

Remark A.4. We will apply this lemma by considering Xy such that By(Xg) = SUP g, (xo) Bo(x) or Bo(%p) =
infg, (xg) Bo(x).

References

[1] A. Aftalion, S. Serfaty, Lowest Landau level approach in superconductivity for the Abrikosov lattice close to H,, Sel. Math. New Ser. 13 (2)
(2007) 183-202.

[2] S. Fournais, B. Helffer, Optimal uniform elliptic estimates for the Ginzburg—Landau system, in: Adventures in Mathematical Physics, in:
Contemp. Math., vol. 447, Amer. Math. Soc., 2007, pp. 83-102.

[3] S. Fournais, B. Helffer, Spectral Methods in Surface Superconductivity, Prog. Nonlinear Differ. Equ. Appl., vol. 77, Birkhéuser, Boston, 2010.

[4] S. Fournais, A. Kachmar, The ground state energy of the three dimensional Ginzburg—Landau functional part I: Bulk regime, Commun. Partial
Differ. Equ. 38 (2) (2013) 339-383.

[5] V. Girault, P.-A. Raviart, Finite Elements Methods for Navier—Stokes Equations, Springer, 1986.

[6] X.B. Pan, Surface superconductivity in applied magnetic fields above HC»>, Commun. Math. Phys. 228 (2) (2002) 327-370.

[7] X.B. Pan, Surface superconductivity in 3 dimensions, Trans. Am. Math. Soc. 356 (10) (2004) 3899-3937.

[8] X.B. Pan, K.H. Kwek, Schrodinger operators with non-degenerately vanishing magnetic fields in bounded domains, Trans. Am. Math. Soc.
354 (10) (2002) 4201-4227.

[9] S. Sandier, S. Serfaty, The decrease of bulk-superconductivity close to the second critical field in the Ginzburg—Landau model, SIAM J. Math.
Anal. 34 (4) (2003) 939-956.


http://refhub.elsevier.com/S0294-1449(13)00135-2/bib4153s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib4153s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib46482D70s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib46482D70s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib46482D62s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib414Bs1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib414Bs1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib4752s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib5850s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib5061s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib504Bs1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib504Bs1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib53533032s1
http://refhub.elsevier.com/S0294-1449(13)00135-2/bib53533032s1

	The ground state energy of the two dimensional Ginzburg-Landau functional with variable magnetic ﬁeld
	1 Introduction
	1.1 The functional and main results
	1.2 Discussion of main result
	1.3 Notation

	2 The limiting energy
	2.1 Two-dimensional limiting energy

	3 A priori estimates
	4 Energy estimates in small squares
	5 Proof of Theorem 1.1
	5.1 Upper bound
	5.2 Lower bound
	5.3 Proof of Corollary 1.2

	6 Local energy estimates
	6.1 Main statements
	6.2 Proof of Theorem 6.1, upper bound
	6.3 Lower bound

	7 Proof of Theorem 1.4
	7.1 Proof of (1.9)
	7.2 Proof of 1.10

	Acknowledgements
	References


