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Abstract

We justify the smoothing effect for measure valued solutions to the space homogeneous Boltzmann equation of Maxwellian type
cross sections. This is the first rigorous proof of the smoothing effect for any measure valued initial data except the single Dirac
mass, which gives the optimal description on the regularity of solutions for positive time, caused by the singularity in the cross
section. The main new ingredient in the proof is the introduction of a time degenerate coercivity estimate by using the microlocal
analysis.
© 2014

Résumé

Nous justifions l’effet régularisant pour les solutions à valeurs mesures de l’équation de Boltzmann spatialement homogène dans
le cas des molécules maxwelliennes. Il s’agit de la première preuve rigoureuse de l’effet régularisant pour toutes données initiales
à valeurs mesures sauf la masse de Dirac seule, ce qui donne la description optimale de la regularité des solutions en temps positif
à causée par la singularité dans le noyau de collision. Le principal ingrédient nouveau dans la preuve est l’introduction d’unc
inégalité de coercivité dégénérée par rapport au temps en utilisant l’analyse microlocale.
© 2014

MSC: primary 35Q20, 76P05; secondary 35H20, 82B40, 82C40
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1. Introduction

The purpose of this paper is to analyze the regularizing effect of the Boltzmann equation without angular cutoff in
the general setting, that is, for measure valued solutions. Consider the spatially homogeneous Boltzmann equation
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∂tf (t, v) = Q(f,f )(t, v), (1.1)

where f (t, v) is the density distribution of particles with velocity v ∈ R
3 at time t , and Q(·,·) is the Boltzmann

bilinear collision operator given by

Q(g,f )(v) =
∫
R3

∫
S2

B(v − v∗, σ )
{
g
(
v′∗

)
f

(
v′) − g(v∗)f (v)

}
dσ dv∗,

where the conservation of momentum and energy implies that for σ ∈ S
2

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ.

In the following, we consider the Cauchy problem of (1.1) with a non-negative initial datum

f (0, v) = f0(v). (1.2)

Here, f0(v) is a density of probability distribution (more generally a probability measure).
The non-negative cross section B(z,σ ) in the collision operator depends only on |z| and the scalar product z

|z| · σ .
Motivated by the physical model of potential of inverse power laws, we assume

B
(|v − v∗|, cos θ

) = Φ
(|v − v∗|

)
b(cos θ), cos θ = v − v∗

|v − v∗| · σ, 0 � θ � π

2
,

where

Φ
(|z|) = Φγ

(|z|) = |z|γ , for some γ > −3, (1.3)

b(cos θ)θ2+2s → K when θ → 0+, for 0 < s < 1 and K > 0. (1.4)

In fact, if the inter-particle potential U(ρ) is proportional to ρ−(q−1) with q > 2, where ρ denotes the distance between
two interacting particles, then s and γ are given by

s = 1/(q − 1) < 1, γ = 1 − 4s = 1 − 4/(q − 1) > −3.

For this physical model, we have γ = 0 and s = 1/4 when q = 5, which is called the Maxwellian molecule. Inspired
by this case, in this paper, we consider the Maxwellian molecule type cross section when

γ = 0, 0 < s < 1.

The angle θ in the cross section is the deviation angle, i.e., the angle between pre- and post-collisional velocities.
Even though the range of θ is in an interval [0,π], as in [21], it is customary to restrict it to [0,π/2], by replacing
b(cos θ) by its “symmetrized” version[

b(cos θ) + b
(
cos(π − θ)

)]
10�θ�π/2

because of the invariance of the product f (v′)f (v′∗) in the collision operator Q(f,f ) under the change of variables
σ → −σ .

One of the important feature of the cross section without angular cutoff is that b(cos θ) has the integrable singular-
ity, that is,

∫
S2

b

(
v − v∗
|v − v∗| · σ

)
dσ = 2π

π/2∫
0

b(cos θ) sin θ dθ = ∞.

This kind of singularity leads to some difficulties in the study of the existence and solution behavior because the
gain and loss terms in the collision operator cannot be considered separately. Moreover, the angular singularity also
leads to the gain of regularity in the solution. For later analysis, as before, the case where 0 < s < 1/2, that is,∫ π/2

0 θb(cos θ) sin θ dθ < ∞ is called the mild singularity, and another case 1/2 � s < 1 is called the strong singular-
ity. Note that to handle the strong singularity, some symmetry property of the collision operator should be used.
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The study on the homogeneous Boltzmann equation has a very long history, cf. [7,5] and the references in recent
work [12]. In particular, the smoothing effect of (weak) solutions to the Cauchy problem for the non cutoff homoge-
neous Boltzmann equation has been studied by many authors in [9,2,3,15,10,4,8], including Gevrey smoothing effect
in [16]. However, the problem for measure initial data has been studied only in [14], when it consists of a sum of four
Dirac masses.

On the other hand, in [22] Villani conjectured that the regularizing effect for weak measurable solutions holds
for any measure initial data except a single Dirac mass. This is a much stronger statement than the previous works
on the weighted Lp solutions because one has to consider measure valued solutions. The purpose of this paper is to
justify this conjecture, which is optimal in the sense that a single Dirac mass is a stationary solution of the Boltzmann
equation.

Let us now introduce some notations for function spaces and recall some related works on the existence and
uniqueness. For every 0 � α < ∞, we denote by Pα(Rd) the class of all probability measure F on R

d , d � 1, such
that ∫

Rd

|v|α dF (v) < ∞.

Concerning the Cauchy problem for the homogeneous Boltzmann equation of the Maxwellian molecule type cross
section, Tanaka [18] in 1978 proved the existence and the uniqueness of the solution in the space P2(R

d) by using
probability theory. The proof of this result was simplified and generalized in [17,19].

The existence of solution with bounded energy was extended in [6] to the initial datum as a probability measure
with infinite energy. Precisely, following [6], introduce

Definition 1.1. A function ψ :R3 → C is called a characteristic function if there is a probability measure Ψ (i.e.,
a positive Borel measure with

∫
R3 dΨ (v) = 1) such that the identity ψ(ξ) = ∫

R3 e−iv·ξ dΨ (v) holds. We denote the
set of all characteristic functions by K.

Following [19], a subspace Kα for α � 0 was defined in [6] as follows:

Kα = {
ϕ ∈ K; ‖ϕ − 1‖α < ∞}

, (1.5)

where

‖ϕ − 1‖α = sup
ξ∈R3

|ϕ(ξ) − 1|
|ξ |α . (1.6)

The space Kα endowed with the distance

‖ϕ − ϕ̃‖α = sup
ξ∈R3

|ϕ(ξ) − ϕ̃(ξ)|
|ξ |α (1.7)

is a complete metric space (see Proposition 3.10 of [6]). It follows that Kα = {1} for all α > 2 and the embeddings
(Lemma 3.12 of [6]) hold, that is,

{1} ⊂Kα ⊂Kβ ⊂K0 =K for all 2 � α � β � 0.

The definition of the space Kα is natural because we have the following lemma (Lemma 3.15 of [6]).

Lemma 1.2. Let Ψ be a probability measure on R
3 such that

∃α ∈ (0,2];
∫

|v|α dΨ (v) < ∞, and moreover,
∫

vj dΨ (v) = 0, j = 1,2,3, when α > 1. (1.8)

Then the Fourier transform of Ψ , that is, ψ(ξ) = ∫
e−iv·ξ dΨ (v) belongs to Kα .

The inverse of the lemma does not hold, in fact, the space Kα is bigger than the set of the Fourier transform of Pα

(Remark 3.16 of [6]). So we introduce P̃α = F−1(Kα) endowed also with the distance (1.7). The existence and the
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uniqueness of the solution in the space P̃α was proved in [6] for the mild singularity, and has been recently improved
in [14] for the strong singularity. Namely, if the cross section b(cos θ) satisfies (1.3) with 0 < s < 1 and if 2s < α � 2,
then there exists a unique solution to the Cauchy problem (1.1)–(1.2) in the space C([0,∞), P̃α) for any initial datum
in P̃α (see Theorem A.1 in Appendix A).

We are now ready to state the main results of this paper.

Theorem 1.3. Let b(cos θ) satisfy (1.3) with 0 < s < 1 and let α ∈ (2s,2]. If F0 ∈ P̃α(R3) is not a single Dirac mass
and f (t, v) is a unique solution in C([0,∞), P̃α) to the Cauchy problem (1.1)–(1.2), then there exists a T > 0 such
that f (t, ·) ∈ H∞(R3) for any 0 < t � T . Moreover, if F0 ∈ P2(R

3) then T = ∞.

Lemma 1.4. Let F0 ∈ P̃α(R3) and f (t, v) ∈ C([0,∞), P̃α) be the same as in Theorem 1.3. If ψ(t, ξ) and ψ0(ξ) are
Fourier transforms of f (t, v) and F0, respectively, then there exist T > 0 and C > 0, such that for t ∈ [0, T ] we have

t

∫
R3

〈ξ〉2s
∣∣h(ξ)

∣∣2
dξ � C

(∫
R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−)∣∣)dσ

)∣∣h(ξ)
∣∣2

dξ +
∫
R3

∣∣h(ξ)
∣∣2

dξ

)
, for ∀h ∈ L2

s ,

(1.9)

where ξ− = (ξ − |ξ |σ)/2.

With Lemma 1.4, the proof of Theorem 1.3 can be given as follows.

Proof of Theorem 1.3. It follows from the Bobylev formula that the Cauchy problem (1.1)–(1.2) is reduced to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tψ(t, ξ) =
∫
S2

b

(
ξ · σ
|ξ |

)(
ψ

(
t, ξ+)

ψ
(
t, ξ−) − ψ(t, ξ)ψ(t,0)

)
dσ,

ψ(0, ξ) = ψ0(ξ), where ξ± = ξ

2
± |ξ |

2
σ.

(1.10)

By Theorem A.1, ψ(t, ξ) ∈ C([0,∞),Kα). Define a time dependent weight function

Mδ(t, ξ) = 〈ξ 〉Nt2−4〈δξ 〉−2N0 , 〈ξ〉2 = 1 + |ξ |2,
where N0 = NT 2/2 + 2, N ∈ N and δ > 0. We multiply the first equation of (1.10) by Mδ(t, ξ)2ψ(t, ξ) and integrate
with respect to ξ over R3. Denote ψ± = ψ(t, ξ±) and M+ = Mδ(t, ξ

+) to simplify the notation and note that

−2 Re
{(

ψ+ψ− − ψ
)
M2ψ

} = (|Mψ |2 + ∣∣M+ψ+∣∣2 − 2 Re
{
ψ−(

M+ψ+)
Mψ

})
+ (|Mψ |2 − ∣∣M+ψ+∣∣2) + 2 Re

{
ψ−((

M − M+)
ψ+)

Mψ
}

= J1 + J2 + J3.

Using the Cauchy–Schwarz inequality for the third term of J1, we have

J1 �
(
1 − ∣∣ψ−∣∣)(|Mψ |2 + ∣∣M+ψ+∣∣2)� (

1 − ∣∣ψ−∣∣)|Mψ |2.
Therefore, by means of (1.9) we get∫

R3×S2

b

(
ξ

|ξ | · σ
)

J1 dσ dξ +
∫
R3

|Mψ |2 dξ � t

∫
R3

〈ξ〉2s |Mψ |2 dξ, (1.11)

where A � B means that there exists a constant C0 > 0 such that A � C0B . If we use the change of variable ξ → ξ+
for the term M+ψ+ in J2, by the cancellation lemma (Lemma 1 of [1]), we have

∣∣∣∣
∫

3 2

b

(
ξ

|ξ | · σ
)

J2 dσ dξ

∣∣∣∣ = 2π

∣∣∣∣∣
∫

3

|Mψ |2
( π/2∫

0

b(cos θ) sin θ

(
1 − 1

cos3(θ/2)

)
dθ

)
dξ

∣∣∣∣∣�
∫

3

|Mψ |2 dξ,
R ×S R R
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where A � B means that there exists a constant C0 > 0 such that A � C0B . Since |M − M+| � sin2(θ/2)M+ (see
(3.4) of [15]), by the Cauchy–Schwarz inequality we also have the same upper bound estimate for J3 by using again
the change of variable ξ → ξ+ for the term including M+ψ+. Since

2 Re

(
∂ψ

∂t
M2ψ

)
= ∂|Mψ |2

∂t
− 4Nt log〈ξ〉|Mψ |2,

and |ξ |2s/ log〈ξ〉 → ∞ as |ξ | → ∞, we have

d

dt

∫
R3

∣∣Mδ(t, ξ)ψ(t, ξ)
∣∣2

dξ �
∫
R3

∣∣Mδ(t, ξ)ψ(t, ξ)
∣∣2

dξ,

which gives for t ∈ (0, T ]∫
R3

∣∣〈ξ〉Nt2−4(1 + δ|ξ |2)−N0ψ(t, ξ)
∣∣2

dξ �
∫
R3

∣∣〈ξ〉−4ψ0(ξ)
∣∣2

dξ.

Letting δ → 0, we obtain the first part of Theorem 1.3 because we can take an arbitrarily large N .
We now turn to the second part of the theorem when F0 ∈ P2(R

3). We notice that the energy of solution is uni-
formly bounded by that of the initial datum (see Proposition A.2 in Appendix A), so that we have

∫ |v|2f (T , v) dv �∫ |v|2 dF0(v) for a T > 0 given in Lemma 1.4. In view of f (T , v) ∈ L∞(R3) we obtain

∥∥f (T )
∥∥

L log L
:=

∫
f (T , v) log

(
1 + f (T , v)

)
dv < ∞,

so that f (T ) ∈ L1
2 ∩ L logL. It follows from Theorem 1 in [20] that

sup
t�T

(∥∥f (t)
∥∥

L1
2
+ ∥∥f (t)

∥∥
L log L

)
< ∞, (1.12)

which shows that there exists a κ > 0 independent of t � T such that

1 − ∣∣ψ(t, ξ)
∣∣� κ min

(
1, |ξ |2),

by means of Lemma 3 in [1]. Therefore, for |ξ |� R for some R > 0 suitably large, we have

∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−)∣∣)dσ � 2πκ

|ξ |−1∫
0

b(cos θ)
∣∣ξ−∣∣2 sin θ dθ � |ξ |2

|ξ |−1∫
0

θ1−2s dθ � |ξ |2s ,

which gives the standard coercivity estimate instead of (1.9). Hence this leads us to f (t, v) ∈ H∞(R3) for ∀t > T by
the same argument used in [15]. �

The rest of the paper will be organized as follows. In the next section, we will prove Lemma 1.4 about the degen-
erate coercivity estimate which is the key estimate to show the smoothing effect. And in Appendix A, we will recall
the existence and uniqueness result obtained in [6,14] and show the continuity of the time derivative of the solution
which is needed in Section 2. It will be also shown in Appendix A that the energy of the solution for the initial datum
F0 ∈ P2(R

3) is bounded.

2. Degenerate coercivity estimate

To obtain the coercivity estimate for measure valued function which is not concentrated at a single point, we will
consider two cases, that is, the case when the measure is concentrated on a straight line and otherwise. Unlike the
standard coercivity estimate obtained in the previous works, the key observation is that the coercivity estimate is
degenerate in the time variable as shown in Lemma 1.4. That is, one cannot expect to have a gain of regularity of
order 2s uniformly up to initial time. For this, we need to consider the time derivative of ψ(t, ξ−) in the case when ξ

is parallel to the straight line of the concentration of the measure. For clear presentation, the coercivity is estimated in
the following two subsections.
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Fig. 1. ξ− and three vectors b1,b2,b3.

2.1. Initial measure not concentrated on a straight line

We now consider the case when F0(v) is not concentrated on a straight line. In this case, without loss of generality,
we can assume that there exist three small balls denoted by Ai = B(bi , δ) with center at v = bi and radius δ > 0 such
that

∫
Ai

dF0(v) = mi > 0, for i = 1,2,3. Up to a linear coordinate transform, we can assume b1 = 0, b2 and b3 are
linearly independent. That is

η0 = 1 −
∣∣∣∣ b2

|b2| · b3

|b3|
∣∣∣∣ = 1 − | cosα| > 0,

where α is the angle between b2 and b3 (see Fig. 1). Take two positive constants d1 < d2 such that

0 < d1 min
{|b2|, |b3|

}
< d2 max

{|b2|, |b3|
}
� π

2
.

Put d = (d1 + d2)/2. Firstly, we assume that ξ− varies on the circle

C = {
ξ ∈ R

3; |ξ | = d, ξ⊥(b2 × b3)
}
. (2.1)

In the following discussion, we choose δ > 0 to be sufficiently small.
Denote∫

Aj

e−iv·ξ−
dF(v) = mj(aj + ibj ), j = 1,2,3.

Note that |aj + ibj | � 1. With the above notations, it is straightforward to check that

(a1, b1) = (1,0) + e1,

(a2, b2) = (
cos

(∣∣ξ−∣∣|b2| cosγ1
)
, sin

(∣∣ξ−∣∣|b2| cosγ1
)) + e2,

(a3, b3) = (
cos

(∣∣ξ−∣∣|b3| cosγ2
)
, sin

(∣∣ξ−∣∣|b3| cosγ2
)) + e3,

where γ1 is the angle between the vectors ξ− and b2, γ2 is the angle between the vectors ξ− and b3, |ei | = 0(1)δ,
i = 1,2,3. Notice that γ2 = γ1 ± α. With the above choice of parameters, we have when δ is sufficiently small,

2 −
∣∣∣∣ (a1, b1)

|(a1, b1)| · (a2, b2)

|(a2, b2)|
∣∣∣∣ −

∣∣∣∣ (a1, b1)

|(a1, b1)| · (a3, b3)

|(a3, b3)|
∣∣∣∣

= 2 − cos
(∣∣ξ−∣∣|b2| cosγ1

) − cos
(∣∣ξ−∣∣|b3| cos(γ1 ± α)

) + 0(1)δ � c0η0,

where c0 > 0 is a constant independent of δ. Hence, if ψ0(ξ) = ∫
e−iv·ξ dF0(v) and ξ− varies on C defined by (2.1),

then we have
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ψ0(0) − ∣∣ψ0
(
ξ−)∣∣ = 1 −

∣∣∣∣
∫

Ac
⋃3

j=1 Aj

e−iv·ξ−
dF0(v)

∣∣∣∣

�
3∑

j=1

∫
Aj

dF0(v) −
∣∣∣∣∣

3∑
j=1

∫
Aj

e−iv·ξ−
dF0(v)

∣∣∣∣∣
=

3∑
j=1

mj −
∣∣∣∣∣

3∑
j=1

mj(aj + ibj )

∣∣∣∣∣
� min{m1,m2,m3}

(
3 −

∣∣∣∣∣
3∑

j=1

(aj + ibj )

∣∣∣∣∣
)

� 1

3
min{m1,m2,m3}

{
2 −

∣∣∣∣ (a1, b1)

|(a1, b1)| · (a2, b2)

|(a2, b2)|
∣∣∣∣ −

∣∣∣∣ (a1, b1)

|(a1, b1)| · (a3, b3)

|(a3, b3)|
∣∣∣∣
}

� 1

3
min{m1,m2,m3}c0η0 := κ0, (2.2)

because |aj + ibj | � 1 and∣∣∣∣∣
3∑

j=1

(aj + ibj )

∣∣∣∣∣
2

�
(

|a1 + ib1| +
3∑

j=2

|aj + ibj |
∣∣∣∣ (a1, b1)

|(a1, b1)| · (aj , bj )

|(aj , bj )|
∣∣∣∣
)2

+
(

3∑
j=2

|aj + ibj |
∣∣∣∣ (a1, b1)

|(a1, b1)| × (aj , bj )

|(aj , bj )|
∣∣∣∣
)2

�
(

1 +
3∑

j=2

∣∣∣∣ (a1, b1)

|(a1, b1)| · (aj , bj )

|(aj , bj )|
∣∣∣∣
)2

+
(

3∑
j=2

∣∣∣∣ (a1, b1)

|(a1, b1)| × (aj , bj )

|(aj , bj )|
∣∣∣∣
)2

� 5 + 2
3∑

j=2

∣∣∣∣ (a1, b1)

|(a1, b1)| · (aj , bj )

|(aj , bj )|
∣∣∣∣.

Since ψ(t, ξ) is continuous (see Theorem A.1 in Appendix A) and ψ(0, ξ) = ψ0(ξ), by means of (2.2), there exist
μ > 0, ε > 0 and T > 0 such that for any ξ− belonging to the set

Cμ,ε =
{
η ∈R

3; d − μ� |η|� d + μ,

∣∣∣∣ η

|η| ·
(

b2 × b3

|b2 × b3|
)∣∣∣∣ � ε

}
, (2.3)

we have

1 − ∣∣ψ(
t, ξ−)∣∣� κ0/2 for t ∈ [0, T ]. (2.4)

Take a R > 0 such that (d + μ)/R = ε/10. Let |ξ | � R, and for ω = ξ/|ξ | ∈ S
2 take the coordinate σ = (θ,φ) ∈

[0,π/2] × [0,2π ] with the pole ω. Write

ξ− = ξ

2
− |ξ |

2
σ = ξ−(θ,φ).

If θ satisfies

d − μ�
∣∣ξ−(θ,φ)

∣∣ = |ξ | sin
θ

2
� d + μ,

then there exists an interval Iω ⊂ [0,2π ] such that ξ−(θ,φ) ∈ Cμ,ε for φ ∈ Iω because θ/2 � sin−1(d + μ)/R < ε/5
and the set{

λξ−(θ,φ) ∈R
3; φ ∈ [0,2π ],0 � λ� 1

}
intersects the plane spanned by b2 and b3 when |ω · (b2 × b3)/|b2 × b3|| < cos θ/2 (see Fig. 2).
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Fig. 2. Intersection between {ξ−} and the plane spanned by b2,b3.

It is obvious that the interval Iω plays the same role for ω̃ ∈ S
2 close to ω. Therefore, for any ξ belonging to a conic

neighborhood of ω

Γω =
{
ξ ∈ R

3;
∣∣∣∣ ξ

|ξ | − ω

∣∣∣∣ < εω, |ξ | �R

}

with a sufficiently small εω > 0, we have

∫
R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−∣∣))dσ

)∣∣h(ξ)
∣∣2

dξ �
∫
Γω

(∫
Iω

dφ

2 sin−1(d+μ)/|ξ |∫
2 sin−1(d−μ)/|ξ |

θ−1−2s κ0

2
dθ

)∣∣h(ξ)
∣∣2

dξ

�
∫
Γω

|ξ |2s
∣∣h(ξ)

∣∣2
dξ,

which together with the standard covering argument on S
2 yields∫

R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−∣∣))dσ

)∣∣h(ξ)
∣∣2

dξ +
∫
R3

∣∣h(ξ)
∣∣2

dξ �
∫
R3

〈ξ〉2s
∣∣h(ξ)

∣∣2
dξ,

if t ∈ [0, T ].

2.2. Initial measure concentrated on a straight line

We now consider the case when F0(v) is concentrated on a straight line and not equal to a single Dirac measure.
By means of a suitable choice of the coordinate we may assume that F0(v) = δ(v′)F03(v3) and its Fourier transform
ψ0(ξ) = ψ03(ξ3), where ψ03 is the Fourier transform of F03. Since F03(v3) is not a point Dirac measure in R, it
follows from Corollary 3.5.11 in [11] that there exists a ξ03 > 0 such that |ψ03(±ξ03)| < 1, in view of ψ(−ξ) = ψ(ξ).
By means of the continuity of ψ , there exist 0 < κ < 1 and 0 < a1 < a2 such that∣∣ψ0

(
ξ ′, ξ3

)∣∣� 1 − κ, for ∀ξ ′ ∈ R
2, ∀ξ3 ∈R with a1 � |ξ3|� a2. (2.5)

We now split the discussion into two cases.

2.2.1. The case when ξ− is almost orthogonal to the third axis
For the sake of simplicity, we denote ξ− by ξ throughout this subsection except for the case when confusion might

occur. We also denote ψ instead of ψ0 for brevity.
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Fig. 3. ξ− with β = β1 and χ ∈ [χ0,π − χ0].

Note that

(
∂t |ψ |2)(0, ξ) = 2 Re

∫
S2

b

(
ξ

|ξ | · σ
)(

ψ+ψ−ψ − |ψ |2)dσ

= −
∫
S2

b

(
ξ

|ξ | · σ
)(∣∣ψ+∣∣2 + |ψ |2 − 2 Re

{
ψ−ψ+ψ

})
dσ +

∫
S2

b

(
ξ

|ξ | · σ
)(∣∣ψ+∣∣2 − |ψ |2)dσ

� −
∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ−∣∣)(∣∣ψ+∣∣2 + |ψ |2)dσ +
∫
S2

b

(
ξ

|ξ | · σ
)(∣∣ψ+∣∣2 − |ψ |2)dσ.

If we put ξ = λe2 (λ > 0) in the above estimate and take the polar coordinate σ = (2β,χ) ∈ [0,π/2]×[0,2π ], (where
χ starting from ξ3 = 0, see Fig. 3) then

(
∂t |ψ |2)(0, λe2) �−2

π/4∫
0

dβ

2π∫
0

dχ b(cos 2β)(sin 2β)
(
1 − ∣∣ψ3(λ cosβ sinχ)

∣∣),
because ψ(λe2) = 1 and |ψ | � 1. Choose 0 < β1 < β2 < π/4, χ0 ∈ (0,π/2) and λ > 0 such that

λ cosβ2 sinχ0 = a1, λ cosβ1 = a2, 2

β2∫
β1

b(cos 2β)(sin 2β)dβ = c0 > 0.

Then it follows from (2.5) that

(
∂t |ψ |2)(0, λe2) �−2

β2∫
β1

dβ

π−χ0∫
χ0

dχ b(cos 2β)(sin 2β)κ = −κc0(π − 2χ0).

Since ψ is symmetric around ξ3 axis, we have(
∂t |ψ |2)(0, ξ) � −κc0(π − 2χ0), if ξ · e3 = 0 and |ξ | = λ.

If we set c1 = κc0(π − 2χ0), then there exist ε > 0, T > 0 and δ > 0 such that

(
∂t |ψ |2)(t, ξ) � −c1/2, when (t, ξ) ∈ [0, T ] ×

{
ξ ∈ R

3; ∣∣|ξ | − λ
∣∣� δ,

∣∣∣∣ ξ

|ξ | · e3

∣∣∣∣� 2ε

}
:= [0, T ] × Γ,

because of the continuity of ψ and ∂tψ (see Theorem A.1 in Appendix A).
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Fig. 4. ξ ∈ Ω0 and ξ− almost orthogonal to ξ3.

In what follows we use the notation ξ− = (ξ −|ξ |σ)/2 to obtain the microlocal time degenerate coercivity estimate.
If (t, ξ−) belongs to the region [0, T ] × Γ , then it follows from the mean value theorem that there exists a ρ ∈ (0,1)

such that

1 − ∣∣ψ(
t, ξ−)∣∣� 1 − |ψ(t, ξ−)|2

2
= 1

2

(
1 − ∣∣ψ(

0, ξ−)∣∣2 − (
∂t |ψ |2)(ρt, ξ−)

t
)
� c1

4
t.

Set R0 = (λ + δ)/ε and

Ω0 =
{
ξ ∈R

3; |ξ | �R0,

∣∣∣∣1 −
∣∣∣∣ ξ

|ξ | · e3

∣∣∣∣
∣∣∣∣� 2ε2

π2

}
(see Fig. 4). (2.6)

If σ = (θ,φ), we notice that |ξ−| = |ξ | sin(θ/2). Moreover, the fact that ξ ∈ Ω0 and sin θ
2 � (λ + δ)/|ξ | implies

| ξ−
|ξ−| · e3| � 2ε. Therefore, if t ∈ [0, T ] and if h(ξ) ∈ L2

s (R
3), then we have the microlocal coercivity estimate in Ω0

∫
R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−)∣∣)dσ

)∣∣h(ξ)
∣∣2

dξ �
∫
Ω0

( 2 sin−1(λ+δ)/|ξ |∫
2 sin−1(λ−δ)/|ξ |

θ−1−2s c1t

4
dθ

)∣∣h(ξ)
∣∣2

dξ

� t

∫
Ω0

|ξ |2s
∣∣h(ξ)

∣∣2
dξ.

2.2.2. The microlocal coercivity estimate in Ωc
0

In this subsection, we consider the case when ξ belongs to

Ω1 =
{
ξ ∈R

3;
∣∣∣∣1 −

∣∣∣∣ ξ

|ξ | · e3

∣∣∣∣
∣∣∣∣ >

2ε2

π2

}
⊂ Ωc

0 .

Fix an arbitrary ω ∈ S
2 ∩ Ω1 ∩ {ω · e3 � 0}. Take a λ > 0 such that λ sinγ = (a1 + a2)/2, where γ > 2ε/π is the

angle between ω and e3. If we take the polar coordinate σ = (θ,φ) ∈ [0,π/2] × [0,2π ] with the pole ω = ξ/|ξ | and
φ starting from the plane ξ1 = 0 (see Fig. 5), then we have

ξ− · e3 = ∣∣ξ−∣∣(cos
θ

2
cosφ sinγ + sin

θ

2
cosγ

)
, (2.7)

where ξ− = (ξ − |ξ |σ)/2. There exist δ = δω > 0, φω ∈ (0,π/4] and θω ∈ (0,π/4] such that

a1 < (λ − δ) cos(θω/2) cosφω sinγ < (λ + δ)(sinγ + tan θω/2) < a2. (2.8)

Put Rω sin θω/2 = λ + δω and let ξ = |ξ |ω with |ξ | � Rω. If |ξ−| = |ξ | sin θ/2 ∈ [λ − δ,λ + δ] and |ξ | � Rω, then
θ � θω. Moreover, when |φ| � φω we have
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Fig. 5. Case: |ξ− · e3| cos(θ/2) = (a1 + a2)/2 and ξ− ∈ {ξ1 = 0}.

ξ− · e3 ∈ (a1, a2). (2.9)

Since (2.8) still holds for other γ̃ close to γ , we have (2.9) for any ξ belonging to a conic neighborhood of ω

Γω =
{
ξ ∈ R

3;
∣∣∣∣ ξ

|ξ | − ω

∣∣∣∣ < εω, |ξ | � Rω

}
,

with a sufficiently small εω > 0, if (θ,φ) varies in the same region as above. Since ψ(t, ξ) is continuous, it follows
from (2.5) that there exists a Tω > 0 such that for any t ∈ [0, Tω] we have∣∣ψ(

t, ξ−)∣∣� 1 − κ

2
if

∣∣ξ−∣∣ ∈ [λ − δ,λ + δ] and ξ− · e3 ∈ [a1, a2].
Therefore

∫
R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−∣∣))dσ

)∣∣h(ξ)
∣∣2

dξ �
∫
Γω

( φω∫
−φω

dφ

2 sin−1(λ+δ)/|ξ |∫
2 sin−1(λ−δ)/|ξ |

θ−1−2s κ

2
dθ

)∣∣h(ξ)
∣∣2

dξ

�
∫
Γω

|ξ |2s
∣∣h(ξ)

∣∣2
dξ.

The estimation for ω ∈ S
2 ∩ Ω1 ∩ {ω · e3 � 0} is similar, so that we omit it for brevity.

2.2.3. The conclusion
By means of the covering argument, we have for a sufficiently large R > 0 and a sufficiently small T > 0,∫

R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ(
t, ξ−)∣∣)dσ

)∣∣h(ξ)
∣∣2

dξ � t

∫
{|ξ |�R}

|ξ |2s
∣∣h(ξ)

∣∣2
dξ, t ∈ [0, T ].

This together with the coercivity estimate obtained in the first subsection concludes the proof of Lemma 1.4.
Before ending this subsection, we remark that if ψ0(ξ) = ∫

e−iv·ξ dF0(v), then for a large R > 0 we have the
following degenerate coercivity estimate∫

R3

(∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ0
(
ξ−)∣∣)dσ

)∣∣h(ξ)
∣∣2

dξ �
∫

{|ξ |�R}

(|ξ1|2 + |ξ2|2 + |ξ3|
)s∣∣h(ξ)

∣∣2
dξ. (2.10)

Indeed, it follows from (2.7) that

ξ− · e3 ∼ |ξ |(θγ cosφ + θ2) ∼ |ξ |
{
θ

( |ξ1|2 + |ξ2|2
|ξ |2

)1/2

cosφ + θ2
}

for sufficiently small γ and θ , and we have
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∫
S2

b

(
ξ

|ξ | · σ
)(

1 − ∣∣ψ0
(
ξ−)∣∣)dσ � κ

∫
A

θ−1−2s dθ dφ,

where A = {(θ,φ); ξ− · e3 ∈ [a1, a2]}. However, this degenerate coercivity estimate is not sufficient to show the
smoothing effect because the continuity in ψ(t, ξ) does not imply (2.10) with ψ0(ξ

−) replaced by ψ(t, ξ−).
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Appendix A

In this appendix we first recall the result given in [6,14], and prove the continuity of ∂tψ(t, ξ). For this, assume

∃α0 ∈ (0,2] such that (sin θ/2)α0b(cos θ) sin θ ∈ L1((0,π/2]), (A.1)

which is fulfilled for b(cos θ) with (1.4) if 2s < α0. As stated in the proof of Theorem 1.3 in the introduction, it follows
from the Bobylev formula that the Cauchy problem (1.1)–(1.2) is reduced to (1.10), if ψ0(ξ) = ∫

R3 e−iv·ξ dF0(v) and
ψ(t, ξ) denotes the Fourier transform of the probability measure solution.

Theorem A.1. Assume that b(cos θ) satisfies (A.1) for some α0 ∈ (0,2]. Then for each α ∈ [α0,2] and every ψ0 ∈Kα

there exists a classical solution ψ ∈ C([0,∞),Kα) of the Cauchy problem (1.10). The solution is unique in the space
C([0,∞),Kα0). Furthermore, if α ∈ [α0,2] and if ψ(t, ξ), ϕ(t, ξ) ∈ C([0,∞),Kα) are two solutions to the Cauchy
problem (1.10) with initial data ψ0, ϕ0 ∈Kα , respectively, then for any t > 0 we have∥∥ψ(t) − ϕ(t)

∥∥
α
� eλαt‖ψ0 − ϕ0‖α, (A.2)

where

λα = 2π

π/2∫
0

b(cos θ)

{
cosα θ

2
+ sinα θ

2
− 1

}
sin θ dθ. (A.3)

Furthermore, ∂tψ(t, ξ) is continuous in [0,∞) ×R
3.

The assumption (A.1) with α = α0 can be written as

(1 − τ)α0/2b(τ) ∈ L1([0,1
)
), (A.4)

by the change of variable τ = cos θ . Theorem A.1 ameliorates Theorem 2.2 of [6], where (A.4) is assumed with α0/2
replaced by α0/4, see (2.6) of [6]. In what follows, we only prove the last statement of Theorem A.1 because other
parts are already given in [14].

Proof of the continuity of ∂tψ(t, ξ). If we put ζ = (ξ+ · ξ
|ξ | )

ξ
|ξ | and consider ξ̃+ = ζ − (ξ+ − ζ ) (which is symmetric

to ξ+ on S
2, see Fig. 6) as in [14], then the first equation of (1.10) can be written as

∂tψ(t, ξ) = 1

2

∫
S2

b

(
ξ · σ
|ξ |

)(
ψ

(
t, ξ+) + ψ

(
t, ξ̃+) − 2ψ(t, ζ )

)
dσ

+
∫
S2

b

(
ξ · σ
|ξ |

)(
ψ(t, ζ ) − ψ(t, ξ)

)
dσ +

∫
S2

b

(
ξ · σ
|ξ |

)
ψ

(
t, ξ+)(

ψ
(
t, ξ−) − 1

)
dσ

= I1(t, ξ) + I2(t, ξ) + I3(t, ξ). (A.5)

Putting η+ = ξ+ − ζ , we have, under the notation dFt (v) = f (t, v) dv,
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Fig. 6. cos θ = ξ
|ξ | · σ , η+ = ξ+ − ζ .

∣∣ψ(
t, ξ+) + ψ

(
t, ξ̃+) − 2ψ(t, ζ )

∣∣ =
∣∣∣∣
∫
R3

e−iζ ·v(e−iη+·v + eiη+·v − 2
)
dFt (v)

∣∣∣∣
�

∫
R3

∣∣e−iζ ·v∣∣(2 − e−iη+·v − eiη+·v)dFt (v)

= 2 − ψ
(
t, η+) − ψ

(
t,−η+)

� 2
∥∥1 − ψ(t)

∥∥
α

∣∣η+∣∣α � 2eλαt‖1 − ψ0‖α

(|ξ | sin(θ/2)
)α

,

because |η+| = |ξ+| sin(θ/2) and (A.2) with ϕ0 = ϕ(t) = 1. Hence

∣∣I1(t, ξ)
∣∣ � 4πeλαt‖1 − ψ0‖α|ξ |α

π/2∫
0

sinα(θ/2)b(cos θ) sin θ dθ,

which together with the Lebesgue convergence theorem shows

lim
(t,ξ)→(t0,ξ0)

I1(t, ξ) = I1(t0, ξ0).

In order to show similar estimates hold for I2, I3, we recall (19) of Lemma 2.1 in [14], that is, the fact that if ϕ ∈ Kα

then we have∣∣ϕ(ξ) − ϕ(ξ + η)
∣∣� ‖ϕ − 1‖α

(
4|ξ |α/2|η|α/2 + |η|α)

for all ξ, η ∈R
3. (A.6)

Thanks to this with η = ζ − ξ ,

∣∣I2(t, ξ)
∣∣ � 10πeλαt‖1 − ψ0‖α|ξ |α

π/2∫
0

sinα(θ/2)b(cos θ) sin θ dθ,

because |ζ − ξ | = |ξ | sin2(θ/2). Note that similar estimate holds for I3. Hence, we obtain the continuity of
∂tψ(t, ξ). �
Proposition A.2. Assume that b(cos θ) satisfies (A.1) for some α0 ∈ (0,2]. If F0 ∈ P2(R

3) then the unique measure
solution Ft (v) ∈ C([0,∞), P̃2) belongs to P2(R

3) for each t > 0, more precisely,∫
|v|2 dFt (v) �

∫
|v|2 dF0(v). (A.7)

Furthermore, if α0 � 1 then the equality holds, that is, the energy is conserved.
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Proof. As a standard practice, we consider the increasing sequence of bounded collision kernels

bn(cos θ) = min
{
b(cos θ), n

}
(A.8)

and denote by ψn(t, ξ) the solution in C([0,∞);K2) to the Cauchy problem (1.10) with b replaced by the cutoff bn,
for the same initial datum ψ0(ξ) = ∫

e−iv·ξ dF0(v). It follows from Lemma 2.2 of [17] that∫
|v|2 dF

(n)
t (v) =

∫
|v|2 dF0(v), (A.9)

where F
(n)
t = F−1ψn(t, ·). As proven in [17,6,14], we have the equi-continuity of {ψn(t, ξ)} on [0,∞) × {|ξ | � R}

for any fixed R > 0. Since |ψn| � 1, the Ascoli–Arzelá theorem gives a convergent subsequence {ψnk
}∞k=1 and the

solution ψ = limk→∞ ψnk
. Take a χ(v) in C∞

0 (R3) satisfying χ = 1 on {|v|� 1}. Since ψnk
(t) → ψ(t) in S ′(R3) for

each t > 0, it follows from (A.9) that for any m ∈ N∫
|v|2χ

(
v

m

)
dFt (v) = lim

k→∞

∫
|v|2χ

(
v

m

)
dF

(nk)
t (v) �

∫
|v|2 dF0(v).

Letting m → ∞ we obtain (A.7). In the mild singularity case, α0 � 1, we can use Theorem 2 of [13] and its proof to
show the reverse inequality of (A.7). �
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