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Abstract

We prove that the number of limit cycles which bifurcate from a two-saddle loop of a planar quadratic Hamiltonian system,
under an arbitrary quadratic deformation, is less than or equal to three.
© 2013

1. Introduction

The theory of plane polynomial quadratic differential systems{
ẋ = P(x, y),

ẏ = Q(x,y)
(1)

is one of the most classical branches of the theory of two-dimensional autonomous systems. Despite of the great
theoretical interest in studying of such systems, few is known on their qualitative properties. Let H(2) be the maximal
number of limit cycles, which such a system can have. It is still not known whether H(2) < ∞ (or H(k) < ∞ for a
polynomial system of degree k). A survey on the state of art until 1966 was given by Coppel [7] where some basic
and specific properties of the quadratic systems are discussed.

It was believed for a long time that H(2) = 3, see e.g. [29], until Shi Song Ling gave in 1980 his famous example
of a quadratic system with four limit cycles [33].

In 1986 Roussarie [30] proposed a local approach to the global conjecture that H(k) < ∞, based on the observation
that if the cyclicity is infinite, then a limiting periodic set will exist with infinite cyclicity. All possible 121 limiting
periodic sets of quadratic systems were later classified in [8].

Of course, it is of interest to compute explicitly the cyclicity of concrete limiting period sets, the simplest one being
the equilibrium point. It is another classical result, due to Bautin (1939), which claims that the cyclicity of a singular
point of a quadratic system is at most three. The cyclicity of Hamiltonian quadratic homoclinic loops is two [19,21],
and for the reversible ones see [18].

In [35], Żołądek claimed that the cyclicity of the Melnikov functions near quadratic triangles (three-saddle loops) or
segments (two-saddle loops) is respectively three and two. From this he deduced that the cyclicity of the triangle or the
segment itself is also equal to three or two, respectively. As we know now, this conclusion is not always true. Namely,
in the perturbed Hamiltonian case, not all limit cycles near a polycycle are “shadowed” by a zero of a Melnikov
function. The bifurcation of “alien” limit cycles is a new phenomenon discovered recently by Caubergh, Dumortier
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Fig. 1. Monodromic two-saddle loop and the Dulac maps d±
ε .

and Roussarie [3,10]. Li and Roussarie [25] later computed the cyclicity of quadratic Hamiltonian two-loops, when
they are perturbed “in a Hamiltonian direction”. In the case of a more general perturbation they only noted that “some
new approach may be needed”.

One of the most interesting developments in this field, starting from the series of papers by Petrovskiı̆ and Lan-
dis [29], is the proliferation of complex methods, as it can be seen from the 2002 survey of Ilyashenko [23]. A particu-
lar interest is given to the study of different infinitesimal versions of the 16th Hilbert problem. Thus, G.S. Petrov [27]
used the argument principle to evaluate the zeros of suitable complete Abelian integrals, which on its turn produces
an upper bound for the number of limit cycles that a perturbed quadratic system of the form{

ẋ = y + εP (x, y),

ẏ = x − x2 + εQ(x, y)

may have. The result was later generalized for the perturbations of arbitrary generic cubic Hamiltonians in [20,12].
The present paper studies the cyclicity of quadratic Hamiltonian monodromic two-loops, as in Fig. 1. We use com-

plex methods, in the spirit of [14,15], which can also be seen as a far going generalization of the original Petrov
method. Our main result is that at most three limit cycles can bifurcate from such a two-loop (Theorem 1), although
we did not succeed to prove that this bound is exact. It is interesting to note, that even for a generic quadratic pertur-
bation, two limit cycles can appear near a two-saddle loop, while at the same time the (first) Poincaré–Pontryagin (or
Melnikov) function exhibits only one zero. The appearance of the missing alien limit cycle is discussed in Appendix A.

Our semi-local results, combined with the known cyclicity of open period annuli lead also to some global results,
formulated in Section 5.

2. Statement of the result

Let Xλ, λ ∈ R12, be the (vector) space of all quadratic planar vector fields, and let Xλ0 be a planar quadratic vector
field which has two non-degenerate saddle points S1(λ0), S2(λ0) connected by two heteroclinic connections Γ1,Γ2,
which form a monodromic two-loop as in Fig. 1. The union Γ = Γ1 ∪ Γ2 will be referred to as a non-degenerate
two-saddle loop. The cyclicity Cycl(Γ,Xλ) of the two-saddle loop Γ with respect to the deformation Xλ is the
maximal number of limit cycles which Xλ can have in an arbitrarily small neighborhood of Γ , as λ tends to λ0,
see [31].

In the present paper we shall suppose in addition, that Xλ0 is a Hamiltonian vector field

Xλ0 = XH :

{
ẋ = Hy,

ẏ = −Hx,
(2)

where H is a bivariate polynomial of degree three. Our main result is the following

Theorem 1. The cyclicity of every non-degenerate Hamiltonian two-saddle loop, under an arbitrary quadratic defor-
mation, is at most equal to three.

The result will be proved by making use of complex methods, as explained in [14], combined with the precise
computation of the so-called higher order Poincaré–Pontryagin (or Melnikov) functions, which can be found in [22].
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2.1. Outline of the proof of Theorem 1

2.1.1. Principalization of the Bautin ideal
Let h �→ Pλ(h) be the first return map associated to the deformed vector field Xλ and the period annulus of Xλ0 ,

bounded by Γ . Consider the Bautin ideal

B = 〈
ak(λ)

〉 ⊂C[λ]
generated by the coefficients of the expansion

Pλ(h) − h =
∞∑

k=0

ak(λ)hk.

In the quadratic case under consideration its computation is well known, and goes back to Bautin, see [24] for details. It
has three generators, in particular the ideal is not principal. By making use of the Hironaka desingularization theorem,
we can always assume that B is “locally principal”. Namely, by abuse of notation, let B be the ideal sheaf generated
by the Bautin ideal, in the sheaf of analytic functions OX on X. The parameter space X = R

12 can be replaced by a
new smooth real analytic variety X̃, together with a proper analytic map

π : X̃ → X

such that the pull back π∗B is a principal ideal sheaf. This means that for every point λ̃ ∈ X̃ there is a neighborhood U ,
such that the ideal π∗B(U) of the ring O

X̃
(U) is a principal ideal, see [13, Section 2.1] and Roussarie [32].

The cyclicity at a point λ0 ∈ X is the lower upper bound of the cyclicities computed at points of the compact set
π−1(λ0). As the cyclicity is an upper semi-continuous function in λ̃0 ∈ π−1(λ0), and π−1(λ0) is compact, then there
is a λ̃0 ∈ π−1(λ0) at which the cyclicity Cycl(Γ,Xλ̃) is maximal. It suffices therefore to compute this cyclicity.

In more down to earth terms, the above considerations show that, after appropriate analytic change of the parameters
λ = λ(λ̃), we can always suppose that the localization of the Bautin ideal at λ0 is a principal ideal of the ring of germs
of analytic functions at λ0. We denote its generator (according to the tradition) by ε. The power series expansion of
the first return map takes therefore the form

Pλ(h) = h + εk
[
Mk(h) + O(ε)

]
, Mk 	= 0, (3)

where Mk is the k-th order Melnikov function, associated to Pλ. The function O(ε), by abuse of notation, depends on
h,λ too, but it is of O(ε) type uniformly in h,λ, where h belongs to a compact complex domain in which the return
map is regular. The principality of the Bautin ideal is equivalent to the claim, that Mk(h) is not identically zero. The
perturbed Hamiltonian vector field Xε,λ can be supposed on its turn of the form

Xε,λ:

{
ẋ = Hy + εQ(x, y,λ, ε),

ẏ = −Hx − εP (x, y,λ, ε),
(4)

where P,Q are quadratic polynomials in x, y with coefficients depending analytically on ε,λ. Of course, we shall
need an explicit expression for Mk(h) which depends also on the unknown parameter value λ̃0 ∈ π−1(λ0). Taking
analytic curves

ε �→ λ(ε), λ(0) = λ0 (5)

we get from (3)

Pλ(ε)(h) = h + εk
[
Mk(h) + O(ε)

]
, Mk 	= 0,

which allows one to compute Mk by only making use of analytic one-parameter deformations and the Françoise
algorithm [11]. The general form of the first non-vanishing Melnikov function with respect to any analytic curve of
the form (5) in the Hamiltonian (or more generally, integrable) quadratic case is computed in [22].

By abuse of notation, from now on, the return map of the form (3), will be denoted by Pε , where ε is the generator
of the localized Bautin ideal.
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2.1.2. The Petrov trick and the Dulac map
The limit cycles of Xλ are the fixed points of Pε . We are going to study these fixed points in a complex domain,

where they correspond to complex limit cycles. Pε is obviously a composition of two Dulac maps d±(ε) as in Fig. 1

Pε = (
d−
ε

)−1 ◦ d+
ε

so the fixed points h of Pε are the zeros of the displacement map d+
ε − d−

ε . In a complex domain this map has two
singular points corresponding to the saddles S±(ε) and we shall study its zeros in the complex domain Dε , shown in
Fig. 2. This domain is bounded by a circle, by the segment (S+(ε), S−(ε)), and by the zero locus of the imaginary
part of d+

ε . The number of the zeros of d+
ε − d−

ε in Dε is computed according to the argument principle: it equals the
increase of the argument along the boundary of Dε .

Along the circle and far from the critical points, the displacement function is “well” approximated by εkMk(h)

which allows one to estimate the increase of the argument.
Along the segment (S+(ε), S−(ε)) the zeros of the imaginary part of the displacement function coincide with the

fixed points of the holomorphic holonomy map along the separatrix through S−(ε). The zeros are therefore well
approximated, similarly to (3), by an Abelian integral along the cycle δ−(h) in the fibers of H , vanishing at S−(0).
This observation may be seen as a far going generalization of the so-called Petrov trick, see [15] for details.

Along the zero locus of the imaginary part of d+
ε , the zeros of imaginary part of the displacement map coincide

with the fixed points of the composition of the holonomies associated to the separatrices through S−(ε) and S+(ε). As
this map is holomorphic, it is similarly approximated by the zeros of an Abelian integral along δ−(h) + δ+(h), where
δ±(h) are cycles in the fibers of H , vanishing at S±(0) respectively.

Thus, to count the number of the limit cycles, it is enough to inspect the behavior of certain Abelian integrals.

3. Abelian integrals related to quadratic perturbations of reversible quadratic Hamiltonian vector fields

In this section we recall the Abelian integrals, involved in the proof of Theorem 1, and establish their properties.
The details can be found in [21,22].

Consider the quadratic reversible Hamiltonian system dH = 0, where the Hamiltonian function is taken in the
normal form [21]

H(x,y) = x
[
y2 + ax2 − 3(a − 1)x + 3(a − 2)

]
, a ∈R. (6)

The Hamiltonian system has a center C0 = (1,0) on the level set H = t0 = a − 3. It is surrounded by a saddle
connection containing two saddles S± = (0,±√

3(2 − a)) if and only if the parameter a takes values in (−1,2). This
connection is a part of the zero-level set H = ts = 0. When a ∈ (0,2), there is a second center

C1 =
(

a − 2

a
,0

)
, H(C1) = t1 = (a + 1)(a − 2)2

a2

surrounded by other part of the zero level set and containing the same two saddles.
Let δ(t) ⊂ {H = t} be a continuous family of ovals surrounding a center. Take a small quadratic one-parameter

perturbation

dH + εω = 0, ω = ω(ε) = f (x, y, ε) dx + g(x, y, ε) dy, (7)

where f , g are real quadratic polynomials of x, y with coefficients analytic with respect to the small parameter ε.
Then the first return map Pε near an oval δ(t) is well defined and has the form

Pε(t) = t + εM1(t) + ε2M2(t) + ε3M3(t) + · · · . (8)

One may show, by making use of [17, Theorem 2], that the first non-vanishing Poincaré–Pontryagin–Melnikov func-
tion Mk associated to an arbitrary polynomial perturbation is an Abelian integral. More precisely, we have

Theorem 2. (See [22].) In the quadratic case Mk takes the form

M1(t) =
∫

δ(t)

[α1 + β1x]y dx, Mk(t) =
∫

δ(t)

[
αk + βkx + γkx

−1]y dx, k � 2, (9)

where αj ,βj , γj are appropriate constants depending on the perturbation.
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Consider the Abelian integrals

Jk(t) =
∫

δ(t)

xky dx, k ∈ Z

(oriented clockwise – along with the Hamiltonian vector field).

Lemma 1. (See [21].) The integrals Jk(t), k = −1,0,1, satisfy the following system with respect to t :

tJ ′−1 + (4 − 2a)J ′
0 + (a − 1)J ′

1 = 1

3
J−1,

(1 − a)tJ ′−1 + 2atJ ′
0 + (

3 + 2a − a2)J ′
1 = 4

3
aJ0,

(a − 2)tJ ′−1 + (2 − 2a)tJ ′
0 + atJ ′

1 = 3

2
(1 − a)J0 + aJ1. (10)

Lemma 2. The integrals Jk(t), k = −1,0,1, have the following asymptotic expansions near t = −0:

J−1(t) = − 2
√

3(2 − a)

[
1 − a − 1

12(a − 2)2
t − 11a2 − 22a + 15

576(a − 2)4
t2 − 35(a − 1)(5a2 − 10a + 9)

20736(a − 2)6
t3 + · · ·

]
ln t

+ a0 + a1t + a2t
2 . . . ,

J0(t) = − 2
√

3(2 − a)

[
− 1

6(a − 2)
t − a − 1

48(a − 2)3
t2 − 85a2 − 170a + 105

10368(a − 2)5
t3 + · · ·

]
ln t

+ b0 + b1t + b2t
2 + · · · ,

J1(t) = −2
√

3(2 − a)

[
− 1

72(a − 2)2
t2 − 5(a − 1)

864(a − 2)4
t3 + · · ·

]
ln t + c0 + c1t + c2t

2 . . . . (11)

This lemma is a consequence of the following basic property of system (10):

Lemma 3. If a 	= 0, a fundamental system of solutions J (t) of (10) near t = 0 is the following:

P(t) =
⎛
⎜⎝

3(a − 1)

3(3+2a−a2)
4a

9(a−1)(3+2a−a2)

8a2

⎞
⎟⎠ +

(0
0
1

)
t,

Q(t) =
(1

0
0

)
−

⎛
⎜⎝

a−1
12(a−2)2

1
6(a−2)

0

⎞
⎟⎠ t −

⎛
⎜⎜⎝

11a2−22a+15
576(a−2)4

a−1
48(a−2)3

1
72(a−2)2

⎞
⎟⎟⎠ t2 −

⎛
⎜⎜⎝

35(a−1)(5a2−10a+9)

20736(a−2)6

85a2−170a+105
10368(a−2)5

5(a−1)

864(a−2)4

⎞
⎟⎟⎠ t3 + · · · ,

R(t) = Q(t) ln t + S(t), (12)

with S(t) analytic function in a neighborhood of t = 0.

Proof. Rewrite system (10) in the form (A1t + A0)J
′ = BJ . System (10) has at its critical value t = 0 a triple

characteristic exponent equal to zero, while its characteristic exponents at infinity are − 1
3 , − 2

3 , −1. Hence, there is a
polynomial solution P(t) of degree one which is easy to find. To calculate Q(t), we replace

Q(t) = q0 + q1t + q2t
2 + q3t

3 + q4t
4 + · · ·

in the system to obtain recursive equations

(jA1 − B)qj + (j + 1)A0qj+1 = 0, j = 0,1,2,3, . . . . (13)
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The third equation in the system obtained for j = 0 implies that 3
2 (1 − a)q0,0 + aq0,1 = 0 where q0 = (q0,−1, q0,0,

q0,1)
. Therefore, one can choose without loss of generality q0 = (1,0,0). Then any analytic solution of (10) would

be a unique linear combination of P(t) and Q(t). Fixing in such a way Q(0), the q1, q2 and so on are uniquely
determined from system (13).

Now, if we take a linear combination Q̃ of P and Q and replace R(t) = Q̃(t) ln t + S(t) in the system (A1t +
A0)R

′(t) = BR(t), we obtain A1Q̃ + t−1A0Q̃ + (A1t + A0)S
′ = BS. Hence, A0Q̃(0) = 0 which means that Q̃(t) is

proportional to Q(t). Therefore one can simply take Q̃ = Q. �
Proof of Lemma 2. Let x1 be the (smaller) positive root of the equation r(x) = −ax2 + 3(a − 1)x − 3(a − 2) = 0
where a ∈ (−1,2). Then, Jk(0) = ∫

δ(0)
xky dx = 2

∫ x1
0 xk

√
r(x) dx for k = 0,1. Therefore

3

2
(a − 1)J0(0) − aJ1(0) =

x1∫
0

r ′(x)
√

r(x) dx = −2

3

(
3(2 − a)

)3/2
.

On the other hand, the third equation of (10) implies

3

2
(1 − a)J0(0) + aJ1(0) = (a − 2)

(
tJ ′−1(t)

)∣∣
t=0.

Finally, if (J−1(t), J0(t), J1(t))
 = λR(t)+μP(t)+ νQ(t), then (tJ ′−1(t))|t=0 = λ = −2

√
3(2 − a). The case a = 0

follows by continuity. �
4. Cyclicity of two-saddle cycles

In this section we prove Theorem 1.
We shall prove it in several steps. A plane quadratic Hamiltonian system with a two-saddle loop can be written, up

to an affine change of the variables, in the form dH = 0 where H is of the form (6).

4.1. The case M1 	= 0

In this section we consider the perturbed quadratic plane quadratic Hamiltonian system (7) under the generic
assumption that

M1(t) =
∫

δ(t)

ω|ε=0 =
∫∫

H<t

[α + βx]dx dy

is not identically zero.
Due to Lemma 2, M1(t) vanishes identically in a co-dimension two analytic set defined by {α = β = 0}. The

Poincaré–Pontryagin function M1 is well defined at t = 0 in which case it is the well known Melnikov integral along
the heteroclinic loop δ(0). It is classically known that when M1(t) 	≡ 0, the vanishing of the Melnikov integral M1(0)

is a necessary condition for a bifurcation of a limit cycle (and in the opposite case the heteroclinic loop is broken
under the perturbation).

Proposition 1. If M1(0) 	= 0, then no limit cycles bifurcate from the two-saddle loop Γ .

Proof. Suppose that there is a sequence of limit cycles δεi
of (7) which tend to Γ as εi tends to 0. Then

0 = −
∫
δεi

dH = εi

∫
δεi

ω

which implies

0 = lim
εi→0

∫
δε

ω =
∫
Γ

ω|ε=0 = M1(0). �

i
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The complete Abelian integral M1(t) has the following convergent expansion near the critical saddle value t = 0

M1(t) = d0 + d1t ln t + d2t + d3t
2 ln t + · · · . (14)

Let δ±(t) ∈ H1(Γt ,Z), Γt = {(x, y) ∈ C
2: H(x,y) = t}, be the two continuous families of cycles, vanishing at the

saddle points S± respectively, with orientations chosen in a way that for the respective intersection indices there holds

δ · δ+ = δ · δ− = −1. (15)

Then

M1(t) =
∫

δ(t)

ω0 = ln t

2π
√−1

( ∫
δ+(t)

ω0 +
∫

δ−(t)

ω0

)
+ d0 + d2t + O

(
t2) (16)

where ω0 = ω|ε=0. The involution (x, y) → (x,−y) leaves the level set {H = h} invariant, reversing its orientation.
Therefore it acts on δ, δ± as follows

δ → −δ, δ− → −δ+, δ+ → −δ−,

which implies∫
δ+(t)

ω0 =
∫

δ−(t)

ω0. (17)

Let hε
δ± be the two holonomy maps associated to the separatrices of the perturbed foliation, intersecting the cross-

section σ . There are two-possible orientations for the loop defining the holonomy, this corresponds to a choice of
orientation of δ±, see (15). Similarly to (8) we have

hε
δ+(t) = t + ε

∫
δ+(t)

ω0 + O
(
ε2), (18)

hε
δ−(t) = t + ε

∫
δ−(t)

ω0 + O
(
ε2), (19)

hε
δ+ ◦ hε

δ−(t) = t + ε

( ∫
δ+(t)

ω0 +
∫

δ−(t)

ω0

)
+ O

(
ε2), (20)

hε
δ− ◦ hε

δ+(t) = t + ε

( ∫
δ+(t)

ω0 +
∫

δ−(t)

ω0

)
+ O

(
ε2). (21)

Proposition 2. If d0 = d1 = 0, then α = β = 0.

Proof. According to Lemma 2 d1 = α/
√

3(a − 2). If α = 0 then

d0 = βJ1(0) where J1(0) =
∫∫

H<0

x dx ∧ dy 	= 0. �

Therefore M1 	= 0 if and only if |d0|2 + |d1|2 	= 0, and hence at most one zero of M1 can bifurcate from t = 0. Of
course, no conclusion about the number of the limit cycles can be deduced at this stage. For a further use, let us note
that the above implies (see also Proposition 1)

Corollary 1. If a limit cycle bifurcates from the two-saddle loop, then the Abelian integral
∫
δ±(t)

ω0 has a simple zero
at the origin.

Proposition 3. If the Melnikov function M1 is not identically zero, then at most two limit cycles bifurcate from Γ .
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Fig. 2. The domain Dε .

Proposition 4. There exists a perturbed quadratic system of the form (4) and M1 	= 0, with exactly two limit cycles
bifurcating from the two-saddle loop.

The proof of this proposition will be postponed to Appendix A. To the end of this subsection we shall prove
Proposition 3. Although our proof will be self-contained, we shall omit some technical details, for which we refer
to [14, Section 4].

Proof of Proposition 3. Consider the Dulac maps d+
ε , d−

ε associated to the perturbed foliation, and to the cross
sections σ and τ , see Fig. 1. We parameterize each cross-section by the restriction of the first integral H on it, and
denote t = H |σ . Each function d±

ε is multivalued and has a critical point at S±(ε) ∈ R, S±(0) = 0. The saddle points
S+, S− depend analytically on ε. Without loss of generality we shall suppose that ε > 0 and S−(ε) > S+(ε), see Fig. 2.
A limit cycle intersects the cross-section σ at t if and only if d+

ε (t) = d−
ε (t). Therefore zeros of the displacement map

d+
ε − d−

ε = (
d+
ε ◦ (

d−
ε

)−1 − id
) ◦ d−

ε = (Pε − id) ◦ d−
ε

correspond to limit cycles. Our aim is to bound the number of those zeros which are real, bigger than S−(ε), and
tend to 0 as ε tends to 0. For this, we consider an appropriate complex domain Dε of the universal covering of
C \ {S+(ε)} and compute the number of the zeros of the displacement map, by making use of the argument principle.
The reader may find useful to compare our method, to the Petrov method [28], used to compute zeros of complete
elliptic integrals. The crucial fact is that, roughly speaking, the monodromy of the Dulac map is the holonomy of
its separatrix. The analytical counter-part of this statement is that the zero locus H±

ε of the imaginary part of the
Dulac map d±

ε for �(t) < S±(ε) is a real-analytic curve in {R2 = C} ∩Dε , defined in terms of the holonomies of the
separatrices. It follows from [14, Section 4] that

H+
ε = {

z ∈ C
2: hε

δ+(z) = z
}
, H−

ε = {
z ∈C

2: hε
δ−(z) = z

}
.

Note that the above describes, strictly speaking, only one connected component of H±
ε , the second one is “complex

conjugate” and defined by a similar formula

H+
ε = {

z ∈ C
2: hε

δ+(z) = z
}
, H−

ε = {
z ∈C

2: hε
δ−(z) = z

}
.

By abuse of notation we use H±
ε to denote only the first connected component (the second corresponds to the opposite

orientation of δ±).
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The analyticity of the above curves is crucial in computing the complex zeros of the transcendental Dulac maps.
For instance, to compute the number of intersection points of H±

ε with the real axis {z = z̄} we have to solve the
equation

hε
δ±(z) = z, (22)

and to compute the number of the intersection point of H−
ε with H+

ε , we have to solve the equation

hε
δ− ◦ hε

δ+(z) = z. (23)

Let us define first the complex domain Dε in which the computation will take place: it is bounded by the circle

SR = {
t : |t | = R

}
,

by the interval [S+(ε), S−(ε)], and by the zero locus H+
ε , as it is shown in Fig. 2.

Let R,ε0 be real numbers subject to certain technical conditions of the form

1 � R � ε0 > 0.

The subsequent computations will hold for all ε, such that

ε0 > ε > 0.

We wish to bound the number of the zeros of the displacement map in the domain Dε . If the map were an analytic
function in a neighborhood of the closure of the domain, and non-vanishing on its border, we could apply the argument
principle:

The number of the zeros (counted with multiplicity) in the complex domain Dε equals the increment of the argument
of this function along the border of Dε , divided by 2π .

The above principle holds true with the analyticity condition relaxed: it is enough that the map allows a continuation
on the closure of the domain Dε , considered as a subset of the universal covering of

C \ {
S+(ε), S−(ε)

}
.

This is indeed the case, and it remains to assure finally the non-vanishing property. Along SR the displacement map
has a known asymptotic behavior and hence does not vanish. Along the remaining part of the border, including S±(ε)

the displacement map can have isolated zeros. For this we may add to the displacement map a small real constant
c > 0, sufficiently smaller with respect to ε. The new function d+

ε −d−
ε + c which we obtain in this way has at least so

many zeros in Dε , as the original displacement map, but is non-vanishing on the border of the domain. The increase
of the argument of d+

ε − d−
ε + c along SR will be close to the increase of the argument of d+

ε − d−
ε (because c � ε).

At last, the imaginary parts of d+
ε − d−

ε and d+
ε − d−

ε + c are the same. The intuitive content of this is that when the
displacement map has zeros on the border of the domain, it will have less zeros in the interior of the domain.

To resume, according to the argument principle, to evaluate the number of the zeros of the displacement map in the
domain Dε , it is enough to evaluate:

1. The increase of the argument of the displacement map, along the circle SR .
2. The number of the zeros of the imaginary part of the displacement map, along the interval [S+(ε), S−(ε)].
3. The number of the zeros of the imaginary part of the displacement map, along the real analytic curve H+

ε .

To the end of the section we evaluate the above quantities.

1. By Proposition 1, if limit cycles bifurcate from the double loop, then

d0 = αJ0(0) + βJ1(0) =
∫∫

(α + βx)dx ∧ dy = 0
H<0
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and hence α 	= 0, β 	= 0. From this we conclude that the displacement map along the circle SR is approximated
by εM1 which has as a leading term t ln t (because d0 = 0 but d1 	= 0). The increase of the argument of t ln t , and
hence of the displacement map, along the circle SR is close to 2π but strictly less than 2π .

2. The imaginary part of the displacement map, along the interval [S+(ε), S−(ε)] equals the imaginary part of d−
ε (t).

Its zeros equal the number of intersection points of H+
ε with the real axes, which amounts to solve hε

δ−(z) = z,
see (22). By (19) the number of the zeros is bounded by the multiplicity of the holomorphic Abelian integral∫
δ−(t)

ω0 having a simple zero at the origin (Corollary 1). Note, however, that the holonomy map hε
δ− has S−(ε)

as a fixed point (a zero). Therefore the imaginary part of the displacement map does not vanish along the open
interval (S+(ε), S−(ε)).

3. The number of the zeros of the imaginary part of the displacement map, along the real analytic curve H+
ε equals

the number of the zeros of the imaginary part of d−
ε along this curve, that is to say the number of intersection

points of H+
ε with H−

ε . According to (23), (21) and Corollary 1, this number is one.

We conclude that the displacement map can have at most two zeros in the domain Dε , this for all positive ε smaller
than ε0 (similar considerations are valid for negative ε).

As we already noted, d0 = 0 implies d1 	= 0 in the expansion (14) and therefore M1 can have at most one simple
zero close to t = 0. One may wonder, whether two limit cycles can bifurcate from the two-saddle loop in the case. The
somewhat surprising answer is “yes”, as noticed first in [10]. The bifurcation of the second “alien” limit cycle will be
explained in Appendix A. This completes the proof of Proposition 3. �
4.2. The case M1 = 0

In this section we suppose that the Melnikov function M1(t) vanishes identically. The first return map has the
form (3) where

Mk(t) =
∫

δ(t)

[
α + βx + γ x−1]y dx, k � 2, α,β, γ ∈R. (24)

As we explained, we may suppose that the Bautin ideal is locally principal at λ0 and let ε be the generator. The
deformed vector field Xλ defines a foliation

dH −
∞∑
i=1

εiωi = 0

with first return map

Pε(h) = h + εk
[
Mk(h) + O(ε)

]
, Mk 	= 0.

If
∫
δ(t)

ω1 	≡ 0 then k = 1 and moreover

M1(t) =
∫

δ(t)

ω1.

If, on the other hand, M1 = 0, then dω1 = cy dx dy, where c is a constant (eventually zero). In general, we shall have

dω1 = · · · = dωd−1 = 0, dωd = (a + bx + cy) dx dy (25)

where

Md(t) =
∫∫

H<t

(a + bx + cy) dx dy.

The case a2 + b2 	= 0 is completely analogous to the case when the first Melnikov function M1 is not identically zero,
and is studied as in Section 4.1. To the end of the section we consider the case a = b = 0, c 	= 0, in which case the
first non-vanishing Poincaré–Pontryagin function is Mk with suitable k > d .
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Proposition 5. If γ 	= 0, then no limit cycles bifurcate from the two-saddle loop Γ .

Proof. Following the method of the preceding section, we evaluate the number of the zeros of the displacement map

d+
ε − d−

ε = (Pε − id) ◦ d−
ε = εkMk(t) + εk+1Mk+1(t) + · · ·

in the domain Dε .

1. The displacement map, along the circle SR is approximated by εkMk(t) which has as a leading term ln t as γ 	= 0,
see Lemma 2. The increase of the argument of ln t , and hence of the displacement map, along the circle SR is
close to 0 but strictly less than 0.

2. The imaginary part of the displacement map, along the interval [S+(ε), S−(ε)] equals the imaginary part of d−
ε (t).

Its zeros equal the number of intersection points of H−
ε with the real axes, which amounts to solve hε

δ−(z) = z,
see (22). Zeros of hε

δ− − id correspond to complex limit cycles (except the origin S−). Their number is the cyclicity
of the saddle point. We have

hε
δ−(z) = z + εdM−

d (t) + · · · , a, b, c ∈R,

where

M−
d (t) =

∫
δ−(t)

ωd, dωd = cy dx dy, c 	= 0.

Lemma 2 implies
∫
δ−(t)

y2 dx = ±2πit , and hence the cyclicity of the saddle point is zero. We conclude that the
imaginary part of the displacement map does not vanish along the interval [S+(ε), S−(ε)).

3. The number of the zeros of the imaginary part of the displacement map, along the real analytic curve H+
ε equals

the number of zeros of the imaginary part of d−
ε along this curve, that is to say the number of intersection points

of H+
ε with H−

ε . According to (23) we need the expansion of hε
δ±(z) − z. The monodromy of the first return

map Pε(e
2πi t) − Pε(t), equals the holonomy hε

δ− ◦ hε
δ+(z), where z is a different chart close to t , z = t + O(ε).

Therefore, if

Pε(t) = t + εk

(
ln t

∫
δ+(t)+δ−(t)

[
α + βx + γ x−1]y dx + h.f.

)
+ O

(
εk+1)

then

hε
δ− ◦ hε

δ+(z) = 2πiεk

∫
δ+(t)+δ−(t)

[
α + βx + γ x−1]y dx + O

(
εk+1).

The notation O(εk+1) has as usual an appropriate meaning. It represents a function which, for a fixed z or t , is
bounded by a function of the type O(|ε|k+1). Finally, “h.f.” stays for a function, holomorphic in t . As the leading
term of Pε(t) is ln t multiplied by a non-zero constant, then the above formula shows that the leading term of the
holonomy map is a non-zero constant

hε
δ− ◦ hε

δ+(z) = εk(c + · · ·) + O
(
εk+1), c 	= 0.

The conclusion is that the imaginary part of the displacement map has no zeros along the real analytic curve H+
ε .

Summing up the above information, we conclude that the displacement map has no zeros in the domain Dε . Proposi-
tion 5 is proved. �
Proposition 6. If γ = 0, but α 	= 0, then at most two limit cycles bifurcate from the two-saddle loop Γ .

Proof. The condition α 	= 0 is equivalent to the condition d1 	= 0 in the expansion of the first non-vanishing Melnikov
function

Mk(t) = d0 + d1t ln t + d2t + d3t
2 ln t + · · · .
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1. The displacement map, along the circle SR is approximated by εkMk(t) which has as a leading term either a
constant, to t ln t . In both cases the increase of the argument of the displacement map, along the circle SR is
strictly less than 2π .

2. The imaginary part of the displacement map, along the interval [S+(ε), S−(ε)] equals the imaginary part of d−
ε (t).

As in the preceding proposition, we get that the imaginary part of the displacement map does not vanish along the
interval [S+(ε), S−(ε)).

3. The number of the zeros of the imaginary part of the displacement map, along the real analytic curve H+
ε , equals

the number of intersection points of this curve with H−
ε . It is bounded by the cyclicity of

d1t + d3t
2 + · · ·

that is to say by one. This implies the statement of Proposition 6. �
Proposition 7. If γ = α = 0, but β 	= 0, then at most three limit cycles bifurcate from the two-saddle loop Γ .

The condition α = 0 but β 	= 0 implies d1 = 0, d3 	= 0, d0 	= 0 in the expansion of the first non-vanishing Melnikov
function

Mk(t) = d0 + d1t ln t + d2t + d3t
2 ln t + · · · .

Repeating the preceding arguments, we obtain a bound of three limit cycles (possibly complex). �
5. Global results

Let H(x,y) be a real cubic polynomial, such that XH has a non-degenerate two-saddle loop Γ as in Fig. 1. Denote
by Π the period annulus surrounded by Γ , and by Π̄ = Π ∪ Γ its closure. Theorem 1 can be generalized as follows

Theorem 3. The cyclicity of the closed period annulus Π̄ under an arbitrary quadratic deformation, is less than or
equal to three.

Let Xε be a one-parameter family of plane quadratic vector fields, depending analytically on a real parameter ε,
and such that X0 = XH is a Hamiltonian vector field having a non-degenerate two-saddle loop Γ as above.

Theorem 4. If the first Melnikov function is not identically zero, and

• M1(0) 	= 0, then no limit cycles bifurcate from Γ and at most one limit cycle bifurcates from the closed period
annulus Π̄ ;

• M1(0) = 0, then at most two limit cycles bifurcate from the two-saddle loop Γ and no limit cycles bifurcate from
the open period annulus Π .

If the first non-vanishing Melnikov function Mk , k � 2, is as in (24), and

• γ 	= 0, then no limit cycles bifurcate from Γ and at most two limit cycles bifurcate from the closed period annu-
lus Π̄ ;

• γ = 0 and Mk(0) = 0, then at most two limit cycles bifurcate from the two-saddle loop Γ and no limit cycles
bifurcate from the open period annulus Π ;

• γ = 0, α 	= 0 and Mk(0) 	= 0, then no limit cycles bifurcate from Γ and at most one limit cycle bifurcates from
the closed period annulus Π̄ ;

• γ = α = 0 and β 	= 0, then no limit cycles bifurcate from the open period annulus Π , and at most three limit
cycles bifurcate from the two-saddle loop Γ .

Let H(x,y) be a real cubic polynomial with four distinct (real or complex) critical points, but only three distinct
critical values. Let XH be the corresponding quadratic Hamiltonian vector field (2).
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Theorem 5. There is a neighborhood U of XH in the space of all quadratic vector fields, such that any X ∈ U has at
most three limit cycles.

Theorem 5 is the analogue of [12, Theorem 1], [20, Theorem 2], where it is shown that for a cubic Hamiltonian
H(x,y) with four distinct critical values, the exact upper bound for the number of the limit cycles of any sufficiently
close quadratic system, is two. Let us explain in brief which XH Theorem 5 concerns. By using the normal form for
cubic Hamiltonians with a center from [20],

H(x,y) = x2 + y2

2
− x3

3
+ axy2 + b

3
y3, −1

2
� a � 1, 0 � b � (1 − a)

√
1 + 2a,

one can easily verify that the level value corresponding to a critical point (x0, y0) is H(x0, y0) = 1
6 (x2

0 + y2
0). Then,

for the generic Hamiltonians (corresponding to internal points (a, b) of the domain of parameters) there are either
four distinct critical levels or three distinct critical points in the finite plane and Theorem 5 does not concern them. For
the degenerate Hamiltonians (corresponding to points from the boundary of the domain of parameters), there are four

distinct critical points with three distinct critical values if and only if (a, b) 	= (− 1
2 ,0), (− 1

3 ,0), (0,0), (1,0), ( 1
2 ,

√
1
2 ).

Therefore, in the normal form (6), Theorem 5 concerns all a ∈R except a = −1,0,2,3.

Conjecture. The exact upper bound for the number of limit cycles in Theorem 1, Theorem 3 and Theorem 5 is two.

Proof of Theorems 3, 4, 5. For the saddle-loop cases (that is a /∈ [−1,2]) in Theorem 5, it is well known that at
most two limit cycles can bifurcate from the closed period annulus [16,5]. Below we are going to apply the results
just established to handle the two-saddle loop cases a ∈ (−1,2). The proofs will follow from a careful comparison
of the statements in the preceding section and the available results on the cyclicity of open period annuli of quadratic
Hamiltonian systems, see [34,21,5].

Using the notations of Section 3, denote by Σ+ = [a − 3,0) the semi-open interval with respect to t corresponding
to the period annulus surrounding the center C+ at (1,0). When there is a second center C− at ( a−2

a
,0) which

happens for 0 < a < 2, we shall denote the related interval by Σ− = (0,
(a+1)(a−2)2

a2 ]. Consider the respective Melnikov
function(s)

Mk(t) = αJ0(t) + βJ1(t) + γ J−1(t), t ∈ Σ±.

Next, define the planar curve(s)

L± =
{(

ξ±(t), η±(t)
) =

(
J1(t)

J0(t)
,
J−1(t)

J0(t)

)
: t ∈ Σ±

}
.

The properties of the curves L± are well known, see [34,21,5] for the hyperbolic, the parabolic and the elliptic cases.
Namely (see Fig. 3),

1) ξ+(t) is decreasing, η+(t) is increasing and L+ is a convex curve. L+ begins at point (1,1) and has a vertical
asymptote ξ = ξ+(−0) = c0/b0 as t → −0.

2) If L− exists, then ξ−(t) is decreasing, η−(t) is increasing and L− is a concave curve. L− ends at point ( a−2
a

, a
a−2 )

and has a vertical asymptote ξ = ξ−(+0) as t → +0.
3) The number of limit cycles born from periodic orbits equals the number of the intersections (counted with multi-

plicities) between the straight line α + βξ + γ η = 0 and the curve L+ (both curves L± in the elliptic case).
4) If P∗ is intersection point corresponding to t = t∗, then the related limit cycle approaches the oval H(x,y) = t∗

as ε → 0.

Now, if γ 	= 0, then by Proposition 5 above, there are no limit cycles produced by the double loop(s). On the other
hand, any line has at most two intersection points with L±. Two is the total upper bound of the number of limit cycles
produced under the perturbation.
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Fig. 3. The curves L+ and L− .

Next, if γ = 0, then by Proposition 1, a necessary condition for the bifurcation of limit cycles from the double
loop(s) is αJ0(0)+βJ1(0) = 0. It is easy to see that limit cycles cannot bifurcate simultaneously from both two-saddle
loops existing when a ∈ (0,2). Indeed, the system

αJ0(−0) + βJ1(−0) = αJ0(+0) + βJ1(+0) = 0

implies α = β = 0. This is because the system is equivalent to

α + ξ+(−0)β = α + ξ−(+0)β = 0 and ξ−(+0) < 0 < ξ+(−0).

Therefore, if γ = 0 but α 	= 0, then by Proposition 6 above, there are at most two limit cycles produced by the double
loop(s). On the other hand, any line α + βξ = 0 has at most one intersection point with L±. Moreover, if such a point
exists, no limit cycles are produced by the double loop(s), according to Proposition 1. Again, two is the total upper
bound of the number of limit cycles produced under the perturbation.

If γ = α = 0 but β 	= 0, then by Proposition 7 above, there are at most three limit cycles produced by the double
loop(s). On the other hand, the line ξ = 0 has no intersection points with L±. Hence, three is the total upper bound of
the number of limit cycles produced under the perturbation. �
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Appendix A. Alien limit cycles in quadratic systems

Consider, using the notations of [26], the perturbed quadratic Hamiltonian system

Xμ,ε:

{
ẋ = Hy,

ẏ = −Hx − εP,
(26)

where

H = y

(
x2 + 1

y2 − 1

)
, P (x, y,μ) = (16 + cx − π

√
3y)y + μ1 + μ2y, (27)
12
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Fig. 4. The two-saddle loop Γu = Γ1 ∪ Γ2 ⊂ {H = 0}.

ε,μ1,μ2 are sufficiently small real numbers, and c is a real constant bigger than 16. Denote the upper two-saddle loop
of the non-perturbed system (ε = 0) by Γu = Γ1 ∪ Γ2, where Γ1 is the segment {(x, y): −1 � x � 1, y = 0} and Γ2
is the half-ellipse {(x, y): x2 + 1

12y2 = 1, y � 0}, see Fig. 4. Let{
γ (h)

}
h

⊂ {
(x, y) ∈ R

2: H(x,y) = h
}

be the continuous family of ovals, contained in the two-saddle loop Γu, parameterized by h ∈ (−4/3,0). The first
return map of Xμ,ε takes the form

h �→ h + ε

∫
γ (h)

P (x, y,μ)dx + O
(
ε2)

where
∫
γ (h)

P (x, y,μ)dx is the first Poincaré–Pontryagin function associated to Xμ,ε . We have∫
γ (h)

P (x, y,μ)dx = d0(μ) + d1(μ)h log(h) + O(h)

see (14). It is straightforward to check that d(0) = 0 and by Proposition 2 then we get d1(0) 	= 0. It follows that for
sufficiently small ‖μ‖, |h|, h < 0, the Poincaré–Pontryagin function

∫
γ (h)

P (x, y,μ)dx has at most one zero. The
purpose of this appendix is to show that the number of the limit cycles, which bifurcate from Γu, exceeds the number
of the zeros of

∫
γ (h)

P (x, y,μ)dx near h = 0. The “missing” second limit cycle, which does not correspond to a zero
is an “alien” limit cycle. This is a new unexpected phenomenon in the bifurcation theory of vector fields, discovered
recently by Caubergh, Dumortier and Roussarie [3,10]. In contrast to the preceding examples [4,26,2,6] the system
which we consider is quadratic.

Proposition 8. The cyclicity Cycl(Γu,Xμ,ε) of the two-loop Γu with respect to the deformed vector field Xμ,ε is two.

Note that, according to Proposition 3, the cyclicity Cycl(Γu,Xμ,ε) is at most two.

Proof of Proposition 8. We shall follow closely [10, Section 6.2.]. The traces σ1,2 of the vector field Xμ,ε at the
saddle points determine its “stability”. As the coordinates of the saddle points satisfy

x = ±1 + O(ε), y = O(ε)

then for the traces σ1,2 at the saddle points s1, s2 we get

σ1(ε,μ) = (−16 + c − μ2)ε + O
(
ε2),

σ2(ε,μ) = (−16 − c − μ2)ε + O
(
ε2).

For small ε and a general perturbation, the connections Γ1,2 will be broken. The distance between the two branches
(stable and unstable separatrix) of the broken connection can be measured on a segment, transverse to Γ1 or Γ2. Let
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Fig. 5. Bifurcation diagram of generic two-parameter deformations of vector fields, containing a two-saddle loop. In the domain E7 the system has
two limit cycles.

us denote these distances (or shift functions) by b1,2. It is well known that the shift functions are analytic functions in
ε,μ, and if we use the restriction of H to the transverse segments as a local parameter h, then

bi(ε,μ) = ε

∫
Γi

ωμ + O
(
ε2), i = 1,2. (28)

With the notations above we compute∫
Γ2

y dx = −π
√

3,

∫
Γ2

y2 dx = −16

and therefore∫
Γ2

P(x, y,μ)dx = −2μ1 − π
√

3μ2,

∫
Γ1

P(x, y,μ)dx = 2μ1.

It is immediately seen that

• for every sufficiently small ε 	= 0 and ‖μ‖, the traces σ1, σ2 are non-zero and have opposite signs;
• for every sufficiently small ε 	= 0 and ‖μ‖

det

( ∂b1
∂μ1

∂b1
∂μ2

∂b2
∂μ1

∂b2
∂μ2

)
	= 0.
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Under these conditions, the bifurcation diagram of limit cycles near the double loop Γ1 ∪ Γ2 was computed by Du-
mortier, Roussarie and Sotomayor [9], see [10, Fig. 5]. It follows that the cyclicity of the two loop Γ under the
quadratic perturbation (26) is two. �
Remark. An alternative proof of Proposition 8 can also be obtained from the classical Roitenberg Theorem, see [1,
Theorem 2, Fig. 40a], which is illustrated in Fig. 5. Namely, as the deformation (26) depends on three parameters,
then there is a one-parameter induced deformation

μ1 = μ1(ε) = O(ε), μ2 = μ2(ε) = O(ε) (29)

such that the two connections Γ1 and Γ2 persist for all sufficiently small ε. This one-parameter deformation is not in
an integrable direction at a first order in ε, in the sense that the corresponding first Melnikov function M1(h,μ)|μ=0 is
not identically zero. One easily verifies that this implies the genericity assumptions of [1, Theorem 2]. Thus, making
an additional deformation in a direction transversal to the curve (29), we get the bifurcation diagram of Roitenberg
shown in Fig. 5. This diagram is a two dimensional section {ε = const} of the three-dimensional diagram [10, Fig. 5].
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