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Abstract

This paper studies magnifying superlens using complementary media. Superlensing using complementary media was suggested
by Veselago in [16] and innovated by Nicorovici et al. in [9] and Pendry in [10]. The study of this problem is difficult due to two
facts. Firstly, this problem is unstable since the equations describing the phenomena have sign changing coefficients; hence the
ellipticity is lost. Secondly, the phenomena associated might be localized resonant, i.e., the field explodes in some regions and
remains bounded in some others. This makes the problem difficult to analyze. In this paper, we develop the technique of removing
of localized singularity introduced in [6] and make use of the reflecting technique in [5] to overcome these two difficulties. More
precisely, we suggest a class of lenses which has root from [9] and [14] and inspired from [6] and give a proof of superlensing
for this class. To our knowledge, this is the first rigorous proof on the magnification of an arbitrary inhomogeneous object using
complementary media.
© 2014

1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [16] and innovated by
Nicorovici et al. in [9] and Pendry in [10]. The existence of such materials was confirmed by Shelby et al. in [15].
NIMs have been intensively studied recently thanks to their many applications and surprising properties. One of the
appealing ones is superlensing. The construction of a slab superlens using NIMs was suggested by Veselago in [16]
via the ray theory. Later, this was developed by Nicorovici et al. in [9] and Pendry in [10]. In [9] the authors studied
a cylindrical lens in the two dimensional quasistatic regime, and in [10] the author studied the Veselago slab in the
finite frequency one. These works have been developed further, see, e.g., in [4,11–14] where cylindrical and spherical
superlenses were investigated. The reader can find an interesting review and many recent results on superlensing using
complementary media in [4].
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The study of superlensing has been concentrating a lot on the image of dipoles in homogeneous media, see [4,
10–14]. There are a few works devoted to the image of an object. It seems for us that [9], in which the authors gave
a proof on the magnification of a constant material disk, is the only work in this direction. Even though, the methods
in the papers mentioned above can be used to obtain the magnification of radial objects having constant materials
in two or three dimensions, the magnification of an arbitrary inhomogeneous object is out of the scope of these
methods, which are strongly based on the separation of variables. Let us mention two difficulties related to the study
of this problem. Firstly, this problem is unstable since the equations describing the phenomena have sign changing
coefficients; hence the ellipticity is lost. Secondly, the phenomena associated might be localized resonant, i.e., the
field explodes in some regions and remains bounded in some others. This makes the problem difficult to analyze.

In this paper, we study magnifying superlens using complementary media. More precisely, given m > 1 the mag-
nification, we suggest a class of lenses, which has root from [9] and [14] and inspired from [6], and show that one can
magnify m times an arbitrary inhomogeneous object in the quasistatic and finite frequency regimes using a lens in
this class. To overcome the difficulties mentioned above, we develop the technique of removing localized singularity
introduced in [6], and make use of the reflecting technique in [5]. To our knowledge, the results of this paper are new
even in the two dimensional quasistatic regime.

Let us describe how to magnify the region Br0 for some r0 > 0 in which the medium is characterized by a matrix-
valued function a and a real function σ using complementary media. Here and in what follows given r > 0, Br denotes
the ball centered at the origin of radius r in R

d (d = 2 or 3). The assumption on the geometry of the object by all means
imposes no restriction since any region can be placed in such a ball provided that the radius and the origin are ap-
propriately chosen. We first concentrate on the quasistatic regime. The idea suggested in [9,11,14] is to put a lens
in Br2 \ Br0 whose medium is characterized by matrix −b with r2

2 /r2
0 = m. Here b = I , the identity matrix, in two

dimensions and b = (r2
2 /|x|2)I in three dimensions.

In this paper, we slightly change the strategy discussed above and take into account the suggestion in [6]. Our lens
contains two parts. The first one is given by

−(
r2

2/|x|2)d−2
I in Br2 \ Br1 (1.1)

and the second one is the matrix

md−2I in Br1 \ Br0 . (1.2)

Here

r1 = m1/4r0 (1.3)

and

r2 = √
mr1 = m3/4r0. (1.4)

Set

r3 := r2
2/r1 = m5/4r0. (1.5)

It is clear that

m = r2
2 /r2

1 . (1.6)

We will give some comments on this construction later.
Since materials have some loss, the correct approach is to allow some loss in the medium and investigate the limit

as the loss goes to 0. With the loss, the medium is characterized by sδA, where

A =

⎧⎪⎪⎨
⎪⎪⎩

(r2
2 /|x|2)d−2I in Br2 \ Br1 ,

md−2I in Br1 \ Br0 ,

a in Br0 ,

I otherwise,

(1.7)

and
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sδ =
{−1 + iδ in Br2 \ Br1,

1 otherwise.
(1.8)

Physically, the imaginary part of sδA is the loss of the medium (more precisely the loss of the medium in Br2 \ Br1 ).
In what follows, we assume that

1

Λ
|ξ |2 � 〈

a(x)ξ, ξ
〉
� Λ|ξ |2, ∀ξ ∈R

d , for a.e. x ∈ BR3 , (1.9)

for some constant Λ � 1.
We next make some comments on the construction. We first note that −(r2

2/|x|2)d−2I in Br2 \Br1 and I in Br3 \Br2

are complementary or more precisely reflecting complementary via the Kelvin transform F : Br2 → R
d \ B̄r2 w.r.t.

∂Br2 , i.e.,

F(x) = r2
2 x/|x|2 and F∗A = I in Br3 \ Br2 (1.10)

(see [5] for the definition of reflecting complementary media and their properties). Here

T∗M(y) = DT (x)M(x)DT T (x)

J (x)
where x = T −1(y) and J (x) = ∣∣detDT (x)

∣∣, (1.11)

for a diffeomorphism T and a matrix M . Given r1, the choice of r2 follows from (1.6) since a superlens of m times
magnification is considered as in [9,11,14] (see also (1.22) and Theorem 1). The choice of r1 and A in Br1 \ Br0 are
inspired from [5,6] as follows. Let G : Rd \ B̄r3 → Br3 \ {0} be the Kelvin transform w.r.t. ∂Br3 , i.e.,

G(x) = r2
3 x/|x|2. (1.12)

Then G ◦ F : Br1 → Br3 satisfies

G ◦ F(x) = mx in Br1 . (1.13)

This implies, since A = md−2I in Br1 \ Br0 ,

G∗F∗A = I in Br3 \ Br∗ . (1.14)

Here

r∗ := mr0 = √
r2r3 =

√
r3

2/r1. (1.15)

In the last identity, we use the fact that r3 = r2
2/r1. Using (1.6) and (1.15), we derive the formula for r1 and r2 as in

(1.3) and (1.4). The choice of A in Br1 \ Br0 follows from (1.14).
In the finite frequency regime, the medium is also characterized by sδΣ where

Σ =

⎧⎪⎪⎨
⎪⎪⎩

(r2
2 /|x|2)d if x ∈ Br2 \ Br1,

md if x ∈ Br1 \ Br0,

σ in Br0 ,

1 otherwise.

(1.16)

The construction of Σ for the lens is given in Br2 \ Br0 . This construction is based on the requirements

F∗Σ = 1 in Br3 \ Br2 and G∗F∗Σ = 1 in Br3 \ Br∗ . (1.17)

Here

T∗h(y) = h(x)

J (x)
where x = T −1(y) and J (x) = ∣∣detDT (x)

∣∣, (1.18)

for a diffeomorphism T and a function h. These requirements are not easy to predict but follow naturally from the
study of reflecting complementary media in [5]. We will assume that

1/Λ� σ(x) � Λ, for a.e. x ∈ Br0 , (1.19)

for some Λ � 1.
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This paper deals with the bounded setting equipped the zero Dirichlet boundary condition. Let k � 0 and Ω be
a smooth open subset of Rd (d = 2,3) such that Br3 ⊂ Ω . Given f ∈ L2(Ω), let uδ,u ∈ H 1

0 (Ω) be resp. the unique
solution (the well-posedness follows from (1.23) and (1.24) below) to

div(sδA∇uδ) + sδk
2Σ = f in Ω, (1.20)

and

div(Â∇u) + k2Σ̂u = f in Ω. (1.21)

Here

Â, Σ̂ =
{

m2−da(x/m), m−dσ (x/m) in Bmr0,

I, 1 otherwise.
(1.22)

When k > 0, we will assume in addition that, as in [5],

(1.21) is well-posed in H 1
0 (Ω) (1.23)

and

the equation 	v + k2v = 0 in Ω \ Br2 has only zero solution in H 1
0 (Ω \ Br2). (1.24)

Here is one of the two main results of this paper (the second one is Theorem 2 in Section 3).

Theorem 1. Let d = 2,3, f ∈ L2(Ω) with suppf ⊂ Ω \ Br3 and let u,uδ ∈ H 1
0 (Ω) be the unique solutions to (1.20)

and (1.21) resp. We have

uδ → u weakly in H 1(Ω \ Br3) as δ → 0. (1.25)

For an observer outside Br3 , the object (a, σ ) in Br0 would act like
(
m2−da(x/m),m−dσ (x/m)

)
in Bmr0

by (1.25): one has a superlens whose magnification is m.
The key ingredient of the proof of Theorem 1 is the removing of localized singularity technique which is introduced

in [6] to study cloaking using complementary media. The reflecting technique, which is presented in [5] also plays an
important role in our analysis. In [7], these techniques will be developed for the context of cloaking due to anomalous
localized resonance. To make use of these techniques, we require that A = md−2I and Σ = md−2 in Br1 \Br0 (which is
the second part of our lens construction). Indeed, in the proof we use interpolation inequalities in which the conditions
r∗ � √

r2r3, G∗FA = I , G∗F∗Σ = 1 are required, see, e.g., (2.9) and (2.27). It was argued in [4] that in the two
dimensional quasistatic regime, to be successfully imaged, a conducting object has to be placed in the circle Br

with r �
√

r3
1 /r2. In our notations, it is required that r1 � m1/4r0; hence the layer Br1 \ Br0 might be necessary.

Nevertheless, we do not know how to prove or disprove the necessity of this layer.
It was shown in [5, Theorem 1] that (1.25) holds if ‖uδ‖H 1 remains bounded (this is equivalent to the compatibility

condition on f in [5, Definition 2]). The goal of this paper is to show that (1.25) holds without the compatibility
assumption. It is clear that the localized resonance appears if the compatibility does not hold. The localized resonance
appearing in this situation would be anomalous one whose concept is introduced in [3] since it seems that the boundary
of the resonant regions would vary with the position of the source, and their boundary do not coincide with any
discontinuity in moduli. We do not verify this property in this work. We note that there are plasmonic structures for
which either localized resonance or else complete resonance takes places whenever resonance appears, see [8]. The
localized resonance is related to the geometry of the problem.

The lens in the region Br2 \Br1 discussed above is given by I in two dimensions and (r2
2 /|x|2)I in three dimensions.

The construction in three dimensions from [13,14] is more involved than the one in two dimensions and based on
the search of isotropic radial forms. In Section 3, we will extend this construction to a class of lenses containing
anisotropic ones (Theorem 2). In particular, we will point out a construction for which r3 can be arbitrary close to
mr0 (see Remark 1). This extension is based on the study of reflecting complementary media in [5]. The concept
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of complementary media was originally suggested in [12,13] (see also [2,9,10,14]), where various examples were
mentioned, and played an important role in the study of NIMs. In [5], the author provides a precise definition of a class
of complementary media, reflecting complementary media, generated by reflections and investigates the properties of
this class.

The paper is organized as follows. The proof of Theorem 1 will be given in Section 2. Theorem 2, a generalization
of Theorem 1 which allows anisotropic lenses, will be given in Section 3.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We first present the proof in the two dimensional quasistatic case
(Section 2.1). We will profit the notational ease in this case to present clearly the ideas of the proof. The proof in the
three dimensional quasistatic case is briefly sketched in Section 2.2. In Section 2.3, we consider the finite frequency
case. The proof in this case is similar to the one in the quasistatic one though more involved, in particular, for low
modes.

2.1. Proof of Theorem 1 in the two dimensional quasistatic regime

In this section, k = 0 and d = 2. Multiplying (1.20) by ūδ (the conjugate of uδ), integrating over Ω , and using the
fact that uδ = 0 on ∂Ω , we have∫

Ω

sδ〈A∇uδ,∇uδ〉 = −
∫
Ω

f ūδ.

Considering first the imaginary part and then the real part, we obtain, by (1.9),

‖uδ‖2
H 1(Ω)

� C

δ
‖uδ‖L2(Ω\Br3 )‖f ‖L2 . (2.1)

Here and in what follows in the proof, C denotes a positive constant independent of δ and f .
As in [5,6], let u1,δ ∈ H 1

loc(R
d \ Br2) be the reflection of uδ through ∂Br2 by F , i.e.,

u1,δ = uδ ◦ F−1,

and let u2,δ ∈ H 1(Br3) be the reflection of u1,δ through ∂Br3 by G, i.e.,

u2,δ = u1,δ ◦ G−1 = uδ ◦ F−1 ◦ G−1.

We recall that F and G are given in (1.10) and (1.12). Since G ◦ F(x) = (r2
3 /r2

2 )x, it follows from (1.11) that

Â = G∗F∗A in Br3 .

Applying [5, Lemma 2], we have

	u1,δ = 0 in Br3 \ Br2 (2.2)

and

div(Â∇u2,δ) = 0 in Br3 . (2.3)

We derive from (2.3) that

	u2,δ = 0 in Br3 \ Br∗ . (2.4)

From the transmission conditions on ∂Br2 , we have

u1,δ = uδ and (1 − iδ)∂ru1,δ = ∂ruδ|ext on ∂Br2 (2.5)

and, from the transmission conditions on ∂Br3 , we obtain

u2,δ = u1,δ and ∂ru2,δ = (1 − iδ)∂ru1,δ|int on ∂Br3 . (2.6)
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Since 	uδ = 	u1,δ = 0 in Br3 \ Br2 , by (2.2), and 	u2,δ = 0 in Br3 \ Br∗ , by (2.4),2 one can represent uδ , u1,δ ,
and u2,δ in the forms

uδ = a0 + b0 ln r +
∑
n�1

(
anr

n + bnr
−n

)
einθ in Br3 \ Br2, (2.7)

u1,δ = c0 + d0 ln r +
∑
n�1

(
cnr

n + dnr
−n

)
einθ in Br3 \ Br2 , (2.8)

and

u2,δ = e0 + f0 ln r +
∑
n�1

(
enr

n + fnr
−n

)
einθ in Br3 \ Br∗ , (2.9)

for some (an), (bn), (cn), (dn), (en), and (fn) ⊂ C. We derive from (2.5), (2.7), and (2.8) that{
anr

n
2 + bnr

−n
2 = cnr

n
2 + dnr

−n
2 ,

anr
n
2 − bnr

−n
2 = (1 − iδ)

(
cnr

n
2 − dnr

−n
2

)
,

for n� 1,

and {
a0 + b0 ln r2 = c0 + d0 ln r2,

b0 = (1 − iδ)d0.

This implies⎧⎪⎨
⎪⎩

an = 2 − iδ

2
cn + iδ

2
dnr

−2n
2 ,

bn = iδ

2
cnr

2n
2 + 2 − iδ

2
dn,

for n� 1, (2.10)

and {
a0 = c0 + iδd0 ln r2,

b0 = (1 − iδ)d0.
(2.11)

Since

uδ − u1,δ = a0 + b0 ln r +
∑
n�1

(
anr

n + bnr
−n

)
einθ − c0 − d0 ln r −

∑
n�1

(
cnr

n + dnr
−n

)
einθ

in Br3 \ Br2 , it follows from (2.10) and (2.11) that, in Br3 \ Br2 ,

uδ − u1,δ = iδd0(ln r2 − ln r) − iδ

2

∑
n�1

(
cn − dnr

−2n
2

)
rneinθ + iδ

2

∑
n�1

(
cnr

2n
2 − dn

)
r−neinθ . (2.12)

Similarly, we derive from (2.6), (2.8), and (2.9) that{
enr

n
3 + fnr

−n
3 = cnr

n
3 + dnr

−n
3 ,

enr
n
3 − fnr

−n
3 = (1 − iδ)

(
cnr

n
3 − dnr

−n
3

)
,

and {
e0 + f0 ln r3 = c0 + d0 ln r3,

f0 = (1 − iδ)d0.

This implies⎧⎪⎨
⎪⎩

en = 2 − iδ

2
cn + iδ

2
dnr

−2n
3 ,

fn = iδ

2
cnr

2n
3 + 2 − iδ

2
dn,

for n� 1, (2.13)

2 We recall that r∗ = √
r2r3 by (1.15).
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and {
e0 = c0 + iδd0 ln r3,

f0 = (1 − iδ)d0.
(2.14)

Since

u1,δ − u2,δ = c0 + d0 ln r +
∑
n�1

(
cnr

n + dnr
−n

)
einθ − e0 − f0 ln r −

∑
n�1

(
enr

n + fnr
−n

)
einθ

in Br3 \ Br∗ , it follows from (2.13) and (2.14) that, in Br3 \ Br∗ ,

u1,δ − u2,δ = −iδd0(ln r3 − ln r) + iδ

2

∑
n�1

(
cn − dnr

−2n
3

)
rneinθ − iδ

2

∑
n�1

(
cnr

2n
3 − dn

)
r−neinθ . (2.15)

A combination of (2.12) and (2.15) yields, in Br3 \ Br∗ ,

uδ − u2,δ = iδd0(ln r2 − ln r3) + iδ

2

∑
n�1

cn

(
r2n

2 − r2n
3

)
r−neinθ + iδ

2

∑
n�1

dn

(
r−2n

2 − r−2n
3

)
rneinθ . (2.16)

We now use the removing of localized singularity technique introduced in [6]. Set

Uδ =
{

uδ − ûδ if x ∈ Ω \ Br∗ ,
u2,δ if x ∈ Br∗ ,

where

ûδ = iδd0(ln r2 − ln r3) + iδ

2

∑
n�1

(
cnr

2n
2 − cnr

2n
3

)
r−neinθ , for |x| � r∗. (2.17)

As in [6], we remove ûδ from uδ in Ω \ Br∗ . The function ûδ contains very high modes and creates a trouble for
estimating uδ −u2,δ on ∂Br∗ (to obtain an estimate for uδ). However this term can be negligible for large |x| since r−n

is small for large r and large n; hence uδ − ûδ well approximates uδ for |x| large enough. This is the spirit of the
removing of regularized singularity technique.

We next estimate

[Uδ] and
[
Â∇Uδ · x/|x|] on ∂Br∗ .

Here and in what follows [U ] and [Â∇Uδ · x/|x|] denote the jumps of Uδ and Â∇Uδ · x/|x| on ∂Br∗ .
From (2.16) and (2.17), we have

[Uδ] = iδ

2

∑
n�1

dn

(
r−2n

2 − r−2n
3

)
rn∗ einθ on ∂Br∗ . (2.18)

This implies
∥∥[Uδ]

∥∥2
H 1/2(∂Br∗ )

� Cδ2
∑
n�1

n|dn|2r−4n
2 r2n∗ . (2.19)

Since, by (2.1),

‖u1,δ‖2
H 1(Br3\Br2 )

� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ), (2.20)

and 	u1,δ = 0 in Br3 \ Br2 , it follows that

‖u1,δ‖2
H 1/2(∂Br2 )

+ ‖∂ru1,δ‖2
H−1/2(∂Br2 )

� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ) (2.21)

and

‖u1,δ‖2
H 1/2(∂B )

+ ‖∂ru1,δ‖2
H−1/2(∂B )

� C ‖f ‖L2‖uδ‖L2(Ω\Br ). (2.22)

r3 r3 δ 3
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A combination of (2.8) and (2.21) yields

∑
n�0

(n + 1)
(|cn|2r2n

2 + |dn|2r−2n
2

)
� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ), (2.23)

and a combination of (2.8) and (2.22) implies

∑
n�0

(n + 1)
(|cn|2r2n

3 + |dn|2r−2n
3

)
� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ). (2.24)

Similarly,

∑
n�0

(n + 1)
(|an|2r2n

3 + |bn|2r−2n
3

)
� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ). (2.25)

We derive from (2.10), (2.11), (2.24), and (2.25) that

∑
n�0

(n + 1)
(|cn|2r2n

3 + δ2|dn|2r2n
3 r−4n

2

)
� C

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ). (2.26)

Since r∗ = √
r2r3, by the Hölder inequality, we have

δ2
∑
n�1

n|dn|2r−4n
2 r2n∗ � δ

(
δ2

∑
n�1

n|dn|2r−4n
2 r2n

3

)1/2( ∑
n�1

n|dn|2r−2n
2

)1/2

. (2.27)

A combination of (2.19), (2.23), (2.26), and (2.27) yields
∥∥[Uδ]

∥∥2
H 1/2(∂Br∗ )

� C‖f ‖L2‖uδ‖L2(Ω\Br3 ). (2.28)

Similarly, we have
∥∥[

Â∇Uδ · x/|x|]∥∥2
H−1/2(∂Br∗ )

� C‖f ‖L2‖uδ‖L2(Ω\Br3 ). (2.29)

On the other hand, from (2.17), we have

‖ûδ‖2
H 1(Ω\Br3 )

� C

(
δ2d2

0 + δ2
∑
n�1

n|cn|2r2n
3

)
. (2.30)

We derive from (2.23), (2.24), and (2.30) that

‖ûδ‖2
H 1(Ω\Br3 )

� Cδ‖f ‖L2‖uδ‖L2(Ω\Br3 ), (2.31)

which implies, since Uδ = uδ − ûδ in Ω \ Br3 ,

‖ûδ‖H 1(Ω\Br3 ) � Cδ1/2(‖f ‖L2 + ‖Uδ‖L2(Ω\Br3 )

)
. (2.32)

It follows from (2.28), (2.29), and (2.31) that
∥∥[Uδ]

∥∥2
H 1/2(∂Br∗ )

+ ∥∥[
Â∇Uδ · x/|x|]∥∥2

H−1/2(∂Br∗ )
� C

(‖f ‖L2‖Uδ‖L2(Ω\Br3 ) + δ1/2‖f ‖2
L2

)
. (2.33)

Since div(ÂUδ) = f in Ω \ ∂Br∗ , Uδ ∈ H 1(Ω \ ∂Br∗), and Uδ = −ûδ on ∂Ω , we derive from (2.32) and (2.33) that

‖Uδ‖H 1(Ω\Br∗ ) + ‖Uδ‖H 1(Br∗ ) � C‖f ‖L2 . (2.34)

A combination of (2.32) and (2.34) yields

‖ûδ‖H 1(Ω\Br3 ) → 0 as δ → 0. (2.35)

We claim that
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[Uδ] → 0 weakly in H 1/2(∂Br∗) and
[
Â∇Uδ · x/|x|] → 0 weakly in H−1/2(∂Br∗). (2.36)

Assuming (2.36) holds, we have

Uδ → U0 weakly in H 1(Ω \ Br3)

where U0 ∈ H 1
0 (Ω) (by (2.35)) is the unique solution to the equation

div(Â∇U0) = f in Ω.

The conclusion now follows from (2.32).
It remains to prove (2.36). We only prove that

[Uδ] → 0 weakly in H 1/2(∂Br∗),

the proof of the statement

[
Â∇Uδ · x/|x|] → 0 weakly in H−1/2(∂Br∗)

follows similarly. Indeed, since ‖Uδ‖H 1(Ω\Br3 ) � C‖f ‖L2 , it follows from (2.32) that

∑
n�0

(n + 1)
(|an|2r2n

3 + |bn|2r−2n
3

)
� C‖f ‖L2 .

We derive from (2.10) and (2.11) that

|dn| � C(n)‖f ‖L2 ,

for some C(n) depending only on n, r2, and r3. Since
∥∥[Uδ]

∥∥
H 1/2(∂Br∗ )

� C‖f ‖L2 ,

by (2.19), (2.31), and (2.34), it follows from (2.18) that

[Uδ] → 0 weakly in H 1/2(∂Br∗).

The proof is complete. �
2.2. Proof of Theorem 1 in the three dimensional quasistatic regime

The proof in the three dimensional quasistatic case follows similarly as the one in two dimensions. We also have
	uδ = 	u1,δ = 0 in Br3 \ Br2 , and 	u2,δ = 0 in Br3 \ Br∗ . Hence uδ , u1,δ , and u2,δ can be written in the forms

uδ(x) =
∞∑

n=0

n∑
l=−n

(
an,l |x|n + bn,l |x|−n

)
Y l

n

(
x/|x|) in Br3 \ Br2 , (2.37)

u1,δ(x) =
∞∑

n=0

n∑
l=−n

(
cn,l |x|n + dn,l |x|−n

)
Y l

n

(
x/|x|) in Br3 \ Br2, (2.38)

and

u2,δ(x) =
∞∑

n=0

n∑
l=−n

(
en,l |x|n + fn,l |x|−n

)
Y l

n

(
x/|x|) in Br3 \ Br∗ , (2.39)

for some (an,l), (bn,l), (cn,l), (dn,l), (en,l), and (fn,l) ⊂C. Here Y l
n is the spherical harmonic function of degree n and

of order l. The details are left to the reader. �
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2.3. Proof of Theorem 1 in the finite frequency regime

The proof in this case is similar to the one in the quasistatic case though it is more complicated. We will present
necessary modifications in the two dimensional case. The three dimensional case follows similarly. For notational
ease, we will assume k = 1.

Let d = 2 and k = 1. Using (1.23) and (1.24) and applying the same method used in the proof of [5, Lemma 1], we
obtain, for small δ,

‖uδ‖2
H 1(Ω)

� C

(
1

δ

∣∣∣∣
∫
Ω

f ūδ

∣∣∣∣ + ‖f ‖2
L2

)
.

This implies

‖uδ‖2
H 1(Ω)

� C

(
1

δ
‖f ‖L2‖uδ‖L2(Ω\Br3 ) + ‖f ‖2

L2

)
. (2.40)

We have

	uδ + k2uδ = 	u1,δ + k2u1,δ = 0 in Br3 \ Br2 and 	u2,δ + k2u2,δ = 0 in Br3 \ Br∗ (2.41)

by (1.10), (1.14), and (1.17). From (2.41), one can represent uδ , u1,δ , and u2,δ in the forms

uδ =
∞∑

n=0

[
anĴn

(|x|) + bnŶn

(|x|)]einθ in Br3 \ Br2, (2.42)

u1,δ =
∞∑

n=0

[
cnĴn

(|x|) + dnŶn

(|x|)]einθ in Br3 \ Br2 , (2.43)

and

u2,δ =
∞∑

n=0

[
enĴn

(|x|) + fnŶn

(|x|)]einθ in Br3 \ Br∗ , (2.44)

for some (an), (bn), (cn), (dn), (en), and (fn) ⊂ C. Here

Ĵn(r) = 2nn!Jn(r) and Ŷn(r) = πi

2n(n − 1)!Yn(r),

where Jn and Yn are the Bessel and Neumann functions of order n. It follows from [1, (3.57) and (3.58)] that

Ĵn(t) = tn
[
1 + o(1)

]
(2.45)

and

Ŷn(t) = t−n
[
1 + o(1)

]
, (2.46)

as n → +∞. Similar to (2.10), we have
{

an = cn + iδcnACn + iδdnADn,

bn = iδcnBCn + dn + iδdnBDn,
for n� 0, (2.47)

and similar to (2.13), we obtain
{

en = cn + iδcnECn + iδdnEDn,

fn = iδcnFCn + dn + iδdnFDn,
for n� 0. (2.48)

Here
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ACn = Ĵ ′
nŶn

ĴnŶ ′
n − Ĵ ′

nŶn

(r2), ADn = ŶnŶ
′
n

ĴnŶ ′
n − Ĵ ′

nŶn

(r2), (2.49)

BCn = ĴnĴ
′
n

ŶnĴ ′
n − Ŷ ′

nĴn

(r2), BDn = Ŷ ′
nĴn

ŶnĴ ′
n − Ŷ ′

nĴn

(r2), (2.50)

ECn = Ĵ ′
nŶn

ĴnŶ ′
n − Ĵ ′

nŶn

(r3), EDn = ŶnŶ
′
n

ĴnŶ ′
n − Ĵ ′

nŶn

(r3),

and

FCn = ĴnĴ
′
n

ŶnĴ ′
n − Ŷ ′

nĴn

(r3), FDn = Ŷ ′
nĴn

ŶnĴ ′
n − Ŷ ′

nĴn

(r3).

Then, in Br3 \ Br2 ,

uδ − u1,δ =
∑
n�0

iδ(ACncn + ADndn)Ĵn

(|x|)einθ +
∑
n�0

iδ(BCncn + BDndn)Ŷn

(|x|)einθ (2.51)

and, in Br3 \ Br∗ ,

u1,δ − u2,δ = −
∑
n�0

iδ(ECncn + EDndn)Ĵn

(|x|)einθ −
∑
n�0

iδ(FCncn + FDndn)Ŷn

(|x|)einθ . (2.52)

A combination of (2.51) and (2.52) yields, in Br3 \ Br∗ ,

uδ − u2,δ =
∑
n�0

iδ
[
cn(ACn − ECn) + dn(ADn − EDn)

]
Ĵn

(|x|)einθ

+
∑
n�0

iδ
[
(BCn − FCn)cn + (BDn − FDn)dn

]
Ŷn

(|x|)einθ . (2.53)

We now use the removing of localized singularity technique as in the quasistatic case. Set

ûδ(x) =
∑
n�0

iδ
[
(BCn − FCn)cn + (BDn − FDn)dn

]
Ŷn

(|x|)einθ ,

and define

Uδ =
{

uδ − ûδ if x ∈ Ω \ Br∗ ,
u2,δ if x ∈ Br∗ .

Using (2.45) and (2.46), we have

ACn = −1

2

[
1 + o(1)

]
, ADn = 1

2
r−2n

2

[
1 + o(1)

]
, (2.54)

and

BCn = 1

2
r2n

2

[
1 + o(1)

]
, BDn = −1

2

[
1 + o(1)

]
. (2.55)

Similarly, we obtain

ECn = −1

2

[
1 + o(1)

]
, EDn = 1

2
r−2n

3

[
1 + o(1)

]
, (2.56)

and

FCn = 1

2
r2n

3

[
1 + o(1)

]
, FDn = −1

2

[
1 + o(1)

]
. (2.57)

Since (see, e.g., [1, (3.56)])

Ĵ ′
n(r)Ŷn(r) − Ĵn(r)Ŷ

′
n(r) = Cnr

−1,
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it follows that

|cn|2 + |dn|2 � Cn,r

(∣∣cnĴn(r) + dnŶn(r)
∣∣2 + ∣∣cnĴ

′
n(r) + dnŶ

′
n(r)

∣∣2)
. (2.58)

Combining (2.45), (2.46), and (2.58), as in (2.24), we obtain

∑
n�0

(n + 1)
(|cn|2r2n

3 + |dn|2r−2n
3

)
� C

(
1

δ
‖uδ‖L2(Ω\Br3 )‖f ‖L2 + ‖f ‖2

L2

)
(2.59)

and
∑
n�0

(n + 1)
(|cn|2r2n

2 + |dn|2r−2n
2

)
� C

(
1

δ
‖uδ‖L2(Ω\Br3 )‖f ‖L2 + ‖f ‖2

L2

)
(2.60)

Similarly,

∑
n�0

(n + 1)
(|an|2r2n

3 + |bn|2r−2n
3

)
� C

(
1

δ
‖uδ‖L2(Ω\Br3 )‖f ‖L2 + ‖f ‖2

L2

)
. (2.61)

We derive from (2.59) and (2.61) that

∑
n�n0

(n + 1)
(|cn|2r2n

3 + δ2|dn|2r2n
3 r−4n

2

)
� C

(
1

δ
‖uδ‖L2(Ω\Br3 )‖f ‖L2 + ‖f ‖2

L2

)
, (2.62)

for some n0 large enough.
As in the proof of Theorem 1 in the quasistatic case, using (2.60) and (2.62), we have

∥∥[Uδ]
∥∥2

H 1/2(∂Br∗ )
+ ∥∥[Â∇Uδ · η]∥∥2

H−1/2(∂Br∗ )
� C

(‖f ‖L2‖uδ‖L2(Ω\Br3 ) + δ‖f ‖2
L2

)
.

The proof is now similar to the one in the quasistatic case. The uniqueness of the limit of Uδ follows from (1.23).
The details are left to the reader. �
3. Other constructions of superlenses

The construction of the superlens given by (1.7) and (1.8) is not restricted to the Kelvin transform F w.r.t. ∂Br2 .
In fact, using the study of reflecting complementary media in [5], we can extend this construction further. We confine
ourselves to a class of radial reflections for which the formulae for A and Σ are explicit even though general reflections
as in [5] can be used.

Fix α,β > 1 such that3

αβ − α − β = 0. (3.1)

Let F1 : Br2 \ {0} →R
d \ B̄r2 and G1 :Rd \ B̄r3 → Br3 \ {0} be defined as follows:

F1(x) = rα
2 x/|x|α and G1(x) = r

β

3 x/|x|β.

Here, r1, r2, and r3 are chosen such that

r3/r1 = rα
2 /rα

1 = m and
√

r2r3 = mr0,

which yields

r1 = r0m
α−1
2α , r2 = r0m

α+1
2α , and r3 = r0m

3α−1
2α . (3.2)

It follows from (3.1) and (3.2) that G1 ◦ F1 : Br1 → Br3 satisfies

G1 ◦ F1(x) = mx.

3 One can choose α and β such that αβ − α − β � 0. However, the expression of A1 and Â1 below are more involved in this case.
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Define

A1, Σ1 =

⎧⎪⎪⎨
⎪⎪⎩

(F−1
1 )∗I, (F−1

1 )∗1 in Br2 \ Br1 ,

(F−1
1 )∗(G−1

1 )∗I, (F−1
1 )∗(G−1

1 )∗I in Br1 \ Br0 ,

a, σ in Br0 ,

I, 1 otherwise,

(3.3)

and

Â1, Σ̂1 =
{

I, 1 in Ω \ Bmr0,

(G1) ∗ (F1)∗a, (G1)∗(F1)∗1 = m2−da(x/m), m−dσ (x/m) in Bmr0 .

One can verify that, in Br2 \ Br1 ,

A1, Σ1 = rα
2

rα

[
1

α − 1
er ⊗ er + (α − 1)(eθ ⊗ eθ + eθ ⊗ eϕ)

]
, (α − 1)

r3α
2

r3α
if d = 3, (3.4)

and

A1, Σ1 = 1

α − 1
er ⊗ er + (α − 1)eθ ⊗ eθ , (α − 1)

r2α
2

r2α
if d = 2, (3.5)

and, in Br1 \ Br0 ,

A1, Σ1 = md−2I, md. (3.6)

We will assume that (1.23) holds for (Â1, Σ̂1) instead of (Â, Σ̂) and

equation 	v + k2v = 0 in Ω \ Br2 has only zero solution in H 1
0 (Ω \ Br2). (3.7)

The following result is a generalization of Theorem 1.

Theorem 2. Let d = 2,3, f ∈ L2(Ω) with suppf ⊂ Ω \ Br3 and let u,uδ ∈ H 1
0 (Ω) be respectively the unique

solutions to

div(sδA1∇uδ) + s0k
2Σ1uδ = f in Ω

and

div(Â1∇u) + k2Σ̂1u = f in Ω.

We have

uδ → u weakly in H 1(Ω \ Br3) as δ → 0. (3.8)

By taking α = β = 2, we obtain Theorem 1 from Theorem 2.

Remark 1. We have β = α/(α − 1) by (3.1). Letting α → 1+, we derive from (3.2) that

r1 → r0 and r3 → mr0. (3.9)

Thus for any ε > 0, there exists a construction such that the magnification of m times for an object in Br0 takes place
for any suppf ⊂ Ω \ Bmr0+ε .

Proof. We have

(F1)∗A1 = I in Br3 \ Br2 and (G1)∗(F1)∗A1 = I in Br3 \ Br∗ ,

and

(F1)∗Σ1 = 1 in Br3 \ Br2 and (G1)∗(F1)∗Σ1 = 1 in Br3 \ Br∗ ,
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by the definition of (A1,Σ1). We recall that r∗ = √
r2r3 = mr0 by (3.2). This implies, by [5, Lemma 4],

	u1,δ + k2u1,δ = 0 in Br3 \ Br2

and

	u2,δ + k2u2,δ = 0 in Br3 \ Br∗ .

Here, as in the proof of Theorem 1, we define

u1,δ = u ◦ F−1
1 in R

d \ Br3 and u2,δ = u1,δ ◦ G−1
1 in Br3 .

Similar to (2.5) and (2.6), by [5, Lemma 4], we obtain

u1,δ = uδ|+ on ∂Br2 and (1 − iδ)A1∇u1,δ · η = A1∇uδ · η|+ on ∂Br2 ,

and

u1,δ = u2,δ on ∂Br3 and (1 − iδ)∂ηu1,δ|− = ∂ηu2,δ on ∂Br3 .

This proof is now similar to the one of Theorem 1. The details are left to the reader. �
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