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Abstract

This paper studies magnifying superlens using complementary media. Superlensing using complementary media was suggested
by Veselago in [16] and innovated by Nicorovici et al. in [9] and Pendry in [10]. The study of this problem is difficult due to two
facts. Firstly, this problem is unstable since the equations describing the phenomena have sign changing coefficients; hence the
ellipticity is lost. Secondly, the phenomena associated might be localized resonant, i.e., the field explodes in some regions and
remains bounded in some others. This makes the problem difficult to analyze. In this paper, we develop the technique of removing
of localized singularity introduced in [6] and make use of the reflecting technique in [5] to overcome these two difficulties. More
precisely, we suggest a class of lenses which has root from [9] and [14] and inspired from [6] and give a proof of superlensing
for this class. To our knowledge, this is the first rigorous proof on the magnification of an arbitrary inhomogeneous object using
complementary media.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

Negative index materials (NIMs) were first investigated theoretically by Veselago in [16] and innovated by
Nicorovici et al. in [9] and Pendry in [10]. The existence of such materials was confirmed by Shelby et al. in [15].
NIMs have been intensively studied recently thanks to their many applications and surprising properties. One of the
appealing ones is superlensing. The construction of a slab superlens using NIMs was suggested by Veselago in [16]
via the ray theory. Later, this was developed by Nicorovici et al. in [9] and Pendry in [10]. In [9] the authors studied
a cylindrical lens in the two dimensional quasistatic regime, and in [10] the author studied the Veselago slab in the
finite frequency one. These works have been developed further, see, e.g., in [4,11-14] where cylindrical and spherical
superlenses were investigated. The reader can find an interesting review and many recent results on superlensing using
complementary media in [4].

* Correspondence to: EPFL SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland and School of Mathematics, University of
Minnesota, MN 55455, United States.
E-mail addresses: hoai-minh.nguyen @epfl.ch, hmnguyen@math.umn.edu.
' The research is supported by NSF grant DMS-1201370 and by the Alfred P. Sloan Foundation.

http://dx.doi.org/10.1016/j.anihpc.2014.01.004
0294-1449/© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.


http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.anihpc.2014.01.004
http://www.elsevier.com/locate/anihpc
mailto:hoai-minh.nguyen@epfl.ch
mailto:hmnguyen@math.umn.edu
http://dx.doi.org/10.1016/j.anihpc.2014.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.anihpc.2014.01.004&domain=pdf

472 H.-M. Nguyen / Ann. I. H. Poincaré — AN 32 (2015) 471-484

The study of superlensing has been concentrating a lot on the image of dipoles in homogeneous media, see [4,
10—14]. There are a few works devoted to the image of an object. It seems for us that [9], in which the authors gave
a proof on the magnification of a constant material disk, is the only work in this direction. Even though, the methods
in the papers mentioned above can be used to obtain the magnification of radial objects having constant materials
in two or three dimensions, the magnification of an arbitrary inhomogeneous object is out of the scope of these
methods, which are strongly based on the separation of variables. Let us mention two difficulties related to the study
of this problem. Firstly, this problem is unstable since the equations describing the phenomena have sign changing
coefficients; hence the ellipticity is lost. Secondly, the phenomena associated might be localized resonant, i.e., the
field explodes in some regions and remains bounded in some others. This makes the problem difficult to analyze.

In this paper, we study magnifying superlens using complementary media. More precisely, given m > 1 the mag-
nification, we suggest a class of lenses, which has root from [9] and [14] and inspired from [6], and show that one can
magnify m times an arbitrary inhomogeneous object in the quasistatic and finite frequency regimes using a lens in
this class. To overcome the difficulties mentioned above, we develop the technique of removing localized singularity
introduced in [6], and make use of the reflecting technique in [5]. To our knowledge, the results of this paper are new
even in the two dimensional quasistatic regime.

Let us describe how to magnify the region B, for some r¢ > 0 in which the medium is characterized by a matrix-
valued function a and a real function o using complementary media. Here and in what follows given r > 0, B, denotes
the ball centered at the origin of radius 7 in R¢ (d = 2 or 3). The assumption on the geometry of the object by all means
imposes no restriction since any region can be placed in such a ball provided that the radius and the origin are ap-
propriately chosen. We first concentrate on the quasistatic regime. The idea suggested in [9,11,14] is to put a lens
in B, \ B, whose medium is characterized by matrix —b with r22 / rg = m. Here b = I, the identity matrix, in two
dimensions and b = (r22/ |x|?)I in three dimensions.

In this paper, we slightly change the strategy discussed above and take into account the suggestion in [6]. Our lens
contains two parts. The first one is given by

—(3/1x)* 7T in By, \ By, (1.1)
and the second one is the matrix

mi=2I in B, \ By,. (1.2)
Here

r1 =m1/4ro (1.3)
and

ry = /mri =m*rg. (1.4)
Set

r3 = r22/r1 =m5/4r0. (1.5)

It is clear that
m=r3/ri. (1.6)

We will give some comments on this construction later.
Since materials have some loss, the correct approach is to allow some loss in the medium and investigate the limit
as the loss goes to 0. With the loss, the medium is characterized by ss A, where

r3/1x1)2I in By, \ By,,
mi=2] in B, \ By,
a in By,

1 otherwise,

A= (1.7)

and
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ss:{_l_HS 1nB,2\.Brl, (1.8)
1 otherwise.
Physically, the imaginary part of s5A is the loss of the medium (more precisely the loss of the medium in B, \ B,)).

In what follows, we assume that

%mz <la()E &)< AP, VEeR?, forae. x € Bg,, (1.9)

for some constant A > 1.
We next make some comments on the construction. We first note that —(r3/|x|*)=21 in B,, \ B,, and I in B,, \ B,,

are complementary or more precisely reflecting complementary via the Kelvin transform F : B,, — RZ \ B,z Ww.I.t.
dB,,,1.e.,

F(x)=r3x/|x|* and F,A=1I inB,\ B, (1.10)
(see [5] for the definition of reflecting complementary media and their properties). Here
DT (x)M(x)DTT
ToM(y) = 2T J((x)) @) where x = T~ (y) and J (x) = |det DT (x)], (1.11)
X

for a diffeomorphism 7 and a matrix M. Given rq, the choice of r, follows from (1.6) since a superlens of m times
magnification is considered as in [9,11,14] (§ee also (1.22) and Theorem 1). The choice of r; and A in B, \ By, are
inspired from [5,6] as follows. Let G : R4 \ B,; = By, \ {0} be the Kelvin transform w.r.t. d B, i.e.,

G(x) =rix/|x|*. (1.12)
Then G o F : B, — B,, satisfies

GoF(x)=mx in B,,. (1.13)
This implies, since A = m=2] in B\ By,

G.F,A=1 inB,\B,. (1.14)

Here

rei=mro = /rars =,/r3/n. (1.15)

In the last identity, we use the fact that r3 = r22 /r1. Using (1.6) and (1.15), we derive the formula for r; and r; as in
(1.3) and (1.4). The choice of A in B, \ B, follows from (1.14).
In the finite frequency regime, the medium is also characterized by ss X' where

(3/1x>¢ ifx € By, \ By,
d

s ]m if x € By, \ By, (1.16)
o in By,
1 otherwise.

The construction of X' for the lens is given in B, \ By, . This construction is based on the requirements

F,X=1 inB,\B, and G.F.Y¥=1 inB,\B,,. (1.17)
Here
h(x) .
T.h(y) = o) where x = 7' (y) and J (x) = |det DT (x)|, (1.18)
X

for a diffeomorphism 7 and a function /. These requirements are not easy to predict but follow naturally from the
study of reflecting complementary media in [5]. We will assume that

1/A<o(x) <A, forae. x € By, (1.19)

for some A > 1.
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This paper deals with the bounded setting equipped the zero Dirichlet boundary condition. Let £ > 0 and £2 be
a smooth open subset of R? (d =2, 3) such that B,, C £2. Given f € L?(82), let us, u € HOl (£2) be resp. the unique
solution (the well-posedness follows from (1.23) and (1.24) below) to

div(ssAVug) + ssk> X = f in£2, (1.20)
and
div(AVu) + k*Su=f in 2. (1.21)
Here
. 2—d —d :
A s {m a(x/m), m~%c(x/m) in By, (1.22)
’ I, 1 otherwise.
When k > 0, we will assume in addition that, as in [5],
(1.21) is well-posed in HO1 (£2) (1.23)
and
the equation Av + k*v=0in £ \ By, has only zero solution in HOl (£2\ By,). (1.24)

Here is one of the two main results of this paper (the second one is Theorem 2 in Section 3).

Theorem 1. Letd =2,3, f € LZ(Q) with supp f C §2\ B, and let u,us € H(} (82) be the unique solutions to (1.20)
and (1.21) resp. We have

us —>u weakly in Hl(.Q\Br3) as § — 0. (1.25)

For an observer outside B,,, the object (a, o) in B,, would act like
(mz_da(x/m), m_do(x/m)) in By,

by (1.25): one has a superlens whose magnification is m.

The key ingredient of the proof of Theorem 1 is the removing of localized singularity technique which is introduced
in [6] to study cloaking using complementary media. The reflecting technique, which is presented in [5] also plays an
important role in our analysis. In [7], these techniques will be developed for the context of cloaking due to anomalous
localized resonance. To make use of these techniques, we require that A = m¢ =21 and ¥ = m¢ =2 in B, \ By, (whichis
the second part of our lens construction). Indeed, in the proof we use interpolation inequalities in which the conditions
re < /1213, GsFa =1, G, F, X =1 are required, see, e.g., (2.9) and (2.27). It was argued in [4] that in the two
dimensional quasistatic regime, to be successfully imaged, a conducting object has to be placed in the circle B,

with r < ,/rl3 /r2. In our notations, it is required that r; > ml/ 4r(); hence the layer B, \ B, might be necessary.
Nevertheless, we do not know how to prove or disprove the necessity of this layer.

It was shown in [5, Theorem 1] that (1.25) holds if |lus]| ;1 remains bounded (this is equivalent to the compatibility
condition on f in [5, Definition 2]). The goal of this paper is to show that (1.25) holds without the compatibility
assumption. It is clear that the localized resonance appears if the compatibility does not hold. The localized resonance
appearing in this situation would be anomalous one whose concept is introduced in [3] since it seems that the boundary
of the resonant regions would vary with the position of the source, and their boundary do not coincide with any
discontinuity in moduli. We do not verify this property in this work. We note that there are plasmonic structures for
which either localized resonance or else complete resonance takes places whenever resonance appears, see [8]. The
localized resonance is related to the geometry of the problem.

The lens in the region B,, \ B;, discussed above is given by / in two dimensions and (r22 /|x|*)1 in three dimensions.
The construction in three dimensions from [13,14] is more involved than the one in two dimensions and based on
the search of isotropic radial forms. In Section 3, we will extend this construction to a class of lenses containing
anisotropic ones (Theorem 2). In particular, we will point out a construction for which r3 can be arbitrary close to
mro (see Remark 1). This extension is based on the study of reflecting complementary media in [5]. The concept
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of complementary media was originally suggested in [12,13] (see also [2,9,10,14]), where various examples were
mentioned, and played an important role in the study of NIMs. In [5], the author provides a precise definition of a class
of complementary media, reflecting complementary media, generated by reflections and investigates the properties of
this class.

The paper is organized as follows. The proof of Theorem 1 will be given in Section 2. Theorem 2, a generalization
of Theorem | which allows anisotropic lenses, will be given in Section 3.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We first present the proof in the two dimensional quasistatic case
(Section 2.1). We will profit the notational ease in this case to present clearly the ideas of the proof. The proof in the
three dimensional quasistatic case is briefly sketched in Section 2.2. In Section 2.3, we consider the finite frequency
case. The proof in this case is similar to the one in the quasistatic one though more involved, in particular, for low
modes.

2.1. Proof of Theorem 1 in the two dimensional quasistatic regime

In this section, kK = 0 and d = 2. Multiplying (1.20) by us (the conjugate of us), integrating over §2, and using the
fact that us = 0 on 052, we have

/s(;(AVu(s,Vu(s):—/fﬁ,s.
2

Q2
Considering first the imaginary part and then the real part, we obtain, by (1.9),
2 C
15131 < 5 Ntsll 22 £ 22 @.1)

Here and in what follows in the proof, C denotes a positive constant independent of § and f.
Asin [5,6], letu; s € HIIOC(Rd \ By,) be the reflection of us through dB,, by F,i.e.,

Ui,s =Us0 F_l,
and let up 5 € H! (B,;) be the reflection of u; s through dB,, by G, i.e.,

uys=1uyso G~! =uso FloG™!.
We recall that ' and G are given in (1.10) and (1.12). Since G o F(x) = (r32/r22)x, it follows from (1.11) that

A=G,F,A inB,.
Applying [5, Lemma 2], we have

Auys=0 in B, \ B, (2.2)
and

div(AVuzs) =0 in B,,. (2.3)
We derive from (2.3) that

Auz s =0 in By, \ By,. (2.4)

From the transmission conditions on 9 B,,, we have

uis=us and (1 —i8)0-u1s=20ruslexx onodB, (2.5)

and, from the transmission conditions on d B,,, we obtain

Uzs =1Uuis and orupy s =(1—1i6)0,u1 sline oN 3Br3. (2.6)
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Since Aus = Auy,s =0 in B, \ By,, by (2.2), and Aupz s =0 in B, \ B, , by (2.4),% one can represent us, ujs,

and u7 s in the forms

us=ag+bolnr + Z(anr" + b,,r_")eine in B \ By,
n>1
uys=co+dolnr+ Z(cnr" + dnrfn)ei"g in By, \ By,
n>1

and

uys=eo+ folnr + Z(enr” + fnr—")eine in Br3 \ By,
n>1

for some (ay,), (by), (cx), (dn), (en), and (f,) C C. We derive from (2.5), (2.7), and (2.8) that

apry +bury " = cury +dyry ",

forn>1,
apry —byry " = (1 — i8)(cnr£' —dnr{"),

and
ap+ bolnry =co+dylnry,
by = (1 —id)dy.

This implies

2—1ié 5 _
a, = Tcn + Ednrz 2n’

is 208
b, = 3cnr22" + 5

forn>1,
dn,
and

ap=co+iddylnrsy,
bo = (1 —1i8)dy.

Since
us —uis =ag+bolnr + Z(anr” +bnr_")ei"9 —co—dolnr — Z(cnr" +dnr_”)ei”9
n>1 n>1
in B, \ B,,, it follows from (2.10) and (2.11) that, in B, \ By,

. i8 _ . i8 o
us —uy s =iddo(Inry —Inr) — > Z(c,, —dyr; 2")r”e”‘e + 5 Z(cnrzz" — dn)r ngintd
n>1 n>1
Similarly, we derive from (2.6), (2.8), and (2.9) that

enry + fury " =cary +dury",
enry — fur;" =1 —i8)(cary —dury™),
and
eo+ folnrs=co+dylnrs,
Jo= (1 —id8)dp.

This implies

e, = %cn + %dnrgzn,

s, 2-is

o= ?Cnr3 + Tdn,

forn > 1,

2 We recall that ry = /rar3 by (1.15).

2.7)

2.8)

(2.9)

(2.10)

@2.11)

(2.12)

(2.13)
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and
{ eg =co+iddglnrs,
Jfo= (1 —id)dp.
Since
uys —uzs=co+dolnr+ Z(c,,r" + dnrfn)eine —ey— folnr — Z(enr" + f,,rfn)e"”e
n>1 n>1

in By, \ By, it follows from (2.13) and (2.14) that, in B, \ B,,,

. i i o
uy s —uzs=—iddo(lnr3 —Inr) + > Z(C” — dnr3 )r"e’”9 ) Z(cnrgn dn)r negind.
n>1 n>1
A combination of (2.12) and (2.15) yields, in By, \ B,,,
. id _ B )
us —up 5 =iddo(Inry —Inrz) + 3 gl Cn (r22” — r3 ngind ~|— X>:ldn 2”) neint
n n

We now use the removing of localized singularity technique introduced in [6]. Set
us —us ifx € 2\ By,
Us = .
U ifx € B,
where

. . ié oy
s =iddo(Inr, —Inrz) + 5 Z(Cnrzzn — cnr32”)r neme’ for x| > r.
n>1

471

(2.14)

2.15)

(2.16)

(2.17)

As in [6], we remove s from us in £2 \ B, . The function s contains very high modes and creates a trouble for

estimating us — u2 s on 0 B, (to obtain an estimate for us). However this term can be negligible for large |x| since r

—n

is small for large r and large n; hence us — iis well approximates us for |x| large enough. This is the spirit of the

removing of regularized singularity technique.
We next estimate

[Us] and [AVUs-x/|x|] ondB,,.

Here and in what follows [U] and [AVU(; - x/|x|] denote the jumps of Us and AVU(; -x/|x| on 9B,,.

From (2.1 6) and (2.17), we have

[Ua]— Zd o _2”)1”:6""9 on 4B, .
n>l

This implies

| (ws) ”3{1/2(3&*) <Cs? Z nldn |2"2_4nrfn-
n>1

Since, by (2.1),

C
[l 5”H1(B, \Br,) ”f”LZHMSHLZ(Q\Br%)a

and Auy s =0in By, \ B,,, it follows that

C
”Ml (SHHI/Z(BB ) + ”a uj (SHH 1/2(33 ) < ”f”Lz”u(S”LZ(.Q\Bm)

and

||M] 5”1‘11/2(63 ) + ”81‘1’“ 5”1.1 1/2(0Br ) ”f”LZHMSHLZ(Q\Br%)'

(2.18)

(2.19)

(2.20)

2.21)

(2.22)
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A combination of (2.8) and (2.21) yields

_ C
DD (lealPr3" +1duPry™") < SISzl 2o, (2.23)
n=0

and a combination of (2.8) and (2.22) implies

_ C
Z(n—l—l) |c,,|2 " \dy | Pr 2”) E||f||L2||M8||L2(Q\B,3)- (2.24)
n=0
Similarly,
_ C
DD (lanr3" + 1baPry ™) < < F g llus 22 p,,)- (2.25)
n=0

We derive from (2.10), (2.11), (2.24), and (2.25) that

_ C
D D (lealPrs" + 821 213" ry ™) < S F gz llus 2, (2.26)
n=>0

Since ry = /r2r3, by the Holder inequality, we have

1/2 1/2
82 nldPry i < 8 <32 > nld, |2r24"r32") < > nld, |2r22"> : (2.27)
n>1 n>1 n>1
A combination of (2.19), (2.23), (2.26), and (2.27) yields
2
||[U5]||H1/2(3Br*) S Cllf 2 lusll 22\ p,,)- (2.28)
Similarly, we have
A 2
” [AVUS x/|x|] ” H-12(3B,,) < C||f||L2||”6||L2(Q\B,3)- (2.29)
On the other hand, from (2.17), we have
||u5||H1(Q\B ) < C<52d0 +82) nleal’r3 > (2.30)
n>1
We derive from (2.23), (2.24), and (2.30) that
||u6||H1(Q\B )y X CS”f”LZ||u8||L2(.Q\Br3)’ (231)
which implies, since Us = us — iis in 2 \ By,
5] i1 (2\B,,) < <C8'2(Ifll 2 + 1 Us "LZ(Q\B,%))' (2.32)
It follows from (2.28), (2.29), and (2.31) that
1051205, + ITAVUs - X/ 1205, ) < CULILNUsl L2, + 821 F11). (2.33)

Since diV(AUg) =fin2\0B,,Us € H'(£2\ dB,), and Us = —ii5 on 352, we derive from (2.32) and (2.33) that

”USHHI(Q\B,.*) + ||U6||H1(B,*) S Clfllg2- (2.34)
A combination of (2.32) and (2.34) yields
lisl 1@\s,,) =0 asé— 0. (2.35)

We claim that
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[Us] — 0 weaklyin H'/2(3B,,) and [AVU;s-x/|x|]— 0 weaklyin H '/*(3B,,). (2.36)
Assuming (2.36) holds, we have

Us — Uy weakly in H' (2 \ B,;)
where Uy € H(} (£2) (by (2.35)) is the unique solution to the equation

div(AVUp) = f in £2.

The conclusion now follows from (2.32).
It remains to prove (2.36). We only prove that

[Us]— 0 weakly in H'/2(3B,,),
the proof of the statement
[AVU; - x/1x|]] = 0 weakly in H~'/2(3B,,)

follows similarly. Indeed, since || Us ”H](.Q\B,3) < C|fl 12, it follows from (2.32) that

> @+ D(lan*r3" + 1balPry ) < CI f g2
n=0

We derive from (2.10) and (2.11) that

ldnl < C)I f I 2,

for some C (n) depending only on n, 2, and r3. Since
|wsil 12,., < €IS N L2
by (2.19), (2.31), and (2.34), it follows from (2.18) that
[(Us] — 0 weakly in H'/2(3B,,).
The proof is complete. O

2.2. Proof of Theorem I in the three dimensional quasistatic regime

The proof in the three dimensional quasistatic case follows similarly as the one in two dimensions. We also have
Aus = Auy5=0in B,; \ B,,, and Auy s =01in B,, \ B,,. Hence us, u1 5, and up s can be written in the forms

o n
us(x) = Y (@nglx" +bualx| )Y (x/Ix]) in By \ By, (2.37)
n=0 l=—n
0 n
wrs() =Y Y (caalx|" +dyslx| ") Yy (x/Ix]) in By \ By, (2.38)
n=0Il=—-n
and
o0 n
uzs() =Y Y (enaslx|"+ fualx| 7)Y} (x/Ix]) in By \ By, (2.39)
n=0l=—n

for some (an 1), (bn.1), (cn.1), (dn.1), (en.1), and (f,;) C C. Here Y,{ is the spherical harmonic function of degree n and
of order /. The details are left to the reader. O
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2.3. Proof of Theorem 1 in the finite frequency regime

The proof in this case is similar to the one in the quasistatic case though it is more complicated. We will present
necessary modifications in the two dimensional case. The three dimensional case follows similarly. For notational

ease, we will assume k = 1.

Letd =2 and k = 1. Using (1.23) and (1.24) and applying the same method used in the proof of [5, Lemma 1], we

obtain, for small &,

1 _
lusl? o <C( <| [ fits
H'(£2) S

2

This implies

+ ||f||iz).

1
s 151y < c(g||f||Lz||us||Lz<g\B,3) + ||f||§z>.
We have

Aus+kus=Auy s +k*u15=0 inB,\ B, and Auzs+k’urs=0 inB,\ B,

by (1.10), (1.14), and (1.17). From (2.41), one can represent us, u1,s, and us s in the forms

oo
us = Z[anfn(|x|) +bn);n(|x|)]ei”9 in By, \ By,,
n=0
e A A~ .
urs =Y [cadn(lxl) +dn¥u(1x])]e™ in By \ By,
n=0
and
e A A .
uzs =Y [endn(1x1) + fu¥u(lx[)]e™ in B\ By,
n=0

for some (a,), (by), (cn), (dn), (en), and (f,) C C. Here

J.ry=2"n!J,(r) and ?n(r)zﬁil)'n(r),

where J,, and Y,, are the Bessel and Neumann functions of order 7. It follows from [1, (3.57) and (3.58)] that

Ju()=1"[1+0(D)]
and
Ya(t) =17"[1+o(D)],

as n — —+o00. Similar to (2.10), we have

a, =c, +18¢c,AC,, +ié8d,AD,,
. . forn >0,
b, =i8¢c,BC, +d, +iéd,BD,,
and similar to (2.13), we obtain
e, =cp +1i8c, EC, +i8d,ED,,,
. . forn > 0.
fon=1i6cyFCy +d,, +i6d,FD,,

Here

(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)
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AL Y.Y,
AC, = — D (r2), AD, = ﬁ(’?), (2.49)
nipn — Jpin In n__Jh}h
Jnd! Y
BC, = AA/ninA/A(VZ), BD, = %(72)7 (2.50)
Kln__ nL1 nyp = IpJdn
J'Y, Y, 7
ECy= 7t (r3).  EDp= ot (r3),
n - n JﬁY - nKz
and
JnJ! y' J,
FCp=w—"e(r3),  FDy= "0 (r3)
YoJ! =Y, W =Y,
Then, in B, \ By,
Us — Uy 5= Z i8(ACycn +ADydy) Jy (1x1)e™? + Z i8(BCpcy -+ BDydy) Yy (1x])e™ (2.51)
n=0 n>=0
and, in B, \ B,,,
wis—ugs=— Y i8(ECycy + EDydn) Jy(1x1)e™ — ) " i8(FCycy + FDudy) Yo (Ix[)e™. (2.52)
n>0 n>=0

A combination of (2.51) and (2.52) yields, in B, \ B,

us —uzs =y i8[ca(ACy — ECy) + dy(ADy — ED)]Jy ()€™

n>0
+ Y i8[(BCy — FCp)cy + (BDy — FDy)dy |V (1x])e™. (2.53)
n=0

We now use the removing of localized singularity technique as in the quasistatic case. Set

iis (x) =Y _i8[(BCy — FCp)cy + (BDy — FDy)dy |V (Ix[)e™,

n=0
and define
Us — us — i ifx e 2\ B,,,
5= u.s if x € By,.
Using (2.45) and (2.46), we have
1 1
AC, = —5[1 + 0(1)], AD, = Erz_z”[l + 0(1)], (2.54)
and
1 1
BC, = Er§"[1+o(1)], BDn=—5[1+o(l)]. (2.55)
Similarly, we obtain
1 1
EC, = —5[1 +o(l)],  ED,= E;»3—2"[1 +o(D)], (2.56)
and
1 1
FCn=§r32"[1+0(1)], FDn=—§[1+o(1)]. (2.57)

Since (see, e.g., [1, (3.56)])

T ()Y (r) = By (DY) = Cur 1,
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it follows that

- N - YYD
lenl? + ldy* < Cor([endn(r) + dn Yo ()| + |cad, (r) + dn Y (0)]7). (2.58)
Combining (2.45), (2.46), and (2.58), as in (2.24), we obtain
_ 1
Z(n + )( |cn|2 24 \dy|Pr 2”) < C(g||u6||L2(Q\B,3)”f||L2 + ||f||iz> (2.59)
n=0
and
_ 1
D A D (lealPr3" + lda*ry ™) < C(S sl r2@\p I 2 + ||f||iz> (2.60)
n=>0
Similarly,
_ 1
> 4 D(lanl*r3" + 1balPr3 ") < C(E||”8”L2(Q\Br3)||f||L2 + Ilflliz) (2.61)
n=0

We derive from (2.59) and (2.61) that

_ 1
D+ D(leal*r3" 4 8%1daPr3"rs ) < C(g||u8||L2(.Q\Br3)”f||L2 + ||f||§z>, (2.62)

n>ng

for some n( large enough.
As in the proof of Theorem 1 in the quasistatic case, using (2.60) and (2.62), we have

|51 s, T |IAVUs -] I s, < CUS 2 usl 225, +81F1172)-
The proof is now similar to the one in the quasistatic case. The uniqueness of the limit of Us follows from (1.23).
The details are left to the reader. O

3. Other constructions of superlenses

The construction of the superlens given by (1.7) and (1.8) is not restricted to the Kelvin transform F w.r.t. dB,,.
In fact, using the study of reflecting complementary media in [5], we can extend this construction further. We confine
ourselves to a class of radial reflections for which the formulae for A and X are explicit even though general reflections
as in [5] can be used.

Fix a, 8 > 1 such that’

af —a—pB=0. (3.1
Let F1: B, \ {0} — R4 \ Brz and G| : R4 \ 3,3 — By, \ {0} be defined as follows:

Fi(x) =r§x/|Ix|* and Gi(x)=rfx/Ix|f.
Here, ry, rp, and r3 are chosen such that

r3/ri=ry/rf =m and |/rar3 =mro,
which yields

a1 atl 3a—1
ry=rom 2 , rmp=rom 2, and r3=rom 2« . (3.2)

It follows from (3.1) and (3.2) that G| o Fy : B;, — B,, satisfies

GioFi(x)=mx.

3 One can choose o and 8 such that af — o — B > 0. However, the expression of Ay and Al below are more involved in this case.
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Define
(Fy DI, (F7 4l in By, \ By,
Ay 5= L ETDUGTHI (FPDAGTDT in By, \ By, (3.3)
a, o in By,
1,1 otherwise,
and
Y L - » in 2\ By,
(G * (Fxa, (G)«(FD)«l =m~%a(x/m), m™%c(x/m) n Bpyy,.

One can verify that, in B, \ B;,,

ro r3oz
A, X =2 er®er+(a—1)(eg®eg+eg®ey) |, (a— )3 ifd=3, (3.4)
r¢la—1 rov
and
r2a
AL D= e ®et@—Dey®@ep. (-5 ifd=2, (3.5)
a—1 reo
and, in B;, \ By,
A, X =mé1, me. (3.6)
We will assume that (1.23) holds for (A], 21) instead of (A, ﬁ’) and
equation Av + kK*v=0in 2 \ By, has only zero solution in HO1 (£2\ By,). (3.7

The following result is a generalization of Theorem 1.

Theorem 2. Let d = 2,3, f € L>(2) with supp f C £\ B, and let u,us € HO1 (82) be respectively the unique
solutions to

div(ss A1 Vus) + sok> Zius = f  in 2
and

div(A;Vu) + K> Siu=f in £2.
We have

us —u weaklyin Hl(.Q \ B;) asé— 0. (3.8)
By taking « = B = 2, we obtain Theorem | from Theorem 2.

Remark 1. We have 8 = o/(a — 1) by (3.1). Letting « — 1, we derive from (3.2) that
ri—ro and r3— mry. (3.9)

Thus for any ¢ > 0, there exists a construction such that the magnification of m times for an object in B, takes place
for any supp f C 2\ Byt

Proof. We have
(F)«A1=1 inBy\ By, and (GDi(F)sAi=1 inBy\ By,
and

(F)«Z1=1 in B\ By, and (G«(F1)«+X1 =1 inBy\ B,
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by the definition of (A1, X'1). We recall that r, = /ror3 = mrg by (3.2). This implies, by [5, Lemma 4],
Auy s+ k2u1,5 =0 in B\ B,

and

Aups+kuy5=0 in B, \ B,,.
Here, as in the proof of Theorem 1, we define

Uis=1uo Fl_1 in RY \By, and uzs=ujso Gl_1 in By,.
Similar to (2.5) and (2.6), by [5, Lemma 4], we obtain

u1’3=u5|+ onaB,2 and (1—i8)A1Vu1’,g-17=A1Vu5-r;|+ OnaBr2,

and

uys=uzs ondB,, and (1—1i6)dyu1sl— =0dyuzs onodB,,.

This proof is now similar to the one of Theorem 1. The details are left to the reader. O
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