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Abstract

Sharp and local L1 a posteriori error estimates are established for so-called “well-balanced” BV (hence possibly discontinuous) 
numerical approximations of 2 × 2 space-dependent Jin–Xin relaxation systems under sub-characteristic condition. According to 
the strength of the relaxation process, one can distinguish between two complementary regimes: 1) a weak relaxation, where local 
L1 errors are shown to be of first order in �x and uniform in time, 2) a strong relaxation, where numerical solutions are kept close 
to entropy solutions of the reduced scalar conservation law, and for which Kuznetsov’s theory indicates a behavior of the L1 error 
in t · √

�x. The uniformly first-order accuracy in weak relaxation regime is obtained by carefully studying interaction patterns 
and building up a seemingly original variant of Bressan–Liu–Yang’s functional, able to handle BV solutions of arbitrary size for 
these particular inhomogeneous systems. The complementary estimate in strong relaxation regime is proven by means of a suitable 
extension of methods based on entropy dissipation for space-dependent problems. Preliminary numerical illustrations are provided.
© 2015 
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1. Introduction

1.1. Space-dependent 2 × 2 Jin–Xin relaxation model

We consider the simplest 1D kinetic model involving a space-dependent Knudsen number,{
∂tρ + ∂xJ = 0

∂tJ + ∂xρ = 2k(x)g(ρ, J )
(1.1)
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under the assumption that for some c > 0,

k ∈ L1(R) ∩ L∞(R), k(x) ≥ 0 (1.2)

∂J g ≤ −c < 0, |∂ρg| < |∂J g|. (1.3)

Moreover we assume that there exists a C1 bounded map A(ρ) such that

g
(
ρ,A(ρ)

)= 0 for all ρ. (1.4)

The curve J = A(ρ) will be called equilibrium curve. By taking the derivative of (1.4) and using (1.3), it follows that 
the so-called sub-characteristic condition holds:∣∣A′(ρ)

∣∣< 1. (1.5)

A typical choice for g is given by the relaxation term:

g(ρ,J ) = A(ρ) − J. (1.6)

Remark 1.1. The system (1.1) with the assumptions (1.2)–(1.4) perfectly matches the two-scale relaxation framework 
studied in [12]. A variant of the expression (1.6) would be for instance:

g(x,ρ, J ) = A(x,ρ) − J, x 
→ A(x, ·) ∈ C1(R), sup
x

∣∣∂ρA(x,ρ)
∣∣< 1.

Such a model, which appears for instance in [10,32], wouldn’t strongly modify our interaction estimates and conse-
quently our error estimates. Another field of application would be an elementary semi-conductor model, for which the 
convective part would correspond to a lattice temperature θ0,

∂tJ + ∂x(θ0ρ) = 1

τ(x)

(
τ(x)E(x)ρ − J

)
, τ (x)

∣∣E(x)
∣∣<√θ0, (1.7)

with E(x) a small static electric field, and τ(x) standing for a space-dependent relaxation time depending on the local 
doping concentration.

In terms of “microscopic diagonal” variables f ±, defined by

ρ = f + + f −, J = f + − f −

the system (1.1) rewrites as a discrete-velocity kinetic model:{
∂t

(
f −)− ∂x

(
f −)= −k(x)G

(
f −, f +)

∂t

(
f +)+ ∂x

(
f +)= k(x)G

(
f −, f +) (1.8)

where G(f −, f +) := g(f + + f −, f + − f −). Initial data for (1.8) are chosen such that

f ±(t = 0, ·) = f ±
0 ∈ L1 ∩ BV(R). (1.9)

We close this section by indicating that our semi-linear, space-dependent model (1.1) belongs to the class of relax-
ation systems [22], which was intensively studied both analytically and numerically more a decade ago, mostly for 
constant coefficients ∂xk ≡ 0, though: see [3,21,23,24,28,30,34,36], also [4–6] and the survey by Natalini [31]. Rig-
orous error estimates for inhomogeneous hyperbolic problems follow from papers dealing with homogeneous ones, 
like [7,11,19,29,35]; however, a new strategy, partly inspired by Laforest [27], consists in taking advantage of the 
Bressan–Liu–Yang L1 stability theory [8,9] in order to derive sharp error estimates for space-dependent source terms 
problems: see [1,2]. Here we address a model which is motivated by recent applications like for instance the ones 
presented in [12] or [32].
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1.2. Main result and plan of the paper

Theorem 1.1. Assume (1.2), (1.6) and the sub-characteristic condition (1.5); for x1 < x2 and 2t ≤ x2 − x1, set

I (t) =
x2−t∫

x1+t

∣∣f ±
�x(t, x) − f ±(t, x)

∣∣dx

being f ±
�x defined according to the WB algorithm in Section 2.1 (see Fig. 3).

(i) There exists a positive constant C > 0 such that, under a smallness assumption ‖k‖L1(x1,x2)
< C, the following 

first-order local error estimate holds for �x sufficiently small (see (3.49)),

I (t) ≤ KI (0) + �x · E1,

E1(t, x1, x2) = (2KC0 + K0)‖k‖L1(x1,x2)
+ (2C0 − 1)‖k‖L1(x1+t,x2−t), (1.10)

where C0 stands for the Maxwellian gap (see (2.25)) and

K = C

C − ‖k‖L1(x1,x2)

≥ 1,

K0 = 1 + 4K2

C(3K + 1)

(
TV
{
f ±

0 ; (x1, x2)
}+ 2C0‖k‖L1(x1,x2)

)
.

(ii) If k ∈ L1 ∩ BV, then one has moreover a “half-order”, time-dependent estimate,

I (t) ≤ I (0) + 2t
√

�x · E2 (1.11)

where,

E2(t, x1, x2) =
√

C0‖k‖L1(x1,x2)
A(t) + √

�xC0‖k‖L1(x1,x2)
‖k‖L∞(x1,x2),

A(t) = 32

C0t
TV
{
f ±

0 ; (x1, x2)
}+ TV

{
k; (x1, x2)

}
.

Some comments on the main estimates (1.10), (1.11) are now in order.

– The value of the constant C in (i) is explicit, being C = 3
16 log(4/3): see (3.73).

– The smallness of �x in (i) depends on ‖k‖∞: indeed, (3.49) amounts to require that ‖k‖∞�x ≤ 8C/3.
– Thanks to (1.9), the initial error is bounded by �x · TV{f ±

0 ; (x1, x2)} as soon as the algorithm is initialized with 
a convenient sampling of f ±

0 , see (3.71).
– When the assumptions of both these estimates are valid, then one has

I (t) ≤ I (0) + min
{
(K − 1)I (0) + �x · E1; 2t

√
�x · E2

}
. (1.12)

The first estimate in (1.12) is uniform in time t and first-order in �x, but is meaningful only for “weak relaxation 
regime”, where K remains finite. The complementary estimate is linear in time t and half-order in �x, which 
was to be expected as, in strong relaxation regime, the system (1.1) behaves like the reduced scalar conservation 
law for which optimal convergence order is studied in [33].

– Let us show the comparison of the two estimates on an elementary example.
◦ Assume first that TV{f ±

0 ; (x1, x2)} = 0: the error estimate (1.12) boils down to

x2−t∫
x1+t

∣∣f ±
�x(t, x) − f ±(t, x)

∣∣dx ≤ min{�x · E1; 2t
√

�x · E2}.

Accordingly, there is no error at time t = 0. For semi-conductor models like (1.7), initial data usually are 
J (t = 0, ·) ≡ 0 and ρ(t = 0, ·) = d , a piecewise-constant doping profile so its error vanishes, too.



624 D. Amadori, L. Gosse / Ann. I. H. Poincaré – AN 33 (2016) 621–654
◦ The initial Maxwellian gap is fixed to C0 = 1
2 so the last term of the time-uniform estimate E1 cancels.

◦ On the coefficient k, we assume that ‖k‖L∞(x1,x2) = 1 and ‖k‖L1(x1,x2)
= C/2, so that K = 2; however, we 

don’t restrict its total variation.
Based on all these assumptions, we can estimate the terms E1, E2. It is found that

K = 2, K0 = 15

7
, E1 = C

2
(2 + K0)

and

A(t) ≡ TV
{
k; (x1, x2)

}
, 2E2 = C

2

(
2

√
1

C
TV
{
k; (x1, x2)

}+ √
�x

)
.

Therefore, the time-dependent estimate dominates the other one as soon as

t ≥ √
�x

E1

2E2
= 2 + K0

1 + 2
√

TV{k;(x1,x2)}
C�x

.

Hence, the time-uniform estimate E1 is sharper in case the relaxation term is multiplied by a small, but oscillating 
(or at least, displaying areas of strong variation) coefficient. This meets with early implementations of the so-called 
“generalized Glimm scheme” by Weinan E [13] in a context of homogenization of scalar balance laws.

The main contribution of this paper is the proof of the time-uniform estimate (1.10), which relies on the appli-
cation of the Bressan–Liu–Yang L1-stability theory to a modified, homogeneous but non-conservative, version of 
system (1.1), see (2.13). A Godunov scheme can be set up, relying on a Riemann solver where the effects of the 
localized relaxation term are handled by means of a supplementary, static, jump relation, sometimes called “standing 
wave”, or “zero-wave”. Our estimate (1.12) shows that in a context where TV(k) is (locally) big, accurate approxima-
tions can be obtained (perhaps beyond a certain time) by means of numerical schemes relying on this type of Riemann 
solvers, where the source term is handled like a “local scattering center” inducing a stationary discontinuity, as 
suggested by Glimm and Sharp in [14].

The remaining part of the paper is entirely devoted to the proof of Theorem 1.1: E1 is established in Section 2
and Section 3 whereas E2 is derived by means of Kuznetsov’s method [26,29] in Section 4. More precisely, within 
the assumptions (1.2)–(1.4), the Riemann problem for the non-conservative reformulation of (1.1) is studied in Sec-
tion 2.1, its positively-invariant domains are described in Section 2.2 (see Fig. 2) and a time-uniform total-variation 
estimate is shown in Section 2.3. In Section 3 we set up the Lyapunov functional inspired by the Bressan–Liu–Yang 
L1 stability theory for general homogeneous n × n hyperbolic systems: a technical Gronwall lemma allows to derive 
wave scattering estimates in Section 3.1, then accurate interaction estimates are proved in Section 3.2 (for simplicity, 
the analysis is specialized to the assumptions (1.2), (1.6)). This part culminates in Section 3.3 where the decay of our 
Lyapunov functional is established for possibly big BV data in weak relaxation regime (that is, for ‖k‖L1 suitably 
bounded). A complementary estimate is needed for strong relaxation: Section 4.1 contains the derivation of entropy 
inequalities corresponding to the Godunov scheme for (2.13) and then, Section 4.2 indicates how they lead to another 
type of L1 error estimates, fully compatible with Kuznetsov’s half-order accuracy for numerical approximations of 
scalar conservation laws. This last part is carried out in the more general framework of (1.2)–(1.4). Finally we re-
mark that the proof of estimate E1 allows us to improve the error estimate for the semi-linear “locally damped wave 
equation”, see [37,38],

∂tρ + ∂xJ = 0, ∂tJ + ∂xρ = −2k(x)g(J ),

that was formerly studied in [2]. For this system, the estimate (1.10) holds for any �x ≥ 0 and provided

C0 = ‖g‖∞, C = 1

4 · Lip(g)
.

The only restriction is a small L1 norm of the coefficient k, or equivalently a small total variation for a,

TVa = ‖k‖L1 <
1

4 · Lip(g)
,

which is needed in order to ensure that K < ∞. Further details are presented in Remark 3.6.
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Remark 1.2 (Algorithmic implications). Our new estimate E1 in (1.12) appears like being specific to so-called “well-
balanced” methods where source terms are concentrated onto interfacial discontinuities: the fact that E1 doesn’t grow 
in time and is independent of TV(k), at least when ‖k‖L1 is small enough, suggests that this type of algorithms should 
outperform more conventional (time-splitting, see e.g. [15,29]) ones when k(x) display strong variations. This differ-
ence was already seen in [2] on a simpler model of damped wave equation. Moreover, it can give hints on why WB 
algorithms deliver high accuracy results on shallow water equations in presence of a steep topography: our results 
don’t strictly apply to such a quasi-linear model, though.

2. Construction of the well-balanced approximation

In this context, the WB approach consists in dealing with the inhomogeneous system (1.8) by means of a non-
conservative homogeneous 3 × 3 system, which turns out to be equivalent for smooth a(x),⎧⎨⎩

∂tρ + ∂xJ = 0,

∂tJ + ∂xρ − 2g(ρ,J )∂xa = 0,

∂ta = 0,

a = a(x)
.=

x∫
−∞

k(y) dy, (2.13)

or equivalently, since G(f +, f −) = g((f + + f −), (f + − f −)),

∂tf
∓ ∓ ∂xf

∓ ± G
(
f +, f −)∂xa = 0, ∂ta = 0. (2.14)

From assumption (1.2) one has that

a(x) ∈ BV(R) ∩ C(R), ax ≥ 0. (2.15)

The characteristic speeds of system (2.14) are λ = {−1, 0, 1} with corresponding eigenvectors

�r− = (0,1,0)t , �r0 = (G,G,1)t , �r+ = (1,0,0)t ,

where we denote G(f +, f −) := g((f + + f −), (f + − f −)). The 0-wave curves are those characteristic curves cor-
responding to λ = 0. One can easily check that the characteristic curves for λ = ±1 are straight lines, while for λ = 0
they are straight lines whenever A ≡ 0 (see [2]).

Remark 2.1. The above mentioned procedure appears to trace back to Glimm and Sharp [14]. It consists in localizing 
a source term of bounded extent into a countable collection of “local scattering centers” rendered by Dirac masses, in 
order to integrate it inside a Riemann solver by means of an elementary (obviously very linearly degenerate) wave. 
It is extensively used for weakly nonlinear kinetic equations in Part II of [16].

2.1. First considerations on the 3 × 3 Riemann problem

As usual, let

U� = (f −
� , f +

� , a�

)
, Ur = (f −

r , f +
r , ar

)
be a given a Riemann data for (2.14). The Riemann problem for system (2.14) is solved in terms of the three character-
istic families, resulting in three waves: the two ±1-waves, with corresponding speed ±1, where only f± can change 
its value; and the 0-wave, corresponding to the stationary field of (2.14), evolving along the stationary equations

∂xf
± = k(x)G

(
f −, f +), (2.16)

or equivalently, from (1.1):

∂xJ = 0, ∂xρ = 2k(x)g(ρ, J ). (2.17)

Notice that J is constant along stationary solutions. In terms of the diagonal variables f ±, the equilibrium curve 
J = A(ρ), i.e. the level curve G = 0, is clearly expressed by

f + − f − = A
(
f + + f −).
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Fig. 1. Schematic view of a Riemann problem for (2.14).

By (1.5), |A′| < 1, and thanks to the implicit function theorem, the corresponding curve realizes a graph in the f ±
plane. Indeed for each f − the map R →R,

x 
→ x − f − − A
(
x + f −)

is strictly increasing and tends to ±∞ as x → ±∞. Hence there exists a function f + = E(f −), globally defined 
on R, along which the source vanishes. This map E is smooth and its derivative equals

E′(f −)= 1 + A′(y)

1 − A′(y)
, y = E

(
f −)+ f −.

Thanks to (1.5), E′ > 0 thus E is strictly increasing, and the range of E′ is (0, +∞). Now we observe the following 
interesting feature: from (1.3) it follows that

∂G

∂f − = ∂ρg − ∂J g > 0,
∂G

∂f + = ∂ρg + ∂J g < 0 (2.18)

and therefore the gradient of G “points” in the bottom-right direction of the (f −, f +)-plane. Consequently G > 0
below the graph and G < 0 above the graph (see the arrows in Fig. 2).

The intermediate states in the Riemann fan are (see Fig. 1)

U1 = (f −∗ , f +
� , a�

)
, U2 = (f −

r , f +∗ , ar

)
,

while the waves appearing in the solution are as follows: U� and U1 are connected by a (−1)-wave of size σ−1, U1
and U2 are connected by a 0-wave of size σ0, and U2 and Ur are connected by a 1-wave of size σ1 where⎧⎪⎨⎪⎩

σ−1 = f −∗ − f −
� = (f −∗ − f +

�

)− (f −
� − f +

�

)= J� − J∗ = ρ∗,� − ρ�

σ0 = ar − al

σ1 = f +
r − f +∗ = (f +

r − f −
r

)− (f +∗ − f −
r

)= Jr − J∗ = ρr − ρ∗,r .

(2.19)

Here the “∗” signals that the corresponding value is related to the 0-wave: more precisely, (ρ∗,�, J∗) and (ρ∗,r , J∗)
denote the left and right states separated by the 0-wave, respectively, in terms of the macroscopic variables (ρ, J ).

Remark 2.2. There exists a practical way to construct the Riemann problem for small δ. If δ = 0, there is no zero-wave 
thus U1 = U2 is given by the state P = (f −

r , f +
� ), that corresponds to the intersection of the (−1)-wave issued from 

(f −
� , f +

� ) and the (+1)-wave issued from (f −
r , f +

r ). Clearly here J∗ = f +
� − f −

r .
For δ > 0 small, the value of J∗ can be obtained by perturbation as follows:

• In the very special case where G(P ) = 0, that is, the intersection point P lies on the equilibrium curve, then the 
intermediate states U1, U2 again coincide whatever is the value of δ > 0.

• Assume now that G(P ) > 0, the other case being similar. Then, for a convenient J∗, one has to solve the equation

∂aρ = 2g(ρ,J∗), ρ(al) = ρ∗,�.

(1) Define B(ρ, J ) by integrating up to a constant 1
2g

with respect to ρ,

B(ρ,J ) =
ρ∫

dρ′

2g(ρ′, J )
. (2.20)

For each value of the parameter J , the above function is well defined and monotone in a neighborhood of a 
point (ρ̄, J ) such that g(ρ̄, J ) �= 0. Then, the left and right states of the 0-wave satisfy the relation
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Fig. 2. Invariant domain for (2.14) and 2 sets of initial/final states. Diagonal arrows stand for the projection of the vector �r0 on the f ± plane.

B(ρ∗,r , J∗) − B(ρ∗,�, J∗) =
ρ∗,r∫

ρ∗,�

dρ′

2g(ρ′, J )
= ar − a�.

Notice that, even if B is defined by (2.20) up to a function depending on J , the above difference does not 
depend on the choice of the particular function.

(2) Now, by the very definition of f ±, we have

ρ∗,� + J∗ = 2f +
� , ρ∗,r − J∗ = 2f −

r (2.21)

then, by taking advantage of the fact that f + (resp. f −) is constant across a −1-wave (resp. across a 1-wave), 
we can write an implicit equation for J∗, in terms of the parameters f +

� and f −
r :

B
(
2f −

r + J∗, J∗
)− B

(
2f +

� − J∗, J∗
)= ar − a�. (2.22)

Eq. (2.22) already appeared in the context of diffusive numerical approximations, in a slightly different form: 
see the book [16], p. 150.

2.2. Shape of positively invariant domains for 3 × 3 Riemann problems

We first need to establish control on the amplitude of the WB approximations. A standard roadmap for doing so is 
to seek a positively invariant domain for the Riemann problem: see Fig. 2.

Proposition 2.1. Let f −
min < f −

max , P1 = (f −
min, E(f −

min)), P2 = (f −
max, E(f −

max)), and δ := ar − a� > 0. Then the 
rectangle

D = [f −
min, f

−
max

]× [E(f −
min

)
,E
(
f −

max

)]
(2.23)

is positively invariant for the unique solution of the Riemann problem. More precisely, for any pair of states (f−
� , f +

� )

and (f −
r , f +

r ) ∈ D and for δ = ar − a� > 0, there exists a single choice of the intermediate states U1, U2 for which 
one has∣∣∣∣f −

r − f −
�

∣∣− |σ−1|
∣∣≤ C0δ,

∣∣∣∣f +
r − f +

�

∣∣− |σ1|
∣∣≤ C0δ (2.24)

where C0 measures the “Maxwellian gap” in L∞:

C0 = max
{∣∣G(f −, f +)∣∣; (f −, f +) ∈ D

}
. (2.25)
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Proof. Thanks to (2.21), all the intermediate states in the Riemann problem can be deduced from the knowledge 
of J∗, and the values f +∗ and f −∗ are defined by the identity

f +∗ − f −
r = f +

� − f −∗ = J∗.

Clearly, if G(f −
r , f +

� ) = 0, then J∗ = f +
� − f −

r for every δ > 0. On the other hand, when G(f −
r , f +

� ) �= 0, we 
aim at showing that the value of J̃ is actually implicitly defined by Eq. (2.22). Indeed let (f −, f +) ∈ D be such 
that G(f −, f +) > 0 (that is, (f −, f +) below the equilibrium curve), the opposite case being similar, and define the 
function F as follows:

(J, δ) 
→ F
(
J, δ;f ±)= B

(
2f − + J,J

)− B
(
2f + − J,J

)− δ

=
2f −+J∫

2f +−J

dρ′

2g(ρ′, J )
− δ (2.26)

(subscripts in f ± were dropped). One easily finds a solution of the particular equation for δ = 0,

F
(
J0,0;f ±)= 0 ⇔ J0 = f + − f −.

This solution corresponds to the case where there is no zero-wave because δ = ar − a� vanishes. Let us verify that the 
following property holds:

0 �= ∂F

∂J

(
J0,0;f ±)= (∂J B + ∂ρB)

(
2f − + J0, J0

)− (∂J B − ∂ρB)
(
2f + − J0, J0

)
,

but since 2f + − J0 = f + + f − = 2f − + J0, this expression reduces to

∂F

∂J

(
J0,0;f ±)= 2∂ρB

(
f + + f −, f + − f −)= 1

G(f +, f −)
�= 0.

The implicit functions theorem ensures existence and uniqueness of a smooth function,

J̃ : (0, ε) × D →R, δ, f ± 
→ J̃
(
δ;f ±), (2.27)

such that, for 0 < ε � 1 and G(f +, f −) �= 0, one has J (0; f ±) = J0 = f + − f − and

F
(
J̃ , δ;f ±)= 0 ⇔

2f −+J̃∫
2f +−J̃

dρ′

2g(ρ′, J̃ )
= δ. (2.28)

Moreover, since ∂F/∂δ = −1, we make explicit the derivative of J̃ :

∂J̃

∂δ
= 1

∂F
∂J

(J̃ , δ;f ±)
,

∂J̃

∂δ

(
δ = 0;f ±)= G

(
f +, f −)> 0.

Under those smallness restrictions and (f −, f +) being fixed below the equilibrium curve, the restriction δ 
→ J̃ is 
increasing because G(f +, f −) > 0. Moreover, as soon as J̃ (δ, f ±) is defined, the segment in the state space ρ, J
along which the integral in (2.26) is computed, parametrized by ρ as follows,[

2f + − J̃ ,2f − + J̃
] � ρ 
→ (ρ, J̃ ) (2.29)

does not intersect the equilibrium curve: otherwise, the integral in (2.28) would blow up, instead of being equal to δ. 
Now we intend to verify that ∂F

∂J
(J̃ , δ; f ±) > 0, in order to establish that J̃ is indeed increasing as soon as it is defined. 

Using the definition of B , see (2.20), we have

2
∂F

∂J

(
J, δ;f ±)= 2(∂J B + ∂ρB)

(
2f − + J,J

)− 2(∂J B − ∂ρB)
(
2f + − J,J

)
=

2f −+J∫
+

1

g2(ρ′, J )

∣∣∂J g
(
ρ′, J

)∣∣dρ′ + 1

g(2f − + J,J )
+ 1

g(2f + − J,J )
. (2.30)
2f −J
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Assuming again that G(f +, f −) > 0, if J is set to J = J̃ (δ; f ±) then the extrema of the integral above satisfy 
2f + − J̃ < 2f − + J̃ (see Fig. 2). Hence we can take advantage of the last condition in (1.3),

2f −+J∫
2f +−J

1

g2(ρ′, J )

∣∣∂J g
(
ρ′, J

)∣∣dρ′ ≥
2f −+J∫

2f +−J

1

g2(ρ′, J )

∣∣∂ρg
(
ρ′, J

)∣∣dρ′

≥
2f −+J∫

2f +−J

1

g2(ρ′, J )
∂ρg

(
ρ′, J

)
dρ′

= − 1

g(2f − + J,J )
+ 1

g(2f + − J,J )
.

We can therefore estimate from below the integral in (2.30) and get

∂F

∂J

(
J, δ;f ±)≥ 1

g(2f + − J,J )
> 0.

We now deduce that the function δ 
→ J̃ (δ; f ±) is actually defined on R+:

• There exists Jmax such that the interval in (2.29) has no intersection with the equilibrium curve for J0 ≤ J < Jmax.
• For J = Jmax there exists a point of the interval, say (ρ̄, Jmax) such that g(ρ̄, Jmax) = 0. Since g is C1, then 

g(ρ, Jmax) = O(1)(ρ − ρ̄) and therefore the corresponding integral is not finite.

Hence J̃ (δ) is defined for every δ > 0, and J̃ (δ) → Jmax as δ → ∞.
Analogously δ 
→ J̃ (δ; f ±) is decreasing when (f −, f +) is above the equilibrium curve, and that it is defined for 

all δ > 0 finite. The monotonicity of J̃ implies that the domain D is positively invariant for the Riemann problem, 
see Fig. 2. Finally, concerning (2.24), we use (2.16) and (2.19) to estimate the jump in the f ± coordinate across the 
0-wave, that is:∣∣f +∗ − f +

�

∣∣= ∣∣f −
r − f −∗

∣∣≤ sup
D

|G| · δ

and this yields,∣∣∣∣f +
r − f +

�

∣∣− |σ1|
∣∣= ∣∣∣∣f +

r − f +
�

∣∣− ∣∣f +
r − f +∗

∣∣∣∣≤ ∣∣f +∗ − f +
�

∣∣≤ C0δ

with C0 as (2.25). An analogous estimate holds for σ−1 thus we end up with (2.24). �
2.3. Total variation estimate of the WB approximation

Let D be a rectangle as in (2.23) that contains the values of initial data (f −
0 , f +

0 ). By means of Proposition 2.1, 
since ax ≥ 0, up to a suitable choice of the initial data, the approximate solution remains confined inside the region D

∀t > 0,
(
f −, f +)(t, .) ∈ D. (2.31)

Previous results on positively invariant domains for the 3 × 3 Riemann problem for (2.14) allow to easily derive 
uniform bounds on the total variation of the corresponding WB approximation thanks to its peculiar structure. The 
method hereafter is taken from [20], p. 643, and we recall it now for completeness:

• Differentiate in time each equation on f ± in (2.14), multiply by (sgn(∂tf
−), sgn(∂tf

+))t and then integrate 
on x ∈ R. It comes

∀t > 0, ∂t

∫
R

(∣∣∂tf
+(t, x)

∣∣+ ∣∣∂tf
−(t, x)

∣∣) · dx ≤ 0,

thanks to the quasi-monotonicity of G.
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Fig. 3. Schematic view of a WB approximate solution: circles indicate Riemann problems studied in Proposition 2.1. Since the Courant number 
is 1, constant states always lie in between them.

• An easy observation is that, by taking moduli, it comes:∣∣∂xf
±∣∣− ∣∣G(f −, f +)∂xa

∣∣≤ ∣∣∂tf
±∣∣≤ ∣∣∂xf

±∣∣+ ∣∣G(f −, f +)∂xa
∣∣.

• It remains to integrate in space in order to obtain the estimate:∫
R

(∣∣∂xf
+(t, x)

∣∣+ ∣∣∂xf
−(t, x)

∣∣) · dx ≤
∫
R

(∣∣∂xf
+(0, x)

∣∣+ ∣∣∂xf
−(0, x)

∣∣) · dx + 4C0 TVa

where C0 is given as in (2.25).

Recall also that TVa = ‖k‖L1 . The last point to clarify addresses the fact that we seek a BV-bound on an approxima-
tion depicted in Fig. 3, and not the exact solutions f ± of (2.14). However, since we chose to work with the Courant 
number equal to 1, the only difference between the WB approximation and the exact solutions lies in the sampling of 
initial data. Hence one gets the following estimate that does not depend on time for the WB approximation:

TVf +(t, ·) + TVf −(t, ·) ≤ TVf +(0, ·) + TVf −(0, ·) + 4C0‖k‖L1 . (2.32)

This BV-bound is identical to the one obtained in [2] by means of rather different methods, though.

3. An L1 error estimate through a Lyapunov functional

In this section we assume for simplicity that (1.6) and (1.5) hold, that is g(ρ, J ) = A(ρ) − J with |A′| < 1. The 
extension to more general relaxation terms (1.2)–(1.4) follows without substantial difficulties, but at the price of 
tedious computations. We first study interactions between various patterns of waves for the system (2.14) in order to, 
in a second step, estimate the time-variation of the Lyapunov L1-functional.

3.1. A lemma based on sub-characteristic condition

We start with a Gronwall-type lemma that exploits the sub-characteristic condition (1.5). Since |A′| < 1 and ρ

ranges over a compact set, there exists a positive constant α < 1 such that |A′| ≤ α .
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Lemma 3.1. Let |A′| ≤ α and for a ∈ [a�, ar ], ρ(a, J ), satisfy the parameter-dependent differential equation

∀J ∈ Range(J̃ ),
∂ρ(a, J )

∂a
= 2

(
A(ρ) − J

)
.

For some J2 > J1, a ∈ [a�, ar ], define φ(a) = ρ(a, J2) − ρ(a, J1), and assume that

φ(ar) = ρ(ar , J2) − ρ(ar , J1) = J2 − J1 > 0. (3.33)

Then the following inequalities hold:

∀a ∈ [a�, ar ], φ(ar ) − φ(a) ≤ −c̃(J2 − J1)(ar − a) (3.34)

with

c̃ = (1 − α)
e2α(a�−ar ) − 1

α(a� − ar)
> 0, (3.35)

and

∀a ∈ [a�, ar ], 0 < φ(a) − φ(ar) ≤ C̃(J2 − J1)(ar − a) (3.36)

with

C̃ = (1 + α)
e2α(ar−a�) − 1

α(ar − a�)
. (3.37)

Proof. As soon as φ(a) > 0 (which is true by continuity for a close to ar ), φ satisfies

φ′(a) = 2
{
A
(
ρ(a, J2)

)− A
(
ρ(a, J1)

)}− 2(J2 − J1) ≤ 2αφ(a) − 2(J2 − J1). (3.38)

The Gronwall lemma yields1

e2α(a−ar )φ(ar) − φ(a) ≤ J2 − J1

α

(
e2α(a−ar ) − 1

)
. (3.39)

By summing, subtracting and then using (3.39) and (3.33), we infer that

φ(ar) − φ(a) = [e2α(a−ar )φ(ar) − φ(a)
]− (e2α(a−ar ) − 1

)
φ(ar)

≤ J2 − J1

α

(
e2α(a−ar ) − 1

)− (e2α(a−ar ) − 1
)
φ(ar)

= (J2 − J1)
e2α(a−ar ) − 1

α
(1 − α)

= −(ar − a)(J2 − J1)

{
e2α(a−ar ) − 1

α(a − ar)

}
(1 − α)

≤ −c̃(ar − a)(J2 − J1)

with ̃c as in (3.35). This proves (3.34). Such inequality, rewritten as

φ(ar) + (ar − a)(J2 − J1)̃c(1 − α) ≤ φ(a), a ∈ [a�, ar ],
shows also that φ remains positive, hence the above argument is valid as soon φ(a) is defined.

1 Proof of (3.39). We have(
e−2α(a−ar )φ(a)

)′ = e−2α(a−ar )
(
φ′ − 2αφ

)≤ −2(J2 − J1)e−2α(a−ar ).

By integrating in the interval [a, ar ] we find that

φ(ar ) − e−2α(a−ar )φ(a) ≤ J2 − J1

α

(
1 − e−2α(a−ar )

)
.

It remains to multiply by e2α(a−ar ) on both sides and get (3.39).
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Fig. 4. Interaction pattern corresponding to the scattering of a linear wave σ1 by a source-term discontinuity of size δ = ar − a� > 0.

To prove (3.36), we start again from computing φ′ and find the opposite inequality to (3.38):

φ′(a) ≥ −2αφ(a) − 2(J2 − J1),

where we used also that φ(a) > 0. The Gronwall lemma yields

e−2α(a−ar )φ(ar) − φ(a) ≥ −J2 − J1

α

(
e−2α(a−ar ) − 1

)
.

By proceeding as in the first part of the proof, we obtain

φ(ar) − φ(a) = [e2α(ar−a)φ(ar ) − φ(a)
]− (e2α(ar−a) − 1

)
φ(ar)

≥ −J2 − J1

α

(
e2α(ar−a) − 1

)− (e2α(ar−a) − 1
)
φ(ar)

= −(J2 − J1)

{
e2α(ar−a) − 1

α(ar − a)

}
(1 + α)(ar − a) ≥ −C̃(J2 − J1)(ar − a)

with C̃ as in (3.37). It remains to change sign in the inequality above, and then get (3.36). �
Remark 3.1. The function φ(a) quantifies the dependence of ρ with respect to the parameter J . Accordingly, one can 
notice that, formally,

φ(a) � ∂ρ

∂J
(J2 − J1), φ(ar) − φ(a) � ∂2ρ

∂J ∂a
(J2 − J1)(ar − a).

Hence, assuming all the necessary smoothness, the estimates (3.34) and (3.36) state in a rigorous manner the informal 
statement that the mixed derivative is strictly negative,

−C̃ ≤ ∂2ρ

∂a ∂J
≤ −c̃ < 0.

Lemma 3.2. Consider the elementary interaction pattern displayed in Fig. 4, with δ = ar − a� > 0: the conservation 
law holds,

|̃σ1| + |̃σ−1| = |σ1|. (3.40)

In particular, the reflected wave has always opposite sign with respect to the transmitted one:
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sgn(̃σ1) = − sgn(̃σ−1).

Moreover, the amplitude of the reflected wave is estimated by

|̃σ−1| ≤ C̃1δ|σ1| C̃1 = C̃

2
= (1 + α)

e2αδ − 1

2αδ
(3.41)

with C̃ as in (3.37). The symmetric case of a (−1)-wave interacting with the 0-wave is completely analogous.

Such a lemma expresses a strong conservation law for the scattering process where an incoming wave σ1 is scattered 
by a zero-wave δ giving birth to reflected/transmitted waves ̃σ±1.

Proof. It splits into several steps.

• Let a 
→ ρ(a, J ), a ∈ [a�, ar ], stand for solutions of the ODE problem along the 0-wave associated with a flux 
value J . More precisely, we have, before and after interaction, respectively:

∂

∂a
ρ
(
a,J−∗

)= 2
(
A
(
ρ−)− J−∗

)
, ρ−(ar , J

−∗
)= ρr,

∂

∂a
ρ
(
a,J+∗

)= 2
(
A
(
ρ+)− J+∗

)
, ρ

(
ar , J

+∗
)= ρr − σ̃1.

Notice also that J−∗ = Jr , and so J−∗ − J+∗ = σ̃1.
◦ Assume now that ̃σ1 > 0: we can apply Lemma 3.1 with

φ(a) = ρ
(
a,J−∗

)− ρ
(
a,J+∗

)
.

Since φ(ar) = J−∗ − J+∗ = σ̃1 > 0, the estimate (3.34) for a = a� leads to

φ(ar) − φ(a�) ≤ −c̃δσ̃1, (3.42)

while the estimate (3.36) for a = a� lead to

φ(ar) − φ(a�) ≥ −C̃δσ̃1. (3.43)

◦ Oppositely, if ̃σ1 < 0, Lemma 3.1 can still be applied with φ̃(a) = ρ(a, J+∗ ) − ρ(a, J−∗ ), and

−C̃δ|̃σ1| ≤ φ̃(ar ) − φ̃(a�) ≤ −δ|̃σ1 |̃c,
leading to

−C̃δσ̃1 ≥ φ(ar) − φ(a�) ≥ −δσ̃1c̃. (3.44)

• By equating ρr − ρ� before and after the interaction, and by using the definition of the size of waves, (2.19) in 
terms of jumps of ρ, we get

ρr − ρ� = σ1 + (ρ(ar , J
−∗
)− ρ

(
a�, J

−∗
))

(lower curved arrow in Fig. 4)

= σ̃1 + σ̃−1 + (ρ(ar , J
+∗
)− ρ

(
a�, J

+∗
))

(upper curved arrow in Fig. 4).

Henceforth, one deduces:

σ̃1 + σ̃−1 + (ρ(ar , J
+∗
)− ρ

(
a�, J

+∗
))= σ1 + (ρ(ar , J

−∗
)− ρ

(
a�, J

−∗
))

. (3.45)

Moreover, by equating Jr − J� before and after the interaction, we find that

σ̃1 − σ̃−1 = σ1. (3.46)

Subtracting (3.46) from (3.45), it comes

2σ̃−1 = (ρ(ar, J
−∗
)− ρ

(
a�, J

−∗
))− (ρ(ar, J

+∗
)− ρ

(
a�, J

+∗
))

. (3.47)
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◦ If ̃σ1 > 0, one uses (3.42) and gets

2σ̃−1 ≤ −c̃ σ̃1δ < 0,

and therefore, from (3.43):

2|̃σ−1| ≤ C̃δ|̃σ1|. (3.48)

◦ While, for ̃σ1 < 0, the second inequality in (3.44) leads to

2σ̃−1 = (ρ(ar , J
−∗
)− ρ

(
a�, J

−∗
))− (ρ(ar , J

+∗
)− ρ

(
a�, J

+∗
))≥ c̃|̃σ1|δ > 0,

and therefore, using the first inequality in (3.44), we get again (3.48).
From the above study of the sign of ̃σ±1 we conclude that

sgn(̃σ1) = − sgn(̃σ−1).

By using again (3.46) one finds that sgn(̃σ1) = sgn(σ1) and hence we get (3.40):

|̃σ1| + |̃σ−1| = |σ1|.
• Finally, to complete the estimate (3.41) on the amplitude of the reflected wave, it is enough to recall (3.48) and 

use (3.40) to get

|̃σ−1| ≤ C̃1δ|̃σ1| ≤ C̃1δ|σ1|. �
3.2. Accurate interaction estimates for WB approximations

Lemma 3.2 allows to consider more intricate interaction patterns, as we shall see hereafter.

Proposition 3.1. Let U� and Um be connected by a complete Riemann pattern of size q−
±1 and q0. Let Um and Ur be 

connected by a single wave as described in the cases below. Finally let q+
±1 be the sizes of the ±1-waves solving the 

Riemann problem for U�, Ur (see Figs. 5 and 6). Under the hypotheses of Proposition 2.1 and for

2‖k‖∞�x ≤ log

(
3

2

)
, C1 = 4

3 log(3/2)
� 3.29 (3.49)

then the following properties hold:

(a) If Um and Ur be connected by a −1-wave of size σ−1, then∣∣q+
−1 − q−

−1 − σ−1
∣∣= ∣∣q+

1 − q−
1

∣∣≤ C1q0|σ−1|. (3.50)

(b) If Um and Ur be connected by a 0-wave of size σ0, then∣∣q+
−1 − q−

−1

∣∣= ∣∣q+
1 − q−

1

∣∣≤ C1
∣∣q−

1

∣∣σ0. (3.51)

(c) If Um and Ur be connected by a 1-wave of size σ1, then

q+
−1 = q−

−1, q+
1 = q−

1 + σ1.

Deriving an explicit constant C1, given in (3.49), was the main reason for setting up Lemma 3.1.

Proof. Denote by J−∗ , J+∗ the intermediate values of J in the Riemann problem for (U�, Um) and (U�, Ur) respec-
tively. Then the following identities are valid for the sizes of waves:{

q+
−1 − q−

−1 = J−∗ − J+∗ ,

q+
1 − q−

1 = (J−∗ − J+∗
)+ (Jr − Jm).

(3.52)

Indeed, it is sufficient to recall the definitions (2.19); for instance we get q+
−1 − q−

−1 = (J� − J+∗ ) − (J� − J−∗ ) and 
hence the first identity. Similar for the second one. We proceed in order of increasing difficulty.
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Fig. 5. Illustration of Case (a).

(1) Case (c). One has Jr −Jm = σ1 and J−∗ = J+∗ . Hence the claim simply follows from (3.52), being q+
1 −q−

1 −σ1 =
0 = q+

−1 − q−
−1.

(2) Case (a). Recalling the definition of sizes (2.19) one has that σ−1 = Jm − Jr , so identities (3.52) lead to

q+
1 − q−

1 = q+
−1 − q−

−1 − σ−1. (3.53)

• Let us proceed by letting both the linear waves σ−1 and q−
1 cross each other (without changing their size). 

Later, σ−1 interacts with q0: denote by ̃σ±1 the resulting waves so that the final sizes q+
±1 satisfy

q+
±1 = σ̃±1 + q−

±1 ⇒ q+
1 − q−

1 = σ̃1 = q+
−1 − q−

−1 − σ−1 = σ̃−1 − σ−1.

Accordingly, equality (3.53) rewrites q+
1 − q−

1 = σ̃1 = σ̃−1 − σ−1. Applying (3.41) in Lemma 3.2 we get

|̃σ1| ≤ C̃1q0|σ−1|,
so (3.50) holds with

C1 ≥ C̃1(q0) ∀q0.

The choice of the constant C1 will be finalized in the next Case (b).
(3) Case (b). Here, the scattering processes related to 2 distinct zero-waves, of sizes q0 and σ0 respectively, are 

“glued” altogether into a unique one. In a linear context, this can be processed by means of the “Redheffer 
products” already set up in [17].
◦ In this last case we have Jr = Jm and hence (3.52) reduces to

q+
1 − q−

1 = q+
−1 − q−

−1 = J−∗ − J+∗ , (3.54)

which already yields the left part of (3.51).
◦ Without loss of generality, one can safely assume that q−

−1 = 0: indeed, let us show that the seemingly more 
intricate case q−

−1 �= 0 simply reduces to it. Let q̃+
±1 be the result of the reduced interaction involving only 

q0, q−
1 , σ0; estimates involve only quantities q̃+

1 − q−
1 and q̃+

−1. Now, if q−
−1 �= 0, then by linearity, resulting 

waves q+
±1 as in Fig. 6 satisfy

q+
1 = q̃+

1 , q+
−1 = q̃+

−1 + q−
−1.

◦ Accordingly, we assume the situation depicted in Fig. 6 where σ1 = q−
1 : Lemma 3.2 gives that,

sgn
(
σ+

1

)= sgn(σ1) = − sgn(σ2).

By induction, this property propagates at each scattering event, so for all n ∈N,

sgn
(
σ+

n

)= sgn(σn) = − sgn(σn+1), sgn
(
σ+

2n+1

)= sgn(σ1) = − sgn
(
σ+

2n

)
.

Next, let’s consider quadratic interaction estimates on the right zero-wave (with size σ0):

|σ2n+2| ≤ C̃1(σ0)σ0|σ2n+1| ≤ C̃1(σ0)C̃1(q0)σ0q0|σ2n|
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Fig. 6. Illustration of Case (b).

where C̃1 is as in (3.41), and one has

C̃1(x) = (1 + α)
exp(2αx) − 1

2αx
� (1 + α) as x → 0.

Also, we can estimate both σ0, q0 as follows: σ0, q0 ≤ �x‖k‖∞. Hence

|σ2n+2| ≤ γ |σ2n|, γ
.= (C̃1(x̄)x̄

)2
, x̄

.= �x · ‖k‖∞
and notice that γ → 0 as �x → 0 in weak relaxation regime. This immediately implies that

|σ2n+2| ≤ γ n|σ2| ≤ γ nC̃1(x̄)
∣∣q−

1

∣∣ · |σ0|.

• It now remains to sum all the even terms:∣∣∣∣∣
∞∑

n=1

σ+
2n

∣∣∣∣∣=
∞∑

n=1

∣∣σ+
2n

∣∣≤ ∞∑
n=1

|σ2n|

≤
( ∞∑

n=1

γ n−1

)
C̃1(x̄)

∣∣q−
1

∣∣ · |σ0| =
(

C̃1(x̄)

1 − γ

)
︸ ︷︷ ︸

=C1

∣∣q−
1

∣∣ · |σ0|.

To estimate the above defined constant C1, we assume that x̄ satisfies

C̃1(x̄)x̄ = (1 + α)
exp(2αx̄) − 1

2α
≤ 1

2
.

Since the above function of α is increasing, and α < 1, we let α → 1 in the previous equation and define our 
quantities to be uniform in α as follows:

C̃1(x̄)x̄ = exp(2x̄) − 1 = 1

2
,

that gives

�x · ‖k‖∞ = x̄ = 1

2
log

(
3

2

)
, C̃1(x̄) = 1

log( 3
2 )

.

Recalling the above definition of γ , we conclude that γ ≤ 1/4 and therefore

C1 = 4

3
C̃1(x̄) = 4

3 log( 3 )
.

2
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Finally, call L the distance separating both the zero-waves q0 and σ0: one can pass to the limit L → 0. By 
compactness, it converges to a non-interacting Riemann fan endowed with a zero-wave of size q0 + σ0. The 
size of the reflected wave reads:

∣∣q+
−1

∣∣= ∞∑
n=1

∣∣σ+
2n

∣∣≤ C1
∣∣q−

1

∣∣ · |σ0|,

and the estimate (3.51) follows after taking (3.54) into account. �
Remark 3.2. It is important to stress that there exists more direct manners to establish a quadratic estimate for the 
interaction of approaching waves like in Proposition 3.1. Indeed, let’s consider for instance the proof of (3.50): one 
may proceed by just recalling the definition of sizes (2.19), so that σ−1 = Jm − Jr = f −

r − f −
m and then the second 

identity in (3.52) becomes

q+
1 − q−

1 = (J−∗ − J+∗
)− σ−1.

Recalling the definition of J̃ , see (2.27), the quantities J+∗ , J−∗ are given by

J+∗ = J̃
(
q0, f

+
� , f −

r

)= J̃
(
q0, f

+
� , f −

m + σ−1
)
, J−∗ = J̃

(
q0, f

+
� , f −

m

)
,

therefore, by the mean-value theorem, one derives:

J−∗ − J+∗ = − ∂J̃

∂(f −)

(
q0, f

+
� , f −

m + θσ−1
)
σ−1, θ ∈ (0,1).

Notice that for q0 = 0 one has J̃ (0, f ±) = f + − f −, so we substitute

∂J̃

∂(f −)

(
0, f ±)≡ −1, for all f −,

into the former expression. Accordingly we obtain:

q+
1 − q−

1 = −σ−1

[
∂J̃

∂(f −)

(
q0, f

+
� , f −

m + θσ−1
)− ∂J̃

∂(f −)

(
0, f +

� , f −
m + θσ−1

)]
,

which finally furnishes,

∣∣q+
1 − q−

1

∣∣≤ |σ−1||q0| · sup

∣∣∣∣ ∂2J̃

∂δ∂(f −)

(
δ, f ±)∣∣∣∣.

However, the main issue with such a computation lies in the fact that the resulting interaction constant cannot be easily 
expressed (see also Appendix A).

The following proposition establishes a fundamental decay property:

Proposition 3.2 (Multiple interaction). Assume that a 1-wave, a 0-wave and a −1-wave interact. Let σ−
−1, σ−

1 be the 
sizes of the incoming waves and σ+

−1, σ+
1 be the ones of the outgoing waves. Then

∣∣σ+
−1

∣∣+ ∣∣σ+
1

∣∣≤ ∣∣σ−
−1

∣∣+ ∣∣σ−
1

∣∣. (3.55)

Besides, for δ = ar − a�, one has{∣∣σ+
−1

∣∣− ∣∣σ−
−1

∣∣≤ C1δ
(∣∣σ−

−1

∣∣+ ∣∣σ−
1

∣∣)∣∣σ+
1

∣∣− ∣∣σ−
1

∣∣≤ C1δ
(∣∣σ−

−1

∣∣+ ∣∣σ−
1

∣∣). (3.56)
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Fig. 7. Schematic representation of the triple interaction.

Proof. One proceeds by letting interactions occur two at a time, and then collect the result: see Fig. 7.

• The first step is identical to the situation described in Lemma 3.2. Accordingly, the conclusion (3.40) holds for 
the present case, too. After the former interaction occurred, the wave of size ̃σ1 will cross the (−1)-wave of size 
σ−

−1 without changing size by linearity. The interaction between this last wave and the 0-wave produces two new 
waves, ̂σ±1. Analogously, they satisfy

|̂σ1| + |̂σ−1| =
∣∣σ−

−1

∣∣. (3.57)

• Due to the linearity of ±1-waves, no other interaction can occur. The sizes of the outgoing waves σ+
−1, σ+

1 must 
satisfy

σ+
−1 = σ̃−1 + σ̂−1, σ+

1 = σ̃1 + σ̂1.

Therefore, collecting (3.40) and (3.57), we finally get (3.55):∣∣σ+
−1

∣∣+ ∣∣σ+
1

∣∣≤ |̃σ−1| + |̂σ−1| + |̃σ1| + |̂σ1|
= ∣∣σ−

−1

∣∣+ ∣∣σ−
1

∣∣.
• Finally let us prove (3.56) for the 1-family, the other one being analogous. From the construction above and 

Proposition 3.1, it is easy to deduce that∣∣̃σ1 − σ−
1

∣∣≤ C1
∣∣σ−

1

∣∣δ, |̂σ1| ≤ C1
∣∣σ−

−1

∣∣δ.
One has∣∣σ+

1

∣∣− ∣∣σ−
1

∣∣≤ |̃σ1| + |̂σ1| −
∣∣σ−

1

∣∣≤ ∣∣̃σ1 − σ−
1

∣∣+ |̂σ1|,
therefore we conclude thanks to the above estimates on |̃σ1 − σ−

1 | and on |̂σ1|. �
3.3. Lyapunov functional and error estimate for weak relaxation

Here, the main objective is to quantify the gap between 2 WB-approximations obtained with 2 different grid pa-
rameters (�x)1, (�x)2. Two approximations f ±

1 , b1(x) and f ±
2 , b2(x) being given, at each point (t, x), one considers 

the “transversal Riemann problem” for (2.14) with left/right data:

f ±(t, x), b1(x), f ±(t, x), b2(x).
1 2
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Fig. 8. Interaction between a “transversal Riemann problem” (left) and a −1-wave resulting in the new Riemann problem (right) illustrating the 
simplest situation described by Proposition 3.1, Case (c).

We assume that b1, b2 are piecewise constant, non-decreasing, with jumps located in (�x)1Z and (�x)2Z respectively, 
and that they satisfy

TVb1 ≤ TVa, TVb2 ≤ TVa.

On the approximate initial data, we assume that

TVf −
i (0, ·) + TVf +

i (0, ·) ≤ TV
(
f +

0

)+ TV
(
f −

0

)
, i = 1,2.

Let

q±1(t, x), q0(x) = b2(x) − b1(x)

stand for the corresponding “transversal wave-strengths”, and consider, for instance, that f −
1 has a jump of size σ

at the point (t, xα): see Fig. 8. In order to correctly devise the weights involved in the Lyapunov functional, it is 
necessary to know how the “transversal wave-strengths” evolve according to all the jumps present in both f±

1 , b1(x)

and f ±
2 , b2(x).

In the sequel, we use all the standard notations by Bressan [8]; the only exception is that the characteristic families 
are numbered −1, 0, 1 for obvious reasons. Let U, V stand for (f −

1 , f +
1 , b1) and (f −

2 , f +
2 , b2) respectively. We write 

σα
i for the size a front located at xα , of the family i ∈ {−1, 0, 1}; zero-waves are measured simply by the jump of 

b1(x) or b2(x), respectively for U or V . Recall that all the σα
0 are positive, since b1(x) and b2(x) are assumed to be 

monotone, non-decreasing.
The Lyapunov functional Φ[U, V ] reads, for x1 < x2 and t ≤ T = (x2 − x1)/2:

t 
→ Φ[U,V ](t) =
x2−t∫

x1+t

∣∣q0(x)
∣∣W0(t, x)dx +

∑
i=±1

x2−t∫
x1+t

∣∣qi(t, x)
∣∣Wi(x)dx, (3.58)

where the weights Wi are defined as follows:

W0(t, x) = 1 + κ1A0(t, x) + κ2
(
Q(U) + Q(V )

)
, Wi(x) = 1 + κ1Ai(x), i = −1,1

and

A0(t, x) =
∑
xα<x

∣∣σα
1

∣∣+ ∑
xα>x

∣∣σα
−1

∣∣,
A−1(x) =

∑
xα<x

σα
0 [0-fronts on the left of x],

A1(x) =
∑
xα>x

σα
0 [0-fronts on the right of x].

The sums above extend over all jumps in U and V . An estimate for A±1 reads:

A±1(x) ≤ TVb1 + TVb2 ≤ 2 TVa.
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On the other hand, an estimate on A0 goes as follows. By defining

A0
.= TVf −

0 + TVf +
0 + 2C0 TVa, (3.59)

and recalling (2.32), one obtains

A0(t, x) ≤ L±(t;U) + L±(t;V )

≤ TVf −
1 (0, ·) + TVf +

1 (0, ·) + TVf −
2 (0, ·) + TVf +

2 (0, ·) + 2C0(TVb1 + TVb2)

≤ 2A0.

As usual, Q(U), Q(V ) stand for interaction potentials between ±1-waves and 0-waves showing up in U , V respec-
tively:

Q(U)(t) =
∑
β

σ
β

0

[ ∑
α, xα<xβ

∣∣σα
1

∣∣+ ∑
α, xα>xβ

∣∣σα
−1

∣∣]
where the sum runs over all jumps of U in (x1 + t, x2 − t). Hence

Q(U)(t) ≤ TV{b1}L±(t;U) ≤ TV{a}L±(0+,U) ≤ TV{a}A0.

The situation is analogous for V . Therefore we estimate the sum of the Q as follows:

Q(U) + Q(V ) ≤ 2 TV{a}A0.

In order to control the size of these weights, one must manage the bounds:

W±1(x) ≤ 1 + 2κ1 TVa, (3.60)

W0(t, x) ≤ 1 + 2A0
(
κ1 + κ2 TV{a}). (3.61)

The constants κ1, κ2 still have to be determined. Here we are going to specialize the analysis presented in [8,9] for 
more general systems and avoid the smallness conditions on the initial data. Let us present the main steps of the 
analysis:

(1) Show that the functional decreases outside interaction times: see Lemma 3.3. A natural bound on TVa follows 
and κ1 is suitably chosen, see Remark 3.3.

(2) Show that the functional decreases at interaction times: see Lemma 3.4. The constant κ2 is chosen at this step.
(3) Quantify the relation between Φ[U, V ](t) and the L1 difference between the two approximate solutions, done in 

Lemma 3.5.

The next two lemmas state that t 
→ Φ[U, V ](t) decreases both outside interaction times (Lemma 3.3) and at 
interaction times (Lemma 3.4).

Lemma 3.3. Let U(t, ·) and V (t, ·) be two approximate solutions generated by the Well-Balanced algorithm, out of 
the initial data

U0 = (f ±
1 (t = 0, ·), a(·)), V0 = (f ±

2 (t = 0, ·), b(·)).
Let K > 0 such that the weights W±1 satisfy a uniform bound of the following type:

∀t ≥ 0, 1 ≤ W±1(t, ·) ≤ K, (3.62)

and assume that

κ1 ≥ 2KC1 (3.63)

with C1 as in (3.49). Then, outside interaction times, one has

dΦ[U,V ]
dt

≤ 0.
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Remark 3.3. From (3.60), one can choose K = 1 + 2κ1 TVa and rewrite (3.63) as

κ1 ≥ 2C1[1 + 2κ1 TVa].
The above inequality is possible whenever (see (3.49))

4C1 TVa < 1 ⇔ 16 TVa ≤ 3 log(3/2). (3.64)

Therefore, provided that (3.64) holds, we can operate the following choice:

κ1 = 2C1

1 − 4C1 TVa
, K = κ1

2C1
= 1

1 − 4C1 TVa
. (3.65)

Proof. Now we prove Lemma 3.3. Following Bressan (see [8, p. 155]), outside interaction times it is convenient to 
write the time-derivative of Φ as follows:

dΦ[U,V ]
dt

=
1∑

i=−1

∣∣qi(x)
∣∣Wi(x)(−1 + λi)

∣∣
x=x1+t

+
1∑

i=−1

∣∣qi(x)
∣∣Wi(x)(−1 − λi)

∣∣
x=x2−t

+
∑
α

1∑
i=−1

Eα,i,

being

Eα,i = ∣∣qα+
i

∣∣Wα+
i

(
λα+

i − ẋα
)− ∣∣qα−

i

∣∣Wα−
i

(
λα−

i − ẋα
)

= [∣∣qα+
i

∣∣Wα+
i − ∣∣qα−

i

∣∣Wα−
i

](
λα

i − ẋα
)

where we used that the λi ’s are constant. Since |λi | ≤ 1, the contribution from the boundaries is non-positive and then:

dΦ[U,V ]
dt

≤
∑
α

1∑
i=−1

Eα,i .

Thanks to the linear structure of families ±1, lots of simplification occur in the sum above. For instance, if i = kα

then the corresponding speeds coincide, λα
i = ẋα , and thus Eα,i = 0. We shall analyze the jumps that occur in the 

V = (f ±
2 , b2) vector of unknowns; the analysis for the jumps in U is completely similar (see also [8, p. 160]). Such a 

framework exactly meets with the interaction estimates given in Proposition 3.1. Accordingly, let kα ∈ {±1, 0} denote 
the characteristic family of the jump present at the abscissa xα. To carry on, one distinguishes between each value 
of kα . For simplicity, in the following we will often omit the dependence on α.

• If kα = −1 = ẋα , an easy computation shows that E−1 = 0 and that

E0 = ∣∣q+
0

∣∣W+
0 − ∣∣q−

0

∣∣W−
0 , E1 = 2

[∣∣q+
1

∣∣W+
1 − ∣∣q−

1

∣∣W−
1

]
.

Moreover we have

q+
0 = q−

0 , W+
1 = W−

1 , W+
0 − W−

0 = −κ1|σ−1|
and hence

1∑
i=−1

Ei = E0 + E1 = −κ1|σ−1|
∣∣q−

0

∣∣+ 2
{∣∣q+

1

∣∣− ∣∣q−
1

∣∣}W−
1 .

From (3.50), Case (a) of Proposition 3.1, it follows that |q+
1 | ≤ |q−

1 | + C1|q−
0 ||σ−1|. Also, recalling (3.62), the 

weight W−
1 is supposed to be smaller that K and one gets

1∑
i=−1

Ei ≤ ∣∣q−
0

∣∣|σ−1|(−κ1 + 2KC1) ≤ 0.
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• If kα = 1 = ẋα , this is the simple Case (c), and

1∑
i=−1

Ei = E−1 + E0

= −2
{∣∣q+

−1

∣∣W+
−1 − ∣∣q−

−1

∣∣W−
−1

}− {∣∣q+
0

∣∣W+
0 − ∣∣q−

0

∣∣W−
0

}
.

Here q0, q−1, W−1 do not change, while

W+
0 − W−

0 = +κ1σ1.

Hence one gets a negative sign for every κ1 > 0:

1∑
i=−1

Ei = −|q0|
{
W+

0 − W−
0

}= −κ1|q0|σ1 ≤ 0.

• If kα = 0 = ẋα , this is Case (b), depicted in Fig. 6, with ẋ = λ0 = 0 and thus E0 = 0.

1∑
i=−1

Ei = E−1 + E1

= −{∣∣q+
−1

∣∣W+
−1 − ∣∣q−

−1

∣∣W−
−1

}+ {∣∣q+
1

∣∣W+
1 − ∣∣q−

1

∣∣W−
1

}
.

The weights W±
i , i = ±1 jump as follows:

W+
−1 − W−

−1 = +κ1|σ0| ≥ 0, W+
1 − W−

1 = −κ1|σ0|.
Hence, by means of (3.51), we find that

E−1 = −∣∣q+
−1

∣∣{W+
−1 − W−

−1

}− W−
−1

{∣∣q+
−1

∣∣− ∣∣q−
−1

∣∣}
≤ −W−

−1

{∣∣q+
−1

∣∣− ∣∣q−
−1

∣∣}
≤ K

∣∣q−
−1 − q+

−1

∣∣≤ KC1σ0
∣∣q−

1

∣∣
while, in a quite similar way,

E1 = ∣∣q−
1

∣∣(W+
1 − W−

1

)+ (∣∣q+
1

∣∣− ∣∣q−
1

∣∣)W+
1

≤ −κ1σ0
∣∣q−

1

∣∣+ K
∣∣q+

1 − q−
1

∣∣
≤ −κ1σ0

∣∣q−
1

∣∣+ KC1σ0
∣∣q−

1

∣∣
≤ σ0

∣∣q−
1

∣∣(KC1 − κ1).

At this point, having κ1 ≥ 2KC1 again ensures E−1 + E1 ≤ 0. �
Lemma 3.4. In the assumptions of Lemma 3.3, assume that (3.64) holds and that

κ2 ≥ κ1C1

1 − C1 TVa
. (3.66)

Then Φ[U, V ](t) decreases at interaction times.

Proof. Assume that at a certain time t interactions occur for the approximate solution U . Recalling the definition 
(3.58) of Φ , we notice that the |q±1(t, x)| change continuously in L1

loc.
The only term that can change in a discontinuous way across the interaction time t is the weight W0(t, x):

�W0(t, x) = κ1�A0(t, x) + κ2�Q(U)(t).

The term �A0 can increase across interaction times, while �Q(U)(t) decreases, as follows. For each xβ where a 
0-wave is located, let
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σ
β

0 , σ
β±
−1 , σ

β±
1

the waves involved in the interaction (with obvious notation). Thanks to Proposition 3.2, one of the two terms∣∣σβ+
1

∣∣− ∣∣σβ−
1

∣∣, ∣∣σβ+
−1

∣∣− ∣∣σβ−
−1

∣∣
is negative, while the other one is possibly bounded by C1σ

β

0 (|σβ−
1 | + |σβ−

−1 |). Hence,

�Q = −
∑
β

σ
β

0

(∣∣σβ−
1

∣∣+ ∣∣σβ−
−1

∣∣)
+
∑
β

(∣∣σβ+
1

∣∣− ∣∣σβ−
1

∣∣)TV
{
a; (xβ,∞)

}+
∑
β

(∣∣σβ+
−1

∣∣− ∣∣σβ−
−1

∣∣)TV
{
a; (−∞, xβ)

}
≤ (−1 + C1 TVa)

∑
β

σ
β

0

(∣∣σβ−
1

∣∣+ ∣∣σβ−
−1

∣∣).
On the other hand, thanks to (3.56) in Proposition 3.2, the possible increase of A0 is bounded uniformly in x as 
follows:

�A0(t, x) ≤ C1

∑
β

σ
β

0

(∣∣σβ−
1

∣∣+ ∣∣σβ−
−1

∣∣).
Therefore

�W0 ≤ (κ1C1 − κ2(1 − C1 TVa)
)∑

β

σ
β

0

(∣∣σβ−
1

∣∣+ ∣∣σβ−
−1

∣∣).
The above quantity is ≤ 0 whenever 1 − C1 TVa > 0, which is guaranteed by (3.64), and when κ2 satisfies condi-
tion (3.66). �
Remark 3.4. Following Remark 3.3, here we summarize the choice of κ1, κ2 and the bounds on Wi obtained so far. 
Thanks to Lemma 3.3, we have

W±1 ≤ 1 + 2κ1 TVa ≤ K = κ1

2C1
;

this is possible if (3.64) holds, that is 4C1 TVa < 1. Then κ1 can be set as (3.65). Therefore a bound for W±1 in terms 
of the data is:

W±1 ≤ 1

1 − 4C1 TVa
= K. (3.67)

Recalling (3.61) and thanks to Lemma 3.4, we get

W0(t, x) ≤ 1 + 2A0
(
κ1 + κ2 TV{a})≤ 1 + 2

κ1A0

1 − C1 TV{a}
= 1 + 4C1A0

(1 − 4C1 TVa)(1 − C1 TV{a})
.= K0. (3.68)

Now we take advantage of the equivalence of Φ[U, V ](t) and the L1 difference between any two approximate 
solutions.

Lemma 3.5. For

I (t) =
x2−t∫

x1+t

∣∣f +
1 (t, x) − f +

2 (t, x)
∣∣+ ∣∣f −

1 (t, x) − f −
2 (t, x)

∣∣dx

we get the estimate
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I (t) ≤ K · I (0) + (2KC0 + K0)

x2∫
x1

|b1 − b2|dx + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx. (3.69)

Remark 3.5. According to (3.68), K0 = 1 + K · 4C1
1−C1 TV a

A0, but simultaneously,

K = 1

1 − 4C1 TVa
, 1 − C1 TVa = 3K + 1

4K
, C1 ≤ 14

3
.

So, K0 = 1 + 16K2C1
3K+1 A0 and for instance, if −x1, x2 → +∞, then (3.69) rewrites

IR(t) ≤ K · IR(0) + [2C0(K + 1) + K0 − 1
]∫
R

|b1 − b2|dx

and therefore

IR(t) ≤ K · IR(0) + 2

[
C0(K + 1) + 8K2C1

3K + 1
A0

]∫
R

|b1 − b2|dx. (3.70)

Notice also that the quantity (2C0 − 1) in (3.69) can be negative.

Proof. Recalling (2.24) and using W±1 ≥ 1, one gets

I (t) ≤
x2−t∫

x1+t

{|q1| + |q−1| + |b1 − b2|
}
dx + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx

≤ Φ[U,V ](t) + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx

and also, always taking advantage of (2.24),

Φ[U,V ](t) ≤ K
∑

i=−1,1

x2−t∫
x1+t

|qi |dx + K0

x2−t∫
x1+t

|b1 − b2|dx

≤ KI (t) + (2KC0 + K0)

x2−t∫
x1+t

|b1 − b2|dx.

Altogether, since t 
→ Φ[U, V ](t) decreases, it comes that:

I (t) ≤ Φ[U,V ](t) + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx

≤ Φ[U,V ](0) + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx

≤ KI (0) + (2KC0 + K0)

x2∫
x1

|b1 − b2|dx + (2C0 − 1)

x2−t∫
x1+t

|b1 − b2|dx

which is precisely (3.69). �
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Since we now have the time-decay of Φ[U, V ] at hand, by just selecting �x = (�x)1,

b1 = P (�x)a, ∂xa(x) = k(x), (3.71)

V (t = 0, ·) = P (�x)U(t = 0, ·) and sending (�x)2 → 0, one obtains that the L1 error of the WB scheme at time t > 0
is bounded by

x2−t∫
x1+t

∣∣f ±
�x(t, x) − f ±(t, x)

∣∣dx ≤ K

x2∫
x1

∣∣f ±
�x(0, x) − f ±(0, x)

∣∣dx + (2KC0 + K0)�x TV
{
a; (x1, x2)

}
+ (2C0 − 1)�x TV

{
a; (x1 + t, x2 − t)

}
,

where K , K0 are given by (3.67), (3.68) respectively. Taking advantage of (3.70), we get that on the whole real line, 
the global L1 error is bounded uniformly in time by the quantity,

1

�x

∫
R

∣∣f ±
�x(t, x) − f ±(t, x)

∣∣dx ≤ K TV
(
f ±(0, ·))+ 2

[
C0(K + 1) + 8K2C1

3K + 1
A0

]
‖k‖L1(R) (3.72)

where A0 is defined at (3.59), which blows up as

‖k‖L1(R) → 1

4C1
= 3

16
log(4/3)

.= C (3.73)

since the constant K does (see (3.65) and recall (3.49)). This was to be expected, as for stiff relaxation regimes and 
well-prepared initial data, one expects ρ = f + + f − to match the entropy solution of the conservation law ∂tρ +
∂xA(ρ) = 0, and one cannot have order 1 convergence as �x → 0. This completes the proof of the first estimate, E1, 
in Theorem 1.1.

Remark 3.6. By using the results of the current Section 3.3, the L1 error estimate for the locally damped semi-linear 
wave equation obtained in [2] can be refined. More precisely, let’s consider

∂tρ + ∂xJ = 0, ∂tJ + ∂xρ = −2k(x)g(J ) (3.74)

with g ∈ C1(R), g(0) = 0, g strictly increasing. Recalling the assumptions (1.6) and (1.5), we are now considering a 
case where A = 0 but with a more general dependence on J , being g(J ) possibly nonlinear. Propositions 3.1 and 3.2
are still valid (see the corresponding propositions in [2]), with C1 = Lip(g). Moreover, smallness restrictions on �x

as in (3.49) drop. Indeed, if both A = 0 and α = 0 in Lemma 3.1, the constant C̃1 given in (3.41) can be set to unity 
regardless of the size of δ = ar − a�. Differently, when α > 0, the size of C̃1 can grow exponentially with δ; this was 
the reason for devising a bound on δ, and correspondingly on �x (assuming that k is locally bounded). In conclusion, 
for the system (3.74) the same estimates (3.69), (3.70) and (3.72) hold with the following values for the constants:

C0 = ‖g‖∞, C1 = Lip(g).

There are no restrictions on both TVf ±
0 and �x ≥ 0, left apart K = (1 − 4C1 TVa)−1 < ∞, that is

TVa = ‖k‖L1 <
1

4 Lip(g)
.

4. Complementary L1 error estimate through entropy dissipation

The former error estimate suits well the non-stiff case for (1.1). However, one may feel the need for a study of the 
complementary situation, where typically |k(x)|�x can become (locally) big. In order to quantify the L1 error of WB 
schemes in this context too, we adapt a method of [29] (see also [23]) based on entropy dissipation and inspired by 
the seminal ideas of Kuznetsov [26] (see also [25]).
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4.1. Quasi-monotonicity and entropy inequalities

Let us first describe what type of entropy inequalities are satisfied by the exact solution and by the WB approx-
imation. On one hand, the exact solution of (1.8) is such that, for any constant values k± ∈ R and any test-function 
0 ≤ ϕ(t, x) ∈ C∞

0 (R+ ×R),

−
T∫

0

∫
R

(∣∣f + − k+
∣∣+ ∣∣f − − k−

∣∣)∂tϕ + (∣∣f + − k+
∣∣− ∣∣f − − k−

∣∣)∂xϕ · dx · dt

+
∫
R

(∣∣f +(T , x) − k+
∣∣+ ∣∣f −(T , x) − k−

∣∣)ϕ(T , x) · dx

−
∫
R

(∣∣f +(0, x) − k+
∣∣+ ∣∣f −(0, x) − k−

∣∣)ϕ(0, x) · dx

≤
T∫

0

∫
R

k(x)
(
sgn
(
f + − k+

)− sgn
(
f − − k−

))
G
(
f +, f −)ϕ · dx · dt. (4.75)

On the other hand, the WB approximation is the exact solution of (2.14) with piecewise-constant initial data fitted 
to the length separating 2 zero-waves (see again Fig. 3), in particular there is no projection at each time-step. We have 
the following lemma.

Lemma 4.1. For any test-function ϕ(t, x) ≥ 0 compactly supported on (0, T ) ×R, one has

−
T∫

0

∫
R

(∣∣f + − k+
∣∣+ ∣∣f − − k−

∣∣)∂tϕ + (∣∣f + − k+
∣∣− ∣∣f − − k−

∣∣)∂xϕ · dx · dt

−
T∫

0

∫
R

k(x)
(
sgn
(
f + − k+

)− sgn
(
f − − k−

))
G
(
f +, f −)ϕ · dx · dt

≤ Cα

∑
n,j

TV
(
f ±(tn, ·); {xj−1, xj }

) tn+1∫
tn

xj∫
xj−1

k(x)ϕ(t, x
j− 1

2
) dx · dt

+ Cβ

∑
n,j

tn+1∫
tn

xj∫
xj−1

k(x)
∣∣ϕ(t, x) − ϕ(t, x

j− 1
2
)
∣∣ dx · dt, (4.76)

where Cα = Lip(G) and Cβ = 2C0, the Maxwellian gap defined in (2.25).

Proof. The proof is divided into several steps.

• Using the standard notation, tn = n�t , Cj = (x
j− 1

2
, x

j+ 1
2
) with x

j− 1
2

= (j − 1
2 )�x the locus of the zero-waves, 

comes in each “cell” Cj × (tn, tn+1),

−
tn+1∫
tn

∫
Cj

(
η+
(
f +)+ η−

(
f −))∂tϕ + (η+

(
f +)− η−

(
f −))∂xϕ · dx · dt

+
∫
C

(
η+
(
f +(tn+1, x

))+ η−
(
f −(tn+1, x

)))
ϕ
(
tn+1, x

) · dx
j
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−
∫
Cj

(
η+
(
f +(tn, x))+ η−

(
f −(tn, x)))ϕ(tn, x) · dx

+
tn+1∫
tn

[(
η+
(
f +)− η−

(
f −))ϕ](t, x

j+ 1
2
− 0) · dt

−
tn+1∫
tn

[(
η+
(
f +)− η−

(
f −))ϕ](t, x

j− 1
2
+ 0) · dt ≤ 0

for any couple of smooth, convex functions η± ∈ C2(R) and j, n ∈ Z × N. Clearly, as the Courant number is 1, 
there is no need for a projection step so the summation on j, n is rather straightforward:

−
∑

j,n∈Z×N

tn+1∫
tn

∫
Cj

(
η+
(
f +)+ η−

(
f −))∂tϕ + (η+

(
f +)− η−

(
f −))∂xϕ · dx · dt

≤
∑

j∈Z,n∈N

(
I+

n,j− 1
2
− I−

n,j− 1
2

) tn+1∫
tn

ϕ(t, x
j− 1

2
) · dt, (4.77)

because ϕ(t, ·) is continuous in x = x
j− 1

2
and ϕ(t, ·) = 0 for t = 0, T . We used the following notation,

I±
n,j− 1

2
= η±

(
f ±(tn, x

j− 1
2
+ 0
))− η±

(
f ±(tn, x

j− 1
2
− 0
))

.

These terms I±
n,j− 1

2
stand for the jump of entropy flux across each zero-wave, located at the grid’s interface. 

They are independent of t thanks to the CFL condition, which ensures that linear waves propagate exactly �x

during �t .
• One needs to recover, up to �x, the source term which appears in the entropy inequality for the exact solution, and 

which seems to be missing here. By definition of the stationary equations, see (2.16), at any time-step tn = n�t , 
the corresponding smooth profiles f̃ ±

n satisfy modified ODE’s too,

∂x

(
η±
(
f̃ ±

n

))= k(x)G±(f̃ +
n , f̃ −

n

)
, G±(f̃ +, f̃ −) := η′±

(
f̃ ±)G(f̃ +, f̃ −).

Accordingly, the entropy jumps rewrite:

η±
(
f ±)(tn, x

j− 1
2
+ 0
)= η±

(
f ±)(tn, x

j− 1
2
− 0
)+ xj∫

xj−1

k(s)G±(f̃ +
n (s), f̃ −

n (s)
) · ds,

therefore, the former jumps are amended as follows,

I+
n,j− 1

2
− I−

n,j− 1
2

=
xj∫

xj−1

k(s)
(
η′+
(
f̃ +

n (s)
)− η′−

(
f̃ −

n (s)
))

G
(
f̃ +

n (s), f̃ −
n (s)

) · ds.

So the contribution of the source term can be reconstructed:

(
I+

n,j− 1
2
− I−

n,j− 1
2

) tn+1∫
tn

ϕ(t, x
j− 1

2
)dt

=
tn+1∫
tn

xj∫
x

k(x)
[
η′+
(
f +)− η′−

(
f −)]G(f +, f −)ϕ(t, x) dx · dt
j−1
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−
tn+1∫
tn

xj∫
xj−1

k(x)
[
η′+
(
f +)− η′−

(
f −)]G(f +, f −)︸ ︷︷ ︸

G+(f ±)−G−(f ±)=β(t,x)

[
ϕ(t, x) − ϕ(t, x

j− 1
2
)
]
dx · dt

−
tn+1∫
tn

ϕ(t, x
j− 1

2
)

xj∫
xj−1

k(x)
[(

η′+
(
f +)− η′−

(
f −))G(f +, f −)

− (η′+
(
f̃ +

n (s)
)− η′−

(
f̃ −

n (s)
))

G
(
f̃ +

n (x), f̃ −
n (x)

)]︸ ︷︷ ︸
G+(f ±)−G+(f̃ ±

n )−G−(f ±)+G−(f̃ ±
n )=α(t,x)

dx · dt. (4.78)

The above terms α, β are bounded as follows:∣∣α(t, x)
∣∣≤ Lip(G)TV

(
f̃ ±

n (·); {xj−1, xj }
)
,

∣∣β(t, x)
∣∣≤ ∣∣G+ − G−∣∣≤ 2C0.

• For any � ∈ R, we approximate a weak Kružkov entropy u 
→ |u − �| by means of a smooth function E ∈ C2(R)

such that E′′ ≥ 0, E(v) = |v| for |v| ≥ 1, E′(0) = 0 and |E′| ≤ 1. It is rescaled like ηδ(v) = δE(v−�
δ

), and there-
fore η′

δ(v) → sgn(v − �) as δ → 0, for all v �= 0. Using (4.77), (4.78) and thanks to the bound above on α and β , 
we pass to the limit as δ → 0 by means of the dominated convergence theorem and finally recover (4.76). �

4.2. Derivation of the complementary L1 error estimate

Hereafter we shall denote f ±
�x the piecewise-constant numerical approximations delivered by the WB algorithm 

described in the former sections, and keep f ± for the corresponding exact solution. Each one satisfies a specific 
entropy dissipation inequality, (4.75) and (4.76). An error estimate can be derived by taking advantage of the simple 
fact that (weak) Kružkov entropies are symmetric, together with a specific choice of nonnegative test-functions. Indeed, 
adopting the notations of [7,16,23], let us consider,

R
+ ×R×R

+ ×R→ R
+, 0 ≤ φ(t, x, s, y) = ϕ(t, x)ζ(t − s, x − y).

The choice of ζ corresponds to a smooth approximation of the Dirac mass, namely for �, δ > 0:

ζ(t, x) = ζt (t)ζx(x) = 1

δ
ζ 1
t

(
t

δ

)
· 1

�
ζ 1
x

(
x

�

)
, 0 ≤ ζ 1

t , ζ 1
x ∈ C∞

0 (R).

Moreover, one can ensure that they are symmetric and:

‖ζt‖L1(R) = ‖ζx‖L1(R) = 1, ζ 1
t (·)ζ 1

x (·) supported in (−1,0) ×
(

−1

4
,

1

4

)
.

Now, thanks to entropies’ symmetry, it is possible to consider (4.76) with k± = f ±(s, y), for any s, y ∈ R
+ ×R and 

reciprocally. By double integration, and usual simplifications, one arrives at:

0 ≤
∫ ∫ ∫ ∫

ζ(t − s, x − y)
{[∣∣f +

�x(t, x) − f +(s, y)
∣∣+ ∣∣f −

�x(t, x) − f −(s, y)
∣∣]∂tϕ(t, x)

+ [∣∣f +
�x(t, x) − f +(s, y)

∣∣− ∣∣f −
�x(t, x) − f −(s, y)

∣∣]∂xϕ(t, x)

+ (sgn
(
f +

�x(t, x) − f +(s, y)
)− sgn

(
f −

�x(t, x) − f −(s, y)
))

× [k(x)G
(
f +

�x,f
−
�x

)
(t, x) − k(y)G

(
f +, f −)(s, y)

]
ϕ(t, x)

}
dsdydtdx

+ Cα

∑
n,j

TV
(
f̃ ±

n (·); {xj−1, xj }
)∫

dy

∫
ds

tn+1∫
tn

xj∫
xj−1

k(x)φ(t, x
j− 1

2
, s, y) dtdx

+ 2C0

∑
n,j

∫
dy

∫
ds

tn+1∫
tn

xj∫
x

k(x)
∣∣φ(t, x, s, y) − φ(t, x

j− 1
2
, s, y)

∣∣ dtdx. (4.79)
j−1
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By imposing that ϕ(t, x) is a regularized characteristic function as in [7,23] with ν = 0, δ = �, L = 1 and θ = �/4, 
space and time derivatives simplify each other in order to produce

x2+ �
2∫

x1− �
2

∣∣f ±
�x(T , x) − f ±(T , x)

∣∣dx ≤
x2+ �

2 +T∫
x1− �

2 −T

∣∣f ±
�x(0, x) − f ±(0, x)

∣∣dx + 4C TV
(
f ±(0, ·))� + [. . .].

Now, in contrast with the similar computation in [1], one can get rid of the contribution of G in the term (4.79)
by taking advantage of its quasi-monotonicity: in fact, since ± ∂G

∂f ± ≤ 0 (see (2.18)) and sgn(b)a − |a| ≤ 0 for any 

a, b ∈R
2, we have[

sgn
(
f +

�x(t, x) − f +(s, y)
)− sgn

(
f −

�x(t, x) − f −(s, y)
)][

G
(
f +

�x,f
−
�x

)
(t, x) − G

(
f +, f −)(s, y)

]≤ 0.

Since k(x) ≥ 0, from the integrand in (4.79) we get a negative term, while the remaining term comes from the differ-
ence k(x) − k(y) and is smaller than:∫ ∫ ∫ ∫

ϕ(t, x)
∣∣k(x) − k(y)

∣∣ζ(t − s, x − y) dsdydtdx

≤ T

∫
x

∫
y

∣∣k(x) − k(y)
∣∣ζx(x − y) dxdy ≤ T

�

∫
x

�
4∫

− �
4

∣∣k(x) − k(x + ξ)
∣∣ dξdx

≤ T

�
TV(k)

�
4∫

− �
4

|ξ | dξ = TV(k) · �

16
· T sup |ϕ|.

Above, we used that |ϕ| ≤ 1 by construction. It is necessary to derive suitable bounds for the error terms:

• Following the construction of [7], |∂xϕ| ≤ C/� and this affects the term:

∫
dy

∫
ds
∑
n,j

tn+1∫
tn

xj∫
xj−1

k(x)
∣∣φ(t, x, s, y) − φ(t, x

j− 1
2
, s, y)

∣∣ dtdx

≤
∑
n,j

tn+1∫
tn

xj∫
xj−1

k(x)
∣∣ϕ(t, x) − ϕ(t, x

j− 1
2
)
∣∣ dtdx ≤ CT

�x

�
‖k‖L1(R).

• The other term depends on TV(f̃ ±
n ; xj−1, xj ), which is bounded by C0�x‖k‖L∞(R), so one gets:

∑
n,j

TV
{
f̃ ±

n (·); (xj−1, xj )
} tn+1∫

tn

xj∫
xj−1

k(x)ϕ(t, x
j− 1

2
) dtdx ≤ T · C0�x‖k‖L∞‖k‖L1 .

Since Cα ≤ Lip(G) ≤ 2 (within the assumptions (1.6), (1.5)) the inequality reduces to:

x2+ �
2∫

x1− �
2

∣∣f ±
�x(T , x) − f ±(T , x)

∣∣ · dx ≤
x2+ �

2 +T∫
x1− �

2 −T

∣∣f ±
�x(0, x) − f ±(0, x)

∣∣ · dx

+ 4CT �x‖k‖L1

�
+ 2C0(T �x)‖k‖L1‖k‖L∞

+ �
[
4C TV

(
f ±(0, ·))+ C0 TV(k)T /8

]
.
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The optimal value for � can be computed by standard ways, and one finds:

x2+ �
2∫

x1− �
2

∣∣f ±
�x(T , x) − f ±(T , x)

∣∣ · dx ≤
x2+ �

2 +T∫
x1− �

2 −T

∣∣f ±
�x(0, x) − f ±(0, x)

∣∣ · dx

+ 2T

{
2

√
2�xC0‖k‖L1

[
4

T · C0
TV
(
f ±(0, ·))+ TV(k)

8

]
+ �xC0‖k‖L1‖k‖L∞

}
.

The absolute constant C which is used in [7] is fixed here at 2, based on [19, Theorem 2]. We have established the 
second estimate, E2: the proof of Theorem 1.1 is yet complete.
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Appendix A. An elementary example

A.1. Evaluation of J̃ (δ, f ±) for A(ρ) = αρ, |α| < 1

The implicit flux-function J̃ (δ, f ±), as derived in Proposition 2.1, is not very convenient for computing sharp 
interaction estimates; in particular, we have the usual derivation rule,

∂J̃

∂δ
= 1

∂F
∂J

(J̃ , δ, f ±)
,

∂J̃

∂f ± = −
∂F
∂f ± (J̃ , δ, f ±)

∂F
∂J

(J̃ , δ, f ±)
.

Accordingly, mixed derivatives of J̃ have an intricate expression:

∂2J̃

∂f ±∂δ

(
δ, f ±)= −

( ∂2F
∂f ±∂J

(J̃ , δ, f ±) + ∂J̃
∂f ± (δ, f ±) · ∂2F

∂J 2 (J̃ , δ, f ±))

( ∂F
∂J

(J̃ , δ, f ±))2
.

Assume that the relaxation is just g(ρ, J ) = αρ − J , 0 ≤ α < 1. An elementary computation yields that

B(ρ,J ) = 1

2α
log

∣∣∣∣ρ − J

α

∣∣∣∣,
and (2.26) rewrites as

F
(
J, δ, f ±)= B

(
2f + − J,J

)− B
(
2f − + J,J

)− δ = 1

2α
log

∣∣∣∣2f + − J (1 + 1
α
)

2f − + J (1 − 1
α
)

∣∣∣∣− δ.

The function J̃ is, for this simple case,

J̃
(
δ, f ±)= 2α(f + − f − exp(2αδ))

1 + α − exp(2αδ)(1 − α)
,

so its partial derivative in δ reads:
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Fig. A.1. Conversion of a Cauchy problem in R into a BVP on (−1,1).

∂J̃

∂δ
= 4α2 exp(2αδ)

f +(1 − α) − f −(1 + α)

(1 + α − exp(2αδ)(1 − α))2
= 4α2 exp(2αδ)

(1 + α − exp(2αδ)(1 − α))2
(J − αρ),

which clearly changes sign when the equilibrium curve is crossed. Its partial derivatives in f± read,

∂J̃

∂f + = 2α

1 + α − exp(2αδ)(1 − α)
,

∂J̃

∂f − = −2α

(1 + α) exp(−2αδ) − (1 − α)
,

so ∂J̃
∂f ± � ±1

1−δ(1∓α)
for small δ > 0. Consequently, we get second-order (mixed) derivatives as follows:

∂2J̃

∂f +∂δ

(
δ, f ±)= 4α2 (1 − α) exp(2αδ)

[1 + α − exp(2αδ)(1 − α)]2
≥ 0,

∂2J̃

∂f −∂δ

(
δ, f ±)= −4α2 (1 + α) exp(−2αδ)

[(1 + α) exp(−2αδ) − (1 − α)]2
≤ 0. (A.1)

A.2. Preliminary numerical results with A(ρ) = αρ, |α| < 1

Proceeding exactly like in [2], it’s possible to measure practically the sensitivity of both well-balanced and time-
splitting numerical approximations with respect to the total variation of the coefficient k(x). Accordingly it’s necessary 
to reformulate a Cauchy problem posed in the whole real line onto initial–boundary value problems (IBVP) on a finite 
interval, say x ∈ (−1, 1) in order to achieve computations: see Fig. A.1. In diagonal variables, (1.8) asks for boundary 
conditions f ±

b and initial data f ±(t = 0, ·) = f ±
0 . This IBVP is equivalent to the Cauchy problem posed on x ∈ R

with initial data given by,⎧⎪⎨⎪⎩
f +(t = 0, x) = f +

b , f −(t = 0, x) = 0, for x ≤ −1,

f ±(t = 0, ·) = f ±
0 , for |x| < 1,

f +(t = 0, x) = 0, f −(t = 0, x) = f −
b , for x ≥ 1.

Elementary computations based on the scattering matrix written in [18, Lemma 1] furnish the following stationary 
regimes for x ∈ (−1, 1):

J ∗
α = 2α(ēf +

b − f −
b )

, where ē = exp
(
α‖k‖L1(−1,1)

)
, (A.2)
ē(1 + α) − (1 − α)
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Fig. A.2. Strang-splitting errors e�t± (5, ·) on f + (top, left), f − (top, right) for μ ∈ {3, 5, 7}; the slowly-varying black curve shows the WB error, 
e�x± (5, ·). Corresponding pointwise errors on ρ(5, ·) (bottom, left) and J (5, ·) (bottom, right) for μ = 3.

f +(x) = f +
b e(x) + ēf +

b − f −
b

ē − 1−α
1+α

(
1 − e(x)

)
, where e(x) = exp

(
α

x∫
−1

k(y)dy

)
, (A.3)

f −(x) = f +
b e(x) − ēf +

b − f −
b

ē − 1−α
1+α

(
e(x) − 1 − α

1 + α

)
. (A.4)

Observe that letting α → 0, one recovers the value J ∗ found in [2, §4], i.e. J ∗
α → J ∗. A sequence of nonnegative, 

increasingly oscillating, coefficients is now set up,

0 ≤ kμ(x) = sin2(μπx), for x ∈ (−1,1), 0 elsewhere. (A.5)

It has the property that ‖kμ‖L1(R) = 1, as soon as μ ∈N, so the error estimate E1, apparently specific for well-balanced 
schemes, remains invariant with respect to μ (it depends only of ‖kμ‖L1(R)). Hence such a behavior should be observed 
numerically by checking the pointwise errors beyond a certain lapse of time. Oppositely, a time-splitting scheme has 
its error ruled by an estimate like E2, obtained by means of entropy dissipation [29], so it should be endowed with a 
dependency in TVkμ. In order to actually measure this discrepancy in the simple case where A(ρ) = αρ, we set up 
the following pointwise errors, for each abscissa xj in the computational domain, and t large enough:

e�t± (t, xj ) = (f ±)�t
(t, xj ) − f ±(xj ), e�x± (t, xj ) = (f ±)�x

(t, xj ) − f ±(xj ), (A.6)

where (f ±)�x and (f ±)�t are piecewise-constant approximations corresponding to a well-balanced and Strang-
splitting in time algorithms, respectively. Notice that (f ±)�t is therefore formally second-order with respect to time. 
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Numerical results for a simple, formally first-order, time-splitting algorithm are much worse. Hereafter we display 
pointwise errors (A.6) for the values α = 3, 5, 7 with,

f +
b = 1, f −

b = 0.4, t = 5 ≥ 2, α = 0.65, and �t = �x = 2−6.

An inspection of Fig. A.2 reveals that:

• As expected, pointwise errors e�x± produced by the well-balanced algorithm are insensitive to the growth of 
TVkμ and remains slowly varying; this confirms the validity of E1, not depending on x-derivatives of the coeffi-
cient kμ(x).

• Oppositely, oscillations pass from kμ into e�t± generated by the Strang-split scheme: their amplitude increases with 
their frequency. There is also a growth of amplitude when going from the left to the right of the computational 
domain as α > 0: if α < 0, then oscillations grow in the opposite direction.

• Oscillations pass onto macroscopic quantities ρ�t, J�t generated by the Strang-split scheme, too, whereas the 
ones produced by the WB remain slowly-varying. In particular, the left–right growth still appears on both vari-
ables.

In comparison with previous results obtained in [2, §4], Fig. A.2 displays new features that will be investigated more 
thoroughly in a forthcoming publication.
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