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Abstract

We prove invariance of the Gibbs measure for the (gauge transformed) periodic quartic gKdV. The Gibbs measure is supported 
on Hs(T) for s < 1

2 , and the quartic gKdV is analytically ill-posed in this range. In order to consider the flow in the support of 
the Gibbs measure, we combine a probabilistic argument with the second iteration and construct local-in-time solutions to the 
(gauge transformed) quartic gKdV almost surely in the support of the Gibbs measure. Then, we use Bourgain’s idea to extend these 
local solutions to global solutions, and prove the invariance of the Gibbs measure under the flow. Finally, inverting the gauge, we 
construct almost sure global solutions to the (ungauged) quartic gKdV below H

1
2 (T).

© 2015 
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1. Introduction

In this paper, we consider the periodic quartic generalized Korteweg–de Vries (gKdV) equation{
∂tu + ∂3

xu = 1

4
∂x

(
u4), x ∈ T, t ∈ R,

u(x,0) = u0(x).

(1.1)

Here u is a real-valued function on T ×R, where T =R/2πZ is the one-dimensional torus. That is, T = [0, 2π ] with 
the endpoints identified. We assume that the mean of u0 is zero, and from conservation of the mean, it follows that 
the solution u(t) of (1.1) (if it exists) has spatial mean zero for all t ∈ R. Throughout this paper, we assume that the 
spatial mean û(0, t) is always zero for all t ∈ R.

The system (1.1) is a special case of the gKdV equation⎧⎨⎩ ∂tu + ∂3
xu = ± 1

p
∂x

(
up

)
, x ∈ T, t ∈ R, p ≥ 2 integer,

u(x,0) = u0(x).

(1.2)
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The KdV ((1.2) with p = 2) is a canonical model for dispersive waves in physics. This equation has a rich history and 
the related literature is extensive. The modified KdV (mKdV, p = 3) has also appeared in physics, and it is closely 
related to KdV through the Miura transform [13]. Higher power gKdV equations (p ≥ 4) have been studied mainly 
by mathematicians; there is interest in exploring the balance of a stronger nonlinearity with dispersion.

The system (1.2) has a conserved (if it is finite) Hamiltonian given by

H(u) := 1

2

ˆ

T

u2
xdx ± 1

p(p + 1)

ˆ

T

up+1dx.

Then (1.2) can be reformulated as

∂tu = ∂x

∂H

∂u
, (1.3)

where ∂H
∂u

is the Fréchet derivative with respect to the L2(T)-inner product.2 This Hamiltonian structure leads to a 
natural question: is the Gibbs measure “dμ = e−H(u)du” invariant under the flow of (1.2)?

The Gibbs measure μ for (1.2), first constructed by Lebowitz, Rose and Speer [27], is supported on H
1
2 −(T) =⋂

s< 1
2
Hs(T) (for p ≤ 5 only, with appropriate restrictions). To ask the question of its invariance under the flow, one 

needs to prove that the evolution of (1.2) is well-defined (globally-in-time) for initial data in the support of μ.
Let us recall some well-posedness results for (1.1) and (1.2). In [1], Bourgain introduced a weighted space–time 

Sobolev space Xs,b(T ×R) whose norm is given by

‖u‖Xs,b(T×R) = ∥∥〈n〉s 〈τ − n3〉bû(n, τ )
∥∥

L2
n,τ (Z×R)

. (1.4)

He used a fixed point argument to prove local well-posedness (LWP) of KdV in L2(T), and automatically obtained 
global well-posedness (GWP) by conservation of the L2(T)-norm.

The study of well-posedness for the periodic quartic gKdV (1.1) was also initiated in [1]; a fixed point argument 
was used to establish LWP in Hs(T), for s > 3

2 . This was improved to LWP in Hs(T) for s ≥ 1 by Staffilani [44], and 
then to s ≥ 1

2 by Colliander, Keel, Staffilani, Takaoka and Tao [12]. In [12], they also proved analytic ill-posedness of 

(1.1) below H
1
2 (T). That is, the data-to-solution map for (1.1) is not analytic in Hs(T) for s < 1

2 . In fact, it is not C4

(see also [2,11]).
Bourgain [3] rigorously proved the invariance of the Gibbs measure under the flow of KdV and mKdV, but to 

the knowledge of the author, this problem remains open for (1.2) with p = 4 and p = 5. For KdV and mKdV, he 
used a deterministic fixed point argument to establish well-posedness in the support of the Gibbs measure. Recall 
that the evolution of KdV is well-defined for all u0 ∈ L2(T) [1] (see also [21]), so it is certainly well-defined for 
u0 ∈ H

1
2 −(T) (globally-in-time). For mKdV, Bourgain proved LWP in a modified Besov-type space, slightly larger 

than H
1
2 (T) (where the Gibbs measure is also supported), but he could not use conservation of the L2(T)-norm to 

extend solutions globally-in-time.
The main new idea implemented in [3] was to use the invariance of the Gibbs measure under the flow of the 

finite-dimensional system of ODEs obtained by the projecting mKdV3 to the first N > 0 modes of the trigonometric 
basis (and an approximation argument) as a substitute for a conservation law, extending the local solutions of mKdV 
to global solutions (almost surely in the support of the Gibbs measure), and subsequently proving the invariance of 
the Gibbs measure μ under the flow.

We are interested in proving the invariance of the Gibbs measure under the flow of (1.1). Following the strategy 
developed in [3], the crucial ingredient is local well-posedness (and good approximation to the finite-dimensional 
ODEs) in the support of the Gibbs measure. Unfortunately, the C4-failure of the data-to-solution map below H

1
2 (T)

[12] indicates that one cannot use the contraction mapping principle to establish LWP of (1.1) in Hs(T) for s < 1
2 , 

as this necessitates analyticity of the data-to-solution map. However, to establish local-in-time dynamics for (1.1) in 

2 This is at least formally correct, for the rigorous definition of gKdV as a Hamiltonian system see [25].
3 In [3], Bourgain also proved the invariance of the Gibbs measure for periodic nonlinear Schrödinger equations, but we will focus on (1.2) in 

this discussion.
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the support of the Gibbs measure, it suffices to prove something weaker: that (1.1) is locally well-posed almost surely
with randomized initial data given by

u0,ω(x) =
∑

n∈Z\{0}

gn(ω)

|n| einx, (1.5)

where {gn}∞n=1 is a sequence of independent complex-valued Gaussian random variables of mean 0 and variance 1 
on a probability space (Ω, F, P), and g−n = gn (in order for u0,ω to be real-valued). The expression (1.5) represents 
a typical element in the support of the Gaussian part of the Gibbs measure, also known as the Wiener measure (see 
(1.10) below).

The analysis of well-posedness for (1.1) is simplified by a gauge transformation. This transformation preserves the 
initial data, and it is invertible. A function u satisfies (1.1) if and only if its gauge transformation v := G(u) (see (1.14)
below) satisfies{

∂tv + ∂3
xv = P

(
v3)∂xv, x ∈ T, t ∈ R,

v(x,0) = u0(x),
(1.6)

where P(u) = u − 1
2π

´
T

udx is the projection to functions with mean zero. The analysis of well-posedness for (1.6)

is simpler than for (1.1), but the data-to-solution map still fails to be C4 below H
1
2 (T) [12].

To properly state our results we need a few more definitions. Consider the finite-dimensional Galerkin approxima-
tion of (1.6),{

∂tu
N + ∂3

xuN = PN

(
P
((

uN
)3)

∂xu
N
)
, x ∈ T, t ∈R,

uN(x,0) = PNu0(x) ∈ EN, u0 mean zero.
(1.7)

Here PN denotes Dirichlet projection to EN = span{sin(nx), cos(nx) : 1 ≤ n ≤ N}. We also consider an extension of 
(1.7) to infinite dimensions, where the higher modes evolve according to linear dynamics. That is, we consider the 
system{

∂tv
N + ∂3

x vN = PN

(
P
((
PNvN

)3)
∂xPNvN

)
, x ∈ T, t ∈R,

vN(x,0) = v0(x) ∈ H
1
2 −, v0 mean zero,

(1.8)

and let ΦN(t) denote the flow map of (1.8).
In this paper, we exhibit nonlinear smoothing for (1.6) when the initial data are randomized according to (1.5). 

This is used to prove our first theorem: (1.6) is locally well-posed almost surely in H
1
2 −(T). In the statement below, 

S(t) := eit∂3
x denotes the evolution operator for the linear part of gKdV.

Theorem 1.1 (Almost sure local well-posedness). The gauge-transformed periodic quartic gKdV (1.6) is locally well-
posed almost surely with randomized data u0,ω (given by (1.5)). More precisely, for all 0 < δ1 < δ, with δ sufficiently 
small, there exists 0 < β < δ − δ1, and c > 0 such that for each 0 < T 	 1, there is a set ΩT ∈ F with the following 
properties:

(a) The complemental measure of ΩT is small. More precisely, we have

P
(
Ωc

T

) = ρ ◦ u0
(
Ωc

T

)
< e

− c

T β ,

where ρ is the Wiener measure (see (1.10) below), and the initial data (given by (1.5)) is viewed as a map 
u0 : Ω → H 1/2−(T).

(b) For each ω ∈ ΩT there exists a solution u to (1.6) with data u0,ω satisfying
(i) u ∈ S(t)u0,ω + C([0, T ]; H 1/2+δ(T)) ⊂ C([0, T ]; H 1/2−(T)).

(ii) The solution u is unique in {S(t)u0,ω + BK }, for some K > 0, where BK denotes a ball of radius K in the 

space X
1
2 +δ, 1

2 −δ
.
T
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(iii) u depends continuously on the initial data, in the sense that, for each ω ∈ ΩT , the solution map

Φ : {u0,ω + {‖ · ‖
H

1
2 +δ

≤ R
}} → {

S(t)u0,ω + {‖ · ‖
C([0,T ];H 1

2 +δ
)
≤ R̃

}}
is well-defined and Lipschitz, for some fixed R, R̃ ∼ 1.

(iv) u is well-approximated by the solution of (1.8). More precisely,∥∥u − ΦN(t)u0,ω

∥∥
C([0,T ];H 1

2 +δ1 )
�N−β. (1.9)

For the definition of the Xs,b
T space, see Section 2 below.

Following the method developed in [3], we use the invariance of finite-dimensional Gibbs measures under the flow 
of (1.7) and an approximation argument, to extend the local solutions of (1.6) (obtained from Theorem 1.1) to global 
solutions, almost surely, and to prove the invariance of the Gibbs measure under the flow.

Theorem 1.2 (Invariance of the Gibbs measure). The gauge-transformed periodic quartic gKdV (1.6) is globally 
well-posed almost surely with randomized data u0,ω (given by (1.5)). More precisely, for δ2 > 0 sufficiently small, it 
holds that given any T > 0, for almost every ω ∈ Ω , there is a (unique) solution u to (1.6) with data u0,ω satisfying

u ∈ S(t)u0,ω + C
([0, T ];H 1/2+δ2(T)

) ⊂ C
([0, T ];H 1/2−(T)

)
.

Furthermore, the Gibbs measure μ (given by (1.11) below) is invariant under the flow.

By inverting the gauge transformation, we obtain the following corollary.

Corollary 1.3 (Almost sure global well-posedness). The periodic quartic gKdV (1.1) is globally well-posed almost 
surely in H 1/2−(T). More precisely, given any T > 0, for almost every ω ∈ Ω , there exists a (unique) solution u to 
(1.1) for t ∈ [0, T ] with randomized data u0,ω (given by (1.5)).

Remark 1.4. In terms of global theory, GWP of (1.1) in Hs(T) for s > 5
6 was established in [12] using the I -method. 

This is mentioned to emphasize that, to the knowledge of the author, Corollary 1.3 is the first result to provide global-

in-time solutions to (1.1) below H
5
6 (T). We further note that these solutions evolve from data at a spatial regularity 

where even local theory is unavailable at present (below H
1
2 (T)).

Remark 1.5. The solutions of (1.6) and (1.1) produced by Theorem 1.2 and Corollary 1.3, respectively, are unique 
in a mild sense only. For a technical description of the uniqueness of solutions to (1.6) produced by Theorem 1.2, 
see Remark 5.9 in Section 5. This characterization applies to the gauge transformation (see (1.14) below) of the 
solutions to (1.1) produced by Corollary 1.3, which provides a mild form of uniqueness due to the invertibility of this 
transformation.

Remark 1.6. By composing with a modified and time-dependent gauge transformation G̃ = G̃t , we can obtain a 
time-dependent measure νt := μ ◦ G̃t , supported on Hs(T) for s < 1

2 , which (due to Theorem 1.2) satisfies Ψ (t)∗νt =
μ for each t ≥ 0, where Ψ (t) is the evolution operator for (1.1) (well-defined in the support of the Gibbs measure by 
Corollary 1.3). This leads to a natural question for future investigation: how is the time-dependent measure νt = μ ◦ G̃t

related to the Gibbs measure μ? Do we in fact have invariance of the Gibbs measure for the ungauged quartic gKdV 
(1.1)? This type of issue was recently explored for the periodic derivative NLS [30,32].

For the remainder of the introduction we provide more background on this problem, then outline the methods 
involved and the challenges confronted in the proofs of Theorem 1.1 and Theorem 1.2.
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1.1. Background

The study of invariant Gibbs measures for Hamiltonian PDEs was initiated in [27]. They constructed the Gibbs 
measure for (1.2) as a weighted Wiener measure. Recall that the Wiener measure,4 ρ, is the probability measure 
supported on H

1
2 −(T) with density

dρ = Z−1
0 e− 1

2

´
u2

xdx
∏
x∈T

du(x), u mean zero. (1.10)

This is a purely formal expression, but it provides intuition. We can in fact define ρ as the push-forward of the 
probability measure P under the map from Ω to H

1
2 −(T) given by ω �→ u0,ω (as defined in (1.5), see Section 5 for 

details).
In [27], it was shown that the Gibbs measure,5 μ, given by

dμ := χ{‖u‖2≤B}e∓ 1
p(p+1)

´
T

up+1dx
dρ

= Z0
−1χ{‖u‖2≤B}e−H(u)

∏
x∈T

du(x), (1.11)

is a finite Borel measure on H
1
2 −(T) (for integer 1 ≤ p ≤ 5, and with restrictions on B for p = 5) that is absolutely 

continuous with respect to the Wiener measure ρ. That is, the Gibbs measure μ for (1.1) was defined in [27], see 
also [3].

1.2. Nonlinear smoothing for the second iteration

As discussed above, the Gibbs measure for (1.1) is supported below H
1
2 (T), and local well-posedness of the quartic 

gKdV (both gauged and ungauged) cannot be established in Hs(T) for s < 1
2 by applying the contraction principle 

to an equivalent integral equation, as the data-to-solution map is not C4 [12]. In this paper we avoid this obstruction 
by exhibiting nonlinear smoothing under initial data randomization (according to (1.5)) on the second iteration of the 
integral formulation of (1.6). In this subsection we compare and contrast our approach with other related strategies.

Nonlinear smoothing induced by initial data randomization was also exploited by Bourgain [4]. He considered the 
Wick-ordered cubic NLS on T2, and proved invariance of the Gibbs measure under the flow. The Gibbs measure (in 
two dimensions) is supported on Hs(T2) for s < 0, and the Wick-ordered cubic NLS is ill-posed below L2(T2) due 
to scaling. In order to discuss the flow in the support of the Gibbs measure, Bourgain considered randomized initial 
data given by

ũ0,ω(x) =
∑
n∈Z2

gn(ω)√
1 + |n|2 ein·x, (1.12)

where {gn}n∈Z2 is a collection of independent complex-valued Gaussian random variables of mean 0 and variance 
1 on a probability space (Ω, F, P), which represents a typical element in the support of the Wiener measure. He 
exhibited a nonlinear smoothing effect induced by this randomization, and used this to construct local solutions to the 
Wick-ordered cubic NLS almost surely in the support of the Gibbs measure.

Bourgain quantified the nonlinear smoothing effect by proving that, with high probability, the nonlinear part of the 
solution to the Wick-ordered cubic NLS with randomized data ũ0,ω lies in a smoother space – C([0, T ]; Hs(T2)) for 
some s > 0 – than the linear evolution. In contrast, the linear evolution almost surely stays below L2(T2) for all time. 
More precisely, for all T > 0 sufficiently small, he constructed a set ΩT ⊂ Ω (corresponding to “good” randomized 
data ũ0,ω), such that ΩT is exponentially likely as a function of T ↘ 0, and such that for each ω ∈ ΩT , he could 
prove local existence and uniqueness of the solution to the Wick-ordered cubic NLS with data ũ0,ω for t ∈ [0, T ]

4 This is the mean zero Wiener measure, but we restrict attention to measures, data, and solutions with spatial mean zero throughout this paper, 
and will often omit the prefix “mean zero”.

5 The Gibbs measure was constructed for NLS in [27], but the same method applies to gKdV, see [3].
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by performing a contraction argument in the space {eit�ũ0,ω + B}, where B is a ball in Z
s, 1

2
T ⊂ C([0, T ]; Hs(T2))

for some s > 0 (for the definition of the function space Z
s, 1

2
T , consult Section 2 below). By taking an appropriate 

union over sets of this type (with T ↘ 0), he obtained local well-posedness almost surely for the Wick-ordered 
cubic NLS below L2(T2). For other works that have used nonlinear smoothing to establish local dynamics (and other 
properties) for dispersive PDEs in the support of measures on phase space, see (for example) Bourgain and Bulut [5,6], 
Burq, Thomann and Tzvetkov [7], Burq and Tzvetkov [8–10], Colliander and Oh [14], Deng [15,16], Luhrmann and 
Mendelson [28], Oh [34–37], Nahmod and Staffilani [33], Poiret [38], de Suzzoni [41,42], de Suzzoni and Tzvetkov 
[43] and Tzvetkov [46,47]. For related results on Navier–Stokes equations, see for example, Deng and Cui [17,18], 
Nahmod, Pavlović and Staffilani [31] and Zhang and Fang [51].

This paper considers (1.6) posed with randomized initial data of the form (1.5). To establish almost sure LWP, we 
found that (due in part to using the temporal regularity b = 1

2 ) we could not follow the method of [4] directly, and 
perform a contraction argument for (1.6) (with exponential likelihood in T ) in {S(t)u0,ω +B}, where B is a ball in the 

Banach space Z
s, 1

2
T . Instead, we will establish a priori estimates on the second iteration of the Duhamel formulation 

of (1.6) in Xs,b
T , with s > 1

2 and b < 1
2 .

More precisely, the local-in-time solution u to (1.6) will be constructed as the limit in X
1
2 −δ, 1

2 −δ

T (with 0 < δ 	 1) 
of a sequence of smooth solutions uN evolving from frequency truncated data uN

0,ω = PN(u0,ω). Each uN will satisfy 
the Duhamel formulation

uN(t) = S(t)uN
0,ω +D

(
uN

)
(t), (1.13)

where

D(v)(t) =
tˆ

0

S(t − s)N
(
v(s)

)
ds

and N (u) = ux(u
3 − 1

2π

´
T

u3dx) is the gauge-transformed nonlinearity. We will simultaneously establish the con-

vergence of uN to u, and D(uN) to D(u), in X
1
2 −δ, 1

2 −δ

T and X
1
2 +δ, 1

2 −δ

T , respectively, as N → ∞. Notice the increase 
in spatial regularity from s = 1

2 − δ to s = 1
2 + δ; this is the nonlinear smoothing effect induced by initial data random-

ization. During the proof of nonlinear estimates required to establish these convergence results, there is a troublesome 
region of frequency space created by taking b < 1

2 . In this region we will substitute (1.13) into an appropriately chosen 
factor of the nonlinearity, and expand. Taking this approach will resolve the technical obstruction due to b < 1

2 , but 
by considering a second iteration of (1.13) into just one of the factors, the nonlinear analysis expands from quartic 
to septic. Indeed, we will establish probabilistic septilinear estimates on the second iteration of (1.13). This is the 
trade-off involved in proving a priori estimates on the second iteration in Xs,b

T with b < 1
2 : one can take b < 1

2 at the 
cost of conducting a higher order multilinear analysis.

This approach (using b < 1
2 and the second iteration) was pioneered by Bourgain [2] in the analysis of KdV with 

measures as initial data. The argument was adapted to the setting of randomized initial data by Oh [37], who proved 
invariance of the white noise measure for the periodic KdV (see also [39]). Our approach is similar to [37], but we 
consider the quartic gKdV and the Gibbs measure (as opposed to the KdV and white noise). The additional source 
of difficulty for well-posedness of the quartic gKdV (including the C4-failure below H

1
2 (T) established in [12]) 

is the existence of distinct frequencies n, n1, · · · , n4 ∈ Z, such that n = n1 + · · · + n4, |n| ∼ |n1| ∼ N � 0, but 
such that |n3 − n3

1 − · · · − n3
4| 	 N2. This does not occur for KdV and mKdV, which have dispersion relations 

with cubic factorizations, and it makes the nonlinear analysis for quartic gKdV more labor intensive.6 Indeed, the 
regions of frequency space where these conditions are satisfied require us to use b < 1

2 (and thus to consider a second 
iteration of (1.13)). Furthermore, it is in these regions of frequency space where our nonlinear estimates will rely most 
heavily on probabilistic lemmata (involving, for example, hyper-contractivity properties of the Ornstein–Uhlenbeck 
semigroup, see Lemmas 6.4–6.6 in Section 6.2).

6 Let us remark that KdV and mKdV are strongly ill-posed (discontinuous data-to-solution maps) below H−1(T) and L2(T), respectively [29].
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1.3. Global-in-time solutions

To establish Theorem 1.2, we follow the scheme of [3]. Using the invariance of (finite-dimensional) Gibbs measures 
under the flow of (1.7), we extend local solutions of (1.6) (produced by Theorem 1.1) to global solutions, almost surely, 
and prove the invariance of the Gibbs measure under the flow. To be more precise, we follow the method of [7,49], and 
use the invariance of a sequence of truncated Gibbs measures for (1.8). All of these truncated measures are defined on 
a fixed infinite-dimensional space – they are Gaussian at high frequencies (see (5.2) in Section 5). This modification 
makes the limit properties of these truncated measures more flexible. We combine the invariance of these measures 
under (1.8) with the approximation (1.9) in order to extend local solutions of (1.6) globally-in-time, and to prove the 
invariance of the Gibbs measure under the flow.

To show that the system (1.7) preserves the finite-dimensional Gibbs measure, we need to prove that the L2-norm 
of uN , the Hamiltonian H(uN) and the Lebesgue measure on phase space (the space of Fourier coefficients) are all 
invariant under the flow. The invariance of the Lebesgue measure is trivial (by Liousville’s Theorem) for a Hamiltonian 
system, but the Hamiltonian formulation of (1.1) is disrupted by the gauge transformation (and the same is true in finite 
dimensions). That is, the exact nature of the Hamiltonian formulation for (1.7) (if one exists) is not clear to the author. 
Instead, we verify invariance of the Lebesgue measure under the flow of (1.7) directly. To extend from invariance of 
the Gibbs measure for (1.7) to invariance of truncated Gibbs measures (Gaussian at high frequencies) for (1.8), we 
also need to use the invariance of complex Gaussians under rotation.

1.4. The gauge transformation

Following the standard reductions of [44,12], we consider the gauge transformation

v(x, t) = G
(
u(x, t)

) := u

(
x −

tˆ

0

 

T

u3(x′, t ′
)
dx′dt ′, t

)
. (1.14)

This transformation preserves the initial data u0, and for fixed t ∈ R it is an isometry on Hs(T). Also, it is invertible:

u(x, t) = G−1(v(x, t)
) = v

(
x +

tˆ

0

 

T

v3(x′, t ′
)
dx′dt ′, t

)
. (1.15)

That is, u solves (1.1) if and only if7 v solves (1.6). Eqs. (1.1) and (1.6) leave the same Hamiltonian

H(u) = 1

2

ˆ
u2

xdx + 1

20

ˆ
u5dx = 1

2

ˆ
v2
xdx + 1

20

ˆ
v5dx =: H(v), (1.16)

invariant under the flow.
As a final remark, note that since v3vx = 1

4∂x(v
4) and vx both have mean zero, so does P(v3)vx . We therefore 

have P(v3)vx = P(P(v3)vx). Then since 
ffl
T

v2vx = 1
3

ffl
T
(v3)x = 0, and 

ffl
T

vvx = 1
2

ffl
T
(v2)x = 0, we can subtract 

3P(v) 
ffl
T

v2vx + 3P(v2) 
ffl
T

vvx from the right hand side of (1.6), with no effect, and rewrite (1.6) as⎧⎨⎩ ∂tv + ∂3
x v = P

(
P
(
v3)vx

) − 3P(v)

 

T

v2vx − 3P
(
v2) 

T

vvx, x ∈ T, t ∈R,

v(x,0) = u0(x).

(1.17)

The reformulation (1.17) of (1.6) will be needed during the proof of certain nonlinear estimates. Indeed, after gen-
eralizing the right-hand side of (1.17) to a specific multilinear function (see (3.1)–(3.2) and (6.1)–(6.4) below), this 
reformulation removes resonant frequency interactions which would otherwise complicate our nonlinear analysis.

More precisely, the reformulation (1.17) is critical during the proof of Lemma 6.8 in Section 6. Lemma 6.8 is 
a nonlinear estimate which will eventually be used during the proof of Theorem 1.1 (through Proposition 3.2 and 
Proposition 6.1). The proof of Lemma 6.8 will involve nonlinear Fourier analysis, and the quartic nonlinearity in 

7 Note that (1.15) is well-defined for v ∈ X1/2−,1/2− by the embedding X1/2−,1/2− ⊂ L3
x,t , see Section 2.
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(1.17) will produce a convolution over quintuples of integer frequencies (n, n1, n2, n3, n4) such that n = n1 + n2 +
n3 +n4, where n1 is the frequency corresponding to the derivative. The gauge transformation leading to (1.6) removes 
interactions in this convolution where n = n1, and by replacing P(v3)vx with P(P(v3)vx) we remove the interactions 
where n = 0. The term P(v) 

ffl
T

v2vx is subtracted three times in (1.17) to remove interactions where n = nk for each 
k = 2, 3, 4, and the terms of the type P(v2) 

ffl
T

vvx are subtracted to remove interactions where n1 = −nk for each 
k = 2, 3, 4. This procedure has redundancy (see the definition of ζ2(n) in (6.3)), but we are able to control the terms 
created by this overlap.

Let us describe the benefit of removing these frequency interactions. During the proof of Lemma 6.8 we will order 
the frequencies {−n, n1, n2, n3, n4} by magnitude using superscripts |n0| ≥ |n1| ≥ |n2| ≥ |n3| ≥ |n4|. For the quartic 
gKdV, there is a region of frequency space where |n3 − n3

1 − n3
2 − n3

3 − n3
4| 	 (n0)2 (recall that this does not occur 

for KdV and mKdV, which have cubic factorizations [1]). In fact, Lemma 6.8 is the nonlinear estimate which controls 
the contributions from precisely this region. By considering the reformulation (1.17) we can control the contributions 
from the subset of this region where n0 = −n1. This is described in Case 1 during the proof of Lemma 6.8 (see 
(6.17)). Without introducing (1.17), the regions of frequency space where n = nk for some k = 1, 2, 3, 4, or n1 = −nk

for some k = 2, 3, 4, would have produced the following subcases when n0 = −n1:

(i) −n0 = n = n1 = n1, |n3 − n3
1 − n3

2 − n3
3 − n3

4| = 3|n2n3n4| 	 (n0)2,
(ii) n0 = n1 = −n2 = −n1, |n3 − n3

1 − n3
2 − n3

3 − n3
4| = 3|nn3n4| 	 (n0)2,

and similar cases when n = nk for k = 2, 3, 4, or n1 = −nk for k = 3, 4. These contributions are all problematic, as 
the derivative produces a factor of n1 in the nonlinearity, and the function spaces we will work with produce a positive 
power of n in the numerator, so that division by the cubic expression |n3 − n3

1 − n3
2 − n3

3 − n3
4| due to dispersion does 

not, in these cases, provide us with sufficient means for balancing these large factors. However, by introducing (1.17)
we can avoid these interactions completely.

By controlling the contributions from the region where |n3 − n3
1 − n3

2 − n3
3 − n3

4| 	 (n0)2 under the assumption 
that n0 = −n1, we can reduce to the case where n0 �= −n1. This reduction produces additional restrictions under the 
condition |n3 − n3

1 − n3
2 − n3

3 − n3
4| 	 (n0)2. Recall that n0 + · · · + n4 = 0 is satisfied, so that

∣∣n3 − n3
1 − · · · − n3

4

∣∣ = ∣∣(n1 + · · · + n4)3 − (
n1)3 − · · · − (

n4)3∣∣
= 3

∣∣(−n0n1 + n2(n3 + n4) + n3n4)(n2 + n3 + n4) − n2n3n4
∣∣

�
∣∣n0

∣∣∣∣n1
∣∣∣∣n0 + n1

∣∣,
where the last inequality holds if both |n3| 	 |n0| and |n2n3n4| 	 |n0||n1||n0 + n1|. This is in contradiction with the 
condition |n3 − n3

1 − n3
2 − n3

3 − n3
4| 	 (n0)2 (since n0 �= −n1). Therefore we can assume that either |n3| ∼ |n0| or 

|n2n3n4| � |n0||n1||n0 +n1| with |n3| 	 |n0| (see Case 2 in the proof of Lemma 6.8), and this provides the analytical 
leverage required to complete the proof of Lemma 6.8.

1.5. Notation

We include some brief remarks on notation.
For simplicity, the appropriate factors of 2π will often be dropped when we use the Fourier transform.
Let η ∈ C∞

c (R) denote a smooth bump function supported on [−2, 2] such that η ≡ 1 on [−1, 1], and write 
ηδ (t) := η(t/δ). Also let χ = χ[−1,1] denote the characteristic function of the interval [−1, 1] and χδ (t) := χ(t/δ) =
χ[−δ,δ](t).

We write A � B to denote an estimate of the form A ≤ CB , where C is a general constant. Similarly, we write 
A ∼ B to denote A � B and B � A and use A 	 B when there is no general constant C such that B ≤ CA. Where 
appropriate, we will modify these notations by A � ε B (or ∼ ε , 	 ε) to indicate that the implied constant depends on 
a parameter ε.

Lastly, we use a+ (and a−) to denote a + ε (and a − ε), respectively, for arbitrarily small ε 	 1.
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1.6. Organization of paper

The remainder of this paper is organized as follows. In Section 2 we present the basic linear estimates related to the 
propagator S(t) := e−∂3

x t of the linear part of gKdV. In Section 3 we present the nonlinear estimates to be used in the 
proof of local well-posedness (Theorem 1.1). In Section 4 we will prove Theorem 1.1. Section 5 contains the proof of 
Theorem 1.2. Section 6 is devoted to the proof of the crucial nonlinear estimates using certain technical lemmata. The 
proofs of these lemmata are included in Appendix A.

2. Linear estimates

In [1], Bourgain introduced a weighted space–time Sobolev space Xs,b(T ×R) whose norm is given by

‖u‖Xs,b(T×R) = ∥∥〈n〉s 〈τ − n3〉bû(n, τ )
∥∥

L2
n,τ (Z×R)

.

Since the Xs, 1
2 norm fails to control L∞

t H s
x norm, a smaller space Zs,b(T × R) was also introduced, whose norm is 

given by

‖u‖Zs,b(T×R) := ‖u‖Xs,b(T×R) + ‖u‖
Y

s,b− 1
2 (T×R)

, (2.1)

where 〈·〉 = 1 + | · | and ‖u‖Y s,b(T×R) = ‖〈n〉s〈τ − n3〉bû(n, τ)‖l2nL1
τ (Z×R). One also defines the local-in-time version 

Z
s,b
T on T × [0, T ], by

‖u‖
Z

s,b
T

= inf
{‖ũ‖Zs,b(T×R) : ũ|[0,T ] = u

}
.

The local-in-time versions of other function spaces are defined analogously.
In this section we present the basic linear estimates related to gKdV. Let S(t) := e−∂3

x t and T ≤ 1 in the following. 
We first state the homogeneous and nonhomogeneous linear estimates. See [1,22] for details.

Lemma 2.1. For any s ∈R and b < 1
2 , we have ‖S(t)u0‖X

s,b
T

� T
1
2 −b‖u0‖Hs .

Lemma 2.2. For any s, b ∈R, we have ‖ηT (t)S(t)u0‖Xs,b � T ,b ‖u0‖Hs .

Lemma 2.3. For any s ∈R and b ≤ 1
2 , we have∥∥∥∥∥

tˆ

0

S
(
t − t ′

)
F
(
x, t ′

)
dt ′

∥∥∥∥∥
X

s,b
T

� T ,b ‖F‖
Z

s,b−1
T

.

For b ∈ ( 1
2 , 1) we have∥∥∥∥∥
tˆ

0

S
(
t − t ′

)
F
(
x, t ′

)
dt ′

∥∥∥∥∥
X

s,b
T

� T ,b ‖F‖
X

s,b−1
T

.

Also, for any b ∈R, it holds that∥∥∥∥
tˆ

0

S
(
t − t ′

)
F
(
x, t ′

)
dt ′

∥∥∥∥
Y

s,b
T

� T ,b ‖F‖
Y

s,b−1
T

.

We will also require the following lemma concerning the Xs,b
T spaces, which allows us to gain a small power of T

by raising the temporal exponent b.



708 G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766
Lemma 2.4. Let 0 < b < 1
2 , s ∈ R, then

‖u‖
X

s,b
T

� T
1
2 −b−‖u‖

X
s, 1

2
T

.

The proof of Lemma 2.4 can be found in [14]; it is based on the following property of the Xs,b
T spaces, which 

will be exploited throughout this paper. For any b < 1
2 , letting χ[0,T ] denote the characteristic function of the interval 

[0, T ], we have

‖u‖
X

s,b
T

∼ ‖χ[0,T ]u‖Xs,b . (2.2)

Most of the probabilistic lemmata found in this paper will be presented in Section 6.2. They will be needed during 
the proofs of the crucial nonlinear estimates. Earlier in our analysis, however, we will require the following lemma re-
garding large deviations. This lemma is a special case of Fernique’s Theorem [19] (for discussion see [26], specifically 
Remark 2 on page 104 and Theorem 3.1 on page 159), but it can also be proven by explicit computation.

Lemma 2.5. Fix γ > 0, and let u0,ω be given by (1.5). There exists c > 0 such that

E
(
exp

(
c‖u0,ω‖2

H
1
2 −γ

))
< ∞.

Hence there exists c′ > 0 such that for each K > 0,

P
(‖u0,ω‖

H
1
2 −γ

≥ K
) ≤ e−c′K2

.

Next we list some embeddings involving the Xs,b spaces, to be used throughout this paper. We will use the trivial 
embedding

Xs,b ⊂ Xs′,b′
(2.3)

for s ≥ s′, b ≥ b′. The spatial Sobolev embedding gives

Xs,0 = L2
t H

s
x ⊂ L2

t L
p
x (2.4)

where 0 ≤ s < 1/2 and 2 ≤ p ≤ 2
1−2s

, or where s > 1/2 and 2 ≤ p ≤ ∞. Also recall the energy estimate

Xs,1/2+ ⊂ L∞
t H s

x ⊂ L∞
t L

p
x (2.5)

under the same conditions on s and p. This gives

X1/2+,1/2+ ⊂ L∞
x,t . (2.6)

Interpolating (2.5) with (2.6), for s > 1/2, we have

X1/2+,1/2+ ⊂ L
q
t Lr

x (2.7)

for all 2 ≤ q, r ≤ ∞. Next we claim that by interpolating (2.7) with (2.4) (for s = 0 and p = 2), we find

X1/2−δ,1/2−δ ⊂ L
q ′
t Lr ′

x (2.8)

whenever 0 < δ < 1/2 and 2 ≤ q ′, r ′ < 1/δ. Indeed, for each 0 < δ < 1/2, given any 2 ≤ q ′ < 1/δ, we can select 
γ > 0 and 2 ≤ q ≤ ∞ such that

1

q ′ = 1

2
+ 1 − 2δ

1 + 2γ

(
1

q
− 1

2

)
. (2.9)

This should be clear to the reader by checking that, for fixed 0 < δ < 1/2, as a function of (γ, q) ∈ (0, ∞) × [2, ∞], 
the right-hand side of (2.9) maps onto (δ, 1/2]. Letting θ = 1−2δ

1+2γ
, it follows that

1
′ = (1 − θ)

1 + θ
1
,

q 2 q
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and

1

2
− δ = (1 − θ)0 + θ

(
1

2
+ γ

)
.

The same computation applies with respect to the r ′ parameter, and the conclusion (2.8) follows by interpolating (2.7)
with (2.4) (for s = 0 and p = 2) according to this algebraic scheme.

Recall the following Strichartz estimates from [1],

X0,1/3 ⊂ L4
x,t , (2.10)

and

X0+,1/2+ ⊂ L6
x,t . (2.11)

We can interpolate (2.10) with (2.11) to obtain

X0+,1/2−σ ⊂ L
q
x,t , (2.12)

whenever 4 < q < 6 and σ < 2( 1
q

− 1
6 ).

Lastly we recall the following embeddings for the Y s,b space, which are easily established from the definitions: for 
s ∈R, we have

X
s, 1

2 +
T ⊂ Y

s,0
T ⊂ C

([0, T ];Hs(T)
)
. (2.13)

3. Nonlinear estimates

In this section we will formulate and state two key propositions (see Proposition 3.2 and Proposition 3.3 below). 
These propositions provide multilinear estimates to be used in the proof of Theorem 1.1 (which can be found in the 
next section). The proofs of Proposition 3.2 and Proposition 3.3 will be postponed to Section 6.

We begin by defining the multilinear functions which will appear in Proposition 3.2 and Proposition 3.3. In this 
paper, we solve the integral formulation of (1.6) with data u0,ω (given by (1.5)),

u = S(t)u0,ω +D(u). (3.1)

Here D(u) := D(u, u, u, u) and

D(u1, u2, u3, u4) :=
tˆ

0

S
(
t − t ′

)
N (u1, u2, u3, u4)

(
t ′
)
dt ′, (3.2)

with N (u1, u2, u3, u4) defined by its Fourier transform in space:(
N (u1, u2, u3, u4)

)∧
(n, t) =

∑
(n1,n2,n3,n4)∈ζ(n)

(in1)û1(n1, t)û2(n2, t)û3(n3, t)û4(n4, t),

where ζ(n) is a set of frequencies (n1, n2, n3, n4) satisfying certain restrictions (dictated by the nonlinearity of (1.17)). 
The definition of ζ(n) is slightly cumbersome, and we avoid it here. See (6.2)–(6.4) in Section 6.1 for details.

Taking the Fourier transform in time, we have(
N (u1, u2, u3, u4)

)∧
(n, τ ) =

∑
ζ(n)

ˆ

τ=τ1+···+τ4

(in1)û1(n1, τ1) · · · û4(n4, τ4). (3.3)

Let A be the domain of integration in (3.3), given by

A := {
(n,n1, . . . , n4, τ, τ1, . . . , τ4) ∈ Z

5 ×R
5 : (n1, n2, n3, n4) ∈ ζ(n), τ = τ1 + · · · + τ4

}
.

We will decompose A depending on the relative sizes of the dispersive weights σ := τ − n3, σk := τk − n3
k , and the 

spatial frequencies n, nk , for k = 1, . . . , 4. Specifically, letting |σmax| := max(|σ |, |σ1|, |σ2|, |σ3|, |σ4|) and |nmax| :=
max(|n|, |n1|, |n2|, |n3|, |n4|), we express A = A−1 ∪ A0 ∪ · · · ∪ A4 by letting
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A−1 := A ∩ {|σmax| 	 |nmax|2
}
,

A0 := A ∩ {|σ |� |nmax|2
}
,

Ak := A ∩ {|σk| � |nmax|2
}
, (3.4)

for k = 1, 2, 3, 4. We will use Nj (u1, u2, u3, u4) to denote the contribution to N (u1, u2, u3, u4) coming from Aj , for 
j = −1, 0, 1, 2, 3, 4. Similarly we will use Dj (u1, u2, u3, u4) to denote each contribution to D(u1, u2, u3, u4).

The partition of type (3.4) is standard; see for example [23] in the context of KdV. In the analysis of KdV (and 
mKdV), the region A−1 is empty. However, in the analysis of (1.6) (with quartic nonlinearity), there are nontrivial 
contributions from the region A−1. In fact, the counterexample which produces C4-failure of the data-to-solution map 
for (1.6) in Hs(T) for s < 1

2 is based on this fact (see [12]).
The multilinear estimates we establish in the region A−1 will use a probabilistic analysis. These will be estimates 

on the first iteration of the integral formulation of (1.6) (i.e. we do not require the second iteration in the region A−1). 
That is, in Proposition 3.2 below, we will establish probabilistic quadrilinear estimates on D−1(u1, . . . , u4). In the 
regions A1, . . . , A4, we require both the second iteration and a probabilistic analysis. That is, we establish probabilistic 
septilinear estimates on D1(D(u5, u6, u7, u8), u2, u3, u4), and analogous septilinear estimates on contributions from 
the regions A2, A3 and A4 (see Proposition 3.2 below). In the region A0, however, we can use a deterministic analysis. 
Indeed, we establish deterministic quadrilinear estimates on D0(u1, . . . , u4) (see Proposition 3.3 below).

Remark 3.1. There is a condition which we will implicitly impose in the statements of Proposition 3.2 and Proposi-
tion 3.3 below: in all cases, the input factors uj have spatial mean zero for all time. All of the factors we will consider 
in application of these estimates will be solutions (or differences of solutions) to (1.6) (equivalently (1.17)), or the 
truncation of this system to finite dimensions, evolving from initial data with spatial mean zero. That is, this mean 
zero condition will always be satisfied when these estimates are applied.

The probabilistic estimates established in the regions A−1, A1, . . . , A4 are grouped into the following proposition.

Proposition 3.2 (Probabilistic nonlinear estimates). For δ � β > 0 sufficiently small, any δ0 ≥ 0 such that δ > δ0, 

and any 0 < T 	 1, there exist c, C > 0 and a measurable set ΩT ⊂ Ω satisfying P(Ωc
T ) < e

− c

T β and the following 
conditions:

(i) If ω ∈ ΩT , then for every quadruple of Fourier multipliers Λ1, . . . , Λ4 defined by

Λ̂jf (n) = χNj ≤|n|≤Mj
f̂ (n), (3.5)

for some dyadic numbers Nj < Mj ≤ ∞, and for every quadruple of real numbers

(δ1, . . . , δ4) ∈ {
(δ0,0,0,0), . . . , (0,0,0, δ0)

}
,

we have the estimate∥∥D−1(u1, u2, u3, u4)
∥∥

X
1
2 +δ−δ0, 1

2 +δ

T

≤ CT −β
4∏

j=1

(
N

−β
j + ‖uj‖

X
1
2 −δ−δj , 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ−δj , 1

2 −δ

T

)
. (3.6)

(ii) If ω ∈ ΩT , then for every heptuple of Fourier multipliers Λ2, . . . , Λ8 defined by (3.5) for some dyadic numbers 
Nj < Mj < ∞, and for every heptuple of real numbers

(δ2, . . . , δ8) ∈ {
(δ0,0, . . . ,0), . . . , (0, . . . ,0, δ0)

}
,

we have the estimates



G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766 711
∥∥D1
(
D(u5, u6, u7, u8), u2, u3, u4

)∥∥
X

1
2 +δ−δ0, 1

2 +δ

T

≤ CT −β

8∏
j=2

(
N

−β
j + ‖uj‖

X
1
2 −δ−δj , 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ−δj , 1

2 −δ

T

)
. (3.7)

(iii) Estimates analogous to (3.7) on D2(u1, D(u5, u6, u7, u8), u3, u4), . . . , D4(u1, u2, u3, D(u5, u6, u7, u8)) also 
hold for ω ∈ ΩT .

The estimates of Proposition 3.2 are based on nonlinear smoothing due to initial data randomization. However, in 
some regions (e.g. A0), the choice of b = 1

2 − δ < 1
2 allows us to establish deterministic estimates.

Proposition 3.3 (Deterministic nonlinear estimates). For δ > 0 sufficiently small, any δ0 ≥ 0 such that δ > δ0, and 
any T > 0, there exist θ, C > 0 such that

∥∥D0(u1, u2, u3, u4)
∥∥

X
1
2 +δ−δ0, 1

2 −δ

T

≤ CT θ
4∏

j=1

‖uj‖
X

1
2 −δ−δj , 1

2 −δ

T

, (3.8)

∥∥D0(u1, u2, u3, u4)
∥∥

Y
1
2 +δ−δ0,0

T

≤ CT θ
4∏

j=1

‖uj‖
X

1
2 −δ−δj , 1

2 −δ

T

, (3.9)

and

∥∥Dk(u1, u2, u3, u4)
∥∥

X
1
2 +δ−δ0, 1

2 +δ

T

≤ CT θ‖uk‖
X

1
2 −δ−δk , 1

2 +2δ

T

4∏
j=1, j �=k

‖uj‖
X

1
2 −δ−δj , 1

2 −δ

T

, (3.10)

for each k = 1, 2, 3, 4, and for all quadruples

(δ1, δ2, δ3, δ4) ∈ {
(δ0,0,0,0), (0, δ0,0,0), (0,0, δ0,0), (0,0,0, δ0)

}
.

We also have

∥∥Dk(u1, u2, u3, u4)
∥∥

X
1
2 −4δ, 1

2 +δ

T

≤ C

4∏
j=1

‖uj‖
X

1
2 −δ, 1

2 −δ

T

, (3.11)

for each k = 1, 2, 3, 4.

Remark 3.4. In order to establish the crucial approximation (1.9) in the proof of Theorem 1.1, we will exploit 
flexibility of the estimates stated above with respect to frequency truncation of the nonlinearity. For the most 
part, this flexibility is implicit to the definition of the Xs,b

T -norm (and Y s,b
T -norm), but this is less obvious when 

we consider a second iteration of the integral formulation of (1.7), and attempt to use (3.7). In particular, it 
should be mentioned that (for ω ∈ ΩT ) we also have an estimate analogous to (3.7) on the multilinear expression 
D1(PND(u5, u6, u7, u8), u2, u3, u4), and similarly for the contributions from A2, A3 and A4. For an explicit refer-
ence to our use of this flexibility, see line (4.52) in Section 4.

Remark 3.5. There is another flexibility implicit to the nonlinear estimates of Proposition 3.2. The time interval [0, T ]
can be replaced with an interval I of length T , and we do not need the randomized data S(t)u0,ω to evolve from the 
left end-point of the interval I . In particular, we can take I = [t0, t0 + T ], and prove Proposition 3.2 by replacing 
S(t)u0,ω with S(t + t0)u0,ω , for any t0 ∈ R, since the linear gKdV evolution S(t0) preserves the Gaussian probability 
densities of the (independent) randomized Fourier coefficients in (1.5). However, by varying t0 the probabilistic set 
ΩT = ΩT (t0) varies as well. That is, we can use this flexibility (varying t0 ∈ R), but the measurable set of good 
data produced by Proposition 3.2 changes. We will stick to the following notation: ΩT (t0) is the set satisfying the 
conclusions of Proposition 3.2 on the time interval I = [t0, t0 + T ] (instead of [0, T ]) with initial data u0,ω posed at 
time t = 0.
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Remark 3.6. By using nonlinear estimates in Xs,b
T with b = 1

2 + δ > 1
2 (as in (3.6)), and applying the embedding 

(2.13), we will find (during the proof of Theorem 1.1) that the contributions to the nonlinear part of the solution from 
the regions A−1, A1, . . . , A4 are automatically continuous in time with values in a Sobolev space of higher regularity 
than the data (condition (i) in the statement of Theorem 1.1). However, for the contribution from the region A0, we 
will use the Xs,b

T estimate (3.8) with b = 1
2 − δ < 1

2 , and the proof of continuity will require a modified argument. 
This is where the Y s,b

T estimate (3.9) will be needed.

Remark 3.7. There is one region of frequency space, produced by using the second iteration, which appears lethal, at 
first glance, to the proof of (3.7). Luckily there is a cancellation in this region that saves the analysis. A technicality 
emerges, due to this cancellation, that needs to be addressed in this section. In particular, the estimate (3.7) has poten-
tially different input functions u2, u3, . . . , u8, but the cancellation that we need to invoke in the troublesome region 
of frequency space requires that all input functions are the same. This is not problematic, however, as we only need 
multilinear estimates with different input functions in order to bound the difference of two expressions, each given 
by D1(D(·, ·, ·, ·), ·, ·, ·) evaluated with all input functions equivalent. We bound this difference using multilinearity 
and a telescoping sum. Therefore, to incorporate the cancellation with different input functions, we simply define 
D1(D(u5, u6, u7, u8), u2, u3, u4) with the cancellation imposed in the troublesome region. For a more precise discus-
sion of this cancellation (and the proper definition of the multilinear functions appearing in Proposition 3.2 above) see 
Section 6.3 (and, more precisely, Case 2.b.ii of the proof of Proposition 6.2).

The proofs of Proposition 3.2 and Proposition 3.3 are postponed to Section 6.

4. Almost sure local well-posedness

In this section we present the proof of Theorem 1.1. The key inputs for this proof are Proposition 3.2 and Proposi-
tion 3.3.

Proof of Theorem 1.1. We will construct the local solution to (1.6) as the limit of a sequence of solutions uN which 
evolve from frequency truncated data. Consider initial data of the form

uN
0,ω(x) = PN

(
u0,ω(x)

)
,

where u0,ω is given by (1.5), and PN is the Dirichlet projection to EN . Notice that uN
0,ω ∈ Hs(T) almost surely, for 

every s ∈R. By Theorem 2 in [12], for each N > 0, almost surely, there exists a unique global-in-time solution uN to 
(1.6) with data uN

0,ω. Then uN satisfies

uN = S(t)uN
0,ω +DN, (4.1)

where DN := D(uN), D(u) = D(u, u, u, u) and D(u1, u2, u3, u4) is defined by (3.2).
Here is an outline of the proof of Theorem 1.1: we show that for 0 < δ1 < δ with δ sufficiently small, ∃ 0 < β <

δ − δ1 and c > 0 such that for each 0 < T 	 1 there exists ΩT ⊂ Ω with P(Ωc
T ) < e

− c

T β such that for ω ∈ ΩT , we 
have the following: for every N > M > 0,∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

�M−β, (4.2)∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

� M−β. (4.3)

These estimates show that uN and DN are Cauchy in X
1
2 −δ, 1

2 −δ

T and X
1
2 +δ, 1

2 −δ

T , respectively. Then we show that the 
convergent u (of uN ) is a solution to (1.6), and proceed to prove continuity, uniqueness and stability properties of this 
solution (properties (i)–(iv) in the statement of Theorem 1.1).
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We begin by constructing ΩT ⊂ Ω such that if ω ∈ ΩT , we have∥∥uN
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ R, (4.4)∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ R̃, (4.5)

for some constants R, R̃ ∼ 1 (independent of N ). Then using the estimates (4.4) and (4.5), and imposing additional 
constraints on T , we will show that if ω ∈ ΩT , then (4.2) and (4.3) hold true as well. By (4.1) and Lemma 2.1, we find∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

≤ ∥∥S(t)uN
0,ω

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ C0T
δ
∥∥uN

0,ω

∥∥
H

1
2 −δ

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

. (4.6)

Next we use the triangle inequality and Lemma 2.4 to find∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ ∥∥D−1
(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ · · · + ∥∥D4
(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

≤ ∥∥D0
(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ T δ−
4∑

k=−1,k �=0

∥∥Dk

(
uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

. (4.7)

By Proposition 3.2, for δ � β > 0 sufficiently small, choosing δ0 = 0 (for now), for any 0 < T 	 1, there exist 

c, C > 0 and a measurable set Ω0
T ⊂ Ω satisfying P((Ω0

T )c) < e
− c

T β such that if ω ∈ Ω0
T the estimates (3.6)–(3.7)

hold true. In particular using (3.8) (with δ0 = 0) and (3.6) with each uj = uN , and each Λj = PN , we have that if 
ω ∈ Ω0

T then∥∥D0
(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ T δ−∥∥D−1
(
uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥uN − S(t)uN
0,ω

∥∥
X

1
2 +δ, 1

2 −δ

T

)4

= T κ
(
1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

)4
. (4.8)

We have used (4.1) in the last line, and taken κ ≥ θ ∨ (δ − β).
When we estimate Dk(u

N), for k = 1, 2, 3, 4, we consider a second iteration of (4.1) in the kth slot. For example, 
in the region A1 we substitute (4.1) into the first slot of D1(u

N), and estimate the contributions from the linear and 
nonlinear parts of (4.1) separately. To estimate the linear contribution, we find by (3.10) (with δ0 = 0) and Lemma 2.2,

T δ−∥∥D1
(
S(t)uN

0,ω, uN ,uN,uN
)∥∥

X
1
2 +δ, 1

2 +δ

T

� T δ−∥∥ηT (t)S(t)uN
0,ω

∥∥
X

1
2 −δ, 1

2 +2δ

∥∥uN
∥∥3

X
1
2 −δ, 1

2 −δ

T

� T δ−∥∥uN
0,ω

∥∥
H

1
2 −δ

∥∥uN
∥∥3

X
1
2 −δ, 1

2 −δ

T

. (4.9)

Next we estimate D1(DN, uN, uN, uN). Using (3.7) with each uj = uN and each Λj = PN , and (4.1), we have for 
ω ∈ Ω0

T ,

T δ−∥∥D1
(
DN,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

)7
. (4.10)

Using the estimates analogous to (3.7) for k = 2, 3, 4 (also produced by Proposition 3.2), we have statements similar 
to (4.9) and (4.10) (for ω ∈ Ω0

T ) to bound D2(u
N), D3(u

N) and D4(u
N). Combining these estimates with (4.7) and 

(4.8) we have∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ C1T
κZ

(∥∥uN
0,ω

∥∥
H

1
2 −δ

,
∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

,
∥∥DN

∥∥
X

1
2 +δ, 1

2 −δ

T

)
, (4.11)

for some κ > 0, where Z(x, y, z) is a polynomial of degree 7 with positive coefficients.
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Now, fix C > 0, and let

ΩT := Ω0
T ∩

{
ω ∈ Ω

∣∣∣∣ ∥∥∥∥ ∑
n∈Z\{0}

gn(ω)einx

|n|1−β

∥∥∥∥
H

1
2 −δ

≤ C

T
β
2

}
.

We have by Lemma 2.5 (with γ = δ −β > 0) that for T > 0 sufficiently small P((ΩT )c) ≤ P((Ω0
T )c) + e−c(K(T ))2 ≤

e
− c

T β . Combining (4.6) and (4.11) with a standard continuity argument, if ω ∈ ΩT , then (4.4) and (4.5) are satisfied 
for each N > 0. See Section 3.4 of [40] for details.

To establish (4.2) and (4.3) we impose further restrictions on T . For ω ∈ ΩT , consider∥∥uN − uM
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ ∥∥S(t)
(
uN

0 − uM
0

)∥∥
X

1
2 −δ, 1

2 −δ
+ ∥∥DN −DM

∥∥
X

1
2 −δ, 1

2 −δ

T

≤ M−β C̃

T
β
2

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

. (4.12)

Then, using the multilinearity of D,∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ ∥∥D(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ ∥∥D(
uM,uN − uM,uN,uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ ∥∥D(
uM,uM,uN − uM,uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ ∥∥D(
uM,uM,uM,uN − uM

)∥∥
X

1
2 +δ, 1

2 −δ

T

. (4.13)

Each of the terms in (4.13) will be bounded in a similar way; we proceed to estimate the first term explicitly. As above, 
we will bound the contributions from each region Ak, k = −1, 0, 1, 2, 3, 4, using Propositions 3.2 and 3.3. Consider 
(3.6) and (3.8) applied with δ0 = 0, u1 = uN − uM , Λ1 = PN − PM , and uj = uN , Λj = PN for j = 2, 3, 4. This 
gives, for ω ∈ ΩT ,∥∥D0

(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ T δ−∥∥D−1
(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· (1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

)3
. (4.14)

To estimate Dk(u
N − uM, uN, uN, uN), for k = 1, 2, 3, 4, we again consider a second iteration of (4.1) in the kth 

factor. This argument requires minor modification when we consider D1(u
N − uM, uN, uN, uN). We substitute

uN − uM = S(t)
(
uN

0,ω − uM
0,ω

) +D
(
uN

) −D
(
uM

)
. (4.15)

Then to estimate D1(S(t)(uN
0,ω − uM

0,ω), uN, uN, uN), we proceed as in (4.9) above. To be precise, by (3.10), 
Lemma 2.2, and the definition of ΩT , we have

T δ−∥∥D1
(
S(t)

(
uN

0,ω − uM
0,ω

)
, uN ,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T δ−∥∥η(t)S(t)
(
uN

0,ω − uM
0,ω

)∥∥
X

1
2 −δ, 1

2 +δ
‖uj‖3

X
1
2 −δ, 1

2 −δ

T

� T κM−β‖uj‖3

X
1
2 −δ, 1

2 −δ

T

. (4.16)

Next we estimate D1(DN −DM, uN, uN, uN). We find∥∥D1
(
DN −DM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

�
∥∥D1

(
D

(
uN − uM,uN,uN,uN

)
, uN ,uN,uN

)∥∥ 1
2 +δ, 1

2 +δ

XT
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+ ∥∥D1
(
D

(
uM,uN − uM,uN,uN

)
, uN ,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

+ ∥∥D1
(
D

(
uM,uM,uN − uM,uN

)
, uN ,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

+ ∥∥D1
(
D

(
uM,uM,uM,uN − uM

)
, uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

. (4.17)

Each of the terms in (4.17) will be bounded in a similar way; we bound the first term explicitly. Applying (3.7) with 
δ0 = 0, u5 = uN − uM , Λ5 = PN − PM and uj = uN , Λj = PN for j = 2, 3, 4, 6, 7, 8, we find

T δ−∥∥D1
(
D

(
uN − uM,uN,uN,uN

)
, uN ,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

) · (1 + ∥∥uN
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

)6
.

Using (4.17) this leads to the bound

T δ−∥∥D1
(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· (1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥uM
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

+ ∥∥DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)6
.

With similar arguments, using the inequalities of Proposition 3.2, we find

T δ−∥∥Dk

(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· (1 + ∥∥uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥uM
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

+ ∥∥DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)6
, (4.18)

for all k = 1, 2, 3, 4. Combining (4.14) and (4.18), preceded by Lemma 2.4, we have∥∥D(
uN − uM,uN,uN,uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

� T κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· Z0

(∥∥uN
∥∥

X
1
2 −δ, 1

2 −δ

T

,
∥∥uM

∥∥
X

1
2 −δ, 1

2 −δ

T

,
∥∥DN

∥∥
X

1
2 +δ, 1

2 −δ

T

,
∥∥DM

∥∥
X

1
2 +δ, 1

2 −δ

T

)
, (4.19)

where Z0(x, y, z, w) is a polynomial of degree 6 with positive coefficients. Each of the terms in (4.13) can be bounded 
with similar arguments. This leads to∥∥DN −DM

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ C1T
κ
(
M−β + ∥∥uN − uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· Z1

(∥∥uN
∥∥

X
1
2 −δ, 1

2 −δ

T

,
∥∥uM

∥∥
X

1
2 −δ, 1

2 −δ

T

,
∥∥DN

∥∥
X

1
2 +δ, 1

2 −δ

T

,
∥∥DM

∥∥
X

1
2 +δ, 1

2 −δ

T

)
, (4.20)

where Z1(x, y, z, w) is a polynomial of degree 6 with positive coefficients. If we choose T > 0 sufficiently small such 
that

C1T
κZ1(R,R, R̃, R̃) ≤ 1

4
, (4.21)

we find from (4.20), (4.4) (4.5) and (4.21),∥∥DN −DM
∥∥ 1

2 +δ, 1
2 −δ

≤ 1

2
M−β + 1

2

∥∥uN − uM
∥∥ 1

2 −δ, 1
2 −δ

. (4.22)

XT XT
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Then combining (4.12) and (4.22), we have∥∥uN − uM
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ (
2C̃T δ− β

2 + 1
)
M−β �M−β,

by taking T < 1. With (4.22) this gives∥∥DN −DM
∥∥

X
1
2 +δ, 1

2 −δ

T

� M−β,

and we conclude that (4.2) and (4.3) hold for ω ∈ ΩT .

By (4.2) and (4.3), uN and DN converge in X
1
2 −δ, 1

2 −δ

T and X
1
2 +δ, 1

2 −δ

T , respectively, for ω ∈ ΩT . It remains to be 
shown that, for ω ∈ ΩT ,

(i) The convergent u of uN is indeed a solution to (1.6) with initial data u0,ω.

(ii) u − S(t)u0,ω ∈ C([0, T ]; H 1
2 +δ(T)).

(iii) u is unique in {S(t)u0,ω + {‖ · ‖
X

1
2 +δ, 1

2 −δ

T

≤ R̃}}.
(iv) u depends continuously on the initial data, in the sense that the solution map Φ : {u0,ω + {‖ · ‖

H
1
2 +δ

≤ K}} →
{S(t)u0,ω + {‖ · ‖

C([0,T ];H 1
2 +δ

)
≤ K̃}} is Lipschitz.

(v) The solution u is well-approximated by the solution of (1.8). More precisely,∥∥u − ΦN(t)u0,ω

∥∥
C([0,T ];H 1

2 +δ1 )
� N−β.

To establish (i), we need to prove that u = limN→∞ uN satisfies

u = S(t)u0,ω +D(u), (4.23)

where equality holds in the sense of distributions. Clearly, for ω ∈ ΩT , we have S(t)uN
0,ω → S(t)u0,ω in X

1
2 −δ, 1

2 −δ

T . 
Using a telescoping sum and the deterministic estimate (3.8), we have

D0
(
uN

) → D0(u) in X
1
2 +δ, 1

2 −δ

T . (4.24)

Also, by modifying the technique used to prove (4.3) (and invoking both (4.2) and (4.3)), we conclude that Dk(u
N) is 

Cauchy in X
1
2 +δ, 1

2 +δ

T , for each k = −1, 1, 2, 3, 4. That is,

Dk

(
uN

) → vk in X
1
2 +δ, 1

2 +δ

T (4.25)

for some vk ∈ X
1
2 +δ, 1

2 +δ

T , k = −1, 1, 2, 3, 4. We can therefore express

u = S(t)u0,ω +D0(u) + v−1 + v1 + · · · + v4. (4.26)

It remains to be shown that vk =Dk(u) for each k = −1, 1, 2, 3, 4.
First observe that by (4.2), (4.24) and (4.25), given the uniform bounds of (4.4) and (4.5), we have

‖u‖
X

1
2 −δ, 1

2 −δ

T

= lim
N→∞

∥∥uN
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ R, (4.27)∥∥∥∥∥D0(u) +
4∑

k=−1
k �=0

vk

∥∥∥∥∥
X

1
2 +δ, 1

2 −δ

T

= lim
N→∞

∥∥DN
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ R̃. (4.28)

Then to show that v−1 = D−1(u), we apply (3.6) with δ0 = 0, u1 = u − uN , Λ1 = Id − PN and uj = u, Λj = Id, for 
j = 2, 3, 4, we find (by substituting (4.1) and (4.26)), for ω ∈ ΩT , we have
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∥∥D−1
(
u − uN,u,u,u

)∥∥
X

1
2 +δ, 1

2 +δ

T

� T −β

(
N−β + ∥∥u − uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+
∥∥∥∥∥D0(u) +

4∑
k=−1
k �=0

vk −D
(
uN

)∥∥∥∥∥
X

1
2 +δ, 1

2 −δ

T

)

·
(

1 + ‖u‖
X

1
2 −δ, 1

2 −δ

T

+
∥∥∥∥∥D0(u) +

4∑
k=−1
k �=0

vk

∥∥∥∥∥
X

1
2 +δ, 1

2 −δ

T

)3

� T −β

(
N−β + ∥∥u − uN

∥∥
X

1
2 −δ, 1

2 −δ

T

+
4∑

k=−1
k �=0

∥∥vk −Dk

(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

+ ∥∥D0(u) −D0
(
uN

)∥∥
X

1
2 +δ, 1

2 −δ

T

)
(1 + R + R̃)3

→ 0, as N → ∞.

Note that we have used (4.27) and (4.28) in the second last line, and the convergence to zero follows from (4.24)
and (4.25). Using a telescoping sum, we can apply similar arguments to conclude that v−1 = limN→∞ D−1(u

N) =
D−1(u).

It remains to show that vk = Dk(u), for each k = 1, 2, 3, 4. The justification is similar for each such k; we focus 
on k = 1. We demonstrate this equivalence using a weaker norm. In particular, it is clear from (3.11) that D1(u

N)

converges to D1(u) in X
1
2 −4δ, 1

2 −δ

T , and therefore v1 = D1(u). In fact, by (4.25), it follows that D1(u
N) converges to 

D1(u) in X
1
2 +δ, 1

2 +δ

T . The same type of argument applies for k = 2, 3, 4, and (4.23) follows. We conclude that u is 
indeed a (mild) solution to (1.6) with data u0,ω for t ∈ [0, T ]. The discussion of point (i) is complete.

To address point (ii), we remark that by (4.25) and (2.13), since each vk = Dk(u), if ω ∈ ΩT , then Dk(u) ∈
C([0, T ]; H 1

2 +δ(T)) for all k ∈ {−1, 1, 2, 3, 4}. For k = 0, we have by (2.13), followed by a telescoping sum and 
application of (3.9), that∥∥D0(u) −D0

(
uN

)∥∥
C([0,T ];H 1

2 +δ
(T))

�
∥∥D0(u) −D0

(
uN

)∥∥
Y

1
2 +δ,0

T

� T θ
∥∥u − uN

∥∥
X

1
2 −δ, 1

2 −δ

T

R3.

With (4.2) we conclude that D0(u) ∈ C([0, T ]; H 1
2 +δ(T)). Therefore, if ω ∈ ΩT , we have

u − S(t)u0,ω =D(u) ∈ C
([0, T ];H 1

2 +δ(T)
)
.

Turning to point (iii) (uniqueness), we establish that, for ω ∈ ΩT , the solution u to (1.6) with data u0,ω (obtained 
as the limit of uN given by (4.1)) is unique in {S(t)u0,ω + {‖ · ‖ 1

2 +δ, 1
2 −δ,T

≤ R}}. Suppose ũ is another solution to 
(1.6) with data u0,ω that belongs to this function space. Following the methods used above, if ω ∈ ΩT , then we have∥∥D(ũ) −D(u)

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ T κ
(‖ũ − u‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥D(ũ) −D(u)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· Z2

(‖ũ‖
X

1
2 −δ, 1

2 −δ

T

,‖u‖
X

1
2 −δ, 1

2 −δ

T

,
∥∥D(ũ)

∥∥
X

1
2 +δ, 1

2 −δ

T

,
∥∥D(u)

∥∥
X

1
2 +δ, 1

2 −δ

T

)
, (4.29)

where Z2(x, y, z, w) is a polynomial of degree 6 with positive coefficients. With the definition of ΩT , we have∥∥D(ũ) −D(u)
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ T κ
∥∥D(ũ) −D(u)

∥∥
X

1
2 +δ, 1

2 −δ

T

· Z2
(
CT κ + R,CT κ + R,R,R

)
≤ 1

2

∥∥D(ũ) −D(u)
∥∥ 1

2 +δ, 1
2 −δ

, (4.30)

XT



718 G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766
for T > 0 sufficiently small. We conclude that D(ũ) = D(u) in X
1
2 +δ, 1

2 −δ

T , and thus u = ũ in X
1
2 −δ, 1

2 −δ

T , for ω ∈ ΩT . 
The proof of uniqueness is complete.

Next we discuss point (iv). We will show that, for ω ∈ ΩT , the solution map Φ : {u0,ω + {‖ · ‖
H

1
2 +δ

≤ R}} →
{S(t)u0,ω + {‖ · ‖

C([0,T ];H 1
2 +δ

)
≤ R̃}} for (1.6) is well-defined and Lipschitz. That is, given v0 such that ‖u0,ω −

v0‖
H

1
2 +δ

≤ R, we will demonstrate that:

(a) The solution to (1.6) with data v0 exists, is unique in the sense described above, and satisfies

‖v‖
X

1
2 −δ, 1

2 −δ

T

≤ R,
∥∥D(v)

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ R̃.

(b) The map Φ is Lipschitz.

To establish point (a), for N > 0 we let vN
0 := PNv0. By Theorem 2 in [12] the solution vN to (1.6) with data vN

0
exists for all t ∈R. We will show that, if ω ∈ ΩT , then for all N > M > 0,∥∥vN

∥∥
X

1
2 −δ, 1

2 −δ

T

≤ R, (4.31)∥∥D(
vN

)∥∥
X

1
2 +δ, 1

2 −δ

T

≤ R̃, (4.32)

and ∥∥vN − vM
∥∥

X
1
2 −δ, 1

2 −δ

T

,
∥∥D(

vN
) −D

(
vM

)∥∥
X

1
2 +δ, 1

2 −δ

T

→ 0, as M → ∞. (4.33)

The existence of a convergent v ∈ X
1
2 −δ, 1

2 −δ

T of the vN will follow from (4.31)–(4.33). Afterwards, the justification of 
points (i)–(iii) for the convergent v can follow the discussion above (for u with data u0,ω) very closely, and we omit 
details. We proceed to justify (4.31)–(4.33).

The solution vN to (1.6) with data vN
0 satisfies

vN = S(t)vN
0 +D

(
vN

)
= S(t)uN

0,ω + S(t)
(
vN

0 − uN
0,ω

) +D
(
vN

)
, (4.34)

and

vN − vM = S(t)(PN − PM)u0,ω + S(t)(PN − PM)(v0 − u0,ω) +D
(
vN

) −D
(
vM

)
. (4.35)

Using Lemma 2.2, the new contributions to (4.34) and (4.35) (i.e. contributions which were absent in the analysis of 
the sequence uN above) satisfy, for any b ∈R,∥∥S(t)

(
vN

0 − uN
0,ω

)∥∥
X

1
2 +δ,b

T

� ‖v0 − u0,ω‖
H

1
2 +δ

(T)
, (4.36)

and ∥∥S(t)(PN − PM)(v0 − u0,ω)
∥∥

X
1
2 +δ,b

T

�
∥∥(Id − PM)(v0 − u0,ω)

∥∥
H

1
2 +δ

(T)
≤ CM → 0, (4.37)

as M → ∞. The point is that, thanks to (4.36) and (4.37), we can estimate the contributions from (v0 − u0,ω) in 

(4.34)–(4.35) using the X
1
2 +δ, 1

2 +δ

T norm (with spatial and temporal regularity s = b = 1
2 + δ). In the proof of in-

equalities (4.31)–(4.33), this has two benefits. Firstly, we can estimate contributions from these terms as we did the 
nonlinear terms (with spatial regularity s = 1

2 + δ) in our estimates above. Secondly, when we consider a second 
iteration of (4.34) in some regions of frequency space (as in line (4.15) above for uN ), we cannot expand the con-
tributions from (v0 − u0,ω) in (4.34) and (4.35) into septilinear expressions (as we can for D(vN)); instead these 
contributions can be bounded using (4.36) and (4.37) with temporal regularity b = 1

2 + δ, by applying the determinis-
tic estimates (3.10).



G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766 719
Using this approach, we can establish∥∥vN
∥∥

X
1
2 −δ, 1

2 −δ

T

≤ C0T
δ−∥∥uN

0,ω

∥∥
H

1
2 −δ

+ C̃T δ−∥∥vN
0 − uN

0,ω

∥∥
H

1
2 +δ

+ ∥∥D(
vN

)∥∥
X

1
2 +δ, 1

2 −δ

T

,

and if ω ∈ ΩT , then∥∥D(
vN

)∥∥
X

1
2 +δ, 1

2 −δ

T

≤ C1T
κZ2

(
T δ−∥∥uN

0,ω

∥∥
H

1
2 −δ

,
∥∥vN

0 − uN
0,ω

∥∥
H

1
2 +δ

,∥∥vN
∥∥

X
1
2 −δ, 1

2 −δ

T

,
∥∥D(

vN
)∥∥

X
1
2 +δ, 1

2 −δ

T

)
, (4.38)

where Z2(x, y, z, w) is a polynomial of degree 7 with positive coefficients. Under the assumption ‖vN
0 −

uN
0,ω‖

H
1
2 +δ

≤ R, we can repeat the analysis done for uN , and (4.31)–(4.32) follows for T > 0 sufficiently small. To 
prove (4.33), we proceed as above, using (4.34)–(4.37), Proposition 3.2 and Proposition 3.3 to establish, if ω ∈ ΩT , 
then for all N > M > 0 we have∥∥D(

vN
) −D

(
vM

)∥∥
X

1
2 +δ, 1

2 −δ

T

≤ C1T
κ
(
M−β + ∥∥S(t)

(
P

N − P
M

)
(v0 − u0,ω)

∥∥
X

1
2 +δ, 1

2 +δ

T

+ ∥∥vN − vM
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥D(
vN

) −D
(
vM

)∥∥
X

1
2 +δ, 1

2 −δ

T

)
· Z3

(
T δ−∥∥uN

0,ω

∥∥
H

1
2 −δ

, T δ−∥∥uM
0,ω

∥∥
H

1
2 −δ

,
∥∥vN

0 − uN
0,ω

∥∥
H

1
2 +δ

,
∥∥vM

0 − uM
0,ω

∥∥
H

1
2 +δ

,∥∥vN
∥∥

X
1
2 −δ, 1

2 −δ

T

,
∥∥vM

∥∥
X

1
2 −δ, 1

2 −δ

T

,
∥∥D(

vN
)∥∥

X
1
2 +δ, 1

2 −δ

T

,
∥∥D(

vM
)∥∥

X
1
2 +δ, 1

2 −δ

T

)
,

where Z3(s, t, u, v, w, x, y, z) is a polynomial of degree 6 with positive coefficients. Then using (4.31), (4.32) and the 
definition of ΩT , we find∥∥D(

vN
) −D

(
vM

)∥∥
X

1
2 +δ, 1

2 −δ

T

≤ C1T
κ
(
M−β + CM + ∥∥D(

vN
) −D

(
vM

)∥∥
X

1
2 +δ, 1

2 −δ

T

)
· Z3

(
CT κ,CT κ,R,R,R,R, R̃, R̃

)
.

By taking T > 0 sufficiently small (followed by rearrangement of the last inequality), and using CM → 0 as M → ∞, 
we conclude that (4.33) holds true for ω ∈ ΩT . This completes the justification of point (a): for ω ∈ ΩT , the local 
solution v to (1.6) with data v0 ∈ {u0,ω +{‖ ·‖

H
1
2 +δ

≤ R}} exists and it is continuous and unique (in the sense described 
above).

We proceed to establish point (b). That is, we show that the solution map

Φ : {u0,ω + {‖ · ‖
H

1
2 +δ

≤ R
}} → {

S(t)u0,ω + {‖ · ‖
C([0,T ];H 1

2 +δ
)
≤ R̃

}}
for (1.6) is Lipschitz. Suppose u0, v0 ∈ {u0,ω + {‖ · ‖

H
1
2 +δ

≤ R}} and let u, v ∈ {S(t)u0,ω + {‖ · ‖
C([0,T ];H 1

2 +δ
)
≤ R̃}}

denote the corresponding solutions to (1.6). As above, we have

‖u − v‖
X

1
2 −δ, 1

2 −δ

T

≤ ∥∥S(t)(u0 − v0)
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥D(u) −D(v)
∥∥

X
1
2 −δ, 1

2 −δ

T

� T δ−‖u0 − v0‖
H

1
2 +δ

+ ∥∥D(u) −D(v)
∥∥

X
1
2 +δ, 1

2 −δ

T

,

and if ω ∈ ΩT , then∥∥D(u) −D(v)
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ C1T
κ
(∥∥u0 − v0

∥∥
H

1
2 +δ

+ ‖u − v‖
X

1
2 −δ, 1

2 −δ

T

+ ∥∥D(u) −D(v)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
· Z4

(‖u0 − v0‖
H

1
2 +δ

,‖u‖ 1
2 −δ, 1

2 −δ
,‖v‖ 1

2 −δ, 1
2 −δ

,
∥∥D(u)

∥∥ 1
2 +δ, 1

2 −δ
,
∥∥D(v)

∥∥ 1
2 +δ, 1

2 −δ

)
,

XT XT XT XT
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where Z4(v, w, x, y, z) is a polynomial of degree 6 with positive coefficients. Repeating previous arguments, we 
conclude that, if T > 0 is sufficiently small, then for ω ∈ ΩT , we have

‖u − v‖
X

1
2 −δ, 1

2 −δ

T

� T κ‖u0 − v0‖
H

1
2 +δ

,∥∥D(u) −D(v)
∥∥

X
1
2 +δ, 1

2 −δ

T

� T κ‖u0 − v0‖
H

1
2 +δ

. (4.39)

Then we find

‖u − v‖
C([0,T ];H 1

2 +δ
)
≤ ∥∥S(t)(u0 − v0)

∥∥
C([0,T ];H 1

2 +δ
)
+ ∥∥D(u) −D(v)

∥∥
C([0,T ];H 1

2 +δ
)

= ‖u0 − v0‖
H

1
2 +δ

+ ∥∥D(u) −D(v)
∥∥

C([0,T ];H 1
2 +δ

)
, (4.40)

and using (2.13), Proposition 3.2, Proposition 3.3 and (4.40),∥∥D(u) −D(v)
∥∥

C([0,T ];H 1
2 +δ

)

�
∥∥D(u) −D(v)

∥∥
Y

1
2 +δ,0

T

≤
4∑

j=−1

∥∥Dj (u) −Dj (v)
∥∥

Y
1
2 +δ,0

T

≤ ∥∥D0(u) −D0(v)
∥∥

Y
1
2 +δ,0

T

+
4∑

j=−1,j �=0

∥∥Dj (u) −Dj (v)
∥∥

X
1
2 +δ, 1

2 +δ

T

�
(
T κ‖u0 − v0‖

H
1
2 +δ

+ T −β‖u − v‖
X

1
2 −δ, 1

2 −δ

T

+ T −β
∥∥D(u) −D(v)

∥∥
X

1
2 +δ, 1

2 −δ

T

)
· Z4

(‖u0 − v0‖
H

1
2 +δ

,‖u‖
X

1
2 −δ, 1

2 −δ

T

,‖v‖
X

1
2 −δ, 1

2 −δ

T

,
∥∥D(u)

∥∥
X

1
2 +δ, 1

2 −δ

T

,
∥∥D(v)

∥∥
X

1
2 +δ, 1

2 −δ

T

)
� T

κ
2 ‖u0 − v0‖

H
1
2 +δ

Z4(2R,R,R, R̃, R̃)

� ‖u0 − v0‖
H

1
2 +δ

. (4.41)

From (4.40) and (4.41) we conclude that the solution map Φ for (1.6) is Lipschitz. This completes the discussion of 
point (iv).

Lastly, we need to address point (v). To do this, we will compare solutions ũN of the truncated system (1.7)
to the local solution u of (1.6) constructed above. Let us be clear that we will use ũN to denote the solution to 
the frequency truncated PDE (1.7), not to be confused with the solution uN of (1.6) with frequency truncated data. 
Avoiding frequency truncation of the nonlinearity was useful above (to establish the existence of a convergent u), but 
it remains to justify (1.9). We will use the notation D̃N := PND(ũN , . . . , ũN ) and D := D(u, u, u, u).

Let us remark that the analysis applied to the sequence uN above, for fixed N > 0, applies to the frequency truncated 
sequence ũN as well (the Xs,b-norm “behaves nicely” with respect to frequency truncation, since it is defined in terms 
of Fourier coefficients, see also Remark 3.4). In particular, by proving (4.4)–(4.5) with ũN (instead of uN ) imply that 
for ω ∈ ΩT we have∥∥ũN

∥∥
X

1
2 −δ, 1

2 −δ

T

≤ R,∥∥D̃N
∥∥

X
1
2 +δ, 1

2 −δ

T

≤ R̃, (4.42)

for each N > 0. It should also be mentioned that the argument used above to justify point (iv) (Lipschitz continuity of 
the data-to-solution map Φ) applies to the finite-dimensional data-to-solution map ΦN of (1.7) (for the same reasons).

Given 0 < δ1 < δ as in the statement of Theorem 1.1, we impose the smallness condition 0 < β < δ − δ1 on the 
small constant β used above, and this has no effect on our prior analysis. We claim that the following estimates hold 
for ω ∈ ΩT :
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∥∥ũN − u
∥∥

X
1
2 −2δ+δ1, 1

2 −δ

T

� N−β, (4.43)∥∥D̃N −D
∥∥

X
1
2 +δ1, 1

2 −δ

T

�N−β. (4.44)

We proceed to justify (4.43) and (4.44). In fact, we will establish, for each M > N > 0,∥∥ũN − uM
∥∥

X
1
2 −2δ+δ1, 1

2 −δ

T

� N−β, (4.45)∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

�N−β. (4.46)

Then (4.43)–(4.44) follows by taking the limit M → ∞, using (4.2), (4.3) and (4.23). The point here is that, to justify 
(4.45)–(4.46), we can proceed with applications of Proposition 3.2 with uM as input functions (instead of u) with 
corresponding Λj = PM , because then Mj = M < ∞ (as required to apply the estimates from Proposition 3.2 of the 
form (3.7)).

We proceed to justify (4.45)–(4.46). Using the integral formulations of (1.6) and (1.7), the condition 0 < β < δ−δ1, 
and the definition of ΩT , we have∥∥ũN − uM

∥∥
X

1
2 −2δ+δ1, 1

2 −δ

T

≤ ∥∥S(t)(PM − PN)u0,ω

∥∥
X

1
2 −2δ+δ1, 1

2 −δ

T

+ ∥∥D̃N −DM
∥∥

X
1
2 −2δ+δ1, 1

2 −δ

T

≤ N−(δ−δ1)
∥∥S(t)(PM − PN)u0,ω

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

≤ N−β

T
β
2

+ ∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

. (4.47)

Then ∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

≤ ∥∥(Id − PN)DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

+ ∥∥PN

(
D̃N −DM

)∥∥
X

1
2 +δ1, 1

2 −δ

T

.

We find∥∥(Id − PN)DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

≤ N−(δ−δ1)
∥∥DM

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ N−βR̃. (4.48)

The estimate (4.48) illustrates how the slack in spatial derivatives due to the parameter δ1 > 0 can be used to 
establish the decay in N on the right-hand sides (4.45)–(4.46) (and thus (4.43)–(4.44)). Next, in order to es-
timate ‖PN(D̃N − DM)‖

X
1
2 +δ1, 1

2 −δ

T

, by using a telescoping series it suffices to consider expressions of the type 

‖PND(ũN − uM, ũN , ũN , ũN )‖
X

1
2 +δ1, 1

2 −δ

T

. Furthermore, with the decomposition of frequency space from Section 3, it 

is enough to consider expressions of the type ‖PNDk(ũ
N − uM, ũN , ũN , ũN )‖

X
1
2 +δ1, 1

2 −δ

T

, for each k ∈ {−1, 0, . . . , 4}. 
By Proposition 3.2, for δ � β > 0 sufficiently small, choosing δ0 = δ − δ1, for any 0 < T 	 1, there exist c, C > 0

and a measurable set Ω1
T ⊂ Ω satisfying P((Ω1

T )c) < e
− c

T β such that if ω ∈ Ω1
T the estimates (3.6)–(3.7) (with 

δ0 = δ − δ1) hold true. From here we redefine the set ΩT above by intersecting with the set Ω1
T .

For k = −1 and k = 0 we have by (3.6) and (3.8) (with δ0 = δ − δ1 > 0),∥∥PND0
(
ũN − uM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

+ T δ−∥∥PND−1
(
ũN − uM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 +δ

T

� T κ
(
N−β + ∥∥ũN − uM

∥∥
X

1
2 −2δ+δ1, 1

2 −δ

T

+ ∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

)
(1 + R + R̃)3. (4.49)

Then for k = 1 we find
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∥∥PND1
(
ũN − uM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

≤ ∥∥PND1
(
(Id − PN)uM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

+ ∥∥PND1
(
PN

(
ũN − uM

)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

,

and ∥∥PND1
(
(Id − PN)uM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

∼ ∥∥PND1
(
(Id − PN)DM, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

≤ ∥∥PND1
(
D

(
(Id − PN/4)u

M,uM,uM,uM
)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

+ ∥∥PND1
(
D

(
uM, (Id − PN/4)u

M,uM,uM
)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

+ ∥∥PND1
(
D

(
uM,uM, (Id − PN/4)u

M,uM
)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

+ ∥∥PND1
(
D

(
uM,uM,uM, (Id − PN/4)u

M
)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

. (4.50)

Once again, each term on the right-hand side of (4.50) will be bounded in a similar way, and we proceed to bound the 
first term explicitly. Using (3.7) (with δ0 = δ − δ1), we find∥∥PND1

(
D

(
(Id − PN/4)u

M,uM,uM,uM
)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

� T κ
(
N−β + ∥∥(Id − PN/4)u

M
∥∥

X
1
2 −2δ+δ1, 1

2 −δ

T

+ ∥∥(Id − PN/4)DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

)
· (1 + ∥∥uM

∥∥
X

1
2 −δ, 1

2 −δ

T

+ ∥∥DM
∥∥

X
1
2 +δ, 1

2 −δ

T

)3(1 + ∥∥ũN
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥D̃N
∥∥

X
1
2 +δ, 1

2 −δ

T

)3

� T κ
(
N−β + N−(δ−δ1)

(∥∥uM
∥∥

X
1
2 −δ, 1

2 −δ

T

+ ∥∥DM
∥∥

X
1
2 +δ, 1

2 −δ

T

))
(1 + R + R̃)6

� T κN−β(1 + R + R̃)7. (4.51)

Next we find∥∥PND1
(
PN

(
ũN − uM

)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

= ∥∥PND1
(
PN

(
D̃N −DM

)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

,

and by using a telescoping series, in order to estimate this expression it suffices to consider terms of the type 
‖PND1(PN(D(ũN −uM, ũN , ũN , ũN )), ũN , ũN , ũN )‖

X
1
2 +δ1, 1

2 −δ

T

. By the modification of (3.7) described in Remark 3.4

(with δ0 = δ − δ1), we have∥∥PND1
(
PND

(
ũN − uM, ũN , ũN , ũN

)
, ũN , ũN , ũN

)∥∥
X

1
2 +δ1, 1

2 −δ

T

≤ T κ
(
N−β + ∥∥ũN − uM

∥∥
X

1
2 −2δ+δ1, 1

2 −δ

T

+ ∥∥D̃N −DM
∥∥

X
1
2 +δ1, 1

2 −δ

T

)
(1 + R + R̃)6. (4.52)

By (4.47)–(4.52), with a continuity argument, as in the proof of (4.2)–(4.3) above, we arrive at (4.45)–(4.46).
Given (4.43)–(4.44), by following the approach taken in the discussion of point (ii) above (using an estimate of the 

type (4.48) to control high frequencies), we can establish that for ω ∈ ΩT we have∥∥D − D̃N
∥∥

C([0,T ];H 1
2 +δ1 )

� N−β.

Notice that, by definition, we have ΦN(t)u0,ω = ũN + S(t)(Id − PN)u0,ω , and therefore∥∥u − ΦN(t)u0,ω

∥∥
C([0,T ];H 1

2 +δ1 )
= ∥∥u − S(t)u0,ω − (

ũN − S(t)PNu0,ω

)∥∥
C([0,T ];H 1

2 +δ1 )

= ∥∥D − D̃N
∥∥

C([0,T ];H 1
2 +δ1 )

� N−β. (4.53)

This completes the discussion of point (v), and the proof of Theorem 1.1 is complete. �
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5. Global well-posedness and invariance of the Gibbs measure

In this section we will extend the local solutions produced by Theorem 1.1 to global solutions, and prove Theo-
rem 1.2 (invariance of the Gibbs measure under the flow of (1.6)). This section is divided into parts: 5.1. Construction 
of the Gibbs measure, 5.2. Invariance of the truncated Gibbs measure under the flow of (1.8), 5.3. Global well-
posedness (almost surely) for (1.6), and 5.4. Invariance of the Gibbs measure for (1.6).

5.1. Construction of the Gibbs measure

We begin by defining the Wiener measure in finite and infinite dimensions. The finite-dimensional Wiener measure 
ρN on EN = span{sin(nx), cos(nx) : 1 ≤ n ≤ N} is the push-forward of P under the map from (Ω, F, P) to EN

(equipped with the Borel sigma algebra) given by ω �→ PNu0,ω , where u0,ω is defined in (1.5). Fix δ > 0, the Wiener 

measure ρ8 on H
1
2 −δ(T) is the push-forward of P under the map from (Ω, F, P) to H

1
2 −δ(T) (equipped with the 

Borel sigma algebra) given by

ω �−→ u0,ω. (5.1)

Next we define the Gibbs measure μ for (1.1). We consider the truncated Gibbs measure μN on H
1
2 −δ(T) defined 

as the push-forward under the map (5.1) of the weighted measure

e− 1
20

´
T
(PNu0,ω(x))5dxχ{‖PNu0,ω‖2≤B}dP (ω). (5.2)

We recall a crucial result from [27,3].

Proposition 5.1. (See [27,3].) Let B < ∞, then for each r ≥ 1, we have

e− 1
20

´
T
(u0,ω(x))5dxχ{‖u0,ω‖2≤B} ∈ Lr(Ω).

In particular the Gibbs measure μ, defined as the push-forward under (5.1) of the weighted measure

e− 1
20

´
T
(u0,ω(x))5dxχ{‖u0,ω‖2≤B}dP (ω),

is absolutely continuous with respect to the Wiener measure ρ.

The proof of Proposition 5.1 first appeared in [27]. A different proof can be found in [3].

Remark 5.2. It is easily verified from the proof of Proposition 5.1 in [3] that we also have the following conclusion: 
there exists 0 < C < ∞ such that for all N > 0,∥∥e− 1

20

´
T
(PNu0,ω(x))5dxχ{‖PNu0,ω‖2≤B}

∥∥
Lr(Ω)

≤ C < ∞.

Having defined these measures, we establish a convergence property to be used in the proof of Theorem 1.2. The 
application of this proposition (and its proof) are inspired by similar arguments appearing in [10].

Proposition 5.3. Set

f (u) = e− 1
20

´
T

u5dxχ{‖u‖2≤B} and fN(u) = e− 1
20

´
T
(PNu(x))5dxχ{‖PN (u)‖2≤B}.

Then

lim
N→∞

ˆ

H
1
2 −δ

∣∣fN(u) − f (u)
∣∣dρ(u) = 0.

8 We will state the results required for the proof of Theorem 1.2. For more details about the Wiener measure, and Gaussian measures on Banach 
spaces, see [26,50].
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Proof. We first claim that fN(u) → f (u) in measure with respect to ρ, and this follows from showing that fN(u) →
f (u) ρ-almost surely (by Egorov’s Theorem). Clearly we have

χ{‖PNu‖2≤B} −→ χ{‖u‖2≤B}

ρ-almost surely. By continuity of the exponential function, we need only verify that PNu → u in L5(T), ρ-almost 
surely, and this follows easily from the Sobolev embedding L5(T) ↪→ H

1
2 −δ(T) (for δ > 0 sufficiently small).

Next fix any ε > 0, and let AN,ε := {u ∈ H
1
2 −δ(T) : |fN(u) − f (u)| ≤ ε}. We apply Cauchy–Schwarz followed by 

Proposition 5.1,
ˆ

H
1
2 −δ

(T)

∣∣fN(u) − f (u)
∣∣dρ(u) ≤

( ˆ

AN,ε

+
ˆ

Ac
N,ε

)∣∣fN(u) − f (u)
∣∣dρ(u)

≤
ˆ

AN,ε

∣∣fN(u) − f (u)
∣∣dρ(u) + ‖fN − f ‖L2(dρ)

(
ρ
(
Ac

N,ε

)) 1
2

≤ ε + 2C
(
ρ
(
Ac

N,ε

)) 1
2 .

Then since fN(u) → f (u) in measure with respect to ρ, we have ρ(Ac
N,ε) → 0 as N → ∞, and the proof of Propo-

sition 5.3 is complete. �
We have the following useful corollary of Proposition 5.3.

Corollary 5.4. For any Borel set A ⊂ H
1
2 −δ(T), we have

μ(A) = lim
N→∞μN(A). (5.3)

5.2. Invariance of the finite-dimensional Gibbs measure

Consider the frequency truncated and gauge-transformed quartic gKdV (1.7). We can write (1.7) in coordinates as 
a system of N complex ODEs (for the Fourier coefficients) cn := ûN (n), 1 ≤ n ≤ N . This system is locally well-posed 
by the Cauchy–Lipschitz Theorem, and it is easily verified that the L2-norm of the solution uN to (1.7) is preserved 
under the flow. This provides an a priori bound on the �∞

n -norm of the Fourier coefficients {cn}1≤n≤N , and it follows 
that the solution uN to (1.7) is global-in-time.

Recall that ΦN(t) is defined as the flow map of (1.8), and let Φ̃N(t) denote the flow-map of (1.7). Let E⊥
N denote 

the orthogonal complement of EN in H
1
2 −δ . Then ΦN(t) = (Φ̃N(t)PN, S(t)(Id − PN)) is defined as the flow of 

(1.7) on EN and the linear flow (i.e. the solution to linear KdV) on E⊥
N . In this subsection we establish the following 

proposition.

Proposition 5.5. For each N > 0, t ∈R, the map ΦN(t) is measure preserving on H
1
2 −δ(T) equipped with the Gibbs 

measure μN (as defined by (5.2)).

We define the (truly) finite-dimensional Gibbs measure μ̃N on EN by the density dμ̃N = fNdρN . Notice that we 
can write dμN = dμ̃N × dρ⊥

N , where ρ⊥
N denotes the Wiener measure on E⊥

N .

Lemma 5.6. For each N > 0, t ∈R, the map Φ̃N(t) is measure preserving on EN equipped with the finite-dimensional 
Gibbs measure μ̃N .

Lemma 5.7. For each t ∈ R, the linear propagator S(t) = e−it∂3
x is measure preserving on E⊥

N equipped with the 
Wiener measure ρ⊥.
N
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Then, since dμN = dμ̃N × dρ⊥
N and ΦN(t) = (Φ̃N(t)PN, S(t)(Id − PN)), Proposition 5.5 is immediate from 

Lemma 5.6 and Lemma 5.7. We proceed with the proofs of these lemmata.

Proof of Lemma 5.6. Suppose uN solves (1.7). We can write (1.7) in coordinates as a system of N complex ODEs 
(for the Fourier coefficients) cn := ûN (n), 1 ≤ n ≤ N (recall that c−n = cn). We verify the invariance of μ̃N in the co-
ordinate space CN , and this extends to EN by its definition. Straightforward computations verify that the Hamiltonian 
H(uN), the L2-norm of uN , and the Lebesgue measure 

∏
1≤n≤N dandbn on CN are invariant under the flow of (1.7). 

See Section 3.5.2 of [40] for details. The proof of Lemma 5.6 is complete. �
Proof of Lemma 5.7. This proof follows the argument of [49] (see also [41,47]), and it is essentially a consequence 
of the invariance of complex Gaussians under rotation. For M > N > 0, we consider the measure ρM

N on

EM
N := span

{
cos(nx), sin(nx) : N < n ≤ M

}
,

defined as the push-forward of P under the map ω �→ (PM − PN)u0,ω , where u0,ω is given by (1.5). It holds that, for 
any closed F ⊂ E⊥

N ,

ρ⊥
N(F ) ≥ lim sup

M→∞
ρM

N

(
F ∩ EM

N

)
. (5.4)

The inequality (5.4) follows from the complementary statement: for any open U ⊂ E⊥
N ,

ρ⊥
N(U) ≤ lim inf

M→∞ ρM
N

(
U ∩ EM

N

)
. (5.5)

To justify (5.5), recall that for any open U ⊂ E⊥
N ,

U ⊂ lim inf
M→∞

{
u ∈ E⊥

N : PMu ∈ U
} =

∞⋃
M=1

∞⋂
M1=M

{
u ∈ E⊥

N : PMu ∈ U
}
,

so that χU ≤ lim infM→∞ χ{u∈E⊥
N :PMu∈U}. Then by using the definition of ρM

N , and applying Fatou’s lemma, we have

lim inf
M→∞ ρM

N

(
U ∩ EM

N

) = lim inf
M→∞

ˆ

E⊥
N

χ{u∈E⊥
N :PMu∈U}dρ

⊥
N (5.6)

≥
ˆ

E⊥
N

lim inf
M→∞ χ{u∈E⊥

N :PMu∈U}dρ
⊥
N (5.7)

≥
ˆ

E⊥
N

χUdρ⊥
N = ρ⊥

N(U). (5.8)

Note that for each fixed n ∈ Z, t ∈ R, the KdV propagator S(t) = e−it∂3
x acts as a rotation on the 2-dimensional 

real vector space Vn = span{cos(nx), sin(nx)}. Thus any centered Gaussian measure on Vn is invariant under S(t), 
and it follows that S(t) is measure preserving on EM

N equipped with ρM
N , since ρM

N is defined as a product of centered 
Gaussian measures.

Let Bε denote the ball of radius ε in E⊥
N equipped with the H

1
2 −(T) topology. Then, since S(t) is a linear isometry 

on H
1
2 −(T) which leaves E⊥

N invariant, we have

S(t)
(
(F + Bε) ∩ EM

N

) ⊂ (
S(t)F + Bε

) ∩ EM
N . (5.9)

Then using (5.4), (5.9) and the invariance of ρM
N under S(t), we have

ρ⊥
N

(
S(t)F + Bε

) ≥ lim sup
M→∞

ρM
N

((
S(t)F + Bε

) ∩ EM
N

)
≥ lim sup

M→∞
ρM

N

(
S(t)

(
(F + Bε) ∩ EM

N

))
= lim supρM

N

(
(F + Bε) ∩ EM

N

)
. (5.10)
M→∞
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Note that F + Bε is open in E⊥
N , so that by (5.5) we have

lim inf
M→∞ ρM

N

(
(F + Bε) ∩ EM

N

) ≥ ρ⊥
N(F + Bε) ≥ ρ⊥

N(F ). (5.11)

By combining (5.10) and (5.11) we have ρ⊥
N(S(t)F + Bε) ≥ ρ⊥

N(F ) for every closed F ⊂ E⊥
N . By taking ε → 0, 

it follows from the dominated convergence theorem that ρ⊥
N(S(t)F ) ≥ ρ⊥

N(F ), and by time reversibility of S(t) we 
conclude that ρ⊥

N(S(t)F ) = ρ⊥
N(F ) for every closed F ⊂ E⊥

N . By standard approximation arguments this passes to 
measurable sets, and the proof is complete. �
5.3. Extending to global-in-time solutions

In this subsection we establish a proposition that uses the truncated Gibbs measure invariance (Proposition 5.5), 
and an approximation argument, to extend the local solutions of (1.6) (produced by Theorem 1.1) to global solutions. 
Recall that ΦN(t) denotes the data-to-solution map for (1.8).

Proposition 5.8. ∀ 0 < ε < 1 and T ∗ > 0, ∃ δ1 > δ2 > β > 0 sufficiently small and a measurable set Λε,T ∗ ⊂
H

1
2 −δ1(T) such that μ(Λc

ε,T ∗) < ε and ∀ u0 ∈ Λε,T ∗ there exists a (unique) solution u ∈ S(t)u0 + C([0, T ∗];
H

1
2 +δ2(T)) ⊂ C([0, T ∗]; H 1

2 −δ1(T)) to (1.6) with initial data u0. Furthermore, for all N � 0, we have∥∥u − ΦN(t)u0
∥∥

C([0,T ∗];H 1
2 +δ2 (T))

� C(ε)N−β . (5.12)

Remark 5.9. Regarding the uniqueness of the solution in Proposition 5.8, recall that, for ω ∈ ΩT , the local solution 

produced by Theorem 1.1 (with δ = δ1 and T = T0) is unique in a ball in X
1
2 +δ1,

1
2 −δ1

[0,T0] centered at the randomized data 

S(t)u0,ω . For the solution produced by Proposition 5.8, this characterization is extended to T
∗

T0
intervals of size T0 for 

some T0 > 0 sufficiently small. That is, for each j = 1, . . . , T
∗

T0
, u is the unique solution to (1.6) for t ∈ [jT0, (j +1)T0]

(with data u(jT0)) in a ball in X
1
2 +δ1,

1
2 −δ1

[jT0,(j+1)T0] centered at S(t − jT0)u(jT0).

The proof of Proposition 5.8 (using Theorem 1.1, Proposition 5.3 and Proposition 5.5) follows the method of [4]. 
See also [8] and [10]. For the details consult Section 3.5.3 of [40].

5.4. Invariance of the Gibbs measure

In this subsection we prove Theorem 1.2.

Proof of Theorem 1.2. Given n, j ∈ N, let Tj = 2j and εn,j = 1
n2j . Also let Λεn,j ,Tj

be the subset of H
1
2 −δ1(T)

produced by Proposition 5.8 with ε = εn,j and T ∗ = Tj . Define Σn := ⋂∞
j=1 Λεn,j ,Tj

, so that μ(Σc
n) < 1

n
. By taking 

Σ := ⋃∞
n=1 Σn, it follows that μ(Σc) = 0. Moreover if u0 ∈ Σ , we have u0 ∈ ⋂∞

j=1 Λεn,j ,Tj
for some n, and (1.6) is 

globally well-posed with data u0 by the conclusions of Proposition 5.8.
Next we prove that the Gibbs measure μ is invariant under the flow. For u0 ∈ Σ , let Φ(t) denote the data-to-solution 

map of (1.6). One formulation of invariance is the following: for all F ∈ L1(H
1
2 −δ1(T), dμ), we have

ˆ

Σ

F
(
Φ(t)(u)

)
dμ(u) =

ˆ

Σ

F(u)dμ(u) (5.13)

for all t ≥ 0. It suffices to establish (5.13) on a dense set in L1(H
1
2 −δ1(T), dμ), in particular we choose H ⊂

L1(H
1
2 −δ1(T), dμ) given by the subset of bounded and continuous functions. Fix F ∈ H, and κ > 0. Recall that 

dμN = fNdρ and dμ = f dρ, where fN and f are defined in Proposition 5.3. Boundedness of F combined with 
Proposition 5.3 implies that for N > 0 sufficiently large we have
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∣∣∣∣ˆ
Σ

F(u)dμ(u) −
ˆ

Σ

F(u)dμN(u)

∣∣∣∣
+

∣∣∣∣ˆ
Σ

F
(
Φ(t)(u)

)
dμ(u) −

ˆ

Σ

F
(
Φ(t)(u)

)
dμN(u)

∣∣∣∣ <
κ

2
. (5.14)

Let n > 0 be such that 1
n

< κ
32‖F‖L∞ . Then we have∣∣∣∣ ˆ

Σ\Σn

F
(
Φ(t)(u)

)
dμN(u) −

ˆ

Σ\Σn

F
(
ΦN(t)(u)

)
dμN(u)

∣∣∣∣
≤ 2‖F‖L∞μN(Σ \ Σn) ≤ 2‖F‖L∞μN

(
Σc

n

)
<

κ

4
, (5.15)

for N > 0 sufficiently large, where we have used Corollary 5.4 in the last line.
By continuity of F , there exists γ > 0 such that if ‖Φ(t)u0 − ΦN(t)u0‖

H
1
2 −δ1 (T)

< γ , then |F(Φ(t)u0) −
F(ΦN(t)u0)| < κ

8μ(H
1
2 −δ1 (T))

. For u0 ∈ Σn, we fix t ≥ 0 and from (5.12) it follows that for all N > 0,∥∥Φ(t)u0 − ΦN(t)u0
∥∥

H
1
2 +δ2 (T)

≤ C(n)N−β.

Taking N > 0 sufficiently large, we have ‖Φ(t)u0 − ΦN(t)u0‖
H

1
2 −δ1 (T)

< γ , and |F(Φ(t)u0) − F(ΦN(t)u0)| ≤
κ

8μ(H
1
2 −δ1 (T))

is satisfied. This gives∣∣∣∣ˆ
Σn

F
(
Φ(t)(u)

)
dμN(u) −

ˆ

Σn

F
(
ΦN(t)(u)

)
dμN(u)

∣∣∣∣ <
κ

4
, (5.16)

for N > 0 sufficiently large, where we have applied Corollary 5.4 once more.
We also have, by Proposition 5.5,ˆ

Σ

F
(
ΦN(t)(u)

)
dμN(u) =

ˆ

Σ

F(u)dμN(u). (5.17)

By combining (5.14)–(5.17), we conclude that for N > 0 sufficiently large, we have∣∣∣∣ˆ
Σ

F
(
Φ(t)(u)

)
dμ(u) −

ˆ

Σ

F(u)dμ(u)

∣∣∣∣ < κ.

Since κ was arbitrary, we conclude that 
´
Σ

F(Φ(t)(u))dμ(u) = ´
Σ

F(u)dμ(u), and the Gibbs measure μ is invariant 
under the flow of (1.6).

We have now established global well-posedness of (1.6) on a set Σ ⊂ H
1
2 −δ1(T) of full μ-measure, and invariance 

of the Gibbs measure under the flow. This is easily extended to global well-posedness almost surely, with randomized 
initial data given by (1.5) (see [40]). The proof of Theorem 1.2 is complete. �
6. Proof of nonlinear estimates

In this section we prove the crucial nonlinear estimates (Proposition 3.2 and Proposition 3.3). In Subsec-
tions 6.1–6.3 we establish Proposition 3.2. In Subsection 6.4 we present the proof of Proposition 3.3.

6.1. Setup

Here we will prove Proposition 3.2 using two sets of estimates: quadrilinear estimates (see Proposition 6.1 below) 
and septilinear estimates (see Proposition 6.2). The proof of Proposition 6.1 can be found in Subsection 6.2, and the 
proof of Proposition 6.2 is in Subsection 6.3.



728 G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766
We begin by identifying the exact form of the expressions appearing in the estimates of Proposition 3.2. Following 
the reformulation (1.17) of (1.6), we consider the multilinear function

N (u1, u2, u3, u4) := P
[
(u1)xP(u2u3u4)

] − P(u2)

 

T

(u1)xu3u4 − P(u3)

 

T

(u1)xu2u4

− P(u4)

 

T

(u1)xu2u3 − P(u3u4)

 

T

(u1)xu2 − P(u2u4)

 

T

(u1)xu3

− P(u2u4)

 

T

(u1)xu4. (6.1)

With this definition, the integral formulation of (1.6) with data u0,ω is given by

u = S(t)u0,ω +D(u), (6.2)

where D(u) is defined in (3.2). For fixed n ∈ Z \{0}, t ∈R, consider the nth Fourier coefficient of N (u1, u2, u3, u4)(t)

(we suppress the dependence on time)(
N (u1, u2, u3, u4)

)∧
(n)

=
∑

n=n1+m1

(in1)û1(n1)
(
P(u2u3u4)

)∧
(m1) − (

P(u2)
)∧

(n)

 

T

(u1)xu3u4

− (
P(u3)

)∧
(n)

 

T

(u1)xu2u4 − (
P(u4)

)∧
(n)

 

T

(u1)xu2u3 − (
P(u3u4)

)∧
(n)

 

T

(u1)xu2

− (
P(u2u4)

)∧
(n)

 

T

(u1)xu3 − (
P(u2u3)

)∧
(n)

 

T

(u1)xu4

=
( ∑

n=n1+···+n4
n�=0

−
4∑

k=1

∑
n=n1+···+n4

0�=n=nk

−
4∑

k=2

∑
n=n1+···+n4
n�=0,n1=−nk

)
n1û1(n1)û2(n2)û3(n3)û4(n4)

=
( ∑

ζ1(n)

−
∑
ζ2(n)

)
n1û1(n1)û2(n2)û3(n3)û4(n4). (6.3)

To obtain (6.3) we have used the identity 
ffl
T

w = ŵ(0), and have taken

ζ1(n) := {
(n1, n2, n3, n4) ∈ Z

4 : n = n1 + n2 + n3 + n4, n �= nk for each k ∈ {1,2,3,4},
and n1 �= −nj for each j ∈ {2,3,4}},

and

ζ2(n) := {
(n1, n2, n3, n4) ∈ Z

4 : n = n1 + n2 + n3 + n4,with nk,nj ∈ {n,−n1},
for some k �= j, k, j ∈ {1,2,3,4}, where nk = n if k = 1 (and nj = n if j = 1)

}
.

We define ζ(n) := ζ1(n) ∪ζ2(n), and abuse notation by writing 
∑

ζ(n) := ∑
ζ1(n) − 

∑
ζ2(n). Reinserting the dependence 

on time, this gives(
N (u1, u2, u3, u4)

)∧
(n, t) =

∑
ζ(n)

(in1)û1(n1, t)û2(n2, t)û3(n3, t)û4(n4, t). (6.4)

Let us also recall the mean zero condition on each factor in our nonlinear analysis, as described in Remark 3.1
(prior to the statements of Propositions 3.2 and 3.3). This condition allows us to assume that:

each nk �= 0, for k = 1,2,3,4. (6.5)

To avoid cumbersome notation, we will not carry this restriction with us explicitly.
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Proposition 3.2 will follow from standard linear estimates (Lemmas 2.1–2.4) and the probabilistic multilinear 
estimates given by the following propositions.

Proposition 6.1. For δ > 0 sufficiently small, and any 0 < T 	 1, there exist β, C, c > 0 and a measurable set 

ΩT ⊂ Ω satisfying P(Ωc
T ) < e

− c

T β and the following conditions: if ω ∈ ΩT , then for every quadruple of Fourier 
multipliers Λ1, . . . , Λ4 defined by

Λ̂if (n) = χNi≤|n|≤Mi
f̂ (n),

for some dyadic numbers Ni < Mi ≤ ∞, we have the following estimate:∥∥N−1(χ[0,T ]u1, χ[0,T ]u2, χ[0,T ]u3, χ[0,T ]u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

≤ CT −β
4∏

j=1

(
N

−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
. (6.6)

Proposition 6.2. For δ > 0 sufficiently small, and any 0 < T 	 1, there exist β, C, c > 0 and a measurable set 

ΩT ⊂ Ω satisfying P(Ωc
T ) < e

− c

T β and the following conditions: if ω ∈ ΩT , then for every heptuple of Fourier 
multipliers Λ2, . . . , Λ8 defined by

Λ̂if (n) = χNi≤|n|≤Mi
f̂ (n),

for some dyadic numbers Ni < Mi < ∞, we have the following estimates:∥∥N1
(
D(χ[0,T ]u5, χ[0,T ]u6, χ[0,T ]u7, χ[0,T ]u8),χ[0,T ]u2, χ[0,T ]u3, χ[0,T ]u4

)∥∥
X

1
2 +δ,− 1

2 +δ

T

≤ CT −β
8∏

j=2

(
N

−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
. (6.7)

Analogous septilinear estimates also hold in the regions A2, A3 and A4.

Remark 6.3. Notice that in Propositions 6.1 and 6.2 we have taken δ0 = 0 (compared with the estimates of Propo-
sition 3.2). This is done to avoid cumbersome notation throughout this section. It is not hard to verify that, for the 
set ΩT produced by these propositions, if ω ∈ ΩT , then the inequalities (6.6) and (6.7) hold for any fixed 0 ≤ δ0 < δ

(where these estimates are modified to incorporate δ0 as it appears in the estimates of Proposition 3.2). Indeed, the 
proofs of Proposition 6.1 (or rather, of Lemma 6.8 found below) and Proposition 6.2 will be flexible with respect to 
this particular manipulation.

Let us expand on this claim. If we wish to prove the statement analogous to (6.6) with 0 < δ0 < δ, then on the 
left-hand side of the inequality, we will have lowered the spatial Sobolev regularity to s = 1

2 + δ − δ0 from s = 1
2 + δ

(e.g. in the line (6.23)). This amounts to having the factor |n| 1
2 +δ−δ0 in the numerator of the nonlinear estimates below, 

instead of |n| 1
2 +δ .

In every case of the proofs (found below) of Lemma 6.8 and Proposition 6.2 (excluding Case 1 in the proof of 
Lemma 6.8, and Case 2.b.ii in the proof of Proposition 6.2, which we discuss in the next paragraph), we control the 
factor |n| 1

2 +δ using the estimate |n| ≤ N0. That is, we control this factor using terms in the denominator that are 
known to be the size of the largest frequency N0 (see, for example, (6.37)). This means that, for each estimate we 
establish in these proofs, we can replace |n| 1

2 +δ with |n| 1
2 +δ−δ0 |nk|δ0 , for any k = 1, 2, 3, 4 (or k = 2, 3, 4, 5, 6, 7, 8

for Proposition 6.2), and the proof we present still applies. Establishing an estimate with an extra factor of |nk|δ0

in the numerator of the left-hand side corresponds to lowering the spatial Sobolev regularity of the uk factor on the 
right-hand side by the same amount δ0 > 0. That is, we can establish the same nonlinear estimate with 0 < δ0 < δ

included as in the statement of Proposition 3.2.
We should comment that, in Case 1.b during the proof of Lemma 6.8, and Case 2.b.ii in the proof of Proposition 6.2, 

the reasoning of the last paragraph does not apply. However, it is easily verified that we can still lower the spatial 
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regularity of any one of the factors on the right-hand side by a small amount δ0 > 0, as the estimates in these cases 
have some room to spare in each factor.

Before we prove Proposition 6.1 and Proposition 6.2, let us use them to establish Proposition 3.2.

Proof of Proposition 3.2. Apply Proposition 6.2, and suppose ω ∈ ΩT so that the estimate (6.6) holds true. Note that 
by the equivalence

χ[0,T ]D(u1, . . . , u4) = χ[0,T ]D(χ[0,T ]u1, . . . , χ[0,T ]u4),

we have∥∥D−1(u1, u2, u3, u4)
∥∥

X
1
2 +δ, 1

2 +δ

T

≤ ∥∥D−1(χ[0,T ]u1, χ[0,T ]u2, χ[0,T ]u3, χ[0,T ]u4)
∥∥

X
1
2 +δ, 1

2 +δ

T

.

Applying Lemma 2.4, Lemma 2.3, and (6.6), we find∥∥D−1(χ[0,T ]u1, . . . , χ[0,T ]u4)
∥∥

X
1
2 +δ, 1

2 +δ

T

�
∥∥D−1(χ[0,T ]u1, . . . , χ[0,T ]u4)

∥∥
X

1
2 +δ, 1

2 +δ

T

�
∥∥N−1(χ[0,T ]u1, . . . , χ[0,T ]u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −β

4∏
j=1

(
M

−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
.

The proof of (3.6) is complete. The justification of (3.7) follows from (6.7) using the same type of argument. This 
completes the proof of Proposition 3.2. �
6.2. Probabilistic quadrilinear estimates

In this subsection we present the proof of Proposition 6.1. We begin by presenting some probabilistic lemmata to 
be used in the proof. In each lemma, we are considering the probability space (Ω, F, P) with P = ρ ◦ u0,ω , where ρ
is the Wiener measure defined in (1.10), and the initial data (given by (1.5)) is viewed as a map u0,ω : Ω → H 1/2−(T).

Lemma 6.4. Let ε, β > 0, T 	 1, and {gn(ω)}∞n=1 be a sequence of independent C-valued standard Gaussian random 

variables. Then there exists Ω̃T ⊂ Ω with P(Ω̃c
T ) < e

− 1
T β , such that for ω ∈ Ω̃T , we have∣∣gn(ω)

∣∣ ≤ CT − β
2 〈n〉ε

for all n ∈N.

Proof. Recall from [34] that

P
(

sup
n∈N

〈n〉−ε
∣∣gn(ω)

∣∣ > K
)

≤ e−cK2

for K sufficiently large. Lemma 6.4 follows by taking K ∼ T − β
2 . �

Lemma 6.5. (See Thomann and Tzvetkov [45], Tzvetkov [48].) Let d ≥ 1 and c(n1, . . . , nk) ∈ C. Let {γn(ω)}1≤n≤d

be a sequence of independent R-valued standard Gaussian random variables. For k ≥ 1, denote by A(k, d) =
{(n1, . . . , nk) ∈ {1, . . . , d}k : n1 ≤ · · · ≤ nk}, and

Sk(ω) =
∑

c(n1, . . . , nk)γn1(ω) · · ·γnk
(ω).
A(k,d)
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Then, for each p ≥ 1, we have

‖Sk‖Lp(Ω) ≤ √
k + 1(p − 1)

k
2 ‖Sk‖L2(Ω).

The proof of Lemma 6.5 can be found in [45]; it relies on hypercontractivity of the Ornstein–Uhlenbeck semigroup.

Lemma 6.6. (See Tzvetkov [48].) Let F : H 1
2 −(T) → R be measurable. Assume there exist α > 0, Ñ > 0, k ≥ 1 and 

C > 0 such that for all p ≥ 2,

‖F‖Lp(dρ) ≤ CÑ−αp
k
2 . (6.8)

Then there exist δ > 0, c1 independent of N and α such that
ˆ

H
1
2 −

(T)

eδÑ
2α
k |F(u)| 2

k
dρ(u) ≤ c1.

As a consequence, for all λ > 0,

P
(
ω ∈ Ω : ∣∣F(u0,ω)

∣∣ > λ
) ≤ c1e

−δÑ
2α
k λ

2
k
. (6.9)

The proof of Lemma 6.6 can be found in [48]. We will also need the following basic observation from linear 
algebra.

Lemma 6.7. Let A = {ai,j }1≤i,j≤N be a square (N × N ) matrix with complex entries. Then

‖A‖ ≤ sup
1≤n≤N

|an,n| +
( ∑

n�=n′
|an,n′ |2

) 1
2

,

where ‖ · ‖ denotes the matrix 2-norm.

Our application of this lemma will follow the analysis found in [4]. The proof of Lemma 6.7 is omitted (the analysis 
required is straightforward).

For the proof of Proposition 6.1, we will use a dyadically localized estimate. That is, we will establish probabilistic 
quadrilinear estimates which are independent of the Fourier multipliers Λ1, . . . , Λ4 appearing in the statement of 
Proposition 6.1. In the following, subscripts with capital letters denote dyadic localization; i.e. uNj

= (χ|nj |∼Nj
ûj )

∨
for Nj dyadic. Let

f0,j := ‖uNj
‖
X

1
2 +δ, 1

2 −δ

T

,

f1,j := N
−β
j + ‖uNj

‖
X

1
2 −δ, 1

2 −δ

T

+ ∥∥uNj
− (

S(t)u0,ω

)
Nj

∥∥
X

1
2 +δ, 1

2 −δ

T

.

Here is the dyadically localized probabilistic quadrilinear estimate.

Lemma 6.8. For δ > 0 sufficiently small, and any 0 < T 	 1, there exist α, β, κ, C, c > 0 with α, β, κ 	 δ

such that for every quintuple of dyadic frequencies N, N1, . . . , N4, ∃ ΩN,N1,...,N4,T ⊂ Ω with P(Ωc
N,N1,...,N4,T

) <

1
(NN1···N4)

κ e
− c̃

T β such that for all ω ∈ Ω̃T ∩ ΩN,N1,...,N4,T we have

∥∥N−1||n|∼N(uN1 , uN2, uN3 , uN4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

≤ CT −β

(NN1 · · ·N4)α

4∏
j=1

min(f0,j , f1,j ), (6.10)

where Ω̃T is the set obtained from Lemma 6.4.
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Remark 6.9. For simplicity, we have dropped implicit factors of χ[0,T ] from the left-hand side of (6.6) and will 
reintroduce them when needed.

We proceed to prove Proposition 6.1 using Lemma 6.8. Then we present the proof of Lemma 6.8, followed by the 
proof of Proposition 6.2.

Proof of Proposition 6.1. Fix any dyadic Nj for j ∈ {1, 2, 3, 4}. Observe that

min(f0,j , f1,j ) ≤ M
−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

. (6.11)

Indeed, suppose Nj ∈ [Mj, Kj ] = supp(Λj ), then we have

f1,j = N
−β
j + ‖uNj

‖
X

1
2 −δ, 1

2 −δ

T

+ ∥∥uNj
− (

S(t)u0,ω

)
Nj

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ M
−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

.

On the other hand, if Nj /∈ [Mj, Kj ], we have

f0,j = ‖uNj
‖
X

1
2 +δ, 1

2 −δ

T

= ∥∥uNj
− (

S(t)Λj (u0,ω)
)
Nj

∥∥
X

1
2 +δ, 1

2 −δ

T

≤ M
−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

,

and the inequality (6.11) holds true.
We proceed to build a set ΩT ⊂ Ω (satisfying the necessary conditions) where the estimate (6.6) is satisfied. 

Consider a dyadic decomposition of the nonlinearity,∥∥N−1(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

≤
∑

N,N1,...,N4

∥∥N−1||n|∼N(uN1 , uN2, uN3 , uN4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

. (6.12)

Now let ΩT := Ω̃T

⋂
dyadic N,N1,...,N4

ΩN,N1,...,N4,T . Then

P
(
Ωc

T

) ≤
∑

N,N1,...,N4

P
(
Ωc

N,N1,...,N4,T

)
<

∑
N,N1,...,N4

1

(NN1 · · ·N4)κ
e
− c̃

T β ≤ e
− c

T β ,

where c = c(c̃, κ) > 0. Furthermore, if ω ∈ ΩT , then for every combination of dyadic scales N, N1, . . . , N4, the 
conclusion (6.10) holds true. With (6.11), this gives

(6.12) �
∑

N,N1,...,N4

T −β

(NN1 · · ·N4)α

4∏
j=1

min(f0,j , f1,j )

≤
∑

N,N1,...,N4

T −β

(NN1 · · ·N4)α

4∏
j=1

(
M

−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
� T −β

4∏
j=1

(
M

−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − S(t)Λj (u0,ω)
∥∥

X
1
2 +δ, 1

2 −δ

T

)
. � (6.13)

Before we proceed with the proof of Lemma 6.8, let us highlight an important property of our frequency space 
restrictions:
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If (n,n1, n2, n3, n4, τ, τ1, τ2, τ3, τ4) ∈ A−1, then (n1, n2, n3, n4) ∈ ζ1(n). (6.14)

To justify (6.14) recall that in the region A−1 of frequency space (defined in (3.4)), the condition |n3 −n3
1 −· · ·−n3

4| 	
|nmax|2 is satisfied. To establish (6.14) we show that this condition necessitates (n1, n2, n3, n4) ∈ ζ1(n) (see (6.3) for 
the definition of ζ1(n)). In fact, we show the contrapositive; that (n1, n2, n3, n4) /∈ ζ1(n) implies |n3 −n3

1 −· · ·−n3
4| �

|nmax|2. Recall from (3.3) that in the domain of integration we have (n1, n2, n3, n4) ∈ ζ(n) = ζ1(n) ∪ ζ2(n), and 
(n1, n2, n3, n4) /∈ ζ1(n) is therefore equivalent to (n1, n2, n3, n4) ∈ ζ2(n). Suppose (n1, n2, n3, n4) ∈ ζ2(n), then there 
are six possibilities (up to permutations of (n2, n3, n4)):

(i) n = n1 = n2
(ii) n = n2 = n3

(iii) n = n1 = −n2
(iv) n1 = −n2 = −n3
(v) n = −n1 = n2

(vi) n = n2, n1 = −n3

We proceed to show |n3 − n3
1 − · · · − n3

4| � |nmax|2 in each circumstance. Suppose possibility (i) holds, and we have 
n = n1 = n2. Then n = n1 + · · · + n4 gives n2 + n3 + n4 = 0, and we find

n3 − n3
1 − · · · − n3

4 = −n3
2 − n3

3 − n3
4 = −3n2n3n4. (6.15)

Recall that each ni �= 0 by the mean zero condition (6.5). If |n3| ∼ |n4| ∼ |nmax|, then by (6.15), and the mean zero 
condition, we have |n3 − n3

1 − · · · − n3
4| � |nmax|2, which is impossible in the region A−1. Therefore, we must have 

|n| = |n1| = |n2| = |nmax|. Then n2 + n3 + n4 = 0 gives (without loss of generality) that |n3| ∼ |n2| = |nmax|, and 
again we arrive at |n3 − n3

1 − · · · − n3
4| � |nmax|2. We conclude that possibility (i) cannot occur in the region A−1. 

It is straightforward to verify that the same argument rules out (ii)–(v); only (vi) remains to be considered. Suppose 
(vi) holds, and we have n = n2, n1 = −n3. Then n4 = n − n1 − n2 − n3 = 0, which is impossible by the mean zero 
condition (6.5). Therefore, in the region A−1, we cannot have (n1, n2, n3, n4) ∈ ζ2(n), and we conclude that (6.14)
holds true.

Proof of Lemma 6.8. Throughout this proof, all factors uNj
are dyadically localized, and we simplify notation by 

taking uj = uNj
. Also, we have dropped the χ[0,T ] from in front of each factor uj , but may reintroduce them as 

needed.
This proof is based on multiple decompositions of frequency space. In each region of frequency space we impose 

one of the following two conditions: for each j ∈ {1, 2, 3, 4}, either

(i) uj ∈ X
1
2 −δ, 1

2 −δ

T ,

or

(ii) uj − ξj (S(t)u0,ω)Nj
∈ X

1
2 +δ, 1

2 −δ

T , for each ξj ∈ {0, 1}.

The additional parameters ξj ∈ {0, 1} are introduced in order to establish a single result for variable ξj , which produces 
factors of f0,j with ξj = 0 and factors of f1,j with ξj = 1. That is, by keeping each ξj variable, we will produce the 
right hand side of (6.10).

Contributions to the left-hand side of (6.10) from a region where uj satisfies condition (i) produce a corresponding 
factor of ‖uj‖

X
1
2 −δ, 1

2 −δ

T

on the right-hand side of the inequality. For contributions from regions where uj satisfies 

condition (ii), we establish probabilistic bounds, using what will be referred to as a type (I)–type (II) analysis (see 
[4,14]) by writing

uj = ξj

(
S(t)u0,ω

)
Nj︸ ︷︷ ︸+uj − ξj

(
S(t)u0,ω

)
Nj︸ ︷︷ ︸ .
type (I) type (II)
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We show that each type (I) contribution produces a factor of ξjN
−β
j on the right-hand side of the inequality, for 

ω ∈ ΩN,...,N4,T . The type (II) contribution will produce a factor of ‖uj − ξj (S(t)u0,ω)Nj
‖
X

1
2 +δ, 1

2 −δ

T

on the right-hand 

side. Combining the contributions from (i) and (ii), each uj will produce a factor of

ξjN
−β
j + ‖uj‖

X
1
2 −δ, 1

2 −δ

T

+ ∥∥uj − ξj

(
S(t)u0,ω

)
Nj

∥∥
X

1
2 +δ, 1

2 −δ

T

. (6.16)

Notice that (6.16) � f0,j for ξj = 0, and (6.16) = f1,j for ξj = 1. By establishing these estimates for all combinations 
of ξj ∈ {0, 1}, j = 1, 2, 3, 4, we can always choose the smaller of the two bounds, and each uj contributes a factor of 
min(f0,j , f1,j ) to the right-hand side of our inequality.

Summarizing the previous paragraphs, we prove Lemma 6.8 by constructing ΩN,...,N4,T ⊂ ΩT with

P(Ωc
N,N1,...,N4,T

) < 1
(NN1···N4)

κ e
− c̃

T β such that for all ω ∈ Ω̃T ∩ΩN,N1,...,N4,T we can, throughout frequency space, ei-
ther bound each uj deterministically, using condition (i), or probabilistically, using condition (ii) and Lemmas 6.4–6.6
(the type (I)–type (II) decomposition).

In the break down of cases that follows, as we estimate the left-hand side of (6.10) using the method just described, 
each factor uj may be declared to be of the following types

• type (I) (rough but random): uj = (S(t)u0,ω)Nj
,

• type (II) (smooth and deterministic): uj ∈ X
1
2 +δ, 1

2 −δ

T .

In a given case, if uj is declared to be of type (I) or type (II), this means that we are choosing to use condition (ii) in 
this factor, and according to the decomposition above, we must consider each case of uj type (I) and uj type (II). If 
we make no declaration about a particular factor uj in a given case, it means that we are imposing condition (i) in that 

factor: uj ∈ X
1
2 −δ, 1

2 −δ

T .
We will use superscripts nk (Nk), k = 0, 1, . . . , 4, to indicate frequencies (and corresponding dyadic blocks) which 

have been ordered from largest to smallest. That is, |n0| ≥ |n1| ≥ · · · ≥ |n4| (and N0 ≥ N1 ≥ · · · ≥ N4). Note that we 
order the frequency n as −n (e.g. if n is the frequency of largest magnitude, then n0 = −n). Also, by symmetry of 
N (u1, u2, u3, u4) in (u2, u3, u4), we can assume that |n2| ≥ |n3| ≥ |n4|.

We begin with an overview of each case to be considered in the proof.

• CASE 1. n0 = −n1.
• CASE 2. n0 �= −n1.

• CASE 2.a. N3 	 N0 and N2N3N4 	 N0N1|n0 + n1|.
We will find that there is no contribution from this case.

• CASE 2.b. N3 ∼ N0.
We will use a type (I)–type (II) decomposition in the uk factor for k = 1, 2, 3.
• CASE 2.b.i. At least two ui of type (I), i = 1, 2, 3.

That is, u1, u2, u3 of types (I)(I)(I), (I)(I)(II), (I)(II)(I) and (II)(I)(I).
• CASE 2.b.ii. One of ui of type (I), i = 1, 2, 3, others type (II).

That is, u1, u2, u3 of types (I)(II)(II), (II)(I)(II) and (II)(II)(I).
• CASE 2.b.iii. u1, u2, u3 all type (II).

• CASE 2.c. N3 	 N0 and N2N3N4 � N0N1|n0 + n1|.
We will use a type (I)–type (II) decomposition for each k = 1, 2, 3, 4.
• CASE 2.c.i. u1 type (I) and at least two of u2, u3, u4 type (I).

That is, u1, u2, u3, u4 of types (I)(I)(I)(I), (I)(I)(I)(II), (I)(I)(II)(I) and (I)(II)(I)(I).
• CASE 2.c.ii. u1 type (II) and u2, u3, u4 type (I).
• CASE 2.c.iii. Two of u1, u2, u3, u4 type (I) and two type (II).
• CASE 2.c.iv. At least three of u1, u2, u3, u4 type (II).

We proceed with the analysis of each case.



G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766 735
• CASE 1. n0 = −n1.

By (6.14) we have (n1, n2, n3, n4) ∈ ζ1(n), and therefore n �= ni for all i ∈ {1, 2, 3, 4}, and n1 �= −nk for all k ∈
{2, 3, 4}. It follows that if n0 = −n1, we must have n0 = nk = −nj = −n1 for some k, j ∈ {2, 3, 4} (recall that we 
have ordered the frequency n as −n). By the condition |n2| ≥ |n3| ≥ |n4| it follows that n0 = n2 = −n3 = −n1. With 
n2 = −n3, we have n = n1 + n4 and

max
(|σ |, |σ1|, |σ2|, |σ3|, |σ4|

)
� |σ − σ1 − σ2 − σ3 − σ4| =

∣∣n3 − n3
1 − n3

2 − n3
3 − n3

4

∣∣
= ∣∣n3 − n3

1 − n3
4

∣∣ = 3|nn1n4|.
In this case we establish:∥∥N−1|CASE 1(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� 1

(NN1 · · ·N4)α

4∏
j=1

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.17)

We consider various subcases.

• CASE 1.a. |σ | � |nn1n4|.

In this case we find

|n| 1
2 +δ|n1|

|σ | 1
2 −δ|n1| 1

2 −δ|n2|5δ
� 1

(NN1N2N3N4)α
.

Using this estimate, (6.17) follows from

‖f1f2u3u4‖L2
x,t

≤ ‖f1‖
X

0, 1
2 −δ

‖f2‖
X

1
2 −6δ, 1

2 −δ
‖u3‖

X
1
2 −δ, 1

2 −δ
‖u4‖

X
1
2 −δ, 1

2 −δ
. (6.18)

We can establish (6.18) using Hölder, (2.8) and (2.10),

‖f1f2u3u4‖L2
x,t

� ‖f1‖L4
x,t

‖f2‖L12
x,t

‖u3‖L12
x,t

‖u4‖L12
x,t

� ‖f1‖
X

0, 1
2 −δ

‖f2‖
X

1
2 −6δ, 1

2 −δ
‖u3‖

X
1
2 −δ, 1

2 −δ
‖u4‖

X
1
2 −δ, 1

2 −δ
, (6.19)

for δ > 0 sufficiently small.

• CASE 1.b. |σk| � |nn1n4| for some k = 1, 2, 3, 4.

The analysis of this case is similar to the previous one. For details see [40].

• CASE 2. n0 �= −n1.

Before we proceed with each subcase, let us identify a useful restriction which holds throughout Case 2:

No two integers in the set {−n,n1, n2, n3, n4} sum to zero. (6.20)

Indeed, recall from (6.14) that in the region A−1, we have (n1, n2, n3, n4) ∈ ζ1(n), and it follows that n �= nk for all 
k = 1, 2, 3, 4 and n1 �= −nk for all k = 2, 3, 4. The only pairs of integers that could sum to zero are within the set 
{n2, n3, n4}. Suppose, for example, that n2 = −n3, then by the restriction n0 �= −n1 we must have N2, N3 	 N0. 
Then n = n1 + n4 and we have∣∣n3 − n3

1 − · · · − n3
4

∣∣ = ∣∣n3 − n3
1 − n3

4

∣∣ = 3|nn1n4| �
(
N0)2

,

in contradiction with restriction to the region A−1 in this case. The same argument applies if n2 = −n4 or n3 = −n4, 
and (6.20) follows.

• CASE 2.a. N3 	 N0 and N2N3N4 	 N0N1|n0 + n1|.
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Recall that we have taken n = −nk for some k ∈ {0, 1, . . . , 4}, so that n0 + · · · + n4 = 0 is satisfied. Then∣∣n3 − n3
1 − · · · − n3

4

∣∣ = ∣∣(n1 + · · · + n4)3 − (
n1)3 − · · · − (

n4)3∣∣
= 3

∣∣(−n0n1 + n2(n3 + n4) + n3n4)(n2 + n3 + n4) − n2n3n4
∣∣

� N0N1
∣∣n0 + n1

∣∣,
since N3 	 N0, N2N3N4 	 N0N1|n0 + n1| (recall n0 �= −n1). Then

max
(|σ |, |σ1|, . . . , |σ4|

)
�

∣∣n3 − n3
1 −· · · − n3

4

∣∣� N0N1
∣∣n0 + n1

∣∣ ≥ |nmax|2,
and we cannot be in the region A−1. That is, there is no contribution to N−1 from this case, and we proceed to the 
next one.

• CASE 2.b. N3 ∼ N0.

We consider a type (I)–type (II) decomposition in the uk factor for k = 1, 2, 3. With N2 ≥ N3 ≥ N4, the restriction 
N3 ∼ N0 implies, in particular, that

N3 ∼ N0. (6.21)

• CASE 2.b.i. At least two ui of type (I), i = 1, 2, 3. That is, u1, u2, u3 of types (I)(I)(I), (I)(I)(II), (I)(II)(I) and 
(II)(I)(I).

Suppose u1, u2 are type (I). We will comment on adapting these arguments to the other cases afterward. We will use 
N−1|2.b.i to denote the contribution to the nonlinearity from this case. We establish the estimate:∥∥N−1|2.b.i(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −β

(NN1 · · ·N4)α
(N1N2)

−β‖u3‖
X

1
2 −δ, 1

2 −δ

T

‖u4‖
X

1
2 −δ, 1

2 −δ

T

. (6.22)

By changing variables and taking out a supremum, we find∥∥N−1|2.b.i(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

=
∥∥∥∥ 〈n〉 1

2 +δ

〈σ 〉 1
2 −δ

N̂−1|2.b.i(u1, u2, u3, u4)(n, τ )

∥∥∥∥
L2{|n|∼N},τ

=
∥∥∥∥χ{|λ|<(N0)2}

〈n〉 1
2 +δ

〈λ〉 1
2 −δ

N̂−1|2.b.i(u1, u2, u3, u4)
(
n,λ + n3)∥∥∥∥

L2{|n|∼N},λ

≤ (
N0)δ sup

|λ|<(N0)2

∥∥N̂−1|2.b.i(u1, u2, u3, u4)
(
n,λ + n3)∥∥

H
1
2 +δ

|n|∼N

. (6.23)

For the factors u3, u4 ∈ X
1
2 −δ, 1

2 −δ

T , we will use the following standard representation for functions in Xs,b (see [24], 
for example). Given a function v(x, t), we can write v as

v(x, t) =
ˆ

〈λ〉−b

(∑
n

〈n〉2s〈λ〉2b
∣∣v̂(n,n3 + λ

)∣∣2) 1
2
{
eiλt

∑
n

aλ(n)ei(nx+n3t)

}
dλ (6.24)

where aλ(n) = v̂(n,n3+λ)

(
∑

n〈n〉2s |v̂(n,n3+λ)|2) 1
2

. Notice that 
∑

n〈n〉2s |aλ(n)|2 = 1. For v ∈ Xs,b, with b < 1
2 , we have

ˆ
〈λ〉−b

(∑
n

〈n〉2s〈λ〉2b
∣∣v̂(n,n3 + λ

)∣∣2) 1
2

dλ� K
1
2 −b‖v‖Xs,b , (6.25)
|λ|<K
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by Cauchy–Schwarz. In our context, for each j = 3, 4, we have uj = χ[0,T ]uj ∈ X
1
2 −δ, 1

2 −δ , and |τj − n3
j | < (N0)2. 

Using (6.24) we can write

ûj (nj , τj ) =
ˆ

|λj |<(N0)2

〈λj 〉− 1
2 +δcj (λj )aλj

(nj )δ
(
τj − n3

j − λj

)
dλj ,

with 
∑

n〈n〉2s |aλ(n)|2 = 1 and cj (λj ) = (
∑

n〈n〉1−2δ〈λj 〉1−2δ|ûj (n, n3 + λ)|2) 1
2 . Inserting this representation for u3, 

u4, and the assumption that u1 and u2 are type (I), we have

(6.23) = N
1
2 +δ

(
N0)δ sup

|λ|<(N0)2

∥∥∥∥∥ ∑
{|nj |∼Nj }∩(6.20)

(in1)

2∏
i=1

gni
(ω)δ(τi − n3

i )

|ni |

·
¨

|λ3|,|λ4|<(N0)2

4∏
j=3

〈λj 〉− 1
2 +δcj (λj )aλj

(nj )δ
(
τj − n3

j − λj

)
dλj

∥∥∥∥∥
L2|n|∈N

. (6.26)

By Minkowski in λ3, λ4, we find

(6.26) ≤ N
1
2 +δ

(
N0)δ ¨

|λ3|,|λ4|<(N0)2

4∏
j=3

〈λj 〉− 1
2 +δ|cj (λj )|dλj

· sup
|λ|,|λ3|,|λ4|<(N0)2

∥∥∥∥ ∑
{|nj |∼Nj }∩(6.20)

(in1)
gn1(ω)gn2(ω)

|n1||n2| aλ3(n3)aλ4(n4)

·
˚

τ1,τ2,τ3

δ
(
τ1 − n3

1

)
δ
(
τ2 − n3

2

)
δ
(
τ3 − n3

3 − λ3
)

· δ(λ + n3 − τ1 − τ2 − τ3 − n3
4 − λ4

)
dτ1dτ2dτ3

∥∥∥∥
L2|n|∈N

. (6.27)

For fixed n, n1, n2, n3, λ, λ3, λ4, we find˚

τ1,τ2,τ3

δ
(
τ1 − n3

1

)
δ
(
τ2 − n3

2

)
δ
(
τ3 − n3

3 − λ3
)
δ
(
λ + n3 − τ1 − τ2 − τ3 − n3

4 − λ4
)
dτ1dτ2dτ3

=
{

1, if λ − λ3 − λ4 + n3 − n3
1 − · · · − n3

4 = 0,

0, otherwise.

Then we have

(6.27) ≤ N
1
2 +δ

(
N0)δ ¨

|λ3|,|λ4|<(N0)2

4∏
j=3

〈λj 〉− 1
2 +δ|cj (λj )|dλj

· sup
|λ|,|λ3|,|λ4|<(N0)2

∥∥∥∥ ∑
∗(n,λ+λ3+λ4)

(in1)
gn1(ω)gn2(ω)

|n1||n2| aλ3(n3)aλ4(n4)

∥∥∥∥
L2|n|∈N

≤ N
1
2 +δ

(
N0)3δ

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

sup
|μ|<3(N0)2

∥∥∥∥ ∑
∗(n,μ)

(in1)
gn1(ω)gn2(ω)

|n1||n2| an3an4

∥∥∥∥
L2|n|∈N

, (6.28)

by (6.25), where 
∑

ni
|ni |1−2δ|ani

|2 = 1, for i = 3, 4, and

∗(n,μ) := {
(n1, n2, n3, n4) ∈ Z

4
∣∣ Each |ni | ∼ Ni, (6.20) is satisfied, and μ = n3 − n3

1 − · · · − n3
4

}
. (6.29)

When we fix numbers other than n, μ, for example n1, we let
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∗(n,μ,n1) := {
(n2, n3, n4) ∈ Z

3
∣∣ Each |ni | ∼ Ni, (6.20) is satisfied, and μ = n3 − n3

1 − · · · − n3
4

}
, (6.30)

and define ∗(n, μ, n2, n3) ⊂ Z
2, ∗(n, μ, n1, n2, n3) ⊂ Z, . . . , etc., similarly. Notice that we have dropped the depen-

dence on λ3, λ4 in (6.28); this is justified a posteriori by using estimates which are independent of λ3, λ4.
Now for each fixed |n| ∈ N, |μ| < 3(N0)2, we write∣∣∣∣ ∑

∗(n,μ)

(in1)
gn1(ω)gn2(ω)

〈n1〉〈n2〉 an3an4

∣∣∣∣2

=
∣∣∣∣ ∑
|n4|∼N4

|n4| 1
2 −δan4 · 1

|n4| 1
2 −δ

( ∑
∗(n,μ,n4)

(in1)
gn1(ω)gn2(ω)

〈n1〉〈n2〉 an3

)∣∣∣∣2

�
∑

|n4|∼N4

1

|n4|1−2δ

∣∣∣∣ ∑
∗(n,μ,n4)

(in1)
gn1(ω)gn2(ω)

〈n1〉〈n2〉 an3

∣∣∣∣2,
by Cauchy–Schwarz in n4. For each fixed |n4| ∼ N4, μ < 3(N0)2, we write∑

|n|∼N

∣∣∣∣ ∑
∗(n,μ,n4)

(in1)
gn1(ω)gn2(ω)

〈n1〉〈n2〉 an3

∣∣∣∣2 =
∑

|n|∼N

∣∣∣∣ ∑
|n3|∼N3

σn4,μ
n,n3

|n3| 1
2 −δan3

∣∣∣∣2 (6.31)

where σn4,μ
n,n3 is the (n, n3)rd entry of a matrix σn4,μ (for n4, μ fixed) with columns indexed by |n3| ∼ N3, and rows 

indexed by |n| ∼ N . These entries are given by

σn4,μ
n,n3

=
∑

(n1,n2)∈∗(n,n3,n4,μ)

(in1)
gn1(ω)gn2(ω)

〈n1〉〈n2〉|n3| 1
2 −δ

. (6.32)

Recall the following property of matrix norms: ‖A∗A‖ = ‖AA∗‖. Using Cauchy–Schwarz, the condition∑
n3

|n3|1−2δ|a3(n3)|2 = 1, and applying Lemma 6.7, we find

(6.31) �
∥∥(σn4,μ

)∗
σn4,μ

∥∥ = ∥∥σn4,μ
(
σn4,μ

)∗∥∥
≤ sup

|n|∼N

∑
|n3|∼N3

∣∣σn4,μ
n,n3

∣∣2 +
( ∑

n�=n′
|n|,|n′|∼N

∣∣∣∣ ∑
|n3|∼N3

σn4,μ
n,n3

σ
n4,μ

n′,n3

∣∣∣∣2
) 1

2

=: I1(n4,μ) + I2(n4,μ). (6.33)

To recap, combining (6.23), (6.26), (6.27) and (6.28), we now have∥∥N−1|2.b.i(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

�
(
N0)3δ

N
1
2 +δ

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

sup
|μ|<3(N0)2

( ∑
|n4|∼N4

1

|n4|1−2δ

(
I1(n4,μ) + I2(n4,μ)

)) 1
2

, (6.34)

and we estimate the contributions from I1(n4, μ) and I2(n4, μ) separately.
We remark that the sum in (6.32) has at most two terms. Indeed, for n, n3, n4, and μ fixed, if (n1, n2) ∈

∗(n, n3, n4, μ), then n2 is determined by n1 through the condition n = n1 + · · · + n4, and n1 satisfies the equation 
μ = n3 − n3

1 − · · · − n3
4. Since n1 �= −n2 (recall (6.20)), this is a non-degenerate quadratic equation in n1:

μ = n3 − n3
1 − · · · − n3

4 = n3 − n3
1 − (n − n1 − n3 − n4)

3 − · · · − n3
4

= −3(n − n3 − n4)n
2
1 − 3(n − n3 − n4)

2n1 + n3 − (n − n3 − n4)
3 − n3

3 − n3
4, (6.35)

with n − n3 − n4 = n1 + n2 �= 0, and this equation has at most two roots n1.
Then to estimate I1(n4, μ), for n, n3, n4, μ fixed, we bring the absolute value inside the sum of (at most) two terms 

in (6.32) and apply Lemma 6.4 (with ε = β) to obtain, for ω ∈ Ω̃T :



G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766 739
I1(n4,μ) ≤ sup
|n|∼N

∑
|n3|∼N3

(n1,n2)∈∗(n,n3,n4,μ)

|n1|2|gn1(ω)||gn2(ω)|
〈n1〉2〈n2〉2〈n3〉1−2δ

� T −β sup
|n|∼N

∑
|n3|∼N3

(n1,n2)∈∗(n,n3,n4,μ)

|n1|2
〈n1〉2−β〈n2〉2−β〈n3〉1−2δ

� T −β

(N0)2−2β−2δ−γ

∑
|n3|∼N3

1

〈n3〉1+γ
� T −β

(N0)2−2β−2δ−γ
, (6.36)

where we have used N3 ∼ N0 and N2 ≥ N3 ≥ N4 in the second last line. Then we can estimate the contribution to 
(6.34) coming from I1(n4, μ) by

T − β
2 N

1
2 +δ

(N0)1−β−5δ− γ
2

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

( ∑
|n4|∼N4

1

〈n4〉1−2δ

) 1
2

� T − β
2 N

1
2 +δ

(N0)1−β−6δ−γ

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

( ∑
|n4|∼N4

1

〈n4〉1+γ

) 1
2

� T −β

(NN1 · · ·N4)α
(N1N2)

−β‖u3‖
X

1
2 −δ, 1

2 −δ

T

‖u4‖
X

1
2 −δ, 1

2 −δ

T

. (6.37)

To estimate I2(n4, μ), note that

I2(n4,μ) =
( ∑

n�=n′
|n|,|n′|∼N

∣∣∣∣ ∑
|n3|∼N3

( ∑
∗(n,n3,n4,μ)

(in1)gn1(ω)gn2(ω)

〈n1〉〈n2〉〈n3〉 1
2 −δ

)

·
( ∑

∗(n′,n3,n4,μ)

(−in′
1)gn′

1
(ω)gn′

2
(ω)

〈n′
1〉〈n′

2〉〈n′
3〉

1
2 −δ

)∣∣∣∣2
) 1

2

. (6.38)

For each fixed n, n′, n4, μ, let

Fn,n′,n4,μ(ω) :=
∑

|n3|∼N3
n1,n2∈∗(n,μ,n3,n4)

n′
1,n

′
2∈∗(n′,μ,n3,n4)

n1n
′
1gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)

〈n1〉〈n2〉〈n′
1〉〈n′

2〉〈n3〉1−2δ
.

Notice that Fn,n′,n4,μ(ω) := Fn,n′,n4,μ(u0,ω) is ρ-measurable (it is a polynomial function of the randomized Fourier 
coefficients). By Lemma 6.5,

‖Fn,n′,n4,μ‖Lp(Ω) ≤ √
5(p − 1)2‖Fn,n′,n4,μ‖L2(Ω),

for each 2 < p < ∞. Then by Lemma 6.6 (applied with Ñ = (‖Fn,n′,n4,μ‖L2(Ω))
−1, α = 1 and k = 4) it follows that

P
(∣∣Fn,n′,n4,μ(ω)

∣∣ ≥ λ
) ≤ e

−c‖Fn,n′,n4,μ‖− 1
2

L2(Ω)
λ

1
2
.

Taking λ = ‖Fn,n′,n4,μ‖L2(Ω)(N
0)2βT −2β , we have

P
(∣∣Fn,n′,n4,μ(ω)

∣∣ ≥ ‖Fn,n′,n4,μ‖L2(Ω)

(
N0)2β

T −2β
) ≤ e

−c
(N0)β

T β .

Let

ΩN,N1,...,N4,T :=
⋂

|n|∼N,|n′|∼N
0 2

{∣∣Fn,n′,n4,μ(ω)
∣∣ < ‖Fn,n′,n4,μ‖L2(Ω)

(
N0)2β

T −2β
}
.

|n4|∼N4,|μ|<3(N )
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Then

P
(
(ΩN,N1,...,N4,T )c

) ≤
∑

|n|∼N,|n′|∼N

|n4|∼N4,|μ|<3(N0)2

e
−c

(N0)β

T β ≤ (
N0)5

e
−c

(N0)β

T β

≤ (
N0)−5α

e
− c̃

T β ≤ (NN1 · · ·N4)
−αe

− c̃

T β ,

for some c̃(β), κ(β) > 0. Furthermore, if ω ∈ ΩN,N1,...,N4,T , then for each |n4| ∼ N4, |μ| < 3(N0)2, we have

I2(n4,μ) =
( ∑

n�=n′
|n|,|n′|∼N

∣∣Fn,n′,n4,μ(ω)
∣∣2) 1

2

<

( ∑
n�=n′

|n|,|n′|∼N

‖Fn,n′,n4,μ‖2
L2(Ω)

(
N0)4β

T −4β

) 1
2

. (6.39)

Next we compute

‖Fn,n′,n4,μ‖2
L2(Ω)

=
∑

|n3|,|m3|∼N3
(n1,n2)∈∗(n,μ,n3,n4), (n′

1,n
′
2)∈∗(n′,μ,n3,n4)

(m1,m2)∈∗(n,μ,m3,n4), (m′
1,m

′
2)∈∗(n′,μ,m3,n4)

(−n1n
′
1)(−m1m

′
1)

〈n1〉〈n2〉〈n′
1〉〈n′

2〉〈n3〉1−2δ〈m1〉〈m2〉〈m′
1〉〈m′

2〉〈m3〉1−2δ

E
(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

)
� 1

(N0)6−4δ

∑
|n3|,|m3|∼N3

(n1,n2)∈∗(n,μ,n3,n4), (n′
1,n

′
2)∈∗(n′,μ,n3,n4)

(m1,m2)∈∗(n,μ,m3,n4), (m′
1,m

′
2)∈∗(n′,μ,m3,n4)∣∣E(

gn1(ω)gn2(ω)gn′
1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

)∣∣. (6.40)

Then combining (6.39) and (6.40) we have

I2(n4,μ) =
( ∑

n�=n′
|n|,|n′|∼N

∣∣Fn,n′,n4,μ(ω)
∣∣2) 1

2

<
T −2β

(N0)3−2δ−2β

( ∑
n�=n′, |n|,|n′|∼N, |n3|,|m3|∼N3

(n1,n2)∈∗(n,μ,n3,n4) (n′
1,n

′
2)∈∗(n′,μ,n3,n4)

(m1,n2)∈∗(n,μ,m3,n4) (m′
1,m

′
2)∈∗(n′,μ,m3,n4)

∣∣E(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

)∣∣) 1
2

<
T −2β

(N0)
3
2 −2δ−2β

, (6.41)

by the following lemma.
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Lemma 6.10. Let

S(n4,μ) := {(
n,n1, n2, n3, n

′, n′
1, n

′
2,m1,m2,m3,m

′
1,m

′
2

) ∣∣ n �= n′, |n|, ∣∣n′∣∣ ∼ N, |n3|, |m3| ∼ N3,

(n1, n2) ∈ ∗(n,μ,n3, n4),
(
n′

1, n
′
2

) ∈ ∗(n′,μ,n3, n4
)
,

(m1,m2) ∈ ∗(n,μ,m3, n4),
(
m′

1,m
′
2

) ∈ ∗(n′,μ,m3, n4
)
,

and E
(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

) �= 0
}
.

Then #{S(n4, μ)} < (N0)3.

The proof of Lemma 6.10 can be found in Appendix A. Using (6.41) (which was established with Lemma 6.10), if 
ω ∈ ΩN,N1,...,N4,T , we can estimate the contribution to (6.34) coming from I2(n4, μ) by

T −βN
1
2 +δ

(N0)
3
4 −5δ−β

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

( ∑
|n4|∼N4

1

〈n4〉1−2δ

) 1
2

� T −βN
1
2 +δ

(N0)
3
4 −6δ−β−γ

4∏
j=3

‖uj‖
X

1
2 −δ, 1

2 −δ

T

( ∑
|n4|∼N4

1

〈n4〉1+2γ

) 1
2

� T −β

(NN1 · · ·N4)α
(N1N2)

−β‖u3‖
X

1
2 −δ, 1

2 −δ

T

‖u4‖
X

1
2 −δ, 1

2 −δ

T

. (6.42)

Combining (6.34), (6.37) and (6.42), if ω ∈ Ω̃T ∩ ΩN,N1,...,N4,T , then the estimate (6.22) holds true.
It is straightforward to check that the crucial inequalities in lines (6.36) and (6.41) remain true (using (6.20) and 

(6.21)) under permutations of the roles of (n1, n2, n3) in the preceding analysis. The analysis of Case 2.b.i is complete.

• CASE 2.b.ii. One of ui of type (I), i = 1, 2, 3, others type (II).

We will begin by assuming u1 is type (I), and u2, u3 are type (II). We will discuss modifications for other possibil-
ities afterwards. In this case we establish the estimate∥∥N−1|2.b.ii(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −β 1

(NN1 · · ·N4)αN
β

1

‖u2‖
X

1
2 +δ, 1

2 −δ

T

‖u3‖
X

1
2 +δ, 1

2 −δ

T

‖u4‖
X

1
2 −δ, 1

2 −δ

T

. (6.43)

With the condition (6.21) and N2 ≥ N3 ≥ N4, we have N2 ∼ N3 ∼ N0, and for γ, α, β 	 δ this gives

|n| 1
2 +δ|n1|

|n1| 1
2 −γ |n2| 1

2 +δ−γ |n3| 1
2 +δ−γ

� |n| 1
2 +δ|n1| 1

2 +γ

|n2| 1
2 +δ−γ |n3| 1

2 +δ−γ
� 1

(N0)δ−3γ

� 1

|n|γ
1

(NN1 · · ·N4)α(N1)β
. (6.44)

Using (6.44), (6.43) follows from∥∥∥∥( ∑
|n1|∼N1

|gn1(ω)|ein1x+in3
1t

|n1| 1
2 +γ

)
f2f3u4

∥∥∥∥
X

−γ,− 1
2 +δ

� T −β‖f2‖
X

γ, 1
2 −δ

‖f3‖
X

γ, 1
2 −δ

‖u4‖
X

1
2 −δ, 1

2 −δ
. (6.45)

To establish (6.45), notice that by Lemma 2.1 and Lemma 6.4, if ω ∈ Ω̃T , then∥∥∥∥ ∑
|n1|∼N1

|gn1(ω)|ein1x+in3
1t

|n1| 1
2 +γ

∥∥∥∥
X

γ
2 , 1

2 −δ
� T −β

( ∑
|n1|∼N1

1

|n1|1+γ−2β

) 1
2

� T −β, (6.46)

by taking β = β(γ ) sufficiently small. Then using duality, Hölder’s inequality, (2.12) and (6.46),
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∣∣∣∣ˆ v ·
( ∑

|n1|∼N1

|gn1(ω)|ein1x+in3
1t

|n1| 1
2 +γ

)
f2f3u4dxdt

∣∣∣∣
≤ ‖v‖L5

x,t

∥∥∥∥ ∑
|n1|∼N1

|gn1(ω)|ein1x+in3
1t

|n1| 1
2 +γ

∥∥∥∥
L5

x,t

∏
j=2,3

‖fj‖L5
x,t

‖u4‖L5
x,t

� ‖v‖
X

γ
2 , 1

2 −δ

∥∥∥∥ ∑
|n1|∼N1

|gn1(ω)|ein1x+in3
1t

|n1| 1
2 +γ

∥∥∥∥
X

γ
2 , 1

2 −δ

∏
j=2,3

‖fj‖
X

γ
2 , 1

2 −δ
‖u4‖

X
γ
2 , 1

2 −δ

� T −β‖v‖
X

γ, 1
2 −δ

‖f2‖
X

γ, 1
2 −δ

‖f3‖
X

γ, 1
2 −δ

‖u4‖
X

1
2 −δ, 1

2 −δ
,

and (6.45) holds for ω ∈ Ω̃T .
It is easy to verify that the crucial inequality, (6.44), remains true (by (6.21)) if we permute the roles of (n1, n2, n3)

in the preceding analysis. The analysis of Case 2.b.ii is complete.

• CASE 2.b.iii. u1, u2, u3 all type (II).

In this subcase we establish the deterministic estimate

∥∥N−1|2.b.iii(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

� 1

(NN1 · · ·N4)α

3∏
j=1

‖uj‖
X

1
2 +δ, 1

2 −δ

T

‖u4‖
X

1
2 −δ, 1

2 −δ

T

. (6.47)

Using (6.21) we find

|n| 1
2 +δ|n1|

|n1| 1
2 +δ−γ |n2| 1

2 +δ−γ |n3| 1
2 +δ−γ

� 1

(N0)2δ−3γ
� 1

|n|γ (NN1 · · ·N4)α
.

Then (6.47) follows from

‖f1f2f3u4‖
X

−γ,− 1
2 +δ

�
3∏

j=1

‖fj‖
X

γ, 1
2 −δ

‖u4‖
X

1
2 −δ, 1

2 −δ
.

By duality, the last estimate is equivalent to∣∣∣∣ˆ v · f1f2f3u4dxdt

∣∣∣∣� ‖v‖
X

γ, 1
2 −δ

3∏
j=1

‖fj‖
X

γ, 1
2 −δ

‖u4‖
X

1
2 −δ, 1

2 −δ
. (6.48)

We obtain (6.48) with Hölder’s inequality and (2.12)∣∣∣∣ˆ v · f1f2f3u4dxdt

∣∣∣∣ ≤ ‖v‖L5
x,t

3∏
j=1

‖fj‖L5
x,t

‖u4‖L5
x,t

� ‖v‖
X

γ, 1
2 −δ

3∏
j=1

‖fj‖
X

γ, 1
2 −δ

‖u4‖
X

1
2 −δ, 1

2 −δ
.

This concludes the justification of (6.47), and case 2.b. is complete.

• CASE 2.c. N3 	 N0 and N2N3N4 �N0N1|n0 + n1|.

We perform a type (I)–type (II) decomposition in each factor. Observe that the assumptions of this case provide the 
additional condition

N3N4 � N0, (6.49)
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otherwise we would find (N0)2 � N0N1|n0 + n1| � N2N3N4 ≤ N0N3N4 	 (N0)2, a contradiction. In this region, 
we also have

N2N3N4 � N2N3N4 � N0N1
∣∣n0 + n1

∣∣ ∼ (
N0)2∣∣n0 + n1

∣∣. (6.50)

Then we find, by (6.50),

|n| 1
2 +δ|n1|

|n1| 1
2 −2δ|n2n3n4| 1

2 −2δ
� (N0)7δ

|n0 + n1| 1
2 −2δ

� 1

(N0)δ
, (6.51)

unless |n0 + n1| 	 (N0)
16δ

1−4δ . If (6.51) holds, we can proceed with (a modification of) the method used in case 2.b.iii 
to establish∥∥N−1|2.c.(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� 1

(NN1 · · ·N4)α

4∏
j=1

‖uj‖
X

1
2 −δ, 1

2 −δ

T

.

We therefore assume that∣∣n0 + n1
∣∣ 	 (

N0) 16δ
1−4δ , (6.52)

for the remainder of Case 2.c.

• CASE 2.c.i. u1 type (I) and two of u2, u3, u4 type (I). That is, u1, u2, u3, u4 of types (I)(I)(I)(I), (I)(I)(I)(II), 
(I)(I)(II)(I) and (I)(II)(I)(I).

Let us assume that u1, u2 and u3 are all type (I). We will discuss the other possibilities afterwards. In this case we 
establish∥∥N−1|2.c.i(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −3β 1

(NN1 · · ·N4)α

1

(N1N2N3)β
‖u4‖

X
1
2 −δ, 1

2 −δ

T

. (6.53)

Using the representation (6.24) for u4, we apply the Minkowski inequality in λ4 to find∥∥N−1|2.c.i(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

� ‖u4‖
X

1
2 +δ, 1

2 −δ

T

(
N0)δ

· sup
λ4,μ	(N0)2

∣∣∣∣ ∑
|n|∼N

|n|1+2δ

∣∣∣∣ ∑
∗(n,μ+λ4)∩Case 2.c

(in1)
gn1(ω)gn2(ω)gn3(ω)

〈n1〉〈n2〉〈n3〉 aλ4(n4)

∣∣∣∣2∣∣∣∣ 1
2

� ‖u4‖
X

1
2 +δ, 1

2 −δ

T

(
N0)δN 1

2 +δ

· sup
μ	(N0)2

∣∣∣∣ ∑
|n|∼N

∣∣∣∣ ∑
∗(n,μ)∩Case 2.c

(in1)
gn1(ω)gn2(ω)gn3(ω)

〈n1〉〈n2〉〈n3〉 an4

∣∣∣∣2∣∣∣∣ 1
2

, (6.54)

where 
∑

n4
|n4|1−2δ|an4 |2 = 1. We have dropped the dependence on λ4 in the previous expression; this is justified a 

posteriori by obtaining estimates which are uniform in λ4. For each fixed μ, we consider∑
|n|∼N

∣∣∣∣ ∑
∗(n,μ)∩Case 2.c

(in1)
gn1(ω)gn2(ω)gn3(ω)

〈n1〉〈n2〉 an4

∣∣∣∣2 =
∑

|n|∼N

∣∣∣∣∑
n4

σμ
n,n4

|n4| 1
2 −δan4

∣∣∣∣2 (6.55)

where σμ
n,n4 is the (n, n4) entry of a matrix σμ (for μ fixed) with columns indexed by |n4| ∼ N4, and rows indexed by 

|n| ∼ N . That is, the entries of this matrix are given by
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σμ
n,n4

=
∑

∗(n,n4,μ)∩Case 2.c

in1gn1(ω)gn2(ω)gn3(ω)

〈n1〉〈n2〉〈n3〉|n4| 1
2 −δ

.

Then by Lemma 6.7

(6.55) �
∥∥(σμ

n,n4

)∗
σμ

n,n4

∥∥ = ∥∥σμ
n,n4

(
σμ

n,n4

)∗∥∥
≤ sup

|n|∼N

∑
n4

∣∣σμ
n,n4

∣∣2 +
( ∑

n�=n′

∣∣∣∣∑
n4

σμ
n,n4

σ
μ

n′,n4

∣∣∣∣2) 1
2

= I1(μ) + I2(μ). (6.56)

To recap we have∥∥N−1|2.c.(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

� ‖u4‖
X

1
2 +δ, 1

2 −δ

T

(
N0)δN 1

2 +δ · sup
|μ|<(N0)2

(
I1(μ) + I2(μ)

) 1
2 . (6.57)

To estimate I1(μ) = sup|n|∼N

∑
n4

|σμ
n,n4 |2, we consider Fn,n4,μ(ω) := σ

μ
n,n4(ω), then by Lemma 6.5,

‖Fn,n4,μ‖Lp(Ω) ≤ p
3
2 ‖Fn,n4,μ‖L2(Ω),

for each 2 < p < ∞. Applying Lemma 6.6 it follows that

P
(∣∣Fn,n4,μ(ω)

∣∣ ≥ λ
) ≤ e

−c‖Fn,n4,μ‖− 2
3

L2(Ω)
λ

2
3
.

Taking λ = ‖Fn,n4,μ‖L2(Ω)(N
0)

3β
2 T − 3β

2 , we have

P
(∣∣Fn,n4,μ(ω)

∣∣ ≥ ‖Fn,n4,μ‖L2(Ω)

(
N0) 3β

2 T − 3β
2
) ≤ e

−c
(N0)β

T β .

Then letting Ωn,N1,N2,N3,n4,μ,T := {|Fn,n4,μ(ω)| ≥ ‖Fn,n4,μ‖L2(Ω)(N
0)

3β
2 T − 3β

2 } and

ΩN,N1,N2,N3,N4,T :=
⋂

|n|∼N,|n4|∼N4,|μ|<(N0)2

Ωn,N1,N2,N3,n4,μ,T ,

we have

P
(
Ωc

N,N1,N2,N3,N4,T

) ≤
∑

|n|∼N,|n4|∼N4,|μ|<(N0)2

e
−c

(N0)β

T β �
(
N0)4

e
−c

(N0)β

T β �
(
N0)0−

e
− c′

T β .

Then for each |μ| 	 (N0)2, if ω ∈ ΩN,N1,N2,N3,N4,T ,

I1(μ) = sup
|n|∼N

∑
|n4|∼N4

∣∣Fn,n4,μ(ω)
∣∣2 � (

N0)3β
T −3β sup

|n|∼N

∑
|n4|∼N4

‖Fn,n4,μ‖2
L2(Ω)

. (6.58)

We compute that

‖Fn,n4,μ‖2
L2(Ω)

= E

(∣∣∣∣ ∑
(n1,n2,n3)∈∗(n,n4,μ)∩case 2.c.

(in1)gn1(ω)gn2(ω)gn3(ω)

〈n1〉〈n1〉〈n1〉|n4| 1
2 −δ

∣∣∣∣2)

�
∑

(n1,n2,n3)∈∗(n,n4,μ)∩case 2.c.
(m1,m2,m3)∈∗(n,n4,μ)∩case 2.c.

1

(N2N3)2N1−2δ
4

· ∣∣E(
gn1(ω)gn2(ω)gn3(ω)gm1(ω)gm2(ω)gm3(ω)

)∣∣. (6.59)

To bound this sum we use the following lemma.
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Lemma 6.11. Let

S(n,μ) := {
(n1, n2, n3, n4,m1,m2,m3)

∣∣ |n4| ∼ N4,

(n1, n2, n3) ∈ ∗(n,n4,μ), (m1,m2,m3) ∈ ∗(n,n4,μ),

E
(
gn1(ω)gn2(ω)gn3(ω)gm1(ω)gm2(ω)gm3(ω)

) �= 0
}
.

Then #{S(n, μ)} < min(N1N2, N1N3, N2N3).

The proof of Lemma 6.11 can be found in Appendix A. By combining (6.55)–(6.59) and Lemma 6.11, the contri-
bution to (6.57) from I1(μ) is bounded by

‖u4‖
X

1
2 −δ, 1

2 −δ

T

(
N0)δN 1

2 +δ sup
|μ|<(N0)2

(
I1(μ)

) 1
2 � T − 3β

2 (N0)δ+
β
2 N

1
2 +δ

(N2N3)
1
2 N

1
2 −δ

4

‖u4‖
X

1
2 −δ, 1

2 −δ

T

� T − 3β
2 (N0)2δ+ β

2 N
1
2 +δ

N0
‖u4‖

X
1
2 −δ, 1

2 −δ

T

� T − 3β
2

(NN1 · · ·N4)α
(N1N2N3)

−β‖u4‖
X

1
2 −δ, 1

2 −δ

T

.

It remains to control the contribution to (6.54) from I2(μ). Consider

I2(μ) =
( ∑

n�=n′

∣∣∣∣ ∑
|n4|∼N4

σμ
n,n4

σ
μ

n′,n4

∣∣∣∣2) 1
2 =

( ∑
n�=n′

∣∣Gn,n′,μ(ω)
∣∣2) 1

2

, (6.60)

where, for each fixed n, n′, μ, we have taken

Gn,n′,μ(ω) :=
∑

|n4|∼N4
(n1,n2,n3)∈∗(n,n4,μ)∩Case 2.c
(n′

1,n
′
2,n

′
3)∈∗(n′,n4,μ)∩Case 2.c

−n1n
′
1gn1(ω)gn2(ω)gn3(ω)gn′

1
(ω)gn′

2
(ω)gn′

3
(ω)

〈n1〉〈n2〉〈n3〉〈n′
1〉〈n′

2〉〈n′
3〉〈n4〉1−2δ

.

By Lemma 6.5 we have

‖Gn,n′,μ‖Lp(Ω) ≤ p3‖Gn,n′,μ‖L2(Ω),

for each 2 < p < ∞. With Lemma 6.6 it follows that

P
(∣∣Gn,n′,μ(ω)

∣∣ ≥ λ
) ≤ e

−c‖Gn,n′,μ‖− 1
3

L2(Ω)
λ

1
3
.

Taking λ = ‖Gn,n′,μ‖L2(Ω)(N
0)3βT −3β , we have

P
(∣∣Gn,n′,μ(ω)

∣∣ ≥ ‖Gn,n′,μ‖L2(Ω)

(
N0)3β

T −3β
) ≤ e

−c
(N0)β

T β .

Then letting Ωn,n′,N1,N2,N3,N4,μ,T := {|Gn,n′,μ(ω)| ≥ ‖Gn,n′,μ‖L2(Ω)(N
0)3βT −3β} and

ΩN,N1,N2,N3,N4,T :=
⋂

|n|,|n′|∼N,|μ|<(N0)2

Ωn,n′,N1,N2,N3,N4,μ,T ,

we have

P
(
Ωc

N,N1,N2,N3,N4,T

) ≤
∑

|n|,|n′|∼N,|μ|<(N0)2

e
−c

(N0)β

T β �
(
N0)4

e
−c

(N0)β

T β �
(
N0)0−

e
− c′

T β ,

for some c′ > 0. Then for each |μ| 	 (N0)2, if ω ∈ ΩN,N1,N2,N3,N4,T ,
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I2(μ)�
( ∑

n�=n′

∣∣Gn,n′,μ(ω)
∣∣2) 1

2 ≤ T −3β
(
N0)3β

( ∑
n�=n′

‖Gn,n′,μ‖2
L2(Ω)

) 1
2

.

We compute that∑
n�=n′

‖Gn,n′,μ‖2
L2(Ω)

=
∑
n�=n′

E

(∣∣∣∣ ∑
|n4|∼N4

(n1,n2,n3)∈∗(n,n4,μ)∩Case 2.c
(n′

1,n
′
2,n

′
3)∈∗(n′,n4,μ)∩Case 2.c

−n1n
′
1gn1(ω)gn2(ω)gn3(ω)gn′

1
(ω)gn′

2
(ω)gn′

3
(ω)

〈n1〉〈n2〉〈n3〉〈n′
1〉〈n′

2〉〈n′
3〉〈n4〉1−2δ

∣∣∣∣2
)

�
∑

|n|,|n′|∼N,|n4|,|m4|∼N4
(n1,n2,n3)∈∗(n,n4,μ)

(n′
1,n

′
2,n

′
3)∈∗(n′,n4,μ)

(m1,m2,m3)∈∗(n,m4,μ)

(m′
1,m

′
2,m

′
3)∈∗(n′,m4,μ)

1

(N2N3)4N2−4δ
4

E
(
gn1(ω)gn2(ω)gn3(ω)gn′

1
(ω)gn′

2
(ω)gn′

3
(ω)

· gm1(ω)gm2(ω)gm3(ω)gm′
1
(ω)gm′

2
(ω)gm′

3
(ω)

)
. (6.61)

Using (6.21) we have

1

(N2N3)4N2−4δ
4

= N2+4δ
4

(N2N3N4)4
�

N2+4δ
4

(N0)8
. � 1

(N0)6−4δ
. (6.62)

To further control (6.61) we establish the following lemma.

Lemma 6.12. Let

S(μ) := {(
n,n′, n1, n2, n3, n

′
1, n

′
2, n

′
3,m1,m2,m3,m

′
1,m

′
2,m

′
3

) ∣∣
|n|, ∣∣n′∣∣ ∼ N, |n4|, |m4| ∼ N4, (n1, n2, n3) ∈ ∗(n,n4,μ),(
n′

1, n
′
2, n

′
3

) ∈ ∗(n′, n4,μ
)
, (m1,m2,m3) ∈ ∗(n,m4,μ),(

m′
1,m

′
2,m

′
3

) ∈ ∗(n′,m4,μ
)
, with

∣∣n0 + n1
∣∣ 	 (

N0) 16δ
1−4δ in all quintuples,

E
(
gn1(ω)gn2(ω)gn3(ω)gn′

1
(ω)gn′

2
(ω)gn′

3
(ω)gm1(ω)gm2(ω)gm3(ω)gm′

1
(ω)gm′

2
(ω)gm′

3
(ω)

) �= 0
}
.

It holds that #{S(μ)} � (N0)3+ 32δ
1−4δ .

The proof of Lemma 6.12 can be found in Appendix A. By combining (6.62) with Lemma 6.12 we have

(6.61) � 1

(N0)3−4δ− 32δ
1−4δ

. (6.63)

Then from (6.63) we can estimate the contribution to (6.57) coming from I2(μ) by

‖u4‖
X

1
2 −δ, 1

2 −δ

T

(
N0)δN 1

2 +δ sup
|μ|<(N0)2

(
I2(μ)

) 1
2 � ‖u4‖

X
1
2 −δ, 1

2 −δ

T

T − 3β
2 (N0)δ+

3β
2 N

1
2 +δ

(N0)
3
4 −δ− 8δ

1−4δ

� T − 3β
2

(NN1 · · ·N4)α
(N1N2N3)

−β‖u4‖
X

1
2 −δ, 1

2 −δ

T

,

for δ, β, α > 0 sufficiently small. It is clear that the previous analysis applies upon permutation of the variables n2, n3
and n4, as we did not use the ordering N2 ≥ N3 ≥ N4 in this case (see Remark 5.4 in [40]). The analysis of Case 2.c.i 
is complete.
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• CASE 2.c.ii. u1 type (II), and u2, u3, u4 type (I).

In this case we proceed precisely as in Case 2.c.ii, swapping the roles of n1 and n4. The analysis requires modifi-

cation in the lines (6.59) and (6.61), where we need to include the factor 
N1−2δ

1
(N2N3N4)

2 instead of 1
(N2N3)

2N1−2δ
4

. In order 

to estimate (6.59), by N2 ≥ N3 ≥ N4 and (6.50), we find

1

N2
2 N3N4

≤ 1

(N2N3N4)
4
3

� 1

(N0)
8
3

,

and we have

(N0)2δN1+2δN1−2δ
1

N2
2 N3N4

� 1

(N0)
2
3 −2δ

.

By combining this inequality with Lemma 6.12 (with n1 and n4 swapped) we can estimate the contribution to (6.57)
from I1(μ) as we did in Case 2.c.i.

In the modification of (6.61), we consider

(N1)
2−4δ

(N2N3N4)4
� (N1)

2−4δ

(N0)8
� 1

(N0)6+4δ
,

which is precisely the conclusion we reached in Case 2.c.i. These are the only modifications required, and the analysis 
of Case 2.c.ii is complete.

• CASE 2.c.iii: Two type (I), two type (II).

We will consider four subcases, and begin with a description each of them.

• CASE 2.c.iii.a: u1 type (II) and u4 type (I).
That is, u1, u2, u3, u4 types (II)(I)(II)(I) and (II)(II)(I)(I).

• CASE 2.c.iii.b: u1, u2, u3, u4 of types (II)(I)(I)(II).
• CASE 2.c.iii.c: u1, u2, u3, u4 of types (I)(II)(II)(I).
• CASE 2.c.iii.d: u1 type (I) and u4 type (II).

That is, u1, u2, u3, u4 types (I)(II)(I)(II) and (I)(I)(II)(II).

We proceed with the analysis of each subcase.

• CASE 2.c.iii.a: u1 type (II) and u4 type (I). That is, u1, u2, u3 and u4 types (II)(I)(II)(I) and (II)(II)(I)(I).

Let us assume u1, u2, u3 and u4 are types (II)(II)(I)(I), respectively. It is easily verified (a posteriori) that the 
analysis of this subcase is symmetric with respect to the functions u2 and u3, and the preceding assumption holds 
without loss of generality.

In this case we exploit one more condition which restricts the size of N4. Specifically, we notice that if N4 ≥
(N0)

2
3 +5δ , then we have, using N2 ≥ N3 ≥ N4,

|n| 1
2 +δ|n1|

|n1| 1
2 −2δ|n2n3n4| 1

2 −2δ
� (N0)1+3δ

(N0)3( 1
2 −2δ)( 2

3 +5δ)
� 1

(N0)
δ
2 −30δ2

. (6.64)

Once again, if (6.64) holds, we can proceed with (a modification of) the method used in Case 2.b.iii to establish

∥∥N−1(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

� 1

(NN1 · · ·N4)α

4∏
‖uj‖

X
1
2 −δ, 1

2 −δ

T

.

j=1
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We therefore assume for the remainder of this proof that

N4 	 (
N0) 2

3 +5δ
. (6.65)

Using (6.50), we have

N
1
2 +δN1

(N1N2)
1
2 + 11δ

12 (N3N4)
1
2 − δ

12

≤ N
1
2 +δN1(N3N4)

δ

(N1N2N3N4)
1
2 + 11δ

12

≤ (N0)1+ 13δ
12 Nδ

4

(N2N3N4)
1
2 + 11δ

12

≤ (N0)1+ 13δ
12 (N0)(

2
3 +5δ)δ

(N0)1+ 11δ
6

≤ 1

(N0)
δ

12 −5δ2
. (6.66)

By using (6.66) and (a straightforward modification of) the methods of Case 2.b.iii we establish∥∥N−1|2.c.iii.a(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

� T −β

(NN1 · · ·N4)α
(N3N4)

−β‖u1‖
X

1
2 +δ, 1

2 −δ

T

‖u2‖
X

1
2 +δ, 1

2 −δ

T

, (6.67)

and the analysis of Case 2.c.iii.a is complete.

• CASE 2.c.iii.b: u1 and u4 type (II). That is, u1, u2, u3 and u4 types (II)(I)(I)(II).

In this case we can obtain a stronger restriction on N4. More precisely, we have

|n| 1
2 +δ|n1|

|n1| 1
2 +δ−γ |n2| 1

2 −γ |n3| 1
2 −γ |n4| 1

2 +δ−γ
= |n| 1

2 +δ|n1| 1
2 −δ+γ

|n2n3n4| 1
2 −γ |n4|δ

� (N0)3γ

Nδ
4

� 1

(N0)γ
, (6.68)

unless Nδ
4 	 (N0)4γ . If (6.68) holds, we can proceed with a straightforward modification of the method in Case 1.b.ii. 

Therefore, by taking γ = γ (δ) > 0 sufficiently small, we may assume that

N4 	 (
N0)δ, (6.69)

for the remainder of this case.
The analysis of this case closely follows the method of Case 2.b.i, with the roles of u1 and u3 swapped. Indeed, 

the analysis is identical until the line (6.34), where, due to the assumption u1, u4 ∈ X
1
2 +δ, 1

2 −δ

T (instead of u3, u4 ∈
X

1
2 −δ, 1

2 −δ

T ), we obtain∥∥N−1|2.c.iii.b(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 +δ

T

�N
1
2 +δ

∏
j=1,4

‖uj‖ 1
2 +δ, 1

2 −δ,T
· sup
|μ|<3(N0)2

( ∑
|n4|∼N4

1

|n4|
(
I1(n4,μ) + I2(n4,μ)

)) 1
2

, (6.70)

where

I1(n4,μ) = sup
|n|∼N

∑
|n1|∼N1

∣∣σn4,μ
n,n1

∣∣2,
and

I2(n4,μ) =
( ∑

n�=n′
|n|,|n′|∼N

∣∣∣∣ ∑
|n1|∼N1

σn4,μ
n,n1

σ
n4,μ

n′,n1

∣∣∣∣
) 1

2

,

with
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σn4,μ
n,n1

=
∑

(n2,n3)∈∗(n,n1,n4,μ)

(in1)
gn2(ω)gn3(ω)

|n1| 1
2 +δ〈n2〉〈n3〉

.

Next when we estimate I1(n4, μ) as in line (6.36), we apply Lemma 6.4 to obtain, for ω ∈ Ω̃T :

I1(n4,μ) ≤ sup
|n|∼N

∑
|n1|∼N1

(n2,n3)∈∗(n,n1,n4,μ)∩Case 2.c

|n1|2|gn2(ω)||gn3(ω)|
|n1|1+2δ|n2|2|n3|2

≤ T −β sup
|n|∼N

∑
(n1,n2,n3)∈∗(n,n4,μ)∩Case 2.c

|n1|1−2δ

|n2|2−β |n3|2−β
. (6.71)

We will need the following lemma.

Lemma 6.13. Let

S(n,n4,μ) := {
(n1, n2, n3) : (n1, n2, n3) ∈ ∗(n,n4,μ) and (6.52) holds

}
.

Then we have |S(n, n4, μ)| < (N0)
16δ

1−4δ .

The proof of Lemma 6.13 can be found in Appendix A. Combining (6.71) and Lemma 6.13 we have

I1(n4,μ) ≤ T −β (N0)
16δ

1−4δ N1−2δ
1

N
2−β

2 N
2−β

3

≤ T −β (N0)
16δ

1−4δ N1−2δ
1 N

2−β

4

N
2−β

2 N
2−β

3 N
2−β

4

≤ T −β N1−2δ
1 N

2−β

4

(N0)4−2β− 16δ
1−4δ

� T −β N1−2δ
1 (N0)2δ−βδ

(N0)4−2β− 16δ
1−4δ

� T −β

(N0)3−(2+δ)β− 16δ
1−4δ

. (6.72)

Notice that we have applied (6.50) and (6.69) in the previous lines. From here the estimates on the contribution to 
(6.70) from I1(n4, μ) proceed as in Case 2.b.i.

In the analysis of the contribution to (6.70) from I2(n4, μ), we have to modify our analysis once again. In particular, 
in the line of inequalities in (6.40), we need to obtain the same prefactor of (N0)−(6−). This is done quite easily by 
following the approach used in (6.72) above. We find

n2
1m

2
1

〈n1〉1+2δ〈n2〉〈n3〉〈n′
2〉〈n′

3〉〈m1〉1+2δ〈m2〉〈m3〉〈m′
2〉〈m′

3〉
�

N2−4δ
1 N4

4

(N2N3N4)4

�
N2−4δ

1 (N0)4δ

(N0)8
� 1

(N0)6
,

and from here the analysis proceeds as in Case 2.b.i. This completes the analysis of Case 2.c.iii.b.

• CASE 2.c.iii.c: u1 and u4 type (I). That is, u1, u2, u3 and u4 types (I)(II)(II)(I).

We find

|n| 1
2 +δ|n1|

|n1| 1
2 −γ |n2n3| 1

2 +δ−γ |n4| 1
2 −γ

� |n| 1
2 +δ|n1| 1

2 +γ |n4|δ
|n2n3n4| 1

2 +δ−γ

� |n| 1
2 +δ|n1| 1

2 +γ |n4|δ
(N0)1+2δ−2γ

� N4
δ

(N0)δ−2γ
� 1

(N0)
δ
3 −3γ−5δ2

. (6.73)

In the preceding inequalities, we have applied both (6.50) and (6.65). Using (6.73), we can proceed with a straightfor-
ward modification the method from Case 2.b.ii.

• CASE 2.c.iii.d: u1 type (I) and u4 type (II). That is, u1, u2, u3 and u4 types (I)(I)(II)(II) or (I)(II)(I)(II).
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Let us consider the case (I)(I)(II)(II), and briefly describe the adaptation to (I)(II)(I)(II) throughout. Once again, 
the analysis of this case closely follows the method of Case 2.b.i. Indeed, the analysis is identical until we estimate 
I1(n4, μ) as in line (6.36), and apply Lemmas 6.4 and 6.13 to obtain, for ω ∈ Ω̃T :

I1(n4,μ) ≤ sup
|n|∼N

∑
|n1|∼N1

(n2,n3)∈∗(n,n1,n4,μ)∩Case 2.c

|n1|2|gn1(ω)||gn2(ω)|
|n1|2|n2|2|n3|1+2δ

≤ T −β sup
|n|∼N

∑
(n1,n2,n3)∈∗(n,n4,μ)∩Case 2.c

|n1|β
|n2|2−β |n3|1+2δ

� T −β |N1|β(N0)
16δ

1−4δ

|N2|2−β |N3|1+2δ
� T −β (N0)β+ 16δ

1−4δ N1+2δ
4

|N2|1−β−2δ(N0)2+4δ

� T −β

(N0)
4
3 − 7δ

3 −10δ2−β− 16δ
1−4δ

. (6.74)

In the previous lines, we have used (6.50) and (6.65). The inequality (6.74) is enough to estimate the contribution 
from I (n4, μ) as in Case 1.b.i. Indeed, it is easily verified that, from the inequality (6.74), we only require a negative 
power of N0 with magnitude greater than 1. Note that, by taking δ > β > 0 sufficiently small, this is exactly what we 
have accomplished. Let us pause to remark that the analysis above is easily accomplished with types (I)(II)(I)(II) as 
well.

Before we estimate the contribution from I2(n4, μ), let us first observe that, in the case of types (I)(I)(II)(II), we 
can obtain a stronger restriction on the size of N2. More precisely, we have

|n| 1
2 +δ|n1|

|n1| 1
2 −γ |n2| 1

2 −γ |n3n4| 1
2 +δ−γ

� |n| 1
2 +δ|n1| 1

2 +γ |n2|δ
|n2n3n4| 1

2 +δ−γ

� |n| 1
2 +δ|n1| 1

2 +γ |n2|δ
(N0)1+2δ−2γ

� N2
δ

(N0)δ−3γ
� 1

(N0)
δ
5 −3γ

, (6.75)

unless N2 � (N0)
4
5 . If (6.75) holds, we can proceed with a modification of the analysis in Case 2.b.ii. We will therefore 

assume, for the remainder of this case, that

N2 �
(
N0) 4

5 . (6.76)

Turning to the contribution from I2(n4, μ), we proceed with the approach of Case 2.b.i until (6.40), where we find, 
using (6.76),

‖Fn,n′,n4,μ‖2
L2(Ω)

= E

(∣∣∣∣ ∑
|n3|∼N3

(n1,n2)∈∗(n,μ,n3,n4)

(n′
1,n

′
2)∈∗(n′,μ,n3,n4)

−n1n
′
1gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)

〈n1〉〈n2〉〈n′
1〉〈n′

2〉〈n3〉1+2δ

∣∣∣∣2
)

=
∑

|n3|,|m3|∼N3
(n1,n2)∈∗(n,μ,n3,n4), (n′

1,n
′
2)∈∗(n′,μ,n3,n4)

(m1,m2)∈∗(n,μ,m3,n4), (m′
1,m

′
2)∈∗(n′,μ,m3,n4)

(−n1n
′
1)(−m1m

′
1)

〈n1〉〈n2〉〈n′
1〉〈n′

2〉〈n3〉1+2δ〈m1〉〈m2〉〈m′
1〉〈m′

2〉〈m3〉1+2δ

E
(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

)
� 1

(N0)
16
5 N2+4δ

3

∑
|n3|,|m3|∼N3

(n1,n2)∈∗(n,μ,n3,n4), (n′
1,n

′
2)∈∗(n′,μ,n3,n4)

(m1,m2)∈∗(n,μ,m3,n4), (m′
1,m

′
2)∈∗(n′,μ,m3,n4)∣∣E(

gn1(ω)gn2(ω)gn′ (ω)gn′ (ω)gm1(ω)gm2(ω)gm′ (ω)gm′ (ω)
)∣∣. (6.77)
1 2 1 2
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Then combining (6.39) and (6.77), we have

I2(n4,μ) =
( ∑

n�=n′
|n|,|n′|∼N

∣∣Fn,n′,n4,μ(ω)
∣∣2) 1

2

<
T −2β

(N0)
8
5 N1+2δ

3

( ∑
n�=n′, |n|,|n′|∼N, |n3|,|m3|∼N3

(n1,n2)∈∗(n,μ,n3,n4), (n′
1,n

′
2)∈∗(n′,μ,n3,n4)

(m1,n2)∈∗(n,μ,m3,n4), (m′
1,m

′
2)∈∗(n′,μ,m3,n4)

∣∣E(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

)∣∣) 1
2

� T −2β

(N0)
8
5

sup
|n3|,|m3|∼N3

( ∑
(n,n1,n2)∈∗(μ,n3,n4), (n′,n′

1,n
′
2)∈∗(μ,n3,n4)

(n,m1,m2)∈∗(μ,m3,n4), (n′,m′
1,m

′
2)∈∗(μ,m3,n4)

) 1
2

� T −2β

(N0)
8
5 − 32δ

1−4δ

� T −2β

(N0)
3
2

, (6.78)

by taking δ > 0 sufficiently small. Let us remark that, to obtain (6.78) above, we have applied Lemma 6.13 and 
(6.76). With (6.78), we have established an estimate superior to (6.41), and the remaining analysis of this case follows 
Case 2.b.i.

With the combination of types (I)(II)(I)(II), we can follow the same scheme to estimate the contribution from 
I2(n4, μ), but the roles of n2 and n3 are swapped (including (6.76), which in this case restricts the size of N3). This 
completes the analysis of Case 2.c.iii.

• CASE 2.c.iv: At least 3 of u1, u2, u3, u4 of type (II).

We will consider three subcases.

• CASE 2.c.iv.a: u1, u2, u3, u4 of types (I)(II)(II)(II).

We use (6.50) to find

|n| 1
2 +δ|n1|

|n1| 1
2 −γ |n2n3n4| 1

2 +δ−γ
� 1

(N0)δ−3γ
. (6.79)

With (6.79), we may proceed as in Case 2.b.ii.

• CASE 2.c.iv.b: u1, u2, u3, u4 of types (II)(I)(II)(II), (II)(II)(I)(II) and (II)(II)(II)(I).

Suppose u1, u2, u3, u4 are of types (II)(I)(II)(II). We find

|n| 1
2 +δ|n1|

|n1| 1
2 +δ−γ |n2| 1

2 −γ |n3n4| 1
2 +δ−γ

� |n| 1
2 +δ|n1| 1

2 −δ+γ |n2|δ
|n2n3n4| 1

2 +δ−γ

� |n2|δ
(N0)2δ−3γ

� 1

(N0)δ−3γ
. (6.80)

Again, using (6.80), we may proceed as in Case 2.b.ii. It is trivial to verify that this approach applies with types 
(II)(II)(I)(II) and (II)(II)(II)(I) as well, and this case is complete.
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• CASE 2.c.iv.c: u1, u2, u3, u4 all type (II).

It is obvious that the analysis of the last two cases applies here as well. This completes the analysis of Case 2.c.iv, 
our final case, and the proof of Lemma 6.8 is complete. �
6.3. Septilinear estimates

In this subsection we prove Proposition 6.2. This proof will involve some probability theory, but the analysis will 
be simpler than what was used in the proof of Lemma 6.8. In particular, we will invoke Lemma 6.4, but will not need 
Lemma 6.5.

Proof of Proposition 6.2. We split into cases depending on the relative sizes of the spatial frequencies n, n2, . . . , n8, 
where n = n2 + · · · + n8. Recall the defining condition of the region A1: |σ1| � |nmax|2, where |nmax| =
max(|n|, |n1|, |n2|, |n3|, |n4|). It should be emphasized that we cannot assume that |nmax| ≥ |n5|, |n6|, |n7|, |n8|. Here 
is a list of the cases to be considered.

We use a type (I)–type (II) decomposition in the u5 factor.

• CASE 1. u5 type (II).
• CASE 1.a. |nmax| � |n5|.
• CASE 1.b. |nmax| 	 |n5|.

• CASE 2. u5 type (I).
• CASE 2.a. n �= n5.

• CASE 2.a.i. |nmax| � |nk| for all k ∈ {5, 6, 7, 8}.
• CASE 2.a.ii. |nk|, |nj | � |n5| for some distinct k, j ∈ {6, 7, 8}.
• CASE 2.a.iii. |n6| ∼ |n5| � |nmax| (equivalent WLOG to |nk| ∼ |n5| � |nmax| for some k ∈ {6, 7, 8}).

• CASE 2.a.iii.a: u6 type (II).
• CASE 2.a.iii.b: u6 type (I).

• CASE 2.b. n = n5.
• CASE 2.b.i. |σ | � |n|

√
2δ , |σk| � |n|

√
2δ or |nk| � |n|

√
2δ for some k ∈ {2, 3, 4, 6, 7, 8}.

• CASE 2.b.ii. |σ | 	 |n|
√

2δ , |σk| 	 |n|
√

2δ and |nk| 	 |n|
√

2δ for all k ∈ {2, 3, 4, 6, 7, 8}.

We proceed with the analysis of each case.

• CASE 1. u5 type (II).

In this case we establish∥∥N1
(
D(u5, u6, u7, u8), u2, u3, u4

)|Case 1
∥∥

X
1
2 +δ,− 1

2 +δ

T

� ‖u5‖
X

1
2 +δ, 1

2 −δ

T

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.81)

• CASE 1.a. |nmax| � |n5|.

We use |σ1| � |nmax|2 � |n5|2 to estimate

|n| 1
2 +δ|n1||n5|

|σ1||n5| 1
2 +δ

� 1. (6.82)

Using (6.82), the inequality (6.81) follows from∥∥∥∥∥f5

8∏
j=2

uj

∥∥∥∥∥
L2

x,t

� ‖f5‖
X

0, 1
2 −δ

8∏
j=2

‖uj‖
X

1
2 −δ, 1

2 −δ
. (6.83)
j �=5
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Then (6.83) is obtained with Hölder, (2.8) and (2.10),∥∥∥∥∥f5

8∏
j=2

uj

∥∥∥∥∥
L2

x,t

� ‖f5‖L4
x,t

8∏
j=2
j �=5

‖uj‖L24
x,t

� ‖f5‖
X

0, 1
2 −δ

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ
.

• CASE 1.b. |nmax| 	 |n5|.

Since |nmax| 	 |n5| and n1 = n5 + · · · + n8 we must have (without loss of generality) that

|n6| � |n5| � |nmax|. (6.84)

With (6.84) we find

|n| 1
2 +δ|n1||n5|

|σ1||n5| 1
2 +δ|n6| 1

2 −δ
� 1

|n|γ . (6.85)

Using (6.85) and duality, (6.81) follows from∣∣∣∣∣
ˆ

v · f5f6

8∏
j=2

j �=5,6

ujdxdt

∣∣∣∣∣
� ‖v‖

X
γ, 1

2 −δ
‖f5‖

X
0, 1

2 −δ

T

‖f6‖
X

0, 1
2 −δ

8∏
j=2

j �=5,6

‖uj‖
X

1
2 −δ, 1

2 −δ
. (6.86)

Then (6.86) is easily established using Hölder, (2.8), (2.10) and (2.12).

• CASE 2. u5 type (I).

From here we proceed with a dyadic decomposition in all factors. That is, we assume that |n| ∼ N, |ni | ∼ Ni , and as 
in the proof of Lemma 6.8, we will order the frequencies (and corresponding dyadic shells) from largest to smallest 
using superscripts.

We remark that it can be assumed that

|σk| 	
(
N0)2

. (6.87)

Otherwise we have |σk| � (N0)2, and this gives

|n| 1
2 +δ|n1||n5|

|σ1||σk|2δ|n5| 1
2 −δ

� 1

(N0)2δ
. (6.88)

With (6.88) (and dyadic summation) we can establish

∥∥N1
(
D(u5, u6, u7, u8), u2, u3, u4

)∣∣
2.a

∥∥
X

1
2 +δ,− 1

2 +δ

T

�
8∏

j=2

‖uj‖
X

1
2 −δ, 1

2 −δ

T

(6.89)

using the methods of previous cases.

• CASE 2.a. n �= n5.
• CASE 2.a.i. |nmax| � |nk| for all k ∈ {5, 6, 7, 8}.

In this subcase we show there exists β > 0 and ΩT ⊂ Ω , with P(Ωc ) < e
− 1

T β , such that if ω ∈ ΩT , then we have
T
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∥∥N1
(
D

(
S(t)Λ5u0,ω, u6, u7, u8

)
, u2, u3, u4

)∣∣
2.a.i

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −βN
−β

5

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.90)

Recall that Λ5 is the Fourier multiplier corresponding to the characteristic function of the interval [N5, M5] in fre-
quency space, for some dyadic integers N5 < M5 < ∞.

Using the representation (6.24) for uj and Minkowski in λj , for each j = 2, 3, 4, 6, 7, 8, we find (letting μ =∑8
j=2,j �=5 λj − λ, and invoking (6.87)),∥∥N1

(
D

(
S(t)Λ5u0,ω, u6, u7, u8

)
, u2, u3, u4

)∥∥
X

1
2 +δ,− 1

2 +δ

T

�
(
N0)6δ

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

· sup
μ<C(N0)

√
2δ

∥∥∥∥∥|n| 1
2 +δ

∑
∗(n,μ)
n�=n5

−n1n5gn5(ω)

σ1|n5|
8∏

j=2
j �=5

anj

∥∥∥∥∥
l2n

, (6.91)

where anj
:= aλj

(nj ) (we have removed the dependence on λj because our estimates will hold uniformly with respect 
to these parameters), and

∗(n,μ) =
{

(n2, n3, n4, n5, n6, n7, n8) ∈ Z
7 : (n1, n2, n3, n4) ∈ ζ(n),

(n5, n6, n7, n8) ∈ ζ(n1) and n3 −
8∑

j=2

n3
j = μ

}
.

By bringing the absolute value inside and applying Lemma 6.4, for each ω ∈ Ω̃T we have∥∥∥∥∥|n| 1
2 +δ

∑
∗(n,μ)
n5 �=n

−n1n5gn5(ω)

σ1|n5|
8∏

j=2
j �=5

anj

∥∥∥∥∥
l2n

� T −β/2

(N0)
1
2 −δ−β

sup
|μ|<C(N0)2

( ∑
|n|∼N

∣∣∣∣∣ ∑
∗(n,μ)
n5 �=n

8∏
j=2
j �=5

|anj
|
∣∣∣∣∣
2) 1

2

, (6.92)

where we have used the condition |σ1| � (N0)2. With repeated applications of Cauchy–Schwarz, we find

(6.92) ≤ T −β/2

(N0)
1
2 −δ−β

sup
|μ|<C(N0)2

( ∑
|n|∼N,|nk |∼Nk,k=2,3,4,6,7

{(n5,n8):(n2,...,n8)∈∗(n,μ),n5 �=n}

8∏
j=2
j �=5

1

|nj |1−2δ

) 1
2

= T −β/2

(N0)
1
2 −δ−β

sup
|μ|<C(N0)2

( ∑
|nk |∼Nk, k=2,3,4,6,7,8

{(n,n5):(n2,...,n8)∈∗(n,μ),n�=n5}

8∏
j=2
j �=5

1

|nj |1−2δ

) 1
2

� T −β/2

(N0)
1
2 −7δ−β

. (6.93)

Notice that, in the first line of (6.93), we have used the condition n5 �= −n8. This condition holds without loss of 
generality, since at least one of the integers n2, n3, n4, n6, n7, n8 is not equal to −n5, otherwise the inequality (6.93)
holds trivially. Then, for fixed n, n2, n3, n4, n6, n7 and μ, n5 is determined by n8, and n8 satisfies a non-degenerate 
(since n5 �= −n8) quadratic equation with at most two roots. We have used the same argument (with n �= n5) to avoid 
summation with respect to n and n5 in the last line of (6.93).

Combining (6.91)–(6.93), the inequality (6.90) follows by dyadic summation, and Case 2.a.i is complete.
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• CASE 2.a.ii. |nk|, |nj | � |n5| for some distinct k, j ∈ {6, 7, 8}.

In this subcase we find

|n| 1
2 +δ|n1||n5|

|σ1||n5| 1
2 −δ|nk| 1

4 + δ
2 |nj | 1

4 + δ
2

� 1, (6.94)

and by using (6.94) we can establish an estimate of the type (6.89) with the methods of previous cases.

• CASE 2.a.iii. |n6| ∼ |n5| � |nmax|.
• CASE 2.a.iii.a. u6 type (II).

In this subcase we establish∥∥N1
(
D(u5, u6, u7, u8), u2, u3, u4

)∣∣
2.a.iii.a

∥∥
X

1
2 +δ,− 1

2 +δ

T

� ‖u6‖
X

1
2 +δ, 1

2 −δ

T

8∏
j=2
j �=6

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.95)

Notice that we have

|n| 1
2 +δ|n1||n5|

|σ1||n5| 1
2 −δ|n6| 1

2 +δ
� 1

|n|γ ,

and from here we can establish (6.95) using the method of Case 1.b.

• CASE 2.a.iii.b. u6 type (I).

In this subcase we establish the estimate∥∥N1
(
D

(
S(t)Λ5u0,ω, S(t)Λ6u0,ω, u7, u8

)
, u2, u3, u4

)∣∣
2.a.iii.b

∥∥
X

1
2 +δ,− 1

2 +δ

T

� T −β(M5M6)
−β

8∏
j=2

j �=5,6

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.96)

Using the representation (6.24) for uj and Minkowski in λj , for each j = 2, 3, 4, 7, 8, we find (letting μ =∑8
j=2,j �=5,6 λj − λ, and invoking (6.87)),∥∥N1

(
D

(
S(t)Λ5u0,ω, S(t)Λ6u0,ω, u7, u8

)
, u2, u3, u4

)∥∥
X

1
2 +δ,− 1

2 +δ

T

�
(
N0)6δ

8∏
j=2

j �=5,6

‖uj‖
X

1
2 −δ, 1

2 −δ

T

· sup
μ<C(N0)

√
2δ

∥∥∥∥∥|n| 1
2 +δ

∑
∗(n,μ)
n�=n5

−n1n5gn5(ω)gn6(ω)

σ1|n5||n6|
8∏

j=2
j �=5,6

anj

∥∥∥∥∥
l2n

. (6.97)

By bringing the absolute value inside and applying Lemma 6.4, for each ω ∈ Ω̃T we have∥∥∥∥∥|n| 1
2 +δ

∑
∗(n,μ)
n5 �=n

−n1n5gn5(ω)gn6(ω)

σ1|n5||n6|
8∏

j=2
j �=5,6

anj

∥∥∥∥∥
l2n

� T −β/2

(Nmax)
1
2 −δ(N0)1−2β

sup
|μ|<C(N0)2

( ∑
|n|∼N

∣∣∣∣∣ ∑
∗(n,μ)

8∏
j=2

|anj
|
∣∣∣∣∣
2) 1

2

, (6.98)
n5 �=n j �=5,6
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where we have used the conditions |σ1| � (Nmax)
2 and |n6| ∼ |n5| � |nmax|, |n7|, |n8|. With repeated applications of 

Cauchy–Schwarz, we find

(6.98) ≤ T −β/2

(Nmax)
1
2 −δ(N0)1−2β

· sup
|μ|<C(N0)2

( ∑
|n|∼N, |nk |∼Nk, k=2,3,4,7,8

{(n5,n6):(n2,...,n8)∈∗(n,μ),n5 �=n}

8∏
j=2

j �=5,6

1

|nj |1−2δ

) 1
2

� T −β/2

(N0)1−2β−6δ
. (6.99)

Notice that we have used the condition n5 �= −n6 (in order to avoid summation in these variables). This holds because 
if (n5, n6, n7, n8) ∈ ζ(n1), then n5 �= −n6 unless we also have n1 = n5, n5 = −n7 or n5 = −n8, but this is impossi-
ble given the assumption |n6| ∼ |n5| � |nmax|, |n7|, |n8|. Combining (6.97)–(6.99), the inequality (6.96) follows by 
dyadic summation, and Case 2.a.iii.b is complete.

• CASE 2.b. n = n5.
• CASE 2.b.i. |σ | � |n|

√
2δ , |σk| � |n|

√
2δ or |nk| � |n|

√
2δ for some k ∈ {2, 3, 4, 6, 7, 8}.

In this subcase we will not use the assumption that u5 is type (I). Instead we establish a deterministic estimate 
of the type (6.89). Suppose |nk| � |n|

√
2δ for some k ∈ {2, 3, 4, 6, 7, 8}. Since n = n5 in this case, we have |σ1| �

|nmax|2 ≥ |n5|2 and find

|n| 1
2 +δ|n1||n5|

|σ1||n5| 1
2 −δ|nk|

√
2δ

� 1. (6.100)

Using (6.100), an inequality of type (6.89) follows from∥∥∥∥∥
8∏

j=2

fj

∥∥∥∥∥
L2

x,t∈[0,T ]

� ‖f5‖
X

0, 1
2 −δ

T

‖fk‖
X

1
2 −δ−√

2δ, 1
2 −δ

T

8∏
j=2

j �=5,k

‖fj‖
X

1
2 −δ, 1

2 −δ

T

. (6.101)

Then (6.101) is obtained with Hölder, (2.8) and (2.10), as in previous cases. If |σk| � |n|
√

2δ or |σ | � |n|
√

2δ , the 
justification of (6.89) follows the same method.

• CASE 2.b.ii. |σ | 	 |n|
√

2δ , |nk| 	 |n|
√

2δ and |σk| 	 |n|
√

2δ for each k ∈ {2, 3, 4, 6, 7, 8}.

In this subcase we establish an estimate of the type (6.90). This is the region where we will exploit a deterministic 
cancellation (see Remark 3.7). We proceed to identify the cancellation, and to properly define N (u1, u2, u3, u4) and 
N1(D(u5, u6, u7, u8), u2, u3, u4) with different input functions. First suppose all factors are the same, and consider

N1
(
D(u,u,u,u),u,u,u

)∧
(n, τ ) =

∑
(n1,n2,n3,n4)∈ζ(n)
(n5,n6,n7,n8)∈ζ(n1)

ˆ

τ=τ2+···+τ8

χA1

−n1n5

σ1

8∏
j=2

û(nj , τj ). (6.102)

We will induce cancellation in the contribution to (6.102) from when n5 = n and the remaining frequencies satisfy 
certain smallness conditions. Consider

A1,c = {
(n,n2, n3, n4, n5, n6, n7, n8, τ, τ2, τ3, τ4, τ5, τ6, τ7, τ8) ∈ (

Z \ {0})8 ×R
8 : n = n5,

τ = τ2 + · · · + τ8, n2 + n3 + n4 + n6 + n7 + n8 = 0, n2 + n3 + n4 �= 0,

|σ | < |n|
√

2δ, |σk| < |n|
√

2δ, |nk| < |n|
√

2δ for k = 2,3,4,6,7,8
}
. (6.103)

Notice that, if (n, n2, . . . , n8, τ, τ2, . . . , τ8) ∈ A1,c , then (n1, n2, n3, n4) ∈ ζ1(n), (n, n6, n7, n8) ∈ ζ1(n1) and (n, n1,

n2, n3, n4, τ, τ1, τ2, τ3, τ4) ∈ A1. Indeed, the restrictions |nk| < |n|
√

2δ for k = 2, 3, 4 and n2 + n3 + n4 �= 0 guarantee 
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that n �= nk for k = 1, 2, 3, 4 and n1 �= −nk for k = 2, 3, 4, thus (n1, n2, n3, n4) ∈ ζ(n). Similarly |nk| < |n|
√

2δ for 
k = 6, 7, 8 and n6 + n7 + n8 �= 0 guarantees n1 �= n, nk and n �= −nk for k = 6, 7, 8, and thus (n, n6, n7, n8) ∈ ζ1(n1). 
Lastly using the restrictions |σ |, |σk|, |nk| < |n|

√
2δ for k = 2, 3, 4, 6, 7, 8 and n = n5, we can easily show that |σ1| �

|nmax|2, and therefore (n, n1, n2, n3, n4, τ, τ1, τ2, τ3, τ4) ∈ A1.
Because of this, we can consider the following contribution to (6.102),

N1
(
D(u,u,u,u),u,u,u

)∧
(n, τ )|A1,c

:= −n2
∑

n2+n3+n4+n6+n7+n8=0

ˆ

τ=τ2+τ3+τ4+τ5+τ6+τ7+τ8

χA1,c

8∏
j=2

û(nj , τj )

·
(

n − n2 − n3 − n4

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3

)
.

Inserting the assumption that u5 is type (I), we have

N1
(
D

(
S(t)Λ5u0,ω, u,u,u

)
, u,u,u

)∧
(n, τ )|A1,c

= −ngn(ω)
∑

n2+n3+n4+n6+n7+n8=0

ˆ

τ=τ2+τ3+τ4+n3+τ6+τ7+τ8

χA1,c

8∏
j=2,j �=5

û(nj , τj )

·
(

n

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3
− n2 + n3 + n4

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3

)
=: K1(u, . . . , u)(n, τ ) + K2(u, . . . , u)(n, τ ), (6.104)

where we have defined K1 and K2 by expanding the parentheses in the second last line. We will only need cancellation 
to control K1 (K2 will be estimated directly). Let us now describe this cancellation. We swap the variable names 
(n2, n3, n4, τ2, τ3, τ4) with (n6, n7, n8, τ6, τ7, τ8) and use the invariance of A1,c under this modification to obtain

K1(u, . . . , u)(n, τ ) = −ngn(ω)

2

∑
n2+n3+n4+n6+n7+n8=0

ˆ

τ=τ2+τ3+τ4+n3+τ6+τ7+τ8

χA1,c

·
8∏

j=2,j �=5

û(nj , τj )

(
1

τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3

+ 1

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3

)
. (6.105)

Using n − n1 = n2 + n3 + n4 = −n6 − n7 − n8, we find

1

τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3
+ 1

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3

= −6n(n − n1)
2 + σ

τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3
· 1

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3
. (6.106)

This gives

K1(u, . . . , u)(n, τ ) = −ngn(ω)

2

∑
n2+n3+n4+n6+n7+n8=0

ˆ

τ=τ2+τ3+τ4+n3+τ6+τ7+τ8

χA1,c

·
8∏

j=2,j �=5

û(nj , τj )
−6n(n − n1)

2 + σ

τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3

· 1
3
. (6.107)
τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)
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Now, as anticipated, we will define N (u1, u2, u3, u4) and N1(D(u5, u6, u7, u8), u2, u3, u4) with (non-equivalent) 
input functions by extending the definition of K1(u, . . . , u)(n, τ) according to (6.107). The expression
N (u1, u2, u3, u4) is defined piecewise through a decomposition in frequency space. The region of integration A
is divided into A−1, A0, A1, A2, A3 and A4. In the regions Ak for k = −1, 0, 2, 3, 4, we interpret Nk(u1, u2, u3, u4)

directly. In the region A1, we insert an equation satisfied by u1 (the second iteration). When the inputs are equivalent, 
we interpret the expression directly, and exploit a cancellation in the region A1,c (it is straightforward to verify that the 
cancellation is not required in A2, A3 and A4). When the inputs are not equivalent, the definition of N1(u1, u2, u3, u4)

will vary with the equation satisfied by u1.
The algorithm for determining this definition is straightforward. During the proof of Theorem 1.1, the factor u1

will satisfy an equation of the form (4.1), or one of its variants. The important point is that the equation satisfied by 
u1 will always be decomposed into contributions of type (I) (linear part, rough but random) and type (II) (nonlinear 
part, smooth and deterministic). The contributions from the type (I) part of u1 are always interpreted directly. For the 
contributions from the type (II) factor, we either (i) bound this factor using the higher temporal regularity b = 1

2 + 2δ, 
via the estimate (3.10), in which case the nonlinearity is interpreted directly, or (ii) we expand the type (II) contribution 
into a septilinear expression. Thus in situation (ii) we are considering a nonlinearity as in Proposition 6.2, and in all 
of the prior subcases of this proof (in particular in the complement of A1,c), we interpret K1 directly, as in (6.102). 
For the contribution to situation (ii) from Case 2.b.ii, we will force the cancellation (6.106). That is, for each n > 0
and τ ∈ R, with |τ − n3| < |n|

√
2δ , we define

N1
(
D

(
S(t)Λ5u0,ω, u6, u7, u8

)
, u2, u3, u4

)∧
(n, τ )|A1,c

:= K1(u2, u3, u4, u6, u7, u8)(n, τ ) + K2(u2, u3, u4, u6, u7, u8)(n, τ ) (6.108)

where K2 is given as in (6.104) (but with potentially non-equivalent factors uj ), and

K1(u2, u3, u4, u6, u7, u8)(n, τ )

:= −ngn(ω)

2

∑
n2+n3+n4+n6+n7+n8=0

ˆ

τ=τ2+τ3+τ4+n3+τ6+τ7+τ8

χA1,c

·
8∏

j=2,j �=5

ûj (nj , τj )
−6n(n − n1)

2 + σ

τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3

· 1

τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3
. (6.109)

Let us comment on properly justifying that, with equivalent inputs u2 = · · · = u8, the cancellation (6.107) can be 
used to control the entire contribution to the left-hand side of (6.90) from the region A1,c in Case 2.b.ii. Inverting the 
Fourier transform, the cancellation (6.107) certainly holds over a sum of finitely many n. Luckily, in this subcase, we 
have n = n5, with u5 a type (I) factor, and thus |n| ≤ M5 < ∞. That is, we are justified in using the representation 
(6.107) for the entire contribution to the left-hand side of (6.90) from the region A1,c in Case 2.b.ii because M5 < ∞
(by assumption in the statement of Proposition 3.2).

We proceed to justify an estimate of the type (6.90). The restriction of this subcase indicates that

(n,n2, . . . , n8, τ, τ2, . . . , τ8) ∈ A1,c,

as given in (6.103), and therefore, according to our definitions above, the nonlinearity is defined through the expres-
sions (6.108)–(6.109).

Notice that, using |σ |, |nk| 	 |n|
√

2δ and |σ1| � (N0)2, we have

|n||−6n(n − n1)
2 + σ |

|τ − τ6 − τ7 − τ8 − (n − n6 − n7 − n8)3| · 1

|τ − τ2 − τ3 − τ4 − (n − n2 − n3 − n4)3|
� 1

(N0)2−γ
(6.110)

and
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|n2 + n3 + n4|
|σ1| � 1

(N0)2−γ
, (6.111)

for some small 0 < γ = γ (δ) 	 1.
With (6.108)–(6.109) this gives, for each fixed n, τ ,∣∣N1

(
D

((
S(t)u0,ω

)
N5

, u6, u7, u8
)
, u2, u3, u4

)
(n, τ )|2.a.ii

∣∣
� 1

(N0)2−2γ

∣∣gn(ω)
∣∣ ·

∣∣∣∣∣ ∑
n2+n3+n4+n6+n7+n8=0

|nj |<(N0)
√

2δ

ˆ

τ−n3=τ2+τ3+τ4+τ6+τ7+τ8

|σj |<(N0)
√

2δ

8∏
j=2
j �=5

ûj (nj , τj )

∣∣∣∣∣.
Next we use the representation (6.24) for uj , and apply Minkowski in λj , for each j ∈ {2, 3, 4, 6, 7, 8}, and this gives∥∥N1

(
D

((
S(t)u0,ω

)
N5

, u6, u7, u8
)
, u2, u3, u4

)∣∣
2.a.ii

∥∥
X

1
2 +δ,− 1

2 +δ

T

� 1

(N0)2−γ−6
√

2δ3/2

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

· sup
|μ|<C(N0)

√
2δ

∥∥∥∥∥|n| 1
2 +δ

∣∣gn(ω)
∣∣ ∑

∗(n,μ)∩{n=n5}
|nj |<(N0)α

8∏
j=2
j �=5

anj

∥∥∥∥∥
l2n

,

where anj
:= aλj

(nj ) (we have removed the dependence on λj because our estimates will hold uniformly with respect 
to these parameters). Then by Lemma 6.4 (with ε = β) and repeated applications of Cauchy–Schwarz, we have for 
ω ∈ Ω̃T ,∥∥N1

(
D

((
S(t)u0,ω

)
N5

, u6, u7, u8
)
, u2, u3, u4

)∥∥
X

1
2 +δ,− 1

2 +δ

T

� T − β
2

(N0)
3
2 −γ−6

√
2δ3/2−δ−β

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

sup
|μ|<C(N0)

√
2δ

∥∥∥∥∥ ∑
∗(n,μ)∩{n=n5}

|nj |<(N0)α

8∏
j=2
j �=5

anj

∥∥∥∥∥
l2n

� T − β
2

(N0)1−γ−6
√

2δ3/2−δ−β

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

sup
|n|∼N,|μ|<C(N0)

√
2δ

∣∣∣∣∣ ∑
∗(n,μ)∩{n=n5}

|nj |<(N0)α

8∏
j=2
j �=5

anj

∣∣∣∣∣
� T − β

2

(N0)1−γ−6
√

2δ3/2−δ−β

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

sup
|n|∼N

∣∣∣∣∣ ∑
n2+n3+n4+n6+n7+n8=0

|nj |<(N0)α

8∏
j=2
j �=5

|anj
|
∣∣∣∣∣

� T − β
2

(N0)1−2γ−6
√

2δ3/2−7δ−β

8∏
j=2
j �=5

‖uj‖
X

1
2 −δ, 1

2 −δ

T

, (6.112)

and (6.90) follows by dyadic summation. This completes the analysis of Case 2.b.ii. The proof of Proposition 6.2 is 
complete. �
6.4. Deterministic nonlinear estimates

In this subsection we present the proof of Proposition 3.3. We require the following calculus inequality:

Lemma 6.14. Let 0 < δ1 ≤ δ2 satisfy δ1 + δ2 > 1, and let a ∈R, then
∞̂

−∞

dθ

〈θ〉δ1〈a − θ〉δ2
� 1

〈a〉α ,

where α = δ1 − (1 − δ2)+. Here (λ)+ := λ if λ > 0, = ε > 0 if λ = 0, and = 0 if λ < 0.
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The proof of Lemma 6.14 can be found in [20].

Proof of Proposition 3.3. We establish Proposition 3.3 with δ0 = 0 (see Remark 6.3). We begin with the proof of 
(3.9). In fact, we establish

∥∥N0 (u1, u2, u3, u4)
∥∥

Y
1
2 +δ,−1

T

�
4∏

j=1

‖uj‖
X

1
2 −δ, 1

2 − 3δ
2

T

. (6.113)

Then (3.9) follows easily from (6.113), Lemma 2.3 and Lemma 2.4 with θ = 2δ−.
Using ‖ · ‖

Y
s,b
T

≤ ‖χ[0,T ](t) · ‖Y s,b it suffices to establish

∥∥N0(u1, u2, u3, u4)
∥∥

Y
1
2 +δ,−1 � T θ

4∏
j=1

‖uj‖
X

1
2 −δ, 1

2 − 3δ
2
, (6.114)

where each uj satisfies uj = χ[0,T ](t)uj . We proceed to prove (6.114).
Let

fj (nj , τj ) := 〈nj 〉 1
2 −δ

〈
τj − n3

j

〉 1
2 − 3δ

2 ûj (nj , τj )

for each j = 1, 2, 3, 4. To prove (3.9) it is enough to show that∥∥∥∥∥ |n| 1
2 +δ

〈σ 〉
∑

n=n1+···+n4

ˆ

τ=τ1+···+τ4

χA0 · |n1|
4∏

j=1

|fj (nj , τj )|
|nj | 1

2 −δ〈σj 〉 1
2 − 3δ

2

∥∥∥∥∥
l2nL1

τ

�
4∏

j=1

‖fj‖L2
n,τ

. (6.115)

Using the condition |σ | � |nmax|2, we have

|n| 1
2 +δ|n1|

〈σ 〉1−6δ−γ |n1| 1
2 −δ

� 1

|n|1−17δ−5γ
∏4

j=2 |nj |δ+γ
. (6.116)

Applying (6.116), and subsequently removing all restrictions in frequency space (notice we have brought absolute 
values inside), we have

LHS of (6.115) �
∥∥∥∥∥ 1

〈σ 〉6δ+γ |n|1−17δ−5γ

∑
n=n1+···+n4

ˆ

τ=τ1+···+τ4

|f1(n1, τ1)|
〈σ1〉 1

2 − 3δ
2

4∏
j=2

|fj (nj , τj )|
|nj | 1

2 +γ 〈σj 〉 1
2 − 3δ

2

∥∥∥∥∥
l2nL1

τ

≤
∥∥∥∥∥ 1

〈σ 〉6δ+γ |n|1−17δ−5γ

( ∑
n=n1+···+n4

ˆ

τ=τ1+···+τ4

4∏
j=1

∣∣fj (nj , τj )
∣∣2) 1

2

·
( ∑

n=n1+···+n4

ˆ

τ=τ1+···+τ4

1

〈σ1〉1−3δ

4∏
j=2

1

|nj |1+2γ 〈σj 〉1−3δ

) 1
2
∥∥∥∥∥

l2nL1
τ

(6.117)

by Cauchy–Schwarz in n1, n2, n3, τ1, τ2, τ3, for fixed n, τ . Next we fix τ, n, n1, n2, n3, and repeatedly apply 
Lemma 6.14 to obtainˆ

τ1,τ2,τ3

dτ1dτ2dτ3

〈τ1 − n3
1〉1−3δ〈τ2 − n3

2〉1−3δ〈τ3 − n3
3〉1−3δ〈τ − τ1 − τ2 − τ3 − n3

4〉1−3δ

� 1

〈τ − n3
1 − n3

2 − n3
3 − n3

4〉1−12δ
. (6.118)

Using (6.118) we have
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(6.117) �
∥∥∥∥∥ 1

〈σ 〉6δ+γ |n|1−17δ−5γ

( ∑
n=n1+···+n4

ˆ

τ=τ1+···+τ4

4∏
j=1

∣∣fj (nj , τj )
∣∣2) 1

2

·
( ∑

n=n1+···+n4

1

〈τ − n3
1 − · · · − n3

4〉1−12δ

4∏
j=2

1

〈nj 〉1+2γ

) 1
2
∥∥∥∥∥

l2nL1
τ

�
∥∥∥∥∥
( ∑

n=n1+···+n4

ˆ

τ=τ1+···+τ4

4∏
j=1

∣∣fj (nj , τj )
∣∣2) 1

2
∥∥∥∥∥

L2
n,τ

sup
n�=0

1

|n|1−17δ−5γ

·
(ˆ

τ

∑
n=n1+···+n4

1

〈σ 〉12δ+2γ 〈τ − n3
1 − · · · − n3

4〉1−12δ

4∏
j=2

1

|nj |1+2γ

) 1
2

. (6.119)

In the last line we applied Cauchy–Schwarz in τ , and took out the supremum in n afterward. Applying Fubini we 
compute that∥∥∥∥∥

( ∑
n=n1+···+n4

ˆ

τ=τ1+···+τ4

4∏
j=1

∣∣fj (nj , τj )
∣∣2) 1

2
∥∥∥∥∥

L2
n,τ

=
4∏

j=1

‖fj‖L2
n,τ

. (6.120)

It remains to estimate the second factor in (6.119). We change the order of integration and summation, and integrate 
in τ for fixed n, n1, n2, n3. By Lemma 6.14 we have

ˆ

τ

1

〈τ − n3〉12δ+2γ 〈τ − n3
1 − · · · − n3

4〉1−12δ
� 1

〈n3 − n3
1 − · · · − n3

4〉2γ
≤ 1.

This gives

sup
n�=0

1

|n|1−17δ−5γ

(ˆ

τ

∑
n=n1+···+n4

1

〈σ 〉12δ+2γ 〈τ − n3
1 − · · · − n3

4〉1−12δ

4∏
j=2

1

|nj |1+2γ

) 1
2

� sup
n�=0

1

|n|1−17δ−5γ

( ∑
n=n1+···+n4

4∏
j=2

1

|nj |1+2γ

) 1
2

≤ 1. (6.121)

Combining (6.117), (6.119), (6.120) and (6.121), we obtain the estimate (6.115). The proof of (3.9) is complete.
Next we establish (3.8). First we prove that

∥∥N0(u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 −δ

T

�
4∏

j=1

‖uj‖
X

1
2 −δ, 1

2 − 3δ
2

T

. (6.122)

Then (3.8) follows from Lemma 2.3, (6.122), (3.9) and Lemma 2.4,∥∥D0(u1, u2, u3, u4)
∥∥

X
1
2 +δ, 1

2 −δ

T

�
∥∥N0(u1, u2, u3, u4)

∥∥
X

1
2 +δ,− 1

2 −δ

T

+ ∥∥N0(u1, u2, u3, u4)
∥∥

Y
1
2 +δ,−1−δ

T

�
4∏

j=1

‖uj‖
X

1
2 −δ, 1

2 − 3δ
2

T

+ ∥∥N0(u1, u2, u3, u4)
∥∥

Y
1
2 +δ,−1

T

� T 2δ−
4∏

j=1

‖uj‖
X

1
2 −δ, 1

2 −δ

T

.

We proceed to justify (6.122), which is equivalent to
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∥∥N0 (u1, u2, u3, u4)
∥∥

X
1
2 +δ,− 1

2 −δ
� T θ

4∏
j=1

‖uj‖
X

1
2 −δ, 1

2 − 3δ
2
, (6.123)

where each uj satisfies uj = χ[0,T ](t)uj .
Using the condition |σ | � |nmax|2, we have

|n| 1
2 +δ|n1|

〈σ 〉 1
2 +δ|n1| 1

2 −δ
� 1. (6.124)

With (6.124) it suffices to show that

‖w1u2u3u4‖L2
x,t

� ‖w1‖0, 1
2 −δ

4∏
j=2

‖uj‖
X

1
2 −δ, 1

2 −δ
. (6.125)

The inequality (6.125) is obtained with Hölder’s inequality, (2.8), (2.10) and Lemma 2.4,

‖w1u2u3u4‖L2
x,t

≤ ‖w1‖L4
x,t

4∏
j=2

‖uj‖L12
x,t

� ‖w1‖
X

0, 1
3

4∏
j=2

‖uj‖
X

1
2 −δ, 1

2 −δ
,

for δ > 0 sufficiently small. The proof of (6.122) (and thus of (3.8)) is complete.
It remains to justify (3.10) and (3.11). We consider the case k = 1, the adaptation to other cases is straightforward 

using the techniques of previous cases. With the condition |σ1| � |nmax|2, we have

|n| 1
2 +δ|n1|

|n1| 1
2 −2δ|σ1| 1

2 +2δ
� 1

|n|δ . (6.126)

With (6.126) and duality, (3.10) follows from∣∣∣ˆ v · f1u2u3u4dxdt

∣∣∣� ‖v‖
δ, 1

2 −δ,T
‖f1‖L2

x,t∈[0,T ]

4∏
j=2

‖uj‖
X

1
2 −δ, 1

2 −δ

T

. (6.127)

Then (6.127) is established using Hölder, (2.8), (2.10) and (2.12) (as in various proofs above). The proof of (3.11) is 
omitted, as it follows the same strategy. The proof of Proposition 3.3 is complete. �
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Appendix A

A.1. Proofs of lemmata

Here we present the proofs of Lemmas 6.10, 6.11, 6.12 and 6.13.
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Proof of Lemma 6.10. We will prove that the estimate |S(n4, μ)| < (N0)3 is satisfied by enumerating the set S(n4, μ)

with a specific algorithm. This algorithm will count the number of elements in S(n4, μ) by selectively fixing the 
integers {n, n1, n2, n3, n′, n′

1, n
′
2, m1, m2, m3, m′

1, m
′
2} one at a time, ensuring that the conditions required to remain 

in S(n4, μ) are satisfied at each stage. This process will terminate once we have fixed an element of S(n4, μ); from 
here we work backwards, counting how many choices were made to determine the size of |S(n4, μ)|. This algorithm 
is designed to keep the number of elements in our count below (N0)3, and this is clearly satisfied as long as no more 
than three of the integers in the set {n, n1, n2, n3, n′, n′

1, n
′
2, m1, m2, m3, m′

1, m
′
2} (all with magnitude ≤ N0) need to 

be selected in order for the algorithm to terminate. Therefore, in the analysis that follows, as we enumerate S(n4, μ), 
we simply need to ensure that we are required to select at most three integers.

Fix n and n3 (from here we will only select one more integer in the set {n1, n2, n′, n′
1, n

′
2, m1, m2, m3, m′

1, m
′
2}). 

Then n2 is determined by n1 (since n = n1 + · · · + n4), and n1 satisfies a non-degenerate (since n1 �= −n2) quadratic 
equation with at most two roots (see (6.35)). We recall the following identity, which can be proven using the moment 
generating function of the complex Gaussian:

E
(
gn(ω)kgn(ω)l

) = δk,lk!, (A.1)

where δk,l is the Dirac-delta function. Using (A.1), in order for the non-zero expectation condition

E
(
gn1(ω)gn2(ω)gn′

1
(ω)gn′

2
(ω)gm1(ω)gm2(ω)gm′

1
(ω)gm′

2
(ω)

) �= 0

to be satisfied, it must be possible to arrange the indices {n1, n2, n′
1, n

′
2, −m1, −m2, −m′

1, −m′
2} into pairs, such that 

the sum of the indices is zero in each pair. Since n1 �= −n2, these integers cannot be paired with each other. We have 
therefore determined (at least) two of the integers in the set {n′

1, n
′
2, −m1, −m2, −m′

1, −m′
2}, and we proceed with 

various subcases, listed as follows:

• CASE 1: n′
1 and n′

2 are determined.

Notice that n′ has already been fixed since n′ = n′
1 + n′

2 + n3 + n4. Fix m3 (we cannot fix any more integers); then 
m1 is determined by m2, while m2 satisfies a non-degenerate (since m1 �= −m2) quadratic equation with at most two 
roots. The same is true for m′

1 and m′
2.

• CASE 2: m1 and m2 are determined.

Notice that m3 is determined in this case by m3 = n − m1 − m2 − n4. Fix n′ (we cannot fix any more integers). 
Having specified n′, n3 and n4: n′

2 is determined by n′
1, while n′

1 satisfies a non-degenerate (since n′
1 �= −n′

2) quadratic 
equation with at most two roots. With m3 determined, the same is true for m′

1 and m′
2.

• CASE 3: m′
1 and m′

2 are determined.

Having specified m′
1, m′

2 and n4, n′ is determined by m3, and m3 satisfies a non-degenerate (since n′ �= m3) 
quadratic equation with at most two roots. From here all integers are determined, and we only count (N0)2 elements in 
this case. Indeed, with n, m3 and n4 specified, m1 is determined by m2, and m2 satisfies a non-degenerate (m1 �= −m2) 
quadratic equation with at most two roots. The same reasoning applies to the pair n′

1 and n′
2.

• CASE 4: n′
1 and m1 are determined.

Fix m3 (we cannot select any more integers). Having specified n, m1, m3 and n4, we observe that m2 is determined 
by m2 = n − m1 − m3 − n4. Then having specified n′

1, n3 and n4, the integer n′ is determined by n′
2, which satisfies a 

non-degenerate (n′ �= n′
2) quadratic equation with at most two roots. Lastly, with n′, m3, and n4 specified, m′

1 and m′
2

are determined by the same argument (since m′
1 �= −m′

2).
Remaining cases will be similar to case 4 (with two integers in distinct quintuples determined). We can always 

proceed as in case 4: by fixing m3, and determining all remaining integers as the solutions to non-degenerate quadratic 
equations. The details are omitted, and the proof of Lemma 6.10 is complete. �
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Proof of Lemma 6.11. This proof will rely on the property (6.20), which is satisfied here by the definition of ∗(n4, μ)

(see (6.29)–(6.30)). The main advantage of this property is that the integers n1, n2 and n3 (and m1, m2 and m3) now 
play symmetric roles in Lemma 6.11, and thus in the remainder of this proof. Indeed, it now suffices to show that 
#{S(n, mu)} < N1N2.

As in the proof of Lemma 6.10, we will prove that #{S(n, μ)} < N1N2 by enumerating all elements of the set 
S(n, μ) with a specific algorithm. This algorithm will require that we select |n1| ∼ N1 and |n2| ∼ N2, and the remain-
ing integers {n3, n4, m1, m2, m3} will be determined by the conditions required to remain in S(n, μ) (the estimate 
#{S(n, μ)} < N1N2 follows).

Select |n1| ∼ N1 and |n2| ∼ N2 (we will not select any more integers). With n, n1 and n2 determined, n4 is 
determined by n3, which satisfies a non-degenerate (since n3 �= −n4 by (6.20)) quadratic equation with at most 2 
roots. Then, due to (A.1), the non-zero expectation condition

E
(
gn1(ω)gn2(ω)gn3(ω)gm1(ω)gm2(ω)gm3(ω)

) �= 0

requires that the indices in the set {n1, n2, n3, −m1, −m2, −m3} can be organized into pairs such that the sum of the 
integers is zero in each pair. By the condition (6.20), with n1, n2 and n3 determined, it follows that m1, m2 and m3
are determined. All integers have been determined, and we have enumerated S(n, μ) with only N1N2 selections. The 
proof of Lemma 6.11 is complete. �

Next we prove Lemma 6.13, then we will use a similar method to prove Lemma 6.12.

Proof of Lemma 6.13. If n and n4 are determined, there are two cases to consider.

• CASE 1: n = n0 or n = n1.

Without loss of generality, suppose n = n0. Since |n4| ≤ |n3| ≤ |n2|, we cannot have n4 = n0 or n4 = n1. Thus, we 

must have nk = n1 for some k ∈ {1, 2, 3}. Suppose n1 = n1. By the condition |n + n1| = |n0 + n1| 	 (N0)
16δ

1−4δ , with 

n fixed, there are at most (N0)
16δ

1−4δ possible values for n1; we make this choice and fix n1. Having determined n, n1
and n4, n2 is determined by n3, which satisfies a non-degenerate (since n2 �= −n3, recall (6.20)) quadratic equation 
with at most two roots. All integers have now been determined, and we proceed to the next case.

• CASE 2: n = n2, n = n3 or n = n4.

Since |n4| ≤ |n3| ≤ |n2|, we must have n4 = nk for some k ∈ {2, 3, 4}. In particular, with n and n4 fixed in this case, 
two of the integers in the triple (n2, n3, n4) have been determined. Suppose n2 is the remaining element in this triple 

that has not been determined. Then by the condition |n + n2 + n4| = |n2 + n3 + n4| 	 (N0)
16δ

1−4δ , with n and n4

determined, there are at most (N0)
16δ

1−4δ possible values n2; we make this choice, and fix n2. Then n1 is determined 
by n3 which satisfies a non-degenerate (by (6.20)) quadratic equation with at most two roots. Having determined all 

integers with at most (N0)
16δ

1−4δ selections, the proof of Lemma 6.13 is complete. �
Remark A.1. We remark that, in the proof of Lemma 6.12 below, we will intentionally avoid using the restriction 
N2 ≥ N3 ≥ N4. More than that, we will not impose any conditions on n4 to distinguish it from n1, n2, n3, and thus 
one can restate (and prove) lemmata analogous to Lemma 6.12 with the role of n4 swapped with n1, n2, or n3.

Proof of Lemma 6.12. The crucial ingredient to this proof is the probabilistic restriction

E
(
gn1(ω)gn2(ω)gn3(ω)gn′

1
(ω)gn′

2
(ω)gn′

3
(ω)gm1(ω)gm2(ω)gm3(ω)gm′

1
(ω)gm′

2
(ω)gm′

3
(ω)

) �= 0.

According to (6.17), this restriction allows us to pair the indices in the set {n1, n2, n3, −n′
1, −n′

2, −n′
3 − m1, −m2,

−m3, m′
1, m

′
2, m

′
3} such that the sum of the indices is zero in each pair. Once again, due to (6.20), two elements of the 

same quintuple (e.g. {−n, n1, n2, n3, n4}) cannot belong to the same pair.
Fix n and n4. As long as we do not have {−n, n4} = {n0, n1}, the method used in the proof of Lemma 6.13 applies, 

and all integers in the set {−n, n1, n2, n3, n4} are determined by at most (N0)
16δ

1−4δ selections. If {−n, n4} = {n0, n1}, 
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we fix one of the smaller variables {n1, n2, n3} = {n2, n3, n4} and use n = n1 + n2 + n3 + n4, and |n2 + n3 + n4| 	
(N0)

16δ
1−4δ . Only six undetermined elements remain in the set {n′

1, n
′
2, n

′
3m1, m2, m3, m′

1, m
′
2, m

′
3}. It is easily verified 

that, in all cases, we can fix one more variable such that only (N0)
16δ

1−4δ choices remain afterward. The size estimate 

produced by this algorithm is #{S(μ)} � (N0)3+ 32δ
1−4δ , and the proof of Lemma 6.12 is complete. �
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[31] A. Nahmod, N. Pavlović, G. Staffilani, Almost sure existence of global weak solutions for super-critical Navier–Stokes equations, 

arXiv:1204.5444.
[32] A. Nahmod, L. Rey-Bellet, Scott Sheffield, G. Staffilani, Absolute continuity of Brownian bridges under certain gauge transformations, Math. 

Res. Lett. 18 (5) (2011) 875–887.
[33] A. Nahmod, G. Staffilani, Almost sure well-posedness for the periodic 3D quintic nonlinear Schrödinger equation below the energy space, 

arXiv:1308.1169.
[34] T. Oh, Invariant Gibbs measures and a.s. global well-posedness for coupled KdV systems, Differ. Integral Equ. 22 (7–8) (2009) 637–668.
[35] T. Oh, Invariance of the Gibbs measure for the Schrödinger–Benjamin–Ono system, SIAM J. Math. Anal. 41 (6) (2009) 2207–2225.
[36] T. Oh, White noise for KdV and mKdV on the circle, RIMS Kôkyûroku Bessatsu B18 (2010) 99–124.
[37] T. Oh, Remarks on nonlinear smoothing under randomization for the periodic KdV and the cubic Szego equation, Funkc. Ekvacioj 54 (2011) 

335–365.

http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4231s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4231s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4232s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4233s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4234s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib424231s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib424231s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib424232s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib424232s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib425454s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib425454s1
http://dx.doi.org/10.1093/imrn/rnm108
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib425432s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib425433s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434354s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434354s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434B53545431s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434B53545431s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434B53545432s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434B53545432s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434F48s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib434F48s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib446531s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib446532s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib44654331s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib44654332s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib44654332s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib46s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib475456s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B54s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B505631s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B505631s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B505632s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B53s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B554Bs1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4B756Fs1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4C5253s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4C4Ds1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4D6F6Cs1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E4F5253s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E4F5253s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E5053s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E5053s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E525353s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E525353s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E53s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4E53s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4F31s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4F32s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4F34s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4F35s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib4F35s1
http://dx.doi.org/10.1093/imrn/rnm108


766 G. Richards / Ann. I. H. Poincaré – AN 33 (2016) 699–766
[38] A. Poiret, Solutions globales pour l’équation de Schrödinger cubique en dimension 3, arXiv:1207.1578.
[39] J. Quastel, B. Valko, KdV preserves white noise, Commun. Math. Phys. 277 (3) (2008) 707–714.
[40] G. Richards, Maximal-in-time behavior of deterministic and stochastic dispersive PDEs, Ph.D. thesis, University of Toronto, 2012, 

http://hdl.handle.net/1807/32973.
[41] A.S. de Suzzoni, Invariant measure for the cubic wave equation on the unit ball of R3, Dyn. Partial Differ. Equ. 8 (2) (2011) 127–147.
[42] A.S. de Suzzoni, Large data low regularity scattering results for the wave equation on the Euclidean space, Commun. Partial Differ. Equ. 

38 (1) (2013) 1–49.
[43] A.S. de Suzzoni, N. Tzvetkov, On the propagation of weakly nonlinear random dispersive waves, Arch. Ration. Mech. Anal. 212 (3) (2014) 

849–874.
[44] G. Staffilani, On solutions for periodic generalized gKdV equations, Int. Math. Res. Not. 1997 (18) (1997) 899–917, http://dx.doi.org/

10.1155/S1073792897000585.
[45] L. Thomann, N. Tzvetkov, Gibbs measure for the periodic derivative nonlinear Schrödinger equation, Nonlinearity 23 (11) (2010) 2771–2791.
[46] N. Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ. 3 (2) (2006) 111–160.
[47] N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier 58 (7) (2008) 2543–2604.
[48] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin–Ono equation, Probab. Theory Relat. Fields 146 (3–4) 

(2010) 481–514.
[49] N. Tzvetkov, N. Visciglia, Invariant measures and long time behavior for the Benjamin–Ono equation, Int. Math. Res. Not. 2014 (17) (2014) 

4679–4714.
[50] P. Zhidkov, Korteweg–de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lect. Notes Math., vol. 1756, Springer-Verlag, 

2001.
[51] T. Zhang, D. Fang, Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations, Proc. Am. Math. Soc. 

139 (8) (2011) 2827–2837.

http://refhub.elsevier.com/S0294-1449(15)00014-1/bib506Fs1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5156s1
http://hdl.handle.net/1807/32973
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib537531s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib537532s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib537532s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib535As1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib535As1
http://dx.doi.org/10.1155/S1073792897000585
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5454s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A31s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A32s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A33s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A33s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A56s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib547A56s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5As1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5As1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5A46s1
http://refhub.elsevier.com/S0294-1449(15)00014-1/bib5A46s1
http://dx.doi.org/10.1155/S1073792897000585

	Invariance of the Gibbs measure for the periodic quartic gKdV
	1 Introduction
	1.1 Background
	1.2 Nonlinear smoothing for the second iteration
	1.3 Global-in-time solutions
	1.4 The gauge transformation
	1.5 Notation
	1.6 Organization of paper

	2 Linear estimates
	3 Nonlinear estimates
	4 Almost sure local well-posedness
	5 Global well-posedness and invariance of the Gibbs measure
	5.1 Construction of the Gibbs measure
	5.2 Invariance of the ﬁnite-dimensional Gibbs measure
	5.3 Extending to global-in-time solutions
	5.4 Invariance of the Gibbs measure

	6 Proof of nonlinear estimates
	6.1 Setup
	6.2 Probabilistic quadrilinear estimates
	6.3 Septilinear estimates
	6.4 Deterministic nonlinear estimates

	Conﬂict of interest statement
	Acknowledgements
	References


