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Abstract

The Leray–Hopf solutions to the Navier–Stokes equation are known to be unique on R2. In our previous work, we showed the 
breakdown of uniqueness in a hyperbolic setting. In this article, we show how to formulate the problem in order so the uniqueness 
can be restored.
© 2015 

Résumé

Les solutions de Leray–Hopf de l’équation Navier–Stokes sont connues pour être uniques sur R2. Dans nos travaux précédents, 
nous avons montré que ces solutions ne sont pas uniques si on se place dans un cadre hyperbolique. Dans cet article, nous montrons 
comment formuler le problème de façon à retrouver l’unicité.
© 2015 
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1. Introduction

The Navier–Stokes equation on Rn is given by

∂tu − �u + u · ∇u + ∇p = 0,

divu = 0,
(N–SRn )
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where u = (u1, . . . , un) is the velocity of the fluid, p is the pressure, and divu = 0 means the fluid is incompressible. 
Let T > 0. Existence of global weak solutions

u ∈ L∞(
0, T ;L2(

R
n
)) ∩ L2(0, T ; Ḣ 1(

R
n
))

(1.1)

for n = 2, 3 satisfying the global energy inequality∫
Rn

∣∣u(t, x)
∣∣2dx + 2

t∫
0

∫
Rn

|∇u|2dxds ≤
∫
Rn

|u0|2dx, 0 ≤ t ≤ T , (1.2)

has been established in the work of Leray [20] and Hopf [12]. Solutions satisfying (1.1)–(1.2) are referred to as 
Leray–Hopf solutions.

The smoothness and uniqueness of Leray–Hopf solutions for (N–SRn ) is well-known. In [4], contrary to what is 
known in the Euclidean 2D setting, we were able to show that there is non-uniqueness in 2D for simply connected 
manifolds with negative sectional curvature (see Theorems 1.2 and 1.3 below for precise statements). The goal of this 
article is to show how we can restore the uniqueness. In the process, we develop the theory of weak solutions to the 
Navier–Stokes equations on the 2D hyperbolic space.

Before we state the current results precisely, we briefly review the relevant ones from [4], so we can introduce the 
required terminology and put the new results in some perspective.

For a more detailed review of other works in the literature please see [4] or [6]. However, here we would like to 
mention that the majority of the work on the Navier–Stokes equation on manifolds has been done either in a setting 
of a compact manifold or a bounded subdomain [8,23,22,6,21,26,3,14,13,28].

The works that we are aware of on non-compact manifolds are of Q.S. Zhang [30], Khesin and Misiołek [16], 
and that of Taylor [25]. In [30] the author shows the non-uniqueness of the weak solution with finite L2 norm on a 
connected sum of two copies of R3. In [16] the authors primarily study the stationary Euler equation on the hyperbolic 
space (but also see Sections 1.2 and 1.3 below). In [25] the author obtains pointwise estimates for the gradient of 
harmonic functions on the hyperbolic space (also see remarks after (1.12) and Section 1.3).

1.1. Overview of previous results

In general, we would like to investigate how geometry of an underlying space affects the solutions to the Navier–
Stokes equation. Motivated by the Euclidean problem, we were curious about the non-compact Riemannian manifolds. 
When we move from the Euclidean setting to the Riemannian manifold, the first question is how to write the equa-
tions. In particular, what is the natural generalization of the Laplacian, �? This question was addressed by Ebin and 
Marsden in [8], where they indicated that the ordinary Laplacian should be replaced by the following operator:

L = 2 Def∗ Def = (
dd∗ + d∗d

) + dd∗ − 2 Ric, (1.3)

where Def and Def∗ are the stress tensor and its adjoint, respectively. If u is a 1-form, then Defu in coordinates is 
given by (see Appendix A.4 for more details)

(Defu)ij = 1

2
(∇ iuj + ∇j ui),

where ∇ i is the covariant derivative with respect to the induced Levi-Civita connection on the cotangent bundle. 
(dd∗ + d∗d) = −� is the Hodge Laplacian with d∗ as the formal adjoint of the exterior differential operator d, and Ric
is the Ricci operator. Here also recall the Hodge star operator, ∗, sends k-forms to (n − k)-forms and is defined by

α ∧ ∗β = g(α,β)VolM . (1.4)

Then

∗ ∗ α = (−1)nk+kα, (1.5)

where n is the dimension of the manifold, and k the degree of α, and

d∗α = (−1)nk+n+1 ∗ d ∗ α. (1.6)
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Now note, L as given above sends 1-forms into 1-forms. Hence, it is more convenient to write the Navier–Stokes 
equation on a Riemannian manifold M in terms of 1-forms U∗ instead of vector fields U on M . There is a natural 
correspondence between vector fields U and 1-forms U∗, which allows us to freely move between the two, and rewrite 
the equation as

∂tU
∗ − �U∗ + ∇UU∗ − 2 Ric

(
U∗) + dP = 0,

d∗U∗ = 0,
(N–SM )

where ∇ stands again for the induced Levi-Civita connection on the cotangent bundle T ∗M . Arguably less natural 
equation to study is the one without the Ricci operator

∂tU
∗ − �U∗ + ∇UU∗ + dP = 0,

d∗U∗ = 0.
(1.7)

In this article, to simplify notation we use u to denote both the vector field and the corresponding 1-form.

Remark 1.1. When M = H
2(−a2), one may identify H2(−a2) with the Poincaré disc D0(1) = {y ∈ R

2 : |y| < 1}, 
equipped with the metric g(·,·) = 4

a2(1−|Y |2) {dY 1 ⊗ dY 1 + dY 2 ⊗ dY 2} (see Appendix A for more details). Then a 

1-form u on H2(−a2) can be expressed as u = u1dY 1 + u2dY 2, and the Navier–Stokes equation on H2(−a2) can be 
written as

∂tu1 + a2(1 − |Y |2)2

4

{
−�R

2
u1 + u · ∇R

2
u1 + 4Y 2(∂2u1 − ∂1u2)

1 − |Y |2 + 8u1

(1 − |Y |2)2
− 2Y 1|u|2

1 − |Y |2
}

+ ∂1P = 0,

∂tu2 + a2(1 − |Y |2)2

4

{
−�R

2
u2 + u · ∇R

2
u2 − 4Y 1(∂2u1 − ∂1u2)

1 − |Y |2 + 8u2

(1 − |Y |2)2
− 2Y 2|u|2

1 − |Y |2
}

+ ∂2P = 0.

(1.8)

We include (1.8) for convenience of the readers. However, we stress that the explicit expression in (1.8) plays no role 
in the paper.

In [4] we studied both (N–SM ) and (1.7) and we showed

Theorem 1.2 (Non-uniqueness of N–SH2(−a2)). (See [4].) Let a > 0. Then, N–SH2(−a2) is ill-posed in the follow-
ing sense: there exists smooth u0 ∈ L2(H2(−a2)), such that there are infinitely many smooth solutions u satisfying 
u(0) = u0 and

(finite energy)
∫

H2(−a2)

∣∣u(t)
∣∣2

< ∞, (1.9)

(finite dissipation)

t∫
0

∫
H2(−a2)

|Defu|2 < ∞, (1.10)

(global energy inequality)
∫

H2(−a2)

∣∣u(t)
∣∣2 + 4

t∫
0

∫
H2(−a2)

|Defu|2ds ≤
∫

H2(−a2)

|u0|2. (1.11)

If we do not include the Ricci term in the equation, we can also have a non-uniqueness result on a more general 
negatively curved Riemannian manifold.

Theorem 1.3. (See [4].) Let a, b > 0 be such that 1
2b < a ≤ b, and let M be a simply connected, complete 

2-dimensional Riemannian manifold with sectional curvature satisfying −b2 ≤ KM ≤ −a2. Then there exist non-
unique solutions to (1.7) satisfying (1.9)–(1.11).
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The non-uniqueness result relies on the existence of nontrivial bounded harmonic functions on negatively curved 
Riemannian manifolds due to the independent works of Anderson [1] and Sullivan [24]. The solution pairs (u, p) are 
(for N–SH2(−a2) and similar for (1.7))

u = ψ(t)dF, and p = −∂tψ(t)F − 1

2
ψ2(t)|dF |2 − 2a2ψ(t)F,

where ψ(t) = exp(−At
2 ) for any A ≥ 4a2, and F is a nontrivial bounded harmonic function on H2(−a2), which arises 

as a solution to the Dirichlet problem on H2(−a2) with C1 boundary data prescribed on the sphere at infinity.
Verifying that (u, p) solves N–SH2(−a2) is simple when we use Hodge theory. In fact, taking solutions of the form 

ψ(t)∇F seems to be a well-known convention, and one could set out to try a similar solution on Rn. However, such 
solutions would either be trivial or not in the Leray–Hopf class, because it would not be possible to show that they 
are even in L2. This is because all bounded harmonic functions on Rn are trivial. In the hyperbolic setting, given the 
abundance of the bounded harmonic functions, at least we have a hope, but a priori, it is not obvious that our solutions 
have to satisfy (1.9)–(1.11). Hence the main contribution of [4] stems from showing (1.9)–(1.11).

Another proof of the existence of nontrivial bounded harmonic functions [1,24] can be found in [2]. Study of 
that proof combined with the gradient estimate of S.T. Yau [29] leads to an exponential decay of the gradient of the 
harmonic function

|∇F | ≤ C
(
a, δ,φ′)e−δρ, (1.12)

where δ < a is some constant, ρ is the distance function, and φ is a C1 boundary data for F at infinity. Estimate (1.12)
very easily gives property (1.9), but also is a reason why we could not obtain the result in 3D (for more details see [4]). 
In [25], among other things, Taylor showed that on a 2D hyperbolic space the decay can be improved to e−aρ if the 
data at infinity is assumed to be C1+ε .

1.2. Other dimensions

In [16], by means of the result of Dodziuk [7], Khesin and Misiołek showed that on a hyperbolic space, our 
construction can only work in 2D. The main idea is that on Hn(−a2) the only L2 harmonic forms are of degree k = n

2 . 
So since we are using F harmonic to obtain dF which is a harmonic form of degree 1, this construction can only work 
in n = 2!

1.3. Simpler proofs

With hindsight, we could now simplify our previous proofs on H2(−a2) and partially on a more general manifold. 
To see this, we could use the result of [7] to know that dF belongs to L2(H2(−a2)) since it is a harmonic 1-form, and 
H

2(−a2) satisfies properties of the manifolds considered in [7]. More directly, as done in [16] and in [25] one can use 
the conformal equivalence of the Poincaré disk and the Euclidean unit disk together with standard elliptic theory to 
show that dF is in L2. However, to treat more general Riemannian manifolds, we would still need (1.12).

So this leaves showing (1.10). In [4] we reduced it to showing the L1 property of |∇|∇F |2|, which was somewhat 
involved. It was pointed out to us by M. Struwe that we could eliminate that work by manipulating further one of the 
already existing formulas and integrating by parts. This observation has further consequences, and we will present it 
in a forthcoming article.

1.4. Classical uniqueness proofs and why they do not work on H2(−a2)

We are aware of two ways that the uniqueness is proved. One approach (see for example [26]) first takes the equa-
tion and applies the Leray projection to the equation to eliminate the pressure term. If we apply the Leray projection to 
the equation when we use our solution pairs, everything projects to 0. In the second approach (see [27]) the equation 
is formulated in a way that has already eliminated the pressure term and the uniqueness is shown in the following 
space:
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V = completion of
{
θ = (θ1, θ2), θj ∈ C∞

c

(
R

2) : div θ = 0
}

with respect to H 1(
R

2) norm.

Now compare V to

Ṽ = {
u = (u1, u2), uj ∈ H 1(

R
2) : divu = 0

}
.

The closure in V is taken after the divergence condition is imposed, and in Ṽ before. By definition, we always have 
V ⊂ Ṽ. Moreover, on RN these two spaces coincide. It was pointed out by Heywood [11] that this is not true in 
general, and whether or not these two spaces coincide is equivalent to having uniqueness for both stationary and 
non-stationary Stokes and Navier–Stokes equations. For example, it is not true for{

x ∈R
3 : x1 = 0 or x2

2 + x2
3 < 1

}
.

It is natural to ask if the analogs of these spaces coincide on H2(−a2)? It is a different domain and a different 
equation. Corollary 1.12 says that the answer is no. The reason is due precisely to the existence of nontrivial L2

harmonic 1-forms.
At the same time, this motivates considering the space V as the setting, in which one can strive to prove uniqueness. 

Moreover, one can use the space V and follow the presentation in [27] to establish what it means to solve the equation 
in the hyperbolic setting and how to obtain existence. The presentation of [27, pp. 172–200] is done in a general 
functional analysis framework, so it seems reasonable to expect that it could be extended to include H2(−a2). In this 
article, we set out to do just that.

In addition, we formulate the problem not only in V, but in

V= V ⊕ F,

where

F = {
α ∈ L2(

H
2(−a2)) : α = dF,F is a harmonic function on H

2(−a2)}.
Note, by definition of F and the estimates in [4], the non-unique solutions we considered before belong to F. Yet, 

the problem can be formulated in V ⊕F so the resulting solutions are still unique. We would like to stress that working 
with space F demands extra work, so we cannot just directly quote [27]. In particular, this is the case in Subcase 2 in 
Step 6 in Section 5, the set up in the beginning of Section 5, and establishing properties of the space F in Section 2. 
Working in the hyperbolic setting requires also proving the Ladyzhenskaya inequality (Section 2.3) and establishing 
estimates for the analog of the Stokes operator and the nonlinearity (Section 4), as well as the language of currents 
(Section 8) to recover the pressure. See organization of the article, Section 1.8 for an outline of the paper.

1.5. Summary of function spaces

For convenience of the reader we summarize the function spaces employed in the article. We have

• Λ1
c(H

2(−a2)): the space of all smooth 1-forms with compact support on H2(−a2).
• Λ1

c,σ (H2(−a2)) = {θ ∈ Λ1
c(H

2(−a2)) : d∗θ = 0}.
• V = Λ1

c,σ (H2(−a2))H
1
: the completion of Λ1

c,σ (H2(−a2)) with respect to the H 1 norm, which is defined in 
Definition 2.5.

• F = {α ∈ L2(H2(−a2)) : α = dF, F is a harmonic function on H
2(−a2)}.

• V = V ⊕ F with the H 1 inner product defined in Definition 2.5.
• H = Λ1

c,σ (H2(−a2))L
2
.

We note that we are using the same notation V and H as was used in [27], where it denoted the Euclidean counterparts.

1.6. Main results

The main result of this article is
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Theorem 1.4. Given any initial data u0 ∈ H ⊕ F and any T ∈ (0, ∞), there exists a unique u ∈ C(0, T ; H ⊕ F) ∩
L2(0, T ; V) which satisfies:

a) ∂tu ∈ L2(0, T ; V′).
b) u(0, ·) = u0 in H ⊕ F.
c) The following equation holds with the terms to be interpreted as elements in L2(0, T ; V′):

∂tu + Au + Bu = 0, (1.13)

where the terms Au(t), Bu(t) ∈V
′ are defined, for almost every t , as follows:〈

Au(t), v
〉
V′⊗V

= 2
∫

H2(−a2)

g
(
Defu(t),Defv

)
VolH2(−a2),

〈
Bu(t), v

〉
V′⊗V

=
∫

H2(−a2)

g
(∇uu(t), v

)
VolH2(−a2),

(1.14)

where g(·,·) and g(·,·) are the induced Riemannian metrics on T ∗
H

2(−a2) and ⊗2T ∗
H

2(−a2), respectively.

Remark 1.5. The formulation of Theorem 1.4 for the sake of brevity implicitly uses the following:

• F ⊂ H 1
0 (H2(−a2)), which is proved through Lemma 3.2 and Lemma 3.3;

• Au ∈ L2(0, T ; V′) holds, for any u ∈ L2(0, T ; V). This is justified in Lemma 4.1;
• Bu ∈ L2(0, T ; V′) holds, for any u ∈ L2(0, T ; V). This is based on estimate (4.8) in Lemma 4.2.

We also have

Corollary 1.6 (Conservation of energy of the Navier–Stokes flow on H2(−a2)). Given initial data u0 ∈ H ⊕ F, and 
T ∈ (0, ∞), let u ∈ C(0, T ; H ⊕ F) ∩ L2(0, T ; V) be the unique element which satisfies the three conditions as 
specified in Theorem 1.4. Then u satisfies the energy conservation law in the sense that the following holds for all 
t ∈ [0, T ]:

∥∥u(t, ·)∥∥2
L2(H2(−a2))

+ 4

t∫
0

∥∥Defu(t, ·)∥∥2
L2(H2(−a2))

dt = ‖u0‖2
L2(H2(−a2))

. (1.15)

We also show the survival of one solution from the family of the non-unique solutions we considered before.

Corollary 1.7 (Survival of one solution). Given u0 = dF ∈ F, e−2a2tdF is the unique solution to the problem (1.13)
which satisfies all the properties a)–c) in Theorem 1.4. This solution also satisfies (1.15).

We address the pressure in the following proposition.

Proposition 1.8 (Associated pressure). Let u ∈ C([0, T ]; H ⊕ F) ∩ L2(0, T ; V) be the Leray–Hopf solution obtained 
in Theorem 1.4. Then there exists a family of functions P(t) ∈ L2

loc(H
2(−a2)) with t ∈ [0, T ] such that the following 

holds in the sense of H−1(H2(−a2)):

u(t) − u0 + AU(t) + B(t) = dP(t), ∀t ∈ [0, T ],
where

U(t) =
t∫
u(s)ds and B(t) =

t∫
Bu(τ)dτ.
0 0
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Moreover, there exists a distribution p ∈ D′(H2(−a2) × (0, T )) such that

∂tu + �u + ∇uu − 2 Ric(u) + dp = 0 (1.16)

holds in the sense of distributions.

Remark 1.9. We do not have a deep investigation about the regularity property or the far range behavior of the 
pressure. The reason is that the concept of the pressure does not get involved in the conservation of energy, and hence 
it is of a secondary nature with respect to the main guiding principle of this article (see next subsection).

The following theorem shows that the space V is the natural choice for the weak formulation.

Theorem 1.10 (V = Ṽ). Let V be as defined in Section 1.5, and let Ṽ be given by

Ṽ = {
u ∈ H 1

0

(
H

2(−a2)) : d∗u = 0
}
.

Then V = Ṽ.

Remark 1.11. In light of Theorem 1.10, one can, of course, switch the notation V = V ⊕ F to Ṽ. However, we still 
employ the notation V = V ⊕F throughout the article, since in this way, the nontrivial functional subclass F in V = Ṽ
is the most apparent to the readers.

Then immediately it follows

Corollary 1.12 (Heywood’s Theorem on H2(−a2)). Let V be as defined in Section 1.5. Then V is strictly contained 
in Ṽ.

1.7. Guiding principle for restoring uniqueness

We now make explicit the guiding principle behind our present work. Recall that we have to restore the uniqueness 
property of finite energy solutions to the Navier–Stokes equation on H2(−a2) through ruling out all (except possibly 
one) in the following family of solutions:

exp

(−At

2

)
dF, (1.17)

with A ≥ 4a2, and dF ∈ F. In dealing with this issue we have two different options available:

option I: Restore uniqueness by excluding all of F from the class of admissible finite energy initial data for the 
Cauchy problem of the Navier–Stokes equation.

option II: Accept all elements in F into the class of admissible finite energy initial data, yet select the single, most 
physically meaningful solution among the infinite family of solutions in (1.17), which all arise from the 
same initial data dF ∈ F.

Choosing one among the above two options is a task of making a philosophical judgement. Our choice is guided by 
the following:

• Lack of empirical data: To our knowledge the experiments about the behavior of viscous incompressible fluid 
flows are done mostly in the Euclidean setting. Due to the lack of laboratory data about the behavior of in-
compressible fluid flows which take place on an open, noncompact curved space, we do not have any physical 
considerations about the empirical behavior of viscous incompressible fluid flows on H2(−a2) to take into ac-
count.

• Conservation of energy: Regardless of the actual mechanism leading to the phenomena of energy dissipation, 
any viscous incompressible fluid flow which is smooth, and which occurs without the involvement of an external 
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force should obey conservation of energy in that: the total kinetic energy of the fluid at the time t > 0 plus the 
cumulative portion of energy being lost due to dissipation up to the time t equals the total kinetic energy of the 
fluid at the initial time t = 0.

The lack of empirical data is here to stop one from borrowing conventional physical considerations of viscous in-
compressible fluid flows in the R2 setting as guiding principles in making one’s judgement. For instance, the vanishing 
property of the pressure in the far range of the domain of the fluid flow is based on a large body of well-understood, 
well-accepted laboratory results. The lack of empirical facts about viscous incompressible fluid flows on an infinite 
open curved space like H2(−a2) makes these conventional considerations in the Euclidean setting no longer reliable 
in the new setting of H2(−a2).

Next, we arrive at the conservation of energy. The description of this conservation of energy law as stated above 
should be understood in the sense of mathematics. The statement of the law is a mere theoretical statement in that it 
provides no information at all about the actual mechanism leading to dissipative phenomena in viscous fluid flows in 
the empirical sense. This pure a priori property of the conservation law of energy is exactly what makes it acquire the 
status of a grounding principle for our forthcoming choice in resolving the non-uniqueness dilemma.

Now, observe that option II has a broader scope when compared with option I. This indicates that one should first 
check with option II to see whether or not it is compatible with the a priori principle of the conservation law of energy. 
If it were true that option II violates the conservation law of energy, then, one would have to abandon it and proceed 
to consider option I.

In order to validate option II as a choice compatible with conservation of energy, one needs to carry out the 
following three steps:

• step I: Show that Def dF ∈ L2(H2(−a2)) for any dF ∈ F.
• step II: Observe that among the solutions in the infinite family (1.17), exp(−2a2)dF is the one and only one 

which satisfies the conservation of energy law.
• step III: Build up a self-contained theory of finite energy, finitely dissipative, weak solutions which embraces 

H ⊕ F as the functional class of admissible finite energy initial velocity fields, and which is compatible with the 
law of conservation of energy.

Among these steps, step I is the most crucial one since it would not make sense to talk about the conservation of energy 
if the finite dissipation property were violated. Lemma 3.2 below indicates that option II survives the test of step I. 
We emphasize that step I or equivalently Lemma 3.2 cannot just follow from [4], where Def dF ∈ L2(H2(−a2)) was 
shown for harmonic functions F , which were obtained as solutions of the Dirichlet problem with C1 data at infinity. 
Since the boundary behavior of F is unknown, we need a new approach.

Step II is confirmed in Section 7.2. Step III is completed in Sections 5 and 6 through successfully building up the 
Leray–Hopf theory by means of the classical Faedo–Galerkin approximation method [27, pp. 172–200].

Theorem 1.4 is the cumulative result which satisfies all the requests in step III. However, the conclusion of Theo-
rem 1.4 remains equally valid if one were to replace H ⊕ F by the more restrictive space H as the functional class of 
admissible initial velocity fields. This means that the classical Faedo–Galerkin approximation method is uncritical in 
regard to the proper choice of the functional space of admissible initial velocity fields, as well as that of the functional 
class of weak solutions. This in turns indicates that the Faedo–Galerkin method, however powerful and useful as a 
tool leading to Theorem 1.4, cannot serve as a guiding principle in choosing the proper functional class of admissible 
initial velocity fields. Our attitude is: our whole decision is guided by the conservation of energy law as a first prin-
ciple, and the Faedo–Galerkin method is only used as a tool in completing the quest in step III under the guidance of 
the conservation of energy.

1.8. Organization of the article

The rest of the article is organized as follows. In Section 2 we set up the tools for the functional analysis on 
H

2(−a2). This involves for example the definition of the deformation tensor Defu in the weak sense and definitions 
of Sobolev spaces for 1-forms using the deformation tensor. We finish the section with a proof of the Ladyzhenskaya 
inequality on the hyperbolic space.
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In Section 3 we establish several properties of the space F as a subspace of H 1
0 . For instance, we show that finite 

energy of the elements in the space implies their finite dissipation, and that F is orthogonal to V with respect to the 
inner product on H 1

0 .
In Section 4 we define and give estimates for the Stokes operator A, and of the nonlinear operator B .
In Section 5 we carry out the Faedo–Galerkin procedure in seven steps to show the existence of the weak Leray–

Hopf solution. In the last step, we show the initial data is satisfied.
In Section 6 we give a short proof of uniqueness. Section 7.1 is devoted to the proofs of the corollaries. Section 8

treats the pressure. There we use the language of the currents and follow DeRham [5]. Finally, in Section 9 we show 
Theorem 1.10.

To minimize needed background in geometry, we placed technical computations in coordinates (with the exception 
of Lemma 3.2) in Appendix A and the reader, if they so wish, can only refer to the final results quoted in the main 
body of the article.

In Appendix B we use elementary complex analysis to establish a lemma needed to show finite dissipation of the 
elements in F. Finally, Appendix C gathers functional analysis lemmas from [27], and we give a short proof regarding 
choosing a special kind of basis in a separable Banach space.

2. Functional analysis on HHH2(−a2)

2.1. Weak derivatives

We denote by g(·,·) and g(·,·) the induced Riemannian metrics on T ∗
H

2(−a2) and ⊗2T ∗
H

2(−a2), respectively.
Recall that, for any smooth 1-form u on H2(−a2), Defu is, by definition, the symmetrization of the tensor ∇u, 

with ∇ to be the induced Levi-Civita connection acting on the space of smooth 1-forms on H2(−a2). Then the formal 
adjoint operator

Def∗ : C∞(⊗2T ∗
H

2(−a2)) → C∞(
T ∗

H
2(−a2))

can be defined as follows

Definition 2.1. Given a smooth tensor θ ∈ C∞(⊗2T ∗
H

2(−a2)), Def∗ θ is the uniquely determined smooth 1-form on 
H

2(−a2) for which the following relation holds for any smooth 1-form u which has compact support in H2(−a2):∫
H2(−a2)

g(Defu, θ)VolH2(−a2) =
∫

H2(−a2)

g
(
u,Def∗ θ

)
VolH2(−a2) . (2.1)

From (2.1) one can show Def∗ θ = 1
2 (∇∗θ + ∇∗θT ) for θ of type ⊗2T ∗

H
2(−a2). Then we can give the definition 

of Defu ∈ L2(H2(−a2)) in the weak sense for an L2(H2(−a2))-integrable vector field u on H2(−a2).

Definition 2.2 (Defu in the weak sense). Let u be an L2-integrable 1-form on H2(−a2). We say that Defu ∈
L2(H2(−a2)) exists in the weak sense if there exists some L2-integrable tensor ω of type ⊗2T ∗

H
2(−a2) for which 

the following relation holds for any compactly supported smooth tensor θ of type ⊗2T ∗
H

2(−a2):∫
H2(−a2)

g(ω, θ)VolH2(−a2) =
∫

H2(−a2)

g
(
u,Def∗ θ

)
VolH2(−a2) . (2.2)

Such tensor ω will be understood as Defu in the weak sense, and we will simply write Defu = ω.

For the purpose of dealing with the pressure term, we also need the following definitions of du and du∗ in the weak 
sense.

Definition 2.3. Let u be an L2-integrable 1-form on H2(−a2). Then we say that du ∈ L2(H2(−a2)) exists in the weak 
sense if there exists an L2-integrable 2-form ω on H2(−a2) for which the following relation holds for any smooth 
2-form φ with compact support on H2(−a2):



664 C.H. Chan, M. Czubak / Ann. I. H. Poincaré – AN 33 (2016) 655–698
∫
H2(−a2)

g(ω,φ)VolH2(−a2) =
∫

H2(−a2)

g
(
u,d∗φ

)
VolH2(−a2) . (2.3)

In such a case, such ω will be called du in the weak sense, and we will simply write ω = du.

Definition 2.4. Let u be an L2-integrable 1-form on H2(−a2), then, we say that d∗u ∈ L2(H2(−a2)) exists in the 
weak sense if there exists an L2-integrable function w on H2(−a2) for which the following relation holds for any 
smooth test function φ ∈ C∞

c (H2(−a2)):∫
H2(−a2)

w · v VolH2(−a2) =
∫

H2(−a2)

g(u,dφ)VolH2(−a2) . (2.4)

In this case, we say that w is called d∗u in the weak sense, and we will write w = d∗u.

2.2. Sobolev spaces

Next, we have the definition of the Sobolev space of L2-integrable 1-forms u with L2-weak derivative Defu on 
H

2(−a2).

Definition 2.5. H 1(H2(−a2), T ∗
H

2(−a2)) is the space of all L2-integrable 1-forms u with L2-integrable weak 
derivatives Defu on H2(−a2). Moreover, H 1(H2(−a2), T ∗

H
2(−a2)) is a Hilbert space equipped with the follow-

ing inner product:

[u,v] =
∫

H2(−a2)

g(u, v)VolH2(−a2) +2
∫

H2(−a2)

g(Defu,Defv)VolH2(−a2) . (2.5)

Of course, the Sobolev norm of H 1(H2(−a2), T ∗
H

2(−a2)) is given by ‖u‖H 1 = [u, u] 1
2 . In general, one will write 

the inner product structure [u, v] in the following convenient manner:

[u,v] = (u, v) + ((u, v)), (2.6)

where the terms (u, v) and ( (u, v) ) are just

(u, v) =
∫

H2(−a2)

g(u, v)VolH2(−a2),

((u, v)) = 2
∫

H2(−a2)

g(Defu,Defv)VolH2(−a2) .

(2.7)

The term ( (u, u) )
1
2 is often called the homogeneous part of the H 1-norm ‖u‖H 1 of u.

Remark 2.6. For simplicity, we will often use the symbol H 1(H2(−a2)) (or even just H 1) to abbreviate H 1(H2(−a2),

T ∗
H

2(−a2)). The same remark also applies when we speak of the L2 norm of a 1-form u on H1(−a2).

Recall that Λ1
c(H

2(−a2)) is the space of all smooth 1-forms with compact support on H2(−a2). Next

Definition 2.7. H 1
0 (H2(−a2)) is the completion of the space Λ1

c(H
2(−a2)) with respect to the H 1-norm as defined 

in (2.6).

Next, we have the following easy lemma, which asserts that Defu is the strongest type of a weak derivative when 
being compared with the weak derivatives du and d∗u in that the latter two can be recovered from Defu alone.
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Lemma 2.8. For any 1-form u ∈ H 1
0 (H2(−a2)), it follows that both weak du ∈ L2(H2(−a2)) and weak d∗u ∈

L2(H2(−a2)) exist in the sense of Definitions 2.3 and 2.4, respectively. Moreover, ‖du‖L2(H2(−a2)) and

‖d∗u‖L2(H2(−a2)) are related to the homogeneous part ( (u, u) )
1
2 of the H 1-norm of u through the following identity:

((u,u)) = 2
∫

H2(−a2)

g(Defu,Defu)VolH2(−a2)

= 2
∥∥d∗u

∥∥2
L2(H2(−a2))

+ ‖du‖2
L2(H2(−a2))

+ 2a2‖u‖2
L2(H2(−a2))

. (2.8)

Proof. Using

2 Def∗ Defw = 2dd∗w + d∗dw + 2a2w, (2.9)

which holds for all w ∈ Λ1
c(H

2(−a2)), we integrate by parts to obtain

2
∫

H2(−a2)

g(Defw,Defw)VolH2(−a2)

= 2
∫

H2(−a2)

g
(
w,Def∗ Defw

)
VolH2(−a2)

= 2
∫

H2(−a2)

g
(
w,dd∗w

)
VolH2(−a2) +

∫
H2(−a2)

g
(
w,d∗dw

)
VolH2(−a2) +2a2

∫
H2(−a2)

g(w,w)VolH2(−a2)

= 2
∫

H2(−a2)

∣∣d∗w
∣∣2 VolH2(−a2) +

∫
H2(−a2)

g(dw,dw)VolH2(−a2) +2a2
∫

H2(−a2)

g(w,w)VolH2(−a2) . (2.10)

Now, we take any 1-form u ∈ H 1
0 (H2(−a2)). Then, we can take, by the definition of H 1

0 (H2(−a2)), a sequence 
{wm}∞m=1 ⊂ Λ1

c(H
2(−a2)) such that we have ‖wm − u‖H 1 → 0, as m → ∞. But identity (2.10) gives the following 

relation, for any positive integers k, l:

‖wk − wl‖2
H 1 ≥ 2

∫
H2(−a2)

g
(
Def(wk − wl),Def(wk − wl)

)
VolH2(−a2)

= 2
∫

H2(−a2)

∣∣d∗(wk − wl)
∣∣2 VolH2(−a2) +

∫
H2(−a2)

g
(
d(wk − wl),d(wk − wl)

)
VolH2(−a2)

+ 2a2
∫

H2(−a2)

g(wk − wl,wk − wl)VolH2(−a2), (2.11)

since ‖wk − wl‖H 1 → 0, as k, l → ∞, it follows from (2.11) that the sequence {d∗wm}∞m=1 of smooth functions is 
Cauchy in L2(H2(−a2)), and also that the sequence {dwm}∞m=1 of smooth 2-forms is Cauchy in the Banach space of 
L2-integrable 2-forms on H2(−a2). So, there must exist some unique limiting function f ∗ ∈ L2(H2(−a2)), and some 
unique limiting L2-integrable 2-form ω∗ ∈ L2(H2(−a2)) such that we have

lim
m→∞

∥∥d∗wm − f ∗∥∥
L2(H2(−a2))

= 0,

lim
m→∞

∥∥dwm − ω∗∥∥
L2(H2(−a2))

= 0.
(2.12)

Next, observe that we definitely have the following relation, with φ ∈ C∞
c (H2(−a2)) to be any test function:∫

2 2

d∗wmφ VolH2(−a2) =
∫

2 2

g(wm,dφ)VolH2(−a2) . (2.13)
H (−a ) H (−a )
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Then, the first line of (2.12) allows us to pass to the limit in (2.13) to yield the following relation:∫
H2(−a2)

f ∗φ VolH2(−a2) =
∫

H2(−a2)

g(u,dφ)VolH2(−a2) . (2.14)

This indicates that the relation d∗u = f ∗ ∈ L2(H2(−a2)) holds in the weak sense. Also, we can consider the following 
identity, which holds for all η ∈ Λ2

c(H
2(−a2)):∫

H2(−a2)

g(dwm,η)VolH2(−a2) =
∫

H2(−a2)

g
(
wm,d∗η

)
VolH2(−a2) . (2.15)

Then, the second line of (2.12) allows us to pass to the limit in (2.15) to yield the following relation∫
H2(−a2)

g
(
ω∗, η

)
VolH2(−a2) =

∫
H2(−a2)

g
(
u,d∗η

)
VolH2(−a2) . (2.16)

This means that du = w∗ ∈ L2(H2(−a2)) holds in the weak sense. Finally, notice that relation (2.10) gives

2
∫

H2(−a2)

g(Defwm,Defwm)VolH2(−a2)

= 2
∫

H2(−a2)

∣∣d∗wm

∣∣2 VolH2(−a2) +
∫

H2(−a2)

g(dwm,dwm)VolH2(−a2)

+ 2a2
∫

H2(−a2)

g(wm,wm)VolH2(−a2) . (2.17)

By passing to the limit in (2.17), as m → ∞, it follows that identity (2.8) must be valid for the 1-form u ∈
H 1

0 (H2(−a2)) as desired. �
Corollary 2.9 (Equivalent norm on H 1

0 ). Let u be a 1-form. If u ∈ H 1
0 (H2(−a2)), then ‖∇u‖L2 is finite and ‖ · ‖L2 +

‖∇ · ‖L2 defines an equivalent norm on H 1
0 , where ∇ is understood in a week sense analogous to Definition 2.2 (using 

∇∗ in place of Def∗).

Proof. The proof relies on (2.8) and on the Weitzenböck formula (see for example [26])

−∇∗∇ = � + Ric . �
2.3. Ladyzhenskaya inequality

To prove the Ladyzhenskaya inequality we use

Lemma 2.10 (Sobolev embedding on a hyperbolic space). (See [10, Proposition 3.6, p. 54].) Let f be a function on 
H

2(−a2). Then

‖f ‖L2(H2(−a2)) ≤ C
(
‖f ‖L1(H2(−a2)) + ‖∇f ‖L1(H2(−a2))

)
. (2.18)

Lemma 2.11 (Ladyzhenskaya on a hyperbolic space). Let u be a 1-form in H 1
0 (H2(−a2)), where H 1

0 (H2(−a2)) is 
defined as in Definition 2.7, then

‖u‖4 ≤ √
2C‖u‖

1
2
2 ‖u‖

1
2
H 1, (2.19)

where C is the constant appearing in the Sobolev embedding (2.18).
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Proof. Apply (2.18) to the function |u|2, then

‖u‖2
4 = ∥∥|u|2∥∥2 ≤ C

∥∥|u|2∥∥1 + C

∫
H2(−a2)

∣∣∇|u|2∣∣VolH2(−a2) = C

(
‖u‖2

2 +
∫

H2(−a2)

∣∣∇|u|2
∣∣VolH2(−a2)

)
.

By (A.29) and Cauchy–Schwarz∫
H2(−a2)

∣∣∇|u|2∣∣VolH2(−a2) ≤ 2‖u‖2‖∇u‖2.

It follows

‖u‖2
4 ≤ C

(
2‖u‖2‖∇u‖2 + ‖u‖2

2

)
≤ 2C‖u‖2‖u‖H 1 . �

Remark 2.12. We note that in comparison to the Ladyzhenskaya inequality on R2 we have the nonhomogeneous H 1

norm appear on the right-hand side instead of just Ḣ 1.

3. The space of finite energy and divergence-free gradients

Consider the following vector space:

F = {
dF ∈ L2(

H
2(−a2)) : �F = 0

}
. (3.1)

We start with a technical lemma. The differential geometric computations in the proof of Lemma 3.1 are based 
on the (conformal) equivalence between harmonic functions on H2(−a2) and those on the Euclidean unit disc (see 
Appendix A).

Lemma 3.1. Let F be an arbitrary smooth function on H2(−a2). Then, the following estimate holds provided the 
right-hand side is finite:∥∥∇(∇F)

∥∥2
L2(H2(−a2))

≤ 10a2
∫

DO(1)

{∣∣∇R
2(

F ◦ Y−1)∣∣2 + (
1 − |y|2)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2}dy1dy2. (3.2)

In the above expression, DO(1) is the unit Euclidean disc, and Y : H2(−a2) → DO(1) is the coordinate system given 
in (A.4). The symbol |∇R

2∇R
2
f |2 means |∇R

2∇R
2
f |2 = ∑

1≤i,j≤2 |∂yi
∂yj

f |2.

Proof. Let F be a smooth function on H2(−a2). By a computation (see (A.14)–(A.15))

∇F = a2

4

(
1 − |Y |2)2

{
∂F

∂Y 1

∂

∂Y 1
+ ∂F

∂Y 2

∂

∂Y 2

}
. (3.3)

Then we can decompose the tensor ∇(∇F) into two (smooth) components as follows:

∇(∇F) = a2

4
(I + II), (3.4)

where

I =
∑
j,k

∂

∂Y j

{(
1 − |Y |2)2 ∂F

∂Y k

}
dY j ⊗ ∂

∂Y k
=

∑
j,k

∂

∂Y j

{(
1 − |Y |2)2 ∂F

∂Y k

}
e∗
j ⊗ ek,

II = (
1 − |Y |2)2 ∑

1≤j≤2

∂F

∂Y j
∇ ∂

∂Y j
.

(3.5)

Now, since {e∗
j ⊗ ek : 1 ≤ j, k ≤ 2} is an orthonormal frame, with respect to the induced metric g(·,·) on the tensor 

bundle T ∗(H2(−a2)) ⊗ T (H2(−a2)), it follows that (using (a + b)2 ≤ 2(a2 + b2) and |Y j | ≤ 1)
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|I|2 =
∑
j,k

∣∣∣∣ ∂

∂Y j

{(
1 − |Y |2)2 ∂F

∂Y k

}∣∣∣∣2

≤
∑
j,k

2

{
16

(
1 − |Y |2)2

∣∣∣∣ ∂F

∂Y k

∣∣∣∣2

+ (
1 − |Y |2)4

∣∣∣∣ ∂

∂Y j

(
∂F

∂Y k

)∣∣∣∣2}

≤ 64
(
1 − |Y |2)2

{∑
k

∣∣∣∣ ∂F

∂Y k

∣∣∣∣2

+ (
1 − |Y |2)2 ∑

j,k

∣∣∣∣ ∂

∂Y j

(
∂F

∂Y k

)∣∣∣∣2}
. (3.6)

Next, by (A.21)

|II|2 ≤
{

2 · 2
1
2 |Y |(1 − |Y |2)∑

k

∣∣∣∣ ∂F

∂Y k

∣∣∣∣}2

≤ 16
(
1 − |Y |2)2 ∑

k

∣∣∣∣ ∂F

∂Y k

∣∣∣∣2

. (3.7)

By combining (3.6) with (3.7), we yield

|∇∇F |2 ≤ a4

8

(|I|2 + |II|2)
≤ 10a4(1 − |Y |2)2

{∑
k

∣∣∣∣ ∂F

∂Y k

∣∣∣∣2

+ (
1 − |Y |2)2 ∑

j,k

∣∣∣∣ ∂

∂Y j

(
∂F

∂Y k

)∣∣∣∣2}
, (3.8)

from which it follows at once that the following estimate holds, as needed:∫
H2(−a2)

|∇∇F |2 VolH2(−a2) =
∫

H2(−a2)

|∇∇F |2 · 4

a2(1 − |Y |2)2
dY 1 ∧ dY 2

≤ 10a2
∫

DO(1)

{∣∣∇R
2(

F ◦ Y−1)∣∣2 + (
1 − |y|2)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2}dy1dy2. �

By combining Lemma 3.1 with Lemma B.3, we immediately get the following important lemma.

Lemma 3.2 (Finite energy of dF ∈ F implies finite dissipation). Let F be a harmonic function on H2(−a2) which 
satisfies the condition that

‖dF‖L2(H2(−a2)) = ‖∇F‖L2(H2(−a2)) < ∞. (3.9)

Then, it follows that there exists some absolute constant Ca > 0, such that∫
H2(−a2)

|∇∇F |2 VolH2(−a2) ≤ Ca‖dF‖2
L2(H2(−a2))

. (3.10)

Proof. The proof is straightforward. By (3.2) we have

‖∇∇F‖2
L2(H2(−a2))

≤ 10a2
∫

DO(1)

{∣∣∇R
2(

F ◦ Y−1)∣∣2 + (
1 − |y|2)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2}dy1dy2. (3.11)

The first term on the right-hand side is what we want, so we estimate the second one. First, make a simple bound∫
DO(1)

(
1 − |y|2)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2dy1dy2 ≤ 4
∫

DO(1)

(
1 − |y|)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2dy1dy2. (3.12)

So now (B.7) can be applied. We recall (B.7) is the following estimate for a harmonic function u on a Euclidean disc 
DO(1):
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∫
DO(1)

(
1 − |y|)2∣∣∇R

2∇R
2
u
∣∣2dy1dy2 ≤

∫
DO(1)

∣∣∇R
2
u
∣∣2dy1dy2. (3.13)

So by (3.13), (3.12) becomes∫
DO(1)

(
1 − |y|2)2∣∣∇R

2∇R
2(

F ◦ Y−1)∣∣2dy1dy2 ≤ 4
∫

DO(1)

∣∣∇R
2(

F ◦ Y−1)∣∣2dy1dy2. (3.14)

Plugging this into (3.11) we have

‖∇∇F‖2
L2(H2(−a2))

≤ 50a2
∫

DO(1)

∣∣∇R
2(

F ◦ Y−1)∣∣2 = 50a2‖dF‖2
L2(H2(−a2))

,

where the last equality follows from identity (A.16). �
Next, we give the following easy fact about the space V = V ⊕ F. Recall that the spaces V and F are defined as 

follows:

• V = Λ1
c,σ (H2(−a2))H

1
with Λ1

c,σ (H2(−a2)) to be the space of smooth d∗-closed 1-forms with compact support 
on H2(−a2).

• F = {dF ∈ L2(H2(−a2)) : �F = 0}.

Lemma 3.3. The relation V ⊂ H 1
0 (H2(−a2)) holds.

Proof. First, it follows directly from the definition of V that V ⊂ H 1
0 (H2(−a2)). So, all we need to prove is that 

F ⊂ H 1
0 (H2(−a2)).

Let F be a harmonic function on H2(−a2) such that dF ∈ L2(H2(−a2)). Then, with respect to an arbitrarily chosen 
positive number R > 1, we consider some radially symmetric (with respect to some preferred point of reference O in 
H

2(−a2)) test function ηR ∈ C∞
c (H2(−a2)) which satisfies the following two conditions:

• χBO(R) ≤ ηR ≤ χBO(2R). Here, BO(r) is the geodesic ball with radius r centered at O .
• |∇ηR| ≤ 2

R
.

Since

∇f u = dF ⊗ u + f ∇u, ∇T f u = u ⊗ dF + f ∇T u,

and Def = 1
2 (∇ + ∇T ), we have

Def(ηRdF) = 1

2
{dηR ⊗ dF + dF ⊗ dηR} + ηR Def(dF). (3.15)

Using (a + b + c)2 ≤ 3(a2 + b2 + c2), we then carry out the following pointwise estimate, in which we temporarily 
use the abbreviation |θ |g = g(θ, θ)

1
2 , with θ to be a smooth section of T ∗(H2(−a2)) ⊗ T ∗(H2(−a2))∣∣Def(ηRdF − dF)

∣∣2
g

≤ 3

{
1

4
|dηR ⊗ dF |2g + 1

4
|dF ⊗ dηR|2g + (1 − ηR)2

∣∣Def(dF)
∣∣2
g

}
≤ 3

{
2

R2
|dF |2 + χH2(−a2)−BO(R)

∣∣Def(dF)
∣∣2
g

}
.

Then

‖ηRdF − dF‖H 1(H2(−a2))

=
∫

2 2

|ηRdF − dF |2 VolH2(−a2) +2
∫

2 2

∣∣Def(ηRdF − dF)
∣∣2
g

VolH2(−a2)
H (−a ) H (−a )
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≤
∫

H2(−a2)−BO(R)

|dF |2 VolH2(−a2) +
12

R2

∫
H2(−a2)

|dF |2 VolH2(−a2)

+ 6
∫

H2(−a2)−BO(R)

∣∣Def(dF)
∣∣2
g

VolH2(−a2) .

Since by Lemma 3.2, dF ∈ F implies dF ∈ H 1(H2(−a2)), it follows that each term on the right-hand side of the 
above estimate will tend to 0 as R → ∞. So, in particular, we know that the sequence {ηmdF }∞m=1 ⊂ Λ1

c(H
2(−a2))

will converge to dF in the H 1-norm. This shows that F ⊂ H 1
0 (H2(−a2)). �

We can now deduce the following:

Lemma 3.4. For any harmonic function F on H2(−a2) with dF ∈ L2(H2(−a2)), it follows that Def dF ∈
L2(H2(−a2)) and that the following identity holds:

((dF,dF)) = 2a2‖dF‖L2(H2(−a2)). (3.16)

Here, we recall that for a 1-form u ∈ H 1(H2(−a2)), ( (u, u) )
1
2 is the homogeneous part of the H 1-norm of u as 

specified in (2.7) of Definition 2.5.

Proof. Let F be harmonic on H2(−a2) and dF ∈ L2(H2(−a2)).
From Lemma 3.3, F ⊂ H 1

0 (H2(−a2)). Hence dF ∈ H 1
0 (H2(−a2)), and we can invoke Lemma 2.8 to deduce

((dF,dF)) = 2
∥∥d∗dF

∥∥2
L2(H2(−a2))

+ ‖ddF‖2
L2(H2(−a2))

+ 2a2‖dF‖2
L2(H2(−a2))

, (3.17)

and (3.16) follows since ddF = 0 and d∗dF = (−�)F = 0. �
The proof of the following lemma uses elementary techniques from elliptic theory. Hence we state it without proof.

Lemma 3.5. The vector space F as defined in (3.1) is a Banach space with respect to the Sobolev norm ‖ ·‖H 1(H2(−a2)).

Lemma 3.6. The vector subspaces V and F are orthogonal to each other in H 1
0 (H2(−a2)) with respect to the inner 

product [·,·].

Proof. Recall that Λ1
c,σ (H2(−a2)) is the space of all smooth 1-forms θ with compact support in H2(−a2) which 

satisfy d∗θ = 0, and

V = Λ1
c,σ

(
H2

(−a2
))‖·‖

H1 .

To begin, we consider some element v ∈ Λ1
c,σ (H2(−a2)), and some dF ∈ F, with F to be harmonic on H2(−a2). 

Then by (2.9) and (A.26)

((v,dF)) = 2
∫

H2(−a2)

g(Defv,Def dF) =
∫

H2(−a2)

g
(
v,2 Def∗ Def dF

)
= 2a2

∫
H2(−a2)

g(v,dF) = −2a2
∫

H2(−a2)

d∗(Fv) = 0, (3.18)

where the last equality follows, since Fv is a smooth 1-form with compact support on H2(−a2).
This shows that

[v,dF ] = (v,dF) + ((v,dF)) = 0

for any v ∈ Λ1
c,σ (H2(−a2)), and any dF ∈ F.
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To deal with the general case of v ∈ V, we choose a sequence {vk}∞k=1 ⊂ Λ1
c,σ (H2(−a2)) which converges to v

with respect to the Sobolev norm ‖ · ‖H 1(H2(−a2)). Then∣∣[v,dF ]∣∣ = ∣∣[v − vk,dF ]∣∣ ≤ ‖v − vk‖H 1(H2(−a2)) · ‖dF‖H 1(H2(−a2)). (3.19)

So, by passing to the limit as k → ∞, the above estimate gives [v, dF ] = 0, as desired. �
4. Operators A and B

Following [27], we rewrite ( (u, v) ) in terms of the operator

A : V→ V
′,

with A given by

A(u)(v) = 〈Au,v〉V′⊗V := 2
∫

H2(−a2)

g(Defu,Defv), v ∈ V. (4.1)

The operator A comes from Def∗ Def operator given in (1.3). It is the analog of the classical Stokes operator, which 
is given now on a hyperbolic plane.

We have this simple lemma.

Lemma 4.1 (Estimates on A).

‖Au‖L2(0,T ;V′) ≤ ‖u‖L2(0,T ;V), (4.2)

‖Au‖L2(0,T ;H−1) ≤ ‖u‖L2(0,T ;V). (4.3)

Proof. For (4.2), by definition and Cauchy–Schwarz

‖Au‖2
L2(0,T ;V′) =

T∫
0

∥∥Au(t)
∥∥2
V′dt =

T∫
0

sup
‖v‖V=1

∣∣((u(t), v
))∣∣2dt

≤
T∫

0

sup
‖v‖V=1

∥∥Defu(t)
∥∥2

L2‖Defv‖2
L2dt ≤

T∫
0

∥∥Defu(t)
∥∥2

L2 dt

≤ ‖u‖2
L2(0,T ;V)

.

Proof of (4.3) is identical. �
Next, we introduce the notation for the nonlinear term. Let

b(u, v,w) =
∫

H2(−a2)

g(∇uv,w)VolH2(−a2)

and

B : V→ V
′

so that B(u) ∈ V
′ and is defined by

B(u)(v) = 〈Bu,v〉V′⊗V := b(u,u, v), v ∈V. (4.4)

We now have H2(−a2) version of [27, Lemma 3.4, p. 198] together with some other properties. The fact that we 
are considering the space V = V ⊕ F instead of just V requires some additional care.
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Lemma 4.2 (Properties of b and B). We have

b(u, v, v) = 0 if u ∈ V, v ∈ H 1
0 , (4.5)

b(u, v,w) = −b(u,w,v) if u ∈V, v,w ∈ H 1
0 , (4.6)∣∣b(u, v,w)

∣∣ ≤ C‖u‖
1
2
2 ‖u‖

1
2
H 1‖v‖Ḣ 1‖w‖

1
2
2 ‖w‖

1
2
H 1, (4.7)

and

‖Bu‖L2(0,T ;V′) ≤ C‖u‖L∞(0,T ;H)‖u‖L2(0,T ;V), (4.8)

‖Bu‖L2(0,T ;H−1) ≤ C‖u‖L∞(0,T ;H)‖u‖L2(0,T ;V), (4.9)

‖Bu‖L1(0,T ;V′) ≤ C‖u‖2
L2(0,T ;V)

. (4.10)

Proof. If u ∈ V and v ∈ H 1
0 , then d∗u = 0 and by (A.27),

b(u, v, v) =
∫

H2(−a2)

(
−1

2
d∗(|v|2u) + 1

2
|v|2d∗u

)
VolH2(−a2) = 0,

where the first term is 0 because v ∈ H 1
0 , so it is a limit of elements in Λ1

c(H
2(−a2)). This shows (4.5).

(4.6) follows from (4.5) and bilinearity by replacing v by v + w ∈ H 1
0 since

0 = b(u, v + w,v + w) = b(u, v, v) + b(u, v,w) + b(u,w,v) + b(u,w,w),

and the first term and the last are 0 by (4.5).
To show (4.7), we use (A.28) and Hölder∣∣b(u, v,w)

∣∣ ≤
∫
M

|u||∇v||w| ≤ ‖u‖4‖w‖4‖∇v‖2

and the result follows by (2.19). Next,

‖Bu‖2
L2(0,T ;V′) =

T∫
0

sup
‖v‖V=1

∣∣b(
u(t), u(t), v

)∣∣2dt, (4.11)

so for v ∈ V with ‖v‖V = 1 consider∣∣b(u,u, v)
∣∣ = ∣∣−b(u, v,u)

∣∣ ≤ ‖u‖2
4‖∇v‖2 ≤ ‖u‖2

4 (4.12)

by (A.28) and Hölder. Hence by (2.19)∣∣b(u,u, v)
∣∣ ≤ C‖u‖2‖u‖H 1 . (4.13)

Then (4.11) and (4.13) imply

‖Bu‖2
L2(0,T ;V′) ≤ C2

T∫
0

∥∥u(t)
∥∥2

2

∥∥u(t)
∥∥2

H 1dt,

which immediately gives (4.8). The proof of (4.9) is identical. Finally, for (4.10) we have using (4.13)

‖Bu‖L1(0,T ;V′) =
T∫

0

sup
‖v‖V=1

∣∣b(
u(t), u(t), v

)∣∣dt �
T∫

0

∥∥u(t)
∥∥

2

∥∥u(t)
∥∥

H 1dt �
T∫

0

∥∥u(t)
∥∥2

H 1dt

as needed. �
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5. Existence

In this section, we follow the main steps of the Faedo–Galerkin method as given in [27, pp. 192–196]. Including 
space F requires some additional work before we can start with Step 1. With the setup, and the preparations done in 
the previous sections, the details are essentially the same as in [27]. The main exception is Subcase 2 in Step 6.

In the weak formulation of Leary–Hopf solutions to the Navier–Stokes equation, we consider

V= V ⊕ F⊂ H 1
0

(
H

2(−a2)), (5.1)

with V and F as defined in Section 1.5. Recall by Lemma 3.6, V and F are orthogonal with respect to the following 
inner product on V:

[·,·] = (·,·) + ((·,·)). (5.2)

Next, we need a sequence {wk}∞k=1 lying in Λ1
c,σ (H2(−a2)), which can serve as a basis of V. H 1

0 (H2(−a2)) is 
separable, so V, as a closed subspace of H 1

0 (H2(−a2)) must always have a basis {ek}∞k=1. The question here is how 
to find a basis of elements for V which lie entirely in the dense subspace Λ1

c,σ (H2(−a2)). Indeed, an affirmative 
answer to this question follows directly from elementary Lemma C.4 from functional analysis, which we show in 
Appendix C.

Thanks to Lemma C.4, we can choose a sequence {ek}∞k=1 in Λ1
c,σ (H2(−a2)) which is a basis of V. On the other 

hand, F is an infinite-dimensional separable Banach space with respect to the Sobolev norm ‖ · ‖H 1 . So, we can also 
find a basis {dFk}∞k=1 of F. Now, we consider the sequence of elements {wk}∞k=1 in V which is defined through the 
following rules:

• w2k−1 = ek , for any k ∈ Z
+.

• w2k = dFk , for any k ∈ Z
+.

Then, by Lemma 3.6, {wk}∞k=1 becomes a basis for V = V ⊕ F. So, if we let Em = span{w1, w2, . . . , wm}, then⋃
m∈Z+

Em
H 1 =V. (5.3)

Step 1: Selection of the finite energy initial data.
Recall

H = Λ1
c,σ

(
H2

(−a2
))

L2
.

Let u0 ∈ H ⊕ F be the initial data. Since by definition V ⊂ H, the vector subspace Em of V ⊕ F can be viewed as a 
vector subspace of H ⊕ F. Now define

u0m ∈ Em

to be the orthogonal projection of u0 onto Em with respect to the inner product (·,·).
Step 2: Constructing approximate solutions in subspaces Em.

Let T > 0 be given. We seek a C1-function um : [0, T ] → Em in the following form:

um(t) =
m∑

j=1

gjm(t)wj , (5.4)

with um(0) = u0m, and which also satisfies the following equation for j ∈ {1, 2, . . . , m}:(
u′

m(t),wj

) + ((
um(t),wj

)) + b
(
um(t), um(t),wj

) = 0. (5.5)

Notice that for each 1 ≤ j ≤ m, Eq. (5.5) can be expressed in the following equivalent form:

m∑
(wk,wj )g

′
km(t) +

m∑
((wk,wj ))gkm(t) +

∑
b(wk,wl,wj )gkm(t)glm(t) = 0. (5.6)
k=1 k=1 1≤k,l≤m
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The linear independence of the list {w1, w2, . . . ,wm} ensures that the (m ×m)-matrix with (wi, wj) as its (i, j)-entry, 
is invertible. So, let (αij ) be the inverse matrix. By multiplying (5.6) by αji , and then summing with respect to j , we 
yield the following system of equations for 1 ≤ i ≤ m:

g′
im(t) +

∑
1≤j,k≤m

gkm(t)((wk,wj ))α
ji +

∑
1≤j,k,l≤m

b(wk,wl,wj )gkm(t)glm(t)αji = 0. (5.7)

The basic existence and uniqueness theorem of ODE ensures the existence of time Tm > 0 and a C1-solution gim

on [0, Tm). Then we define um : [0, Tm) → Em, by (5.4), and now um is a solution to the system (5.7) and satisfies 
um(0) = u0m. Since the system (5.7) is equivalent to the system (5.5), um is also a solution to (5.5) with the initial 
data um(0) = u0m.

Following the reasoning in [27], we show the time of existence Tm of the solution um can actually coincide with T
through obtaining a uniform bound for the magnitude of the function (

∑m
j=1 |gim|2) 1

2 over [0, Tm).

Indeed, the required uniform estimate for (
∑m

j=1 |gim|2) 1
2 over [0, Tm) is obtained as a by-product of the following 

a priori estimate for ‖um(t)‖L2 .

Step 3: a priori estimate for the energy of um.
As in [27], we deduce from the system (5.5) the following relation:(

u′
m(t), um(t)

) + ((
um(t), um(t)

)) + b
(
um(t), um(t), um(t)

) = 0, t ∈ [0, Tm), (5.8)

which using (4.5) further reduces down to

d

dt

∥∥um(t)
∥∥2

L2 + 2
((

um(t), um(t)
)) = 0. (5.9)

By integrating (5.9) over [0, t] we deduce

sup
t∈[0,Tm)

∥∥um(t)
∥∥2

L2 + 2

Tm∫
0

((
um(s), um(s)

))
ds = ‖u0m‖2

L2 ≤ ‖u0‖2
L2 , (5.10)

where the last inequality follows from the fact that u0m ∈ Em is the orthogonal projection of u0 onto Em.
Now, consider the new norm | · |Em

on the m-dimensional vector space Em, which is defined by the following rule, 
for any element v = ∑m

j=1 λjwj , with λj ∈R:

|v|Em
=

{
m∑

j=1

(λj )
2

} 1
2

. (5.11)

Since all norms on a finite-dimensional vector space are equivalent, there exists some constant Λm > 1 such that

|v|Em
≤ Λm‖v‖L2 . (5.12)

Hence from (5.12) and (5.10)

sup
t∈[0,Tm)

{
m∑

j=1

|gjm|2
} 1

2

= sup
t∈[0,Tm)

∣∣um(t)
∣∣
Em

≤ Λm‖u0‖L2, (5.13)

and the standard ODE theory implies Tm can be extended to be as large as the prescribed T > 0.

Step 4: Showing um is uniformly bounded in Hγ (R; V, H ⊕ F).
Let γ ∈ (0, 14 ), and

Hγ (R,V,H ⊕ F) := {
v ∈ L2(R;V),D

γ
t v ∈ L2(R;H ⊕ F)

}
,

where

D̂
γ
t v(τ ) = (2πτ)γ v̂(τ ).



C.H. Chan, M. Czubak / Ann. I. H. Poincaré – AN 33 (2016) 655–698 675
Then

‖v‖2
Hγ = ‖v‖2

L2(R;V)
+ ∥∥|τ |γ v̂

∥∥2
L2(R;H⊕F)

.

From the definition of the norm of Hγ and (5.10) we just need to show Dγ
t um is bounded in L2(R; L2) (note the uni-

form bound will depend on T ). To that end, let ũm(t) = um(t), t ∈ [0, T ], and 0 otherwise. This definition potentially 
creates jump discontinuities that lead to delta functions in the time derivative. More precisely

∂t ũm = ∂tum + um(0)δ0 − um(T )δT . (5.14)

Then the goal is to rewrite (5.5) on the Fourier transform side by replacing um with ũm. First, by solving for ∂tum in 
(5.14) and plugging into (5.5), and using the definitions of operators A and B we have(

∂t ũm(t) − um(0)δ0 + um(T )δT ,wj

) + 〈Aũm,wj 〉V′⊗V + 〈Bũm,wj 〉V′⊗V = 0.

After Fourier transform in time, denoted by ̂·, and rearranging, we have

2πiτ
(̂̃um(τ),wj

) = (
um(0) + um(T ) exp(−2πiT τ),wj

) − 〈
Âũm(τ ),wj

〉 − 〈
B̂ũm(τ ),wj

〉
.

Now, recall gjm is the coefficient function of um corresponding to the basis wj . Let g̃jm(t) = gjm(t) for t ∈ [0, T ]
and 0 otherwise, and multiply by ̂̃gjm and add to obtain

2πiτ
∥∥̂̃um(τ)

∥∥2 = (
um(0) + um(T ) exp(−2πiT τ), ̂̃um(τ)

) − 〈
Âũm(τ ), ̂̃um(τ)

〉 − 〈
B̂ũm(τ ), ̂̃um(τ)

〉
= I + II + III. (5.15)

Next, by Cauchy–Schwarz and (5.10)

I ≤ (∥∥u(0)
∥∥

L2 + ∥∥u(T )
∥∥

L2

)∥∥̂̃um(τ)
∥∥

L2 ≤ 2‖u0‖L2

∥∥̂̃um(τ)
∥∥

L2 . (5.16)

Similarly, by Cauchy–Schwarz, definition of the Fourier transform and Au, and by (5.10)

II ≤ ∥∥Âũm(τ )
∥∥
V′

∥∥̂̃um(τ)
∥∥
V

≤
∞∫

−∞

∥∥Aũm(t)
∥∥
V′dt

∥∥̂̃um(τ)
∥∥
V

=
T∫

0

∥∥Aum(t)
∥∥
V′dt

∥∥̂̃um(τ)
∥∥
V

≤
T∫

0

∥∥Defum(t)
∥∥

L2dt
∥∥̂̃um(τ)

∥∥
V

≤ T
1
2

T∫
0

∥∥Defum(t)
∥∥2

L2dt
∥∥̂̃um(τ)

∥∥
V

≤ T
1
2 ‖u0‖2

L2

∥∥̂̃um(τ)
∥∥
V
. (5.17)

Finally, by Cauchy–Schwarz, definition of Fourier transform, (4.10) and (5.10)

III ≤ ∥∥B̂ũm(τ )
∥∥
V′

∥∥̂̃um(τ)
∥∥
V

≤
T∫

0

∥∥Bum(t)
∥∥
V′dt

∥∥̂̃um(τ)
∥∥
V

≤ 2C(1 + T )‖u0‖2
L2

∥∥̂̃um(τ)
∥∥
V
. (5.18)

We are now ready to estimate. We have

|τ |2γ ≤ 1 + |τ |
(1 + |τ |)1−2γ

.

Then
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∞∫
−∞

|τ |2γ
∥∥̂̃um(τ)

∥∥2
L2dτ ≤

∞∫
−∞

1 + |τ |
(1 + |τ |)1−2γ

∥∥̂̃um(τ)
∥∥2

L2 dτ

=
∞∫

−∞

1

(1 + |τ |)1−2γ

∥∥̂̃um(τ)
∥∥2

L2 dτ +
∞∫

−∞

|τ |
(1 + |τ |)1−2γ

∥∥̂̃um(τ)
∥∥2

L2 dτ

= A + B.

We are done if we can show A and B are uniformly bounded.

A ≤
∞∫

−∞

∥∥̂̃um(τ)
∥∥2

L2dτ =
∞∫

−∞

∥∥ũm(t)
∥∥2

L2 dt =
T∫

0

∥∥um(t)
∥∥2

L2 dt ≤ T ‖u0‖2
L2,

by (5.10). Next, by (5.15), (5.16)–(5.18), and by Cauchy–Schwarz and 0 < γ < 1
4 and similar estimates as for term A

B ≤ C
(
T ,‖u0‖

) ∞∫
−∞

1

(1 + |τ |)1−2γ

∥∥̂̃um(τ)
∥∥

L2dτ

≤ C
(
T ,‖u0‖, γ

){ T∫
0

∥∥um(t)
∥∥2

L2 dt

} 1
2

≤ C
(
T ,‖u0‖, γ

)
This completes Step 4.

Step 5: Passing to the limit for the linear part of the Navier–Stokes equation.
To begin, we consider a function ψ ∈ C1([0, T ]) which satisfies ψ(T ) = 0, and multiply (5.5) by ψ(t) and take 

the time integral over [0, T ]. Then, a simple integration by parts gives

−
T∫

0

(
um(t),wj

)
ψ ′(t)dt +

T∫
0

((
um(t),wj

))
ψ(t)dt

+
T∫

0

b
(
um(t), um(t),wj

)
ψ(t)dt = (u0m,wj )ψ(0). (5.19)

Then by (5.10) (and using L2 norm for H ⊕ F)

‖um‖L∞(0,T ;H⊕F) ≤ ‖u0‖L2,

‖um‖L2(0,T ;V) ≤ (T + 1)
1
2 ‖u0‖L2 .

(5.20)

Since both H ⊕ F and V are reflexive (simply due to the fact that they are both Hilbert spaces), the two uni-
form estimates in (5.20) ensure the existence of some subsequence um′ , together with some limiting element 
u ∈ L∞(0, T ; H ⊕ F) ∩ L2(0, T ; V) for which we have the following weak-∗ convergence and weak convergence:

• The weak-∗ convergence of the subsequence um′ to u in L∞(0, T ; H ⊕ F) holds in the sense that: for any v ∈
L1(0, T ; H ⊕ F), we have 

∫ T

0 (um′(t) − u(t), v(t))dt → 0, as m′ → ∞.
• The weak convergence of the subsequence um′ to u in L2(0, T ; V) holds in the sense that: for any v ∈

L2(0, T ; V′), we have 
∫ T

0 〈v(t), um′(t) − u(t)〉V′⊗Vdt → 0, as m′ → ∞.

Recall that ψ ∈ C1([0, T ]), so it is plain to see that ψ ′wj ∈ C0([0, T ]; V) ⊂ L1(0, T ; H ⊕ F). Hence, we can invoke 
the weak-∗ convergence of um′ to u in L∞(0, T ; H ⊕ F) to deduce
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lim
m′→∞

T∫
0

(
um′(t),ψ ′(t)wj

)
dt =

T∫
0

(
u(t),ψ ′(t)wj

)
dt. (5.21)

Also, it is equally plain to see that ψA(wj) ∈ L2(0, T ; V′). Hence, we invoke the weak convergence of um′ to u in 
L2(0, T ; V) to obtain

lim
m′→∞

T∫
0

((
um′(t),ψ(t)wj

))
dt = lim

m→∞

T∫
0

〈
ψ(t)A(wj ), um′(t)

〉
V′⊗V

dt =
T∫

0

〈
ψ(t)A(wj ),u(t)

〉
V′⊗V

dt

=
T∫

0

((
u(t),ψ(t)wj

))
dt. (5.22)

Next, we have to deal with the more delicate part, namely passing to the limit for the nonlinear term b(um′(t),
um′(t), wj ), as m → ∞.

Step 6: Passing to the limit for the nonlinear part of the Navier–Stokes equation.
From Step 4 we have

‖ũm‖Hγ (R,V,H⊕F) ≤ C0(T ,u0, γ ), γ ∈
(

0,
1

4

)
. (5.23)

Let R > 0, and let O ∈ H
2(−a2) be any selected reference point, and consider the geodesic ball B0(R). We need 

to consider the restriction of the 1-form ũm(t) = ∑m
j=1 g̃jm(t)wj onto the geodesic ball BO(R), which we denote by 

ũm|BO(R). Then we have ũm|BO(R) ∈ L∞(R; L2(BO(R))) ∩ L2(R; H 1(BO(R))), which is ensured by the following 
estimates:

‖ũm‖L∞(R;L2(BO(R))) ≤ ‖ũm‖L∞(R;H⊕F) ≤ ‖u0‖L2(H2(−a2)),

‖ũm‖L2(R;H 1(BO(R))) ≤ ‖ũm‖L2(R;V) ≤ ‖u0‖L2(H2(−a2)).
(5.24)

Remark 5.1. The two estimates in (5.24) are indeed trivial. The intention of demonstrating them here is to empha-
size that, by taking restriction of ũm onto BO(R), we no longer work with the original functional spaces such as 
L∞(R; H ⊕F), or L2(R; V). In passing to a suitable subsequence of {um}∞m=0 in order to achieve strong convergence 
of um to u in L2(BO(R)), we will work with the functional spaces L∞(0, T ; L2(BO(R))) and L2(0, T ; H 1(BO(R))).

Also, one has to make a careful distinction between ̂̃um(t) and (ũm|BO(R))̂(t). They are related via the simple 
identity

(ũm|BO(R))̂(t) = ̂̃um(t)
∣∣
BO(R)

, (5.25)

whose validity is ensured by the following straightforward computation:

(ũm|BO(R))̂(t) =
m∑

j=1

̂̃gjm(t)wj

∣∣
BO(R)

=
(

m∑
j=1

̂̃gjm(t)wj

)∣∣∣∣∣
BO(R)

= ̂̃um(t)
∣∣
BO(R)

. (5.26)

So by (5.23) we have the following estimate:

∞∫
−∞

|τ |2γ
∥∥(ũm|BO(R))̂(τ )

∥∥2
L2(BO(R))

dτ =
∞∫

−∞
|τ |2γ

∥∥̂̃um(τ)
∥∥2

L2(BO(R))
dτ

≤ ‖ũm‖2
Hγ (R,V,H⊕F) ≤ C2

0 . (5.27)

Then the first estimate in (5.24) and (5.27) simply yield the following uniform estimate:

‖ũm‖Hγ (R;H 1(B (R)),L2(B (R))) ≤ (
C2

0 + ‖u0‖2
2

) 1
2 . (5.28)
O O L
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Observe that by construction, we have supp(ũm|BO(R)) ⊂ [0, T ], for each m ∈ Z
+. So, by invoking the compactness 

Lemma C.3, we deduce from (5.28) that by further passing to a subsequence of the subsequence um′ , which will still 
be written as um′ for simplicity, it follows that we have the following strong convergence of um′ to u:

lim
m′→∞

‖um′ − u‖L2(0,T ;L2(BO(R))) = 0. (5.29)

Now, recall that the basis {wj }∞j=1 of V = V ⊕ F is given by the following rule:

w2k−1 = ek,

w2k = dFk,
(5.30)

where {ek}∞k=1 ⊂ Λ1
c,σ (H2(−a2)) is a basis of V, while {dFk}∞k=1 constitutes a basis for F. Now, we further split our 

discussion into two subcases as follows.

Subcase 1, the easier one: passing to the limit in the case of w2k−1 = ek .
In the case of w2k−1 = ek , we follow [27, p. 196] and pass to the limit for the term 

∫ T

0 b(um′ , um′ , ek)dt as follows. 
Since ek is a smooth d∗-closed 1-form with compact support, we can just choose the radius R > 0 to be sufficiently 
large so that suppek ⊂⊂ BO(R), where O is some preferred reference point in H2(−a2). Then, we have the following 
estimate:∣∣b(u − um′ , ek, um′)(t)

∣∣ =
∣∣∣∣ ∫
BO(R)

g
(∇(u−um′ )(t)ek, um′(t)

)
VolH2(−a2)

∣∣∣∣
≤ ‖∇ek‖L∞

∥∥u(t) − um′(t)
∥∥

L2(BO(R))

∥∥um′(t)
∥∥

L2(BO(R))
. (5.31)

Here, of course, ‖∇ek‖L∞ means the L∞-norm of ∇ek over H2(−a2), which is definitely finite, since ek is a smooth 
1-form with compact support. By integrating the above inequality over the time interval [0, T ], we yield

T∫
0

∣∣b(u − um′, ek, um′)(t)
∣∣dt ≤ ‖∇ek‖L∞ · ‖u − um′‖L2(0,T ;L2(BO(R)))‖um′ ‖L2(0,T ;L2(BO(R)))

≤ T
1
2 ‖∇ek‖L∞‖u0‖L2‖u − um′ ‖L2(0,T ;L2(BO(R))), (5.32)

by (5.10). In the same way, we have

T∫
0

∣∣b(u, ek, u − um′)(t)
∣∣dt ≤ T

1
2 ‖u0‖L2 · ‖∇ek‖L∞ · ‖u − um′‖L2(0,T ;L2(BO(R))). (5.33)

Now, by means of the strong convergence of um′ to u in L2(0, T ; L2(BO(R))), we pass to the limit in inequalities 
(5.32), and (5.33) to deduce that

lim
m′→∞

T∫
0

∣∣b(u − um′ , ek, um′)(t)
∣∣dt = 0,

lim
m′→∞

T∫
0

∣∣b(u, ek, u − um′)(t)
∣∣dt = 0.

(5.34)

However, observe that by (4.6) we have the following identity:

T∫
0

b(um′, um′ , ek)(t) − b(u,u, ek)(t)dt =
T∫

0

−b(um′, ek, um′)(t) + b(u, ek, u)(t)dt

=
T∫

b(u − um′ , ek, um′)(t)dt +
T∫

b(u, ek, u − um′)(t)dt. (5.35)
0 0
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As a result, (5.34) immediately implies

lim
m′→∞

T∫
0

b(um′ , um′ , ek)(t)dt =
T∫

0

b(u,u, ek)(t)dt. (5.36)

Subcase 2, the more delicate one: passing to the limit in the case of w2k = dFk ∈ F.
In this case of w2k = dFk ∈ F, the idea in [27, p. 196] cannot be used directly, simply due to the fact that w2k = dFk

is no longer compactly supported. So, to make that idea survive in this case, we first decompose w2k = dFk into a 
local part within an open ball BO(R) with sufficiently large radius R > 0 (i.e., dFk|BO(R)), and a nonlocal part outside 
of BO(R) (i.e. the restriction of dFk on H2(−a2) − BO(R)). The secret behind the success of this decomposition lies 
in the fact that dFk ∈ F enjoys the property that ‖dFk‖H 1 < ∞, which enables us to reduce the L2-norm of ∇dFk on 
the exterior domain H2(−a2) −BO(R) to become as small as we want by choosing the radius R > 0 to be sufficiently 
large. In this way, the contribution to the term as appears in (5.37) below due to the nonlocal part dFk|H2(−a2)−BO(R)

will become as small as we want by choosing a large radius R:

T∫
0

b(um′ , um′,dFk)(t) − b(u,u,dFk)(t)dt. (5.37)

Then, we will deal with the contribution to the term as appears in (5.37) due to the local part dFk|BO(R) by passing to 
the limit as m′ → ∞, just as what we did in dealing with the case of w2k−1 = ek . Here, let us demonstrate the details 
of this argument as follows.

First, we have, as in (5.35)

T∫
0

b(um′ , um′,dFk)(t) − b(u,u,dFk)(t)dt

=
T∫

0

b(u − um′ ,dFk,um′)(t)dt +
T∫

0

b(u,dFk,u − um′)(t)dt. (5.38)

We first decompose the term 
∫ T

0 b(u − um′ , dFk, um′)(t)dt into the local part and the far-range part in the following 
manner:

T∫
0

b(u − um′ ,dFk,um′)(t)dt

=
T∫

0

∫
BO(R)

g(∇(u−um′ )(t)dFk,um′)dt +
T∫

0

∫
H2(−a2)−BO(R)

g(∇(u−um′ )(t)dFk,um′)dt. (5.39)

Now, we estimate the far range part of 
∫ T

0 b(u − um′, dFk, um′)(t)dt by means of Holder’s inequality as follows∣∣∣∣∣
T∫

0

∫
H2(−a2)−BO(R)

g
(∇(u−um′ )(t)dFk,um′(t)

)
dt

∣∣∣∣∣
≤ ‖∇dFk‖L2(H2(−a2)−BO(R)) · ‖u − um′‖L2(0,T ;L4(H2(−a2))) · ‖um′‖L2(0,T ;L4(H2(−a2))). (5.40)

However, by means of the Ladyzhenskaya inequality (2.19), we deduce from (5.20) that we have the following uniform 
estimates:

‖um′‖L2(0,T ;L4(H2(−a2))) ≤ C0‖um′‖L2(0,T ;H 1(H2(−a2))) ≤ C0(1 + T )
1
2 ‖u0‖L2,

‖u‖ 2 4 2 2 ≤ C ‖u‖ 2 1 2 2 ≤ C (1 + T )
1
2 ‖u ‖ 2 .

(5.41)
L (0,T ;L (H (−a ))) 0 L (0,T ;H (H (−a ))) 0 0 L
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Hence, it follows from (5.40) that we have for all R > 0∣∣∣∣∣
T∫

0

∫
H2(−a2)−BO(R)

g
(∇(u−um′ )(t)dFk,um′(t)

)
dt

∣∣∣∣∣ ≤ C2
0(1 + T )‖u0‖2

L2 · ‖∇dFk‖L2(H2(−a2)−BO(R)). (5.42)

Now, thanks a lot to the fact that dFk, as an element in F, must enjoy the property that

‖∇dFk‖L2(H2(−a2)) ≤ ‖dFk‖H 1(H2(−a2)) < ∞, (5.43)

we easily deduce that we must have

lim
R→∞‖∇dFk‖L2(H2(−a2)−BO(R)) = 0. (5.44)

So, for any arbitrary small positive number ε > 0, we can choose some sufficiently large positive Rε > 0, depending 
only on ε > 0 and dFk , such that

‖∇dFk‖L2(H2(−a2)−BO(Rε))
< ε. (5.45)

Hence, from (5.39) and (5.42) that∣∣∣∣∣
T∫

0

b(u − um′,dFk,um′)(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣

T∫
0

∫
BO(Rε)

g(∇(u−um′ )(t)dFk,um′)dt

∣∣∣∣∣ + C2
0(1 + T )‖u0‖2

L2 · ε. (5.46)

In exactly the same way, we decompose the term 
∫ T

0 b(u, dFk, u − um′)(t)dt into the local and far range part (except 
for this time, we knew already that we use the radius Rε > 0 in our decomposition), and obtain∣∣∣∣∣

T∫
0

b(u,dFk,u − um′)(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣

T∫
0

∫
BO(Rε)

g
(∇u(t)dFk, (u − um′)(t)

)
dt

∣∣∣∣∣ + C2
0(1 + T )‖u0‖2

L2 · ε. (5.47)

Now, by combining the uniform estimates (5.46) and (5.47), we deduce from (5.38) that∣∣∣∣∣
T∫

0

b(um′ , um′ ,dFk)(t) − b(u,u,dFk)(t)dt

∣∣∣∣∣
≤

∣∣∣∣∣
T∫

0

∫
BO(Rε)

g(∇(u−um′ )(t)dFk,um′)dt

∣∣∣∣∣ +
∣∣∣∣∣

T∫
0

∫
BO(Rε)

g
(∇u(t)dFk, (u − um′)(t)

)
dt

∣∣∣∣∣
+ 2C2

0(1 + T )‖u0‖2
L2 · ε. (5.48)

Next, we carry out the following two uniform estimates by means of Holder’s inequality in the same spirit of estimates 
(5.32) and (5.33):∣∣∣∣∣

T∫
0

∫
BO(Rε)

g(∇(u−um′ )(t)dFk,um′)dt

∣∣∣∣∣
≤ ‖∇dFk‖L∞(BO(Rε))‖u − um′ ‖L2(0,T ;L2(BO(Rε)))

‖um′‖L2(0,T ;L2(BO(Rε)))

≤ T
1
2 ‖∇dFk‖L∞(BO(Rε))‖u0‖L2‖u − um′‖L2(0,T ;L2(BO(Rε)))

, (5.49)

and ∣∣∣∣∣
T∫

0

∫
BO(Rε)

g
(∇u(t)dFk, (u − um′)(t)

)
dt

∣∣∣∣ ≤ T
1
2 ‖u0‖L2‖∇dFk‖L∞(BO(Rε))‖u − um′‖L2(0,T ;L2(BO(Rε)))

. (5.50)
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Remark 5.2. In (5.49) and (5.50), we have employed the local L∞-estimate ‖∇dFk‖L∞(BO(Rε)) which is always finite, 
simply due to the classical smoothness of ∇dFk over H2(−a2).

Now, recall that by (5.29) we have strong convergence of um′ to the limiting function u in L2(0, T ; L2(BO(Rε))). 
So, by taking lim sup in (5.49) and (5.50), it follows from (5.48) that the following relation must hold:

lim sup
m′→∞

∣∣∣∣∣
T∫

0

b(um′ , um′ ,dFk)(t) − b(u,u,dFk)(t)dt

∣∣∣∣∣ ≤ 2C2
0(1 + T )‖u0‖2

L2 · ε. (5.51)

Since the above lim sup-estimate holds for any positive number ε > 0, it follows that we must have the following 
conclusion:

lim
m′→∞

∣∣∣∣∣
T∫

0

b(um′ , um′ ,dFk)(t) − b(u,u,dFk)(t)dt

∣∣∣∣∣ = 0, (5.52)

which is equivalent to saying that we finally have

lim
m′→∞

T∫
0

b(um′ , um′ ,dFk)(t)dt =
T∫

0

b(u,u,dFk)(t)dt, (5.53)

as needed.

Step 7: Satisfying u(0) = u0 ∈ H ⊕ F.
With all the works in Step 1 through Step 6, we are now able to pass to the limit in (5.19) and obtain

−
T∫

0

(
u(t),wj

)
ψ ′(t)dt +

T∫
0

((
u(t),wj

))
ψ(t)dt +

T∫
0

b
(
u(t), u(t),wj

)
ψ(t)dt = (u0,wj )ψ(0), j ≥ 1. (5.54)

Since {wk}∞k=1 is a basis of V = V ⊕ F, it follows, through a simple density argument, that the above relation still 
holds if the basis element wk is replaced by an arbitrary test 1-form v ∈V. Hence,

−
T∫

0

(
u(t), v

)
ψ ′(t)dt +

T∫
0

((
u(t), v

))
ψ(t)dt +

T∫
0

b
(
u(t), u(t), v

)
ψ(t)dt = (u0, v)ψ(0), v ∈ V. (5.55)

By taking ψ to be a smooth compactly supported function on (0, T ) in (5.55), we have that the limiting function 
u ∈ L∞(0, T ; H ⊕ F) ∩ L2(0, T ; V) satisfies the following equation on (0, T ) in the distributional sense:

d

dt

〈
u(t), v

〉
V′⊗V

= −〈
Au(t) + Bu(t), v

〉
V′⊗V

, v ∈V, (5.56)

where we recall that Au(t), Bu(t) ∈V
′ are defined by〈

Au(t), v
〉
V′⊗V

= ((
u(t), v

))
,〈

Bu(t), v
〉
V′⊗V

= b
(
u(t), u(t), v

) =
∫

H2(−a2)

g
(∇uu(t), v

)
VolH2(−a2) . (5.57)

We now invoke Lemma C.1 to deduce from (5.56) that the following relation holds in the weak sense:

du

dt
= −Au − Bu, (5.58)

and that u ∈ C0([0, T ]; V′) satisfies the following relation, where u(0) simply means the value of the continuous 
V

′-valued function u(t) at the end-point t = 0:
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u(t) = u(0) −
t∫

0

(
Au(τ) + Bu(τ)

)
dτ. (5.59)

We also note that since by Lemmas 4.1 and 4.2 Au + Bu ∈ L2(0, T ; V′), we therefore have

du

dt
∈ L2(0, T ;V′). (5.60)

Next, we need to show that u(0) ∈ V
′ coincides with u0 ∈ L2(H2(−a2)), provided u0 is being thought of as an 

element in the broader space V′ through the natural inclusion L2(H2(−a2)) ⊂ V
′. For completeness we show the 

details omitted in [27].
First, observe that, for any given v ∈ V, (5.59) gives

〈
u(t), v

〉
V′⊗V

= 〈
u(0), v

〉
V′⊗V

−
t∫

0

〈
Au(t) + Bu(t), v

〉
V′⊗V

, t ∈ [0, T ]. (5.61)

Using (5.61) and a classical theorem in Lebesgue measure theory (for instance [9, Thm 3.35, p. 106]) allows us 
to deduce that 〈u(t), v〉V′⊗V must be absolutely continuous on [0, T ]. Now, we take any ψ ∈ C1([0, T ]) satisfying 
ψ(T ) = 0 and ψ(0) = 1. Then, it is easy to check that ψ(t)〈u(t), v〉V′⊗V is also absolutely continuous on [0, T ], and 
hence by the same theorem the classical derivative d

dt
(ψ(t)〈u(t), v〉V′⊗V) exists for almost every t ∈ [0, T ], and〈

u(0), v
〉
V′⊗V

= −ψ(T )
〈
u(T ), v

〉
V′⊗V

+ ψ(0)
〈
u(0), v

〉
V′⊗V

= −
T∫

0

d

dt

(
ψ(τ)

〈
u(τ), v

〉
V′⊗V

)
dτ. (5.62)

However, since the absolute continuity of 〈u(t), v〉V′⊗V on [0, T ] also ensures the existence of the classical deriva-
tive d

dt
〈u(t), v〉V′⊗V at almost every t ∈ [0, T ], we can apply the classical product rule at all those (almost everywhere) 

points to deduce

d

dt

(
ψ(τ)

〈
u(τ), v

〉
V′⊗V

) = ψ ′(t)
〈
u(t), v

〉
V′⊗V

+ ψ(t)
d

dt

〈
u(t), v

〉
V′⊗V

, a.e. t. (5.63)

By combining (5.56), (5.62), and (5.63), we obtain

〈
u(0), v

〉
V′⊗V

= −
T∫

0

ψ ′(τ )
〈
u(τ), v

〉
V′⊗V

dτ +
T∫

0

ψ(τ)
〈
Au(τ) + Bu(τ), v

〉
V′⊗V

dτ

= −
T∫

0

ψ ′(τ )
(
u(τ), v

)
dτ +

T∫
0

((
u(τ), v

))
ψ(τ)dτ +

T∫
0

b
(
u(τ)u(τ), v

)
ψ(τ)dτ. (5.64)

Now, by comparing (5.55) with (5.64) we conclude that the following relation holds for any test 1-form v ∈V:〈
u(0), v

〉
V′⊗V

= 〈u0, v〉V′⊗V. (5.65)

This shows that as long as we think of the element u0 ∈ L2(H2(−a2)) in the broader sense as an element in V′, our 
limiting weak solution u, as a continuous V′-valued function on [0, T ], will assume u0 as its initial value at t = 0. 
That is, the relation u(0) = u0 holds in the sense of V′.

However, since V ⊂ H ⊕ F ⊂ V
′, we can use Lemma C.2 and the facts that u ∈ L2(0, T ; V) and that ∂u

∂t
∈

L2(0, T ; V′) to deduce that in fact, u ∈ C([0, T ]; H ⊕ F). Hence, u(0) = u0 holds also in H ⊕ F.
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6. Uniqueness

Let u = u1 − u2, where u1, u2 solve (1.13). The idea is to use the Gronwall’s inequality applied to ‖u‖2. We stress 
that now that we have established the properties of b and B in the hyperbolic setting, the proof is identical to [27]
with the exception of one extra term that comes after application of (2.19) since that inequality now involves the 
nonhomogeneous H 1 norm.

We have u solves

ut + Au + Bu1 − Bu2 = 0,

with u(0) = 0. By Lemma C.2, definition of A and B

0 = 〈
u(t), ut (t) + Au(t) + Bu1(t) − Bu2(t)

〉
V⊗V′

= d

dt

∥∥u(t)
∥∥2

2 + 2‖u‖2
Ḣ 1 + 2b

(
u1(t), u1(t), u(t)

) − 2b
(
u2(t), u2(t), u(t)

)
.

Hence
d

dt

∥∥u(t)
∥∥2

2 + 2‖u‖2
Ḣ 1 = 2b

(
u2(t), u2(t), u(t)

) − 2b
(
u1(t), u1(t), u(t)

)
. (6.1)

On the right-hand side we add and subtract 2b(u1(t), u2(t), u(t)) and use multilinearity of b and (4.5) to obtain

2b
(
u2(t), u2(t), u(t)

) − 2b
(
u1(t), u1(t), u(t)

) = −2b
(
u(t), u2(t), u(t)

)
.

Next, by (4.7) and Cauchy’s inequality

2
∣∣b(

u(t), u2(t), u(t)
)∣∣ ≤ 4C

∥∥u(t)
∥∥

2

∥∥u(t)
∥∥

H 1

∥∥u2(t)
∥∥

Ḣ 1 ≤ 2
∥∥u(t)

∥∥2
H 1 + 8C2

∥∥u(t)
∥∥2

2

∥∥u2(t)
∥∥2

Ḣ 1 .

Combining with (6.1) and rearranging we have

d

dt

∥∥u(t)
∥∥2

2 ≤ 2
∥∥u(t)

∥∥2
2 + 8C2

∥∥u(t)
∥∥2

2

∥∥u2(t)
∥∥2

Ḣ 1 = ∥∥u(t)
∥∥2

2

(
2 + 8C2

∥∥u2(t)
∥∥2

Ḣ 1

)
.

Since u(0) = 0, we are done by the Gronwall’s inequality.

7. Proofs of corollaries

7.1. Conservation of energy: Proof of Corollary 1.6

Recall we wish to show

∥∥u(t, ·)∥∥2
L2(H2(−a2))

+ 2

t∫
0

((u,u))(s)ds = ‖u0‖2
L2(H2(−a2))

. (7.1)

Now, with respect to a given initial data u0 ∈ H ⊕F, the unique solution u ∈ L∞(0, T ; H ⊕F) ∩L2(0, T ; V) by (5.60)
also satisfies

∂tu ∈ L2(0, T ;V′). (7.2)

This enables us to invoke Lemma C.2 to obtain〈
∂tu(t), u(t)

〉
V′⊗V

= 1

2

d

dt

∥∥u(t)
∥∥2

L2(H2(−a2))
. (7.3)

Thanks to (4.5) in Lemma 4.2, we also have〈
Bu(t), u(t)

〉
V′⊗V

= b(u,u,u)(t) = 0, ∀t ∈ [0, T ]. (7.4)

So, by simply testing Eq. (1.13) against u, it follows from (7.3) and (7.4) that

1

2

d

dt

∥∥u(t)
∥∥2

L2(H2(−a2))
+ ((u,u))(t) = 0, (7.5)

form which we deduce, by taking the time integral from 0 to t , that the desired identity, namely (7.1), must hold for 
all t ∈ [0, T ].
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7.2. Survival of one solution: Proof of Corollary 1.7

Let u0 = dF ∈ L2(H2(−a2)) where F is a harmonic function. Now, if u is a solution then u satisfies

(ut , v) + 2(Defu,Defv) + b(u,u, v) = 0 (7.6)

for every v ∈ V = V + F. Now, consider u = exp(−A
2 t)dF , where A is a constant. Then u(0) = u0.

We show u satisfies (7.6) if and only if A = 4a2. First, since (Defu, Defv) = (Def∗ Defu, v), we can write (7.6) as

(ut , v) −
∫

H2(−a2)

g
(
�u + 2 Ric(u), v

) + b(u,u, v) = 0. (7.7)

Thanks to �u = 0 and Ric(u) = −a2u we can simplify LHS of (7.7) to

−A

2
(u, v) + 2a2(u, v) + b(u,u, v).

Consider b(u, u, v). By [4, Lemma 6.1], ∇∇F dF = 1
2 d|dF |2, so by definition of b

b(u,u, v) = 1

2
exp(−At)

∫
H2(−a2)

g
(
d|dF |2, v) = 1

2
exp(−At)

∫
H2(−a2)

d∗(|dF |2v) = 0

if |dF |2v in L1, but that follows by Cauchy–Schwarz, v ∈ V, Ladyzhenskaya and Lemma 3.2. So we are left with 
needing to show

−A

2
(u, v) + 2a2(u, v) = 0.

Note, if v ∈ V, then this is automatically satisfied by the orthogonality property. But in general, v ∈ V + F, so the 
only way to guarantee that the equation is satisfied is to require A = 4a2. This shows the survival of one solution from 
the family of the non-unique solutions we have considered before. Moreover, this solution also gives equality in the 
energy inequality (can be seen by a direct computation or follows from Corollary 1.6).

8. Pressure

The goal of this section is to show that the pressure can be recovered from Eq. (1.13). More precisely we show 
Proposition 1.8. First, we collect some tools.

In the classical literature (e.g. [18,27]) existence and regularity of the pressure is obtained usually by means of the 
following lemma.

Lemma 8.1. Let Ω be any open set in Rn. If w ∈ L2
loc(Ω), then (w, v) = 0 for all v ∈ C∞

c,σ if and only if w = ∇p for 
some p ∈ L2

loc(Ω) with ∇p ∈ L2
loc(Ω).

We would like to establish an analog of this in our setting. First, as pointed out in [27, p. 10], existence of the 
pressure can follow from

Theorem 8.2. (See [5, Theorem 17′].) The current T is homologous to zero if and only if T [φ] = 0 for all closed C∞
forms with compact support.

We translate this theorem into the language of the fluid mechanics. The space of currents can be viewed as the dual 
to the space of differential forms. More precisely

Definition 8.3 (Currents). (See [5, p. 34].) Let M be an n-dimensional manifold, and Λk
c(M) denote smooth k-forms 

that are compactly supported in M . Then the current T is a linear functional on Λk
c(M), with the action denoted by

T [φ], φ ∈ Λk
c(M).
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A relevant example is an analog of f ∈ L1
loc giving a rise to a distribution: if α is a locally integrable (n − k)-form, 

we can introduce

Tα[φ] =
∫
M

α ∧ φ. (8.1)

Hence, sometimes we write α[φ] to denote (8.1). Before we define what it means to be homologous to zero, we need

Definition 8.4 (Boundary of a current). (See [5, p. 45].) The boundary of a current T , denoted by bT , is a current 
defined by

bT [φ] = T [dφ].

Then the operator d on currents is given by

dθ = (−1)k+1bθ, (8.2)

with k to be the degree of the current θ in question.

Definition 8.5 (Homologous to zero). (See [5, p. 79].) A current T is homologous to zero if there exists a current S
such that T = bS.

Next, recall the definition of the Hodge ∗ operator (1.4) on forms

w ∧ ∗v = g(w,v)VolM .

The scalar product on forms is defined by

(w,v) =
∫
M

g(w,v)VolM =
∫
M

w ∧ ∗v VolM . (8.3)

Note that

(w,v) = Tw[∗v].
This motivates the definition of a scalar product of a current T with a form v [5, p. 102]

(T , v) = T [∗v]. (8.4)

If v is compactly supported, then we have [5, p. 105]

(dT ,v) = (
T ,d∗v

)
,

(
d∗T ,v

) = (T ,dv). (8.5)

We can now prove the distributional analog of Lemma 8.1 on any manifold M for which Theorem 8.2 is valid. We 
address the regularity part in the subsequent lemma.

Lemma 8.6. Let T be a current of degree 1. Then (T , v) = 0 for all v ∈ Λ1
c,σ (M) if and only if T = dP for some 

0 degree current P .

Proof. If v ∈ Λ1
c,σ (M), then d∗v = 0, so ∗v is an (n − 1)-form, and it is closed by the definition of d∗ (see (1.5)). 

Conversely, if φ is (n − 1)-form that is closed, then ∗φ is a 1-form such that d∗ ∗ φ = 0. Hence by (8.4)

(T , v) = T [∗v] = 0 ∀v ∈ Λ1
c,σ if and only if T [φ] = 0 ∀ closed forms φ ∈ Λn−1

c (M).

So by Theorem 8.2, T = dP if and only if (T , v) = 0 for all v ∈ Λ1
c,σ (M) as needed. �

Lemma 8.7. Let T ∈ H−1(H2(−a2)). Suppose there exists a current P of degree 0 such that dP = T holds in the 
sense that

(dP,v) = 〈T ,v〉H−1⊗H 1
0
, ∀v ∈ Λ1

c

(
H

2(−a2)). (8.6)

Then, it follows that P ∈ L2 (H2(−a2)).
loc
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Proof. Recall that H−1(H2(−a2)) is by definition the dual space of H 1
0 (H2(−a2)).

Now, since T ∈ H−1(H2(−a2)), and H 1
0 (H2(−a2)) is Hilbert we can use the Riesz Representation Theorem to 

deduce that there exists a unique 1-form η ∈ H 1
0 (H2(−a2)) for which the following holds for all v ∈ H 1

0 (H2(−a2)):

〈T ,v〉H−1⊗H 1
0

=
∫

H2(−a2)

g(η, v)VolH2(−a2) +2
∫

H2(−a2)

g(Defη,Defv)VolH2(−a2) . (8.7)

Now, let v ∈ Λ1
c(H

2(−a2)). By means of the formula 2 Def∗ Defv = 2dd∗v + d∗dv + 2a2v, (8.7) can be rephrased as

〈T ,v〉H−1⊗H 1
0

=
∫

H2(−a2)

g(η, v)VolH2(−a2) +2
∫

H2(−a2)

g
(
η,Def∗ Defv

)
VolH2(−a2)

= (
1 + 2a2) ∫

H2(−a2)

g(η, v)VolH2(−a2) +2
∫

H2(−a2)

g
(
η,dd∗v

)
VolH2(−a2)

+
∫

H2(−a2)

g
(
η,d∗dv

)
VolH2(−a2)

= (
1 + 2a2) ∫

H2(−a2)

g(η, v)VolH2(−a2) +2
∫

H2(−a2)

d∗ηd∗v VolH2(−a2)

+
∫

H2(−a2)

g(dη,dv)VolH2(−a2) . (8.8)

In (8.8), the first identity follows directly from the definition of Defη ∈ L2 in the weak sense. The third equal sign 
also holds, since Lemma 2.8 informs us that Defη ∈ L2 leads to the existence of the weak derivatives dη ∈ L2 and 
d∗η ∈ L2.

Next, using (8.3)–(8.5) we can express the three individual terms which appear in the last line of (8.8) by means of 
the language of currents as∫

H2(−a2)

g(η, v)VolH2(−a2) = (η, v),

∫
H2(−a2)

d∗ηd∗v VolH2(−a2) = (
dd∗η, v

)
,

∫
H2(−a2)

g(dη,dv)VolH2(−a2) = (
d∗dη, v

)
. (8.9)

Now, suppose that we have a current P such that dP = T holds in the sense of (8.6). Then, it follows directly from 
(8.8) and (8.9) that the following identity holds in the sense of currents:

dP = (
1 + 2a2)η + 2dd∗η + d∗dη. (8.10)

Next, by the Hodge–Kodaira Theorem [17], we have

L2(
H

2(−a2)) = dΛ0
c
L2 ⊕ d∗Λ2

c
L2 ⊕ F.

Since η is in L2, we have the following unique decomposition:

η = dα1 + d∗α2 + dF, (8.11)

where dα1 ∈ L2(H2(−a2)), and α1 can be shown to be in L2
loc on H2(−a2) (for example by a similar method 

employed in the proof of Lemma 3.5), d∗α2 ∈ L2(H2(−a2)) with α2 to be a form of degree 2 on H2(−a2), and 
dF ∈ L2(H2(−a2)) with F a harmonic function on H2(−a2). So, (8.10) can be rephrased as
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dP = d
((

1 + 2a2)(α1 + F) + 2d∗η
) + d∗((1 + 2a2)α2 + dη

)
, (8.12)

which holds in the sense of currents. Since d ◦ d = 0 holds for all currents, by taking d on both sides of the above 
identity, we have

0 = dd∗((1 + 2a2)α2 + dη
) = (−�)

((
1 + 2a2)α2 + dη

)
. (8.13)

Hence the current (1 + 2a2)α2 + dη of the top degree 2 is harmonic. It follows by the Weyl’s Lemma that (1 +
2a2)α2 + dη must be a smooth harmonic 2-form on H2(−a2) in the classical sense, and hence d∗((1 + 2a2)α2 + dη)

is indeed a smooth 1-form on H2(−a2). Also, observe that (8.13) tells us that the now classically smooth 1-form 
d∗((1 + 2a2)α2 + dη) is d-closed on H2(−a2). So it must be d-exact in the sense that there exists a smooth function 
F2 on H2(−a2) such that

d∗((1 + 2a2)α2 + dη
) = dF2. (8.14)

Then it directly follows from (8.12) and (8.14) that we have the following relation:

dP = d
((

1 + 2a2)(α1 + F) + 2d∗η + F2
)
, (8.15)

which immediately tells us

P = (
1 + 2a2)(α1 + F) + 2d∗η + F2 + C0, (8.16)

where C0 is some constant. Here d∗η and α1 are L2 and L2
loc functions on H2(−a2), respectively, and F and F2 are 

classically smooth functions on H2(−a2). Hence, it follows that the current P is indeed an L2
loc function on H2(−a2)

as desired. �
We are now ready to prove Proposition 1.8.

Proof of Proposition 1.8. The basic idea is: in order to recover the pressure term, it is absolutely necessary for us 
to think of the elements Au and Bu, which already lie in L2(0, T ; V′), to be in the more restrictive functional space 
L2(0, T ; H−1(H2(−a2))). This follows from estimates (4.3) and (4.9).

Now, recall that the existence theory ensures, for any prescribed initial data u0 ∈ H ⊕ F, the existence of an 
element u ∈ L∞(0, T ; H ⊕ F) ∩ L2(0, T ; V), with ∂tu ∈ L2(0, T ; V′). Then the following relation holds in the sense 
of L2(0, T ; V′):

∂tu + Au + Bu = 0. (8.17)

Next, consider the terms U ∈ C0(0, T ; V) and B ∈ C0(0, T ; V′), which are defined by

U(t) =
t∫

0

u(τ)dτ,

B(t) =
t∫

0

Bu(τ)dτ.

(8.18)

Of course, we at once know that AU ∈ C0(0, T ; H−1(H2(−a2))). On the other hand, ∂tu ∈ L2(0, T ; V′) immediately 
gives the following relation for every t ∈ [0, T ]:

u(t) − u0 + AU(t) + B(t) = 0, (8.19)

in which each term on the left-hand side is understood to be an element in V′.
However, observe that we can think of the expression u(t) −u0 +AU(t) + B(t) in the broader sense, as a bounded 

linear functional on H 1
0 (H2(−a2)), which acts by taking a scalar product in a sense of (8.4). Now, with this broader 

sense of understanding we see (8.19) as saying that the bounded linear functional u(t) − u0 + AU(t) + B(t) on 
H 1(H2(−a2)) actually vanishes identically on the proper subspace V, which by itself includes Λ1

c,σ (H2(−a2)). This 
0
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observation allows us to invoke Lemma 8.6 and Lemma 8.7 to deduce that there exists, for each t ∈ [0, T ], a 0-current 
P(t) ∈ L2

loc(H
2(−a2)) such that the following relation holds in the sense of H−1(H2(−a2)):

u(t) − u0 + AU(t) + B(t) = dP(t). (8.20)

In other words, it means the same as saying that Eq. (8.20) holds in the weak sense as long as we test against an 
arbitrary test 1-form v ∈ H 1

0 (H2(−a2)).
To obtain (1.16), we differentiate (8.20) in the sense of distributions and set p to be the distributional time derivative 

of P, p = ∂tP. �
9. VVV= ˜V

Here we establish Theorem 1.10. Recall

Ṽ = {
v ∈ H 1

0

(
H

2(−a2)) : d∗v = 0
}
,

V= V ⊕ F, where V = Λ1
c,σ

(
H2

(−a2
))

H 1
,

and F is the space of finite energy and divergence-free gradients. By the definition of V and Lemma 3.3, we have 
V ⊂ Ṽ, so we just need to show Ṽ ⊂ V. It is clear that V is a closed subspace of Ṽ. So, we have the following 
orthogonal decomposition of Ṽ with respect to the inner product [·,·] = (·,·) + ( (·,·) ):

Ṽ = V ⊕ V⊥.

Since we already know F ⊂ V⊥ (Lemma 3.6), it is enough to show V⊥ ⊂ F.
To begin, take any v ∈ V⊥. By definition, d∗v = 0, and we also have∫

H2(−a2)

g(v, θ)VolH2(−a2) +2
∫

H2(−a2)

g(Defv,Def θ)VolH2(−a2) = 0, (9.1)

for any test 1-form θ ∈ Λ1
c,σ (H2(−a2)).

Since 2 Def∗ Def θ = d∗dθ + 2a2θ for any θ ∈ Λ1
c,σ (H2(−a2)), an application of integration by parts gives

2
∫

H2(−a2)

g(Defv,Def θ)VolH2(−a2) = 2
∫

H2(−a2)

g
(
v,Def∗ Def θ

)
VolH2(−a2)

=
∫

H2(−a2)

g
(
v,d∗dθ

) + g
(
v,2a2θ

)
VolH2(−a2)

= (
d∗dv + 2a2v, θ

)
,

where (·,·) is a scalar product of a current with a form defined by (8.4), and where the last equality follows by (8.5). 
So from (9.1) we have(

d∗dv + (
2a2 + 1

)
v, θ

) = 0 ∀θ ∈ Λ1
c,σ

(
H

2(−a2)).
Then by Lemma 8.6, there exists a current P such that

d∗dv + (
2a2 + 1

)
v + dP = 0 (9.2)

holds in the sense of distributions. Because v is a 1-form, dv is a 2-form, and because we are in 2 spatial dimensions, 
we can write dv = ω VolH2(−a2) for some (vorticity) function ω ∈ L2(H2(−a2)) (since dv ∈ L2(H2(−a2))). By taking 
d on both sides of (9.2) in the distributional sense, we deduce that ω satisfies

−�ω + (
2a2 + 1

)
ω = 0. (9.3)

Now, (9.3) is a standard elliptic system. Hence, the elliptic regularity theory ensures that ω is smooth on H2(−a2).
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We use (9.3) to show ω = 0 on H2(−a2). To this end, consider a cut-off function φ ∈ C∞([0, ∞)), which satisfies 
χ[0,1) ≤ φ ≤ χ[0,2), and |φ′| ≤ 2 on [0, ∞). For each R > 1, define φR ∈ C∞

c (H2(−a2)) by φR(x) = φ(
ρ(x)
R

), where 
ρ(x) is the distance function of x from some reference point O ∈ H

2(−a2).
Now, we test (9.3) against ωφ2

R to yield (recall −� = d∗d for functions)

0 =
∫

H2(−a2)

d∗dω · ωφ2
R VolH2(−a2) +

(
2a2 + 1

) ∫
H2(−a2)

|ω|2 · φ2
R VolH2(−a2)

=
∫

H2(−a2)

2φRω · g(dω,dφR) + φ2
R · g(dω,dω)VolH2(−a2)

+ (
2a2 + 1

) ∫
H2(−a2)

|ω|2 · φ2
R VolH2(−a2) .

Rearranging and applying Cauchy’s inequality we get∫
H2(−a2)

φ2
R|dω|2 VolH2(−a2) +

(
2a2 + 1

) ∫
H2(−a2)

|ω|2φ2
R VolH2(−a2)

≤ 2

∣∣∣∣ ∫
H2(−a2)

g(φRdω,ωdφR)VolH2(−a2)

∣∣∣∣
≤ 1

2

∫
H2(−a2)

φ2
R|dω|2 VolH2(−a2) +2

∫
H2(−a2)

|ω|2 · |∇φR|2 VolH2(−a2)

≤ 1

2

∫
H2(−a2)

φ2
R|dω|2 VolH2(−a2) +

8

R2
‖ω‖2

L2(H2(−a2))
.

The above estimate immediately gives(
2a2 + 1

) ∫
H2(−a2)

|ω|2φ2
R VolH2(−a2) ≤ 8

R2
‖ω‖2

L2(H2(−a2))
.

By taking R to infinity, we deduce ‖ω‖L2(H2(−a2)) = 0, and hence ω = 0 on H2(−a2). Since dv = ω VolH2(−a2) = 0, 
it follows that v = dF for some F ∈ C∞(H2(−a2)). But we also have d∗v = 0, so F must be harmonic on H2(−a2), 
which means v = dF ∈ F. This shows that the inclusion V⊥ ⊂ F holds as needed.
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Appendix A. Computations in coordinates

A.1. Hyperboloid model

We first give a concrete description of the space form H2(−a2) by means of the standard hyperboloid model.
The 2-dimensional hyperbolic space H2(−a2), as a differentiable manifold, can be regarded as a 2D submanifold 

in R3 given by

H
2(−a2) =

{
(x0, x1, x2) : x2

0 − x2
1 − x2

2 = 1

a2
, x0 > 0

}
. (A.1)

Next, for each point x = (x0, x1, x2) ∈ R
3, the tangent space TxR

3 is equipped with the following symmetric 
quadratic form:

〈v,w〉 = −v0w0 + v1w1 + v2w2, v,w ∈ TxR
3. (A.2)

So, by definition, the Riemannian metric g(·,·) on H2(−a2) is induced through the restriction of 〈·,·〉 onto the tangent 
bundle of the submanifold H2(−a2). In other words, for each point x ∈ H

2(−a2), g(·,·)x is given by the following 
relation:

g(·,·)x = 〈·,·〉|x. (A.3)

In other words, H2(−a2) is taken as a submanifold of the Minkowski space R2+1, not the 3-dimensional Euclidean 
space.

From now on, a point x = (x0, x1, x2) in R2+1 will be written as x = (x0, x′), with x′ = (x1, x2).

A.2. Local coordinates

Here, we consider the unit disc D0(1) = {y ∈ R
2 : |y| < 1} in R2 and the smooth map Y : H2(−a2) → D0(1)

which is defined by

Y(x) = x′

x0 + 1
a

, x ∈ H
2(−a2). (A.4)

The smooth map Y : H2(−a2) → D0(1) maps H2(−a2) bijectively onto D0(1) with a smooth inverse. Hence, 
Y can be chosen as a coordinate system on the manifold H2(−a2) (with one chart). This coordinate system is standard. 
See for example [15, Ex 6, p. 83].

Observe that the inverse map Y−1 : D0(1) → H
2(−a2) is given by

Y−1(y) =
(

2

a(1 − |y|2) − 1

a
,

2y1

a(1 − |y|2) ,
2y2

a(1 − |y|2)
)

, y ∈ D0(1). (A.5)

Next, we express the Riemannian metric g(·,·) on H2(−a2) in terms of the coordinate system Y as follows. Con-
sider the two smooth vector fields ∂

∂Y 1 , and ∂

∂Y 2 on H2(−a2), which are induced by the coordinate system Y through 
the following rule, with j = 1, 2, and any y ∈ D0(1):

∂

∂Y j

∣∣∣∣
Y−1(y)

=
(

∂yj

(
2

a(1 − |y|2) − 1

a

)
, ∂yj

(
2y1

a(1 − |y|2)
)

, ∂yj

(
2y2

a(1 − |y|2)
))

. (A.6)

Then, by a direct computation

∂

∂Y 1

∣∣∣∣
Y−1(y)

=
(

4y1

a(1 − |y|2)2
,

2(1 − |y|2) + 4y2
1

a(1 − |y|2)2
,

4y1y2

a(1 − |y|2)2

)
,

∂

∂Y 2

∣∣∣∣ −1
=

(
4y2

a(1 − |y|2)2
,

4y1y2

a(1 − |y|2)2
,

2(1 − |y|2) + 4y2
2

a(1 − |y|2)2

)
,

(A.7)
Y (y)
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from which it follows that

g

(
∂

∂Y 1
,

∂

∂Y 1

)
= 4

a2(1 − |y|2)2
= g

(
∂

∂Y 2
,

∂

∂Y 2

)
g

(
∂

∂Y 1
,

∂

∂Y 2

)
= 0.

(A.8)

Hence,

g(·,·) = 4

a2(1 − |y|2)2

{
dY 1 ⊗ dY 1 + dY 2 ⊗ dY 2}. (A.9)

Next, let

ej = a(1 − |Y |2)
2

∂

∂Y j
, j = 1,2. (A.10)

Observe that the two smooth vector fields {e1, e2} constitute a globally defined orthonormal moving frame on 
H

2(−a2), which specifies an orientation on H2(−a2).
Then, the induced dual frame {e∗

1, e
∗
2} is given by the following expression:

e∗
j = 2

a(1 − |Y |2)dY j , j = 1,2. (A.11)

Notice that the induced Riemannian metric g on T ∗(H2(−a2)) is the one with respect to which the dual frame {e∗
1, e

∗
2}

becomes everywhere orthonormal. Hence, we have

g11 = g
(
dY 1,dY 1) = a2(1 − |y|2)2

4
= g

(
dY 2,dY 2) = g22,

g12 = g
(
dY 1,dY 2) = 0.

(A.12)

Moreover, due to (A.9), the (2 ⊗ 2)-matrix (gij ), with gij = g( ∂
∂Y i , 

∂
∂Y j ), is a diagonal matrix with g11 = g22 =

4
a2(1−|y|2)2 . Hence we have 

√
det(gij ) = 4

a2(1−|y|2)2 .

It follows, the Hodge–Laplacian −� = d∗d : C∞(H2(−a2)) → C∞(H2(−a2)) can be represented in terms of the 
coordinate system Y in the following way:

�f = 1√
det(gij )

∂

∂Yα

(√
det(gij )g

αβ ∂

∂Yβ
f

)

= a2(1 − |y|2)2

4

((
∂

∂Y 1

)2

f +
(

∂

∂Y 2

)2

f

)
, (A.13)

where f is any smooth function on H2(−a2). It follows that a given smooth function F ∈ C∞(H2(−a2)) is a harmonic 
function on H2(−a2) if and only if f = F ◦ Y−1 is a harmonic function on the Euclidean disc D0(1) in the ordinary 
sense.

For convenience, we will use the symbol ∇R
2

to denote the standard gradient operator ∇R
2
f = (∂y1f, ∂y2f ) on R

2. 

The use of this symbol ∇R
2

is to avoid possible confusion with the gradient operator ∇ on H2(−a2). Now, we observe 
that, for any smooth function F on H2(−a2), we have

∇F = g(∇F,e1)e1 + g(∇, e2)e2, (A.14)

where

g(∇F,ej ) =
〈
dF,

a(1 − |Y |2)
2

∂

∂Y j

〉
TH2(−a2)∗⊗TH2(−a2)

= a(1 − |Y |2)
2

∂F

∂Y j
, j = 1,2. (A.15)

Hence, the following identity holds for any smooth function F on H2(−a2) with dF ∈ L2(H2(−a2)):
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‖dF‖2
L2(H2(−a2))

=
∫

H2(−a2)

|∇F |2e∗
1 ∧ e∗

2

=
∫

H2(−a2)

(
a(1 − |y|2)

2

)2{(
∂F

∂Y 1

)2

+
(

∂F

∂Y 2

)2} 4

a2(1 − |y|2)2
dY 1 ∧ dY 2

=
∫

H2(−a2)

{(
∂F

∂Y 1

)2

+
(

∂F

∂Y 2

)2}
dY 1 ∧ dY 2

=
∫

D0(1)

∣∣∇R
2(

F ◦ Y−1)∣∣2dy1dy2. (A.16)

A.3. The Levi-Civita connection on H2(−a2)

We begin by obtaining a representation of the Levi-Civita connection ∇ acting on the space of smooth vector fields 
over H2(−a2) in terms of the natural coordinate system Y = (Y 1, Y 2) : H2(−a2) → DO(1) as introduced in (A.4). 
In other words, we first calculate the Christoffel symbols Γ k

ij (for 1 ≤ i, j, k ≤ 2) which appears in the following 
representation formula:

∇ ∂

∂Y i
= Γ k

ij dY j ⊗ ∂

∂Y k
. (A.17)

Indeed, in accordance with basic Riemannian geometry, we have the following useful formula for Γ k
ij , where gij =

g( ∂
∂Y i , 

∂
∂Y j ), and gij are specified in (A.12):

Γ k
ij = 1

2
gkα

{
∂giα

∂Y j
+ ∂gjα

∂Y i
− ∂gij

∂Y α

}
. (A.18)

By means of the above formula, we obtain

Γ 1
11 = 2Y 1

1 − |Y |2 ; Γ 1
12 = 2Y 2

1 − |Y |2 = Γ 1
21,

Γ 2
11 = −2Y 2

1 − |Y |2 ; Γ 2
12 = 2Y 1

1 − |Y |2 = Γ 2
21,

Γ 1
22 = −2Y 1

1 − |Y |2 ; Γ 2
22 = 2Y 2

1 − |Y |2 . (A.19)

In accordance with the information as provided in (A.19), we immediately get:

∇ ∂

∂Y 1
= 2

1 − |Y |2
{
Y1dY 1 ⊗ ∂

∂Y 1
+ Y2dY 2 ⊗ ∂

∂Y 1
− Y2dY 1 ⊗ ∂

∂Y 2
+ Y1dY 2 ⊗ ∂

∂Y 2

}
,

∇ ∂

∂Y 2
= 2

1 − |Y |2
{
Y2dY 1 ⊗ ∂

∂Y 1
− Y1dY 2 ⊗ ∂

∂Y 1
+ Y1dY 1 ⊗ ∂

∂Y 2
+ Y2dY 2 ⊗ ∂

∂Y 2

}
.

(A.20)

However, since it is plain to see that dY i ⊗ ∂
∂Y j = e∗

i ⊗ ej , where {e1, e2} is the orthonormal frame on H2(−a2) as 
specified in (A.10), and {e∗

i , e
∗
2} is the respective orthonormal dual frame as specified in (A.11). Since the induced 

Riemannian metric on the vector bundle T ∗
H

2(−a2) ⊗ H
2(−a2) is exactly the one with respect to which the frame 

{e∗
i ⊗ ej : 1 ≤ i, j ≤ 2} is orthonormal. Due to these observations, it follows directly from (A.20) that we must have∣∣∣∣∇ ∂

∂Y 1

∣∣∣∣ = 2 · 2
1
2 |Y |

1 − |Y |2 =
∣∣∣∣∇ ∂

∂Y 2

∣∣∣∣. (A.21)
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A.4. Defu in coordinates

∇ is expressed in terms of the coordinate system Y = (Y 1, Y 2) specified in (A.4) in the following way. First,

dY i = −Γ i
jkdY k ⊗ dY j , (A.22)

with Γ i
jk to be the Christoffel symbols as given in (A.19). So, we have the following straightforward expressions:

∇dY 1 = 2

1 − |Y |2
{−Y 1dY 1 ⊗ dY 1 − Y 2dY 1 ⊗ dY 2 − Y 2dY 2 ⊗ dY 1 + Y 1dY 2 ⊗ dY 2},

∇dY 2 = 2

1 − |Y |2
{
Y 2dY 1 ⊗ dY 1 − Y 1dY 1 ⊗ dY 2 − Y 1dY 2 ⊗ dY 1 − Y 2dY 2 ⊗ dY 2}. (A.23)

Now, for an arbitrary smooth 1-form u = u1dY 1 + u2dY 2 on H2(−a2), ∇u is expressed as follows:

∇u =
{

∂u1

∂Y 1
− 2Y 1u1

1 − |Y |2 + 2Y 2u2

1 − |Y |2
}

dY 1 ⊗ dY 1 +
{

∂u2

∂Y 1
− 2Y 2u1

1 − |Y |2 − 2Y 1u2

1 − |Y |2
}

dY 1 ⊗ dY 2

+
{

∂u1

∂Y 2
− 2Y 2u1

1 − |Y |2 − 2Y 1u2

1 − |Y |2
}

dY 2 ⊗ dY 1 +
{

∂u2

∂Y 2
+ 2Y 1u1

1 − |Y |2 − 2Y 2u2

1 − |Y |2
}

dY 2 ⊗ dY 2. (A.24)

By symmetrizing all the terms in the above expression of ∇u, we yield the following expression for Defu = 1
2 {∇u +

(∇u)T }:

Defu =
{

∂u1

∂Y 1
− 2Y 1u1

1 − |Y |2 + 2Y 2u2

1 − |Y |2
}

dY 1 ⊗ dY 1

+
{

1

2

(
∂u1

∂Y 2
+ ∂u2

∂Y 1

)
− 2Y 2u1

1 − |Y |2 − 2Y 1u2

1 − |Y |2
}(

dY 1 ⊗ dY 2 + dY 2 ⊗ dY 1)
+

{
∂u2

∂Y 2
+ 2Y 1u1

1 − |Y |2 − 2Y 2u2

1 − |Y |2
}

dY 2 ⊗ dY 2. (A.25)

A.5. Integration by parts and all that

We end this part of the appendix with some simple computations.

Lemma A.1. Let (M, g) be given. Then if f is a C1 function and u, v are C1 1-forms on M , then the following hold 
pointwise:

−d∗(f u) = −f d∗u + g(df,u), (A.26)

2g(∇uv, v) = |v|2d∗u − d∗(|v|2u)
, (A.27)

g(∇uv,w) ≤ |u||∇v||w|, (A.28)∣∣∇|u|2∣∣ ≤ 2|∇u||u|. (A.29)

Proof. (A.26) follows from [19, Ex 3-3, p. 43 ] where it is stated for vector fields. For (A.27) we first observe

dg(v,w)(u) = g(∇uv,w) + g(v,∇uw). (A.30)

Hence if w = v, and using |v|2 = g(v, v) we have

2g(∇uv, v) = d|v|2(u) = g
(∇|v|2, u) = g

(
d|v|2, u)

,

where the second equality follows from the definition of the gradient, and the last one by the definition of the induced 
metric on the 1-forms. Then (A.27) follows from (A.26). (Recall, for the simplicity of notation u is used to denote 
both the vector field and the corresponding 1-form.)
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For (A.28) by Cauchy–Schwarz it is enough to show

g(∇uv,∇uv) ≤ |∇v|2|u|2.
But since this is a pointwise estimate, this follows from computing in normal coordinates just like it would in the 
Euclidean case, because then ∇uv = ∑

jk uj ∂j v
k ∂

∂xk , and gij = δij . Finally (A.29) follows from∣∣∇|u|2∣∣ = ∣∣d|u|2∣∣,
and (A.30) and (A.28). �
Appendix B. Finite dissipation via complex analysis

First, we have the following lemma based on some elementary complex analysis.

Lemma B.1. Let f : DO(1) → C to be a holomorphic function on the open unit disc DO(1) = {z = y1 + iy2 ∈ C :
|z| < 1} which satisfies∫

DO(1)

∣∣f (z)
∣∣2dy1dy2 < ∞. (B.1)

Then it follows that f ′(z) satisfies the following property:∫
DO(1)

(
1 − |z|)2∣∣f ′(z)

∣∣2dy1dy2 ≤ 1

2

∫
DO(1)

∣∣f (z)
∣∣2dy1dy2. (B.2)

Proof. Let f be a holomorphic function f on DO(1) which satisfies condition (B.1). Then f can be expressed in a 
form of a power series

f (z) =
∞∑

k=0

akz
k,

whose radius of convergence is of course 1. Then for any r ∈ (0, 1) and θ ∈ [0, 2π) we have

∣∣f (
r · eiθ

)∣∣2 = f
(
r · eiθ

)
f

(
r · eiθ

) =
∞∑

k=0

∞∑
l=0

akalr
k+lei(k−l)θ ,

from which it follows directly that (if k = l, the integral gives 0)

π ·
∞∑

k=0

|ak|2
k + 1

=
1∫

0

2π∫
0

∣∣f (
r · eiθ

)∣∣2
rdrdθ =

∫
DO(1)

∣∣f (z)
∣∣2dy1dy2 < ∞. (B.3)

In the same way, we easily get the following relation for |f ′(z)|2:

∣∣f ′(r · eiθ
)∣∣2 = f ′(r · eiθ

)
f ′(r · eiθ

) =
∞∑

k=0

∞∑
l=0

(k + 1)(l + 1)ak+1al+1r
k+lei(k−l)θ ,

from which one immediately gets

2π∫
0

∣∣f ′(r · eiθ
)∣∣2dθ = 2π

∞∑
k=0

|ak+1|2(k + 1)2r2k.

By using polar coordinates we deduce
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∫
DO(1)

(
1 − |z|)2 · ∣∣f ′(z)

∣∣2dy1dy2 =
1∫

0

r(1 − r)2

2π∫
0

∣∣f ′(r · eiθ
)∣∣2dθdr

= 2π

∞∑
k=0

(
|ak+1|2(k + 1)2

1∫
0

(1 − r)2r2k+1dr

)
. (B.4)

By a simple computation, we have

1∫
0

(1 − r)2r2k+1dr = 1

2k + 2
− 2

2k + 3
+ 1

2k + 4
= 2

(2k + 2)(2k + 3)(2k + 4)
. (B.5)

So, it follows directly from (B.4), and (B.5) that we must have∫
DO(1)

(
1 − |z|)2 · ∣∣f ′(z)

∣∣2dy1dy2

= π

∞∑
k=0

|ak+1|2
(2k + 3)

(k + 1)

(k + 2)
= π

2

∞∑
k=1

|ak|2
(2k + 1)

2k

(k + 1)
≤ 1

2

∫
DO(1)

∣∣f (z)
∣∣2dy1dy2,

as needed. �
Remark B.2. Here, let us mention that the crucial identity (B.3) is classical and can easily be found in standard 
textbooks in Complex Analysis. Inequality (B.2) seems to be less well-known. However, in the light of the long 
history of the theory of holomorphic functions and the elementary nature of (B.2) we suspect that an estimate of that 
kind could be presented somewhere in the vast literature, though it does not seem to be as easily located as (B.3).

What we really need is actually the following lemma, which is a straightforward by-product of Lemma B.1.

Lemma B.3. Let u : DO(1) → R be a harmonic function on the Euclidean unit disc DO(1) = {y = (y1, y2) : |y| < 1}
which satisfies the following condition:∫

DO(1)

∣∣∇R
2
u
∣∣2dy1dy2 =

∫
DO(1)

|∂y1u|2 + |∂y2u|2 < ∞. (B.6)

Then, it follows that |∇R
2∇R

2
u|2 = ∑

1≤j,k≤2 |∂yj
∂yk

u|2 satisfies the following property:∫
DO(1)

(
1 − |y|)2∣∣∇R

2∇R
2
u
∣∣2dy1dy2 ≤

∫
DO(1)

∣∣∇R
2
u
∣∣2dy1dy2. (B.7)

Proof. Here, the point y = (y1, y2) ∈ DO(1) is identified with the complex number z = y1 + iy2. Let u : DO(1) → R

be a harmonic function which satisfies (B.6), and let v : DO(1) → R be the harmonic conjugate of u on DO(1), so 
that

f (z) = u(z) + iv(z)

is a holomorphic function on DO(1). Since u and v satisfy the Cauchy–Riemann equations we have

f ′ = 1

2
(∂y1f − i∂y2f ) = ∂y1u + i∂y1v = ∂y1u − i∂y2u, (B.8)

which of course gives∣∣f ′(z)
∣∣2 = |∂y1u|2 + |∂y2u|2 = ∣∣∇R

2
u
∣∣2

. (B.9)
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As a result, condition (B.6) is equivalent to∫
DO(1)

∣∣f ′(z)
∣∣2dy1dy2 =

∫
DO(1)

∣∣∇R
2
u
∣∣2dy1dy2 < ∞. (B.10)

Hence, we can apply Lemma B.1 to f ′ to deduce that we must have the following estimate:∫
DO(1)

(
1 − |z|)2∣∣f ′′(z)

∣∣2dy1dy2 ≤ 1

2

∫
DO(1)

∣∣∇R
2
u
∣∣2dy1dy2. (B.11)

However, since u is harmonic and f ′′(z) = ∂y1∂y1u − i∂y1∂y2u, we obtain∣∣f ′′(z)
∣∣2 = |∂y1∂y1u|2 + |∂y1∂y2u|2 = 1

2

{|∂y1∂y1u|2 + 2|∂y1∂y2u|2 + |∂y2∂y2u|2}
= 1

2

∣∣∇R
2∇R

2
u
∣∣2

. (B.12)

Thanks to this identity, estimate (B.11) is equivalent to estimate (B.7), as desired. �
Appendix C. Functional analysis

Lemma C.1. (See [27, Lemma 1.1, p. 169].) Let X be a Banach space and X′ its dual. If g ∈ L1([a, b]; X), then the 
following are equivalent:

(1) u is a.e. equal to a primitive of g:

u(t) = ξ +
t∫

0

g(s)ds, ξ ∈ X, and for a.e. t ∈ [a, b].

(2) g is the weak time derivative of u:

b∫
a

u(t)φ′(t)dt = −
b∫

a

g(t)φ(t)dt for every test function φ ∈D((a, b)).

(3)

d

dt
〈u,η〉X⊗X′ = 〈g,η〉X⊗X′ for every η ∈ X′.

Lemma C.2. (See [27, Lemma 1.2, p. 176].) Let V , H be a Hilbert space satisfying

V ⊂ H ⊂ V ′,

with V ′ the dual of V . If u ∈ L2(0, T ; V ) and ∂u
∂t

∈ L2(0, T ; V ′), then u is almost everywhere equal to a function 
continuous from [0, T ] into H and

d

dt
|u|2 = 2

〈
∂u

∂t
, u

〉
holds in a sense of distributions on (0, T ).

Theorem C.3 (Compactness). (See [27, Theorem 2.2, p. 186].) Let X0, X, X1 be Hilbert spaces such that

X0 ⊂ X ⊂ X1

where the injections are continuous and so that the injection of X0 into X is compact. Let γ > 0 and Hγ denote the 
space
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Hγ := Hγ (R : X0,X1) = {
v ∈ L2(R;X0),D

γ
t v ∈ L2(R;X1)

}
,

where Dγ
t v denotes a fractional time derivative of v, and with a norm

‖v‖Hγ = ‖v‖L2(R;X) + ∥∥|τ |γ v̂
∥∥

L2(R;X1)
.

Then for a bounded set K ⊂R, the space Hγ

K given by

Hγ

K = {
u ∈Hγ : suppu ⊂ K

}
is compactly imbedded into L2(R, X).

We emphasize that the following lemma should be a part of the standard working knowledge in functional analysis. 
However, we present a simple proof for it since it fully justifies why we are able to select a basis for V within
Λ1

c,σ (H2(−a2)).

Lemma C.4. Consider V to be a separable Banach space equipped with the norm ‖ · ‖V . Let S be some dense subset 
of V . Then, there exists a sequence of elements {yk}∞k=1 ⊂ S which is a basis for V .

Proof. Since V is separable, we can find a sequence {vm}∞m=1 ⊂ V such that {vm}∞m=1 is dense in V . Then, for 
each pair of integers m, j ∈ Z

+, the density of the set S in V ensures that there is some element emj ∈ S such that 
‖emj − vm‖V < 1

2j .
Next, we check that {emj : m, j ∈ Z+} ⊂ S is also dense in V . For any v ∈ V , and any ε > 0, the density of {vm}∞m=1

ensures the existence of some integer mε such that ‖vmε − v‖V < ε
2 . Then let jε be some sufficiently large integer so 

that 1
2jε

< ε
2 . Hence

‖emjε − v‖V ≤ ‖emεjε − vmε‖V + ‖vmε − v‖V < ε

as needed.
For convenience, we need to enumerate {emj }. Take any bijective map Ψ : Z+ → Z

+ ⊗Z
+ so that{

emj : m,j ∈ Z
+} = {eΨ (k)}∞k=1.

Consider

Em = span{eΨ (1), eΨ (2), . . . , eΨ (m)},
then, the density of {eΨ (k)}∞k=1 in V of course implies that the closure of 

⋃
m Em coincides with V . That is we have⋃

m

Em = V

so the sequence {eΨ (k)}∞k=1 is total in V .
In order to extract a basis of V from {eΨ (k)}∞k=1, we can carry out a simple procedure to eliminate those linearly 

dependent elements from {eΨ (k)}∞k=1 in the following way: for each m ≥ 2, eliminate the element eΨ (m) if it happens 
that Em = Em−1. Otherwise, we keep eΨ (m). After carrying out this procedure indefinitely, we arrive at a strictly 
increasing sequence of positive integers {mk}∞k=1 such that the subsequence {eΨ (mk)}∞k=1 is linearly independent and 
also total in V . Hence, the sequence {eΨ (mk)}∞k=1 of elements in S can serve as a basis of V , as desired. �
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