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Abstract

For the homogeneous Boltzmann equation with (cutoff or noncutoff) hard potentials, we prove estimates of propagation
of L? norms with a weight1 + [x[2)4/2 (1 < p < +o0, ¢ € R+ large enough), as well as appearance of such weights. The
proof is based on some new functional inequalities for the collision operator, proven by elementary means.
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Résumé

On prouve la propagation de norme& avec poidg1 + |x|2)4/2 et I'apparition de tels poids pour I'équation de Boltzmann
homogéne dans le cas des potentiels durs (avec ou sans troncature angulaire). La démonstration est basée sur de nouve
inégalités fonctionnelles pour I'opérateur de collision, que I'on prouve par des moyens élémentaires.
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1. Introduction

The spatially homogeneous Boltzmann equation (cf. [5]) writes

a
a—]:(l,v)=Q(f, i, v), (1.1)

wheref(t,-) :RY — R, is the nonnegative density of particles which at tinmeove with velocityv. The bilinear
operator in the right-hand side is defined by

vV — Uy

0(g, ) = / / {f)ew) - f(v)g(v*)}B(lv — Uy,
RN §N-1
In this formula,v’, v, andwv, v, are the velocities of a pair of particles before and after a collision. They are defined
by

-0’) do dv,. 1.2)

[V — vy

vt | - vt [v—w

2 2 & =7 ) 2 @

whereo e SN-1,
We concentrate in this work on hard potentials or hard spheres collision kernels, with or without angular cutoff.
More precisely, we suppose that the collision kernel satisfies the following

Assumptions.The collision kerneB is of the form

B(x,y) = |x|"b(lyl), (1.3)
where
v €[0,1] (1.4)
and
00 —(N=2)+v
beLg(-1.1). b =0,1-(1=y)~ 2z ), v>-3. (1.5)

Note that assumption (1.5) is an alternative (and a slightly less general) formulation to the minimal condi-
tion necessary for a mathematical treatment of the Boltzmann equation identified in [21,2], namely the require-
ment

/ b(cosH)(1—cosh)do < +o0. (1.6)

S§N-1

Then, we wish to consider initial daté > 0 with finite mass and energy, such thiatl + [v|%)?/2 € LP(RV)
for some 1< p < 400 andg > 0 (notice that entropy is thus automatically finite). Existence results under the
assumptions of finite mass, energy and entropy were obtained in [3] for the case of hard potentials with cutoff,
in [4] for (noncutoff) soft potentials in dimension 3 under the restrictiop —1, then in [10] and [21] for general
kernels (our assumptions on the kernel fall in the setting of [21] for instance). Uniqueness however is proved only
in the cutoff case (for an optimal result see [17]) and remains an open question in the noncutoff case (except for
Maxwellian moleculey = 0, see [20]).

Propagation of moments ih! was proven in [13] for Maxwellian molecules with cutoff. Then, for the case
of strictly hard potentials with cutoff, it was shown in [6] that all polynomial moments were created immediately
when one of them of order strictly bigger than 2 initially existed. This last restriction was later relaxed in [24].

Propagation of moments ib” was first obtained by Gustafsson (cf. [11,12]) thanks to interpolation techniques,
under the assumption of angular cutoff. It was recovered by a simpler and more explicit method in [18], thanks to
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the smoothness properties of the gain part of the Boltzmann’s collision operator discovered by P.L. Lions [14]. As
far as appearance of momentdifi is concerned, the first result is due to Wennberg in [23], still in the framework
of angular cutoff. It is precised in [18].

In this work, we wish to improve these results by presenting atheory

o first, which is elementary (that is, without abstract interpolations and without using the smoothness properties
of Boltzmann'’s kernel),

e secondly, which includes the non cutoff case,

o finally, without assuming too many momentsiifi for the initial datum.

Our method is reminiscent of recent works by Mischler and Rodriguez Ricard [16] and Escobedo, Laurencot
and Mischler [9] on the Smoluchowsky equation.
Let 1< p < +oo. We define the weightefl” spaceL] (R") by

LR ={f:R¥ >R, 1fllzp vy < +o0},

with its norm

11y, = [ 17 @177
q RN

and the usual notatiofv) = (1 + [v|?)Y/2.
We now state our main theorem

Theorem 1.1.Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5)and ¢ such that

(i) g € R4 if v > —1 (integrable angular kernel),
(i) pg>2ifve(—2,-1],
(i) pg >4ifve(—3,-2],

and fo beaninitial datumin L%"Iax(p,Z)q+2 NLY.
Then

o there exists a (weak) solution to the Boltzmann equation (1.1) with collision kernel B and initial datum fp
lying in L°°([0, +00); LY (RY)) (with explicit bounds in this space),

e if y > 0, this solution belongs moreover to L™ ((z, +00); LY (RV)) for all z > 0and r > ¢ (still with explicit
boundsiin this space, the blow up near T ~ 0" being at worse polynomial).

Remarks. We now discuss the assumptions and the conclusion of this theorem.

1. Our result cannot hold when the hard potentials are replaced by soft potentials. In the case of Maxwellian
molecules ¢ = 0), we have uniform (in time) bounds but no appearance of moments (neittiér fmor in L1)
occurs. In the case of the so-called “mollified soft potentials” with cutoff, some bounds growing polynomially in
time can be found in [19], based on the regularity property of the gain term of the collision operator.

2. When the collision kerna® is not a product of a function of by a function ofy (as in Assumption (1.3)), it
is likely that Theorem 1.1 still holds provided that the behavioBo#ith respect tor (whenx — +00) is that of
a nonnegative power angl satisfies estimate (1.5) uniformly accordingcto

3. The restriction on the weightis not a technical one which is likely to be discarded (at least in our method).
Indeed as suggested in [1,15,22] the noncutoff collision operator behaves roughly like some fractional Laplacian
of order—v/2 and these derivatives will in fact be supported by the weight, as we shall see. Notice however that
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there is no condition og whenv > —1, i.e. in the cutoff case, which recovers existing results. Note also that
the conditionfp € L%q+2 is used only to get the uniformity when— +oco of the estimates. The local (in time)

estimates hold as soon #se L1 ..
. Pq+2: . . - .

4. Finally, Theorem 1.1 can certainly be improved when the collision kernel in non cutoff. In such a case (and
under rather not stringent assumption (cf. [1])), it is possible to show that some smoothness is gained, and som
L? regularity will appear even if it does not initially exist. As a consequence, the assumptions of Theorem 1.1
can certainly be somehow relaxed. One can for example compare Theorem 1.1 to the results of [7] for the Landat
equation. We also refer to [8] for “regularized hard potentials” without angular cutoff.

The proof of Theorem 1.1 runs as follows. In Section 2, we give various bounds for quantities like

/ Q(f, HW) P ) ()P dv.
]RN

These bounds are applied to the flow of the spatially homogeneous Botzmann equation in Section 3, and are
sufficient to prove Theorem 1.1, except that the bounds may blow up whent-oco. Finally in Section 4, we
explain why such a blow up cannot take place, and so we conclude the proof of Theorem 1.1. This last part is the
only one which is not self-contained. It uses an estimate from [18].

2. Functional estimates on the collision operator

In the sequel we shall use the parametrization described in Fig. 1, where

U — Uy v — v,

= -, o = —_—,
v — vy [v" — vl
and co® = o - k. The range ob is [0, 7] ando writes
o = Cco9k + sinbu,

whereu belongs to the sphere 8~ orthogonal tok (which is isomorphic t&" —2).

V’

Fig. 1. Geometry of binary collisions.
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Thanks to the change of variatfle> = — 6 which exchanges’ andv,, thequadratic collision operator can be
written

O(f. fHv) = / {F) f)) = F) f ()]} Bsym(lv — vil, cosd) do dus,
RN xSN-1

where
Bsym(|v — Vs, COS@) = [B(Iv — Vyl, COS@) + B(|v — V4|, cO9T — 0))]1(;039;0.

As a consequence, it is enough to consider the case WBlen— v,|, -) has its support included if0, 7 /2].
This is what we shall systematically do in the sequel (Beware that certain propositions are written for the bilinear
kernel Q(g, f) and not forQ(f, f): they hold only in fact for the symmetrized collision kernglyn, defined
above).

Recalling that

;o VU U — vy
= O',
2 2
we use (for allF) the formula (cf. [1, Section 3, proof of Lemma 1])

’ _ 1 [V — vyl
/ B(|v—v*|,cos«9)F(v)dvd0— / COS’V(Q/Z)B(COS(O/Z)’COS@)F(v)dvdU' (2.7)

RN xSN-1 RN xSN-1

Let us prove a first functional estimate independent on the integrability of the angular part of the collision kernel

Proposition 2.1.Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5). Then, for allp > 1, g € R
and f and g nonnegative, we have

/ 0(g, HW) P71 w) ()P dv

RN

< / v — vﬂ”b(cos@)[(cos(@/Z)f% — l](v)qu”(v)g(v*) do dv, dv

RZNXSN—l
+ / %(COS(@/Z))_N;V|v—v*|yb(0089)[(v')pq — ()P7] fP(v) g(vs) do dvs dv. (2.8)
RZNXSN_l

Proof. We first observe that thanks to the pre-post collisional change of variables (that is, the identity
[ Fv,vi,0)do dvedv= [[[ F(V',v,0)do dv.dv):

/ 0(g, /W) P 1w) ()P dv
RN

= / {g(v;)f(v’)—g(v*)f(v)}f”_l(v)(v)pqw—v*|yb(C050)dUdv*dv

R2N xSN-1

= / [(W)P4 P f(0)g(ve) — (V)P FP(0)g(vs) ]l — vi]” b(COSA) do dvs dv.

R2N xSN-1
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According to Young'’s inequality, for ajk = 1 (6) > 0,

ny p—1 1 1
) f) = (f (f/’p)> (P FW) < (1— —)/flfp(v/) +—uPT (),
so that
/Q(g, H@) P w) )P dv
RN

< / [(l—%)M_lw’)”"f”(v’H%u”_1<v’>”qf”(v)—(v>”qf”(v)]
RZNXSN_l

x g(vy)|v — vg|Vb(cOoSV) do dvy dv.
We now use (for a given,, 6) formula (2.7) for the first term in this integral. We get
/ 0(g. @) fP~ W) (v} dv
RN
< / [(1 - %)ulw’q (cos0/2)) " 7 (v) + %le/)”’fﬂ’(v) - (v)”"f"(v)]

R2N «§N-1
x g(v)|v — v4|Vb(cosH) do dvy dv

= ()P ]v — vy |"b(cOSH) £ (v) g (vs)

R2N «§N-1
X [(1— l),ul(COS(H/Z))NV + E,vafl - 1i| do dv,dv
p p
v f %u"—lw — 0.7 b(cosh) £ (g (W) [(v) — (v)"] do dv. dv.

R2N xSN-1

We now take the optimal = 1« (0) > 0. This amounts to consider

_ Nty
() = (cos0/2))" 7.
In this way, we get estimate (2.8).0

Remark. With the same idea, one could easily obtain

/ 0(g, HW) P W) ()P dv
RN

= ()Pv — v, |"b(cos) P (v) g (vs)

R2N xSN-1

x [(1 - %) u(cog6/2) V7 + %Ml(cos(e/z))”‘f - 1} do dv, dv

+ / %u!"lw — vi|”b(coS0) £ (v)g () [ (V)7 — (co%60/2)) " (v)P] do dv.cdv,

R2N xSN-1
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so that taking the optimal given by

Ny,
n(6) = (cog6/2))” 7 7,

the following inequality holds:

/ 0(g, /W) P Hw) ()P dv
RN

N+
< / ()P4 |y — v*|7’b(cose)[(cos(0/2))q_v_’y — 1] fP(v)g(v) do dvs dv
R2N «§N-1
1 —a(p—1)— Nty
" / = (c0s0/2)) VTV |y — vl b(cosd)
RZNXSN—l p
x [(v')P7 — (cos6/2))" (v)P9] 7 (v)g (vs) do dvy dv.
If ¢ is big enough, i.e. such that
_ N4y

/

>0, (2.9)

the first term is strictly negative, and some estimates (in the same spirit as in Lemma 2.3 below) on the term
[(v/yP? — (cog6/2))P4(v)P4] for small and large angleswould yielddirectly

f Q@g. HW P W) )P dv < —C / 8(vs) dvx / fP) ()P dv
RN RN RN
+D / g(vs) (V)P du, / fP(v)dv
RN RN
+D / 8(v,) (v)2 du, / FP@) ()P dv.
RN RN
We do not follow in the sequel this line of ideas because we don’t want to assume (2.9). We rather choose to make
a global splitting between the small and large angles

We now deduce from Proposition 2.1 a corollary enabling to bound

f 0(g, /W) P W) ()P dv
RN

in terms of weighted.! and L” norms of f andg. Note that this corollary is almost obvious to prove when the
collision kernel is integrable (cutoff case).

Corollary 2.2. Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5). We considerf and g nonneg-
ativeand g € R. We suppose moreover that pg > 2if v € (—2,—1]and pg > 4 if v € (—3,—-2]. Then,

V4 ’
Lq+y/p

[ e st an< o, Gy, 161 (2.10)
RN
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where

Cp,N,,,(b)zcst(p,N,y)( / b(cos@)(l—cos@)do),

SN-1

and cst(p, N, y)isacomputable constant depending on p, N and y.

Remark. Since the non cutoff collision operator behaves roughly like some fractional Laplacian of-ewd2y

one could wonder how a functional inequality which does not contain derivatives of the furfctan hold. The
answer is that the pre-post collisional change of variable and formula (2.7) (which play here the role played by
integration by part for differential operators) allow to transfer the derivatives on the weight furge}ith This

also explains why the restriction on the weight exporedepends on the orderof the angular singularity.

Proof of Corollary 2.2. Estimate (2.8) can be written

f 0(g, HW P )P dv < I+ I + I3,
]RN

where
I = / lv — v*|Vb(cos9)[(cos(9/2))‘% — 1J(v)? fP (v)g(vy) do dvs. dv,
RZNXSN—l
= [ l(eose/2) T~ L= 0 beosh[0)"7 — )] W (w) do dv.
RZNXSN_l

1
Iz= / —|v— v*|Vb(C059)[<U/>M _ (U)pq]fp(v)g(v*) do dv, dv.
R2N xsN-1 b
Then the two first terms are easily estimated thanks to the formula

Ny N
[(co0/2)™ 7 — 1] ~os0 4;3/

For the last one, we shall need the following lemma, which takes advantage of the symmetry properties of the
collision operator:

(1—cosp).

Lemma 2.3.For all o > 1,

[(V)% — ()] du| < Ca(sinG/2) ()% (v,), (2.11)
ueSN-2
and for all o > 2,
‘ / [(v)2 — ()2 du| < Co(SING/2)? (V)% (v,) . (2.12)

ueSN-2

Remark. This lemma is reminiscent of the symmetry properties used in the “cancellation lemma” in [2] and [1] in
order to give sense to the Boltzmann collision operator for strong angular singularitiesgice-3, —2]).
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Proof of Lemma 2.3. We note that since

[v'1? = [v]?coS 0/2 + |v,|?SIP0/2 + 2C09/2SIN0/2|v — v |u - vy,
if one introduces (for € [0, +/2/2]) the function

Ro(x) = / [(1+ 1012Q = x?) + 26?4+ 2xv/1 = x2|v — vyfu - v,)* = (1+ [v]?) "] du,

ueSN-2
we get
f [(1+1V1?)% — (14 [v%)*] du = Re(sin6/2).
ueSN-2

But thanks to the change of variables> —u, we see thaR, is even. Noticing also thak, (0) = 0, we use the
identities

1
Ra(x)zx/R;(sx)ds,
0

1
Ry (x) =x2/(l—s)Rg(sx)ds.
0

We compute

Ro) = / (=2x 11?4+ 2x|vs | + 2(L— xA) Y2 v — vyfu - vy — 2631 — x2) V20 — v fu - vy)
ueSN-2
X (1+ |U|2(1 — xz) + |v*|2x2 + Z)th) — vulu - U*)a—ldu

and
Rg(X)za((x—l) / (_2x|v|2+2x|U*|2+2(1—x2)1/2|v_v*u.v*
ueSN-2

- 2X2(1— x2)71/2|v — U*|u . U*)z
x (1+ 10121 — x2) + [va 2% + 2xv/1 — x2Jv — v u - v*)a_zdu
Tt / (=200 + 2[w > — 2x (1 — x*) "2

ueSN-2

X U — Vil - vy — 2)v — vy lu - v (20 (L — X2 V2 431 x2)73/2))
x (1+ WA = x2) + [vs) 262 + 2xv/1 — x2|v — v, |u - v*)a_ldu.
Then, forx € [0,+/2/2], if & > 1, we get
| R, ()] < Car0)® (v),
and ifa > 2,
| Ry ()] < Cafv)* (v:)**

This concludes the proof of Lemma 2.30
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Let us come back to the proof of Corollary 2.2. We have

T
1
I3= / / Z v — v4]”b(COSH) Ry (SING/2)(SINOYY 2 P () g (v4) dO d vy dv
R2N 0O P
for o = (pg)/2. Lemma 2.3 and the equality
(sing/2)2 = L= 0% ;099 )

conclude the proof. O
We now turn to an estimate which holds when the (angular part of the) collision kernel has its support in

[60, 7w /2] for somefy > 0. As we shall see later on, this term is the “dominant part” of the same quantity when the
(angular part of the) collision kernel has its supportQns /2].

Proposition 2.4.Let B satisfy Assumptions (1.3), (1.4), (1.5). We suppose moreover thath has its support in
[60, w/2]. Then, for all p > 1, ¢ > 0and f nonnegative with bounded L;q 4o Norm, we have

/ O(f, /W FP W) ()P dv < C*(b)llfllfp - K‘(b)IIfII’L’p (2.13)
R¥ q q+y/p
with
c+(b)=c+< / bdcr), K(b):K( / bdo),
SN—l SN—l

where C*, K~ are strictly positive constants. Both depend on an upper bound on || £, 1 X and on a lower bound
Pq+
on | £l 1; C* also depends on 6.

Remark. This estimate could be deduced from the results of [18], but we shall give here an elementary self-
contained proof, in the same spirit as that of the proof of Proposition 2.1.

Proof of Proposition 2.4. Let us write the quantity to be estimated

[ e pwrriowrans [ ot pwrtewan- [ o7 Hw i,

RN RN RN
splitting as usual the operator between its gain and loss parts (remember that the small angles have been cutoff
On one hand, using — v.|” > [(v)¥ — cst{v,)?] we get

= / O™ (£, NP dv < =Kollbll s 1]+ Collbllaev— 1717,
q+y/p
RN

for some constanko > 0 depending on a lower bound ¢if ||, andCo > 0 depending on an upper bound on the
IIfIIL%. On the other hand,

/Q*(f,f)(v)f”‘l(v)w)”qdv= / FLf P )P Bdvdv, do
RN R2N xSN-1

can be split into
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= / fL(fin) P~ )P4 Bdvdv, do,
RZNXSN_l
Iy = / FL(fire) P~ w)P4 Bdv dv, do,
RZNXSN—l

with j, (v) = 1y and j« =1 — j.. This means that we treat separately large and small velocities. Then

L= / LD P10y B dvdv, do

RZngN—l
1 1 ,_
< / f*[(l——)uzlfp<v/)+—ui’ 1<fjr>"<v)]<v/>"quvdv*da
RZNXSN—l [7 P
1 1 _N— 1 -1 .
< |Ib | (1-= cosr/4)~N-v P + =t L
160l L1y 1{( p)ul ( /4) IIfIIL;IIfIILZWp pul IIfIIL;W IIerIILfW/p
and thus

1\ _ _N— 1,1
11<||b||L1(S~-1>[(1—;)uf(cosnm) A TR F P e rannL;Wufu’L’g]. (2.14)

a+v/p

As for I, we get
= / F (i) fP Y w)P4 B dvdv, do
RZNXSN—l

thanks to the change of variable—> —o. Now B has compact support {or/2, = — 6g]. Then we compute

= / (Fjr ) f(FHP~H0VP B dv dvy do
RZNXSN_]-
. 1 71 7 1 p_l ’ ~
< / (f]r“)*[(l_;)ﬂz f”(v)+;u2 fp(v)](v)qudvdv*da

R2N x§N-1

1,
p - P
p:uz I fjr ”L},quy”f”Lp j|

a+v/p

] N o
< bl pagh-1) (1—;>M21(Sln90/2) NN fhre a1

a+v/p

by using again formula (2.7) and thus

+v/p

i 1\ 4 . N _
I < |Ibll iy (1—;>u21(sm90/2) AR E R R A PRV
L q

1 p-1 P
= P } (2.15)

q+v/p

Gathering (2.14) and (2.15), we obtain for the gain part

1,
/ 0F (£, ) FP 1) ()P dv < ||b||L1(SN_1)[;u{ 1<1+rZ)V/ZufuL;W]nfn{g

RN

1\ _ _N—
+||b||L1(SN1)|:<1—;>M11(0057T/4) N=y
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1 .
+ (1 - —) 15 (sindo/2) N7 (1 r2) =272
p

1,
P P
+pM2 ]IIfIILllmyIIfIILp

q+v/p

For some&dp > 0 fixed, one can first chooge, small enough, then big enough (remember that— 2 < 0), then
w1 big enough, in such a way that

1 1 : Ny 1 - K
[(1— —>u11<cosn/4>—N-V + (1— —)uzl(SIHQO/Z) Nvpr=2 4 —uf 1} Ifle <=
p p p paty = 2
We thus get the wanted estimate by combining the estimates for the gain part and the lossipart.

We now can gather Corollary 2.2 with Proposition 2.4 in order to get the

Proposition 2.5.Let B satisfy Assumptions (1.3), (1.4), (1.5)p belong to (1, +00), and ¢ > 0. e suppose more-

over that pg > 2ifv e (—2,—1]and pg > 4if v € (—3,—2]. Then, for f nonnegative with bounded L}W+2 norm,
we have
/ O(f. W) fP 1) (W) dv < C+I|f|l,’i5 - Kﬁllfllzp+ ) (2.16)
q+y/p
RN

for some positive constants C* and K, depending on an upper bound on || /||, 1 , and on a lower bound
Pq+
on |l fllpz.

Proof. The proof is straightforward and based on a splitting of the form
b =b% + b, (2.17)
wherep® = blyefgo,x/2) Stands for the “cutoff” partbfO — 1 — b for the remaining part, anéy € (0, /2] is

some fixed positive angle. We split the corresponding collision operat@r-a®). + Q,. It remains then to apply
Corollary 2.2 to

/ O, (f, W) fPL(w)(v)P7 dv
RN

and Proposition 2.4 to

/Qc(f’ H) P ) )P dv.
RN

Observing that
/ b%(cosd) (1 — cosd)do — 4,00,
SN—l

we see that the term corresponding@p can be absorbed by the damping (nonpositive) pag® gffor 6o small
enough. O
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3. Application to the flow of the equation

In this section, we denote bl any strictly positive constant which can be replaced by a smaller strictly positive
constant, and b¢' any constant which can be replaced by a larger constant. We precise the dependence with respec
to time when this is useful.

We now prove Theorem 1.1 without trying to get bounds which are uniform wherntoo. We notice that a
solution f (¢, -) at timet > 0 of the Boltzmann equation (given by the results of [3,4,21]) satisfies:

% P )dv=p / O(f, @) P w) ()P dv.
RN RN
We also recall that (under our assumptions on the initial datum), such a solfition) has a constant mass
N . TheL{,’ integrability of the initial datumyfp implies that this initial datum has bounded entropy, then
the H-theorem ensures that the entropy remains uniformly bounded for all times (by the initial entropy). Also its
moment of order 2- pq in L' is propagated and remains uniformly bounded for all times with explicit constant
(see for instance [24]).
Then Proposition 2.5 gives the following a priori differential inequality:

d p

— , <CIfIY, = KIAIE, 3.18

yr IIfIILg IlfllLé ||f||L5+W (3.18)
In particular,

d

Ellfllfg < Cllfllig. (3.19)

According to Gronwall's lemma, the nor|1hf||L5 remains bounded (on all interval®, T'] for T > 0) if it is
initially finite.

Let us now turn to the question of appearance of higher momets (wheny > 0). Letr > 0. Using Holder's
inequality, we see that

o 1-6
<
[RATES IIfIILglIIfIILg2

with r =6¢g1 + (1 — 0)g2. Thus withgo =0 andg1 =r + v/ p, we get

r v/p

¥ +7/
Ll <UAN AN
r+y/p

f /1 = f [

where K7 = (SUp¢jo,r I flir (t))’%. But this last quantity is finite (thanks to estimate (3.19)). We thus obtain
the following a priori differential inequality onf||ip:

d 1+L
P P o7 4
SUFN, <=Kr(LF1,) 7 + CILAIL,.

Using a standard argument (first used by Nash for parabolic equations) of comparison with the Bernouilli differen-
tial equation

a
Y =—Kry v 4y,
whose solutions can be computed explicitly, we see that foralk & T,
ILfll () < o0,
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more precisely

C r/y
1Nl < [—} . (3.20)
Kr(l—e 7"

This concludes the proof of Theorem 1.1 for local in times bounds. It remains to study more accurately the behavior
of these bounds whengoes to infinity.

Remarks. 1. Notice that the upper bound (3.20) cannot be optimal since for exammlﬁ)nng < 400 then
||f||L5 < 400 uniformly on [0, T] by the argument below, and the a priori differential inequality (3.18) implies
that the quantity|f||L5+W is integrable at ~ 0", which is not necessarily the case of the right-hand side term
in (3.20).

2. Note that in the previous computation, one should use approximate solutions of the Boltzmann equation in
order to give a completely rigorous proof. For example, solutions of the equation

{ O fe= Qfe, feo) ey fe,
fe(0,-) = fin* e,
whereg, is a sequence of mollifiers, can be used. This point does not lead to any difficulties.

3. Itis also possible to get a slightly less stringent condition orithenoments of the initial datgy by using
the appearance of the! moments off (in the cases > 0).

4. Behavior for large times

The goal of this section is to conclude the proof of Theorem 1.1 by showing that the boundd dhrtfeenents
are uniform when — +o0.

Our starting point is a stronger result than Proposition 2.4, which is a particular case of a result proven in [18]
(where the result holds for every collision kernel which satisfies angular integrability), and is based on the regularity
property of the gain term of the cutoff collision kernel. This result writes:

Proposition 4.1(cf. [18, Theorem 4.1]). LeB satisfy Assumptions (1.3), (1.4), (1.5). We suppose moreover thab
hasits support in [6g, 7t /2]. Then, for all p > 1, ¢ > 0 and f nonnegative with bounded entropy and L%q 4o NOrm,
we have

/ O(f. N7 dv < CTBIFIT ™ ~ K- B)IF1], (4.21)
RN

q+y/p

with
C+(b)=c+< / bda), K‘(b):K‘( / bda>,
SN—l SN—l

and C*, K~ are positive constants. Both depend on an upper bound on the entropy and the L%q 4o normof fanda
lower bound on || £||;1; C* also dependson . Finally ¢ € (0, 1) isa constant depending only on the dimension N
and p.

Gathering now Corollary 2.2 with Proposition 4.1, we get the



L. Desvillettes, C. Mouhot / Ann. |. H. Poincaré — AN 22 (2005) 127-142 141

Proposition 4.2.Let B satisfy Assumptions (1.3), (1.4), (1.5) p belong to 11, +oo[ and g > 0. e suppose more-
over that pg > 2ifv e (—2,—1]and pg > 4if v € (—3,—2]. Then, for f nonnegative with bounded entropy and

1
Lma)({pq,Zq}—i—Z norm, we have

/ Q. H) T H )W) dv < CTIFI™ = KTIAI7, (4.22)
RN

qa+y/p

for some positive constants C* and K~ depending on an upper bound on || f || 1 oxr0.20112" an upper bound on the
max pq,2q
entropy and a lower bound on || f|| ;1. Finally ¢ € (0, 1) isa constant depending only on the dimension N and p.

Proof. The proof is exactly the same as that of Proposition 2.5. It is based on the splitting
b =b% + b

and the use of Corollary 2.2 for

/ O, (f, W) P (w)(v)P7 dv
RN

and Proposition 4.1 for

f Qc(f, HW P W)y dv. O

RN

We now can prove that the bound on th& moments is uniform for large times. Indeed, Proposition 4.2 leads
to the following a priori differential inequality omn(r) = || f (¢, -)||Z,,:
q

Y <CyF —Ky.

Then, by a maximum principle, we see thdt) is bounded otir, +o0[ as soon as it is finite at time The explicit
estimate is in fact:

C 1/e
vt >, y(t)émaX{y(f);<z> }
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