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Abstract

For the homogeneous Boltzmann equation with (cutoff or noncutoff) hard potentials, we prove estimates of prop
of Lp norms with a weight(1 + |x|2)q/2 (1 < p < +∞, q ∈ R+ large enough), as well as appearance of such weights.
proof is based on some new functional inequalities for the collision operator, proven by elementary means.

Résumé

On prouve la propagation de normesLp avec poids(1+ |x|2)q/2 et l’apparition de tels poids pour l’équation de Boltzma
homogène dans le cas des potentiels durs (avec ou sans troncature angulaire). La démonstration est basée sur d
inégalités fonctionnelles pour l’opérateur de collision, que l’on prouve par des moyens élémentaires.
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1. Introduction

The spatially homogeneous Boltzmann equation (cf. [5]) writes

∂f

∂t
(t, v) = Q(f,f )(t, v), (1.1)

wheref (t, ·) :RN → R+ is the nonnegative density of particles which at timet move with velocityv. The bilinear
operator in the right-hand side is defined by

Q(g,f )(v) =
∫

RN

∫

SN−1

{
f (v′)g(v′∗) − f (v)g(v∗)

}
B

(
|v − v∗|, v − v∗

|v − v∗| · σ
)

dσ dv∗. (1.2)

In this formula,v′, v′∗ andv, v∗ are the velocities of a pair of particles before and after a collision. They are de
by

v′ = v + v∗
2

+ |v − v∗|
2

σ, v′∗ = v + v∗
2

− |v − v∗|
2

σ,

whereσ ∈ SN−1.
We concentrate in this work on hard potentials or hard spheres collision kernels, with or without angular

More precisely, we suppose that the collision kernel satisfies the following

Assumptions.The collision kernelB is of the form

B(x, y) = |x|γ b
(|y|), (1.3)

where

γ ∈ [0,1] (1.4)

and

b ∈ L∞
loc

([−1,1[), b(y) = Oy→1−
(
(1− y)

−(N−2)+ν
2

)
, ν > −3. (1.5)

Note that assumption (1.5) is an alternative (and a slightly less general) formulation to the minimal
tion necessary for a mathematical treatment of the Boltzmann equation identified in [21,2], namely the
ment ∫

SN−1

b(cosθ)(1− cosθ) dσ < +∞. (1.6)

Then, we wish to consider initial dataf0 � 0 with finite mass and energy, such thatf0(1+ |v|2)q/2 ∈ Lp(RN)

for some 1< p < +∞ andq � 0 (notice that entropy is thus automatically finite). Existence results unde
assumptions of finite mass, energy and entropy were obtained in [3] for the case of hard potentials with
in [4] for (noncutoff) soft potentials in dimension 3 under the restrictionγ � −1, then in [10] and [21] for genera
kernels (our assumptions on the kernel fall in the setting of [21] for instance). Uniqueness however is prov
in the cutoff case (for an optimal result see [17]) and remains an open question in the noncutoff case (ex
Maxwellian moleculesγ = 0, see [20]).

Propagation of moments inL1 was proven in [13] for Maxwellian molecules with cutoff. Then, for the c
of strictly hard potentials with cutoff, it was shown in [6] that all polynomial moments were created immed
when one of them of order strictly bigger than 2 initially existed. This last restriction was later relaxed in [2

Propagation of moments inLp was first obtained by Gustafsson (cf. [11,12]) thanks to interpolation techni
under the assumption of angular cutoff. It was recovered by a simpler and more explicit method in [18], th
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the smoothness properties of the gain part of the Boltzmann’s collision operator discovered by P.L. Lions
far as appearance of moments inLp is concerned, the first result is due to Wennberg in [23], still in the framew
of angular cutoff. It is precised in [18].

In this work, we wish to improve these results by presenting anLp theory

• first, which is elementary (that is, without abstract interpolations and without using the smoothness pr
of Boltzmann’s kernel),

• secondly, which includes the non cutoff case,
• finally, without assuming too many moments inLp for the initial datum.

Our method is reminiscent of recent works by Mischler and Rodriguez Ricard [16] and Escobedo, La
and Mischler [9] on the Smoluchowsky equation.

Let 1< p < +∞. We define the weightedLp spaceLp
q (RN) by

L
p
q (RN) = {

f :RN → R, ‖f ‖L
p
q (RN) < +∞}

,

with its norm

‖f ‖p

L
p
q (RN)

=
∫

RN

∣∣f (v)
∣∣p 〈v〉pq dv,

and the usual notation〈v〉 = (1+ |v|2)1/2.
We now state our main theorem

Theorem 1.1.Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5)and q such that

(i) q ∈ R+ if ν > −1 (integrable angular kernel),
(ii) pq > 2 if ν ∈ (−2,−1],

(iii) pq > 4 if ν ∈ (−3,−2],

and f0 be an initial datum in L1
max(p,2)q+2 ∩ L

p
q .

Then

• there exists a (weak) solution to the Boltzmann equation (1.1) with collision kernel B and initial datum f0
lying in L∞([0,+∞);Lp

q (RN)) (with explicit bounds in this space),
• if γ > 0, this solution belongs moreover to L∞((τ,+∞);Lp

r (RN)) for all τ > 0 and r > q (still with explicit
bounds in this space, the blow up near τ ∼ 0+ being at worse polynomial).

Remarks.We now discuss the assumptions and the conclusion of this theorem.
1. Our result cannot hold when the hard potentials are replaced by soft potentials. In the case of Max

molecules (γ = 0), we have uniform (in time) bounds but no appearance of moments (neither inLp nor in L1)
occurs. In the case of the so-called “mollified soft potentials” with cutoff, some bounds growing polynomi
time can be found in [19], based on the regularity property of the gain term of the collision operator.

2. When the collision kernelB is not a product of a function ofx by a function ofy (as in Assumption (1.3)), i
is likely that Theorem 1.1 still holds provided that the behavior ofB with respect tox (whenx → +∞) is that of
a nonnegative power andB satisfies estimate (1.5) uniformly according tox.

3. The restriction on the weightq is not a technical one which is likely to be discarded (at least in our meth
Indeed as suggested in [1,15,22] the noncutoff collision operator behaves roughly like some fractional La
of order−ν/2 and these derivatives will in fact be supported by the weight, as we shall see. Notice howev
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there is no condition onq whenν > −1, i.e. in the cutoff case, which recovers existing results. Note also
the conditionf0 ∈ L1

2q+2 is used only to get the uniformity whent → +∞ of the estimates. The local (in time

estimates hold as soon asf0 ∈ L1
pq+2.

4. Finally, Theorem 1.1 can certainly be improved when the collision kernel in non cutoff. In such a cas
under rather not stringent assumption (cf. [1])), it is possible to show that some smoothness is gained, a
Lp regularity will appear even if it does not initially exist. As a consequence, the assumptions of Theor
can certainly be somehow relaxed. One can for example compare Theorem 1.1 to the results of [7] for the
equation. We also refer to [8] for “regularized hard potentials” without angular cutoff.

The proof of Theorem 1.1 runs as follows. In Section 2, we give various bounds for quantities like∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv.

These bounds are applied to the flow of the spatially homogeneous Botzmann equation in Section 3,
sufficient to prove Theorem 1.1, except that the bounds may blow up whent → +∞. Finally in Section 4, we
explain why such a blow up cannot take place, and so we conclude the proof of Theorem 1.1. This last pa
only one which is not self-contained. It uses an estimate from [18].

2. Functional estimates on the collision operator

In the sequel we shall use the parametrization described in Fig. 1, where

k = v − v∗
|v − v∗| , σ = v′ − v′∗

|v′ − v′∗|
,

and cosθ = σ · k. The range ofθ is [0,π] andσ writes

σ = cosθk + sinθu,

whereu belongs to the sphere ofS
N−1 orthogonal tok (which is isomorphic toSN−2).

Fig. 1. Geometry of binary collisions.
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Thanks to the change of variableθ �→ π − θ which exchangesv′ andv′∗, thequadratic collision operator can b
written

Q(f,f )(v) =
∫

RN×SN−1

{
f (v′)f (v′∗) − f (v)f (v∗)

}
Bsym

(|v − v∗|,cosθ
)
dσ dv∗,

where

Bsym
(|v − v∗|,cosθ

) = [
B

(|v − v∗|,cosθ
) + B

(|v − v∗|,cos(π − θ)
)]

1cosθ�0.

As a consequence, it is enough to consider the case whenB(|v − v∗|, · ) has its support included in[0,π/2].
This is what we shall systematically do in the sequel (Beware that certain propositions are written for the
kernel Q(g,f ) and not forQ(f,f ): they hold only in fact for the symmetrized collision kernelBsym defined
above).

Recalling that

v′ = v + v∗
2

+ |v − v∗|
2

σ,

we use (for allF ) the formula (cf. [1, Section 3, proof of Lemma 1])∫

RN×SN−1

B
(|v − v∗|,cosθ

)
F(v′) dv dσ =

∫

RN×SN−1

1

cosN(θ/2)
B

( |v − v∗|
cos(θ/2)

,cosθ

)
F(v)dv dσ. (2.7)

Let us prove a first functional estimate independent on the integrability of the angular part of the collision

Proposition 2.1.Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5). Then, for allp > 1, q ∈ R

and f and g nonnegative, we have
∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

�
∫

R2N×SN−1

|v − v∗|γ b(cosθ)
[(

cos(θ/2)
)− N+γ

p′ − 1
]〈v〉pqf p(v)g(v∗) dσ dv∗ dv

+
∫

R2N×SN−1

1

p

(
cos(θ/2)

)− N+γ

p′ |v − v∗|γ b(cosθ)
[〈v′〉pq − 〈v〉pq

]
f p(v)g(v∗) dσ dv∗ dv. (2.8)

Proof. We first observe that thanks to the pre-post collisional change of variables (that is, the i∫∫∫
F(v, v∗, σ ) dσ dv∗ dv = ∫∫∫

F(v′, v′∗, σ ) dσ dv∗ dv):
∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

=
∫

R2N×SN−1

{
g(v′∗)f (v′) − g(v∗)f (v)

}
f p−1(v)〈v〉pq |v − v∗|γ b(cosθ) dσ dv∗ dv

=
∫

2N N−1

[〈v′〉pqf p−1(v′)f (v)g(v∗) − 〈v〉pqf p(v)g(v∗)
]|v − v∗|γ b(cosθ) dσ dv∗ dv.
R ×S
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According to Young’s inequality, for allµ ≡ µ(θ) > 0,

f p−1(v′) f (v) =
(

f (v′)
µ1/p

)p−1(
µ1−1/pf (v)

)
�

(
1− 1

p

)
µ−1f p(v′) + 1

p
µp−1f p(v),

so that∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

�
∫

R2N×SN−1

[(
1− 1

p

)
µ−1〈v′〉pqf p(v′) + 1

p
µp−1〈v′〉pqf p(v) − 〈v〉pqf p(v)

]

× g(v∗)|v − v∗|γ b(cosθ) dσ dv∗ dv.

We now use (for a givenv∗, θ ) formula (2.7) for the first term in this integral. We get∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

�
∫

R2N×SN−1

[(
1− 1

p

)
µ−1〈v〉pq

(
cos(θ/2)

)−N−γ
f p(v) + 1

p
µp−1〈v′〉pqf p(v) − 〈v〉pqf p(v)

]

× g(v∗)|v − v∗|γ b(cosθ) dσ dv∗ dv

=
∫

R2N×SN−1

〈v〉pq |v − v∗|γ b(cosθ)f p(v)g(v∗)

×
[(

1− 1

p

)
µ−1(cos(θ/2)

)−N−γ + 1

p
µp−1 − 1

]
dσ dv∗ dv

+
∫

R2N×SN−1

1

p
µp−1|v − v∗|γ b(cosθ)f p(v)g(v∗)

[〈v′〉pq − 〈v〉pq
]
dσ dv∗ dv.

We now take the optimalµ = µ(θ) > 0. This amounts to consider

µ(θ) = (
cos(θ/2)

)− N+γ
p .

In this way, we get estimate (2.8).�
Remark. With the same idea, one could easily obtain∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

=
∫

R2N×SN−1

〈v〉pq |v − v∗|γ b(cosθ)f p(v)g(v∗)

×
[(

1− 1

p

)
µ−1(cos(θ/2)

)−N−γ + 1

p
µp−1(cos(θ/2)

)pq − 1

]
dσ dv∗ dv

+
∫

2N N−1

1

p
µp−1|v − v∗|γ b(cosθ)f p(v)g(v∗)

[〈v′〉pq − (
cos(θ/2)

)pq〈v〉pq
]
dσ dv∗ dv,
R ×S
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so that taking the optimalµ given by

µ(θ) = (
cos(θ/2)

)− N+γ
p

−q
,

the following inequality holds:
∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

�
∫

R2N×SN−1

〈v〉pq |v − v∗|γ b(cosθ)
[(

cos(θ/2)
)q− N+γ

p′ − 1
]
f p(v)g(v∗) dσ dv∗ dv

+
∫

R2N×SN−1

1

p

(
cos(θ/2)

)−q(p−1)− N+γ

p′ |v − v∗|γ b(cosθ)

× [〈v′〉pq − (
cos(θ/2)

)pq〈v〉pq
]
f p(v)g(v∗) dσ dv∗ dv.

If q is big enough, i.e. such that

q − N + γ

p′ > 0, (2.9)

the first term is strictly negative, and some estimates (in the same spirit as in Lemma 2.3 below) on t
[〈v′〉pq − (cos(θ/2))pq〈v〉pq ] for small and large anglesθ would yielddirectly

∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv � −C

∫

RN

g(v∗) dv∗
∫

RN

f p(v)〈v〉pq+γ dv

+ D

∫

RN

g(v∗)〈v〉pq+γ dv∗
∫

RN

f p(v) dv

+ D

∫

RN

g(v∗)〈v〉2 dv∗
∫

RN

f p(v)〈v〉pq dv.

We do not follow in the sequel this line of ideas because we don’t want to assume (2.9). We rather choose
a global splitting between the small and large anglesθ .

We now deduce from Proposition 2.1 a corollary enabling to bound∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv

in terms of weightedL1 andLp norms off andg. Note that this corollary is almost obvious to prove when
collision kernel is integrable (cutoff case).

Corollary 2.2. Let B be a collision kernel satisfying Assumptions (1.3), (1.4), (1.5). We considerf and g nonneg-
ative and q ∈ R. We suppose moreover that pq � 2 if ν ∈ (−2,−1] and pq � 4 if ν ∈ (−3,−2]. Then,∫

N

Q(g,f )(v)f p−1(v)〈v〉pq dv � Cp,N,γ (b)‖g‖L1
pq+γ

‖f ‖p

L
p
q+γ /p

, (2.10)
R
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[1] in
where

Cp,N,γ (b) = cst(p,N,γ )

( ∫

SN−1

b(cosθ)(1− cosθ) dσ

)
,

and cst(p,N,γ ) is a computable constant depending on p, N and γ .

Remark. Since the non cutoff collision operator behaves roughly like some fractional Laplacian of order−ν/2,
one could wonder how a functional inequality which does not contain derivatives of the functionf can hold. The
answer is that the pre-post collisional change of variable and formula (2.7) (which play here the role pla
integration by part for differential operators) allow to transfer the derivatives on the weight function〈v〉pq . This
also explains why the restriction on the weight exponentq depends on the orderν of the angular singularity.

Proof of Corollary 2.2. Estimate (2.8) can be written∫

RN

Q(g,f )(v)f p−1(v)〈v〉pq dv � I1 + I2 + I3,

where

I1 =
∫

R2N×SN−1

|v − v∗|γ b(cosθ)
[(

cos(θ/2)
)− N+γ

p′ − 1
]〈v〉pqf p(v)g(v∗) dσ dv∗ dv,

I2 =
∫

R2N×SN−1

1

p

[(
cos(θ/2)

)− N+γ

p′ − 1
]|v − v∗|γ b(cosθ)

[〈v′〉pq − 〈v〉pq
]
f p(v)g(v∗) dσ dv∗ dv,

I3 =
∫

R2N×SN−1

1

p
|v − v∗|γ b(cosθ)

[〈v′〉pq − 〈v〉pq
]
f p(v)g(v∗) dσ dv∗ dv.

Then the two first terms are easily estimated thanks to the formula

[(
cos(θ/2)

)− N+γ

p′ − 1
] ∼θ→0

N + γ

4p′ (1− cosθ).

For the last one, we shall need the following lemma, which takes advantage of the symmetry propertie
collision operator:

Lemma 2.3.For all α � 1,∣∣∣∣
∫

u∈SN−2

[〈v′〉2α − 〈v〉2α
]
du

∣∣∣∣ � Cα(sinθ/2)〈v〉2α〈v∗〉2α, (2.11)

and for all α � 2,∣∣∣∣
∫

u∈SN−2

[〈v′〉2α − 〈v〉2α
]
du

∣∣∣∣ � Cα(sinθ/2)2〈v〉2α〈v∗〉2α. (2.12)

Remark. This lemma is reminiscent of the symmetry properties used in the “cancellation lemma” in [2] and
order to give sense to the Boltzmann collision operator for strong angular singularities (i.e.ν ∈ (−3,−2]).
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Proof of Lemma 2.3. We note that since

|v′|2 = |v|2 cos2 θ/2+ |v∗|2 sin2 θ/2+ 2 cosθ/2 sinθ/2|v − v∗|u · v∗,

if one introduces (forx ∈ [0,
√

2/2]) the function

Rα(x) =
∫

u∈SN−2

[(
1+ |v|2(1− x2) + |v∗|2x2 + 2x

√
1− x2 |v − v∗|u · v∗

)α − (
1+ |v|2)α]

du,

we get ∫

u∈SN−2

[(
1+ |v′|2)α − (

1+ |v|2)α]
du = Rα(sinθ/2).

But thanks to the change of variablesu → −u, we see thatRα is even. Noticing also thatRα(0) = 0, we use the
identities

Rα(x) = x

1∫
0

R′
α(sx) ds,

Rα(x) = x2

1∫
0

(1− s)R′′
α(sx) ds.

We compute

R′
α(x) = α

∫

u∈SN−2

(−2x|v|2 + 2x|v∗|2 + 2(1− x2)1/2|v − v∗|u · v∗ − 2x2(1− x2)−1/2|v − v∗|u · v∗
)

× (
1+ |v|2(1− x2) + |v∗|2x2 + 2x

√
1− x2|v − v∗|u · v∗

)α−1
du

and

R′′
α(x) = α(α − 1)

∫

u∈SN−2

(−2x|v|2 + 2x|v∗|2 + 2(1− x2)1/2|v − v∗|u · v∗

− 2x2(1− x2)−1/2|v − v∗|u · v∗
)2

× (
1+ |v|2(1− x2) + |v∗|2x2 + 2x

√
1− x2|v − v∗|u · v∗

)α−2
du

+ α

∫

u∈SN−2

(−2|v|2 + 2|v∗|2 − 2x(1− x2)−1/2

× |v − v∗|u · v∗ − 2|v − v∗|u · v∗
(
2x(1− x2)−1/2 + x3(1− x2)−3/2))

× (
1+ |v|2(1− x2) + |v∗|2x2 + 2x

√
1− x2 |v − v∗|u · v∗

)α−1
du.

Then, forx ∈ [0,
√

2/2], if α � 1, we get∣∣R′
α(x)

∣∣ � Cα〈v〉2α〈v∗〉2α,

and ifα � 2,∣∣R′′
α(x)

∣∣ � Cα〈v〉2α〈v∗〉2α.

This concludes the proof of Lemma 2.3.�
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Let us come back to the proof of Corollary 2.2. We have

I3 =
∫

R2N

π∫
0

1

p
|v − v∗|γ b(cosθ)Rα(sinθ/2)(sinθ)N−2f p(v)g(v∗) dθ dv∗ dv

for α = (pq)/2. Lemma 2.3 and the equality

(sinθ/2)2 = (1− cosθ)

2
conclude the proof. �

We now turn to an estimate which holds when the (angular part of the) collision kernel has its sup
[θ0,π/2] for someθ0 > 0. As we shall see later on, this term is the “dominant part” of the same quantity whe
(angular part of the) collision kernel has its support in[0,π/2].

Proposition 2.4. Let B satisfy Assumptions (1.3), (1.4), (1.5). We suppose moreover thatb has its support in
[θ0,π/2]. Then, for all p > 1, q � 0 and f nonnegative with bounded L1

pq+2 norm, we have∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv � C+(b)‖f ‖p

L
p
q

− K−(b)‖f ‖p

L
p
q+γ /p

(2.13)

with

C+(b) = C+
( ∫

SN−1

b dσ

)
, K−(b) = K−

( ∫

SN−1

b dσ

)
,

where C+, K− are strictly positive constants. Both depend on an upper bound on ‖f ‖L1
pq+2

and on a lower bound

on ‖f ‖L1; C+ also depends on θ0.

Remark. This estimate could be deduced from the results of [18], but we shall give here an elementa
contained proof, in the same spirit as that of the proof of Proposition 2.1.

Proof of Proposition 2.4. Let us write the quantity to be estimated∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv �
∫

RN

Q+(f,f )(v)f p−1(v)〈v〉pq dv −
∫

RN

Q−(f,f )(v)f p−1(v)〈v〉pq dv,

splitting as usual the operator between its gain and loss parts (remember that the small angles have bee
On one hand, using|v − v∗|γ � [〈v〉γ − cst〈v∗〉γ ] we get

−
∫

RN

Q−(f,f )(v)f p−1(v)〈v〉pq dv � −K0‖b‖L1(SN−1)‖f ‖p

L
p
q+γ /p

+ C0‖b‖L1(SN−1)‖f ‖p

L
p
q

for some constantK0 > 0 depending on a lower bound on‖f ‖L1 andC0 > 0 depending on an upper bound on t
‖f ‖L1

γ
. On the other hand,
∫

RN

Q+(f,f )(v)f p−1(v)〈v〉pq dv =
∫

R2N×SN−1

f ′∗f ′f p−1〈v〉pqB dv dv∗ dσ

can be split into
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I1 =
∫

R2N×SN−1

f ′∗(fjr)
′f p−1〈v〉pqB dv dv∗ dσ,

I2 =
∫

R2N×SN−1

f ′∗(fjrc )′f p−1〈v〉pqB dv dv∗ dσ,

with jr (v) = 1|v|�r andjrc = 1− jr . This means that we treat separately large and small velocities. Then

I1 =
∫

R2N×SN−1

f∗(fjr)(f
′)p−1〈v′〉pqB dv dv∗ dσ

�
∫

R2N×SN−1

f∗
[(

1− 1

p

)
µ−1

1 f p(v′) + 1

p
µ

p−1
1 (fjr)

p(v)

]
〈v′〉pqB dv dv∗ dσ

� ‖b‖L1(SN−1)

[(
1− 1

p

)
µ−1

1 (cosπ/4)−N−γ ‖f ‖L1
γ
‖f ‖p

L
p
q+γ /p

+ 1

p
µ

p−1
1 ‖f ‖L1

pq+γ
‖fjr‖p

L
p
q+γ /p

]
,

and thus

I1 � ‖b‖L1(SN−1)

[(
1− 1

p

)
µ−1

1 (cosπ/4)−N−γ ‖f ‖L1
γ
‖f ‖p

L
p
q+γ /p

+ 1

p
µ

p−1
1 rγ ‖f ‖L1

pq+γ
‖f ‖p

L
p
q

]
. (2.14)

As for I2, we get

I2 =
∫

R2N×SN−1

f ′(fjrc )′∗f p−1〈v〉pqB̃ dv dv∗ dσ

thanks to the change of variableσ → −σ . Now B̃ has compact support in[π/2,π − θ0]. Then we compute

I2 =
∫

R2N×SN−1

(fjrc )∗f (f ′)p−1〈v′〉pqB̃ dv dv∗ dσ

�
∫

R2N×SN−1

(fjrc )∗
[(

1− 1

p

)
µ−1

2 f p(v′) + 1

p
µ

p−1
2 f p(v)

]
〈v′〉pqB̃ dv dv∗ dσ

� ‖b‖L1(SN−1)

[(
1− 1

p

)
µ−1

2 (sinθ0/2)−N−γ ‖fjrc‖L1
γ
‖f ‖p

L
p
q+γ /p

+ 1

p
µ

p−1
2 ‖fjrc‖L1

pq+γ
‖f ‖p

L
p
q+γ /p

]

by using again formula (2.7) and thus

I2 � ‖b‖L1(SN−1)

[(
1− 1

p

)
µ−1

2 (sinθ0/2)−N−γ (1+ r2)(γ−2)/2‖f ‖L1
2
‖f ‖p

L
p
q+γ /p

+ 1

p
µ

p−1
2 ‖f ‖L1

pq+γ
‖f ‖p

L
p
q+γ /p

]
. (2.15)

Gathering (2.14) and (2.15), we obtain for the gain part∫

RN

Q+(f,f )(v)f p−1(v)〈v〉pq dv � ‖b‖L1(SN−1)

[
1

p
µ

p−1
1 (1+ r2)γ /2‖f ‖L1

pq+γ

]
‖f ‖p

L
p
q

+ ‖b‖L1(SN−1)

[(
1− 1

)
µ−1

1 (cosπ/4)−N−γ
p
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+
(

1− 1

p

)
µ−1

2 (sinθ0/2)−N−γ (1+ r2)(γ−2)/2

+ 1

p
µ

p−1
2

]
‖f ‖L1

pq+γ
‖f ‖p

L
p
q+γ /p

.

For someθ0 > 0 fixed, one can first chooseµ2 small enough, thenr big enough (remember thatγ − 2 < 0), then
µ1 big enough, in such a way that

[(
1− 1

p

)
µ−1

1 (cosπ/4)−N−γ +
(

1− 1

p

)
µ−1

2 (sinθ0/2)−N−γ rγ−2 + 1

p
µ

p−1
2

]
‖f ‖L1

pq+γ
� K0

2
.

We thus get the wanted estimate by combining the estimates for the gain part and the loss part.�
We now can gather Corollary 2.2 with Proposition 2.4 in order to get the

Proposition 2.5.Let B satisfy Assumptions (1.3), (1.4), (1.5),p belong to (1,+∞), and q � 0. We suppose more-
over that pq � 2 if ν ∈ (−2,−1] and pq � 4 if ν ∈ (−3,−2]. Then, for f nonnegative with bounded L1

pq+2 norm,
we have∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv � C+‖f ‖p

L
p
q

− K−‖f ‖p

L
p
q+γ /p

(2.16)

for some positive constants C+ and K−, depending on an upper bound on ‖f ‖L1
pq+2

and on a lower bound

on ‖f ‖L1 .

Proof. The proof is straightforward and based on a splitting ofb of the form

b = bθ0
c + bθ0

r , (2.17)

whereb
θ0
c = b1θ∈[θ0,π/2] stands for the “cutoff” part,bθ0

r = 1 − b
θ0
c for the remaining part, andθ0 ∈ (0,π/2] is

some fixed positive angle. We split the corresponding collision operator asQ = Qc + Qr . It remains then to apply
Corollary 2.2 to∫

RN

Qr(f,f )(v)f p−1(v)〈v〉pq dv

and Proposition 2.4 to∫

RN

Qc(f,f )(v)f p−1(v)〈v〉pq dv.

Observing that∫

SN−1

bθ0
r (cosθ)(1− cosθ) dσ →θ0→0 0,

we see that the term corresponding toQr can be absorbed by the damping (nonpositive) part ofQc, for θ0 small
enough. �
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3. Application to the flow of the equation

In this section, we denote byK any strictly positive constant which can be replaced by a smaller strictly po
constant, and byC any constant which can be replaced by a larger constant. We precise the dependence with
to time when this is useful.

We now prove Theorem 1.1 without trying to get bounds which are uniform whent → +∞. We notice that a
solutionf (t, · ) at timet � 0 of the Boltzmann equation (given by the results of [3,4,21]) satisfies:

d

dt

∫

RN

f p(v)〈v〉pq dv = p

∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv.

We also recall that (under our assumptions on the initial datum), such a solutionf (t, · ) has a constant mas
‖f (t, · )‖L1. TheL

p
q integrability of the initial datumf0 implies that this initial datum has bounded entropy, th

theH -theorem ensures that the entropy remains uniformly bounded for all times (by the initial entropy). A
moment of order 2+ pq in L1 is propagated and remains uniformly bounded for all times with explicit con
(see for instance [24]).

Then Proposition 2.5 gives the following a priori differential inequality:

d

dt
‖f ‖p

L
p
q

� C‖f ‖p

L
p
q

− K‖f ‖p

L
p
q+γ /p

. (3.18)

In particular,

d

dt
‖f ‖p

L
p
q

� C‖f ‖p

L
p
q
. (3.19)

According to Gronwall’s lemma, the norm‖f ‖L
p
q

remains bounded (on all intervals[0, T ] for T > 0) if it is
initially finite.

Let us now turn to the question of appearance of higher moments inLp (whenγ > 0). Letr > 0. Using Hölder’s
inequality, we see that

‖f ‖L
p
r

� ‖f ‖θ

L
p
q1

‖f ‖1−θ

L
p
q2

with r = θq1 + (1− θ)q2. Thus withq2 = 0 andq1 = r + γ /p, we get

‖f ‖L
p
r

� ‖f ‖
r

r+γ /p

L
p
r+γ /p

‖f ‖
γ /p

r+γ /p

Lp .

Therefore,

‖f ‖L
p
r+γ /p

� KT ‖f ‖1+ γ
pr

L
p
r

,

whereKT = (supt∈[0,T ] ‖f ‖Lp(t))
− γ

rq . But this last quantity is finite (thanks to estimate (3.19)). We thus ob
the following a priori differential inequality on‖f ‖p

L
p
r
:

d

dt
‖f ‖p

L
p
r

� −KT

(‖f ‖p

L
p
r

)1+ γ
pr + C‖f ‖p

L
p
r
.

Using a standard argument (first used by Nash for parabolic equations) of comparison with the Bernouilli d
tial equation

y′ = −KT y
1+ γ

pr + Cy,

whose solutions can be computed explicitly, we see that for all 0< t � T ,

‖f ‖ p (t) < +∞,
Lr
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more precisely

‖f ‖L
p
r
(t) �

[
C

KT (1− e
− Cγ

pr
t
)

]r/γ

. (3.20)

This concludes the proof of Theorem 1.1 for local in times bounds. It remains to study more accurately the b
of these bounds whent goes to infinity.

Remarks. 1. Notice that the upper bound (3.20) cannot be optimal since for example if‖f0‖L
p
q

< +∞ then
‖f ‖L

p
q

< +∞ uniformly on [0, T ] by the argument below, and the a priori differential inequality (3.18) imp

that the quantity‖f ‖L
p
q+γ /p

is integrable att ∼ 0+, which is not necessarily the case of the right-hand side t

in (3.20).
2. Note that in the previous computation, one should use approximate solutions of the Boltzmann equ

order to give a completely rigorous proof. For example, solutions of the equation{
∂tfε = Q(fε,fε) + ε
vfε,

fε(0,· ) = fin ∗ φε,

whereφε is a sequence of mollifiers, can be used. This point does not lead to any difficulties.
3. It is also possible to get a slightly less stringent condition on theL1 moments of the initial dataf0 by using

the appearance of theL1 moments off (in the caseγ > 0).

4. Behavior for large times

The goal of this section is to conclude the proof of Theorem 1.1 by showing that the bounds on theLp moments
are uniform whent → +∞.

Our starting point is a stronger result than Proposition 2.4, which is a particular case of a result proven
(where the result holds for every collision kernel which satisfies angular integrability), and is based on the re
property of the gain term of the cutoff collision kernel. This result writes:

Proposition 4.1(cf. [18, Theorem 4.1]). LetB satisfy Assumptions (1.3), (1.4), (1.5). We suppose moreover thatb
has its support in [θ0,π/2]. Then, for all p > 1, q � 0 and f nonnegative with bounded entropy and L1

2q+2 norm,
we have∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv � C+(b)‖f ‖p(1−ε)

L
p
q

− K−(b)‖f ‖p

L
p
q+γ /p

(4.21)

with

C+(b) = C+
( ∫

SN−1

b dσ

)
, K−(b) = K−

( ∫

SN−1

b dσ

)
,

and C+, K− are positive constants. Both depend on an upper bound on the entropy and the L1
2q+2 norm of f and a

lower bound on ‖f ‖L1; C+ also depends on θ0. Finally ε ∈ (0,1) is a constant depending only on the dimension N

and p.

Gathering now Corollary 2.2 with Proposition 4.1, we get the
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Proposition 4.2.Let B satisfy Assumptions (1.3), (1.4), (1.5), p belong to ]1,+∞[ and q � 0. We suppose more-
over that pq � 2 if ν ∈ (−2,−1] and pq � 4 if ν ∈ (−3,−2]. Then, for f nonnegative with bounded entropy and
L1

max{pq,2q}+2 norm, we have∫

RN

Q(f,f )(v)f p−1(v)〈v〉pq dv � C+‖f ‖p(1−ε)

L
p
q

− K−‖f ‖p

L
p
q+γ /p

(4.22)

for some positive constants C+ and K− depending on an upper bound on ‖f ‖L1
max{pq,2q}+2

, an upper bound on the

entropy and a lower bound on ‖f ‖L1 . Finally ε ∈ (0,1) is a constant depending only on the dimension N and p.

Proof. The proof is exactly the same as that of Proposition 2.5. It is based on the splitting

b = bθ0
c + bθ0

r

and the use of Corollary 2.2 for∫

RN

Qr(f,f )(v)f p−1(v)〈v〉pq dv

and Proposition 4.1 for∫

RN

Qc(f,f )(v)f p−1(v)〈v〉pq dv. �

We now can prove that the bound on theLp moments is uniform for large times. Indeed, Proposition 4.2 le
to the following a priori differential inequality ony(t) = ‖f (t, · )‖p

L
p
q
:

y′ � Cy1−ε − Ky.

Then, by a maximum principle, we see thaty(t) is bounded on[τ,+∞[ as soon as it is finite at timeτ . The explicit
estimate is in fact:

∀t � τ, y(t) � max

{
y(τ);

(
C

K

)1/ε}
.
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