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Abstract
We consider the following singularly perturbed Neumann problem

ezAu—u—i—f(u):O in$2;

>0 in2 and §“=0 onag,

wheres2 = B1(0)is the unitball inR", ¢ > 0 is a small parameter andis superlinear. It is known that this problem has multiple
solutions (spikes) concentrating at some point&ofn this paper, we prove the existence of radial solutions which concentrate
N 1 1 .
atN sphere@j:1{|x| = rj}, where 1> r{ > r5 > ... > r§ aresuchthat & r{ ~elog 2, rf._l—rj ~elogs, j=2,...,N.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé
On consideére le probléeme de Neumann singulierement perturbé suivant

ezAu—u—i—f(u):O dans?;
u>0 dans? et ¥ =0 surde,

ED

ou 2 = B1(0) est la boule unité d&", ¢ > 0 est un parametre petit gt est surlinéaire. Il est bien connu que ce probleme
possede plusieurs solutions se concentrant en certains poidzs Bans cet article nous prouvons I'existence de solutions
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. . N N N 1
radiales qui se concentrent&hsphereyj:lﬂx| = rj}, oUl>rf>ry>--->rysonttelsque & ri ~elogy, rj_l—rj ~

alog%, j=2,...,N.
© 2004 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

The aim of this paper is to construct a family of multiple layered solutions to the following singularly perturbed
elliptic problem

e?Au—u+ f(u)=0 ing;

u>0 in2 and =0 onas,

(1.1)

where A = Z?=l§ is the Laplace operatos2 = B1(0) is the unit ball inR”, ¢ > 0 is a small parameter,
f is superlinear, aﬁd(x) denotes the unit outer normal ate 9£2. A typical nonlinearity isf (u) = u?, with
p € (1,+00).

Problem (1.1) is known as the stationary equation of the Keller—Segel system in chemotaxis [19]. It can also be
viewed as a limiting stationary equation of the Gierer—Meinhardt system in biological pattern formation, see [22]
for more details.

In the pioneering papers [19,23] and [24], Lin, Ni and Takagi established the existence of a least-energy solu-
tion u, of (1.1) and showed that, fersufficiently smallu. has only one local maximum poiit € 352. Moreover,

H(P,) > maxpey H(P) ase — 0, whereH (-) is the mean curvature @f2. Such a solution is called boundary
spike-layer. Its energy, defined by

2
Jg[u]z%/|Vu|2+%/u2—/F(u), ue HY(RQ), (1.2)
2 2 2

whereF (u) = f(;‘ f(s)ds, satisfies the following estimate
Jelug] ~&". (1.3)

(Here and throughout the papdr, ~ B, means that there exists fixed constatitsC, suchthatC; < A, /B. < C2
for e small.)

Since then, many papers investigated further the solutions of (1.1) concentrating at one or multiple g@ints of
(spike-layers). A general principle is that the location of interior spikes is determined by the distance function from
the boundary. We refer the reader to the articles [3,6,9-11,13,14,16,18,26—-28,30,31] and references therein. On tf
other hand, boundary spikes are related to the mean curvatdi.of his aspect is discussed in the papers [4,8,
15,17,25,29,32,33], and references therein. A review of the subject up to 1998 is to be found in [22]. We mention
one result which is related to our work here: in [14], it was proved that for any two intégefs / > 0,k +1[ > 0,
problem (1.1) possesses a solutigrwith exactlyk interior spikes and boundary spikes.

However, in all the papers mentioned above, we still have the energy bound (1.3) and the concentration set is
zero-dimensional. The question of constructing higher-dimensional concentration sets has been investigated onl
in recent years. It has been conjectured in [22] that for adykl< n — 1, problem (1.1) has a solutian which
concentrates on/a-dimensional subset 2. We mention two recent results that support such a conjecture.
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In [20], Malchiodi and Montenegro proved that for= 2 and f (u) = u?, p > 2, there exists a sequence of
numberse; — 0 such that problem (1.1) has a soluti@y which concentrates at the boundaryaa® (or any
component ob$2). Such a solution has the following energy bound

Jelug 1~ el ™t =g (1.4)

In another recent paper [2], Ambrosetti, Malchiodi and Ni proved the existence of a radially symmetric salution
to (1.1) with f(u) = u”, p > 1 and$2 = B1(0), such thatu, concentrates at a spheflg| = r.} with 1 — r, ~
elog % For this solution there holds

Jelug] ~e. (1.5)

In this paper we show existence of solutions concentrating at multiple spheres, which cluster near the boundary
of B1(0). Throughout the paper, we assume the following conditiong on

(fl) f(ry=0forr>0, f(0)= f'(0)=0andf e C1*7[0,00) N C?(0, 00),
(f2) the following ODE has a unique solution
w' —w+ f(w)=0 inR, w()= m%Xw(y), w(y) — 0 as|y| — +oo. (1.6)
ye

Assumption (f2) implies that the following holds: the only solution of the linearization of (1.6) at
V' —v+ ff(wyv=0 inR, wv(y)—0 for|y|— +oo (1.7)

is a multiple ofw’. In fact, problemy” — v+ f'(w)v = 0 is a second order linear ODE and admits two linearly inde-
pendent solutions. Sinag’ is a solution to (1.7), another solution#6 — v + f (w)v = 0 must grow exponentially
as|y| — +oo.

Examples off (v) include: f (u) = u? + Zle aiuli,1 < q; < p < oo.(See[5] and Appendix C of [24].) When
f(u) =uP, the functionw(y) can be written explicitly and has the form

1 2
1\ 1 -1 \\ 1
vo=(77) (oo 7))

Our main result in this paper is the following.

Theorem 1.1. Let N be a fixed positive integer. Then there exiss> 0 such that for alle < ¢y, problem(1.1)
admits a radially symmetric solutian. with the following properties
(1) u, concentrates alv sphereq|x| = rj‘?}, j=1,...,N,with

1 1
1—r§~elogg, rf-fl—rj‘-welog;, j=2,...,N. (1.8)

More precisely, we haveg(r;?) — w(0), wherew(y) is the unique solution of1.6), and there exist two con-
stantsa andb such that

e (r) < ae”PMNi=tNIr=rl/e (1.9)
(2) u, has the following energy bound
Jelue]l = wp—1Nel[w] + 0(e), (1.10)
where
Iw] = }/((w’)2+w2) - ifF(w)
2 p+1 '
R R

andw,_1 denotes the volume 6f 1.
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Theorem 1.1 can also be generalized to singularly perturbed Schroedinger equations of the form

e?Au—V(x)u+u’ =0, inR", u>0, ueHR") (1.12)
wherep > 1.
As in [1], the following auxiliary potential
1 1
M) =rtvo, g=LF2_ 2
p—1 2

determines the location of the clustered layers. We state the following result, whose proof is similar to that of
Theorem 1.1, see also the computations in [1].

Theorem 1.2. Assume tha#/ (r) has strict local maximum at= 7 such thatM” () < 0. Then fore > 0 sufficiently
small, problem(1.11)admits a radially symmetric solutial. which concentrates oV sphereg|x| = r]*?}, j=
1,...,N,with
= & 1 & & 1 .
|r—r1|~elogg, rj—rj71~slogg, j=2,...,N. (1.12)
More precisely, we have, (r¢) — w(0), wherew(y) is the unique solution of1.6) (with f () = u?), and there
exist two constants andb sucﬁ that

U < ae bmMini=1.nlr=ril/e (1.13)

Clustered spikes have been shown to exist for (1.1) in the case of general denfain example, if the bound-
ary mean curvature has a local minimum pdbtthen it is shown [15] that given arbitrary positive intederthere
exists a boundary spike solution with spikes concentrating ne@. Interior clustered layers are shown to exist
for one-dimensional Allen—Cahn equation with inhomogeneous potential [21] and for bistable nonlinearities with
inhomogeneous potential in a unit ball [12]. However, we are not aware of any result on boundary clustered layers
in higher dimensions. This paper seems to be the first in dealing with such phenomenon in higher dimensions.

Our approach mainly relies upon a finite dimensional reduction procedure combined with a variational approach.
Such a method has been used successfully in many papers, see e.g. [1,2,7,11,13,14]. In particular, we shall folloy
the one used in [13].

In the rest of section, we introduce some notations for later use.

By the following scalingr = ¢y, problem (1.1) is reduced to the ODE

n—1 1
ur,+7ui—u+f(u)=0, re (0,9, (1.14)
W'(Q)=u'(3)=0, u(r)>0.
From now on, we shall work with (1.14).
Let w(y) be the unique solution to (1.6). Its energy is given by
1 1
I[w] ::§/|w/|2+§/w2—/F(w). (1.15)
R R R
Set
1 1
2, = —=B1(0)= B1(0), I. = (O, —). (1.16)
& & &

Foru € C2(£2,) andu = u(r), we have

-1
Au=u"+"2""u. 1.17)
r



A. Malchiodi et al. / Ann. I. H. Poincaré — AN 22 (2005) 143-163 147

Fork e N, we denote byi* (£2,) the space of radial functions H* (£2;). On H1(2.), we define an inner product
as follows:

1
(u,v), = /(u’v/ +uv)r" Lar. (1.18)
0

Similarly, the inner product o?(2,) can be defined by

1

(,v)e = /(uv)r"_ldr. (1.19)
0
We also introduce a new energy functional, which, up to a positive multiplicative constant, is equivalent to
1 1
1
Eelul = E/(|u’|2+u2)r”—1 — / Fa)r"Ydr, ueHX$,). (1.20)
0 0

Throughout this paper, unless otherwise stated, the I€tteitl always denote various generic constants which are
independent of, for ¢ sufficiently small. The notatiod, > B, means that lim_, o |B;|/|A:| =0, while A, < B;
means 1/A> 1/B..

2. Somepreliminary analysis

In this section we introduce a family of approximate solutions to (1.14) and derive some useful estimates.
Let w be the unique solution of (1.6) (see assumption (f2)), anddatl/2,1). We define

1—1¢ 1

Pe(t) = —w/<T>; Be(r) = eTE, e [0, g}, (2.1)

and
t

We (1) = (w <r - g) + ps(t)ﬂs(r))x(er), (2.2)
wherey (s) is a smooth cut-off function such that
x()=0 fors <1/8,
x(@s) =1 fors >1/4, (2.3)
x(s)€[0,1] forse[1/8,1/4].
Using ODE analysis, it is standard to see that
w(y) = Age™ + Oe™ ),
w'(y) = —Age™ + O(e~ 4oy,

y >0, (2.4)

whereAg > 0 is a fixed constant angl > 0 is given in (f1). This implies that fo};—‘ >1

pe(t) = Age™ 7 4 O(e~ Ty, (2.5)

Note that forr < 7, we have

|we, i (1) + [w, (] + |wy, ()| < e (2.6)



148 A. Malchiodi et al. / Ann. I. H. Poincaré — AN 22 (2005) 143-163

Observe also that, by constructian, , satisfies the Neumann boundary condition, iwg.,(1/e) = 0. Further-

more,w, , depends smoothly anas a map with values i62([0,1/¢)).
For simplicity of notation, let

w(r) := w(r — 5) (2.7)
e
Foru e Hrz(_Qg), we define the operator
n—1
Selul :=u,r + u, —u+ f(u). (2.8)

,
We introduce the following set

1 1
), tn > 3,1—11>=nelogz,
A= {t_(tl""’tN) tio1—t;>nelogd, j=2,... N[ (2:9)
wheren € (0,1/8) is a fixed number.
Fort € A, we define
N
Wt (1) =Y we; (r). (2.10)
j=1
Before studying the properties af, {, we need a preliminary lemma.
Lemma2.1. For |t —s| > 1anda > 8 > 0, there holds
w¥(y — HwP(y —s) =O(wﬂ(|t—s|)), (2.11)
/ w¥(y —HwP(y —s)dy = (l+ O(l))wﬁ(|t — s|) / w(y)e PY dy, (2.12)

R R
whereo(1) — Oas|t — s| = +oo.

Proof. Lety —r =z. Formula (2.4) implies
wh(y—s)=wh(z+1—s) = Age P15l 4 O(ePIFONat1=sly,

Multiplying by w*(y — r) and using the fact that|z + r — s| + «|z] > B|r — s|, we obtain (2.11).
Regarding the second inequality, assumings, we can write

/ w®(y —HwP(y —s)dy = Age PU— / w®(z)e Pidz + / w*(z) [w’3 (z+t—s)— Aoe_ﬁ(”l_s)] dz.
R R R

Then the conclusion follows from Lebesgue’s Dominated Convergence Theorem. Thescasan be handled
similarly. O

Lemma 2.2. For ¢ sufficiently small and € A, we have

1

£

N o T|t;—t;|
| Selwe. ]| oo +&" 72 / |Selwe1|r"dr < C[e +3 (o) T EH Y e } (2.13)
0 j=1 i#]

wherer satisfies} < 7 < 352,
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Proof. Using (1.6) it is easy to see that

-1 N
Selwe) = ==l + fwe) = Y f(w;,) + 0 ). (2.14)
j=1

The first term in right hand side of (2.14) can be estimated as follows

1 1 .
Swpp= ) (W] + e (tj)Be(r)) +OeT ).

.
j=1

From the decay ofv and 8, we deduce that

1

1 1
H—w;t +/—|w;t|r”_1dr§C5. (2.15)
r o ro®

Next, we note that
N
‘f(ws,t) - Z Sfw)| < 81+ S2,

j=1

where

N N N N
sl=‘f(2wt,>—2f<wz,.> f(Zwe,l,)—f(wa,.)‘.
j=1 j=1 j=1 j=1
To estimateS; and S, we divide the domair, = (0,1/¢) into the N intervalsiy, ..., Iy defined by

t1+1 1 ti+t; ti+ti_
11=|:1+2,—>: Ij:|:j+j+l, i+t 1), =2 N-1,

; Sy =

2¢ ¢ 2¢ 2¢
N+ Iv—
Iy = (07 M) (2.16)
2¢
Then we have
lwy, | < |wy;| onljfori # j. (2.17)

We need to apply the following inequality, which can be proved with elementary calculus. Fixed a cénstant
for each O< r < 1 and for any € (0, 1) there exists a constatt= C(L, t, §) such that

|+ y) = f] SClx*7FIyl,  provideds|y| < |x| < L. (2.18)
Using (1), (2.17), (2.18) and recalling that< ”T" we deduce that far € I3 there holds
$1<Cy. |w,l|1+”*fw§j + CZw,lj+” <Cy |w,l|1+”*fw;j.
j#1 j#1 j#1
From (2.11) and (2.12) it follows that
182l oo (ry) + " / |S10)|r"tdr < C Y emTinlE, (2.19)
I J#1

On the other hand, using (2.18) with= 1 and the inequalityuj'l/z(r)ﬁs r) < Cp2'?(t1), we find
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N N
S2< Cuf (Zm(ﬁ))ﬂa(ﬂ < C(Zpsm)) (w2 Be(r))wf
j=1

j=1

N
C(Zpeﬁj))(pg(rl))fw < Cpe () Ewg.
j=1

Hence we also get

152l oy + 6" / 152" dr < Cpy (1) 5. (2.20)
I

Forrel;, j=2,...,N—1,we can estimate similarly

SLSC Y lwy TR, (221)
i#]
and
N Lo o
S$2< th (Z Pe (1i) ),Bs (r) < C(Ps(tl)) T2y f (2.22)
i=1
smcewt/ (M Be(r) < /z(tj) pZ'?(t1). ONn Iy one can use similar estimates and, adding an error term of order

1/(03) . Combining (2 15), (2.19), (2.20) and similar estimated gry > 2, we obtain (2.13). O
The proof of the next lemma is postponed to Appendix A.

Lemma 2.3. Lett € A. Then fore sufficiently small we have

N N \n—1 s
«f{zw%} = (4) - (g +ow)e
j=1

i=1
£ n—1
_ Z(;’) (A2 +o(L)e 7 +OE2), (2.23)
i#]
whereAg > O is defined in2.4).

3. An auxiliary linear problem

In this section we study a linear theory which allows us to perform the finite-dimensional reduction procedure.
OWe i . . .
Fixt € A. Integrating by parts, one can show that orthogonality'—gt;e_f— in HX(£2.), j =1,..., N, is equivalent
J
to orthogonality inZ2($2;) to the following functions

dwg,;; dwe ¢,
Zes =A ) - . j=1,...,N. 3.1
&l ( 0t ) ot / G-
By elementary computations, we obtain
dwe ¢ 1 t 1 1—1;
ety _ Ly <r——f)+—w”(—’)ﬂg(r)+0(ecls>, (3.2)
ot 3 € € £
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W,y —1 [ dwey; 1 1 1
2a == Tt = (T ) o 5) =i o+ ). &

Btj r 8lj

where O(¢'/(€®)) and o /¢) are intended both in thé* and H}! sense.
In this section, we consider the following linear problem. Givien L°°(£2,), find a functiong satisfying

Lelgl:=¢"+"2¢' — ¢+ f'(wedp=h+ Y1 ¢; Zes;:

/ el . (3'4)
p0)=9¢'(3)=0; (},Zey;)e=0, j=1,....N,
for some constants;, j =1,..., N. To this purpose, define the norm
¢l = sup [¢(r)]. (3.5)

re©.})

We have the following result.

Proposition 3.1. Let ¢ satisfy(3.4). Then for sufficiently small, we have
@1l < Cllhll« (3.6)
whereC is a positive constant independentsadindt € A.

Proof. Arguing by contradiction, assume that

Iple=1; Il =o0(D). 3.7)

We multiply (3.4) by~

lg;j‘_tj and integrate ovef2, to obtain

N

aw&[/- awwi , awg,t/
Zci<zé‘,liv —> :_<h1 - > +<A¢_¢+f (wE,t)¢» ) > . (38)

vy atj atj 8tj

From the exponential decay af one finds
1

0Wg ¢, F W,
(25 ) = [ 22t ar = (it~
atj e 81‘]'

Moreover, integrating by parts, using (3.2) and (3.3) we deduce

’ aw&’j ’ awg,;/ —n
<A¢ — ¢+ f(we ), P > :<Zs,tj + [ (we t) 3 ; s¢> :0(8 ”d’”*)
J le Ij e
From (3.2) and (3.3), we see that
oWg ¢,
<z %> = —e”l(r,."—la,»,- / )@’ + o<1>), (3.9)
J e
R

wheres;; denotes the Kronecker symbol. Note that, using the equatior- w’ + f/(w)w’ = 0 we find

/ flw)w)? = f (w"?+ w"?) > 0.
R R

This shows that the left hand side of Eq. (3.8) is diagonally dominant in the indekxeand hence by (3.7) we
have

ci =O(ellhlls) + o(ellplls) =0(e), i=1,...,N. (3.10)
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Also, since we are assuming thgi||. = o(1) and since| Z, ;|| = O(1/e), there holds

=o(1). (3.11)

N

h + Z Cj Zé‘,[j
j=1

Thus (3.4) yields

¢+ 12 — ¢+ [ (we)d =0(1);
¢ 0)=¢'(})=0; (b, Zes)e=0, j=1,....N.
We show that (3.12) is incompatible with our assumptjeij. = 1. First we claim that, fixe® > 0, there holds

*

(3.12)

N
. t‘
l¢| -~ 0 on yeU(t—’—R,iJrR) ase — 0, (3.13)
=1 & &

whereR is any fixed positive constant.
Indeed, assuming the contrary, there esgst 0, j € {1, ..., N} and sequences, ¢i, yx € (tj/s —R,t;j/s+R)
such thatp, satisfies (3.4) and

b (y)| = do. (3.14)

Let ¢k = ¢r (v — t;/ex). Then using (3.12) anffip||. = 1, asex — 0 ¢ converges weakly itH2 (R) and strongly
in le)c(R) to a bounded functiopy which satisfies

5 —do+ f(w)po=0 inR.

Hencego must tend to zero at infinity and so, by (1.¢) = cw’ for somec. Sinceg; L Ze.1;,» we conclude that

Jr ¢of' (w)w'(y) =0, which yieldsc = 0. Hencepo = 0 and¢y — 0 in Bog(0). This contradicts (3.14), so (3.13)
holds true.
Givens$ > 0, the decay ofv and (3.13) (withR sufficiently large) imply

1
| £ we0e]l, <8+ Sl (3.15)
Using (3.12) and the Maximum Principle one finds

N
1
11l < [ @ep |, + D lejl1Ze, e+ Wil < 28+ S s,
j=1

and hence
ol <45 <1
if we chooses < 1/4. This contradicts (3.7). O

Proposition 3.2. There existgg > 0 such that for any < ¢g the following property holds true. Givéne L>°(s2,),
there exists a unique pai, ci, ..., cy) such that

N
Lelpl=h+) ¢;jZes; (3.16)
j=1

1
¢>’(0)=¢/<g> =0; #,Zes;)e=0, j=1,....N. (3.17)
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Moreover, lettingc = {c;};=1,..~, We have

.....

1
||¢||*+EIC|<C||/1II* (3.18)

for some positive constant.

Proof. The bound in (3.18) follows from Proposition 3.1 and (3.10). Let us now prove the existence part. Set

H= {u e HY(2,) | <u 8w“> = o}.

ot
Note that, integrating by parts, one has
v eH ifandonlyif (y,Z.).=0, j=1,....N.
Observe thap solves (3.16) and (3.17) if and onlydf € H satisfies

/ (VOVY +30) — [ we)b, ¥), = (h, Ve, Vi €H.
£2¢

This equation can be rewritten as
d+S@P)=h InH, (3.19)

wherer is defined by duality ané : H — 7 is a linear compact operator. .

Using Fredholm’s alternative, showing that Eq. (3.19) has a unique solution fohemobquivalent to showing
that the equation has a unique solution foe 0, which in turn follows from Proposition 3.1 and our proof is
complete. O

In the following, if ¢ is the unique solution given in Proposition 3.2, we set

¢ =Ac(h). (3.20)
Note that (3.18) implies
HAs(h)”* < Cllhll. (3.21)

4. Construction of a natural constraint
In this section we reduce problem (1.14) to a finite-dimensional one M.ebe the N-dimensional manifold
defined as
M, = {wey: te A).
Fore small and fort € A, we are going to find a functiog,  satisfying the two conditions
Pet L1,y TweiMe: E(Wet + ¢et) € Ty, M, (4.1)

whereT,, M. denotes the tangential spaceMf atw, . This amounts to finding a functigh such that for some
constantg;, j=1,..., N, the following equation holds true

Awet+¢) — et +¢) + fwer +¢) =D 1¢jZes; N2,

(4.2)
¢ (0)=¢'(2)=0, (p,Zes)e=0, j=1,... . N.
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Letting
Ms = {ws,t + ¢a,t: te A}, (4-3)

we will show thathZ, is a natural constraint ff,, in the sense that a critical point 5;|M€ is a true critical point
of &. '
The first equation in (4.2) can be written as

N

9"+ nT_ldf — ¢+ [ (we)p = (—Selwer]) + Nelp] + Zlc i Zet;
where j
Nelpl=—[f (et + @) — f(wer) — f (we)d]. (4.4)
Lemma4.1. For t € A ande sufficiently small, we have fd|. + o1« + llp2]l« < 1,
|N81]|, < ClipllE™: (4.5)
[ Nelpa] = Nelg2l |, < C(llgall + llp2llZ) i1 — p2ll-. (4.6)

whereo is defined in(fl1).

Proof. Inequality (4.5) follows from the mean-value theorem. In fact, for every poifd,iti/¢] there holds
fwet+ ) — fwer) = f'(wer +60¢)p, 6 <[0,1].

Since f’ is Holder continuous with exponeat we deduce
| fwet+ ) = f(wer) — [ (we,0d| < ClI,

which implies (4.5). The proof of (4.6) goes along the same way.

Proposition 4.2. For t € A ande sufficiently small, there exists a uniggie= ¢, 1 such that(4.2) holds. Moreover,
t > ¢e1 is of classC! as a map intaH(£2.), and we have

Tlt;—t;]

N 1—t;
||¢g,t||*<c(e+2e—<l+f>7’ +) e ) (4.7)
j=1

i#]

wherer € (3, 1$2).

Proof. Let. A, be as defined in (3.20). Then (4.2) can be written as

¢= -As[(_se [we,t]) + Ne [¢]] (4.8)
Letr be a positive (large) number, and set

N o 1t Tt —t;]
Fr= {¢ € HY(2.): |1¢llx < r<8 + Ze_(1+7)Tj + Ze_ o ) .

Jj=1 i#]
Define now the magB, : 7, — H'(2,) as
Be(¢) = Aa[(_Sa[ws,t]) + Ne [¢]]

Solving (4.2) is equivalent to finding a fixed point f8¢. By Lemma 4.1, fore sufficiently small and- large we
have
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Tt —
|1B:(81], < C||Selwerl|, + C||Nelo]], <r<8+Ze a+5) L +Ze s )
j=1 i#]
1
| Belp1] — Belgp2l||, < C||Nelgpal — Nelgal |, < §||¢1 = ®2ll«,

which shows thaB; is a contraction mapping afi.. Hence there exists a unigges ¥, such that (4.2) holds.
Now we come to the differentiability @f. Consider the following mag/;, : A x H}(Qs) xRN — H}(Qg) x RN
of classC?

(A — 1)—1(Sg[w5,t + 1) — Zﬁ‘v:l Cj 3;;;L,t

awg.t
Ho(t, $,0) = @ o1, e , (4.9)

d e,
((p’ ;;Nt )8
wherev = (A — 1)~1(u) is defined as the unique solution of
-1 1
v+ = u, v'(0)= v’(—) =0.
r &

Eqg. (4.2) is equivalent td, (t, ¢, c) = 0. We know that, given € A, there is a unique local solutigpy 1, ¢t
obtained with the above procedure. We prove that the linear operator

J0H,(t c
9H. (1. ¢.0) LHNS2) x RY - HYQ,) x RV
(9.9 lit.g.1.c00

is invertible fore small. Then theC-regularity ofz (e t, ce.t) follows from the Implicit Function Theorem.
Indeed we have

(A =17 S Twe + e 19)) — Xq d; ot
[y, d] = W e

dH:(t, ¢, 0)
(¢, C)

(tvd’s,tacs,t)

dwe,
W )
Since|| ¢ t]« is small, the same proof as in that of Proposition 3.1 shows%%%é"—m de1.Cep) IS invertible

for ¢ small.
This concludes the proof of Proposition 4.2

5. Energy computation for reduced energy functional

In this section we expand the quantity
Ke(t) =" 1€ [wet + ¢et]l: A — R (5.1)
in ¢ andt, whereg, 1 is given by Proposition 4.2.

Lemma5.1. Fort € A ande sufficiently small, we have

Ke(t) =" 1E, [w“ + Pet]

N
w]Zt” L—(A§+o) ) i te 2! — (A§+o@) > 1~
j=1 i#]

£ O). (5.2)
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Proof. Itis sufficient to show that
N 1—t; [t;—t;l
Ke(t) = " & [we 1] + o( Yoot Y e ) +0Ce),
j=1 i#]
and to apply Lemma 2.3. To this end, we write
7" ICe (8) = Eclwe ] + K1+ K2 — K3,

where

=

Ky, = /[wé,t(p;,t + we,t¢e,t - f(ws,t)(bs,t]rn_ldr;
0

1
1 _
K2=> / (19, 17 + I¢e.t]? — ' (we) 2 ]r" L dr;
0

1
E 1
K3 = / |:F(Wg,t + Pet) — F(wet) — f(Wet)Pet — Ef/(ws,t)¢82,ti|r”1dr'
0

Integrating by parts and using Lemmas 2.2 and 4.2, we have

1 1

Kol =| [ SetwerldesLdr| < Cloual [ ISl ar
0

0

N
<Celr <82 + D (e t) " + Ze—zf'ff—ff'/S)
j=1 i#]
To estimateX 2, we note that, ; satisfies

N
A¢s,t - (bs,t + f(ws,t + ¢s,t) - f(ws,t) + Ss[ws,t] = chze‘tj-
=1

Multiplying (5.4) by ¢. 1" ~* and integrating ovef,, we obtain

/Ss[we,t]¢e,trn_ldr = /(|¢é,t|2 + |¢g,t|2 — f/(wg’t)¢§t)rn_ldr
Ie

I
T f[f(ws,t + e t) — f(wet) — f/(ws,t)¢a,t]¢s,trn_ldr.
I
Hence we find

2Ky =— /[f(we,t + Pet) — fwer) — f/(we,t)(bs,t]d)s,trn_ldr + / Sg[wg’t]¢g’trn_ldr.
I

I
From the Taylor’s formula, we get

| f (et + @et) — fFwe) — f/(we)bet| < Clepe i),

(5.3)

(5.4)

(5.5)
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so we deduce

K2l <C / 166025 L dr + Clleslls / |Sulwe | Ldr.

I I

From the exponential decay of and (3.10), one finds that (r) satisfies

_ 1 |r— 1j 1
¢gt + nT‘bét - ¢s,t + f(we,t + ¢s,t) - f(we,t) = (Ze € )a ¢’:;,t(0) ¢£t( > =0.

From (5.4) and a comparison principle, we obtain

b ()| < cZe B (5.6)

for someC < 1.
Using (5.6), we get

N
|K2| < C81n< Z pg(tj 2+(7 +Z 72T|t,7l |/8> (57)

i#]
From the Holder contlnuny of’ we deduce

‘F(ws,t + Pet) = Fwe,) — f(wet)Pet — f (w, t)¢gt Clepe.t|*,

S0, again, it follows that

N
K3l < Csl‘”< Z pet)) T+ e ‘2"‘1—’1'/8> (5.8)

i#j
Combining with (2.23) of Lemma 2.2, we obtain the conclusiom

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Rix A and letg, ; be the solution given by Lemma 3.4. Let al§p(t)
denote the reduced energy functional defined by (5.1).

Proposition 6.1. For ¢ small, the following maximization problem
sup{ K (t): te A} (6.1)
has a solutiort? in the interior of A.

Proof. SinceC,(t) is continuous irt, it achieves a maximum ial. Let t® be a maximum point. We claim that
tf e A.

Let us argue by contradiction and assume thatd A. Then from the definition of, there are three possibili-
ties: either 1- 11 = nelog 2, or there existy > 2 such thatt; — t;_1| = min.; |t; — t;| = nelog 2, orty = 3.

In the first case, we have

1— 1 n—1 A2
Il = (AZ+ o(1)e 27" = I[u)]<l — nelog —) — AZem2100% 4 o(e21) < ITw] — 7082'7.
&
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Hence we obtain
2

A
Ko (t°) < NIw] — 7082" (6.2)
sincen < §.
In the second case, there holds
N A2
n—-1 __ = 1 0
Ko (t®) < Iw] Zt (A3+0(1)) X;e — AZe" < NI[w] — 75". (6.3)
]:
In the last case, we have
1 n 1
Ke(t®) < Iwl(N — 1+ 401 < I[w](N 1+ (2> ) +0(1). (6.4)
On the other hand, by choosing=1— jelog ;-L j=1,..., N, we obtain
N NIN+Dn-1) , 1 1\?
Yo t=1- ——————"rlog= +0(?(log=) ):
—J 2 P €
j=1
—2log} _ .2 LSSl
pe(t1) Be (1) ~ e~ “1%9% ~ %, e F =g, (6.5)

and hence

N(N +1)(n—1)?
2

which contradicts (6.2), or (6.3), or (6.4). This completes the proof of Proposition 611.

Ko (t5) = NI[w] — Iog +0(e)

Proof _of Theorem 1.1. By Proposition 4.2, there existsy such that fore < ¢y we have aC! mapt — et
from A into C2(1,) such that

N
Selwe,t + Pe t] =chze,tj (6.6)

j=1

for some constants; € R, which also are of class! in t.
By Proposition 6.1, there exist§ € A achieving the maximum ofC,:t — & [wet + Petl. Let u, =

SN Wy + et = wet + Pt Then we have
Bl Ko () =0, i=1,...,N,

and hence
[ [tV (et + o) +te By (et + Ge.0) — £t (et + 0]y~ =0.
I

Therefore, by (6.6) we find

N
ch /(Z&‘,tj 0y (et + ¢g’t))rn71dr =0. 6.7)

Differentiating the equatioky, Z. ;). = 0 with respect ta;, we get

(0. Ze)e = —(. 9 Zetj)e = Ol )e ™" L.
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Using (3.9), we see that (6.7) is diagonally dominant in the coefficiefitswhich impliesc; =0for j=1,..., N.
Henceu, = w, = + ¢, 1 is a solution of (1.1).

By our construction and the Maximum Principle, one can easily check ithat 0 in 2. Moreover
" 1& (u;) - NI(w) ase — 0, andu, has onlyN local maximum pointsy, ..., sy . By the structure of:,
we see that (up to a permutatioff)— 7 = o(1). This proves Theorem 1.1.0
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Appendix A

In this appendix we expand the quantﬁa{zyzl we,1;] @s a function of andt. Integrating by parts we get

[Sons ]2 e s
I

8

2
Ig

N
1 -1
= /[—nTwé,t + Zf(wti):| werr" tdr — / Fwe)r" Ydr + o)

i=1 A

1
=FE1+ Ex+ E3+ E4+0O(e” 7)),

1 (n-1 _
E1=—2 | —wl qwe " tdr;
. :

I

Ea= [ /f(w,pwg,, - 1dr—/F(wsr)rn 1dr]
j=1

Ie

N
=5 Z/ Swg)we,r" " dr; Eq= /[F(waj) - ZF(ws,t_,)]rn_ldr.
A Jj=1 j=1

i#j I,
Integrating by parts and using the exponential decay ofe obtain

(n_l) n2/

1
(n—=1)(n-2) 132 dr = O3
— / 1dr =0(""").

1= (Wetdr =
The termE> can be decomposed as

N

Ep= Z[ / (%f(wt,)w,, - F(wtj)>r"—1dr T / Fwi) (wer, — w,,.)r"—ldr}
I

J=1"
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N
+ Z/(F(w,_,) — F(we,r))r" dr.
=1y,

We have the following estimates, where (f1) and the decay afe used

1 1 \"t 1
/<§f(wzj)wzj —F(wz,-)>r"_ dr = (;) (l[w]— / (Ef(wzj)wr,- —F(wrj)) dr>

I R\ /¢

1 et H' n—1
/(_f(wl')wt' F(wt')) [r a (_) i|dr
2 S i c

Ie

n—1
ti 1—t;
B (?j) [w] + O e~ 7) + O™,

n—1
t.
/f(w,j)(ws,tj — w,j)r”*ldr = (;’) ps(tj)[/ Be(r) f (wy;)dr — / ﬂa(”)f(wtj)d’”} +0(e2™).
I R R\,
The first term on the right-hand side can be written as

1
[ By dar === o+ 00
R

where

yo= / Fwye® dy = / (w — w")e’ dy. (6.8)
R R

The second term on the right-hand side can be estimated in the following way

oo

)
/ Be(r) f (wy))dr| < C / ¢t MO0 L 0@ )

R\, 1
&

< Ce @ 4 o,
The last term off, can be estimated as follows. Using the Taylor's formula and (2.18), we get
F(wy;) — F(we,r;) = — f(wi;)Bep(t) + O(ﬂgzp(t,/)zwg)-
Hence, reasoning as above we find

An—1 e
/ (F(wy,) — F(we,))r" dr = —(%’) / £ wi)Be(rp (1)) dr + O(e™ @) ) 1+ O(e2™)
I

I e
5\ ot (4ol 2
=—<;> e 5 Yo+ 0> VT + 0.
In conclusion, from (2.4) we obtain
N t: n—1 1 1—tj
Ey= Z(;’) <I[w] ~ 540(y0+ o<1>)e—2T) +0("™). (6.9)

j=1
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Regarding the ternt's, we can write

-1 A n—1
/ i wen " tdr = <t;> / ) we, dr + / fw)we, [rnl_ (t; ) ]dr.
I. Le fe

There holds
/ FQwiwe s, dr = / F Qg dr + pe(t)) / Fwi)Be(r) +O(e™ )
I A I,

_|ti—t_/-\ _|t,-+t_/-—1\ 1
=Ao(yo+0oD)e "= + Ao(yo+0(D)e” ¢ +O(e )

It =11

= Ao(yo+0(L)e™ 7 + O(e™ ).
Reasoning as above one also finds

A\n—1
oo () o
le

In conclusion we deduce

2
< Ce ™™,

1 tj =]
Es=3 Z Ao(yo+0(L)e™ "7 +0(™).
i#]
About E4, recall that

N N
Ea= / |:F<Z wey,j> — Z F(wg,,j)j|r"_ldr.
j=1

A j=1

Similarly to the proof of Lemma 2.2, we divide = (0,1/¢) into N parts as in (2.16).
Oonl,i=1,....,N—1,we havewg,,j < wy;, SO we can use Taylor's formula and (2.18) to get

N N
F(Z wg,,,.) =Y Fwe) = f(w,,.>[2 We,r, + ﬂsps(ti)} +Owy )[Z wl, + ﬁfpgm)z]
j=1

j=1 J# J#L
On Iy, we again add some error terms of ordet/ (€2,
Hence, integrating o, and using the exponential decay:wof we get

N N
/|:F(Z wg),j> - Z F(wg,tj):|r”_ldr
j=1 j=1

I;

1 ot ol Z -t _liyl 2—n
~(%) aolo+o)e 4 (1) X Aoro+ow)e 062,
J#i
Combining the estimates fdt1, E2, E3 and E4, we obtain

N N 4\t 1 1
Es[;ws,t,} :_2(?[) {I[w] - EAO(V0+0(1))€_2€}
1 i\t I~ 2
-5 (;) Ao(yo+o(D)e” 7 +0@M. (6.10)
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Finally we note that

R
Vo= /(w —w"e’dy = lim /(w —w")e’
R—+o00
R —R

= IirJr: (eRw(R) + e Rw(—R) — efw/'(R) — e *w'(=R)) =240 > 0 (6.11)

whereAg is defined at (2.4). O
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