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Abstract

We consider the following singularly perturbed Neumann problem{
ε2�u − u + f (u) = 0 in Ω;
u > 0 in Ω and ∂u

∂ν
= 0 on∂Ω,

whereΩ = B1(0) is the unit ball inRn, ε > 0 is a small parameter andf is superlinear. It is known that this problem has multi
solutions (spikes) concentrating at some points ofΩ̄. In this paper, we prove the existence of radial solutions which concen
atN spheres

⋃N
j=1{|x| = rε

j
}, where 1> rε

1 > rε
2 > · · · > rε

N
are such that 1− rε

1 ∼ ε log 1
ε , rε

j−1− rε
j

∼ ε log 1
ε , j = 2, . . . ,N.

Résumé

On considère le problème de Neumann singulièrement perturbé suivant{
ε2�u − u + f (u) = 0 dansΩ;
u > 0 dansΩ et ∂u

∂ν
= 0 sur∂Ω,

où Ω = B1(0) est la boule unité deRn, ε > 0 est un paramètre petit etf est surlinéaire. Il est bien connu que ce problè
possède plusieurs solutions se concentrant en certains points deΩ̄. Dans cet article nous prouvons l’existence de soluti
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1. Introduction

The aim of this paper is to construct a family of multiple layered solutions to the following singularly pert
elliptic problem{

ε2�u − u + f (u) = 0 in Ω;
u > 0 in Ω and ∂u

∂ν
= 0 on∂Ω,

(1.1)

where� = ∑n
i=1

∂2

∂x2
i

is the Laplace operator,Ω = B1(0) is the unit ball inR
n, ε > 0 is a small paramete

f is superlinear, andν(x) denotes the unit outer normal atx ∈ ∂Ω . A typical nonlinearity isf (u) = up, with
p ∈ (1,+∞).

Problem (1.1) is known as the stationary equation of the Keller–Segel system in chemotaxis [19]. It can
viewed as a limiting stationary equation of the Gierer–Meinhardt system in biological pattern formation, s
for more details.

In the pioneering papers [19,23] and [24], Lin, Ni and Takagi established the existence of a least-ener
tion uε of (1.1) and showed that, forε sufficiently small,uε has only one local maximum pointPε ∈ ∂Ω . Moreover,
H(Pε) → maxP∈∂Ω H(P ) asε → 0, whereH(·) is the mean curvature of∂Ω . Such a solution is called bounda
spike-layer. Its energy, defined by

Jε[u] = ε2

2

∫
Ω

|∇u|2 + 1

2

∫
Ω

u2 −
∫
Ω

F(u), u ∈ H 1(Ω), (1.2)

whereF(u) = ∫ u

0 f (s) ds, satisfies the following estimate

Jε[uε] ∼ εn. (1.3)

(Here and throughout the paper,Aε ∼ Bε means that there exists fixed constantsC1,C2 such thatC1 � Aε/Bε � C2
for ε small.)

Since then, many papers investigated further the solutions of (1.1) concentrating at one or multiple poinΩ̄

(spike-layers). A general principle is that the location of interior spikes is determined by the distance functio
the boundary. We refer the reader to the articles [3,6,9–11,13,14,16,18,26–28,30,31] and references there
other hand, boundary spikes are related to the mean curvature of∂Ω . This aspect is discussed in the papers [4
15,17,25,29,32,33], and references therein. A review of the subject up to 1998 is to be found in [22]. We m
one result which is related to our work here: in [14], it was proved that for any two integersk � 0, l � 0, k+ l > 0,
problem (1.1) possesses a solutionuε with exactlyk interior spikes andl boundary spikes.

However, in all the papers mentioned above, we still have the energy bound (1.3) and the concentrati
zero-dimensional. The question of constructing higher-dimensional concentration sets has been investig
in recent years. It has been conjectured in [22] that for any 1� k � n − 1, problem (1.1) has a solutionuε which
concentrates on ak-dimensional subset of̄Ω . We mention two recent results that support such a conjecture.

© 2004 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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In [20], Malchiodi and Montenegro proved that forn = 2 andf (u) = up,p � 2, there exists a sequence
numbersεk → 0 such that problem (1.1) has a solutionuεk

which concentrates at the boundary of∂Ω (or any
component of∂Ω). Such a solution has the following energy bound

Jεk
[uεk

] ∼ εn−1
k = εk. (1.4)

In another recent paper [2], Ambrosetti, Malchiodi and Ni proved the existence of a radially symmetric soluuε

to (1.1) withf (u) = up,p > 1 andΩ = B1(0), such thatuε concentrates at a sphere{|x| = rε} with 1 − rε ∼
ε log 1

ε
. For this solution there holds

Jε[uε] ∼ ε. (1.5)

In this paper we show existence of solutions concentrating at multiple spheres, which cluster near the b
of B1(0). Throughout the paper, we assume the following conditions onf

(f1) f (t) ≡ 0 for t > 0, f (0)= f ′(0)= 0 andf ∈ C1+σ [0,∞) ∩ C2(0,∞),
(f2) the following ODE has a unique solution

w′′ − w + f (w) = 0 in R, w(0)= max
y∈R

w(y), w(y) → 0 as|y| → +∞. (1.6)

Assumption (f2) implies that the following holds: the only solution of the linearization of (1.6) atw

v′′ − v + f ′(w)v = 0 in R, v(y) → 0 for |y| → +∞ (1.7)

is a multiple ofw′. In fact, problemv′′ −v+f ′(w)v = 0 is a second order linear ODE and admits two linearly in
pendent solutions. Sincew′ is a solution to (1.7), another solution tov′′ − v +f (w)v = 0 must grow exponentially
as|y| → +∞.

Examples off (u) include:f (u) = up +∑l
i=1 aiu

qi ,1< qi < p < ∞. (See [5] and Appendix C of [24].) Whe
f (u) = up, the functionw(y) can be written explicitly and has the form

w(y) =
(

p + 1

2

) 1
p−1

(
cosh

(
p − 1

2
y

))− 2
p−1

.

Our main result in this paper is the following.

Theorem 1.1. Let N be a fixed positive integer. Then there existsεN > 0 such that for allε < εN , problem(1.1)
admits a radially symmetric solutionuε with the following properties

(1) uε concentrates atN spheres{|x| = rε
j }, j = 1, . . . ,N, with

1− rε
1 ∼ ε log

1

ε
, rε

j−1 − rε
j ∼ ε log

1

ε
, j = 2, . . . ,N. (1.8)

More precisely, we haveuε(r
ε
j ) → w(0), wherew(y) is the unique solution of(1.6), and there exist two con

stantsa andb such that

uε(r) � ae−b mini=1,...,N |r−rε
i |/ε. (1.9)

(2) uε has the following energy bound

Jε[uε] = ωn−1NεI [w] + o(ε), (1.10)

where

I [w] = 1

2

∫
R

(
(w′)2 + w2) − 1

p + 1

∫
R

F(w),

andωn−1 denotes the volume ofSn−1.
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Theorem 1.1 can also be generalized to singularly perturbed Schroedinger equations of the form

ε2�u − V
(|x|)u + up = 0, in R

n, u > 0, u∈ H 1(Rn) (1.11)

wherep > 1.
As in [1], the following auxiliary potential

M(r) = rn−1V θ(r), θ = p + 1

p − 1
− 1

2

determines the location of the clustered layers. We state the following result, whose proof is similar to
Theorem 1.1, see also the computations in [1].

Theorem 1.2. Assume thatM(r) has strict local maximum atr = r̄ such thatM ′′(r̄) < 0. Then forε > 0 sufficiently
small, problem(1.11)admits a radially symmetric solutionuε which concentrates onN spheres{|x| = rε

j }, j =
1, . . . ,N, with

|r̄ − rε
1| ∼ ε log

1

ε
, rε

j − rε
j−1 ∼ ε log

1

ε
, j = 2, . . . ,N. (1.12)

More precisely, we haveuε(r
ε
j ) → w(0), wherew(y) is the unique solution of(1.6) (withf (u) = up), and there

exist two constantsa andb such that

uε � ae−b mini=1,...,N |r−rε
i |/ε. (1.13)

Clustered spikes have been shown to exist for (1.1) in the case of general domainΩ . For example, if the bound
ary mean curvature has a local minimum pointP0, then it is shown [15] that given arbitrary positive integerK , there
exists a boundary spike solution withK spikes concentrating nearP0. Interior clustered layers are shown to ex
for one-dimensional Allen–Cahn equation with inhomogeneous potential [21] and for bistable nonlineariti
inhomogeneous potential in a unit ball [12]. However, we are not aware of any result on boundary clustere
in higher dimensions. This paper seems to be the first in dealing with such phenomenon in higher dimens

Our approach mainly relies upon a finite dimensional reduction procedure combined with a variational ap
Such a method has been used successfully in many papers, see e.g. [1,2,7,11,13,14]. In particular, we sh
the one used in [13].

In the rest of section, we introduce some notations for later use.
By the following scalingx = εy, problem (1.1) is reduced to the ODE{

urr + n−1
r

ur − u + f (u) = 0, r ∈ (0, 1
ε
),

u′(0)= u′(1
ε
) = 0, u(r) >0.

(1.14)

From now on, we shall work with (1.14).
Let w(y) be the unique solution to (1.6). Its energy is given by

I [w] := 1

2

∫
R

|w′|2 + 1

2

∫
R

w2 −
∫
R

F(w). (1.15)

Set

Ωε = 1

ε
B1(0)= B 1

ε
(0), Iε =

(
0,

1

ε

)
. (1.16)

Foru ∈ C2(Ωε) andu = u(r), we have

�u = u′′ + n − 1
u′. (1.17)
r
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Fork ∈ N, we denote byHk
r (Ωε) the space of radial functions inHk(Ωε). OnH 1

r (Ωε), we define an inner produc
as follows:

(u, v)ε =
1
ε∫

0

(u′v′ + uv)rn−1 dr. (1.18)

Similarly, the inner product onL2
r (Ωε) can be defined by

〈u,v〉ε =
1
ε∫

0

(uv)rn−1 dr. (1.19)

We also introduce a new energy functional, which, up to a positive multiplicative constant, is equivalentJε

Eε[u] = 1

2

1
ε∫

0

(|u′|2 + u2)
rn−1 −

1
ε∫

0

F(u)rn−1 dr, u ∈ H 1
r (Ωε). (1.20)

Throughout this paper, unless otherwise stated, the letterC will always denote various generic constants which
independent ofε, for ε sufficiently small. The notationAε � Bε means that limε→0 |Bε|/|Aε| = 0, whileAε 
 Bε

means 1/Aε � 1/Bε.

2. Some preliminary analysis

In this section we introduce a family of approximate solutions to (1.14) and derive some useful estimate
Let w be the unique solution of (1.6) (see assumption (f2)), and lett ∈ (1/2,1). We define

ρε(t) = −w′
(

1− t

ε

)
; βε(r) = er− 1

ε , r ∈
[
0,

1

ε

]
, (2.1)

and

wε,t (r) =
(

w

(
r − t

ε

)
+ ρε(t)βε(r)

)
χ(εr), (2.2)

whereχ(s) is a smooth cut-off function such that


χ(s) = 0 for s � 1/8,

χ(s) = 1 for s � 1/4,

χ(s) ∈ [0,1] for s ∈ [1/8,1/4].
(2.3)

Using ODE analysis, it is standard to see that{
w(y) = A0e

−y + O(e−(1+σ)y);
w′(y) = −A0e

−y + O(e−(1+σ)y); y � 0, (2.4)

whereA0 > 0 is a fixed constant andσ > 0 is given in (f1). This implies that for1−t
ε

� 1

ρε(t) = A0e
− 1−t

ε + O(e−(1+σ) 1−t
ε ). (2.5)

Note that forr � 1
4ε

, we have∣∣wε,t (r)
∣∣ + ∣∣w′

ε,t (r)
∣∣ + ∣∣w′′

ε,t (r)
∣∣ � e− 1

4ε . (2.6)
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Observe also that, by construction,wε,t satisfies the Neumann boundary condition, i.e.,w′
ε,t (1/ε) = 0. Further-

more,wε,t depends smoothly ont as a map with values inC2([0,1/ε]).
For simplicity of notation, let

wt(r) := w

(
r − t

ε

)
. (2.7)

Foru ∈ H 2
r (Ωε), we define the operator

Sε[u] := urr + n − 1

r
ur − u + f (u). (2.8)

We introduce the following set

Λ =
{

t = (t1, . . . , tN )

∣∣∣∣ tN > 1
2,1− t1 � ηε log 1

ε
,

tj−1 − tj > ηε log 1
ε
, j = 2, . . . ,N

}
, (2.9)

whereη ∈ (0,1/8) is a fixed number.
For t ∈ Λ, we define

wε,t(r) =
N∑

j=1

wε,tj (r). (2.10)

Before studying the properties ofwε,t, we need a preliminary lemma.

Lemma 2.1. For |t − s| � 1 andα > β > 0, there holds

wα(y − t)wβ(y − s) = O
(
wβ

(|t − s|))
, (2.11)∫

R

wα(y − t)wβ(y − s) dy = (
1+ o(1)

)
wβ

(|t − s|) ∫
R

wα(y)e−βy dy, (2.12)

whereo(1)→ 0 as |t − s| → +∞.

Proof. Let y − t = z. Formula (2.4) implies

wβ(y − s) = wβ(z + t − s) = A0e
−β|z+t−s| + O(e−β(1+σ)|z+t−s|).

Multiplying by wα(y − t) and using the fact thatβ|z + t − s| + α|z| > β|t − s|, we obtain (2.11).
Regarding the second inequality, assumingt > s, we can write∫

R

wα(y − t)wβ(y − s) dy = A0e
−β(t−s)

∫
R

wα(z)e−βz dz +
∫
R

wα(z)
[
wβ(z + t − s) − A0e

−β(z+t−s)
]
dz.

Then the conclusion follows from Lebesgue’s Dominated Convergence Theorem. The cases > t can be handled
similarly. �
Lemma 2.2. For ε sufficiently small andt ∈ Λ, we have

∥∥Sε[wε,t]
∥∥

L∞ + εn−1

1
ε∫

0

∣∣Sε[wε,t]
∣∣rn−1 dr � C

[
ε +

N∑
j=1

(
ρε(tj )

)1+ σ
2 +

∑
i �=j

e− τ |ti−tj |
ε

]
, (2.13)

whereτ satisfies1 < τ < 1+σ .
2 2
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Proof. Using (1.6) it is easy to see that

Sε[wε,t] = n − 1

r
w′

ε,t + f (wε,t) −
N∑

j=1

f (wtj ) + O(e− 1
Cε ). (2.14)

The first term in right hand side of (2.14) can be estimated as follows

1

r
w′

ε,t = 1

r

N∑
j=1

(
w′

tj
+ ρε(tj )βε(r)

) + O(e− 1
Cε ).

From the decay ofw andβε we deduce that

∥∥∥∥1

r
w′

ε,t

∥∥∥∥∞
+

1
ε∫

0

1

r
|w′

ε,t|rn−1 dr � Cε. (2.15)

Next, we note that∣∣∣∣∣f (wε,t) −
N∑

j=1

f (wtj )

∣∣∣∣∣ � S1 + S2,

where

S1 =
∣∣∣∣∣f

(
N∑

j=1

wtj

)
−

N∑
j=1

f (wtj )

∣∣∣∣∣; S2 =
∣∣∣∣∣f

(
N∑

j=1

wε,tj

)
− f

(
N∑

j=1

wtj

)∣∣∣∣∣.
To estimateS1 andS2, we divide the domainIε = (0,1/ε) into theN intervalsI1, . . . , IN defined by

I1 =
[

t1 + t2

2ε
,

1

ε

)
, Ij =

[
tj + tj+1

2ε
,
tj + tj−1

2ε

)
, j = 2, . . . ,N − 1,

IN =
(

0,
tN + tN−1

2ε

)
. (2.16)

Then we have

|wti | � |wtj | on Ij for i �= j. (2.17)

We need to apply the following inequality, which can be proved with elementary calculus. Fixed a constantL > 0,
for each 0< τ � 1 and for anyδ ∈ (0,1) there exists a constantC = C(L, τ, δ) such that∣∣f (x + y) − f (x)

∣∣ � C|x|1+σ−τ |y|τ , providedδ|y| < |x| < L. (2.18)

Using (f1), (2.17), (2.18) and recalling thatτ < 1+σ
2 , we deduce that forr ∈ I1 there holds

S1 � C
∑
j �=1

|wt1|1+σ−τwτ
tj

+ C
∑
j �=1

w1+σ
tj

� C
∑
j �=1

|wt1|1+σ−τwτ
tj
.

From (2.11) and (2.12) it follows that

‖S1‖L∞(I1) + εn−1
∫
I1

∣∣S1(r)
∣∣rn−1 dr � C

∑
j �=1

e−τ |t1−tj |/ε. (2.19)

On the other hand, using (2.18) withτ = 1 and the inequalitywσ/2
t (r)βε(r) � Cρ

σ/2
ε (t1), we find
1
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order

edure.
S2 � Cwσ
t1

(
N∑

j=1

ρε(tj )

)
βε(r) � C

(
N∑

j=1

ρε(tj )

)(
w

σ
2
t1

βε(r)
)
w

σ
2
t1

� C

(
N∑

j=1

ρε(tj )

)(
ρε(t1)

) σ
2 w

σ
2
t1

� C
(
ρε(t1)

)1+ σ
2 w

σ
2
t1

.

Hence we also get

‖S2‖L∞(I1) + εn−1
∫
I1

∣∣S2(r)
∣∣rn−1 dr � Cρε(t1)

1+ σ
2 . (2.20)

For r ∈ Ij , j = 2, . . . ,N − 1, we can estimate similarly

S1 � C
∑
i �=j

|wtj |1+σ−τwτ
ti
, (2.21)

and

S2 � Cwσ
tj

(
N∑

i=1

ρε(ti)

)
βε(r) � C

(
ρε(t1)

)1+ σ
2 w

σ
2
tj

(2.22)

sincew
σ/2
tj

(r)βε(r) � ρ
σ/2
ε (tj ) � ρ

σ/2
ε (t1). OnIN one can use similar estimates and, adding an error term of

e−1/(Cε). Combining (2.15), (2.19), (2.20) and similar estimates onIj , j � 2, we obtain (2.13). �
The proof of the next lemma is postponed to Appendix A.

Lemma 2.3. Let t ∈ Λ. Then forε sufficiently small we have

Eε

[
N∑

j=1

wε,tj

]
=

N∑
i=1

(
ti

ε

)n−1{
I [w] − (

A2
0 + o(1)

)
e−2

1−ti
ε

}

−
∑
i �=j

(
ti

ε

)n−1(
A2

0 + o(1)
)
e− |ti−tj |

ε + O(ε2−n), (2.23)

whereA0 > 0 is defined in(2.4).

3. An auxiliary linear problem

In this section we study a linear theory which allows us to perform the finite-dimensional reduction proc

Fix t ∈ Λ. Integrating by parts, one can show that orthogonality to
∂wε,tj

∂tj
in H 1

r (Ωε), j = 1, . . . ,N, is equivalent

to orthogonality inL2(Ωε) to the following functions

Zε,tj = �

(
∂wε,tj

∂tj

)
− ∂wε,tj

∂tj
, j = 1, . . . ,N. (3.1)

By elementary computations, we obtain

∂wε,tj

∂t
= −1

ε
w′

(
r − tj

ε

)
+ 1

ε
w′′

(
1− tj

ε

)
βε(r) + O(e− 1

Cε ), (3.2)

j
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e

Zε,tj = −f ′(wtj )
∂wε,tj

∂tj
− n − 1

r

(
∂wε,tj

∂tj

)′
+ o

(
1

ε

)
= −1

ε
w′

tj
f ′(wtj ) + o

(
1

ε

)
, (3.3)

where O(e−1/(Cε)) and o(1/ε) are intended both in theC1 andH 1
r sense.

In this section, we consider the following linear problem. Givenh ∈ L∞(Ωε), find a functionφ satisfying{
Lε[φ] := φ′′ + n−1

r
φ′ − φ + f ′(wε,t)φ = h + ∑N

j=1 cjZε,tj ;
φ′(0)= φ′(1

ε
) = 0; 〈φ,Zε,tj 〉ε = 0, j = 1, . . . ,N,

(3.4)

for some constantscj , j = 1, . . . ,N. To this purpose, define the norm

‖φ‖∗ = sup
r∈(0, 1

ε
)

∣∣φ(r)
∣∣. (3.5)

We have the following result.

Proposition 3.1. Letφ satisfy(3.4). Then forε sufficiently small, we have

‖φ‖∗ � C‖h‖∗ (3.6)

whereC is a positive constant independent ofε andt ∈ Λ.

Proof. Arguing by contradiction, assume that

‖φ‖∗ = 1; ‖h‖∗ = o(1). (3.7)

We multiply (3.4) by
∂wε,tj

∂tj
and integrate overΩε to obtain

N∑
i=1

ci

〈
Zε,ti ,

∂wε,tj

∂tj

〉
ε

= −
〈
h,

∂wε,tj

∂tj

〉
ε

+
〈
�φ − φ + f ′(wε,t)φ,

∂wε,tj

∂tj

〉
ε

. (3.8)

From the exponential decay ofw one finds

〈
h,

∂wε,tj

∂tj

〉
ε

=
1
ε∫

0

h
∂wε,tj

∂tj
rn−1 dr = O

(‖h‖∗ε−n
)
.

Moreover, integrating by parts, using (3.2) and (3.3) we deduce〈
�φ − φ + f ′(wε,t)φ,

∂wε,tj

∂tj

〉
ε

=
〈
Zε,tj + f ′(wε,t)

∂wε,tj

∂tj
, φ

〉
ε

= o
(
ε−n‖φ‖∗

)
.

From (3.2) and (3.3), we see that〈
Zε,ti ,

∂wε,tj

∂tj

〉
ε

= −ε−n−1
(

tn−1
i δij

∫
R

f ′(w)(w′)2 + o(1)

)
, (3.9)

whereδij denotes the Kronecker symbol. Note that, using the equationw′′′ − w′ + f ′(w)w′ = 0 we find∫
R

f ′(w)(w′)2 =
∫
R

(
(w′′)2 + (w′)2)

> 0.

This shows that the left hand side of Eq. (3.8) is diagonally dominant in the indexesi, j , and hence by (3.7) w
have

ci = O
(
ε‖h‖∗

) + o
(
ε‖φ‖∗

) = o(ε), i = 1, . . . ,N. (3.10)
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t

)

Also, since we are assuming that‖h‖∗ = o(1)and since‖Zε,tj ‖∗ = O(1/ε), there holds∥∥∥∥∥h +
N∑

j=1

cjZε,tj

∥∥∥∥∥∗
= o(1). (3.11)

Thus (3.4) yields{
φ′′ + n−1

r
φ′ − φ + f ′(wε,t)φ = o(1);

φ′(0)= φ′(1
ε
) = 0; 〈φ,Zε,tj 〉ε = 0, j = 1, . . . ,N.

(3.12)

We show that (3.12) is incompatible with our assumption‖φ‖∗ = 1. First we claim that, fixedR > 0, there holds

|φ| → 0 on y∈
N⋃

j=1

(
tj

ε
− R,

tj

ε
+ R

)
asε → 0, (3.13)

whereR is any fixed positive constant.
Indeed, assuming the contrary, there existδ0 > 0,j ∈ {1, . . . ,N} and sequencesεk,φk, yk ∈ (tj /ε−R, tj /ε+R)

such thatφk satisfies (3.4) and∣∣φk(yk)
∣∣ � δ0. (3.14)

Let φ̃k = φk(y − tj /εk). Then using (3.12) and‖φ‖∗ = 1, asεk → 0 φ̃k converges weakly inH 2
loc(R) and strongly

in C1
loc(R) to a bounded functionφ0 which satisfies

φ′′
0 − φ0 + f ′(w)φ0 = 0 in R.

Henceφ0 must tend to zero at infinity and so, by (1.7),φ0 = cw′ for somec. Sinceφ̃k ⊥ Zε,tj , we conclude tha∫
R

φ0f
′(w)w′(y) = 0, which yieldsc = 0. Henceφ0 = 0 andφ̃k → 0 in B2R(0). This contradicts (3.14), so (3.13

holds true.
Givenδ > 0, the decay ofw and (3.13) (withR sufficiently large) imply∥∥f ′(wε,t)φ

∥∥∗ � δ + 1

2
‖φ‖∗. (3.15)

Using (3.12) and the Maximum Principle one finds

‖φ‖∗ �
∥∥f ′(wε,t)φ

∥∥∗ +
N∑

j=1

|cj |‖Zε,tj ‖∗ + ‖h‖∗ � 2δ + 1

2
‖φ‖∗,

and hence

‖φ‖∗ � 4δ <1

if we chooseδ < 1/4. This contradicts (3.7).�
Proposition 3.2. There existsε0 > 0 such that for anyε < ε0 the following property holds true. Givenh ∈ L∞(Ωε),
there exists a unique pair(φ, c1, . . . , cN) such that

Lε[φ] = h +
N∑

j=1

cjZε,tj , (3.16)

φ′(0)= φ′
(

1
)

= 0; 〈φ,Zε,tj 〉ε = 0, j = 1, . . . ,N. (3.17)

ε
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et

is
Moreover, lettingc = {cj }j=1,...,N , we have

‖φ‖∗ + 1

ε
|c| � C‖h‖∗ (3.18)

for some positive constantC.

Proof. The bound in (3.18) follows from Proposition 3.1 and (3.10). Let us now prove the existence part. S

H =
{
u ∈ H 1(Ωε)

∣∣ (
u,

∂wε,t

∂t

)
ε

= 0

}
.

Note that, integrating by parts, one has

ψ ∈ H if and only if 〈ψ,Zε,tj 〉ε = 0, j = 1, . . . ,N.

Observe thatφ solves (3.16) and (3.17) if and only ifφ ∈H satisfies∫
Ωε

(∇φ∇ψ + φψ) − 〈
f ′(wε,t)φ,ψ

〉
ε
= 〈h,ψ〉ε, ∀ψ ∈ H.

This equation can be rewritten as

φ + S(φ) = h̄ in H, (3.19)

whereh̄ is defined by duality andS :H →H is a linear compact operator.
Using Fredholm’s alternative, showing that Eq. (3.19) has a unique solution for eachh̄, is equivalent to showing

that the equation has a unique solution forh̄ = 0, which in turn follows from Proposition 3.1 and our proof
complete. �

In the following, if φ is the unique solution given in Proposition 3.2, we set

φ =Aε(h). (3.20)

Note that (3.18) implies∥∥Aε(h)
∥∥∗ � C‖h‖∗. (3.21)

4. Construction of a natural constraint

In this section we reduce problem (1.14) to a finite-dimensional one. LetMε be theN -dimensional manifold
defined as

Mε = {wε,t: t ∈ Λ}.
For ε small and fort ∈ Λ, we are going to find a functionφε,t satisfying the two conditions

φε,t ⊥H1
r (Ωε)

Twε,tMε; E ′
ε(wε,t + φε,t) ∈ Twε,tMε, (4.1)

whereTwε,tMε denotes the tangential space ofMε atwε,t. This amounts to finding a functionφ such that for some
constantscj , j = 1, . . . ,N, the following equation holds true{

�(wε,t + φ) − (wε,t + φ) + f (wε,t + φ) = ∑N
j=1 cjZε,tj in Ωε,

φ′(0)= φ′(1) = 0, 〈φ,Z 〉 = 0, j = 1, . . . ,N.
(4.2)
ε ε,tj ε
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Letting

M̃ε = {wε,t + φε,t: t ∈ Λ}, (4.3)

we will show thatM̃ε is a natural constraint forEε, in the sense that a critical point ofEε|M̃ε
is a true critical point

of Eε.
The first equation in (4.2) can be written as

φ′′ + n − 1

r
φ′ − φ + f ′(wε,t)φ = (−Sε[wε,t]

) + Nε[φ] +
N∑

j=1

cjZε,tj ,

where

Nε[φ] = −[
f (wε,t + φ) − f (wε,t) − f ′(wε,t)φ

]
. (4.4)

Lemma 4.1. For t ∈ Λ andε sufficiently small, we have for‖φ‖∗ + ‖φ1‖∗ + ‖φ2‖∗ � 1,∥∥Nε[φ]∥∥∗ � C‖φ‖1+σ∗ ; (4.5)∥∥Nε[φ1] − Nε[φ2]
∥∥∗ � C

(‖φ1‖σ∗ + ‖φ2‖σ∗
)‖φ1 − φ2‖∗, (4.6)

whereσ is defined in(f1).

Proof. Inequality (4.5) follows from the mean-value theorem. In fact, for every point in[0,1/ε] there holds

f (wε,t + φ) − f (wε,t) = f ′(wε,t + θφ)φ, θ ∈ [0,1].
Sincef ′ is Holder continuous with exponentσ , we deduce∣∣f (wε,t + φ) − f (wε,t) − f ′(wε,t)φ

∣∣ � C|φ|1+σ ,

which implies (4.5). The proof of (4.6) goes along the same way.�
Proposition 4.2. For t ∈ Λ andε sufficiently small, there exists a uniqueφ = φε,t such that(4.2)holds. Moreover,
t �→ φε,t is of classC1 as a map intoH 1

r (Ωε), and we have

‖φε,t‖∗ � C

(
ε +

N∑
j=1

e−(1+ σ
2 )

1−tj
ε +

∑
i �=j

e− τ |ti−tj |
ε

)
, (4.7)

whereτ ∈ (1
2, 1+σ

2 ).

Proof. Let Aε be as defined in (3.20). Then (4.2) can be written as

φ =Aε

[(−Sε[wε,t]
) + Nε[φ]]. (4.8)

Let r be a positive (large) number, and set

Fr =
{

φ ∈ H 1
r (Ωε): ‖φ‖∗ � r

(
ε +

N∑
j=1

e−(1+ σ
2 )

1−tj
ε +

∑
i �=j

e− τ |ti−tj |
ε

)}
.

Define now the mapBε :Fr → H 1
r (Ωε) as

Bε(φ) =Aε

[(−Sε[wε,t]
) + Nε[φ]].

Solving (4.2) is equivalent to finding a fixed point forBε. By Lemma 4.1, forε sufficiently small andr large we
have
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.

∥∥Bε[φ]∥∥∗ � C
∥∥Sε[wε,t]

∥∥∗ + C
∥∥Nε[φ]∥∥∗ < r

(
ε +

n∑
j=1

e−(1+ σ
2 )

1−tj
ε +

∑
i �=j

e− τ |ti−tj |
ε

)
;

∥∥Bε[φ1] −Bε[φ2]
∥∥∗ � C

∥∥Nε[φ1] − Nε[φ2]
∥∥∗ <

1

2
‖φ1 − φ2‖∗,

which shows thatBε is a contraction mapping onFr . Hence there exists a uniqueφ ∈Fr such that (4.2) holds.
Now we come to the differentiability ofφ. Consider the following mapHε :Λ×H 1

r (Ωε)×R
N → H 1

r (Ωε)×R
N

of classC1

Hε(t, φ, c) =




(� − 1)−1(Sε[wε,t + φ]) − ∑N
j=1 cj

∂wε,t
∂tj

(φ,
∂wε,t
∂t1

)ε
...

(φ,
∂wε,t
∂tN

)ε


 , (4.9)

wherev = (� − 1)−1(u) is defined as the unique solution of

v′′ + n − 1

r
v′ − v = u, v′(0)= v′

(
1

ε

)
= 0.

Eq. (4.2) is equivalent toHε(t, φ, c) = 0. We know that, givent ∈ Λ, there is a unique local solutionφε,t, cε,t
obtained with the above procedure. We prove that the linear operator

∂Hε(t, φ, c)
∂(φ, c)

∣∣∣∣
(t,φε,t,cε,t)

:H 1
r (Ωε) × R

N → H 1
r (Ωε) × R

N

is invertible forε small. Then theC1-regularity of t �→ (φε,t, cε,t) follows from the Implicit Function Theorem
Indeed we have

∂Hε(t, φ, c)
∂(φ, c)

∣∣∣∣
(t,φε,t,cε,t)

[ψ,d] =




(� − 1)−1(S′[wε,t + φε,t](ψ)) − ∑N
j=1 dj

∂wε,t
∂tj

(ψ,
∂wε,t
∂t1

)ε
...

(ψ,
∂wε,t
∂tN

)ε


 .

Since‖φε,t‖∗ is small, the same proof as in that of Proposition 3.1 shows that∂Hε(t,φ,c)
∂(φ,c) |(t,φε,t,cε,t) is invertible

for ε small.
This concludes the proof of Proposition 4.2.�

5. Energy computation for reduced energy functional

In this section we expand the quantity

Kε(t) := εn−1Eε[wε,t + φε,t] :Λ → R (5.1)

in ε andt, whereφε,t is given by Proposition 4.2.

Lemma 5.1. For t ∈ Λ andε sufficiently small, we have

Kε(t) = εn−1Eε[wε,t + φε,t]

= I [w]
N∑

j=1

tn−1
j − (

A2
0 + o(1)

) N∑
j=1

tn−1
j e−2

1−tj
ε − (

A2
0 + o(1)

) ∑
i �=j

tn−1
i e− |ti−tj |

ε + O(ε). (5.2)
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Proof. It is sufficient to show that

Kε(t) = εn−1Eε[wε,t] + o

(
N∑

j=1

e−2
1−tj

ε +
∑
i �=j

e− |ti−tj |
ε

)
+ O(ε),

and to apply Lemma 2.3. To this end, we write

ε1−nKε(t) = Eε[wε,t] + K1 + K2 − K3,

where

K1 =
1
ε∫

0

[
w′

ε,tφ
′
ε,t + wε,tφε,t − f (wε,t)φε,t

]
rn−1 dr;

K2 = 1

2

1
ε∫

0

[|φ′
ε,t|2 + |φε,t|2 − f ′(wε,t)φ

2
ε,t

]
rn−1 dr;

K3 =
1
ε∫

0

[
F(wε,t + φε,t) − F(wε,t) − f (wε,t)φε,t − 1

2
f ′(wε,t)φ

2
ε,t

]
rn−1 dr.

Integrating by parts and using Lemmas 2.2 and 4.2, we have

|K1| =
∣∣∣∣∣

1
ε∫

0

Sε[wε,t]φε,tr
n−1 dr

∣∣∣∣∣ � C‖φε,t‖∗

1
ε∫

0

∣∣Sε[wε,t]
∣∣rn−1 dr

� Cε1−n

(
ε2 +

N∑
j=1

(
ρε(tj )

)2+σ +
∑
i �=j

e−2τ |ti−tj |/ε
)

. (5.3)

To estimateK2, we note thatφε,t satisfies

�φε,t − φε,t + f (wε,t + φε,t) − f (wε,t) + Sε[wε,t] =
N∑

j=1

cjZε,tj . (5.4)

Multiplying (5.4) byφε,tr
n−1 and integrating overIε, we obtain∫

Iε

Sε[wε,t]φε,tr
n−1 dr =

∫
Iε

(|φ′
ε,t|2 + |φε,t|2 − f ′(wε,t)φ

2
ε,t

)
rn−1 dr

+
∫
Iε

[
f (wε,t + φε,t) − f (wε,t) − f ′(wε,t)φε,t

]
φε,tr

n−1 dr. (5.5)

Hence we find

2K2 = −
∫
Iε

[
f (wε,t + φε,t) − f (wε,t) − f ′(wε,t)φε,t

]
φε,tr

n−1 dr +
∫
Iε

Sε[wε,t]φε,tr
n−1 dr.

From the Taylor’s formula, we get∣∣f (wε,t + φε,t) − f (wε,t) − f ′(wε,t)φε,t
∣∣ � C|φε,t|1+σ ,
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t

i-
so we deduce

|K2| � C

∫
Iε

|φε,t|2+σ rn−1 dr + C‖φε,t‖∗
∫
Iε

∣∣Sε[wε,t]
∣∣rn−1 dr.

From the exponential decay ofw and (3.10), one finds thatφε,t(r) satisfies

φ′′
ε,t + n − 1

r
φ′

ε,t − φε,t + f (wε,t + φε,t) − f (wε,t) = O

(
N∑

j=1

e− |r−tj |
ε

)
, φ′

ε,t(0)= φ′
ε,t

(
1

ε

)
= 0.

From (5.4) and a comparison principle, we obtain

∣∣φε,t(r)
∣∣ � C

N∑
j=1

e− 1
C

|r−tj |
ε (5.6)

for someC < 1.
Using (5.6), we get

|K2| � Cε1−n

(
ε2 +

N∑
j=1

(
ρε(tj )

)2+σ +
∑
i �=j

e−2τ |ti−tj |/ε
)

. (5.7)

From the Holder continuity off ′ we deduce∣∣∣∣F(wε,t + φε,t) − F(wε,t) − f (wε,t)φε,t − 1

2
f ′(wε,t)φ

2
ε,t

∣∣∣∣ � C|φε,t|2+σ ,

so, again, it follows that

|K3| � Cε1−n

(
ε2 +

N∑
j=1

(
ρε(tj )

)2+σ +
∑
i �=j

e−2τ |ti−tj |/ε
)

. (5.8)

Combining with (2.23) of Lemma 2.2, we obtain the conclusion.�

6. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Fixt ∈ Λ̄ and letφε,t be the solution given by Lemma 3.4. Let alsoKε(t)
denote the reduced energy functional defined by (5.1).

Proposition 6.1. For ε small, the following maximization problem

sup
{
Kε(t): t ∈ Λ

}
(6.1)

has a solutiontε in the interior ofΛ.

Proof. SinceKε(t) is continuous int, it achieves a maximum in̄Λ. Let tε be a maximum point. We claim tha
tε ∈ Λ.

Let us argue by contradiction and assume thattε ∈ ∂Λ. Then from the definition ofΛ, there are three possibil
ties: either 1− t1 = ηε log 1

ε
, or there existsj � 2 such that|tj − tj−1| = mini �=j |ti − tj | = ηε log 1

ε
, or tN = 1

2.
In the first case, we have

I [w]tn−1
1 − (

A2
0 + o(1)

)
e−2

1−t1
ε = I [w]

(
1− ηε log

1
)n−1

− A2
0e

−2η log 1
ε + o(ε2η) � I [w] − A2

0ε2η.

ε 2
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Hence we obtain

Kε(tε) � NI [w] − A2
0

2
ε2η (6.2)

sinceη < 1
8.

In the second case, there holds

Kε(tε) � I [w]
N∑

j=1

tn−1
j − (

A2
0 + o(1)

) N∑
j=1

e−2
1−tj

ε tn−1
j − A2

0ε
η � NI [w] − A2

0

2
εη. (6.3)

In the last case, we have

Kε(tε) � I [w](N − 1+ tn−1
N ) + o(1)� I [w]

(
N − 1+

(
1

2

)n−1)
+ o(1). (6.4)

On the other hand, by choosingtj = 1− jε log 1
ε
, j = 1, . . . ,N, we obtain

N∑
j=1

tn−1
j = 1− N(N + 1)(n− 1)

2
ε log

1

ε
+ O

(
ε2

(
log

1

ε

)2)
;

ρε(t1)βε(t1) ∼ e−2 log 1
ε ∼ ε2; e− |tj−1−tj |

ε = ε, (6.5)

and hence

Kε(tε) � NI [w] − N(N + 1)(n− 1)2

2
ε log

1

ε
+ O(ε)

which contradicts (6.2), or (6.3), or (6.4). This completes the proof of Proposition 6.1.�
Proof of Theorem 1.1. By Proposition 4.2, there existsεN such that forε < εN we have aC1 map t �→ φε,t
from Λ̄ into C2(Iε) such that

Sε[wε,t + φε,t] =
N∑

j=1

cjZε,tj (6.6)

for some constantscj ∈ R, which also are of classC1 in t.
By Proposition 6.1, there existstε ∈ Λ achieving the maximum ofKε : t → Eε[wε,t + φε,t]. Let uε =∑N
i=1 wε,ti + φε,t = wε,t + φε,t. Then we have

∂ti |t=tεKε(tε) = 0, i = 1, . . . ,N,

and hence∫
Iε

[∇uε∇∂ti (wε,t + φε,t) + uε∂ti (wε,t + φε,t) − f (uε)∂ti (wε,t + φε,t)
]∣∣

t=tε r
n−1 dr = 0.

Therefore, by (6.6) we find

N∑
j=1

cj

∫
Iε

(
Zε,tj ∂ti (wε,t + φε,t)

)
rn−1 dr = 0. (6.7)

Differentiating the equation〈φ,Zε,tj 〉ε = 0 with respect totj , we get

〈∂ti φ,Zε,tj 〉ε = −〈φ, ∂ti Zε,tj 〉ε = O
(‖φ‖∗

)
ε−n−1.
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l
itality.
uthor is
Using (3.9), we see that (6.7) is diagonally dominant in the coefficients{ci}, which impliescj = 0 for j = 1, . . . ,N.
Henceuε = wε,tε + φε,tε is a solution of (1.1).

By our construction and the Maximum Principle, one can easily check thatuε > 0 in Ω. Moreover
εn−1Eε(uε) → NI (w) as ε → 0, anduε has onlyN local maximum pointssε

1, . . . , sε
N . By the structure ofuε

we see that (up to a permutation)sε
i − tεi = o(1). This proves Theorem 1.1.�
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Appendix A

In this appendix we expand the quantityEε[∑N
j=1 wε,tj ] as a function ofε andt. Integrating by parts we get

Eε

[
N∑

j=1

wε,tj

]
= 1

2

∫
Iε

(|w′
ε,t|2 + |wε,t|2

)
rn−1 dr −

∫
Iε

F (wε,t)r
n−1 dr

= 1

2

∫
Iε

[
−n − 1

r
w′

ε,t +
N∑

i=1

f (wti )

]
wε,tr

n−1 dr −
∫
Iε

F (wε,t)r
n−1 dr + O(e− 1

Cε )

= E1 + E2 + E3 + E4 + O(e− 1
Cε ),

where

E1 = −1

2

∫
Iε

n − 1

r
w′

ε,twε,tr
n−1 dr;

E2 =
N∑

j=1

[
1

2

∫
Iε

f (wtj )wε,tj r
n−1 dr −

∫
Iε

F (wε,tj )r
n−1 dr

]
;

E3 = 1

2

∑
i �=j

∫
Iε

f (wti )wε,tj r
n−1 dr; E4 =

∫
Iε

[
F

(
N∑

j=1

wε,tj

)
−

N∑
j=1

F(wε,tj )

]
rn−1 dr.

Integrating by parts and using the exponential decay ofw we obtain

E1 = − (n − 1)

2

∫
Iε

rn−2w′
ε,twε,t dr = (n − 1)(n− 2)

2

1
ε∫

0

rn−3w2
ε,t dr = O(ε3−n).

The termE2 can be decomposed as

E2 =
N∑

j=1

[∫ (
1

2
f (wtj )wtj − F(wtj )

)
rn−1 dr + 1

2

∫
f (wtj )(wε,tj − wtj )r

n−1 dr

]

Iε Iε
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+
N∑

j=1

∫
Iε

(
F(wtj ) − F(wε,tj )

)
rn−1 dr.

We have the following estimates, where (f1) and the decay ofw are used∫
Iε

(
1

2
f (wtj )wtj − F(wtj )

)
rn−1 dr =

(
tj

ε

)n−1(
I [w] −

∫
R\Iε

(
1

2
f (wtj )wtj − F(wtj )

)
dr

)

+
∫
Iε

(
1

2
f (wtj )wtj − F(wtj )

)[
rn−1 −

(
tj

ε

)n−1]
dr

=
(

tj

ε

)n−1

I [w] + O(ε1−ne−(2+σ)
1−tj

ε ) + O(ε2−n);

∫
Iε

f (wtj )(wε,tj − wtj )r
n−1 dr =

(
tj

ε

)n−1

ρε(tj )

[∫
R

βε(r)f (wtj ) dr −
∫

R\Iε

βε(r)f (wtj ) dr

]
+ O(ε2−n).

The first term on the right-hand side can be written as∫
R

βε(r)f (wtj ) dr = e− 1−tj
ε

(
γ0 + o(1)

)
,

where

γ0 =
∫
R

f (w)ey dy =
∫
R

(w − w′′)ey dy. (6.8)

The second term on the right-hand side can be estimated in the following way

∣∣∣∣
∫

R\Iε

βε(r)f (wtj ) dr

∣∣∣∣ � C

∞∫
1
ε

er− 1
ε e−(1+σ)(r− tj

ε
) + O(e− 1

Cε )

� Ce−(1+σ)
1−tj

ε + O(e− 1
Cε ).

The last term ofE2 can be estimated as follows. Using the Taylor’s formula and (2.18), we get

F(wtj ) − F(wε,tj ) = −f (wtj )βερ(tj ) + O
(
β2

ε ρ(tj )
2wσ

tj

)
.

Hence, reasoning as above we find∫
Iε

(
F(wtj ) − F(wε,tj )

)
rn−1 dr = −

(
tj

ε

)n−1 ∫
Iε

f (wtj )βε(r)ρ(tj ) dr + O(e−(2+σ)
1−tj

ε ) + O(ε2−n)

= −
(

tj

ε

)n−1

e−2
1−tj

ε γ0 + O(e−(2+σ)
1−tj

ε ) + O(ε2−n).

In conclusion, from (2.4) we obtain

E2 =
N∑(

tj

ε

)n−1(
I [w] − 1

2
A0

(
γ0 + o(1)

)
e−2

1−tj
ε

)
+ O(ε2−n). (6.9)
j=1
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Regarding the termE3, we can write∫
Iε

f (wti )wε,tj r
n−1 dr =

(
ti

ε

)n−1 ∫
Iε

f (wti )wε,tj dr +
∫
Iε

f (wti )wε,tj

[
rn−1 −

(
ti

ε

)n−1]
dr.

There holds∫
Iε

f (wti )wε,tj dr =
∫
Iε

f (wti )wtj dr + ρε(tj )

∫
Iε

f (wti )βε(r) + O(e− 1
Cε )

= A0
(
γ0 + o(1)

)
e− |ti−tj |

ε + A0
(
γ0 + o(1)

)
e− |ti+tj −1|

ε + O(e− 1
Cε )

= A0
(
γ0 + o(1)

)
e− |ti−tj |

ε + O(e− 1
Cε ).

Reasoning as above one also finds∣∣∣∣
∫
Iε

f (wti )wε,tj

[
rn−1 −

(
ti

ε

)n−1]
dr

∣∣∣∣ � Cε2−n.

In conclusion we deduce

E3 = 1

2

∑
i �=j

A0
(
γ0 + o(1)

)
e− |ti−tj |

ε + O(e2−n).

AboutE4, recall that

E4 =
∫
Iε

[
F

(
N∑

j=1

wε,tj

)
−

N∑
j=1

F(wε,tj )

]
rn−1 dr.

Similarly to the proof of Lemma 2.2, we divideIε = (0,1/ε) into N parts as in (2.16).
On Ii, i = 1, . . . ,N − 1, we havewε,tj � wti , so we can use Taylor’s formula and (2.18) to get

F

(
N∑

j=1

wε,tj

)
−

N∑
j=1

F(wε,tj ) = f (wti )

[ ∑
j �=i

wε,tj + βερε(ti)

]
+ O(wσ

ti
)

[ ∑
j �=i

w2
ε,tj

+ β2
ε ρε(ti)

2
]
.

On IN , we again add some error terms of ordere−1/(Cε).
Hence, integrating onIi and using the exponential decay ofw, we get∫

Ii

[
F

(
N∑

j=1

wε,tj

)
−

N∑
j=1

F(wε,tj )

]
rn−1 dr

=
(

ti

ε

)n−1

A0
(
γ0 + o(1)

)
e−2

1−ti
ε +

(
ti

ε

)n−1 ∑
j �=i

A0
(
γ0 + o(1)

)
e− |ti−tj |

ε + O(ε2−n).

Combining the estimates forE1,E2,E3 andE4, we obtain

Eε

[
N∑

j=1

wε,tj

]
=

N∑
i=1

(
ti

ε

)n−1{
I [w] − 1

2
A0

(
γ0 + o(1)

)
e−2

1−ti
ε

}

− 1

2

∑(
ti

ε

)n−1

A0
(
γ0 + o(1)

)
e− |ti−tj |

ε + O(ε2−n). (6.10)

i �=j
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Finally we note that

γ0 =
∫
R

(w − w′′)ey dy = lim
R→+∞

R∫
−R

(w − w′′)ey

= lim
R→+∞

(
eRw(R) + e−Rw(−R) − eRw′(R) − e−Rw′(−R)

) = 2A0 > 0 (6.11)

whereA0 is defined at (2.4). �
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