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Abstract

Existence of solutions to a Cahn–Hilliard system taking elastic stresses into account is shown. The analysis is hind
logarithmic singularity and a quadratic term in the displacement gradient. This makes careful a priori estimates for bo
necessary. In particular, a global version ofLp-estimates for gradients of nonlinear elliptic systems is shown in order to co
the logarithmic singularity.

Résumé

On établit l’existence de solutions pour un système de Cahn–Hilliard qui tient compte des stress élastiques. Cette a
rendue plus difficile à cause d’une singularité logarithmique et d’un terme quadratique dans le gradient déplacé, qu’on
a priori estimer. En particulier, pour contrôler la singularité logarithmique on démontre une version globale desLp-estimatiens
pour les gradients des systèmes elliptiques nonlinénaires.
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1. Introduction

The Cahn–Hilliard model describes phase separation and coarsening in alloys (see [7,23] and the re
cited therein). The Cahn–Hilliard equation is a fourth order diffusion equation for the concentrations of th
components and the evolution is driven by diffusion potentials (the chemical potentials) which are given as
variation of a Ginzburg–Landau energy. The Ginzburg–Landau energy is non-convex with several local
leading to the occurrence of different phases (see e.g. [7]).

In many alloys the phase separation process is drastically influenced by elastic interactions (see [10,13
are not taken into account in the standard Cahn–Hilliard equation. Therefore, Cahn and Larché [20,21] a
Onuki [26] included elastic effects into the original model. In this modified model the displacement of the la
a further unknown field for which an elliptic system has to be solved which is coupled to the diffusion equat
is the goal of this paper to mathematically analyze the resulting system of equations. The mathematical d
lies in the fact that the equations contain terms that are singular with respect to the alloy concentrations
the strain tensor enters the diffusion equations quadratically. Therefore, it will turn out that it is neces
show a higher integrability result for the gradient of the displacement. To obtain this result we use a pertu
method due to Giaquinta and Modica [16]. In particular we need to show higher integrability up to the boun
something which is not covered by the original results of Giaquinta and Modica.

Let us now derive the governing equations. We assume that the alloy consists ofN components. The concen
tration of componentk we denote byck (k = 1, . . . ,N) and therefore, the vectorc = (ck)k=1,...,N has to fulfill the
constraint

∑N
k=1 ck = 1, i.e.c lies in the affine hyperplane

Σ :=
{

c′ = (c′
k)k=1,...,N ∈ R

N
∣∣∣ N∑

k=1

c′
k = 1

}
.

Since only non-negative values for theck are physically meaningful we also introduce the Gibbs simplex

G :=
{

c′ ∈ R
N

∣∣∣ N∑
i=1

c′
k = 1 andc′

k � 0 for k = 1, . . . ,N

}
.

To describe elastic effects we define the displacement fieldu(x), i.e. a material pointx in the undeformed bod
will be at the pointx + u(x) after deformation. Since in phase separation processes the displacement g
usually is small, we consider an approximative theory based on the linearised strain tensor

E(u) = 1

2

(∇u + (∇u)t
)
.

A generalised Ginzburg–Landau free energy taking elastic effects into account is of the form

E(c,u) =
∫
Ω

{
γ

2
|∇c|2 + Ψ (c) + W

(
c,E(u)

) + W ∗(E(u)
)}

(1)

whereΩ ⊂ R
n, n ∈ N, is a bounded domain with Lipschitz boundary. The first term in the energy is the gra

part with a small parameterγ > 0 and this term penalizes rapid spatial variations in the concentrations. The s
summandΨ is the homogeneous free energy density at zero stress and a free energy densityΨ derived from a
mean-field theory is the sum of a logarithmic entropy term and a pairwise interaction term and has the form

Ψ (c) = θ

N∑
k=1

ck ln ck + 1
2c · Ac, (2)

whereθ ∈ R
+ is the absolute temperature and the entries of the matrixA = (Akl)k,l=1,...,N are the constant para

meters that describe pairwise interactions between the components. For simplicity we have rescaled the
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temperature such that the Boltzmann constantkB is equal to one. We assume thatA is symmetric. A typical exam
ple isA = χ(eet − Id) which means that the interactions between all components have the same magnitudeχ ∈ R

+.
Let us point out that phase separation only occurs ifA has negative eigenvalues which implies thatc �→ c ·Ac is not
positive definite. Then the second term in (2) is non-convex while the first one is convex. For small temperθ

the homogeneous free energyΨ then has more than one local minima, leading to the occurrence of different p
Chemical energies of the form (2) have been studied for example by De Fontaine [6], Hoyt [17] and Elli
Luckhaus [8]. The first two summands in the total free energyE are classical contributions to a Ginzburg–Land
free energy. Energies consisting of two terms of this form go back to van der Waals [27]. In the theory o
separation in alloys they have been introduced by Cahn and Hilliard [4].

The last two terms in the free energy take elastic effects into account. The termW(c,E) is the elastic free energ
density and a typical form is

W(c,E) = 1

2

(
E − E�(c)

) : C(c)
(
E − E�(c)

)
, (3)

where the: – product between two tensorsA,B is defined to beA : B := tr(AtB). Here,C(c) is the concentration
dependent elasticity tensor mapping symmetric tensors inR

n×n into itself. We requireC(c) to be symmetric and
positive definite. The quantityE�(c) is the symmetric stress free strain (or eigenstrain) at concentrationc. This is
the value the strain tensor attains if the material were uniform with concentrationc and unstressed. If the vectorc
is equal to one of the standard Cartesian basis vectorse1, . . . , eN then the system is equal to a pure componen
this caseE�(ek) is the value of the strain tensor if the material consists only of componentk and is unstressed. Th
functionE� is a suitable extension to all ofΣ . Usually a linear extension of the form

E�(c) =
N∑

k=1

ckE�(ek)

is assumed (Vegard’s law). The elastic energy density (3) is the standard choice which goes back to t
work of Eshelby [9] and Khachaturyan [18] (see also [22,10]). However, we will obtain results for more g
densities.

The remaining termW�(E) represents energy effects due to externally applied forces. For simplicity, we a
that

W ∗(E ′) := −E ′ : S∗

for a constant externally applied stress tensorS∗ (see e.g. [10]).
To describe evolution phenomena in the system, we consider mass diffusion for the individual com

leading to diffusion equations for the concentrations. Mechanical equilibrium is attained on a much fast
scale than diffusion takes place. Therefore, we will assume a quasi–static equilibrium foru, i.e. for all times

∇ · S = 0,

where

S = W,E
(
c,E(u)

)
is the stress tensor. We remark that the solution of the elastic system in general depends on time sincec in general
is time dependent. It is always assumed thatW depends on its second argument only through its symmetric
i.e.W(c′,E ′) = W(c′, (E ′)t ). This implies thatS = W,E (c′,E ′) is symmetric.

The diffusion equations for the concentrationsck (k = 1, . . . ,N) are based on mass balances for the individ
components. To define the mass balance we need to introduce chemical potentialsµk which are defined as th
variational derivative of the total free energyE with respect tock , i.e.

µk = −γ�ck + Ψ,ck
(c) + W,ck

(c,u).
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Now Onsager’s postulate [24,25,19] says that each thermodynamic flux is linearly related to every thermod
force. Since in our case the thermodynamic forces are the negative chemical potential gradients, we o
phenomenological equations (see Kirkaldy and Young [19, p. 137])

Jk = −
N∑

l=1

Lkl∇µl (4)

with a constant matrixL = (Lkl)k=1,...,N; l=1,...,N ∈ R
N×N . The Onsager reciprocity law (see [19, p. 137], a

[24,25]) states that the matrixL has to be symmetric, which we assume in the following. Having defined the
the diffusion equations follow from the balance of mass as

∂t ck = −∇ · Jk. (5)

To ensure that the diffusion equations (5) are consistent with the constraint
∑N

k=1 ck = 1 we require that the fluxe
have to fulfill a linear dependency of the form

N∑
k=1

Jk = 0. (6)

Since the identities (4) and (6) have to hold for all possible chemical potentials we have to impose

N∑
l=1

Lkl = 0. (7)

This property of the mobility matrixL = (Lkl)k=1,...,N; l=1,...,N we assume from now on. As a consequence
diffusion equations (5) become

∂t ck = ∇ ·
(

N∑
l=1

Lkl∇µl

)
=

N∑
l=1

Lkl�
1

N

N∑
m=1

(µl − µm).

Hence, the diffusion equations can be expressed via the chemical potential differences(µl − µk). In particular, the
evolution can be described via the vector of generalised chemical potential differences

w = 1

N

(
N∑

m=1

(µl − µm)

)
l=1,...,N

= Pµ

whereP is the Euclidian projection ofRN onto

T Σ =
{

d′ = (d ′
k)k=1,...,N ∈ R

N
∣∣∣ N∑

k=1

d ′
k = 0

}

which is the tangent space toΣ . A simple computation yields thatw is the variational derivative ofE when one
takes the constraint

∑N
k=1 ck = 1 into account. In fact, introducinge = (1, . . . ,1), we getw = µ− 1

N
(µ · e)e where

the second term is the Lagrange multiplier associated to the constraint
∑N

k=1 ck = 1.
Altogether we have to solve the system of equations

∂tc = L�w, (8)

w = P
(−γ�c + Ψ,c(c) + W,c

(
c,E(u)

))
, (9)

∇ · S = 0, (10)

S = W,E
(
c,E(u)

)
(11)

onΩT := Ω × (0, T ) (for T > 0 arbitrary).
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If only two components are present, one can use the constraintc1 + c2 = 1 to reduce the system for the conce
trations to a single equation. In this case Eqs. (8)–(11) were first stated by Larché and Cahn [21] forγ = 0 and for
nonzeroγ by Onuki [26].

As boundary conditions we impose no-flux conditions for theJk and the natural boundary conditions which o
obtains from variations of the energy functional with respect toc andu. Therefore, we require

L∇w · n = 0, (12)

∇c · n = 0, (13)

S · n = S∗ · n, (14)

wheren is the outer unit normal to∂Ω . In addition, we impose initial conditions forc, i.e.

c(x,0)= c0(x) (15)

for a given functionc0 with c0(x) ∈ Σ for all x ∈ Ω . Since we assume that the mechanical equilibrium is obta
instantaneously no initial conditions foru are needed. We remark that the no-flux boundary condition implies
the total mass of the solution to (8)–(15) is a conserved quantity, i.e. for allt > 0∫

Ω

c(x, t)dx =
∫
Ω

c0(x)dx.

Other boundary conditions are possible. For example we could impose Dirichlet conditions foru on parts of the
boundary∂Ω . This means to prescribe the deformation on parts of the boundary and hence a uniqueu could be
determined. The boundary condition (14) on the other hand prescribesu only up to infinitesimal rigid displacemen
(i.e. translations and infinitesimal rotations). This is typical for problems in elasticity that are based on a lin
strain tensorE . The non-uniqueness inu will have no effect on the evolution ofc since onlyE(u) enters the
equation forw. Therefore we define the space of infinitesimal rigid displacements

Xird := {
u ∈ H 1(ω,Rn) | there existb ∈ Rn and a skew symmetricA ∈ Rn×n such thatu(x) = b + Ax

}
and the space of functions perpendicular toXird

X1 := {
u ∈ H 1(Ω,R

n) | (u,v)H1 = 0 for all v ∈ Xird
} = X⊥

ird.

We remark that a homogeneous free energy of the form (2) implies thatΨ,c, a term which enters the equatio
for the chemical potential differencesw, becomes singular if one of theck (k = 1, . . . ,N) tends to zero. In the
literature the logarithmic term often is approximated by a polynomial leading to a smooth free energy deΨ

as studied for example in [11,12]. But a smoothΨ does not guarantee that the concentrations remain non-neg
On the other hand it will turn out that the singular term, due to the presence of the logarithmic contribu
the homogenous free energy density, prevents theck from attaining negative values. It is the goal of this pape
study the evolution equations which result from a homogeneous free energy density of the form (2). As
mentioned the system contains singular terms and the analysis is much more complicated than the one in
articles [12,3,5]. In particular in [3] the system (8)–(11) is studied with a scalar equation for the concentrac,
aγ that depends onc and an additional viscosity term that regularises the system.

The case of the Cahn–Hilliard system with logarithmic free energy but without elasticity has been alread
ied by Elliott and Luckhaus [8]. They proved an existence and uniqueness result. For their analysis it was c
derive a priori estimates by differentiating the equation for the chemical potential differencesw (see Eq. (9)) with
respect to time. Since in general the solutions of the elastic Cahn–Hilliard system will not be smooth en
allow differentiating with respect to time, we had to develop a new method. Let us mention one main difficu
the technique to overcome this difficulty. The strain tensor enters the equation of the chemical potential diff
quadratically. Hence, we need to establish a higher integrability result for the strain. We will apply and
the technique of Giaquinta and Modica [16] (see also [15]), who derived for solutions to elliptic systems a
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integrability result. This is the base to show that lnci , and henceΨ,c lie in Lq(ΩT ) (for someq > 1). In conclusion
we can derive that the chemical potentials are well defined. In particular, we can also show that the conce
ci are positive almost everywhere.

Finally, we remark that a basic ingredient in the existence proof are a priori estimates which stem fr
Lyapunov property of the free energy (1). These follow formally from the identity

d

dt

∫
Ω

{
γ

2
|∇c|2 + Ψ (c) + W(c,E) + W ∗(E)

}
+

N∑
k,l=1

∫
Ω

Lkl∇wk∇wl = 0

and the fact thatL is positive definite onT Σ .

2. The main result

In this section we formulate the main existence and uniqueness results. We need the following assump

Assumptions.

(A1) Ω ⊂ R
n is a bounded domain with Lipschitz boundary,

(A2) γ > 0,
(A3) the homogeneous free energy densityΨ is of the form (2) withθ > 0 and a symmetricA ∈ R

N×N ,
(A4) for the elastic energy densityW ∈ C1(RN × R

n×n,R) we assume
(A4.1) W(c′,E ′) only depends on the symmetric part ofE ′ ∈ R

n×n, i.e. W(c′,E ′) = W(c′, (E ′)t ) for all
c′ ∈ R

N andE ′ ∈ R
n×n,

(A4.2) W,E (c′, ·) is strongly monotone uniformly inc′, i.e. there exists ac1 > 0 such that for all symmetri
E ′

1,E ′
2 ∈ R

n×n

(
W,E (c′,E ′

2) − W,E (c′,E ′
1)

) : (E ′
2 − E ′

1) � c1|E ′
2 − E ′

1|2,
(A4.3) there exists a constantC2 > 0 such that for allc′ ∈ Σ and all symmetricE ′ ∈ R

n×n

∣∣W(c′,E ′)
∣∣ � C2

(|E ′|2 + |c′|2 + 1
)
,∣∣W,c(c′,E ′)

∣∣ � C2
(|E ′|2 + |c′|2 + 1

)
,∣∣W,E (c′,E ′)

∣∣ � C2
(|E ′| + |c′| + 1

)
,

(A5) the energy density of the applied forces is assumed to be of the formW ∗(E ′) = −E ′ : S∗ with a constant
symmetric tensorS∗,

(A6) the mobility matrixL = (Lkl)k=1,...,N; l=1,...,N is assumed to be
(A6.1) symmetric,
(A6.2) to fulfill

∑N
l=1 Lkl = 0,

(A6.3) to be positive definite onT Σ ,
(A7) the initial datac0 ∈ H 1(Ω,R

N) are assumed to fulfillc0 ∈ G almost everywhere and

−
∫
Ω

c0
k > 0 for k = 1, . . . ,N.

Let us comment on the stated assumptions. The assumptions on (A2) and (A6) guarantee that the sy
(9) defines a semi-linear parabolic system of fourth order in the variablec. The assumption (A4.2) ensures that
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elastic part of the equation defines a quasi-linear elliptic system inu and in addition it follows from (A4.2) tha
there exist positive constantsc3 andC3 such that

W(c′,E ′) � c3|E ′|2 − C3
(|c′|2 + 1

)
for all c′ ∈ Σ and all symmetricE ′ ∈ R

n×n. The assumption on the mean value ofc does not give any practica
limitation. A zero mean value for one component, i.e.−

∫
Ωc0

k = 0, together withc0 ∈ G would imply thatck = 0
almost everywhere. Therefore, componentk does not appear at all, which means that we can reduce the sys
aN − 1 system containing all components beside thek-th component.

The main result of this paper is an existence result for the elastic Cahn–Hilliard system with a logarithm
energy density (2).

Theorem 2.1 (Existence). Assume(A1)–(A7). Then there exists a triple(c,w,u) ∈ L2(0, T ;H 1(Ω,R
N)) ×

L2(0, T ;H 1(Ω,R
N)) × L2(0, T ;X1) with c ∈ Σ a.e. andPΨ,c(c) ∈ L1(ΩT ) which solves the elastic Cahn

Hilliard system in the following sense:

(i) −
∫

ΩT

∂tξ · (c − c0) +
∫

ΩT

L∇w : ∇ξ = 0 (16)

for all ξ ∈ L2(0, T ;H 1(Ω,R
N)) with ∂tξ ∈ L2(ΩT ) andξ(T ) = 0,

(ii)
∫

ΩT

w · ζ =
∫

ΩT

{
γ∇c : ∇ζ + PΨ,c(c) · ζ + PW,c

(
c,E(u)

) · ζ}
(17)

for all ζ ∈ L2(0, T ;H 1(Ω,R
N)) ∩ L∞(ΩT ,R

N), and

(iii)
∫

ΩT

W,E
(
c,E(u)

) : ∇η =
∫

ΩT

S∗ : ∇η (18)

for all η ∈ L2(0, T ;H 1(Ω,R
n)).

In addition the solution has the following properties:

(i) c ∈ C0, 1
4 ([0, T ];L2(Ω)),

(ii) ∂tc ∈ L2(0, T ; (H 1(Ω))∗),
(iii) there exists ap > 2 such thatu ∈ L∞(0, T ;W1,p(Ω,R

n)),
(iv) there exists aq > 1 such that fork ∈ {1, . . . ,N}

ln ck ∈ Lq(ΩT ).

In particular, ck > 0 almost everywhere.

We can prove a uniqueness theorem in the case of homogeneous linear elasticity and under the assum
the stress free strain varies linearly with the concentration, i.e.

E�(c) =
N∑

k=1

ckE�
k , (19)

where theE�
k = E�(ek) are the stress free strains in the case that the material were uniformly equal to compok.

Altogether the elastic part of the free energy has the form

W(c,E) = 1(
E − E�(c)

) : C(
E − E�(c)

)
(20)
2
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with a constant positive definite tensorC which is assumed to fulfill the usual symmetry conditions of lin
elasticity.

Theorem 2.2 (Uniqueness). In addition to the assumptions of Theorem2.1 we assume thatW has the form
(19), (20).

Then there exists a unique solution of the elastic Cahn–Hilliard system with logarithmic free energy in th
of Theorem2.1.

The uniqueness theorem can be shown in exactly the same way as in the case of a smooth homogen
energyΨ and we therefore omit the proof (see the proof of Theorem 4.1 in [12]).

3. A regularised problem

Our goal is to approximate the singular system by a system with smooth free energies such that the r
[12] can be applied.

First of all we assume that the elastic free energy densityW fulfills

(A4.4) W,c(c′,E ′) = 0 for all c′ ∈ R
N with |c′| > 2 and allE ′ ∈ R

n×n.

This assumption is without loss of generality, because the solution turns out to lie on the Gibbs simp
therefore has modulus less than two.

Furthermore, for givenδ > 0 we replaceΨ by theC2-function

Ψ δ(c′) = θ

N∑
k=1

ψδ(c′
k) + 1

2c′ · Ac′ (21)

with

ψδ(d) :=
{

d lnd for d � δ,

(d ln δ − δ
2 + d2

2δ
) for d < δ.

(22)

For later use we define

Ψ 1,δ(c′) = θ

N∑
k=1

ψδ(c′
k) and Ψ 2(c′) = 1

2
c′ · Ac′.

The same regularisation has been used by Elliott and Luckhaus [8] in their existence proof for the Cahn–
system without elasticity. The following lemma (for a proof see Elliott and Luckhaus [8]) states thatΨ δ is uniformly
bounded from below onΣ .

Lemma 3.1. There exist aδ0 > 0 and aK > 0 such that for allδ ∈ (0, δ0)

Ψ δ(c′) � −K for all c′ ∈ Σ.

The following lemma states an existence result for the regularised problem and collects a priori estima
compactness results, which can be obtained similar as in [12] and we therefore only sketch the proof.
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Lemma 3.2. Suppose the homogeneous free energy density is of the form(21).

(a) For all δ ∈ (0, δ0) there exists a weak solution(cδ,wδ,uδ) of the elastic Cahn–Hilliard system in the sen
specified in Theorem2.1.

(b) Moreover, there exists a constantC > 0 such that for allδ ∈ (0, δ0)

sup
t∈[0,T ]

{∥∥cδ(t)
∥∥

H1(Ω)
+ ∥∥uδ(t)

∥∥
H1(Ω)

}
� C,

sup
t∈[0,T ]

∫
Ω

Ψ 1,δ
(
cδ(t)

) + ‖∇wδ‖L2(ΩT ) � C

and ∥∥cδ(t2) − cδ(t1)
∥∥

L2(Ω)
� C|t2 − t1|1/4

for all t1, t2 ∈ [0, T ].
(c) Furthermore, one can extract a subsequence(cδ)δ∈R, whereR ⊂ (0, δ0) is a countable set with zero as th

only cluster point, such that
(i) cδ → c in C0,α([0, T ];L2(Ω)) for all α ∈ (0, 1

4),
(ii) cδ → c almost everywhere,

(iii) cδ → c weak-∗ in L∞(0, T ;H 1(Ω)),
(iv) uδ → u in L2(0, T ;H 1(Ω)),
asδ ∈ R tends to zero.

Proof. The regularised problem fulfills the assumptions of Theorem 3.1 in [12], for allδ ∈ (0, δ0). To show this,
one makes use of Lemma 3.1. Hence, a weak solution of the regularised problem exists. The a priori e
in (b) follow from the Lyapunov property of the energyE and embedding theorems. In this context we refer to
Lemmas 3.3 and 3.4 in [12] which give the estimates in (b) by convergence and lower semi-continuity pro
To show that the constant on the right-hand side does not depend onδ, one has to check thatEδ(c0,u0) does
not depend onδ (see the proof of Lemma 3.3 in [12]). This is implied by the facts that the initial datac0 lie in
H 1(Ω,R

N) and only attain values on the Gibbs simplex. The convergence properties in (c) follow as in the
of the Lemmas 3.4 and 3.5 in [12].�

What remains to be done? It is our goal to show compactness for the chemical potential differences{wδ}δ∈(0,δ0).
We already established a uniform estimate for{∇wδ}δ∈(0,δ0), i.e. it is enough to control the spatial mean values
{wδ}δ∈(0,δ0) to get a uniform bound inL2(0, T ;H 1(Ω,R

N)). This will be our first step. Thereafter, it is possible
show the existence of a subsequence of{wδ}δ∈(0,δ0) which converges weakly inL2(0, T ;H 1(Ω,R

N)) to a limit w.
Then it remains to prove that the following equation holds in a weak sense

w = P
(−γ�u + Ψ,c(c) + W,c

(
c,E(u)

))
, (23)

where

Ψ,c(c) = θ(ln ck + 1)k=1,...,N + Ac.

The problem is that lnck might be singular. Our goal is to establish a uniform estimate for(ψδ)′(cδ
k) in Lq(ΩT )

for someq > 1. We remind the reader thatψδ is an approximation ofψ(d) = d lnd . To show theLq -bound we
first derive the integrability ofE(u) = 1

2(∇u + (∇u)t ) in Lp(ΩT ) for somep > 2. This implies thatW,c lies in
Lp/2(ΩT ) which allows to multiply the equations in (23) by an appropriate power of(ψδ)′(cδ

k), leading to uniform
Lq -bounds (for someq > 1) for (ψδ)′(cδ).
k
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The uniform estimates for(ψδ)′(cδ
k) together with the almost everywhere convergence of{cδ}δ∈(0,δ0) yields the

convergence of(ψδ)′(cδ
k) to lnck + 1 in L1(ΩT ). This is enough to pass to the limit in the equation forwδ and to

show thatck > 0 almost everywhere fork = 1, . . . ,N.
As pointed out above we first have to derive a uniform bound on{wδ}δ∈(0,δ0).

Lemma 3.3. (i) There exists a constantC > 0 independent ofδ such that for allδ ∈ (0, δ0)

T∫
0

(
−
∫
Ω

PΨ 1,δ
,c (cδ)

)2

(t)dt < C

and

‖wδ‖L2(0,T ;H1(Ω)) < C.

(ii) There exists a subsequence(wδ)δ∈R whereR ⊂ (0, δ0) is a countable set with zero as the only cluster po
such that

wδ → w weakly inL2(0, T ;H 1(Ω)
)
.

Proof. We define

wδ
0 = wδ − λδ

with

λδ = −
∫
Ω

wδ = −
∫
Ω

(
PΨ δ

,c(c
δ) + PW,c

(
cδ,E(uδ)

))
.

To derive a bound on the Lagrange multipliersλδ we generalise an idea of Barrett and Blowey [1,2]. Sincewδ

fulfills (17) with homogeneous free energy densityΨ δ we have:∫
Ω

(wδ
0 + λδ) · ζ =

∫
Ω

{
γ∇cδ : ∇ζ + PΨ δ

,c(c
δ) · ζ + PW,c

(
cδ,E(uδ)

) · ζ}
(24)

for all ζ ∈ H 1(Ω,R
N) ∩ L∞(Ω,R

N) and for almost allt ∈ (0, T ).
For all elementsk lying on the Gibbs simplexG we obtain by using the convexity ofΨ 1,δ and the fact tha

k − cδ ∈ T Σ almost everywhere∫
Ω

Ψ 1,δ(k) �
∫
Ω

Ψ 1,δ(cδ) +
∫
Ω

Ψ 1,δ
,c (cδ) · (k − cδ) =

∫
Ω

Ψ 1,δ(cδ) +
∫
Ω

PΨ 1,δ
,c (cδ) · (k − cδ). (25)

SinceW fulfills W,c(c′,E ′) = 0 for |c′| � 2, we can also chooseζ = k − cδ as a test function in (24) for almost a
t ∈ (0, T ). Taking the resulting expression and using inequality (25) we conclude∫

Ω

Ψ 1,δ(k) �
∫
Ω

Ψ 1,δ(cδ) −
∫
Ω

PΨ 2
,c(c) · (k − cδ) −

∫
Ω

PW,c · (k − cδ) +
∫
Ω

γ∇cδ : ∇cδ

+
∫
Ω

wδ
0 · (k − cδ) +

∫
Ω

λδ · (k − cδ)

for almost allt ∈ (0, T ). We want to use the above inequality to establish an estimate of the term∫
λδ · (k − cδ).
Ω
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ero, we

for
The

llowing
Using

∣∣PW,c(c′,E ′) · (k − c′)
∣∣ �

{
C2(|E ′|2 + 1) if |c′| < 2,

0 if |c′| � 2,

Lemma 3.1, the a priori estimates of Lemma 3.2 and Poincaré’s inequality for functions with mean value z
obtain for almost allt ∈ (0, T )∫

Ω

λδ · (k − cδ) � C
(
1+ ∥∥∇wδ(t)

∥∥
L2(Ω)

(
1+ ∥∥cδ(t)

∥∥
L2(Ω)

) + ∥∥cδ(t)
∥∥2

L2(Ω)
+ ∥∥∇uδ

∥∥2
L2(Ω)

)
. (26)

Assumption (A7′) and the fact that
∫
Ω

cδ(t) is constant in time ensures the existence of aρ > 0 such that for all
k ∈ {1, . . . ,N} and allt ∈ (0, T ]

ρ < −
∫
Ω

cδ
k(t) < 1− ρ.

Choosing

k = −
∫
Ω

cδ(t) + ρ sign(λδk − λδ
l )(ek − el ) ∈ G

in (26) gives

∣∣λδ
k − λδ

l

∣∣(t) � C

ρ|Ω|
(
1+ ‖∇wδ(t)‖L2(Ω)

)
.

Integrating|λδ
k − λδ

l |2(t) from 0 toT and using the identityλδ = 1
N

(
∑N

l=1(λ
δ
k − λδ

l ))k=1,...,N leads to

T∫
0

|λδ|2(t)dt � C.

This, together with the growth condition forW and the a priori estimates of Lemma 3.2, gives an estimate
the spatial mean values ofwδ in L2(0, T ). Hence, the Poincaré inequality yields the second inequality in (i).
second hypothesis then follows from a compactness argument.�

4. Higher integrability for the strain tensor

In this subsection we use a perturbation argument to show that the deformation gradient has the fo
integrability property:

There exists ap > 2 such that for almost allt ∈ [0, T ] we have∇u(t) ∈ Lp(Ω).

Lemma 4.1 (Higher integrability: interior estimates). Suppose thatc ∈ Lσ (Ω,R
N), σ > 2 and that(A4) and(A5)

hold.
Then there exists ap ∈ (2, σ], independent ofc, such that for allu ∈ H 1(Ω,R

n) which fulfills for all
η ∈ H 1(Ω,R

n) the identity∫
W,E

(
c,E(u)

) : ∇η =
∫

S∗ : ∇η (27)
Ω Ω
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the integrability property

∇u ∈ L
p

loc(Ω,R
n×n)

holds. In particular, for allΩ ′ ⊂⊂ Ω it holds

‖∇u‖Lp(Ω ′,Rn×n) � C
(‖∇u‖L2(Ω,Rn×n) + ‖c‖Lp(Ω,Rn) + 1

)
whereC = C(Ω,Ω ′,C2, c2, c1,S∗, n, σ,p) is independent ofc.

Proof. The proof is based on a Caccioppoli inequality, a reverse Hölder inequality and a perturbation ar
due to Gehring [14] and Giaquinta and Modica [16]. This technique is well known for elliptic systems. In ou
additional difficulties arise in the derivation of the Caccioppoli inequality because the direct estimates only
E(u) rather than∇u. Therefore, we present the derivation of the Caccioppoli inequality in detail.

Let x0 ∈ Ω andR > 0 be such that

Q2R(x0) := {
x ∈ R

n | |xi − x0i | < 2R
} ⊂ Ω.

Then we define a cutoff functionζ ∈ C∞
0 (Ω) with the properties

(i) ζ = 0 in Ω \ Q2R(x0),
(ii) 0 � ζ � 1 in Ω andζ = 1 in QR(x0),

(iii) |∇ζ | � 2
R

.

Now we want to test equation (27) with

η = ζ 2(u − µ) with µ ∈ R
n.

We compute

E(η) = ζ 2E(u) + ζ
(
(u − µ)(∇ζ )t + ∇ζ(u − µ)t

)
.

Due to the symmetry ofW,E (c,E(u)) we obtain∫
Ω

ζ 2W,E
(
c,E(u)

) : E(u) + 2
∫
Ω

ζW,E
(
c,E(u)

) : ((u − µ)(∇ζ )t
)

=
∫
Ω

ζ 2S∗ : E(u) + 2
∫
Ω

ζS∗ : ((u − µ)(∇ζ )t
)
. (28)

Assumptions (A4.2) and (A4.3) yield

c1
∣∣E(u)

∣∣2 � W,E
(
c,E(u)

) : E(u) + C2
(|c| + 1

)∣∣E(u)
∣∣

and ∣∣W,E
(
c,E(u)

) : ((u − µ)(∇ζ )t
)∣∣ � C2

(
E(u) + |c| + 1

)|u − µ| 2

R
.

SinceS∗ is a constant tensor and using Young’s inequality we can deduce from (28) the existence of a c
C > 0 depending onc1,C2 and|S∗| such that

c1

∫
Ω

ζ 2
∣∣E(u)

∣∣2 � C

∫
Ω

ζ 2(|c|2 + 1
) + C

∫
Ω

ζ
(∣∣E(u)

∣∣ + |c| + 1
)|u − µ| 2

R

� C

∫
ζ 2(|c|2 + 1

) + C

R2

∫
|u − µ|2.
Ω Q2R(x0)
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bility
Employing

E
(
ζ(u − µ)

) = ζE(u) + 1

2

(
(u − µ)(∇ζ )t + ∇ζ(u − µ)t

)
we obtain∫

Ω

∣∣E(
ζ(u − µ)

)∣∣2 � 2

(∫
Ω

ζ 2
∣∣E(u)

∣∣2 +
∫
Ω

|u − µ|2|∇ζ |2
)

.

Now we can apply Korn’s inequality for functions with boundary value zero to conclude∫
Ω

∣∣∇(
ζ(u − µ)

)∣∣2 � C

∫
Ω

ζ 2(|c|2 + 1
) + C

R2

∫
Q2R(x0)

|u − µ|2. (29)

Since

∇(
ζ(u − µ)

) = ζ∇u + (u − µ)(∇ζ )t

we derive from (29) that

−
∫

QR(x0)

|∇u|2 � C −
∫

Q2R(x0)

(|c|2 + 1
) + C

R2
−
∫

Q2R(x0)

|u − µ|2.

Now we chooseµ = −
∫

Q2R(x0)u and use the Poincaré–Sobolev inequality (see Theorem A.2) to conclude

−
∫

QR(x0)

|∇u|2 � C −
∫

Q2R(x0)

(|c|2 + 1
) + C

(
−
∫

Q2R(x0)

|∇u|2n/(n+2)

)(n+2)/n

.

Finally, Proposition A.1 withg = |∇u|2n/(n+2), q = n+2
n

andf = C(|c|2 + 1)n/(n+2) and a covering argumen
leads to the assertion.�
Theorem 4.1 (Higher integrability). Suppose thatc ∈ Lσ (Ω,R

N), σ > 2 and that(A4) and(A5) hold.
Then there exists ap ∈ (2, σ], independent ofc, such that for allu ∈ H 1(Ω,R

n), which fulfills for all η ∈
H 1(Ω,R

n) the identity∫
Ω

W,E
(
c,E(u)

) : ∇η =
∫
Ω

S∗ : ∇η (30)

the integrability property

∇u ∈ Lp(Ω,R
n×n)

holds. In particular,

‖∇u‖Lp(Ω,Rn×n) � C
(‖∇u‖L2(Ω,Rn×n) + ‖c‖Lp(Ω,Rn) + 1

)
whereC = C(Ω,C2, c2, c1,S∗, n, σ,p) is independent ofc.

Proof. The integrability in the interior follows from Lemma 4.1. Hence, it remains to show the higher integra
at the boundary. SinceΩ has a Lipschitz boundary, there exist for allx0 ∈ ∂Ω a Lipschitz functionh :Rn−1 → R

such that – upon relabelling and reorientation of the interface if necessary – the boundary∂Ω locally aroundx0 is
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ne
the graph ofh. In addition,h can be chosen such thatΩ locally lies on one side of the graph. To state this prop
precisely we define the sets

Q := {
y ∈ R

n | |yi | < R0 for i = 1, . . . , n
}
,

Q+ := {y ∈ Q | yn > 0},
Q− := {y ∈ Q | yn < 0},
Q0 := {y ∈ Q | yn = 0}

and the transformation

τ :Q −→ R
n,

y �−→ τ (y) := (
y1, . . . , yn−1, h(y1, . . . , yn−1) + yn

)
.

Then we require that there exists aR0 > 0 such that

τ (Q+) ⊂ Ω,

τ (Q−) ⊂ R
n \ �Ω.

In what follows, we assume thatx0, h andR0 are chosen such that the above requirements hold. Now we defi

v :Q+ → R
n and d :Q+ → R

n

via

v = u ◦ τ and d = c ◦ τ .

In addition, we set for ally ∈ Q

g(y) =
{ |∇v|2n/(n+2)(y) if y ∈ Q+,

0 if y ∈ Q \ Q+.

Our goal is to apply Proposition A.1 for the functiong. This then shows higher integrability of∇v and by trans-
formation also for∇u.

Claim. There are constantsb,C > 0 such that for ally0 ∈ Q and allR > 0 with 2R <dist(y0, ∂Q)

−
∫

QR(y0)

gq dy � b

(
−
∫

Q2R(y0)

g dy

)q

+ −
∫

Q2R(y0)

f q dy (31)

whereq = n+2
n

andf = C(|d|2 + 1)n/(n+2).

To prove the claim we choose ay0 ∈ Q and aR < 1
2 dist(y0, ∂Q). Then there are three possibilities:

Case1. Q 3
2R

(y0) ∩ Q+ = ∅. The left-hand side in (31) in this case is zero and hence the inequality holds.

Case2.Q 3
2R

(y0)∩Q− = ∅. Denoting byL the Lipschitz constant ofh, it holds thatτ (QR(y0)) andτ (Q 3
2R

(y0))

have a distance larger thanR4 min(1, 1
L
). Hence, we can choose a cutoff functionζ ∈ C∞

0 (Ω) with the properties

(i) ζ = 0 in Ω \ τ ((Q 3
2R

(y0)),

(ii) 0 � ζ � 1 in Ω andζ = 1 in τ (QR(y0)),
(iii) |∇ζ | � 8 max(1,L).
R
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Testing (30) withη = ζ 2(u − µ) whereµ ∈ R
n and concluding as in Lemma 4.1 we obtain∫

τ (QR(y0))

|∇u|2 � C

∫
τ (Q 3

2R
(y0))

(|c|2 + 1
) + C

R2

∫
τ (Q 3

2R
(y0))

|u − µ|2.

Transforming the integrals leads to∫
QR(y0)

|∇v|2 � C

∫
Q 3

2R
(y0)

(|d|2 + 1
) + C

R2

∫
Q 3

2R
(y0)

|v − µ|2

whereC depends onL. Choosingµ = −
∫

Q 3
2R

(y0)v and using the Sobolev–Poincaré inequality we deduce

∫
QR(y0)

|∇v|2 � C

∫
Q 3

2R
(y0)

(|d|2 + 1
) + C

R2

( ∫
Q 3

2R
(y0)

|∇v|2n/(n+2)

)(n+2)/n

.

This implies∫
QR(y0)

gq dy � C

R2

( ∫
Q2R(y0)

g dy

)q

+
∫

Q2R(y0)

f q dy. (32)

Multiplying by R−n now gives the result.

Case3.

Q 3
2R

(y0) ∩ Q+ �= ∅ and Q 3
2R

(y0) ∩ Q− �= ∅. (33)

For all �R > 0 we define

Q+
�R(y0) := Q�R(y0) ∩ Q+ and Q−

�R(y0) := Q�R(y0) ∩ Q−.

From (33) it is seen that

Q2R(y0) ∩ Q0 �= ∅.

Hence,τ (Q2R(y0)) intersects the boundary ofΩ , i.e.

τ
(
Q2R(y0)

) ∩ ∂Ω �= ∅.

The Lipschitz continuity ofh guarantees

dist
{
τ
(
∂Q+

2R(y0)
) ∩ Ω,τ

(
∂Q+

R(y0)
) ∩ Ω

}
� R

2
min

(
1,

1

L

)
which hence allows us to choose a cutoff functionζ ∈ C∞(Ω) with the properties

(i) ζ = 0 in Ω \ τ ((Q2R(y0)),
(ii) 0 � ζ � 1 in Ω andζ = 1 in τ (QR(y0) ∩ Ω),

(iii) |∇ζ | � 4
R

max(1,L).

Sinceζ(u−µ) = 0, whereµ ∈ R
n, on an open part of∂Ω , Korn’s inequality holds forζ(u−µ) = 0. Therefore,

by testing (30) withη = ζ 2(u − µ) we can proceed as in Case 2 to obtain∫
Q+(y )

|∇v|2 �
∫

Q+ (y )

C
(|d|2 + 1

) + C

R2

∫
Q+ (y )

|v − µ|2.

R 0 2R 0 2R 0
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to
k

a 3.2
From (33) we conclude

Ln
(
Q+

2R(y0)
)
� cRn

and

diamQ+
2R(y0) � CR.

With the help of the Sobolev–Poincaré inequality we deduce∫
Q+

R(y0)

|∇v|2 �
∫

Q+
2R(y0)

C
(|d|2 + 1

) + C
(
Ln

(
Q+

2R(y0)
))−2/n

( ∫
Q+

2R(y0)

|∇v|(2n)/(n+2)

)(n+2)/n

and hence∫
Q+

R(y0)

|∇v|2 �
∫

Q+
2R(y0)

C
(|d|2 + 1

) + C

R2

( ∫
Q+

2R(y0)

|∇v|(2n)/(n+2)

)(n+2)/n

.

If we integrate over the larger setsQR(y0) andQ2R(y0) respectively we obtain (32). Hence, as before we mult
by R−n and deduce (31).

Now (31) and Proposition A.1 give the higher integrability at the boundary. The higher integrability
boundary, Lemma 4.1 and a covering argument imply the desired conclusion.�

5. Higher integrability for the logarithmic free energy

The equation for the chemical potential differenceswδ of the regularised system is

wδ = −γ�cδ + θP
(
φδ(cδ

k)
)
k=1,...,N

+ PAcδ + PW,c
(
cδ,E(uδ)

)
, (34)

where we defineφδ := (ψδ)′. The functionψδ is an approximation ofψ(d) = d lnd and henceφδ = (ψδ)′ becomes
singular asδ → 0. We remark thatψδ was chosen such thatφδ is monotone (see (22)). This is crucial in order
show thatφδ(cδ

k) is uniformly bounded inLq(ΩT ) for someq > 1. We will achieve this by testing the wea
formulation of the equation forwk with an appropriate power ofφδ(cδ

k).

Lemma 5.1. There exist constantsq > 1 andC > 0 such that for allδ ∈ (0,min( 1
N

, δ0)) and all k ∈ {1, . . . ,N}∥∥φδ(cδ
k)

∥∥
Lq(ΩT )

� C.

Proof. Let r > 0. Then we define

φδ
r (d) = φδ(d)

∣∣φδ(d)
∣∣r−1

whereφδ
r is defined to be zero ifφδ(d) is zero, and henceφδ

r is continuous onR. For r ∈ (0,1) the functionφδ
r is

not differentiable at the zero of the functionφδ . Hence, forρ > 0 we define a monotoneC1 functionφ
δ,ρ
r which

equalsφδ
r on R \ [0,1] and which converges toφδ

r in C(R) asρ → 0.
The weak formulation of the equation for the chemical potential differenceswδ is∫

ΩT

wδ · ζ =
∫

ΩT

{
γ∇cδ : ∇ζ + θP

(
φδ(cδ

k)
)
k=1,...,N

· ζ + PAcδ · ζ + PW,c
(
cδ,E(uδ)

) · ζ}
(35)

with ζ ∈ L2(0, T ;H 1(Ω,R
N))∩L∞(ΩT ,R

N). The Sobolev embedding theorem and the estimates of Lemm
imply that cδ lies in L∞(0, T ;L2n/(n−2)(Ω)) if n � 3, in L∞(0, T ;Ls(Ω)) for all s ∈ [1,∞) if n = 2 and
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s

e, (36)
in L∞(ΩT ) if n = 1. We can deduce from the higher integrability result from the last subsection (see
rem 4.1) that∇uδ ∈ L∞(0, T ;Lp(Ω)) (for somep > 2). We choosep such thatp ∈ (2,4] and such that in
additionp ∈ (2, 2n

n−2) if n � 3. Hence,W,c(cδ,E(uδ)) ∈ L∞(0, T ;Lp/2(Ω)). This implies that also test function

ζ ∈ L2(0, T ;H 1(Ω,R
N)) ∩ Lp/(p−2)(ΩT ,R

N) are allowed in (35).
We test (35) with the function

ζ = (
φδ,ρ

r (cδ
k)

)
k=1,...,N

,

which is admissible for allr ∈ (0,1] with r
p

p−2 � 2 (note thatφδ(d) is sub-linear ind). We obtain

∫
ΩT

N∑
k=1

wδ
k · φδ,ρ

r (cδ
k) =

∫
ΩT

N∑
k=1

{
γ∇cδ

k · ∇φδ,ρ
r (cδ

k) + θ

[
φδ(cδ

k) − 1

N

(
N∑

l=1

φδ(cδ
l )

)]
φδ,ρ

r (cδ
k)

}

+
∫

ΩT

{
PAcδ · (φδ,ρ

r (cδ
k)

)
k=1,...,N

+ PW,c
(
cδ,E(uδ)

) · (φδ,ρ
r (cδ

k)
)
k=1,...,N

}
. (36)

Furthermore, we have

N∑
k=1

[
φδ(cδ

k) − 1

N

(
N∑

l=1

φδ(cδ
l )

)]
φδ,ρ

r (cδ
k)

= 1

N

N∑
k,l=1

(
φδ(cδ

k) − φδ(cδ
l )

)
φδ,ρ

r (cδ
k)

= 1

N

N∑
k<l

(
φδ(cδ

k) − φδ(cδ
l )

)
φδ,ρ

r (cδ
k) + 1

N

N∑
k>l

(
φδ(cδ

k) − φδ(cδ
l )

)
φδ,ρ

r (cδ
k)

= 1

N

N∑
k<l

(
φδ(cδ

k) − φδ(cδ
l )

)(
φδ,ρ

r (cδ
k) − φδ,ρ

r (cδ
l )

)
� 0

since bothφδ andφ
δ,ρ
r are monotone increasing.

Using that(φδ,ρ
r )′ � 0 we conclude that the first term on the right-hand side of (36) is non-negative. Henc

implies

θ

∫
ΩT

1

N

N∑
k<l

(
φδ(cδ

k) − φδ(cδ
l )

)(
φδ,ρ

r (cδ
k) − φδ,ρ

r (cδ
l )

)

�
∫

ΩT

{
N∑

k=1

wδ
k · φδ,ρ

r (cδ
k) − PAcδ · (φδ,ρ

r (cδ
k)

)
k=1,...,N

− PW,c
(
cδ,E(uδ)

) · (φδ,ρ
r (cδ

k)
)
k=1,...,N

}

� C max
k=1,...,N

∥∥φδ,ρ
r (cδ

k)
∥∥

L2(ΩT )

(‖wδ‖L2(ΩT ) + ‖cδ‖L2(ΩT )

)

+ C

( ∫
ΩT

∣∣W,c
(
cδ,E(uδ)

)∣∣p/2
)2/p(

max
k=1,...,N

∫
ΩT

∣∣φδ,ρ
r (cδ

k)
∣∣p/(p−2)

)1−2/p

.
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nd the

stic
ations

n

[12] for
Passing to the limitρ ↘ 0 and using Theorem 4.1, the a priori estimates of Lemma 3.2 and Lemma 3.3 a
inequalities of Hölder and Young proves that there exists for allα > 0 a constantCα such that

θ

∫
ΩT

1

N

N∑
k<l

(
φδ(cδ

k) − φδ(cδ
l )

)(
φδ

r (c
δ
k) − φδ

r (cl)
)
� α

(
max

k=1,...,N

∫
ΩT

∣∣φδ
r (c

δ
k)

∣∣p/(p−2)
)

+ Cα. (37)

Moreover, since
∑N

k=1 cδ
k = 1, we have

N

min
k=1

cδ
k � 1

N
� N

max
k=1

cδ
k.

Using this, the fact thatφδ andφδ
r are monotone increasing functions and Young’s inequality we deduce

∫
ΩT

N∑
k<l

(
φδ(cδ

k) − φδ(cδ
l )

)(
φδ

r (c
δ
k) − φδ

r (cl)
)

�
∫

ΩT

N
max
k=1

∣∣∣∣φδ(cδ
k) − φδ

(
1

N

)∣∣∣∣
∣∣∣∣φδ

r (c
δ
k) − φδ

r

(
1

N

)∣∣∣∣
�

∫
ΩT

N
max
k=1

∣∣∣∣∣∣φδ(cδ
k)

∣∣r+1 − φδ

(
1

N

)
φδ

r (c
δ
k) − φδ(cδ

k)φ
δ
r

(
1

N

)
+

∣∣∣∣φδ

(
1

N

)∣∣∣∣
r+1∣∣∣∣

�
∫

ΩT

N
max
k=1

(∣∣φδ(cδ
k)

∣∣r+1 −
∣∣∣∣φδ

(
1

N

)∣∣∣∣∣∣φδ(cδ
k)

∣∣r − ∣∣φδ(cδ
k)

∣∣∣∣∣∣φδ

(
1

N

)∣∣∣∣
r

+
∣∣∣∣φδ

(
1

N

)∣∣∣∣
r+1)

� 1

2

∫
ΩT

N
max
k=1

∣∣φδ(cδ
k)

∣∣r+1 − C.

If δ < 1
N

thenφδ( 1
N

) = φ( 1
N

), which ensures that the constantC is independ ofδ. Together with (37) we have∫
ΩT

N
max
k=1

∣∣φδ(cδ
k)

∣∣r+1 � N

2θ
α

(
max

k=1,...,N

∫
ΩT

∣∣φδ(cδ
k)

∣∣ p
p−2r

)
+ Cα.

Settingr = p−2
2 and choosingα small enough gives the result.�

6. Proof of the existence theorem

Proof of Theorem 2.1. We need to show that the limit(c,w,u) obtained in Lemmas 3.2 and 3.3 solves the ela
Cahn–Hilliard system with logarithmic free energy. To pass to the limit in the weak formulations of the equ

∂tcδ = L�wδ and ∇ · [W,E
(
cδ,E(uδ)

)] = 0

one can apply standard arguments using the convergence properties of(cδ,wδ,uδ) and the growth condition o
W,E (see e.g. [12]). It remains to pass to the limit in

wδ = −γ�cδ + θP
(
φδ(cδ

k)
)
k=1,...,N

+ PAcδ + PW,c
(
cδ,E(uδ)

)
. (38)

Except for the termφδ(cδ
k) one can use standard arguments (see e.g. the proof of the existence theorem in

a similar context).
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Let us show thatφδ(cδ
k) converges almost everywhere toφ(ck) and thatck > 0 almost everywhere. Using th

convergence a.e. ofcδ
k to ck , the Fatou lemma and Lemma 5.1 we obtain∫

ΩT

lim inf
δ→0

∣∣φδ(cδ
k)

∣∣q � lim inf
δ→0

∫
ΩT

∣∣φδ(cδ
k)

∣∣q � C.

Next we prove that

lim
δ→0

φδ(cδ
k) =

{
φ(ck) if lim δ→0 cδ

k = ck > 0,

∞ elsewhere
(39)

almost everywhere. First we take(x, t) ∈ ΩT with limδ→0 cδ
k(x, t) = ck(x, t) > 0. Sinceφδ(d) = (ψδ)′(d) =

ψ ′(d) = φ(d) for d � δ we obtain φδ(cδ
k(x, t)) → φ(ck(x, t)). Now assume that(x, t) ∈ ΩT is such that

limδ→0 cδ
k(x, t) = ck(x, t) � 0. Then we obtain forδ small enough∣∣φδ
(
cδ
k(x, t)

)∣∣ � φ
(
max

(
cδ
k(x, t), δ

))
.

The right-hand side converges to∞ asδ tends to zero which proves (39). Using (39) and Lemma 5.1, we obt

ck > 0 almost everywhere,∫
ΩT

∣∣φ(ck)
∣∣q � C

and

φδ(cδ
k) → φ(ck) almost everywhere.

Sinceq > 1 we conclude with Vitali’s theorem

φδ(cδ
k) → φ(ck) in L1(ΩT ).

This is enough to pass to the limit in the weak formulation of (38).�

Appendix

In this section we collect some known results used in the text.

Theorem A.1 (Korn’s inequality). LetΩ be a bounded domain with Lipschitz boundary.

(i) There exists a constantc > 0 such that∫
Ω

E(u) : E(u) � c‖u‖2
H1

for all u ∈ X2 := {u ∈ H 1(Ω,R
n) | (u,v)H1 = 0 for all v ∈ Xird} = X⊥

ird whereXird := {u ∈ H 1(Ω,R
n) | there

existb ∈ R
n and a skew symmetricA ∈ R

n×n such thatu(x) = b + Ax}.
(ii) Let� be an open subset of the boundary∂Ω and letX� := {u ∈ H 1(Ω,R

n) | u|� = 0}.

Then there exists a constantc > 0 such that∫
Ω

E(u) : E(u) � c‖u‖2
H1 for all u ∈ X�.
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obolev–
from the

nsla-

nt
A proof can be found for example in Zeidler [28].
We needed a version of the Sobolev–Poincaré inequality for rectangles in which the dependence of the S

Poincaré constant on the diameter is specified. We demonstrate how such an estimate can be derived
Sobolev–Poincaré inequality on the unit cube.

Theorem A.2 (Sobolev–Poincaré inequality). There exists a constantC(n,p) such that(
−
∫
D

∣∣∣∣u − −
∫
D

u

∣∣∣∣
p∗)1/p∗

� C(n,p)(diamD)

(
−
∫
D

|∇u|p
)1/p

for all rectanglesD ⊂ R
n and allu ∈ W1,p(D). Here,p ∈ (1, n), p∗ = np

n−p
anddiamD is the diameter ofD.

Proof. Without loss of generality we assume that

D = Df :=
{

n∑
i=1

xiei

∣∣∣ 0 � xi � fi

}

with f = (f1, . . . , fn) and 0< f1 � · · · � fn. All other situations can be reduced to one of these cases by a tra
tion and a orthogonal transformation.

The Sobolev–Poincaré inequality(∫
De

∣∣∣∣v − −
∫
De

v

∣∣∣∣
p∗)1/p∗

� C(n,p)

(∫
De

|∇v|p
)1/p

(A.1)

holds for allv ∈ W1,p(De) with a fixed constantC(n,p) whereDe is the unit cube, i.e.e = (1, . . . ,1)∈ R
n. Now

let D = Df andu ∈ W1,p(D). Then we define

v(y) = u(f1y1, . . . , fnyn) for all y ∈ De

and obtain

∇v(y) = (
fi∂iu(f1y1, . . . , fnyn)

)
i=1,...,n

. (A.2)

Hence∣∣∇v(y)
∣∣p � f

p
n

∣∣∇u(f1y1, . . . , fnyn)
∣∣p.

Changing variables in (A.1) and using−
∫

Dev = −
∫

Dfu we obtain

(∫
D

∣∣∣∣u − −
∫
D

u

∣∣∣∣
p∗

(f1 · · ·fn)
−1

)1/p∗

� C(n,p)fn

(∫
D

|∇u|p(f1 · · ·fn)
−1

)1/p

.

SinceLn(D) = f1 · · ·fn and sincefn � diamD the theorem follows. �
Proposition A.1. Let Q ⊂ R

n be a cube,g ∈ L
q

loc(Q) for a q > 1 andg � 0. Suppose that there exist a consta
b > 0 and a functionf ∈ Lr

loc(Q) with r > q andf � 0 such that

−
∫

QR(x0)

gq dx � b

(
−
∫

Q2R(x0)

g dx

)q

+ −
∫

Q2R(x0)

f q dx

for eachx0 ∈ Q and allR > 0 with 2R <dist(x0, ∂Q).
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loc(Q) for s ∈ [q, q + ε) for someε > 0 and(

−
∫

QR(x0)

gs dx

)1/s

� c

{(
−
∫

Q2R(x0)

gq dx

)1/q

+
(

−
∫

Q2R(x0)

f s dx

)1/s}

for all x0 ∈ Q andR > 0 such thatQ2R(x0) ⊂ Q. The positive constantsc andε depend onb, q, n andr .

For a proof of this proposition we refer to the book of Giaquinta [15] or the paper of Giaquinta and Modic
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