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Abstract

Existence of solutions to a Cahn—Hlilliard system taking elastic stresses into account is shown. The analysis is hindered by ¢
logarithmic singularity and a quadratic term in the displacement gradient. This makes careful a priori estimates for both terms
necessary. In particular, a global versiondf-estimates for gradients of nonlinear elliptic systems is shown in order to control
the logarithmic singularity.
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Résumé

On établit I'existence de solutions pour un systeme de Cahn-Hilliard qui tient compte des stress élastiques. Cette analyse e:
rendue plus difficile a cause d’une singularité logarithmique et d’un terme quadratique dans le gradient déplacé, qu’on va devoir
a priori estimer. En particulier, pour controler la singularité logarithmique on démontre une version globafeektsnatiens
pour les gradients des systemes elliptiques nonlinénaires.
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1. Introduction

The Cahn—Hilliard model describes phase separation and coarsening in alloys (see [7,23] and the reference
cited therein). The Cahn—Hilliard equation is a fourth order diffusion equation for the concentrations of the alloy
components and the evolution is driven by diffusion potentials (the chemical potentials) which are given as the first
variation of a Ginzburg—Landau energy. The Ginzburg—Landau energy is non-convex with several local minima
leading to the occurrence of different phases (see e.g. [7]).

In many alloys the phase separation process is drastically influenced by elastic interactions (see [10,13]) whict
are not taken into account in the standard Cahn—Hilliard equation. Therefore, Cahn and Larché [20,21] and latel
Onuki [26] included elastic effects into the original model. In this modified model the displacement of the lattice is
a further unknown field for which an elliptic system has to be solved which is coupled to the diffusion equations. It
is the goal of this paper to mathematically analyze the resulting system of equations. The mathematical difficulty
lies in the fact that the equations contain terms that are singular with respect to the alloy concentrations and tha
the strain tensor enters the diffusion equations quadratically. Therefore, it will turn out that it is necessary to
show a higher integrability result for the gradient of the displacement. To obtain this result we use a perturbation
method due to Giaquinta and Modica [16]. In particular we need to show higher integrability up to the boundary —
something which is not covered by the original results of Giaquinta and Modica.

Let us now derive the governing equations. We assume that the alloy consitsarhponents. The concen-
tration of component we denote by (k =1, ..., N) and therefore, the vector= (cx)i=1....n has to fulfill the
constraintz,}(\'=l ¢ =1, i.e.clies in the affine hyperplane

N
3= {d = (cfker. v €RY | D = 1}.
k=1
Since only non-negative values for theare physically meaningful we also introduce the Gibbs simplex
N
G:= {C/G]RN ‘ Zczzlandc,/{ >0fork=1,...,N}.
i=1

To describe elastic effects we define the displacementtigdy i.e. a material poink in the undeformed body
will be at the pointx + u(x) after deformation. Since in phase separation processes the displacement gradient
usually is small, we consider an approximative theory based on the linearised strain tensor

E(u) = %(Vu + (Vuy').

A generalised Ginzburg—Landau free energy taking elastic effects into account is of the form

E(c,u) = /{gqu + W)+ W(c W)+ W*(S(u))} (1)
2

where2 C R", n € N, is a bounded domain with Lipschitz boundary. The first term in the energy is the gradient
part with a small parameter > 0 and this term penalizes rapid spatial variations in the concentrations. The second
summandy¥ is the homogeneous free energy density at zero stress and a free energy Wedsiiyed from a
mean-field theory is the sum of a logarithmic entropy term and a pairwise interaction term and has the form

N
w(©)=0)Y alng+3c-Ac, 2)
k=1

whered € R* is the absolute temperature and the entries of the mAtex(Ax ). =1, n are the constant para-
meters that describe pairwise interactions between the components. For simplicity we have rescaled the absolut
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temperature such that the Boltzmann conskgnis equal to one. We assume tifats symmetric. A typical exam-
pleisA = x (e —Id) which means that the interactions between all components have the same magritRde
Let us point out that phase separation only occufslifas negative eigenvalues which implies that c- Acis not
positive definite. Then the second term in (2) is non-convex while the first one is convex. For small tempeératures
the homogeneous free energythen has more than one local minima, leading to the occurrence of different phases.
Chemical energies of the form (2) have been studied for example by De Fontaine [6], Hoyt [17] and Elliott and
Luckhaus [8]. The first two summands in the total free endfgre classical contributions to a Ginzburg—Landau
free energy. Energies consisting of two terms of this form go back to van der Waals [27]. In the theory of phase
separation in alloys they have been introduced by Cahn and Hilliard [4].

The last two terms in the free energy take elastic effects into account. Théitéryg) is the elastic free energy
density and a typical form is

1
wmazig-y©ya@¢_y@y (3)

where the — product between two tensobs B is defined to beA : B := tr(A’B). Here,C(c) is the concentration
dependent elasticity tensor mapping symmetric tensois'iff into itself. We requireC(c) to be symmetric and
positive definite. The quantitg*(c) is the symmetric stress free strain (or eigenstrain) at concentmatioims is

the value the strain tensor attains if the material were uniform with concentatiod unstressed. If the vector

is equal to one of the standard Cartesian basis veetors. , ey then the system is equal to a pure component. In
this case€* () is the value of the strain tensor if the material consists only of compdnamd is unstressed. The
function&* is a suitable extension to all & . Usually a linear extension of the form

N
E(Q) =) k€™ (&)
k=1

is assumed (Vegard’s law). The elastic energy density (3) is the standard choice which goes back to the early
work of Eshelby [9] and Khachaturyan [18] (see also [22,10]). However, we will obtain results for more general
densities.

The remaining termiV*(€) represents energy effects due to externally applied forces. For simplicity, we assume
that

W) :=-€&: S8

for a constant externally applied stress tenSo(see e.g. [10]).

To describe evolution phenomena in the system, we consider mass diffusion for the individual components
leading to diffusion equations for the concentrations. Mechanical equilibrium is attained on a much faster time
scale than diffusion takes place. Therefore, we will assume a quasi—static equilibriupm.&orfor all times

V.-§=0,
where
S=Wge(c,EW)

is the stress tensor. We remark that the solution of the elastic system in general depends on tioie gieceral
is time dependent. It is always assumed tWatlepends on its second argument only through its symmetric part,
ie.w(, &) =w(c,(&)"). Thisimplies thatS = W ¢(c/, £) is symmetric.

The diffusion equations for the concentratieansk =1, ..., N) are based on mass balances for the individual
components. To define the mass balance we need to introduce chemical poigntidiscch are defined as the
variational derivative of the total free energywith respect tay, i.e.

Mk = —VACk + lp,ck (C) + W.Ck (C, U).
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Now Onsager’s postulate [24,25,19] says that each thermodynamic flux is linearly related to every thermodynamic
force. Since in our case the thermodynamic forces are the negative chemical potential gradients, we obtain the
phenomenological equations (see Kirkaldy and Young [19, p. 137])

N
Je=— Z LV 4)
=1

with a constant matrist. = (Lg/)k=1.... n:/=1...n € RV*N. The Onsager reciprocity law (see [19, p. 137], and
[24,25]) states that the matrix has to be symmetric, which we assume in the following. Having defined the flux,
the diffusion equations follow from the balance of mass as

orcy = —V - Jg. (5)

To ensure that the diffusion equations (5) are consistent with the consirj@;itck = 1 we require that the fluxes
have to fulfill a linear dependency of the form

N
> J=0. (6)
k=1
Since the identities (4) and (6) have to hold for all possible chemical potentials we have to impose
N
> Lu=0. (7)
1=1

This property of the mobility matrix = (Li/)k=1,... n:/=1....5 We assume from now on. As a consequence the
diffusion equations (5) become

N N N
1
3;Ck=V-< E LkNM) = E LklAﬁ E (1 — tm)-
=1 =1 m=1

Hence, the diffusion equations can be expressed via the chemical potential diffeienegs;). In particular, the
evolution can be described via the vector of generalised chemical potential differences

1 N
W=N<m2::l(m—um)) =Pu

I=1,..,.N
whereP is the Euclidian projection dR" onto

N
TY = {d’ = (di=1,.. v €RY ’ > dp= o}
k=1
which is the tangent space ®. A simple computation yields that is the variational derivative of when one
takes the constrairﬁ:,’f:l ¢ = 1into account. In fact, introducing= (1, ..., 1), we getw = . — %(ﬂ -e)ewhere

the second term is the Lagrange multiplier associated to the consﬁéllzr[tck =1.
Altogether we have to solve the system of equations

d;c=LAw, o
W=P(—yAc+ ¥c(0) + W(c, EW)), o
L (10)
S=We(c.EW) .

on 27 := 2 x (0, T) (for T > 0O arbitrary).
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If only two components are present, one can use the constfaint, = 1 to reduce the system for the concen-
trations to a single equation. In this case Egs. (8)—(11) were first stated by Larché and Cahny2x]G@nd for
nonzeroy by Onuki [26].

As boundary conditions we impose no-flux conditions forip@nd the natural boundary conditions which one
obtains from variations of the energy functional with respectandu. Therefore, we require

LVw-n=0, (12)

ve-n=0, (13)

S-n=8*.n, (14)
wheren is the outer unit normal t652. In addition, we impose initial conditions far i.e.

c(x, 0) = c2(x) (15)

for a given functiorc® with c%(x) € X for all x € £2. Since we assume that the mechanical equilibrium is obtained
instantaneously no initial conditions farare needed. We remark that the no-flux boundary condition implies that
the total mass of the solution to (8)—(15) is a conserved quantity, i.e. foeall

/c(x, t)dx=/c°(x) dx.

2 ko)

Other boundary conditions are possible. For example we could impose Dirichlet conditionarfgarts of the
boundaryd 2. This means to prescribe the deformation on parts of the boundary and hence awnoaué be
determined. The boundary condition (14) on the other hand prescritrdg up to infinitesimal rigid displacements
(i.e. translations and infinitesimal rotations). This is typical for problems in elasticity that are based on a linearised
strain tensof€. The non-uniqueness ia will have no effect on the evolution af since only&(u) enters the
equation forw. Therefore we define the space of infinitesimal rigid displacements

Xirg:={ue HY(w,R")| there exisb € R" and a skew symmetri& € R"*" such thati(x) = b + Ax}
and the space of functions perpendiculakig
X1:={ue HY(2,R") | (u,v) ;1 =0forallv e Xia} = Xiy-

We remark that a homogeneous free energy of the form (2) impliesithaa term which enters the equation
for the chemical potential differences, becomes singular if one of the (k=1,..., N) tends to zero. In the
literature the logarithmic term often is approximated by a polynomial leading to a smooth free energy @ensity
as studied for example in [11,12]. But a smogtldoes not guarantee that the concentrations remain non-negative.
On the other hand it will turn out that the singular term, due to the presence of the logarithmic contribution to
the homogenous free energy density, preventstfeom attaining negative values. It is the goal of this paper to
study the evolution equations which result from a homogeneous free energy density of the form (2). As already
mentioned the system contains singular terms and the analysis is much more complicated than the one in previou
articles [12,3,5]. In particular in [3] the system (8)—(11) is studied with a scalar equation for the concentration
a y that depends on and an additional viscosity term that regularises the system.

The case of the Cahn—Hilliard system with logarithmic free energy but without elasticity has been already stud-
ied by Elliott and Luckhaus [8]. They proved an existence and uniqueness result. For their analysis it was crucial to
derive a priori estimates by differentiating the equation for the chemical potential differenses Eg. (9)) with
respect to time. Since in general the solutions of the elastic Cahn—Hilliard system will not be smooth enough to
allow differentiating with respect to time, we had to develop a new method. Let us mention one main difficulty and
the technique to overcome this difficulty. The strain tensor enters the equation of the chemical potential differences
guadratically. Hence, we need to establish a higher integrability result for the strain. We will apply and extend
the technique of Giaquinta and Modica [16] (see also [15]), who derived for solutions to elliptic systems a higher
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integrability result. This is the base to show that;lrand henc@ ¢ lie in L4 (§27) (for someg > 1). In conclusion
we can derive that the chemical potentials are well defined. In particular, we can also show that the concentration:
¢; are positive almost everywhere.

Finally, we remark that a basic ingredient in the existence proof are a priori estimates which stem from the
Lyapunov property of the free energy (1). These follow formally from the identity

N
%/{gIVc|2+W(C)+W(C, 8)+W*(5)}+ > /LkIVkaun:O
2 ki=1g

and the fact thatt is positive definite o7’ X.

2. Themain result
In this section we formulate the main existence and uniqueness results. We need the following assumptions.
Assumptions.

(A1) £2 c R"is a bounded domain with Lipschitz boundary,
(A2) y >0,
(A3) the homogeneous free energy denditys of the form (2) withd > 0 and a symmetrid € RV*V,
(A4) for the elastic energy density € CLRN x R"*" R) we assume
(A4.1) w(c, &) only depends on the symmetric part &f € R"*", i.e. W(c,&") = W(c/, (£")") for all
cd e RN and&’ e R,
(A4.2) W e(c, ) is strongly monotone uniformly i, i.e. there exists a; > 0 such that for all symmetric
&, & e R

(We(d, &) = We(d,€D): (&= ED = a1l — &1,
(A4.3) there exists a consta@ip > 0 such that for alt’ € X and all symmetri€’ € R"*"

[W(, )] < C2(I€17 + 1P +12),
[W.e(€, EN] < C2(I€'P + 117+ 1),
|[Wed, &) <CaAIE 1+ I+ 1),
(A5) the energy density of the applied forces is assumed to be of theWsrg’) = —&’ : S* with a constant
symmetric tensof*,
(AB) the mobility matrixL = (Lx)k=1.....nN:/=1....~ IS assumed to be
(A6.1) symmetric,
(A6.2) to fulfill YN | Ly, =0,
(A6.3) to be positive definite ot X,
(A7) the initial datac® € H1(2, RY) are assumed to fulfit® € G almost everywhere and

][c,?>0 fork=1,...,N.
2

Let us comment on the stated assumptions. The assumptions on (A2) and (A6) guarantee that the system (8
(9) defines a semi-linear parabolic system of fourth order in the var@flee assumption (A4.2) ensures that the
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elastic part of the equation defines a quasi-linear elliptic systemand in addition it follows from (A4.2) that
there exist positive constarts andC3 such that

W, &) = sl 1> - C3(Ic 1+ 1)

for all ¢ € X and all symmetri€’ € R"*". The assumption on the mean valuecaloes not give any practical
limitation. A zero mean value for one component, 'bﬁepc,? =0, together withc® € G would imply thatc, =0
almost everywhere. Therefore, componkidoes not appear at all, which means that we can reduce the system to
a N — 1 system containing all components besideittte component.

The main result of this paper is an existence result for the elastic Cahn—Hilliard system with a logarithmic free
energy density (2).

Theorem 2.1 (Existence) Assume(Al)—(A7). Then there exists a tripléc, w, u) € L%(0,T; HY(2,RM)) x
L%(0,T; HY(£2,RN)) x L?(0,T; X1) with c € ¥ a.e. andP¥ ¢(c) € L1(£27) which solves the elastic Cahn—
Hilliard system in the following sense:

(i) —/a,g-(c—c°)+/ww:vg=o (16)
Qr r
forall £ € L2(0, T; HX(£2, RN)) with 3,& € L2(£27) and&(T) =0,
(ii) /w- ¢ = /{yVC: Vi +PW(0) - +PWe(c Ew)-¢} 7
Q2T Q2r
forall ¢ € L2(0, T; HX(2,RV)) N L= (27, RN), and
(iii) /W,g(c,g(u)):vnzfs*:vn (18)
Q2r Qr

forall y € L2(0, T; HY(22, R")).
In addition the solution has the following properties

() ceC%4(0,T]; L2A(2)),

(i) 9,ceL?(0,T; (HY(2))"),
(iii) there exists @ > 2 such thatu € L>®(0, T; WLP (2, R")),
(iv) there exists @ > 1 such that fork € {1, ..., N}

Inc, € L9(27).
In particular, ¢ > 0 almost everywhere.

We can prove a uniqueness theorem in the case of homogeneous linear elasticity and under the assumption th
the stress free strain varies linearly with the concentration, i.e.

N
Q=) asf (19)
k=1

where thef} = £*(e) are the stress free strains in the case that the material were uniformly equal to conkponent
Altogether the elastic part of the free energy has the form

1
W(e &) =5(E-£©):C(€ - £©) (20)
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with a constant positive definite tens6rwhich is assumed to fulfill the usual symmetry conditions of linear
elasticity.

Theorem 2.2 (Uniqueness). In addition to the assumptions of Theokeinwe assume thatv has the form
(19), (20).

Then there exists a unique solution of the elastic Cahn—Hilliard system with logarithmic free energy in the sense
of Theoren®.1.

The unigueness theorem can be shown in exactly the same way as in the case of a smooth homogeneous fr
energy¥ and we therefore omit the proof (see the proof of Theorem 4.1 in [12]).

3. Aregularised problem

Our goal is to approximate the singular system by a system with smooth free energies such that the results o
[12] can be applied.
First of all we assume that the elastic free energy dengifylfills

(A4.4) Wo(c,E)=0 forallc e RN with |c| > 2 and all§’ € R"*".
This assumption is without loss of generality, because the solution turns out to lie on the Gibbs simplex and

therefore has modulus less than two.
Furthermore, for gived > 0 we replace? by theC?-function

N
wi(c)=0) v’(cp)+ 3¢ -AC (21)
k=1
with
P = {dlnd i ford > 6, 22)
@n§g -5 +4) ford <s.

For later use we define
al 1
() =0 ¢’ and wA(c)=>c-Ac.
k=1 2

The same regularisation has been used by Elliott and Luckhaus [8] in their existence proof for the Cahn—Hilliard
system without elasticity. The following lemma (for a proof see Elliott and Luckhaus [8]) stateklimtiniformly
bounded from below otx.

Lemma 3.1. There exist &y > 0 and aK > 0 such that for alls € (0, &)

wi(dy>—K forall cex.

The following lemma states an existence result for the regularised problem and collects a priori estimates anc
compactness results, which can be obtained similar as in [12] and we therefore only sketch the proof.
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Lemma 3.2. Suppose the homogeneous free energy density is of thg¢2dym

(a) For all § € (0, &) there exists a weak solutioi®, w®, u®) of the elastic Cahn—Hilliard system in the sense
specified in Theorerd.1.
(b) Moreover, there exists a constafit> 0 such that for alls € (0, &)

sup {||C5(’)||H1(.(z) + o] Hl(Q)} <G,
1€[0.T]

sup [ ¥M(E®) + IVW | 20, < C
te[O,T].Q

and
| 2) = )| 2, < Cliz = 12]*
forall 11,0 € [0, T1.
(c) Furthermore, one can extract a subsequentescz, whereR C (0, &) is a countable set with zero as the
only cluster point, such that
(i) ¢ — cin ([0, T]; L?(2)) forall « € (0, 3),
(i) ¢ — calmost everywhere,
(i) ¢ — cweak®in L>®(0, T; HX(2)),
(iv) w5 — uin L2(0, T; HX(£2)),
asé € R tends to zero.

Proof. The regularised problem fulfills the assumptions of Theorem 3.1 in [12], fér@lO, 5). To show this,

one makes use of Lemma 3.1. Hence, a weak solution of the regularised problem exists. The a priori estimate:
in (b) follow from the Lyapunov property of the energyand embedding theorems. In this context we refer to the
Lemmas 3.3 and 3.4 in [12] which give the estimates in (b) by convergence and lower semi-continuity properties.
To show that the constant on the right-hand side does not depesdae has to check that®(c?, u®) does

not depend o (see the proof of Lemma 3.3 in [12]). This is implied by the facts that the initial cfti in
H(£22,RN) and only attain values on the Gibbs simplex. The convergence properties in (c) follow as in the proofs
of the Lemmas 3.4 and 3.5in [12].0

What remains to be done? Itis our goal to show compactness for the chemical potential diff@néngess,) -
We already established a uniform estimate{i@w‘s}ge(o,ao), i.e. it is enough to control the spatial mean values of
{W}5¢(0.50) t0 get a uniform bound id?(0, T; H(s2, RY)). This will be our first step. Thereafter, it is possible to
show the existence of a subsequencgdfsc o5, Which converges weakly in?(0, 7; H($2, RV)) to a limitw.
Then it remains to prove that the following equation holds in a weak sense

W= P(—y AU+ ¥ c(0) + We(c, EW))), “
where
W c(©) =0(nck + Lg=1,...N + AC.

The problem is that In; might be singular. Our goal is to establish a uniform estimate{wr)’(c,‘z) in L1(27)

for someg > 1. We remind the reader that’ is an approximation ofy (d) = dInd. To show theL?-bound we
first derive the integrability of (u) = %(Vu + (Vu)!) in LP(£2r) for somep > 2. This implies that¥ . lies in

LP/2(27) which allows to multiply the equations in (23) by an appropriate poweéyd§’(c?), leading to uniform
L4-bounds (for somg > 1) for (%)’ (c}).
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The uniform estimates fqrw‘s)’(c,f) together with the almost everywhere convergenc{&:‘%}t;e(oqgo) yields the
convergence Ofwa)’(c,‘z) to Incy + 1 in L1(£27). This is enough to pass to the limit in the equationidrand to
show thatc; > 0 almost everywhere fdr=1,..., N.

As pointed out above we first have to derive a uniform boun@ensco.so)-

Lemma 3.3. (i) There exists a constant > 0 independent of such that for alls € (0, &)

T 2
/<][ Pl]/};‘s(c‘s)) (ndr <C
0

2
and

5
Wl 20,7: H1(2)) < C-

(ii) There exists a subsequen@®)s.r WhereR C (0, &) is a countable set with zero as the only cluster point
such that

W —w  weakly inL?(0, T; HX(£2)).

Proof. We define
wh=w’ —2°
with
A= ][w‘S = ][(PW"SC(C‘S) +PWc(c?, £ud))).
Q Q

To derive a bound on the Lagrange multipliaswe generalise an idea of Barrett and Blowey [1,2]. Sinde
fulfills (17) with homogeneous free energy densit§ we have:

/(wg +A% .= /{w& IVE+PWLC) - L +PW(S, EWY)) - ¢} (24)
2 2

forall ¢ € H1(22, RV) N L>®(£2,RY) and for almost alt € (0, 7).
For all elements lying on the Gibbs simplexg we obtain by using the convexity @1 and the fact that
k — ¢ e T X almost everywhere

/q/“(k) >/l1/l*5(c‘3)+/l1{%5(c5)-(k—c‘s)=[1111*5(05)+/Pl1{%3(c‘3)~(k—c‘3). (25)
2 2 2 2 2

SinceW fulfills W ¢(c’, &) =0 for |¢'| > 2, we can also choose= k — ¢’ as a test function in (24) for almost all
t € (0, T). Taking the resulting expression and using inequality (25) we conclude

/ wlik) > / wlicdy — / Py2(c)- (k—¢) — / PWe-(k—¢)+ / yved:ved
2 2 2 Q2 2
+/w3~<k—c8>+/13~<k—c5>
2 2
for almost allr € (0, 7). We want to use the above inequality to establish an estimate of the term

/).‘S-(k—c‘s).

2
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Using
/12 .
PW.o(c, €) - (k — )| < { CalE'P+1) il <2,
0 if || > 2,

Lemma 3.1, the a priori estimates of Lemma 3.2 and Poincaré’s inequality for functions with mean value zero, we
obtain for almost all € (0, T")

/)‘6 (k=) <C(1+ | vw () ||L2(.Q)(1+ HCS(I)”LZ(.Q)) +]cw ”iZ(Q) + | v “i%m)- (26)
2

Assumption (A7) and the fact thafg c®(¢) is constant in time ensures the existence pfa0 such that for all
ke{l,...,Nyandallr € (0, T]

,o<][c,‘z(t)<1—,0.
2
Choosing

k= ][Ca(t) + psign(® — ) (e — &) €G
2
in (26) gives

C
A8 =28 < ——(1+ | VW (¢ .
|ag — 22| @) p|9|( VW ()]l L2(2))

Integrating|2] — A9|2(r) from 0 to T and using the identit}® = £ (X (A2 — A9)k=1...v leads to

T
/|x5|2(z)dt< C.
0

This, together with the growth condition fo¥ and the a priori estimates of Lemma 3.2, gives an estimate for
the spatial mean values @ in L2(0, T'). Hence, the Poincaré inequality yields the second inequality in (i). The
second hypothesis then follows from a compactness argument.

4. Higher integrability for the strain tensor

In this subsection we use a perturbation argument to show that the deformation gradient has the following
integrability property:
There exists @ > 2 such that for almost alle [0, T] we haveVu(r) € LP(£2).

Lemma 4.1 (Higher integrability: interior estimates). Suppose thatL’ (2, R"), o > 2 and that(A4) and (A5)
hold.

Then there exists @ < (2, 0], independent of, such that for allu € H1(£2, R") which fulfills for all
n € H1(£2, R") the identity

/W’g(c,g(u)) 1V :/8* 1V (27)
2 2
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the integrability property

VueLp (82, R™")
holds. In particular, for all2’ cc £ it holds

IVUll Lo (7 mrxny < C(IIVUl L2( guxny + lICll Lp (2. Ry + 1)
whereC = C(£2, 2/, C2, c2, c1, 8*, n, o, p) is independent of.
Proof. The proof is based on a Caccioppoli inequality, a reverse Holder inequality and a perturbation argument
due to Gehring [14] and Giaquinta and Modica [16]. This technique is well known for elliptic systems. In our case
additional difficulties arise in the derivation of the Caccioppoli inequality because the direct estimates only control

£(u) rather tharVu. Therefore, we present the derivation of the Caccioppoli inequality in detail.
Letxp € £2 andR > 0 be such that

Q2R(X0) = {x cR" | |xl- —x0i| < ZR} C S2.
Then we define a cutoff functione C3°(£2) with the properties
(1) ¢=0in£2\ Q2r(X0),

(i) 0<c<linRands =1in Qr(Xp),
(i) |V¢l< 2.

Now we want to test equation (27) with
n=C%(U—p) with p e R™.
We compute

E =LPEW) + (U= m)(VO) + VE(u—p)').
Due to the symmetry oW ¢(c, £(u)) we obtain

/ £2W e (c, EW) < EU) + 2 / (W e W) : ((U— p)(VE))
2 2

=/§28*:€(u)+2/§8*:((u—;L)(Vg“)t). (28)
2 2

Assumptions (A4.2) and (A4.3) yield
c1lEW]P < We(c, EW)) : EW) + Ca(lcl + 1) [E)|
and
2
[We(c.EW): (U—m(VO))| < C2(E(u) + [cl + 1)Ju— -

SinceS* is a constant tensor and using Young'’s inequality we can deduce from (28) the existence of a constant
C > 0 depending o1, C2 and|S*| such that

2
c1/;2|8<u>|2 < C/;Z(|c|2+ 1)+ C/;(|5<u>| 1ol + 1)lu—pl
2

2
2
2 / |u_ll“|

2
c
< C/;Z(|c|2+ 1)+ =3
2 02r(Xo0)
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Employing

E(tu—p)=CcEW) + 3 ((u — W) (VO) + Ve(u—p))

we obtain

/|5 cu—w)f? (/;2|5(u)\ +/|u ul |vc|)

Now we can apply Korn’s inequality for functions with boundary value zero to conclude

/\v cu— )|’ /¢ R+l + o [ u-wl (29)

Q2R(Xo)
Since
V(tu—m)=¢Vu+ Uu—pm(Ve)
we derive from (29) that

C
][ IVu?<c ][ (I +1) + -5 ][ u—pl?.

ORr(X0) Q2r(X0) Q2r(X0)

Now we choosg = f ¢,,x) U @nd use the Poincaré—Sobolev inequality (see Theorem A.2) to conclude

(n+2)/n
][ IVu?<C ][ (|c|2+1)+c< ][ |Vu|2"/<"+2)) :

ORr(X0) Q2r(X0) Q2r(X0)
Finally, Proposition A.1 withg = [Vu[?"/"*2), ¢ = 2 and f = C(|c|2 + 1y"/"*+2 and a covering argument
leads to the assertion.O

Theorem 4.1 (Higher integrability) Suppose that € L° (£2, R"), o > 2 and that(A4) and (A5) hold.
Then there exists @ € (2, o], independent o€, such that for allu € H1(£2, R"), which fulfills for all 5 €
H1(£2,R") the identity

/W’g(c,g(u)) :Vr):/S*:Vrl (30)
2 2

the integrability property
Vue LP(£2,R™M)
holds. In particular,
IVUll L (@ rremy < C(IIVUll 2 prxny + €l Lo (2. k7)) + 1)
whereC = C($2, C2, ¢2, c1, S*, n, o, p) is independent of.
Proof. The integrability in the interior follows from Lemma 4.1. Hence, it remains to show the higher integrability

at the boundary. Sinc€ has a Lipschitz boundary, there exist forxjle 92 a Lipschitz functioms :R"~1 — R
such that — upon relabelling and reorientation of the interface if necessary — the boasdbkgally aroundxg is
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the graph of:. In addition,s can be chosen such th@tlocally lies on one side of the graph. To state this property
precisely we define the sets

Q:={yeR"||yil<Rofori=1,....n},
0" :={yeQly. >0},
Q" :={yeQly <0},
0%=1{yeQly=0)
and the transformation
7:0 — R",
yr— T = (Y1, o1, (VL ooy Yum1) + Yn)-
Then we require that there existga > 0 such that
1(0hH)cL,
7(Q7) CR"\ Q2.
In what follows, we assume thag, # and Rg are chosen such that the above requirements hold. Now we define
v:0T > R" and d:Q" - R"
via
Vv=uUot and d=cor.
In addition, we set for aly € O
Vv (y) ity e OF,
0 ifyeQ\ Q.

Our goal is to apply Proposition A.1 for the functign This then shows higher integrability &v and by trans-
formation also forvu.

gy) = {

Claim. There are constants, C > 0 such that for allyg € Q and all R > 0 with 2R < dist(yg, 0 Q)

f g‘fdy<b< f gdy)q+ f oo (31)

Or(Yo) 02r(Yo) 02r(Yo)
whereq = "2 and f = C(|d|? + 1)"/"+2),

n

To prove the claim we chooseyg € Q and aR < %dist(yo, 3 Q). Then there are three possibilities:

Casel. Q%R(yo) N QT =¢. The left-hand side in (31) in this case is zero and hence the inequality holds.

Case2. Q%R(yo) NQ~ =@. Denoting byL the Lipschitz constant df, it holds thatr (Q g (Yo)) andr(Q%R(yo))
have a distance larger the§1min(1, %). Hence, we can choose a cutoff functipe C3°(£2) with the properties

() £=0in2\7((Q3z(¥0)),
(i) 0<¢<linf2and¢ =1int(Qr(Yo)),
(iii) V¢ < §max, L),
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Testing (30) withy = £2(u — p) wherep € R" and concluding as in Lemma 4.1 we obtain

c
/|Vu|2<C / (|C'2+1)+F f lu—pl?

(Qr(Y0) (05,00 7(05,00))

Transforming the integrals leads to

C
/|VV|Z<C / (1dI?+1) + / v —pl?

Qr(Yo) Q 3k (o) Q 3k (o)

whereC depends ori. Choosingu = f 03,00V and using the Sobolev—Poincaré inequality we deduce
2

C (n+2)/n
/|Vv|2<c / (|d|2+1)+ﬁ< / |Vv|2"/<"+2>) .

Or(Yo) Q%R(YO) Q%R(YO)
This implies
C q
[ wa<g( [ ew) e [ o 32
Or(Yo) Q2r(Yo) Q2r(Yo)

Multiplying by R~" now gives the result.

Cases.

QgR(YO)ﬂQ+#® and QgR(YO)ﬂQ_#@- (33)
For all R > 0 we define

07 (Yo) = 0r(Yo) N 0" and Q—(Yo):= Qz(yo) N Q™.
From (33) it is seen that

Q2r(Yo) N Q° #1.
Hence,t(Q2r (Yo)) intersects the boundary &, i.e.

7(Q2r(y0)) N2 # 0.
The Lipschitz continuity of: guarantees

R 1
dist{ (303, (Y0)) N 2. 7(00%(Yo)) N 2} > > min<1, Z)
which hence allows us to choose a cutoff functioa C*°(£2) with the properties

() ¢=01in£2\ t((Q2r(Y0)),
(i) 0<ec<linands =1int(Qgr(Yo) N £2),
(iii) V¢l < fmaxl, L).

Sinces (u— ) = 0, wherep € R", on an open part af$2, Korn’s inequality holds fot (u — u) = 0. Therefore,
by testing (30) withy = z2(u — ) we can proceed as in Case 2 to obtain

c
f|Vv|2< / C(|d|2+1)+ﬁ / v —

0% o) 032 (o) 03:(Y0)
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From (33) we conclude
L"(Q3x(Yo)) = cR"
and
diamQ3, (Yo) < CR.

With the help of the Sobolev—Poincaré inequality we deduce

(n+2)/n
/IVV|Z< / C(|d|2+1)+c(£"(Q;R(y0)))2/”( / |v\,|<2n>/(n+2>)

0% (o) 03:(0) 0320
and hence
) ) C o ) (n+2)/n
/ |VV|* < / c(|d| +1)+F( f |Vy|@D/ (et )) :
0% (o) 03 (o) 032 (Yo)

If we integrate over the larger sefg (Yo) and Q2r (Yo) respectively we obtain (32). Hence, as before we multiply
by R~ and deduce (31).

Now (31) and Proposition A.1 give the higher integrability at the boundary. The higher integrability at the
boundary, Lemma 4.1 and a covering argument imply the desired conclusion.

5. Higher integrability for the logarithmic free energy

The equation for the chemical potential differene€sof the regularised system is

W =—yAC +6P(4° (), y +PAC +PW¢(C, EW), (34)

where we defing® := (y%)’. The functiony® is an approximation of (d) = d Ind and henc@?® = (¥*)’ becomes
singular ass — 0. We remark that/® was chosen such thaf is monotone (see (22)). This is crucial in order to
show that¢5(c,‘f) is uniformly bounded inL?(£27) for someqg > 1. We will achieve this by testing the weak
formulation of the equation fow; with an appropriate power @f® (c,f).

Lemma 5.1. There exist constants> 1 andC > 0 such that for alls € (O, min(%, do)) andallk e {1,..., N}
||¢6(le) ”Lq((zr) <C.

Proof. Letr > 0. Then we define
¢ (d) =’ @)|¢* @]

whereg! is defined to be zero i? (d) is zero, and hencg? is continuous orR. Forr € (0, 1) the functiong? is

not differentiable at the zero of the functigi. Hence, forp > 0 we define a monoton€? function qbf’p which
equalsp® onR \ [0, 1] and which converges @ in C(R) asp — 0.
The weak formulation of the equation for the chemical potential differentés

/w‘S L= /{yv& TVE+OP(@°()_y  y & +PAC - L +PW (S, EWY) - ¢} (35)
QT .QT

with ¢ € L2(0, T; H1($2,RV)) N L>(£27, RY). The Sobolev embedding theorem and the estimates of Lemma 3.2
imply that & lies in L°°(0, T; L2/"=2(£2)) if n >3, in L>(0, T; L*(£2)) for all s € [1,00) if n = 2 and
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in L°°(L27) if n=1. We can deduce from the higher integrability result from the last subsection (see Theo-
rem 4.1) thatvu® e L>®(0, T: L?(£2)) (for some p > 2). We choosep such thatp € (2,4] and such that in
additionp € (2, ;= 2) if n>3. HenceWC(c‘S EWP)) e L™(0, T; LP/2(£2)). This implies that also test functions

£ e L%0,T; HY(2,RN)) N LP/?=D (2 RN) are allowed in (35).
We test (35) with the function
¢ = (¢f’p(c/§))k=1,...,1v’

which is admissible for alt € (0, 1] with rﬁ < 2 (note thaip® (d) is sub-linear ind). We obtain

N N N
1
/Zw2~¢,‘?*"(c2>=/Z{yw;i~V¢§’p(c;2)+e[¢5<c2>—N(quﬁ(c?))}w(ci)}
Qr k=1 Qr k=1 =1

v PWe(S EWD) - (827 (c))) (36)

k=1,..., N}'

.....

+ f{PAc‘s (B0 (eD),_q

Qr

Furthermore, we have

i[ ¢°(c}) — —<Z¢> <c,>)} 2 ()

k=1

(¢ () — °(c))d2* (cd)

I
2|~
™M=

N

1Y 1

= 20 = (D) () + 1 D (#° () = 6" ()97 ()
k<l k>1
N

1
= 2 (07 = d° (D) (977 () = ¢ " (c}) > 0

k<l

since bothp? andq&f’p are monotone increasing.
Using that(qﬁf’p)’ > 0 we conclude that the first term on the right-hand side of (36) is non-negative. Hence, (36)

implies

N

1
o f 5 207 = (D) (#77 () = 87" (<)
QT k<l
N
< / { Zw,‘z . ¢f*/’(c,‘z) —PAC - (d,f»p(c;b)k:l ..... - PW,C(C‘S, S(U‘s)) ) (d’f’p(cli))k:lww
o Uk=1

< ck:q{;;_gqusf*p(c;E)||L2(Q,)(||w5||Lz<QT) + 1S L2gp)
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Passing to the limip N\, 0 and using Theorem 4.1, the a priori estimates of Lemma 3.2 and Lemma 3.3 and the
inequalities of Hélder and Young proves that there exists far alO a constanC,, such that

2
/ Z ¢°(c}) — B° () (0 (c)) — B2 (cn) <a< max /|¢, Gl >) + Co. (37)
k<l Ty

Moreover, sincezkzlck =1, we have

N oo 1 N s

minc, < — < maxc;.

k=1 N ~ k=1
Using this, the fact thap® and¢? are monotone increasing functions and Young's inequality we deduce

N
/ D (@) — ° () (@2 () — ¢ (en)
27 k<l
1 1
> f rplzval{&(ci) “’55(%)‘ ¢ () —¢E<ﬁ>’
7

r+1

)

)
G

, 1 1
>fma{|¢"<c )= (N)¢§<c2)—¢5(c2>¢f(ﬁ)+

Qr
¢3<i)‘\¢3(c5>!’ — ¢’ (e}
N k

N r+1
>/maX(!¢5(c2)! —
k=1
2

T

1 ,
>z /ma>4¢ |-

27

_I_

r+l>

If§ << thenqb‘s( )= ¢( ), which ensures that the constanis independ o8. Together with (37) we have
r+l N 5T
/ma>4¢ ()] 29a<k:nﬂ?2< /|¢ (|72 )+C

2r 2r
Settingr = ”T_z and choosinge small enough gives the resulto

6. Proof of the existence theorem

Proof of Theorem 2.1. We need to show that the limit, w, u) obtained in Lemmas 3.2 and 3.3 solves the elastic
Cahn—Hilliard system with logarithmic free energy. To pass to the limit in the weak formulations of the equations

#=LAW and V-[We(d,EWd))]=
one can apply standard arguments using the convergence propert@svef, u’) and the growth condition on
W ¢ (see e.g. [12]). It remains to pass to the limit in
=—yAC +0P(¢°(c})),_, _y +PAC +PW(c’, EW)). (38)

,,,,,

Except for the terng® (c,‘z) one can use standard arguments (see e.g. the proof of the existence theorem in [12] for
a similar context).
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Let us show tha¢5(c,f) converges almost everywhereddc;) and thatc; > 0 almost everywhere. Using the
convergence a.e. of to ¢k, the Fatou lemma and Lemma 5.1 we obtain

liminf|p®(¢2)|? < liminf SeHl? < c.

/ 5—0 |47 'ne [¢°Col* <€
Qr r

Next we prove that

¢(cr) iflims_o cl‘z =cr >0,

(39)
00 elsewhere

im =]

almost everywhere. First we take, 1) € 27 with lims_oc}(X, ) = ck(X, 1) > 0. Since¢’(d) = (¥*)'(d) =
V/(d) = ¢(d) for d >8 we obtain ¢®(cd(x,1)) — ¢(ck(X,7)). Now assume thatx,s) € 27 is such that
Iim5_>0c,f(x, 1) = cx (X, 1) < 0. Then we obtain fo small enough

|#° (ce(x. )| > ¢ (max(cy(x. 1), 8)).
The right-hand side convergesdo ass tends to zero which proves (39). Using (39) and Lemma 5.1, we obtain

cr >0 almost everywhere

/W@mﬁgc
Q7

and
#°(c}) — ¢(cx) almost everywhere

Sinceg > 1 we conclude with Vitali’'s theorem
¢° () = d(c) in LY (Q27).
This is enough to pass to the limit in the weak formulation of (38}

Appendix
In this section we collect some known results used in the text.
Theorem A.1 (Korn's inequality). Let2 be a bounded domain with Lipschitz boundary.

(i) There exists a constant> 0 such that

f&mf@>ﬂw;

2

forallu € X5 :={ue HY(2,R") | (U, V)1 = Oforall v € Xjq} = Xjy WhereXjrq := {u € H(£2,R") | there
existb € R" and a skew symmetris € R"*" such thatu(x) = b + Ax}.
(i) LetI’ be an open subset of the boundasp and letX := {u e H1(2,R") | uir =0}.

Then there exists a constant- 0 such that

/g(u) EW) >cllul?, forallue Xr.
2
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A proof can be found for example in Zeidler [28].

We needed a version of the Sobolev—Poincaré inequality for rectangles in which the dependence of the Sobolev-
Poincaré constant on the diameter is specified. We demonstrate how such an estimate can be derived from tt
Sobolev—Poincaré inequality on the unit cube.

Theorem A.2 (Sobolev—Poincaré inequality). There exists a constgnt p) such that

p*\ 1/p* 1/p
<][ u—][u ) <C(n,p)(diamD)(][|Vu|P)
D D D

for all rectanglesD c R” and allu € W7 (D). Here,p € (1, n), p* = % anddiamD is the diameter oD.

Proof. Without loss of generality we assume that

n
D = Ds = { inei
i=1

withf=(f1,..., fn) and O< f1 <--- < f,,. All other situations can be reduced to one of these cases by a transla-
tion and a orthogonal transformation.
The Sobolev—Poincaré inequality

P\ Y p* 1/p
</v—][v > gC(n,p)<[£|Vv|p> (A1)

De De
holds for allv € W17 (D) with a fixed constan€ (n, p) where Dy is the unit cube, i.ee=(1,...,1) e R*. Now
let D = Df andu € W7 (D). Then we define

0<xi<fi}

v(y) =u(fiy1, ..., fayn) forally e De
and obtain

Vo) = (fidiu (vt o fuy)) ey - (A.2)

.....

Hence

(Vo[ < £ [Vufays - fayw)|.
Changing variables in (A.1) and usifgp,v =  p,u We obtain

SinceL"(D) = f1--- f, and sincef,, < diamD the theorem follows. O

1/p

p* 1/p*
(f1--~fn)l> < c<n,p)fn(/ IVMI”(f1~--fn)1)
D

Proposition A.1. Let Q C R" be a cubeg € Ll‘{)C(Q) foraqg > 1andg > 0. Suppose that there exist a constant

b > 0and afunctionf € L|_ .(Q) withr > g and f > 0 such that

loc

][qux<b< ][ gdx>q+ ][ f9dx

ORr(X0) Q2r(X0) Q2r(Xo0)
for eachxg € Q and all R > O with 2R < dist(Xg, 9 Q).
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Theng € Ly, .(Q) for s € [q, g + ¢) for somes > 0 and

(] o)< f we)"s( f re)]

ORr(Xo) 0Q2r(X0) 0Q2r(X0)
for all xo € Q and R > 0 such thatQ»r (Xp) C Q. The positive constantsand e depend orb, g, n andr.

For a proof of this proposition we refer to the book of Giaquinta [15] or the paper of Giaquinta and Modica [16].
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