Available online at www.sciencedirect.com

SOIENCE@DIRECT”

ELSEVIER Ann. |. H. Poincaré — AN 22 (2005) 187—206

ANNALES
DE L'INSTITUT
HENRI
POINCARE
ANALYSE
NON LINEAIRE

www.elsevier.com/locate/anihpc

Nonlinear eigenvalues and bifurcation problems
for Pucci’s operators

Jérdme Buscy Maria J. Estebafr, Alexander Quaas

a Ceremade UMR CNRS 7534, Université Paris IX—Dauphine, 75775 Paris Cedex 16, France
b Departamento de Matematica, Universidad Santa Marfa, Casilla: V-110, Avda. Espana 1680, Valparaiso, Chile

Abstract

In this paper we extend existing results concerning generalized eigenvalues of Pucci's extremal operators. In the radial case
we also give a complete description of their spectrum, together with an equivalent of Rabinowitz's Global Bifurcation Theorem.
This allows us to solve nonlinear equations involving Pucci’s operators.
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1. Introduction

If the solvability of fully nonlinear elliptic equations of the form
F(x,u, Du, D’u) =0 (1.1)

has been extensively investigated éaerciveuniformly elliptic operatorsF, comparatively little is known when
the assumption on coercivity (that is, monotonicityinis dropped. In this paper, we want to focus on the model
problem

~M] (D)= f(w) ing,

1.2
u=0 onos2, (1.2)
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(resp.M; ,) where $2 is a bounded regular domain, avfde are the extremal Pucci’s operators [28] with
parameters & A < A defined by

MEAM)=A) ei+r) e

e; >0 e;<0

and
M AM)=1Y ei+A) e,

¢;>0 e;<0

for any symmetricV x N matrix M; heree; = ¢;(M),i =1, ..., N, denote the eigenvalues #f. We intend to
study (1.2) as a bifurcation problem from the trivial solution. Simdé{“/‘ are homogeneous of degree one, it is
natural to investigate the associated “eigenvalue problem” ’

{—M;A(Dzu) =uu in £, 13)

u=20 onas2.

(resp.M;_,) Pucci’'s extremal operators appear in the context of stochastic control when the diffusion coefficient
is a control variable, see the book of Bensoussan and J.L. Lions [2] or the papers of P.L. Lions [22—-24] for the
relation between a general Hamilton—Jacobi—Bellman and stochastic control. They also provide natural extrema
equations in the sense that#fin (1.1) is uniformly elliptic, with ellipticity constants, A, and depends only on
the HessiarD?u, then

M; (M) < F(M) < M (M) (1.4)

for any symmetric matrix¥/.
Whenir = A =1, Mf/‘ coincide with the Laplace operator, so that (1.2) reads

—Au= f(u) ing2,
{u:O onas2, (1.5)

whereas (1.3) simply reduces to

{—Au =puu in$2,

u=0 onos2. (1.6)

It is a very well known fact that there exists a sequence of solutions

{(en, (pn)}n21
to (1.6) such that:

(i) the eigenvalue$u,},>1 are real, withu, > 0 andu,, — oo asn — oo;
(i) the set of all eigenfunctionfp, },>1 is a basis of.2(£2).

Building on these eigenvalues, the classical Rabinowitz bifurcation theory [32,33] then provides a comprehen-
sive answer to the existence of solutions of (1.5).

When i < A, problems (1.2), (1.3) are fully nonlinear. It is our purpose to investigate to which extent the
results about the Laplace operator can be generalized to this context. A few partial results in this direction have
been established in the recent years and will be recalled shortly. However, they are all concerned with the first
eigenvalue and special nonlinearitigs We provide here a bifurcation result for general nonlinearities from the
first two “half-eigenvalues” in general bounded domains. And in the radial case a complete description of the
spectrum and the bifurcation branches for a general nonlinearity from any point in the spectrum.
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Let us mention that besides the fact that (1.2)—(1.3) appears to be a favorable case from which one might hope
to address general problems like (1.1), there are other reasons why one should be interested in Pucci’'s extrem:
operators or, more generally, in Hamilton—Jacobi—Bellman operators, which are envelopes of linear operators. As
matter of fact, the problem under study has some relation to thik Bpectrum. To explain this, letbe a solution
of the following problem

—Au = ,uu+ —auu,

whereq is a fixed positive number. One easily checks that 3 1, thenu satisfies
-1
maxy —Au, — Au ¢ = uu,
o
whereas ifx < 1, u satisfies
. -1
miny —Au, — Au = pu.
o

These relations mean that thed#kispectrum can be seen as the spectrum of the maximum or minimum of two
linear operators, whereas (1.2), (1.3) deal with an infinite family of operators.

We observe that understanding all the “spectrum” of the above problem is essentially the same as determining
the FiEik spectrum, which in dimensioN > 2 is still largely an open question, for which only partial results
are known and, in general, they refer to a region near the usual spectrum, (thatri;iéar 1). For a further
discussion on this topic, we refer the interested reader to the works of de Figueiredo and Gossez [17], H. Beres
tycki [3], E.N. Dancer [10], S. F&ik [18], P. Drabek [13], T. Gallouet and O. Kavian [19], M. Schechter [36] and

the references therein.
Our first result deals with the existence and characterizations of the two first “half-eigenvalues”. Some parts of

it are already known (see below), but some are new.

Proposition 1.1. Let 2 be a regular domain. There exist two positive constaxﬁs uq , that we call first half-
eigenvalues such that

(i) There exist two functions;, ¢; € C?(£2) N C(£2) such that(u;, 1), (117, ¢7) are solutions ta1.3) and
<p1+ > 0,9, <0in £2. Moreover, these two half-eigenvalues are simple, that is, all positive solutiqas3{o
are of the form(;q, oegof), with«a > 0. The same holds for the negative solution.

(ii) The two first half-eigenvalues satisfy

T =inf ui(4), T =su A),
“q AeAMl( ) Hq Aeﬁﬂ«l( )

where A is the set of all symmetric measurable matrices such®ath/ < A(x) < Al and u1(A) is the
principal eigenvalue of the nondivergent second order linear elliptic operator associated to
(i) The two half-eigenvalues have the following characterization

ni= supessm(-L), pny = supessm(_L)
w0 £ u u<0 £ u

The supremum is taken over all functians Wlf;CN(Q) NC(2).
(iv) The first half-eigenvalues can be also characterized by

i = sup{u| there existg > 0in £2 satisfyingM;" , (D?p) + u¢ < 0},
uq =sup{ul there existg) <0in £2 satisfyingMIA(chp) + ¢ > 0}.
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Remark 1.1. Here and in the sequel, unless otherwise stated, it is implicitly understood that any solution (resp.
sub-, super-solution) satisfies the corresponding equation (inequation) pointwise a.e. This is the framework of
strong solutiong20].

The above existence result, that is part (i) of Proposition 1.1, can been easily proved using an adaptation, for
convex (or concave) operators, of Krein—Rutman’s Theorem in positive cones (see [16] in the radial symmetric
case and see [30] in regular bounded domains).

This existence result, has been proved recently in the case of general positive homogeneous fully nonlineal
elliptic operators, see the paper of Rouy [34]. The method used there is due to P.L. Lions who proved the result (i)
of Proposition 1.1 for the Bellman operator (see [21]) and for the Monge-Ampére operator (see [26]). Moreover,
the definition of,uf there translates in our case as:

ui =sup{ul n eI}, (1.7)
where
I={n|3p>0stp=00n02, M ,(D°p)+u¢p=—-1in}.

Properties (ii) of Proposition 1.1 can be generalized to any fully nonlinear elliptic opdratuat is positively
homogeneous of degree one, with ellipticity constantg. This follows by the proof of (ii) and (1.4). These
properties were established by C. Pucci in [29], for other kind of extremal operators, see the comments in Section 2

The characterization of the form (iii) and (iv) for the first eigenvalue, were introduced by Berestycki, Nirenberg
and Varadhan for second order linear elliptic operators (see [5]).

From the characterization iv) it follows that

pi@) <pf@) and pr@)<pp@) i 2'ce.

For the two first half-eigenvalues, many other properties will be deduced from the previous proposition (see
Section 2). For example, wheneves A, we haveu] < uy, sincep] <ipi(—A) < Apa(—A) < pj.
Another interesting and useful property is the following maximum principle.

Theorem 1.1. The next two maximum principles hold:

(@) Letu e W2 (2) N C(2) satisfy

M (D) +pu >0 inQ2,

u<0 onas2. (1.8)
If u< pff, thenu <0in £2.
(b) Letu € W2N(2) N C(82) satisfy
M 4(D%u) +pu <0 in 2, (1.9)

u>0 onos.

If w <y, thenu >0in £2.

Remark 1.2. These maximum principles are still valid for continuous solutionSinhat satisfy the respective
inequalities in the viscosity sense (see [8]).

Results like Proposition 1.1 and Theorem 1.1 can be obtainedfor, and can be deduced just by noting that
MIA(—M) =-M; (M), for any symmetric matrix/.
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u >0 in

2y

uw <0 in Q

Fig. 1. Bifurcation diagram for the first half-eigenvalues in a general bounded domain.

Next, we want to look at the higher eigenvalues of Pucci’'s extremal operators. For that purpose we restrict
ourselves to the radial case. In this case we have a precise description of the whole “spectrum” and we expect the
the result below will shed some light on the general case. More precisely, we have the following theorem.

Theorem 1.2. Let 2 = B1. The set of all the scalag such that(1.3) admits a nontrivial radial solution, consists
of two unbounded increasing sequences

0<MT<M_2‘_<...<M]—:_<...’
O<py <pg < o<ty <---.

Moreover, the set of radial solutions ¢f.3) for u = u,j is positively spanned by a functi@rj, which is positive
at the origin and has exactly — 1 zeros in(0, 1), all these zeros being simple. The same holdsufer 1, , but
consideringp, negative at the origin.

Finally, we want to address our original motivation, that is, we want to prove existence results for an equation of
the type (1.2). For this purpose we consider the nonlinear bifurcation problem associated with the extremal Pucci’s
operator, that is

— M f(D%u) = pu+ f(u,p) in L2,

u=0 o0nasg, (1.10)

where f is continuous,f (s, ) = o(|s|) nears = 0, uniformly for x € R and £2 is a general bounded domain.
Concerning this problem we have the following theorem

Theorem 1.3. The pair(,ui“, 0) (resp.(u7 , 0)) is a bifurcation point of positivéresp. negativesolutions to(1.10).
Moreover, the set of nontrivial solutions ¢f.10) whose closure containg.;", 0) (resp. (uq ,0)), is either un-
bounded or contains a paifix, 0) for somei, eigenvalue of1.3) with i # Hf (resp.ji # 17 ).

Notice that a similar theorem can be proved in the casé4f ,. The difference with Theorem 1.3 is that

(Mf, 0) will be a bifurcation point for the negative solutions aid, 0) will be a bifurcation point for the positive
solutions.

Remark 1.3. Fig. 1 allows to visualize the above result in which the bifurcation generates only “half-branches”:
u>0o0ru<0in £2.
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u(0)

Fig. 2. Bifurcation diagram in the radially symmetric case (noteﬂl*atg uy » butfork > 2 the ordering betwee,m,j‘ andp, is not known).

For the Laplacian the result is well known, see [32,33,31]. In this case the “half-branches” become connected.
Therefore, we observe a symmetry breaking phenomena wkent.

For the p-Laplacian the result is known, in the general case, see the paper of del Pino and Manéasevich [12].
See also the paper of del Pino, Elgueta and Mané&sevich [11], for thevcask In this case the branches are also
connected. The proof of these results uses an invariance under homotopy with regpiectttee Leray—Schauder
degree. In our proof of Theorem 1.3 we use instead homotopy invariance with respétttecellipticity constant),
having to deal with a delicate region in which the degree is equal to zero.

A bifurcation result in the particular cag&u, 1) = —u|u|?~1u can be found in the paper by P.L. Lions for the
Bellman equation [21]. For the problem

_MXL,A(DZM):Mg(X,u) in £2, u=0 onas

with the following assumption og:

(i) u— g(x,u) is nondecreasing angx, 0) =0,
(i) u— £ decreasing, and
(iii) lim o0 8840 =1 lim, o £54 — 0

a similar result was proved by E. Rouy [34].

In [21] and [34] the assumptions made were used in a crucial way to construct sub and super solutions. By
contrast, we use a Leray—Schauder degree argument which allows us to treat general nonlinearities.

Other kind of existence results for positive solution of (1.2), can be found in [15,14,16] and [30].

In the radially symmetric case we obtain a more complete result.

Theorem 1.4. Let 2 = B1. For eachk € N, k > 1 there are two connected componeﬂ;"sof nontrivial solutions
to (1.10), whose closures contaimﬁ,ﬂf, 0). Moreover,Ski are unbounded an@u, u) € S,ft implies thatu possesses
exactlyk — 1 zeros in(0, 1).

Remark 1.4. (1) S,j (resp.S, ) denotes the set of solutions that are positive (resp. negative) at the origin.
(2) Fig. 2, allows to visualize the above result in which the bifurcation generates only “half-branet@®s: 0
oru(0) <O.

For the Laplacian this result is well known. In this case, forkalt 1, [,LZ_ =, and the “half-branches” now
become connected.
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Our proof is based on the invariance of the Leray—Schauder degree under homotopy. It also uses some nor
existence results.

The paper is organized as follows. In Section 2 we study the problem in a general regular bounded domain,
there we prove Theorems 1.1 and 1.3. In section 3 we study the radial symmetric case, and we prove Theorems 1.
and 1.4.

2. First “eigenvalues’ in a general domain and nonlinear bifurcation

We shall need the following version of Hopf’s boundary lemma.

Lemma 2.1. Let £2 be a regular domain and let € Wlf;CN(Q) N C(£2) be a non-negative solution to

M 4 (D%u)+pu <0 in 2, u=00ndgR, (2.11)
with u € R. Thenu(x) > O for all x € 2. Moreover,

lim SUDM < 0’

X—>XQ Ix —xo|

wherexg € 352 and the limit is non-tangential, that is, taken over the set &r which the angle between— xg
and the outer normal atg is less thanr /2 — § for some fixed > 0.

Remark 2.1. (1) For a general strong maximum principle for degenerate convex elliptic operators, see the paper of
M. Bardi, F. Da Lio [1].

(2) This lemma holds also far e C(£2) that satisfies Eq. (2.11) in the viscosity sense.

(3) A solution of (1.3) in a regular domain is necessafl§* up to the boundary, see [35]. Thus,ifis a
positive solution to (1.3), then we ha\g{g <0onoas2 (resp.u <0, g—’: > 0) if v denotes the outer normal.

Proof. We use the classical Hopf barrier function, see for instance Lemma 3.4 in [20]. The rest of the proof follows
the lines of this lemma by using the weak maximum principle, of P.L. Lions [25] for solutioﬁﬁ.ﬁiﬁ([)). m]

Now we are in position to prove Proposition 1.1.

Proof of Proposition 1.1. (i) The existence and simplicity follow by using a Krein—-Rutman’s Theorem in positive
cones, see [30]. For alternative methods see [21] and [34]. Notice that by above Remark part (3), the two first
half-eigenfunction ar€2% ().

(i) First notice that for a fixed function € sz)’cN(Q) there exists a symmetric measurable ma#ix) € A,
such that

M;A(Dzv) =Lv,

whereL 4 is the second order elliptic operator associated tsee [28].
That is

Ls= ZA,‘“/(X)al’,j.
Sincep; € C?(2), ui >infsc4 n1(A). Suppose now for contradiction that

+ -
> inf A).
Mq AeA'ul( )
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Hence, there existd € A such thai] > 111(A). The corresponding eigenfunctian satisfies

—L ju1 = pi(Aus.
Moreover,uy € C%%(2) and%1 < 0 on 3£2. Same holds forpf. Thus there exist& > 0 such that«1 < K<pf.
Notice thatu; is a sub-solution am:kpir is a super-solution to

M ,(D*v)+puv=0 ing.

Hence using Perron’s method we find a positive solution to (1.3), which is in contradiction with part (i). Perron’s
method in this setting can be found for example in [21].
(iii) We only need to prove that for any positive functigre W,%g"(:z) N C(£2) we have

—M; ,(D?¢)
5 .
Suppose the contrary, then there exists a positive funati@rWli’CN(Q) N C(£2) ands > 0 such that

— M (D%u)
/Lir +8 < ipzf kA

/LI > igf

u
So,u satisfies

M (D) + (uf +8)u<0 ing2.
On the other handp;" satisfies
M (D)) + (uf +8)p7 >0 ing.
Using Lemma 2.1 and Remark 2.1(3), we can find 0 such that
ep1<u in$.
Then, using Perron’s method we find a positive solution to the problem
M ,(D%0) + (uf +8)v=0 ing,
contradicting the uniqueness of the positive solution to (1.3), part (i).

(iv) follows directly from (iii). O

Proof of Theorem 1.1. Letu by a solution (1.8) andi € A by such that_ ; (u) = M (D?u). Definel (v) :=
L ;(v) + pv. Using (i) of Proposjtion 1.11(A) > Mf > u. Then, clearly, the first eigenvalue bfis positive. So
the maximum principle holds fat see [5]. That is ifv satisfies

L(w)>0 ing,
v<0 onosf

impliesv < 0. Sinceu satisfies (2.12)y < 0.
The same kind of argument can be used in case (i).

(2.12)

Now we will recall the following compactness results for the Pucci’'s extremal operator, whose proof can be
found for instance in [6].

Proposition 2.1. Let{ f,},-0 C C(£2) be a bounded sequence afig},~o0 C C(£2) N W,(Z)’év(fz) be a sequence of
solutions to

M (DPup) > fr and M ,(DPu) < fy N2, u, =0 o0nas. (2.13)
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Then, there existg € C(£2) such that, up to a subsequensg,— u uniformly in$2.

Let now{F,},-0 be a sequence of uniformly elliptic concaie convex operators with ellipticity constants
and A such thatF,, — F uniformly in compact sets ), x 2 (S, is the set of symmetric matricesSuppose in
addition thatu,, satisfies

Fu(D%u,,x)=0 in2, u,=0 ondf
and thatu,, converges uniformly ta. Thenu € C(R2) is a solution to

F(D%u,x)=0 in £, u=0 onasf.

Remark 2.2. Actually, the above proposition is proved in [6] in a more general case, Whén.o C L*°(£2) and
{un}n=0 C C(£2) is a sequence of viscosity solutions to (2.13).

So, to prove Proposition 2.1 we need to use the following faetdiC (2) N W%’CN(Q) is a sub-solution (resp.
super-solution) of\* (D?u) = g with g continuous, them is also viscosity sub-solution (resp. super-solution) of
the same equation, see [9]. We also use the regularity to prove that the limitwofbelongs toszj’cN (£2).

Now we want to study the nonlinear bifurcation problem. We will first prove the following.
Proposition 2.2. If (i1, 0) is a bifurcation point of problenl1.10), thenj is an eigenvalue QMIA.

Proof. Since(j, 0) is a nonlinear bifurcation point, there is a sequef@s,, u,)},en Of nontrivial solutions of
the problem (1.10) such that, — i andu,, — 0 in uniformly in £2. Let us define

~ Un
Up = ————
lunllc2)

thenu,, satisfies

+ [, ) .

— M ((D%iiy) = pait i, in$.

Un
So, the right-hand side of the equation is bounded. Then by Proposition 2.1 we can extract a subsequence such th
i, — u. Clearlyz is a solution to (1.3). O

Before proving Theorem 1.3, we need some preliminaries in order to compute the Leray—Schauder degree of ¢
related function.
To start, let us recall some basic properties of the matrix operatﬁx%, whose proof follows directly from

the equivalent definition faM

M (M) = suptr(AM),
’ AcA

for any symmetric matrix/ (see [6]). Notice that the original definition of C. Pucci [28] is of this type, Aus a
different family of symmetric matrices.

Lemma2.2. LetM and N be two symmetric matrices. Then:

M (M + N) <M (M) + M, (N).

Next we recall a very well known fact about Pucci’s operator, namely that is the Alexandroff-Bakelman—Pucci
estimate holds. The proof can be found for example in [6].



196 J. Busca et al. / Ann. I. H. Poincaré — AN 22 (2005) 187-206

Theorem 2.1 [ABP]. Let 22 be a bounded domain iR", such thatdiam(£2) <d and f € L™ (s2). Suppose that
u is continuous inf2 and satisfiesM;’A(Dzu) < f(x)in 2 andu <0onds2. Then,

supu” < CIlf Ty e

HereC = C(meas?), A, A, N, d) is a constant ananeags?) denotes Lebesgue measurenf

The next corollary is a maximum principle for small domains, that was first noted by Bakelman and extensively
used in [4].

Corollary 2.1. Let £2 be a bounded domain iR", such thatdiam(2) < d. Suppose thai is continuous ing2,
satisfiesM;,A(Dzu) +c(x)u(x) <0in 2,u>00n032 andc € L*°(£2) with ¢(x) < b a.e. There exist§ =
8(h, A, N,d, b) such thatmeags?) < § impliesu > 0in £2.

The proof is standard and uses in a crucial way Theorem 2.1. For details see [4]. Next corollary is crucial to
prove that the eigenvalye; is isolated.

Corollary 2.2. Let £2,, be a sequence of domains such th&asgs2,) — 0 asn — oo and diam(£2,)) < d. If
(mn, uy) is a positive solution t@l.3) with 2 = £2,,, thenu,, — oo asn — oco.

Proof. Suppose by contradiction that there exists> 0 such thatu, < C. Thenu, satisfies the equation
M;A(Dzun) + Cu, > 0. Since the measure @2, is small forn large, we can use the previous corollary with
—u, concluding that-u, > 0, which is a contradiction. O

Remark 2.3. (1) In the sequel, we will vary the parametewhile keepingA fixed in the operatoM;A. We will
denote the half eigenvaluesf(k), uq (1) to make explicit the dependence on the paramiete(0, A].

(2) From the characterization (ii) of Proposition 1.1 it follows that.if < A2, then MI(M) < ,ui“(kg) and
nq A1) 2 pq (A2).

Lemma 2.3. The two first half eigenvalues function% (0, A]— Randuj : (0, A] — R, are continuous on.

Proof. Let{};};en be sequence iD, A] converging toi € (0, A]. We will show that
lim pf (1) = pf ).
j—oo

Since; — A there existg > 0 such thatv := A +& > 1; > A — e =: A* > 0, for j large. From the previous
Remark we have

ui ) < i G <pf @),
for large j. Therefore, up to subsequenqe‘;s(xj) — .

Letu; be the corresponding eigenfunction for the eigenvadyrexj). We can suppose thiit ;[ c(2) = 1, then
u; satisfies

M A(DPuj) > —pf Quy and M, (D%uj) < —pf (Wu;.

So by Proposition 2.1 up to subsequenegs;— « uniformly in £2. Moreover,(u, ») is a solution to (1.3) and
lullc2) =1.

Sinceu is positive in£2, we have that:; is non-negative in2 and by the strong maximum principle,is
positive in£2. Hence, by the uniqueness of the positive eigenfunction, Proposition hkéi)uj(k), which ends
the proof in this case. The same proof holds in the cagg of O
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The next lemma proves that the first half-eigenvalyeis isolated.

Lemma 2.4. For every intervala, b] C (0, A) there exists & > 0 such that for all. € [a, b] there is no eigenvalue
of (1.3)in (ug (M), g (A) + 8]

Proof. Suppose that the lemma is not true. Then, there are sequéndgsy C (0, Al, {u)}jen C R, and
{uj}jen C C(£2)\ {0} suchthat; — 1 € (0, A), u; > py (1)), lim; o(; — g (1)) =0, and
—MII’A(DZM,,) = KUnlp.
Using Proposition 2.1 we have that, up to a subsequence; u uniformly in 2 andu is a solution of the
problem
— M (D?u) =y Gyu in £2.

Therefore by Proposition 1.1(ijy, is negative ing2.

On the other hand, by (i) of Proposition 1uj, changes sign in2, then there exists2,, a connected com-
ponent of {x € £ |u,(x) > 0}, with meas(s2) > 0. Sinceu,, — u, meass2,) — 0. Then by Corollary 2.2
w(82,, 1*) — oo, wherer* > 0 is such that.; > A*. But u, = Mf(!)n, An) = (82, A*), contradicting the fact
thats, converges tquy (A). O

Let us define
p2(h) =inf{u > pu7 (1) | wis an eigenvalue of (1.1§)

Then by the previous lemma, > 117 . We notice thaj, may be equal te-oo. Define nowL‘,;r as the inverse of
—Mj 4. Itis well known thatZ] is well defined inC := {u € C(2) |u =0 on 02} (see for example [7]) and,
by Proposition 2.1£;" is compact.

Now we are in position to compute the Leray—Schauder degree and prove the following proposition.

Proposition 2.3. Letr > 0, A > 0, x € R. Then
1 ifp<pf®),
degg(l — ;JL;', B(0,r), 0) =1{0 if uir()_\) <u< ,u{()_»),
-1 ifug ) <p < p2d),

hereC :={u € C(£2) |u =00nd}.
Remark 2.4. SinceL; is compact, the degree is well defined i¢Q7 — ME;)(BB(O, ).

Proof of Proposition 2.3. We have that the degree
deg (I —sulT, B(O,r), O)

is well defined for anys € [0,1] and 1 < ,uf(i), sinceM;A does not have eigenvalues belqwj, that is,

0¢ U — s,uE;)(aB(O, r)). Using the invariance of the degree under homotopy, we conclude that this degree is
equal to 1, its value at= 0.

In the caseuf(i) <u< MI()_») we will use the following property of the degree to prove that the degree is
zero. If deg(I — M[,;, B(0,r),0)# 0, then({ — ;w;)(B(O,r)) is a neighborhood of zero. So we claim that

if /q()_\) <u< ,uI(X), then(l — ML;)(B(O, r)) is not a neighborhood of zero. Suppose by contradiction that
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- ,uﬁi’)(B(O, r)) is a neighborhood of zero. Then for any smoatlwith ||A||c(e) small, there exista a
solution to

u— ,uﬁ;:u =h.
In particular, we can takg to be a solution of
M} (D’h)=—-8 in2 and =0 onye,
wheres$ > 0 is small enough.
Then, by Lemma 2.2 and the definitionb{, it follows thatu satisfies
M;A(Dzu) +uu< =58 ing.
On the other hand, by Lemma 2.1 and Remark 2.1(3), there exist8, such that(—¢); < u, ande(—¢; )
satisfies
M (D?e(—¢)) + ne(=p1) > =8 in Q.
Then using Perron’s method we find a positive solutioto
M;A(Dzw) +pw=-38 ins, w=0 onas.

This leads to a contradiction with Theorem 1.1 and with the characterization for the first eigenvalue (1.7)(1). So,
deg-(1 — Mz;, B(0,r),0)=0for uf (A) <p < uy ).

Finally, suppose tha;n;(i) < u < p2(). The continuity ofu; () and Lemma 2.4 imply the existence of a
continuous functiow : (0, A] — R such thatu; (A) < v(X) < u2(A) forall A € (0, A] andv(}) = u.

The result will follow by showing that the well-defined, integer-valued function

d(\) =deg (I —v(W)LT, B(O,r),0)
is constant inx, A]. This follows by the invariance of the Leray—Schauder degree under a compact homotopy.
Recall thatd(A) = —1, hence the proposition follows.OO

Proof of Theorem 1.3. Let us set
Hy () = L (nu+ f (1, 0)).

Suppose thatuir, 0) is not a bifurcation point of problem (1.10). Then there exisip > 0 such that for all
| — ;q| < g and$ < &g there is no nontrivial solution of the equation

u—H,(u)=0
with |lu|| = 8. From the invariance of the degree under compact homotopy we obtain that
deg- (I — Hy,, B(0,8),0) =constant  forw € [u] —e, uf +el. (2.14)

By takinge smaller if necessary, we can assume th}it+ e <. Fixnowpu e (;Lir, /,LI + ¢]. It is easy to see
that if we choosé sufficiently small, then the equation

u —E;f(,u,u+sf(u,u)) =0

has no solutiom with ||u| = § for everys € [0, 1]. Indeed, assuming the contrary and reasoning as in the proof of
Proposition 2.2, we would find thatis an eigenvalue of (1.3). From the invariance of the degree under homotopies
and Proposition 2.3 we obtain

deg: (I — H,, B(0,9),0) =deg-(I — uL;, B(0,8),0)=0. (2.15)
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Similarly, for 1 € [uf — e, uf) we find that
deg:(I — Hy, B(0,8),0) =1. (2.16)

Equalities (2.15) and (2.16) contradict (2.14) and he(mc‘fe, 0) is a bifurcation point for the problem (1.10). Let
defineu,, a solution to (1.10) fop > uf, with JJuyllee — 0 asp — /q. Using the same argument of Proposi-
tion 2.3,

up/luplloe = @f  asp— pui.

This shows that,, is positive foru close tou] .
The rest of the proof is entirely similar to that of the Rabinowitz’s Global Bifurcation Theorem, see [32,33]
or [31], so we omit it here. O

3. “Spectrum” in theradial case and nonlinear bifurcation from all “eigenvalues’

Let us first recall that the value of the Pucci’s operator applied to a radially symmetric function can be computed
explicitly; namely ifu(x) = ¢(]x|) one has

¢ (xD, n |:§0 (xh) ¢ (IXI)}C ® x,

|x| |x|2 x[3

where/ is the N x N identity matrix andr ® x is the matrix whose entries argx ;. Then the eigenvalues @2
areq” (|x]), which is simple, an@’(|x|)/|x|, which has multiplicityV — 1.

In view of this, we can give a more explicit definition of Pucci’s operator. In the cas!elﬁfA we define the
functions

D?%u(x) =

_|s/A, s>0, _|4as, s>0,
M(S)_{S/A, s <0, and m(s)_{ks, s <0.

Then, we see that satisfies (1.3) with2 = B1 and is radially symmetric if and only if (x) = v(|x|), r = |x|
satisfies

v”:M(— (N_l)m(v’)—/M)), (3.17)

r

V' (0)=0, wv(@)=0. (3.18)

Next we briefly study the existence, uniqueness, global existence, and oscillation of the solutions to the related
initial value problem

w":M(—(N_l)m(w/)—w>, (3.19)

r

w' (0)=0, w(0)=1. (3.20)

Then we will come back to (3.17), (3.18) and to the proof of Theorem 1.2. First using a standard Schauder fixed
point argument as used by Ni and Nussbaum in [27], we can prove the existance®©f solution to

Y =S w(0=0, wO)=1.

Moreover, this solution is unique and feismall,w’(r) andw” (r) are negative. Then, for sonde- 0, w satisfies

w’ = M(— il 1)m(w/) - w), in (0, 8].

r
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Next we consider (3.19) with initial values(s) andw’(8) atr = §. From the standard theory of ordinary differen-
tial equations we find a uniqué2-solution of this problem for € [§, a), for a > §. Using Gronwall’s inequality
we can extend the local solution i@, +o00).

In the following lemma we will show that the solutianis oscillatory.

Lemma 3.1. The unique solutiomw to (3.19), (3.20), w, is oscillatory, that is, given any > 0, there is at > r
such thatw(z) = 0.

The proof uses standard arguments of oscillation theory for ordinary differential equation.

Proof. Suppose thaiv is not oscillatory, that is, for some , w does not vanish ofrg, co). Assume that > 0
in (ro, 00). Let ¢ be a solution to (3.19), (3.20) with= A, then it is known thap is oscillatory. So we can take
ro < r1,r2 such thatp(r) > 0if r € (r1, r2) ande¢ (r1) = ¢ (r2) = 0. We have thatv and¢ satisfy

)

w
w1y < _r/vflI

) N—1y . N-19
{o'r } =—r T
If we multiply the first equation by and the second by, subtract them and then integrate, we get

ri 7Y rDw () — 1) T (2w (r2) <O,

getting a contradiction.

Suppose now that < 0 in (rg, 00). In that case we claim that’ > 0 in (rg, 00), taking if necessary a largeg.
If there exists a* such thatw’(r*) = 0, then using the equation we have thét> 0 in (*, c0). So we only need
to discard the case’ < 0 in (rg, 00). In that casew satisfies

{w/rNJr*l}/ = —r]w*l% in (ro, 00)

whereN+ = (MN —1))/A+ 1. Let denote by (r) = {w/rm—l} we have thag is monotone, then there exists a
finite ¢c1 < 0 such that lim_, oo g(r) = c1.

On the other hand, sinag’ < 0, there existg, € [—o0, 0) such that lim_, ., w(r) = c2, then from the equation
satisfied byw, we get that

lim g'(r) = +oo.
r—00
That is a contradiction with lim, o g(r) = c1.
Define now

F-—1w'(r)
w(r)’

b(r)y=r r € (rg, 00),

hereN~ = (A(N — 1))/»+ 1.
Then we claim thab satisfies,

»2 r1\7’—1
/
< )
b+ ) + 1 S 0. (3.21)
If w” > 0 thenb satisfies
h2 N—-1
b+ i =0.

FN——1 A
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Sincet < 1, the claim follows in this case. i < 0 thenb satisfies

p2 r1\7-—1
+

— N = (N~ = N)b.
Y

b+

Finally, sinceN~ — N > 0 andb < 0, the claim follows also in this second case.
Integrating (3.21) fromyg to ¢ > ro we get

N rév b2
b(t)—b + =< — = —1—/ ~ <0. 3.22
(1) — b(ro) E e o (3.22)

ro
In particular we have
—b(t) > CtV.

For someC > 0 andr large. Define now

t

b2
k(1) :f ot

ro

Then, by the previous fact, we have

k(1) = ct¥" 2 for ¢ and some > 0. (3.23)
On the other hand from (3.22) aid< 0 we get
k() < —w(t),

or
k() <K' )V +L for ¢ large.

The latter inequality implies

e 20
for someC > 0 andt, s large withr < s. Lettings — oo and noting thak(s) — +o0, we find
k(1) < AN 2, (3.25)
However (3.23) and (3.25) are not compatible. This contradiction showssthaist be oscillatory. O

Notice that the same proof holds when the initial conditions to the problem (3.19)@je= —1, w’(0) = 0.
With these preliminaries we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let denotew" the above solutions of (3.19) with initial conditiong (0) = +1 (here and
in the rest of the proof € {+, —}). From the previous lemma;" has infinitely many zeros:
O0<pBy<By<--<PB<--.

A standard Hopf type argument shows that they are all simple. Next we dgjiﬁe(ﬁ,f)z of Theorem 1.2. Clearly
w = u is an eigenvalue of (1.3), wit” (8} -), r € [0, 1], being the corresponding eigenfunction with- 1 zeros
in (0, 1). We claim that there is no radial eigenvalue of (1.3) other than thg'se
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Let u be an eigenvalue of (1.3). Clearly > 0. Let z(r) be the corresponding eigenfunction and suppose
thatz(0) > 0, the uniqueness of solution to (3.19) implies thah = z(0) wt (11/?r). Moreover, since (1) =0,
w= (ﬂ,j)z for somek € N, andz = z(0) w™. The same holds far(0) <0. O

Below we will exhibit some properties of the eigenvalues distribution.
Lemma3.2. Fork € N, k > 1we haveu; < u;,, andu; < u;, ;.

Proof. We will prove the lemma in terms of the functions™ andw™~ defined above.

We claim that ifw™ has to change sign between two consecutive zeras ff w™ has the same sign af .
Notice that this is weaker then the usual Sturm’s comparison result, since there is a additional sign restriction.

Suppose first by contradiction that™(r1) = w™(r2) =0, w—(r) > 0 for all r € (r1,r2) andw™(r) > 0 for
all r € [r1,72]. Let r3 < ry < r2 < r4 be the next zeros ob™, that is,w™(r3) = wT(rs) =0, wt(r) > 0 for
all r € (r3, r4). Then, the first half-eigenvalue ia; := {r1 < |x| < rp} is u* (A1) = 1 and first half-eigenvalue
in Az :={r3 < |x| < r4} is uT(A2) = 1. Define nowu(r) = wt(Br), with g > 1 such that4/8 > r». So,u is
a positive eigenfunction ims := {r3/8 < |x| < r4/B} with eigenvalueu™(A3) = B2. But A1 C As, therefore
wt (A1) =1> ut(Az) = B2 getting a contradiction. The same kind of argument can be used in the caseswhen
negative in(r1, r2) andw™ negative in[r1, ro]. Hence, the claim follows.

In the two cases above we can invert the rolevofandw™.

As a consequence of the previous facts, the lemma follows by examining the distribution of zetogs of
andw~. O

Remark 3.1. The above lemma implies that in the ca&g < g, , wr(r)w=(r) > 0 for all r € (B, B;). The
same holds true in the cagg > g; .

Lemma 3.3. The gap between the two first half-eigenvalues is larger than that between the secand ones

“_12“_1,
K1 Mo

Proof. Let <p§“ andg, the radial eigenfunctions oM;A in By, with corresponding eigenvalue;zs}r and s .

Definer™ (resp.r—) as the first zeros aﬁ)z* (resp.¢, ). We claim that-~ > r*. Suppose by contradiction that
r~ <rt.DefinenowA™ = {x|r™ < |x| <1}andA~™ = {x|r~ < |x| < 1}, thenAT C A~. Using the monotonic-
ity with respect the domain of the first half-eigenvalues and Proposition 1.1(ii) we get

np A =ud > pf (AN > uf @A) =p;.
On the other han®,- C B,+, thus by the same kind of argument
ny (B-)=py > py (By+) =y (Be) = 3.

Hence, we get a contradiction. So, the claim follows. Making a rescaling argument, so as in the proof of Theo-
rem 1.2, it follows that

rH%ud =pf and )%y =pg,

which ends the proof. O

Next, we prove some preliminary results to prepare the proof of Theorem 1.4.
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Lemma 3.4. Assume tha,u,jr # 11, and that there existg € (0, 1) such thatp. (r) > O for all r € (ro, 1]. Then,
there exists a continuous functigrsuch that there is no solution to the problem

= M(— (Nr_ 1)m(u’) —pu+ g> in [0, rol, (3.26)
and

u' > M(— (Nr_ 1)m(1/) — pu+ g> in (ro, 11, (3.27)

W'©0)=0, u@)=0 (3.28)

for u betweer;” andy; .

Remark 3.2. (1) Some ideas of the proof are in the book of P. Dradbek [13].
(2) There is a similar non-existence result in the case when there gxist®, 1) such thatpL () < 0 for all
r € (rg, 1], replacing (3.27) by

u’ < M(— (Nr_ 1)m(u’) — o+ g) in (rg, 1], (3.29)

in the previous lemma.

(3) Let us denote by, and¢_ the solutions of (3.26) witlhiy = 1 andg = 0 and respective initial conditions
u'(0)=0, u(0)=1 andu’(0) =0, u(0) = —1. Let us suppose that is betweem,j andyu, , then by Remark 3.1
we deduce thap, (1)¢_(1) > 0.

Proof. Consider then the particular case
¢+(r)>0, ¢\ .(r)<0 forallre (ro, 1].

All other cases can be treated similarly.
Letg:[0,1] — R be a continuous function such thgt) = 0 for all » € [0, rp] andg(r) > 0 for all r € (rp, 1].
Fora € R, let ¢, be the solution to (3.26), (3.27) and (3.28) with(0) = «. Fora > 0, we have

wo(r)=a¢(r) forallrel0,r],

since uniqueness holds when= 0. Putry = inf{r € (ro, 1); ¢4 (r) = 0}. The interval(rg, r1) contains a point;
such that

[z—ﬂ (t1) < 0.

If this is not the case,
(pa(f) S (pa(rO) _
¢1(t) ~ ¢4 (r0)

which is impossible. So, we obtain
(9ud+ — 9! ) (1) <O.

Define
Gi() =rV YLy —ud}), i=1.2,

whereN; = N andN, = N*.

a>0, te(rg,r),
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Now we claim that there exists, rg < 12 < 71 such that
¢, (r)<0 forallr e (r2,71) and Gj(r2) 20, i=1,2.

If ¢.,(r) <O for all r € (1, 1), SinceG;(rg) = 0, we conclude in this case by taking = rg. If not, we define
T2 = sup{t e [ro, 1), | ¢, (v) = O}. Notice thatry < t1 andg, (t1) <0, so¢, (r) <0 for all r € (t2, r1). By the
definition of t2, ¢/, (t2) = 0. Thus,G; (r2) > 0 and the claim follows. From the equation satisfiedphywe get
FN-1
A ——[=ney] in(z2,70), (3.30)

and

Nt-1
A
Since ¢, is positive in (2, 1), we obtain G (r) > rN=/g (Mg (r) > 0, if ¢//(r) <0 and GyH(r) >
(rNJr_l/A)g(r)dur(r) >0, if g, (r) = 0forallr € (12, 71).
The interval(t2, t1) can be splitted in subintervafs, ¢) such thaiG,(s) — G;(t) = fts Gi(r)dr >0, wherei is
well chosen. Using that i&; (1) < 0, thenG ; (t) < 0 fori # j, we get a contradiction.
Fora =0, ¢(r) =0, r € [0, rp]. Then, we find an appropriate interval to argue as in the above case.<+06r

we havey, (r) = |a|¢ for all r € [0, rp] and the proof is quite analogous as for 0. All the above shows that
there is no solution for (3.26), (3.27) and (3.28)1

PVl Y < —pg ] in (2 Ta). (3.31)

Proposition 3.1. Letr > 0, A > 0, u € R. Then
1 if u<ug @),
deg;(l — ;LE;, B0, r), 0) =10 if MZ‘(X) <u< u;(i) or “k_()_‘) << u,j(i),
(—DF i i ) << pg () or wpr () << g, (),
hereC :={u € C([0,1)) | u(1) =0, 4'(0)=0}.

Remark 3.3. (1) Fork e N, k > 1, we do not expect that in general
my <mgs

but this is an open problem.
(2) If ;7 = 1, the case deg/ — uL;, B(0,r),0)=0 is not present in Proposition 3.1.

Proof. Assume first thatu (1) < p < 4 (A) of g (M) < pu < ;1 (3). The arguments used in the proof
of Lemma 2.3 impIy,qu(A) is a continuous function of. Using Lemma 3.2 we find a continuous function
v:(0, A] — R such that magge) (1), s (W)} < v(d) < minfu, (M), i, 1(M)} andv(d) = w. The invariance of
the Leray—Schauder’s degree under compact homotopies implies

d(1) =deg (I —v(M)LT, B(O, r),0) = constant

for 1 € (0, Al. In particulard () = d(A) = (—1)F and the result follows. The cage< n; (1) is proved in Propo-
sition 2.3. In the case (M) < pu < g (A) or uy (M) < u < w;f () we will prove, as in Proposition 2.3, that
I - ;w;)(B(O, r)) is not a neighborhood of zero.

Suppose by contradiction that — ME;)(B(O, r)) is a neighborhood of zero. Then, for any smoéthwith
I2]lc 0,17y small, there exists a solutianto

u —,uﬁ?\'u:h.
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In particular we can takeé being a solution to
M (D’h)=vy in2 and h=0 ondig,

where||¥ ||cqo.1p > O is small enough. Then, by Lemma 2.2 and the definitioﬁib,f it follows thatu satisfies
M;A(Dzu) +uu<y inf.

Takingy = —g (resp.y = g), whereg is a function of the type used in Lemma 3.4, we will get that (resp.u)
satisfies (3.26), (3.27) (resp. (3.29)) and (3.28). Thus, we get a contradiction with lemma 3.4 or Remark 3.2(2). So,
deg-(I — M[,;, B(0,r),0)=0in this case, and the proof is finisheda

Proof of Theorem 1.4. Using the same argument as in Theorem 1.3, we obtain the existence of a “half-component”
¢t c R x €([0,1]) of radially symmetric solutions to (1.10), whose closdfe contains(u;", 0) and is either
unbounded or contains a poimf, 0), with j # k in the case oujf.

Let us first prove that i, v) e C;t, itimplies thatv is positive at the origin and possesses 1 zeros in(0, 1).
Arguing as in the proof of Theorem 1.3, we find a neighborhabdf (11", 0) such thatv' N ¢ c ;.

Moreover, ifu € C1[0, 1] is a solution to

u” = M(—(Nf_l)m(u’) — uu~+ f(u, M)) in (0,1) (3.32)

and there existg € [0, 1] such thaw(r9) = u’(rg) =0, thenu = 0.
Using this fact we can extend the previous local propertieig*db all of it. HenceC,:r must be unbounded.o

References

[1] M. Bardi, F. Da Lio, Propagation of maxima and strong maximum principle for viscosity solution of degenerate elliptic equation I: convex
operators, Nonlinear Anal. 44 (2001) 991-1006.
[2] A. Bensoussan, J.L. Lions, Applications of Variational Inequalities in Stochastic Control, Stud. Math. Appl. 12, North-Holland, Amster-
dam, 1982, Translated from the French.
[3] H. Berestycki, On some nonlinear Sturm-Liouville problems, J. Differential Equations 26 (3) (1977) 375-390.
[4] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Boll. Soc. Brasil Mat. (N.S.) 22 (1991) 237-275.
[5] H. Berestycki, L. Nirenberg, S.R.S. Varadhan, The principal eigenvalue and maximum principle for second-order elliptic operators in
general domains, Comm. Pure Appl. Math. 47 (1) (1994) 47-92.
[6] X. Cabré, L.A. Caffarelli, Fully Nonlinear Elliptic Equation, Amer. Math. Soc. Collog. Publ., vol. 43, Amer. Math. Soc., 1995.
[7] L. Caffarelli, J.J. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second order elliptic equations Il, Comm. Pure Appl.
Math. 38 (1985) 209-252.
[8] M. Crandall, H. Ishi, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math.
Soc. 27 (1) (1992).
[9] M.G. Crandall, M. Kocan, ASwiech, LP theory for fully nonlinear uniformly parabolic equations, Comm. Partial Differential Equa-
tions 25 (11&12) (2000) 1997-2053.
[10] E.N. Dancer, On the Dirichlet problem for weakly non-linear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (4)
(1976/77) 283-300.
[11] M. del Pino, M. Elgueta, R. Manasevich, A homotopic deformation alpngf a Leray—Schauder degree result and existence for
(u'1P~2u’Y + f(t,u) =0,u(0) =u(T) =0, p > 1, J. Differential Equations 80 (1) (1989) 1-13.
[12] M. del Pino, R. Manésevich, F. Global bifurcation from the eigenvalues opthaplacian, J. Differential Equations 92 (2) (1991) 226—
251.
[13] P. Drabek, Solvability and Bifurcations of Nonlinear Equations, Pitman Res. Notes Math. Ser., vol. 264, Longman Scientific and Technical,
Harlow, 1992, copublished in the United States with John Wiley and Sons, New York, 1992.
[14] P. Felmer, A. Quaas, Critical exponents for the Pucci’s extremal operators, C. R. Acad. Sci. Paris, Ser. | 335 (2002) 909-914.
[15] P. Felmer, A. Quaas, On critical exponents for the Pucci's extremal operators, Ann Inst. H. Poicaré Anal. Non Linéaire 20 (5) (2003)
843-865.



206 J. Busca et al. / Ann. I. H. Poincaré — AN 22 (2005) 187-206

[16] P. Felmer, A. Quaas, Positive solutions to ‘semilinear’ equation involving the Pucci’s operator, J. Differential Equations 199 (2004) 376—
393.

[17] D. de Figueiredo, J.P. Gossez, On the first curve of thakFspectrum of an elliptic operator, Differential Integral Equations 7 (5-6)
(1994) 1285-1302.

[18] S. FiEik, Solvability of Nonlinear Equations and Boundary Value Problems, Math. Appl., vol. 4, Reidel, 1980, With a foreword by Jean
Mawhin.

[19] T. Gallouet, O. Kavian, Résultats d’existence et de non-existence pour certains problemes demi-linéaires a I'infini (in French. English
summary), (Existence and nonexistence results for certain semilinear problems at infinity), Ann. Fac. Sci. Toulouse Math. 5 (3—4) (1981)
201-246.

[20] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equation of Second Order, second ed., Springer-Verlag, 1983.

[21] P.L. Lions, Bifurcation and optimal stochastic control, Nonlinear Anal. 2 (1983) 177-207.

[22] P.L. Lions, Optimal control of diffusion processes and Hamilton—-Jacobi—Bellman equations. |. The dynamic programming principle and
applications, Comm. Partial Differential Equations 8 (10) (1983) 1101-1174.

[23] P.L. Lions, Optimal control of diffusion processes and Hamilton—Jacobi—Bellman equations. Il. Viscosity solutions and uniqueness, Comm.
Partial Differential Equations 8 (11) (1983) 1229-1276.

[24] P.L. Lions, Optimal control of diffusion processes and Hamilton—-Jacobi—Bellman equations. Ill. Regularity of the optimal cost function, in:
Nonlinear Partial Differential Equations and Their Applications. College de France seminar, vol. V (Paris, 1981/1982), 1983, pp. 95-205.

[25] P.L. Lions, A remark on Bony maximum principle, Proc. Amer. Math. Soc. 88 (3) (1983) 503-508.

[26] P.L. Lions, Two remarks on Monge—Ampere equations, Ann. Mat. Pura Appl. 142 (4) (1985) 263-275.

[27] W.M. Ni, R. Nussbaum, Uniqueness and nonuniqueness for positive radial solutians-gff («, r) = 0, Comm. Pure Appl. Math. 38
(1985) 67-108.

[28] C. Pucci, Operatori ellittici estremanti, Ann. Mat. Pure Appl. 72 (1966) 141-170.

[29] C. Pucci, Maximum and minimum first eigenvalue for a class of elliptic operators, Proc. Amer. Math. Soc. 17 (1966) 788-795.

[30] A. Quaas, Existence of positive solutions to a ‘semilinear’ equation involving the Pucci's operator in a convex domain, Differential Integral
Equations 17 (2004) 481-494.

[31] P.H. Rabinowitz, Some aspect of nonlinear eigenvalue problem, Rocky Moutain J. Math. 74 (3) (1973) 161-202.

[32] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971) 487-513.

[33] P.H. Rabinowitz, Théorie du degré topologique et applications a des problémes aux limites non linéaires, Lectures Notes Lab. Analyse
Numérique Université PARIS VI, 1975.

[34] E. Rouy, First semi-eigenvalue for nonlinear elliptic operator, preprint.

[35] M.V. Safonov, On the classical solution of Bellman elliptic equation, Soviet Math. Dokl. 30 (1984).

[36] M. Schechter, The Fik spectrum, Indiana Univ. Math. J. 43 (4) (1994) 1139-1157.



