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Abstract

In this paper we extend existing results concerning generalized eigenvalues of Pucci’s extremal operators. In the ra
we also give a complete description of their spectrum, together with an equivalent of Rabinowitz’s Global Bifurcation Th
This allows us to solve nonlinear equations involving Pucci’s operators.
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1. Introduction

If the solvability of fully nonlinear elliptic equations of the form

F(x,u,Du,D2u) = 0 (1.1)

has been extensively investigated forcoerciveuniformly elliptic operatorsF , comparatively little is known when
the assumption on coercivity (that is, monotonicity inu) is dropped. In this paper, we want to focus on the mo
problem{

−M+
λ,Λ(D2u) = f (u) in Ω,

u = 0 on ∂Ω,
(1.2)

✩ This work was partially supported by ECOS grant No. C02E08. The third author is supported by Fondecyt Grant #1040794.
* Corresponding author.

E-mail addresses:jerome.busca@normalesup.org (J. Busca), esteban@ceremade.dauphine.fr (M.J. Esteban), alexander.quaas@
(A. Quaas).

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2004.05.004

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



188 J. Busca et al. / Ann. I. H. Poincaré – AN 22 (2005) 187–206

ith

t is

fficient
for the

extremal
n

prehen-

t the
on have
the first
the
of the
(resp.M−
λ,Λ) whereΩ is a bounded regular domain, andM±

λ,Λ are the extremal Pucci’s operators [28] w
parameters 0< λ � Λ defined by

M+
λ,Λ(M) = Λ

∑
ei>0

ei + λ
∑
ei<0

ei

and

M−
λ,Λ(M) = λ

∑
ei>0

ei + Λ
∑
ei<0

ei,

for any symmetricN × N matrix M ; hereei = ei(M), i = 1, . . . ,N, denote the eigenvalues ofM . We intend to
study (1.2) as a bifurcation problem from the trivial solution. SinceM±

λ,Λ are homogeneous of degree one, i
natural to investigate the associated “eigenvalue problem”{−M+

λ,Λ(D2u) = µu in Ω,

u = 0 on ∂Ω.
(1.3)

(resp.M−
λ,Λ) Pucci’s extremal operators appear in the context of stochastic control when the diffusion coe

is a control variable, see the book of Bensoussan and J.L. Lions [2] or the papers of P.L. Lions [22–24]
relation between a general Hamilton–Jacobi–Bellman and stochastic control. They also provide natural
equations in the sense that ifF in (1.1) is uniformly elliptic, with ellipticity constantsλ, Λ, and depends only o
the HessianD2u, then

M−
λ,Λ(M) � F(M) �M+

λ,Λ(M) (1.4)

for any symmetric matrixM .
Whenλ = Λ = 1,M±

λ,Λ coincide with the Laplace operator, so that (1.2) reads{−�u = f (u) in Ω,

u = 0 on∂Ω,
(1.5)

whereas (1.3) simply reduces to{−�u = µu in Ω,

u = 0 on∂Ω.
(1.6)

It is a very well known fact that there exists a sequence of solutions

{(µn,ϕn)}n�1

to (1.6) such that:

(i) the eigenvalues{µn}n�1 are real, withµn > 0 andµn → ∞ asn → ∞;
(ii) the set of all eigenfunctions{ϕn}n�1 is a basis ofL2(Ω).

Building on these eigenvalues, the classical Rabinowitz bifurcation theory [32,33] then provides a com
sive answer to the existence of solutions of (1.5).

When λ < Λ, problems (1.2), (1.3) are fully nonlinear. It is our purpose to investigate to which exten
results about the Laplace operator can be generalized to this context. A few partial results in this directi
been established in the recent years and will be recalled shortly. However, they are all concerned with
eigenvalue and special nonlinearitiesf . We provide here a bifurcation result for general nonlinearities from
first two “half-eigenvalues” in general bounded domains. And in the radial case a complete description
spectrum and the bifurcation branches for a general nonlinearity from any point in the spectrum.



J. Busca et al. / Ann. I. H. Poincaré – AN 22 (2005) 187–206 189

ght hope
extremal

ors. As a

f two

ermining
lts

r
. Beres-

and

parts of
Let us mention that besides the fact that (1.2)–(1.3) appears to be a favorable case from which one mi
to address general problems like (1.1), there are other reasons why one should be interested in Pucci’s
operators or, more generally, in Hamilton–Jacobi–Bellman operators, which are envelopes of linear operat
matter of fact, the problem under study has some relation to the Fučík spectrum. To explain this, letu be a solution
of the following problem

−�u = µu+ − αµu−,

whereα is a fixed positive number. One easily checks that ifα � 1, thenu satisfies

max

{
−�u,

−1

α
�u

}
= µu,

whereas ifα � 1, u satisfies

min

{
−�u,

−1

α
�u

}
= µu.

These relations mean that the Fučík spectrum can be seen as the spectrum of the maximum or minimum o
linear operators, whereas (1.2), (1.3) deal with an infinite family of operators.

We observe that understanding all the “spectrum” of the above problem is essentially the same as det
the Fǔcík spectrum, which in dimensionN � 2 is still largely an open question, for which only partial resu
are known and, in general, they refer to a region near the usual spectrum, (that is forα near 1). For a furthe
discussion on this topic, we refer the interested reader to the works of de Figueiredo and Gossez [17], H
tycki [3], E.N. Dancer [10], S. Fǔcík [18], P. Drábek [13], T. Gallouet and O. Kavian [19], M. Schechter [36]
the references therein.

Our first result deals with the existence and characterizations of the two first “half-eigenvalues”. Some
it are already known (see below), but some are new.

Proposition 1.1. Let Ω be a regular domain. There exist two positive constantsµ+
1 , µ−

1 , that we call first half-
eigenvalues such that:

(i) There exist two functionsϕ+
1 , ϕ−

1 ∈ C2(Ω) ∩ C(Ω) such that(µ+
1 , ϕ+

1 ), (µ−
1 , ϕ−

1 ) are solutions to(1.3) and
ϕ+

1 > 0, ϕ−
1 < 0 in Ω . Moreover, these two half-eigenvalues are simple, that is, all positive solutions to(1.3)

are of the form(µ+
1 , αϕ+

1 ), with α > 0. The same holds for the negative solution.
(ii) The two first half-eigenvalues satisfy

µ+
1 = inf

A∈A
µ1(A), µ−

1 = sup
A∈A

µ1(A),

whereA is the set of all symmetric measurable matrices such that0 < λI � A(x) � ΛI and µ1(A) is the
principal eigenvalue of the nondivergent second order linear elliptic operator associated toA.

(iii) The two half-eigenvalues have the following characterization

µ+
1 = sup

u>0
essinf

Ω

(
−M+

λ,Λ(D2u)

u

)
, µ−

1 = sup
u<0

essinf
Ω

(
−M+

λ,Λ(D2u)

u

)
.

The supremum is taken over all functionsu ∈ W
2,N
loc (Ω) ∩ C(Ω).

(iv) The first half-eigenvalues can be also characterized by

µ+
1 = sup{µ| there existsφ > 0 in Ω satisfyingM+

λ,Λ(D2φ) + µφ � 0},
µ−

1 = sup{µ| there existsφ < 0 in Ω satisfyingM+
λ,Λ(D2φ) + µφ � 0}.
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Remark 1.1. Here and in the sequel, unless otherwise stated, it is implicitly understood that any solution
sub-, super-solution) satisfies the corresponding equation (inequation) pointwise a.e. This is the frame
strong solutions[20].

The above existence result, that is part (i) of Proposition 1.1, can been easily proved using an adapta
convex (or concave) operators, of Krein–Rutman’s Theorem in positive cones (see [16] in the radial sym
case and see [30] in regular bounded domains).

This existence result, has been proved recently in the case of general positive homogeneous fully n
elliptic operators, see the paper of Rouy [34]. The method used there is due to P.L. Lions who proved the
of Proposition 1.1 for the Bellman operator (see [21]) and for the Monge-Ampère operator (see [26]). Mo
the definition ofµ+

1 there translates in our case as:

µ+
1 = sup{µ| µ ∈ I}, (1.7)

where

I = {
µ | ∃φ > 0 s.t.φ = 0 on ∂Ω, M+

λ,Λ(D2φ) + µφ = −1 in Ω
}
.

Properties (ii) of Proposition 1.1 can be generalized to any fully nonlinear elliptic operatorF that is positively
homogeneous of degree one, with ellipticity constantsλ,Λ. This follows by the proof of (ii) and (1.4). Thes
properties were established by C. Pucci in [29], for other kind of extremal operators, see the comments in S

The characterization of the form (iii) and (iv) for the first eigenvalue, were introduced by Berestycki, Nire
and Varadhan for second order linear elliptic operators (see [5]).

From the characterization iv) it follows that

µ+
1 (Ω) � µ+

1 (Ω ′) and µ−
1 (Ω) � µ−

1 (Ω ′) if Ω ′ ⊂ Ω.

For the two first half-eigenvalues, many other properties will be deduced from the previous propositi
Section 2). For example, wheneverλ 	= Λ, we haveµ+

1 < µ−
1 , sinceµ+

1 � λµ1(−�) � Λµ1(−�) � µ−
1 .

Another interesting and useful property is the following maximum principle.

Theorem 1.1. The next two maximum principles hold:

(a) Letu ∈ W
2,N
loc (Ω) ∩ C(Ω) satisfy

M+
λ,Λ(D2u) + µu � 0 in Ω,

u � 0 on∂Ω.
(1.8)

If µ < µ+
1 , thenu � 0 in Ω .

(b) Letu ∈ W
2,N
loc (Ω) ∩ C(Ω) satisfy

M+
λ,Λ(D2u) + µu � 0 in Ω,

u � 0 on∂Ω.
(1.9)

If µ < µ−
1 , thenu � 0 in Ω .

Remark 1.2. These maximum principles are still valid for continuous solutions inΩ that satisfy the respectiv
inequalities in the viscosity sense (see [8]).

Results like Proposition 1.1 and Theorem 1.1 can be obtained forM−
λ,Λ and can be deduced just by noting th

M+ (−M) = −M− (M), for any symmetric matrixM .
λ,Λ λ,Λ
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Fig. 1. Bifurcation diagram for the first half-eigenvalues in a general bounded domain.

Next, we want to look at the higher eigenvalues of Pucci’s extremal operators. For that purpose we
ourselves to the radial case. In this case we have a precise description of the whole “spectrum” and we ex
the result below will shed some light on the general case. More precisely, we have the following theorem.

Theorem 1.2. LetΩ = B1. The set of all the scalarsµ such that(1.3)admits a nontrivial radial solution, consist
of two unbounded increasing sequences

0< µ+
1 < µ+

2 < · · · < µ+
k < · · · ,

0< µ−
1 < µ−

2 < · · · < µ−
k < · · · .

Moreover, the set of radial solutions of(1.3) for µ = µ+
k is positively spanned by a functionϕ+

k , which is positive
at the origin and has exactlyk − 1 zeros in(0,1), all these zeros being simple. The same holds forµ = µ−

k , but
consideringϕ−

k negative at the origin.

Finally, we want to address our original motivation, that is, we want to prove existence results for an equ
the type (1.2). For this purpose we consider the nonlinear bifurcation problem associated with the extrema
operator, that is

−M+
λ,Λ(D2u) = µu + f (u,µ) in Ω,

u = 0 on∂Ω,
(1.10)

wheref is continuous,f (s,µ) = o(|s|) nears = 0, uniformly for µ ∈ R andΩ is a general bounded domai
Concerning this problem we have the following theorem

Theorem 1.3. The pair(µ+
1 ,0) (resp.(µ−

1 ,0)) is a bifurcation point of positive(resp. negative) solutions to(1.10).
Moreover, the set of nontrivial solutions of(1.10) whose closure contains(µ+

1 ,0) (resp.(µ−
1 ,0)), is either un-

bounded or contains a pair(µ̄,0) for someµ̄, eigenvalue of(1.3)with µ̄ 	= µ+
1 (resp.µ̄ 	= µ−

1 ).

Notice that a similar theorem can be proved in the case ofM−
λ,Λ. The difference with Theorem 1.3 is th

(µ+
1 ,0) will be a bifurcation point for the negative solutions and(µ−

1 ,0) will be a bifurcation point for the positive
solutions.

Remark 1.3. Fig. 1 allows to visualize the above result in which the bifurcation generates only “half-branc
u > 0 oru < 0 in Ω.
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Fig. 2. Bifurcation diagram in the radially symmetric case (note thatµ+
1 � µ−

1 , but fork � 2 the ordering betweenµ+
k

andµ−
k

is not known).

For the Laplacian the result is well known, see [32,33,31]. In this case the “half-branches” become con
Therefore, we observe a symmetry breaking phenomena whenλ < Λ.

For thep-Laplacian the result is known, in the general case, see the paper of del Pino and Manásevi
See also the paper of del Pino, Elgueta and Manásevich [11], for the caseN = 1. In this case the branches are a
connected. The proof of these results uses an invariance under homotopy with respect top for the Leray–Schaude
degree. In our proof of Theorem 1.3 we use instead homotopy invariance with respect toλ (the ellipticity constant),
having to deal with a delicate region in which the degree is equal to zero.

A bifurcation result in the particular casef (u,µ) = −µ|u|p−1u can be found in the paper by P.L. Lions for t
Bellman equation [21]. For the problem

−M+
λ,Λ(D2u) = µg(x,u) in Ω, u = 0 on∂Ω

with the following assumption ong:

(i) u → g(x,u) is nondecreasing andg(x,0)= 0,

(ii) u → g(x,u)
u

decreasing, and

(iii) lim u→0
g(x,u)

u
= 1, limu→∞ g(x,u)

u
= 0

a similar result was proved by E. Rouy [34].
In [21] and [34] the assumptions made were used in a crucial way to construct sub and super soluti

contrast, we use a Leray–Schauder degree argument which allows us to treat general nonlinearities.
Other kind of existence results for positive solution of (1.2), can be found in [15,14,16] and [30].
In the radially symmetric case we obtain a more complete result.

Theorem 1.4. Let Ω = B1. For eachk ∈ N, k � 1 there are two connected componentsS±
k of nontrivial solutions

to (1.10), whose closures contains(µ±
k ,0). Moreover,S±

k are unbounded and(µ,u) ∈ S±
k implies thatu possesse

exactlyk − 1 zeros in(0,1).

Remark 1.4. (1) S+
k (resp.S−

k ) denotes the set of solutions that are positive (resp. negative) at the origin.
(2) Fig. 2, allows to visualize the above result in which the bifurcation generates only “half-branches”:u(0) > 0

or u(0) < 0.

For the Laplacian this result is well known. In this case, for allk � 1, µ+
k = µ−

k and the “half-branches” now
become connected.
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Our proof is based on the invariance of the Leray–Schauder degree under homotopy. It also uses so
existence results.

The paper is organized as follows. In Section 2 we study the problem in a general regular bounded
there we prove Theorems 1.1 and 1.3. In section 3 we study the radial symmetric case, and we prove Theo
and 1.4.

2. First “eigenvalues” in a general domain and nonlinear bifurcation

We shall need the following version of Hopf’s boundary lemma.

Lemma 2.1. LetΩ be a regular domain and letu ∈ W
2,N
loc (Ω) ∩ C(Ω) be a non-negative solution to

M−
λ,Λ(D2u) + µu � 0 in Ω, u = 0 on∂Ω, (2.11)

with µ ∈ R. Thenu(x) > 0 for all x ∈ Ω . Moreover,

lim sup
x→x0

u(x0) − u(x)

|x − x0| < 0,

wherex0 ∈ ∂Ω and the limit is non-tangential, that is, taken over the set ofx for which the angle betweenx − x0
and the outer normal atx0 is less thanπ/2− δ for some fixedδ > 0.

Remark 2.1. (1) For a general strong maximum principle for degenerate convex elliptic operators, see the p
M. Bardi, F. Da Lio [1].

(2) This lemma holds also foru ∈ C(Ω) that satisfies Eq. (2.11) in the viscosity sense.
(3) A solution of (1.3) in a regular domain is necessarilyC2,α up to the boundary, see [35]. Thus, ifu is a

positive solution to (1.3), then we have∂u
∂ν

< 0 on∂Ω (resp.u < 0, ∂u
∂ν

> 0) if ν denotes the outer normal.

Proof. We use the classical Hopf barrier function, see for instance Lemma 3.4 in [20]. The rest of the proof
the lines of this lemma by using the weak maximum principle, of P.L. Lions [25] for solutions inW

2,N
loc (Ω). �

Now we are in position to prove Proposition 1.1.

Proof of Proposition 1.1. (i) The existence and simplicity follow by using a Krein–Rutman’s Theorem in pos
cones, see [30]. For alternative methods see [21] and [34]. Notice that by above Remark part (3), the
half-eigenfunction areC2,α(Ω).

(ii) First notice that for a fixed functionv ∈ W
2,N
loc (Ω) there exists a symmetric measurable matrixA(x) ∈ A,

such that

M+
λ,Λ(D2v) = LAv,

whereLA is the second order elliptic operator associated toA, see [28].
That is

LA =
∑

Ai,j (x)∂i,j .

Sinceϕ+
1 ∈ C2(Ω), µ+

1 � infA∈A µ1(A). Suppose now for contradiction that

µ+
1 > inf µ1(A).
A∈A
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Hence, there exists̄A ∈A such thatµ+
1 > µ1(Ā). The corresponding eigenfunctionu1 satisfies

−LĀu1 = µ1(Ā)u1.

Moreover,u1 ∈ C2,α(Ω) and ∂u1
∂ν

< 0 on ∂Ω. Same holds forϕ+
1 . Thus there existsK > 0 such thatu1 < Kϕ+

1 .
Notice thatu1 is a sub-solution andεϕ+

1 is a super-solution to

M+
λ,Λ(D2v) + µv = 0 in Ω.

Hence using Perron’s method we find a positive solution to (1.3), which is in contradiction with part (i). Pe
method in this setting can be found for example in [21].

(iii) We only need to prove that for any positive functionφ ∈ W
2,N
loc (Ω) ∩ C(Ω) we have

µ+
1 � inf

Ω

−M+
λ,Λ(D2φ)

φ
.

Suppose the contrary, then there exists a positive functionu ∈ W
2,N
loc (Ω) ∩ C(Ω) andδ > 0 such that

µ+
1 + δ < inf

Ω

−M+
λ,Λ(D2u)

u
.

So,u satisfies

M+
λ,Λ(D2u) + (µ+

1 + δ)u � 0 in Ω.

On the other hand,ϕ+
1 satisfies

M+
λ,Λ(D2ϕ+

1 ) + (µ+
1 + δ)ϕ+

1 � 0 in Ω.

Using Lemma 2.1 and Remark 2.1(3), we can findε > 0 such that

εϕ1 � u in Ω.

Then, using Perron’s method we find a positive solution to the problem

M+
λ,Λ(D2v) + (µ+

1 + δ)v = 0 in Ω,

contradicting the uniqueness of the positive solution to (1.3), part (i).
(iv) follows directly from (iii). �

Proof of Theorem 1.1. Let u by a solution (1.8) and̂A ∈ A by such thatL
Â
(u) = M+

λ,Λ(D2u). DefineL̂(v) :=
L

Â
(v)+µv. Using (ii) of Proposition 1.1,µ1(Â) � µ+

1 > µ. Then, clearly, the first eigenvalue ofL̂ is positive. So

the maximum principle holds for̂L see [5]. That is ifv satisfies

L̂(v) � 0 in Ω,

v � 0 on∂Ω
(2.12)

impliesv � 0. Sinceu satisfies (2.12),u � 0.
The same kind of argument can be used in case (b).�
Now we will recall the following compactness results for the Pucci’s extremal operator, whose proof

found for instance in [6].

Proposition 2.1. Let {fn}n>0 ⊂ C(Ω) be a bounded sequence and{un}n>0 ⊂ C(Ω) ∩ W
2,N
loc (Ω) be a sequence o

solutions to

M+ (D2un) � fn and M− (D2un) � fn in Ω, un = 0 on∂Ω. (2.13)
λ,Λ λ,Λ
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Then, there existsu ∈ C(Ω) such that, up to a subsequence,un → u uniformly inΩ .
Let now{Fn}n>0 be a sequence of uniformly elliptic concave(or convex) operators with ellipticity constantsλ

andΛ such thatFn → F uniformly in compact sets ofSn × Ω (Sn is the set of symmetric matrices). Suppose in
addition thatun satisfies

Fn(D
2un, x) = 0 in Ω, un = 0 on∂Ω

and thatun converges uniformly tou. Then,u ∈ C(Ω) is a solution to

F(D2u,x) = 0 in Ω, u = 0 on∂Ω.

Remark 2.2. Actually, the above proposition is proved in [6] in a more general case, when{fn}n>0 ⊂ L∞(Ω) and
{un}n>0 ⊂ C(Ω) is a sequence of viscosity solutions to (2.13).

So, to prove Proposition 2.1 we need to use the following fact. Ifu ∈ C(Ω) ∩ W
2,N
loc (Ω) is a sub-solution (resp

super-solution) ofM+(D2u) = g with g continuous, thenu is also viscosity sub-solution (resp. super-solution
the same equation, see [9]. We also use the regularity to prove that the limit ofun, u, belongs toW2,N

loc (Ω).

Now we want to study the nonlinear bifurcation problem. We will first prove the following.

Proposition 2.2. If (µ̄,0) is a bifurcation point of problem(1.10), thenµ̄ is an eigenvalue ofM+
λ,Λ.

Proof. Since(µ̄,0) is a nonlinear bifurcation point, there is a sequence{(µn,un)}n∈N of nontrivial solutions of
the problem (1.10) such thatµn → µ̄ andun → 0 in uniformly inΩ . Let us define

ûn = un

‖un‖C(Ω)

thenûn satisfies

−M+
λ,Λ(D2ûn) = µnû + f (un,µn)

un

ûn in Ω.

So, the right-hand side of the equation is bounded. Then by Proposition 2.1 we can extract a subsequence
ûn → û. Clearlyû is a solution to (1.3). �

Before proving Theorem 1.3, we need some preliminaries in order to compute the Leray–Schauder de
related function.

To start, let us recall some basic properties of the matrix operatorsM+
λ,Λ, whose proof follows directly from

the equivalent definition forM+
λ,Λ:

M+
λ,Λ(M) = sup

A∈A
tr(AM),

for any symmetric matrixM (see [6]). Notice that the original definition of C. Pucci [28] is of this type, butA is a
different family of symmetric matrices.

Lemma 2.2. LetM andN be two symmetric matrices. Then:

M+
λ,Λ(M + N) �M+

λ,Λ(M) +M+
λ,Λ(N).

Next we recall a very well known fact about Pucci’s operator, namely that is the Alexandroff–Bakelman
estimate holds. The proof can be found for example in [6].
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Theorem 2.1 [ABP]. LetΩ be a bounded domain inRN , such thatdiam(Ω) � d andf ∈ LN(Ω). Suppose tha
u is continuous inΩ and satisfiesM−

λ,Λ(D2u) � f (x) in Ω andu � 0 on ∂Ω . Then,

supu− � C‖f +‖LN(Ω).

HereC = C(meas(Ω),λ,Λ,N,d) is a constant andmeas(Ω) denotes Lebesgue measure ofΩ .

The next corollary is a maximum principle for small domains, that was first noted by Bakelman and exte
used in [4].

Corollary 2.1. Let Ω be a bounded domain inRN , such thatdiam(Ω) � d . Suppose thatu is continuous inΩ ,
satisfiesM−

λ,Λ(D2u) + c(x)u(x) � 0 in Ω , u � 0 on ∂Ω and c ∈ L∞(Ω) with c(x) � b a.e. There existsδ =
δ(λ,Λ,N,d, b) such thatmeas(Ω) < δ impliesu � 0 in Ω .

The proof is standard and uses in a crucial way Theorem 2.1. For details see [4]. Next corollary is cr
prove that the eigenvalueµ−

1 is isolated.

Corollary 2.2. Let Ωn be a sequence of domains such thatmeas(Ωn) → 0 as n → ∞ and diam(Ωn) � d . If
(µn,un) is a positive solution to(1.3)with Ω = Ωn, thenµn → ∞ asn → ∞.

Proof. Suppose by contradiction that there existsC > 0 such thatµn < C. Then un satisfies the equatio
M+

λ,Λ(D2un) + Cun � 0. Since the measure ofΩn is small forn large, we can use the previous corollary w
−un concluding that−un � 0, which is a contradiction. �
Remark 2.3. (1) In the sequel, we will vary the parameterλ while keepingΛ fixed in the operatorM+

λ,Λ. We will

denote the half eigenvaluesµ+
1 (λ), µ−

1 (λ) to make explicit the dependence on the parameterλ ∈ (0,Λ].
(2) From the characterization (ii) of Proposition 1.1 it follows that ifλ1 < λ2, thenµ+

1 (λ1) � µ+
1 (λ2) and

µ−
1 (λ1) � µ−

1 (λ2).

Lemma 2.3. The two first half eigenvalues functionsµ+
1 : (0,Λ] → R andµ−

1 : (0,Λ] → R, are continuous onλ.

Proof. Let {λj }j∈N be sequence in(0,Λ] converging toλ ∈ (0,Λ]. We will show that

lim
j→∞µ+

1 (λj ) = µ+
1 (λ).

Sinceλj → λ there existsε > 0 such that̄λ := λ + ε � λj � λ − ε =: λ∗ > 0, for j large. From the previou
Remark we have

µ+
1 (λ∗) � µ+

1 (λj ) � µ+
1 (λ̄),

for largej . Therefore, up to subsequencesµ+
1 (λj ) → µ.

Let uj be the corresponding eigenfunction for the eigenvalueµ+
1 (λj ). We can suppose that‖uj‖C(Ω) = 1, then

uj satisfies

M+
λ∗,Λ(D2uj ) � −µ+

1 (λ̄)uj and M−
λ∗,Λ(D2uj ) � −µ+

1 (λ∗)uj .

So by Proposition 2.1 up to subsequences,uj → u uniformly in Ω . Moreover,(µ,u) is a solution to (1.3) and
‖u‖C(Ω) = 1.

Sinceuj is positive inΩ , we have thatuj is non-negative inΩ and by the strong maximum principle,u is
positive inΩ . Hence, by the uniqueness of the positive eigenfunction, Proposition 1.1(i),µ = µ+

1 (λ), which ends
the proof in this case. The same proof holds in the case ofµ−. �
1
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The next lemma proves that the first half-eigenvalueµ−
1 is isolated.

Lemma 2.4. For every interval[a, b] ⊂ (0,Λ) there exists aδ > 0 such that for allλ ∈ [a, b] there is no eigenvalu
of (1.3) in (µ−

1 (λ),µ−
1 (λ) + δ].

Proof. Suppose that the lemma is not true. Then, there are sequences{λj }j∈N ⊂ (0,Λ], {µj }j∈N ⊂ R
+, and

{uj }j∈N ⊂ C(Ω) \ {0} such thatλj → λ̄ ∈ (0,Λ), µj > µ−
1 (λj ), limj→∞(µj − µ−

1 (λj )) = 0, and

−M+
λn,Λ(D2un) = µnun.

Using Proposition 2.1 we have that, up to a subsequence,un → u uniformly in Ω andu is a solution of the
problem

−M+
λ,Λ(D2u) = µ−

1 (λ̄)u in Ω.

Therefore by Proposition 1.1(i),u is negative inΩ .
On the other hand, by (i) of Proposition 1.1un changes sign inΩ , then there existsΩn, a connected com

ponent of {x ∈ Ω |un(x) > 0}, with meas(Ωn) > 0. Sinceun → u, meas(Ωn) → 0. Then by Corollary 2.2
µ(Ωn,λ

∗) → ∞, whereλ∗ > 0 is such thatλj > λ∗. But µn = µ+
1 (Ωn,λn) � µ(Ωn,λ

∗), contradicting the fac
thatµn converges toµ−

1 (λ̄). �
Let us define

µ2(λ) = inf
{
µ > µ−

1 (λ) | µ is an eigenvalue of (1.10)
}
.

Then by the previous lemmaµ2 > µ−
1 . We notice thatµ2 may be equal to+∞. Define nowL+

λ as the inverse o
−M+

λ,Λ. It is well known thatL+
λ is well defined inC := {u ∈ C(Ω) |u = 0 on ∂Ω} (see for example [7]) and

by Proposition 2.1,L+
λ is compact.

Now we are in position to compute the Leray–Schauder degree and prove the following proposition.

Proposition 2.3. Let r > 0, λ̄ > 0, µ ∈ R. Then

degC
(
I − µL+

λ̄
,B(0, r),0

) =


1 if µ < µ+

1 (λ̄),

0 if µ+
1 (λ̄) < µ < µ−

1 (λ̄),

−1 if µ−
1 (λ̄) < µ < µ2(λ̄),

hereC := {u ∈ C(Ω) | u = 0 on ∂Ω}.

Remark 2.4. SinceL+
λ is compact, the degree is well defined if 0/∈ (I − µL+

λ̄
)(∂B(0, r)).

Proof of Proposition 2.3. We have that the degree

degC
(
I − sµL+

λ̄
,B(0, r),0

)
is well defined for anys ∈ [0,1] and µ < µ+

1 (λ̄), sinceM+
λ,Λ does not have eigenvalues belowµ+

1 , that is,

0 /∈ (I − sµL+
λ̄
)(∂B(0, r)). Using the invariance of the degree under homotopy, we conclude that this deg

equal to 1, its value ats = 0.
In the caseµ+

1 (λ̄) < µ < µ−
1 (λ̄) we will use the following property of the degree to prove that the degre

zero. If degC(I − µL+
λ̄
,B(0, r),0) 	= 0, then(I − µL+

λ̄
)(B(0, r)) is a neighborhood of zero. So we claim th

if µ+(λ̄) < µ < µ−(λ̄), then(I − µL+)(B(0, r)) is not a neighborhood of zero. Suppose by contradiction
1 1 λ̄
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(I − µL+
λ̄
)(B(0, r)) is a neighborhood of zero. Then for any smoothh with ‖h‖C(Ω) small, there existsu a

solution to

u − µL+
λ̄
u = h.

In particular, we can takeh to be a solution of

M+
λ̄,Λ

(D2h) = −δ in Ω and h = 0 on∂Ω,

whereδ > 0 is small enough.
Then, by Lemma 2.2 and the definition ofL+

λ̄
, it follows thatu satisfies

M+
λ̄,Λ

(D2u) + µu � −δ in Ω.

On the other hand, by Lemma 2.1 and Remark 2.1(3), there existsε > 0, such thatε(−ϕ)−1 < u, andε(−ϕ−
1 )

satisfies

M+
λ̄,Λ

(
D2ε(−ϕ−

1 )
) + µε(−ϕ−

1 ) � −δ in Ω.

Then using Perron’s method we find a positive solutionw to

M+
λ̄,Λ

(D2w) + µw = −δ in Ω, w = 0 on∂Ω.

This leads to a contradiction with Theorem 1.1 and with the characterization for the first eigenvalue (1.7)
degC(I − µL+

λ̄
,B(0, r),0)= 0 for µ+

1 (λ̄) < µ < µ−
1 (λ̄).

Finally, suppose thatµ−
1 (λ̄) < µ < µ2(λ̄). The continuity ofµ−

1 (·) and Lemma 2.4 imply the existence of
continuous functionν : (0,Λ] → R such thatµ−

1 (λ) < ν(λ) < µ2(λ) for all λ ∈ (0,Λ] andν(λ̄) = µ.
The result will follow by showing that the well-defined, integer-valued function

d(λ) = degC
(
I − ν(λ)L+

λ̄
,B(0, r),0

)
is constant in[λ̄,Λ]. This follows by the invariance of the Leray–Schauder degree under a compact hom
Recall thatd(Λ) = −1, hence the proposition follows.�
Proof of Theorem 1.3. Let us set

Hµ(u) = L+
λ

(
µu + f (µ,u)

)
.

Suppose that(µ+
1 ,0) is not a bifurcation point of problem (1.10). Then there existε, δ0 > 0 such that for all

|µ − µ+
1 | � ε andδ < δ0 there is no nontrivial solution of the equation

u − Hµ(u) = 0

with ‖u‖ = δ. From the invariance of the degree under compact homotopy we obtain that

degC
(
I − Hµ,B(0, δ),0

) ≡ constant forµ ∈ [µ+
1 − ε,µ+

1 + ε]. (2.14)

By takingε smaller if necessary, we can assume thatµ+
1 + ε < µ−

1 . Fix now µ ∈ (µ+
1 ,µ+

1 + ε]. It is easy to see
that if we chooseδ sufficiently small, then the equation

u −L+
λ

(
µu + sf (µ,u)

) = 0

has no solutionu with ‖u‖ = δ for everys ∈ [0,1]. Indeed, assuming the contrary and reasoning as in the pro
Proposition 2.2, we would find thatµ is an eigenvalue of (1.3). From the invariance of the degree under homo
and Proposition 2.3 we obtain

degC
(
I − Hµ,B(0, δ),0

) = degC
(
I − µL+,B(0, δ),0

) = 0. (2.15)
λ



J. Busca et al. / Ann. I. H. Poincaré – AN 22 (2005) 187–206 199

et
si-

2,33]

mputed

related

er fixed
Similarly, for µ ∈ [µ+
1 − ε,µ+

1 ) we find that

degC
(
I − Hµ,B(0, δ),0

) = 1. (2.16)

Equalities (2.15) and (2.16) contradict (2.14) and hence(µ+
1 ,0) is a bifurcation point for the problem (1.10). L

defineuµ a solution to (1.10) forµ > µ+
1 , with ‖uµ‖∞ → 0 asµ → µ+

1 . Using the same argument of Propo
tion 2.3,

uµ/‖uµ‖∞ → ϕ+
1 asµ → µ+

1 .

This shows thatuµ is positive forµ close toµ+
1 .

The rest of the proof is entirely similar to that of the Rabinowitz’s Global Bifurcation Theorem, see [3
or [31], so we omit it here. �

3. “Spectrum” in the radial case and nonlinear bifurcation from all “eigenvalues”

Let us first recall that the value of the Pucci’s operator applied to a radially symmetric function can be co
explicitly; namely ifu(x) = ϕ(|x|) one has

D2u(x) = ϕ′(|x|)
|x| I +

[
ϕ′′(|x|)

|x|2 − ϕ′(|x|)
|x|3

]
x ⊗ x,

whereI is theN × N identity matrix andx ⊗ x is the matrix whose entries arexixj . Then the eigenvalues ofD2u

areϕ′′(|x|), which is simple, andϕ′(|x|)/|x|, which has multiplicityN − 1.
In view of this, we can give a more explicit definition of Pucci’s operator. In the case ofM+

λ,Λ we define the
functions

M(s) =
{
s/Λ, s > 0,

s/λ, s � 0,
and m(s) =

{
Λs, s > 0,

λs, s � 0.

Then, we see thatu satisfies (1.3) withΩ = B1 and is radially symmetric if and only ifu(x) = v(|x|), r = |x|
satisfies

v′′ = M

(
− (N − 1)

r
m(v′) − µv

)
, (3.17)

v′(0)= 0, v(1)= 0. (3.18)

Next we briefly study the existence, uniqueness, global existence, and oscillation of the solutions to the
initial value problem

w′′ = M

(
− (N − 1)

r
m(w′) − w

)
, (3.19)

w′(0)= 0, w(0)= 1. (3.20)

Then we will come back to (3.17), (3.18) and to the proof of Theorem 1.2. First using a standard Schaud
point argument as used by Ni and Nussbaum in [27], we can prove the existence ofw ∈ C2 solution to

{w′rN−1}′ = −rN−1w

λ
, w′(0)= 0, w(0)= 1.

Moreover, this solution is unique and forr small,w′(r) andw′′(r) are negative. Then, for someδ > 0, w satisfies

w′′ = M

(
− (N − 1)

m(w′) − w

)
, in (0, δ].
r



200 J. Busca et al. / Ann. I. H. Poincaré – AN 22 (2005) 187–206

n-

e

a

Next we consider (3.19) with initial valuesw(δ) andw′(δ) at r = δ. From the standard theory of ordinary differe
tial equations we find a uniqueC2-solution of this problem forr ∈ [δ, a), for a > δ. Using Gronwall’s inequality
we can extend the local solution to[0,+∞).

In the following lemma we will show that the solutionw is oscillatory.

Lemma 3.1. The unique solutionw to (3.19), (3.20), w, is oscillatory, that is, given anyr > 0, there is aτ > r

such thatw(τ) = 0.

The proof uses standard arguments of oscillation theory for ordinary differential equation.

Proof. Suppose thatw is not oscillatory, that is, for somer0 , w does not vanish on(r0,∞). Assume thatw > 0
in (r0,∞). Let φ be a solution to (3.19), (3.20) withλ = Λ, then it is known thatφ is oscillatory. So we can tak
r0 < r1, r2 such thatφ(r) > 0 if r ∈ (r1, r2) andφ(r1) = φ(r2) = 0. We have thatw andφ satisfy

{w′rN−1}′ � −rN−1w

λ
,

{φ′rN−1}′ = −rN−1φ

λ
.

If we multiply the first equation byφ and the second byw, subtract them and then integrate, we get

rN−1
1 φ′(r1)w(r1) − rN−1

2 φ′(r2)w(r2) � 0,

getting a contradiction.
Suppose now thatw < 0 in (r0,∞). In that case we claim thatw′ > 0 in (r0,∞), taking if necessary a largerr0.

If there exists ar∗ such thatw′(r∗) = 0, then using the equation we have thatw′ > 0 in (r∗,∞). So we only need
to discard the casew′ < 0 in (r0,∞). In that casew satisfies

{w′rÑ+−1}′ = −rÑ+−1w

λ
in (r0,∞)

whereÑ+ = (λ(N − 1))/Λ+ 1. Let denote byg(r) = {w′rÑ+−1} we have thatg is monotone, then there exists
finite c1 < 0 such that limr→∞ g(r) = c1.

On the other hand, sincew′ < 0, there existsc2 ∈ [−∞,0) such that limr→∞ w(r) = c2, then from the equation
satisfied byw, we get that

lim
r→∞g′(r) = +∞.

That is a contradiction with limr→∞ g(r) = c1.
Define now

b(r) = rÑ−−1w′(r)
w(r)

, r ∈ (r0,∞),

hereÑ− = (Λ(N − 1))/λ+ 1.
Then we claim thatb satisfies,

b′ + b2

rÑ−−1
+ rÑ−−1

Λ
� 0. (3.21)

If w′′ > 0 thenb satisfies

b′ + b2

˜ − + rÑ−−1

= 0.

rN −1 λ
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Since 1
Λ

� 1
λ
, the claim follows in this case. Ifw′′ < 0 thenb satisfies

b′ + b2

rÑ−−1
+ rÑ−−1

Λ
= (Ñ− − N)b.

Finally, sinceÑ− − N � 0 andb < 0, the claim follows also in this second case.
Integrating (3.21) fromr0 to t > r0 we get

b(t) − b(r0) + t Ñ
−

Ñ−Λ
− rÑ−

0

Ñ−Λ
+

t∫
r0

b2

rÑ−−1
� 0. (3.22)

In particular we have

−b(t) � CtÑ
−
.

For someC > 0 andt large. Define now

k(t) =
t∫

r0

b2

rÑ−−1
.

Then, by the previous fact, we have

k(t) � ctÑ
−+2 for t and somec > 0. (3.23)

On the other hand from (3.22) andb < 0 we get

k(t) < −w(t),

or

k(t) < k′(t)t Ñ−+1, for t large.

The latter inequality implies

C

(
1

k(t)
− 1

k(s)

)
� 1

tN
−−2

− 1

sN−−2
(3.24)

for someC > 0 andt, s large witht < s. Lettings → ∞ and noting thatk(s) → +∞, we find

k(t) � AtN
−−2. (3.25)

However (3.23) and (3.25) are not compatible. This contradiction shows thatw must be oscillatory. �
Notice that the same proof holds when the initial conditions to the problem (3.19) arew(0)= −1, w′(0)= 0.
With these preliminaries we are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let denotewν the above solutions of (3.19) with initial conditionswν(0)= ±1 (here and
in the rest of the proofν ∈ {+,−}). From the previous lemma,wν has infinitely many zeros:

0< βν
1 < βν

2 < · · · < βν
k < · · · .

A standard Hopf type argument shows that they are all simple. Next we defineµν
k = (βν

k )2 of Theorem 1.2. Clearly
µ = µν

k is an eigenvalue of (1.3), withwν(βν
k ·), r ∈ [0,1], being the corresponding eigenfunction withk − 1 zeros

in (0,1). We claim that there is no radial eigenvalue of (1.3) other than theseµν ’s.
k
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Let µ be an eigenvalue of (1.3). Clearlyµ > 0. Let z(r) be the corresponding eigenfunction and supp
thatz(0) > 0, the uniqueness of solution to (3.19) implies thatz(r) = z(0)w+(µ1/2r). Moreover, sincez(1) = 0,
µ = (β+

k )2 for somek ∈ N, andz = z(0)w+. The same holds forz(0) <0. �
Below we will exhibit some properties of the eigenvalues distribution.

Lemma 3.2. For k ∈ N, k > 1 we haveµ−
k < µ+

k+1 andµ+
k < µ−

k+1.

Proof. We will prove the lemma in terms of the functionsw+ andw− defined above.
We claim that ifw+ has to change sign between two consecutive zeros ofw−, if w+ has the same sign ofw−.

Notice that this is weaker then the usual Sturm’s comparison result, since there is a additional sign restric
Suppose first by contradiction thatw−(r1) = w−(r2) = 0, w−(r) > 0 for all r ∈ (r1, r2) andw+(r) > 0 for

all r ∈ [r1, r2]. Let r3 < r1 < r2 < r4 be the next zeros ofw+, that is,w+(r3) = w+(r4) = 0, w+(r) > 0 for
all r ∈ (r3, r4). Then, the first half-eigenvalue inA1 := {r1 < |x| < r2} is µ+(A1) = 1 and first half-eigenvalu
in A2 := {r3 < |x| < r4} is µ+(A2) = 1. Define nowu(r) = w+(βr), with β > 1 such thatr4/β > r2. So,u is
a positive eigenfunction inA3 := {r3/β < |x| < r4/β} with eigenvalueµ+(A3) = β2. But A1 ⊂ A3, therefore
µ+(A1) = 1� µ+(A3) = β2 getting a contradiction. The same kind of argument can be used in the case whw−
negative in(r1, r2) andw+ negative in[r1, r2]. Hence, the claim follows.

In the two cases above we can invert the role ofw− andw+.
As a consequence of the previous facts, the lemma follows by examining the distribution of zeroesw+

andw−. �
Remark 3.1. The above lemma implies that in the caseβ+

k < β−
k , w+(r)w−(r) > 0 for all r ∈ (β+

k , β−
k ). The

same holds true in the caseβ+
k > β−

k .

Lemma 3.3. The gap between the two first half-eigenvalues is larger than that between the second ones:
µ−

1

µ+
1

�
µ−

2

µ+
2

.

Proof. Let ϕ+
2 andϕ−

2 the radial eigenfunctions ofM+
λ,Λ in B1, with corresponding eigenvaluesµ+

2 andµ−
2 .

Definer+ (resp.r−) as the first zeros ofϕ+
2 (resp.ϕ−

2 ). We claim thatr− � r+. Suppose by contradiction th
r− < r+. Define nowA+ = {x | r+ < |x| < 1} andA− = {x | r− < |x| < 1}, thenA+ ⊂ A−. Using the monotonic
ity with respect the domain of the first half-eigenvalues and Proposition 1.1(ii) we get

µ−
1 (A+) = µ+

2 � µ+
1 (A+) � µ+

1 (A−) = µ−
2 .

On the other handBr− ⊂ Br+ , thus by the same kind of argument

µ−
1 (Br−) = µ−

2 > µ−
1 (Br+) � µ+

1 (Br+) = µ+
2 .

Hence, we get a contradiction. So, the claim follows. Making a rescaling argument, so as in the proof o
rem 1.2, it follows that

(r+)2µ+
2 = µ+

1 and (r−)2µ−
2 = µ−

1 ,

which ends the proof. �
Next, we prove some preliminary results to prepare the proof of Theorem 1.4.
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Lemma 3.4. Assume thatµ+
k 	= µ−

k and that there existsr0 ∈ (0,1) such thatφ±(r) > 0 for all r ∈ (r0,1]. Then,
there exists a continuous functiong such that there is no solution to the problem

u′′ = M

(
− (N − 1)

r
m(u′) − µu + g

)
in [0, r0], (3.26)

and

u′′ � M

(
− (N − 1)

r
m(u′) − µu + g

)
in (r0,1], (3.27)

u′(0)= 0, u(1)= 0 (3.28)

for µ betweenµ+
k andµ−

k .

Remark 3.2. (1) Some ideas of the proof are in the book of P. Drábek [13].
(2) There is a similar non-existence result in the case when there existsr0 ∈ (0,1) such thatφ±(r) < 0 for all

r ∈ (r0,1] , replacing (3.27) by

u′′ � M

(
− (N − 1)

r
m(u′) − µu + g

)
in (r0,1], (3.29)

in the previous lemma.
(3) Let us denote byφ+ andφ− the solutions of (3.26) withr0 = 1 andg = 0 and respective initial condition

u′(0)= 0, u(0)= 1 andu′(0)= 0, u(0)= −1. Let us suppose thatµ is betweenµ+
k andµ−

k , then by Remark 3.1
we deduce thatφ+(1)φ−(1) > 0.

Proof. Consider then the particular case

φ±(r) > 0, φ′±(r) � 0 for all r ∈ (r0,1].
All other cases can be treated similarly.

Let g : [0,1] →R be a continuous function such thatg(r) = 0 for all r ∈ [0, r0] andg(r) > 0 for all r ∈ (r0,1].
Forα ∈ R, let ϕα be the solution to (3.26), (3.27) and (3.28) withϕα(0)= α. Forα > 0, we have

ϕα(r) = αφ+(r) for all r ∈ [0, r0],
since uniqueness holds wheng = 0. Putr1 = inf{r ∈ (r0,1); ϕα(r) = 0}. The interval(r0, r1) contains a pointτ1
such that[

ϕα

φ+

]′
(τ1) < 0.

If this is not the case,

ϕα(τ)

φ+(τ )
� ϕα(r0)

φ+(r0)
= α > 0, τ ∈ (r0, r1),

which is impossible. So, we obtain

(ϕ′
αφ+ − ϕαφ′+)(τ1) < 0.

Define

Gi(r) = rÑi−1(ϕ′
αφ+ − ϕαφ′+), i = 1,2,

whereÑ1 = N andÑ2 = Ñ+.
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Now we claim that there existsτ2, r0 � τ2 < τ1 such that

ϕ′
α(r) < 0 for all r ∈ (τ2, τ1) and Gi(τ2) � 0, i = 1,2.

If φ′
α(r) < 0 for all r ∈ (t0, τ1), sinceGi(r0) = 0, we conclude in this case by takingτ2 = r0. If not, we define

τ2 = sup{τ∈ [r0, τ1), |ϕ′
α(τ ) = 0}. Notice thatτ2 < τ1 andϕ′

α(τ1) < 0, soφ′
α(r) < 0 for all r ∈ (τ2, τ1). By the

definition ofτ2, ϕ′
α(τ2) = 0. Thus,Gi(τ2) > 0 and the claim follows. From the equation satisfied byφ+ we get

{rN−1φ′+}′ � rN−1

λ
[−µφ+] in (τ2, τ1), (3.30)

and

{rÑ+−1φ′+}′ � rÑ+−1

Λ
[−µφ+] in (τ2, τ1). (3.31)

Since ϕα is positive in (τ2, τ1), we obtain G′
1(r) � (rN−1/λ)g(r)φ+(r) > 0, if ϕ′′

α(r) < 0 and G′
2(r) �

(rÑ+−1/Λ)g(r)φ+(r) > 0, if ϕ′′
α(r) � 0 for all r ∈ (τ2, τ1).

The interval(τ2, τ1) can be splitted in subintervals(s, t) such thatGi(s) − Gi(t) = ∫ s

t
G′

i (τ )dτ >0, wherei is
well chosen. Using that ifGi(t) < 0, thenGj(t) < 0 for i 	= j , we get a contradiction.

For α = 0, ϕ(r) = 0, r ∈ [0, r0]. Then, we find an appropriate interval to argue as in the above case. Forα < 0
we haveϕα(r) = |α|φ1 for all r ∈ [0, r0] and the proof is quite analogous as forα > 0. All the above shows tha
there is no solution for (3.26), (3.27) and (3.28).�
Proposition 3.1. Let r > 0, λ̄ > 0, µ ∈ R. Then

degC
(
I − µL+

λ̄
,B(0, r),0

) =


1 if µ < µ+

1 (λ̄),

0 if µ+
k (λ̄) < µ < µ−

k (λ̄) or µ−
k (λ̄) < µ < µ+

k (λ̄),

(−1)k if µ+
k (λ̄) < µ < µ−

k+1(λ̄) or µ−
k (λ̄) < µ < µ+

k+1(λ̄),

hereC := {u ∈ C([0,1]) | u(1)= 0, u′(0)= 0}.

Remark 3.3. (1) Fork ∈ N, k > 1, we do not expect that in general

µ+
k � µ−

k ,

but this is an open problem.
(2) If µ+

k = µ−
k , the case degC(I − µL+

λ̄
,B(0, r),0)= 0 is not present in Proposition 3.1.

Proof. Assume first thatµ+
k (λ̄) < µ < µ−

k+1(λ̄) or µ−
k (λ̄) < µ < µ+

k+1(λ̄). The arguments used in the pro
of Lemma 2.3 implyµ±

j (λ) is a continuous function ofλ. Using Lemma 3.2 we find a continuous functi

ν : (0,Λ] → R such that max{µ+
k (λ),µ−

k (λ)} < ν(λ) < min{µ+
k+1(λ),µ−

k+1(λ)} andν(λ̄) = µ. The invariance of
the Leray–Schauder’s degree under compact homotopies implies

d(λ) = degC
(
I − ν(λ)L+

λ̄
,B(0, r),0

) = constant,

for λ ∈ (0,Λ]. In particulard(λ̄) = d(Λ) = (−1)k and the result follows. The caseµ < µ+
1 (λ̄) is proved in Propo-

sition 2.3. In the caseµ+
k (λ̄) < µ < µ−

k (λ̄) or µ−
k (λ̄) < µ < µ+

k (λ̄) we will prove, as in Proposition 2.3, tha
(I − µL+

λ̄
)(B(0, r)) is not a neighborhood of zero.

Suppose by contradiction that(I − µL+
λ̄
)(B(0, r)) is a neighborhood of zero. Then, for any smoothh with

‖h‖C([0,1]) small, there exists a solutionu to

u − µL+u = h.

λ̄
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for
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echnical,

) (2003)
In particular we can takeh being a solution to

M+
λ̄,Λ

(D2h) = ψ in Ω and h = 0 on∂Ω,

where‖ψ‖C([0,1]) > 0 is small enough. Then, by Lemma 2.2 and the definition ofL+
λ̄

, it follows thatu satisfies

M+
λ̄,Λ

(D2u) + µu � ψ in Ω.

Takingψ = −g (resp.ψ = g), whereg is a function of the type used in Lemma 3.4, we will get that−u (resp.u)
satisfies (3.26), (3.27) (resp. (3.29)) and (3.28). Thus, we get a contradiction with lemma 3.4 or Remark 3.2
degC(I − µL+

λ̄
,B(0, r),0)= 0 in this case, and the proof is finished.�

Proof of Theorem 1.4. Using the same argument as in Theorem 1.3, we obtain the existence of a “half-comp
C+

k ⊂ R × C([0,1]) of radially symmetric solutions to (1.10), whose closureC̄+
k contains(µ+

k ,0) and is either
unbounded or contains a point(µ±

j ,0), with j 	= k in the case ofµ+
j .

Let us first prove that if(µ, v) ∈ C+
k , it implies thatv is positive at the origin and possessesk − 1 zeros in(0,1).

Arguing as in the proof of Theorem 1.3, we find a neighborhoodN of (µ+
k ,0) such thatN ∩ C+

k ⊂ S+
k .

Moreover, ifu ∈ C1[0,1] is a solution to

u′′ = M

(
− (N − 1)

r
m(u′) − µu + f (u,µ)

)
in (0,1) (3.32)

and there existsr0 ∈ [0,1] such thatu(r0) = u′(r0) = 0, thenu ≡ 0.
Using this fact we can extend the previous local properties ofC+

k to all of it. Hence,C+
k must be unbounded.�
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