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Abstract

In this paper we construct single and multiple blowing-up solutions to the mean field equation:{
−�u = λ

V (x)eu∫
Ω V (x)eu in Ω,

u = 0 on ∂Ω,

whereΩ is a smooth bounded domain inR2, V is a smooth function positive somewhere inΩ andλ is a positive parameter.

Résumé

Dans ce papier nous construisons des solutions qui explosent pour l’équation de champ moyen :{
−�u = λ

V (x)eu∫
Ω V (x)eu in Ω,

u = 0 on ∂Ω,

oùΩ est un domaine borné dansR
2, V est une fonction positive dansΩ etλ est un paramètre positif.
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1. Introduction

We consider the problem:{−�u = λ
V (x)eu∫
Ω V (x)eu in Ω,

u = 0 on∂Ω,
(1.1)

whereΩ is a smooth bounded domain inR2, V is a smooth function positive somewhere inΩ andλ ∈ R is a
positive parameter.

This equation occurs in various context such as: conformal geometry (cf. [2]), statistical mechanics (cf.
and several other area of applied mathematics (cf. e.g. [6,13,23,34]). In statistical mechanics it is referre
“mean field equation”. In all those contexts, there is a definite interest to construct solutions which “blow-u
“concentrate” at a set of given points, whose location carries relevant information about the geometrical/p
properties of the problem under exam.

We are interested in finding solutionsuλ to (1.1) which blow-up atk different pointsq1, . . . , qk in Ω ′ along a
sequenceλ → 8πk, in the following sense:

λ
V (x)euλ∫
Ω

V (x)euλ
⇀ 8π

k∑
i=1

δqi
in the sense of measures in�Ω, (1.2)

whereδp denotes the Dirac measure atp. HereΩ ′ = {q ∈ Ω: V (q) > 0}.
In order to state some new and old results it is useful to introduce some notation. LetGΩ denote the Green’

function of−� with Dirichlet boundary condition onΩ, namely for anyy ∈ Ω it holds{−�xGΩ(x, y) = δy(x) if x ∈ Ω,

GΩ(x, y) = 0 if x ∈ ∂Ω,

and letHΩ(x, y) = GΩ(x, y) + 1
2π

log|x − y| be its regular part. We will refer toGΩ , HΩ simply asG andH

respectively when the dependence inΩ is not relevant.
First of all, let us point out that if infΩ V > 0, it is known that if the sequenceuλ is a family of solutions to (1.1

which is not uniformly bounded from above forλ bounded, thenuλ blows-up atk different pointsq1, . . . , qk in Ω

along a sequenceλ → 8πk and(q1, . . . , qk) is a critical point for the function:

F(ξ1, . . . , ξk) =
k∑

i=1

HΩ(ξi, ξi) +
k∑

i,j=1
i �=j

GΩ(ξi, ξj ) + 1

4π

k∑
i=1

logV (ξi) (1.3)

(cf. [8,22,28]; see also [35,38]). Secondly we note that, ifλ ∈ (0,8π) problem (1.1) admits a solutionumin,λ

corresponding to a global minimum point for the functional

Jλ(u) = 1

2

∫
Ω

|∇u|2 − λ log

(∫
Ω

V (x)eu

)
, u ∈ H1

0(Ω),

which is coercive by the Moser–Trudinger inequality (cf. [32,40]).
Let us consider the caseV (x) ≡ 1. In [9,10] the authors study the asymptotic behavior ofumin,λ asλ → 8π−,

and show that eitherumin,λ converges to a minimum ofJ8π or admits a single blow-up pointq ∈ Ω, corresponding
to a maximum point of the Robin’s functionHΩ(·, ·). They observe that both possibilities can occur. For insta
if Ω is a disk or a simply connected domain sufficiently close to a disk, then concentration does occur asλ → 8π−.

On the contrary, there are simply connected regions (for instance, rectangles with large ratio between t
for which concentration cannot occur, asλ → 8π−. We also mention that Suzuki in [39] proves that the solut
of (1.1) is unique whenλ ∈ (0,8π) andΩ is a simply connected domain. Ifλ � 8π the situation becomes mo
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complex. As well known (see [4]), ifΩ is the unit disk andλ � 8π, then there are no solutions to (1.1). In [4
the author constructs a sequence of solutions on simply connected domains “blowing-up” at a critical poin
Robin’s function (see also [29,30] and [31] for similar results in a more general setting). Non-simply con
domains are considered in [19].

The general case concerning the existence of solutions with multiple blow-up points so far has been trea
by Baraket–Pacard in [5]. They prove that any nondegenerate critical point(q1, . . . , qk) of the functionF defined
in (1.3) generates a family of solutionsuλ which blow-up atq1, . . . , qk asλ → 8πk. In [21] the author extend
the previous result by allowing a general weight functionV (x). We are aware of only another successful appro
to handle multiple peak blow-up solutions which has been introduced by Chen and Lin in [16] for the an
A general degree formula for the corresponding Fredholm map can be found in [15].

Perturbative problems with exponential nonlinearities in dimension two seem to be much more difficult
dle (beside [5], see also [11,12] and [36]) in contrast to similar problems in higher dimensions. Baraket–P
method is too demanding in terms of assumptions (the non-degeneracy of the critical point) and functiona
work, and pays in return with a very accurate control on the asymptotics of the solutions. Instead, in th
of some perturbation methods available in higher dimension (see e.g. [3] and [37]), we propose an alt
approach to the existence of blowing-up solutions by introducing for our problem a perturbation setting
spaceH 1

0 (Ω). This more flexible approach allows to replace the non-degeneracy assumption of Baraket–
by showing that “stable” (in a suitable sense) critical points of the functionF in (1.3) generate solutions for (1.1
which blow-up at those points. It is important to point out that this “weaker” stability of critical points enab
to construct some domains where a large number of blowing-up solutions exists.

Let us state now the main results of the paper. RecallΩ ′ = {q ∈ Ω: V (q) > 0} and let∆ = {(q1, . . . , qk) ∈
Ωk :qi = qj for somei �= j}.

Theorem 1.1.Assume thatK is a stable critical set forF in (Ω ′)k \ ∆ (see(1.3)and Definition5.1). Then there
exists a family of solutions of(1.1)which blow-up at pointsq1, . . . , qk with the property(q1, . . . , qk) ∈ K, along a
sequenceλ → 8πk, in the sense that(1.2)holds.

In Section 5 we takeV (x) ≡ 1 and we exhibit some simply connected domains where many solutions to
blowing-up at one or more points exist: see Theorems 5.4, 5.5 and Corollary 5.6. This result is in striking c
with Suzuki’s uniqueness result [39] for the caseλ < 8π.

As a consequence of Theorem 1.1, changing sign weight functionsV (x) generate many solutions as we sh
in the following result:

Theorem 1.2.Let Ω ′
1, . . . ,Ω

′
ν be the connected components ofΩ ′ in Ω. Then there exist at leastν families of

solutions of(1.1)which blow-up at a maximum pointξi of the functionF in Ω ′
i for i = 1, . . . , ν, along a sequenc

λ → 8π, in the sense that(1.2)holds.

As far as it concerns the existence of solutions blowing-up at a point whenV (x) ≡ 1, we would like also to
quote the following existence result:

Theorem 1.3.Let V (x) ≡ 1. Assume thatc is a stable critical value for the Robin’s functionHΩ(·, ·) (see De-
finition 6.1). Then there exists a family of solutions of(1.1) which blow-up at a pointq with the properties
HΩ(q, q) = c and∇HΩ(q, q) = 0, along a sequenceλ → 8π, in the sense that(1.2)holds.

It allows to find solutions blowing-up at critical points of the Robin’s function of “saddle-type”, which a p
are not stable according to Definition 5.1. In Section 6 we exhibit some domains where this kind of so
appears: see Theorems 6.2 and 6.3.
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Let us sketch the main ideas involved in the proof. A crucial role in the construction of our solution is p
by the problem:{−�U = ρ2 eU in R

2,∫
R2 eU < +∞,

(1.4)

whereρ �= 0 is a fixed parameter. In [14] (see also the Liouville representation formula in [27]) it is shown th
the solutions to (1.4) take the form:

Uτ,ξ (x) = log
8τ2

(τ2ρ2 + |x − ξ |2)2
, x ∈ R

2, (1.5)

for τ > 0 andξ ∈ R
2. Following Bahri’s idea (see [3] and also [37]) we look for solutions to (1.1) in the form

u(x) =
k∑

i=1

PUτλ,i ,ξλ,i
(x) + φλ(x)

for suitable positive parametersτλ = (τλ,1, . . . , τλ,k) and pointsξλ = (ξλ,1, . . . , ξλ,k). Here, the remainder termφλ

goes to zero in H10(Ω) asλ goes to 8πkandPUτ,ξ denotes the projection ofUτ,ξ into H1
0(Ω), in other words,

PUτ,ξ is uniquely defined as satisfying:{−�PUτ,ξ = −�Uτ,ξ = ρ2 eUτ,ξ in Ω,

PUτ,ξ = 0 on∂Ω.
(1.6)

In order to determineτλ and ξλ in Section 4 we reduce the problem to a finite dimensional one. Altho
this problem has many similarities to equations with critical growth in smooth domains ofR

N , N � 3, our proof
displays important differences. First of all, we point out that the parameterτλ will be a priori prescribed in terms
of the pointξλ (see formula (2.6)). An important consequence is that the functionφλ will be found in a space o
codimension 2k.We recall that the standard procedure in elliptic problems involving the critical Sobolev exp
takes place in spaces of codimension(N +1)k. This different choice of the space will require delicate computat
in order to establish some invertibility property of the corresponding linearized operator, which plays a cruc
in the finite dimensional reduction. This analysis will be carried out in Section 3. In Section 4 we study the r
problem and give the expansion of the functional associated to the problem (1.1). We have collected some
computations in Appendix A, B, C, D.

We learnt that related results to this paper have been proved at the same time, independently and using
arguments by Del Pino, Kowalczyk and Musso (see [17]).

2. Setting of the problem

In order to prove the existence of blow-up solutions to (1.1), we will consider the problem:{−�u = ρ2V (x)eu in Ω,

u = 0 on ∂Ω,
(2.1)

and seek solutions such that

ρ2V (x)eu ⇀ 8π

k∑
i=1

δqi
in the sense of measures in�Ω, asρ → 0,

for some pointq = (q1, . . . , qk) ∈ (Ω ′)k \ ∆. Via the transformationρ2 = λ/(
∫
Ω

V (x)eu) it is possible to show
that for concentrating solutions problem (2.1) is equivalent to (1.1).

It will be useful to rewrite problem (2.1) in a more convenient setting. For this purpose, let us introdu
following definition.
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Definition 2.1. For p > 1, let i∗p : Lp → H1
0(Ω) be the adjoint operator relative to the immersioni : H1

0(Ω) ↪→
L

p
p−1 (Ω) and leti∗ :

⋃
p>1 Lp → H1

0(Ω) be defined by the propertyi∗|Lp = i∗p for anyp > 1.

By definition,v = i∗(u) holds if and only if

(v,ϕ) =
∫
Ω

uϕ dx, ∀ϕ ∈ H1
0(Ω),

and the following estimate holds:

Lemma 2.2.For anyp > 1 there existscp > 0 such that∥∥i∗(u)
∥∥� cp‖u‖p

L , ∀u ∈ H1
0(Ω).

H1
0(Ω) is an Hilbert space equipped with the usual inner product

(u, v) =
∫
Ω

∇u∇v dx

and induced norm

‖u‖ =
(∫

Ω

|∇u|2 dx

)1/2

.

Next, we recall the Moser–Trudinger inequality (cf. [32,40]):

Lemma 2.3.There exists a constantc > 0 such that for any smooth bounded domainΩ ⊂ R
2 we have:∫

Ω

e
4πu2/‖u‖2

H1
0 � c|Ω|, ∀u ∈ H1

0(Ω).

In particular, by Lemma 2.3 we deduce the following useful estimate:

Remark 2.4.There exists a constantc > 0 such that for anyη > 0,∫
Ω

eηu � c|Ω|e
η2

16π
‖u‖2

H1
0 , ∀u ∈ H1

0(Ω).

In particular, the map:

H1
0(Ω) → Lp(Ω),

u → eu

is continuous for everyp > 1 and we can rewrite problem (2.1) in the following equivalent form:{
u = i∗(ρ2V (x)eu) in Ω,

u ∈ H1
0(Ω).

(2.2)

Let PUτ,ξ be the projection onto H10(Ω) of Uτ,ξ (see (1.5), (1.6)). Thus, by Definition 2.1 we have

PUτ,ξ := i∗(ρ2 eUτ,ξ ).
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of

to an
We are looking for solutions to (2.2) of the form

u(x) =
k∑

i=1

PUτρ,i ,ξρ,i
(x) + φρ(x)

for suitable positive parametersτρ = (τρ,1, . . . , τρ,1) and pointsξρ = (ξρ,1, . . . , ξρ,k). The remainder termφρ

belongs to a suitable space which will be defined as follows. Let

ψ0
τ,ξ (x) = ∂Uτ,ξ

∂τ
(x) = 2

τ

|x − ξ |2 − τ2ρ2

|x − ξ |2 + τ2ρ2
, x ∈ Ω, (2.3)

and forj = 1,2 let

ψ
j
τ,ξ (x) = ∂Uτ,ξ

∂ξj

(x) = 4
(x − ξ)j

τ2ρ2 + |x − ξ |2 , x ∈ Ω. (2.4)

Forj = 0,1,2, the functionψj
τ,ξ is a solution for the equation−�ψ = ρ2 eUτ,ξ ψ in R

2. LetPψ
j
τ,ξ be the projection

into H1
0(Ω) of ψ

j
τ,ξ , i.e.{

−�Pψ
j
τ,ξ = ρ2eUτ,ξ ψ

j
τ,ξ in Ω,

Pψ
j
τ,ξ = 0 on∂Ω.

(2.5)

For anyξ = (ξ1, . . . , ξk) ∈ (Ω ′)k \ ∆, set

τi(ξ) =
√

V (ξi)

8
e4π(HΩ(ξi ,ξi )+∑

j �=i GΩ(ξi ,ξj ))
. (2.6)

SetUi = Uτi(ξ),ξi
andψ

j
i := ψ

j

τi(ξ),ξi
for j = 0,1,2, i = 1, . . . , k andξ ∈ (Ω ′)k \ ∆. We consider the subspace

H1
0(Ω):

Kξ = span{Pψ
j
i , j = 1,2, i = 1, . . . , k},

and its complement

K⊥
ξ = {

φ ∈ H1
0(Ω) | (φ,Pψ

j
i ) = 0, j = 1,2, i = 1, . . . , k

}
,

and consider the corresponding orthogonal projections:

Πξ : H1
0(Ω) → Kξ and Π⊥

ξ : H1
0(Ω) → K⊥

ξ .

3. The linear problem: a key lemma

Let us introduce the linear operatorL
ρ
ξ :K⊥

ξ → K⊥
ξ defined as follows:

L
ρ
ξ (φ) = Π⊥

ξ

{
φ − i∗

[
ρ2V (x)e

∑k
i=1 PUi φ

]}
.

In order to solve Eq. (4.1), a crucial ingredient is given by the following result, which is similar in spirit
invertibility property established in [11]:

Proposition 3.1.Let ξ ∈ (Ω ′)k \∆. There existsρ0 > 0 and a constantc > 0 such that for anyρ ∈ (0, ρ0) we have∥∥Lρ
ξ (φ)

∥∥� c

|logρ| ‖φ‖, ∀φ ∈ K⊥
ξ .

In particular, the operatorLρ
ξ is invertible and‖(Lρ

ξ )−1‖ � | logρ|/c.

Moreover, the estimates are uniform in compact sets of(Ω ′)k \ ∆.
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e.

r’s
Proof. We need only to establish the validity of the following estimate:∥∥Lρ
ξ (φ)

∥∥� c

|logρ| ‖φ‖ ∀φ ∈ K⊥
ξ , (3.1)

for some uniform constantc > 0. Indeed, by (3.1) we deduce thatL
ρ
ξ is an injective operator with closed imag

SinceL
ρ
ξ is selfadjoint, we also conclude that it is onto and its inverse(L

ρ
ξ )−1 satisfies‖(Lρ

ξ )−1‖ � | logρ|/c.
To prove (3.1), we argue by contradiction. Suppose there exist sequences

ρ → 0, ξ → ξ0 ∈ (Ω ′)k \ ∆, φ ∈ K⊥
ξ : ‖φ‖ = 1 and

∥∥Lρ
ξ (φ)

∥∥= o

(
1

|logρ|
)

. (3.2)

Write,

φ − i∗
[
ρ2V (x)e

∑k
i=1 PUi φ

]= ψ + w, (3.3)

whereψ ∈ K⊥
ξ , w ∈ Kξ and‖ψ‖ = o(1/| logρ|) → 0. Equivalently (in a weak sense), there holds{

−�φ = ρ2V (x)e
∑k

i=1 PUi φ − �(ψ + w) in Ω,

φ = 0 on ∂Ω.

Step 1.For anyp ∈ (1,2),

‖w‖ = O
(
ρ(2−p)/p

)→ 0. (3.4)

Let w =∑k
h=1

∑2
l=1 chlPψl

h. We multiply (3.3) byPψ
j
s , j = 1,2 ands = 1, . . . , k, and get

k∑
h=1

2∑
l=1

chl

(
Pψl

h,Pψ
j
s

)
H1

0
= −ρ2

∫
Ω

V (x)e
∑k

i=1 PUi φPψ
j
s . (3.5)

By Lemma A.4 the L.H.S. of (3.5) is estimated as follows:

L.H.S.= D

τ2ρ2
csj + O

(
k∑

h=1

2∑
l=1

|chl |
)

. (3.6)

Moreover, the R.H.S. of (3.5) takes the form:

−ρ2
∫
Ω

V (x)e
∑k

i=1 PUi φPψ
j
s

=
∫
Ω

[
ρ2

k∑
i=1

eUi − ρ2V (x)e
∑k

i=1 PUi

]
φPψ

j
s − ρ2

∫
Ω

eUs φ[Pψ
j
s − ψ

j
s ] − ρ2

∑
i �=s

∫
Ω

eUiφPψ
j
s , (3.7)

where we have used (2.5) andφ ∈ K⊥
ξ . Fix p ∈ (1,2) and use Lemmata A.4 and B.1, together with Hölde

inequality (here 1/q + 1/p <1), to get∣∣∣∣∣
∫
Ω

[
ρ2V (x)e

∑k
i=1 PUi − ρ2

k∑
i=1

eUi

]
φPψ

j
s

∣∣∣∣∣
�
∥∥∥∥∥ρ2V (x)e

∑k
i=1 PUi − ρ2

k∑
eUi

∥∥∥∥∥ ‖φ‖Lq ‖Pψ
j
s ‖ = O(ρ2(1−p)/p). (3.8)
i=1 Lp
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-

Using Lemma A.2, Proposition A.3 and Hölder’s inequality (with 1/q + 1/p = 1), we get,∣∣∣∣ρ2
∫
Ω

eUs φ[Pψ
j
s − ψ

j
s ]
∣∣∣∣= O

(
‖ρ2 eUs ‖Lp‖φ‖Lq

)
= O(ρ2(1−p)/p). (3.9)

Using Lemma C.6 and Hölder’s inequality (with 1/q+ 1/p = 1), we obtain,∣∣∣∣ρ2
∑
i �=s

∫
Ω

eUi φPψ
j
s

∣∣∣∣= O

(∑
i �=s

‖ρ2 eUi Pψ
j
s ‖Lp‖φ‖Lq

)
= O(ρ2/p). (3.10)

Then, by (3.7)–(3.10) it follows that the R.H.S. of (3.5) satisfies:

R.H.S.= O(ρ2(1−p)/p). (3.11)

Inserting the estimates (3.6) and (3.11) into (3.5), we deduce that

k∑
h=1

2∑
l=1

|chl | = O(ρ2/p). (3.12)

Finally, by Lemma A.4 and by (3.12) we deduce that

‖w‖ = O(ρ(2−p)/p) → 0,

and claim (3.4) is proved.
Step 2.For anyi = 1, . . . , k

(φ,Pψ0
i )H1

0
→ 0. (3.13)

Let i = 1, . . . , k. Note that, forτi > 0 andξi ∈ Ω , the functions

wi(x) = 4

3τi
log

(
τ2
i ρ2 + |x − ξi |2

)τ2
i ρ2 − |x − ξi |2

τ2
i ρ2 + |x − ξi |2

+ 8

3

τiρ
2

τ2
i ρ2 + |x − ξi |2

and

ti (x) = −2
τiρ

2

τ2
i ρ2 + |x − ξi |2

satisfy:−�wi − ρ2 eUτi ,ξi wi = ρ2 eUτi ,ξi ψ0
τi ,ξi

and−�ti − ρ2 eUτi ,ξi ti = ρ2 eUτi ,ξi in R
2 respectively. A straight

forward calculation shows that,∫
Ω

|∇wi |2 = M2
i

(
1+ o(1)

)
(logρ)2,

∫
Ω

|∇ti |2 = O(1) asρ → 0 (3.14)

with Mi = 32
3τi

(
∫

R2
|y|2

(1+|y|2)4 )1/2, and (3.14) holds uniformly in dist(ξi, ∂Ω) � ε, ε > 0, andτi bounded away from
zero.

Let nowτi = τi(ξ) andξ as specified in (3.2). The projectionPui ∈ H1
0(Ω) of the function

ui = wi + 16π

3τi
H(ξi, ξi)ti

satisfies

−�Pui − ρ2V (x)e
∑k

h=1 PUhPui = ρ2 eUi ψ0
i − ρ2

∑
eUh

16π

3τi
G(ξh, ξi) + Fi,
h�=i
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how that
where

Fi(x) = −16π

3τi

(
H(x, ξi) − H(ξi, ξi)

)
ρ2 eUi +

(
ui − Pui + 16π

3τi
H(x, ξi)

)
ρ2 eUi

+
(

ρ2
k∑

h=1

eUh − ρ2V (x)e
∑k

h=1 PUh

)
Pui + ρ2

∑
h�=i

eUh

(
16π

3τi
G(ξh, ξi) − Pui

)
. (3.15)

Sinceui − Pui + 16π
3τi

H(x, ξi) is an harmonic function with boundary values satisfying∥∥∥∥ui − Pui + 16π

3τi
H(x, ξi)

∥∥∥∥
2,α,∂Ω

� Cρ2

for anyα ∈ (0,1), by elliptic regularity theory it follows that∥∥∥∥ui − Pui + 16π

3τi
H(x, ξi)

∥∥∥∥
2,α,Ω

� Cρ2

for anyα ∈ (0,1). Hence, we get that

Pui(x) = 16π

3τi
G(x, ξi) + O(ρ2) in C0

loc

(�Ω \ {ξi}
)
, (3.16)

‖Pui‖ = Mi

(
1+ o(1)

)| logρ|, (3.17)

and by means of Lemmata A.2, B.1, from (3.15) we deduce thatfi = i∗(Fi) satisfies:

‖fi‖ = o(1), asρ → 0.

Therefore,

Pui − i∗
(
ρ2V (x)e

∑k
h=1 PUhPui

)= Pψ0
i − 16π

3τi

∑
h�=i

G(ξh, ξi)PUh + fi (3.18)

with ‖fi‖ → 0. Multiply (3.3) byPui and use (3.18) to obtain:

(φ,Pψ0
i )H1

0
= 16π

3τi

∑
h�=i

G(ξh, ξi)(φ,PUh)H1
0
+ o

( ‖Pui‖
| logρ|

)
+ o(1)

= 16π

3τi

∑
h�=i

G(ξh, ξi)(φ,PUh)H1
0
+ o(1),

where we have taken in account (3.2), (3.17) and the estimate in Step 1. In conclusion, we need to s
(φ,PUh)H1

0
= o(1) for anyh = 1, . . . , k. Multiply (3.3) byPψ0

i and use Lemmata A.4, B.1 to obtain:

ρ2
∫
Ω

eUi φ(ψ0
i − Pψ0

i ) = ρ2
∑
h�=i

∫
Ω

eUhφPψ0
i + o(1).

By (A.3), (A.4) and Lemmata A.2, A.4, finally we deduce that

(φ,PUi)H1
0
= ρ2

∫
Ω

eUi φ = o(1),

and (3.13) is completely established.
Define the spaces
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rth
L :=
{
Φ:

∥∥∥∥ Φ

1+ |y|2
∥∥∥∥

L2(R2)

< +∞
}
,

H :=
{
Φ: ‖∇Φ‖L2(R2) +

∥∥∥∥ Φ

1+ |y|2
∥∥∥∥

L2(R2)

< +∞
}

endowed respectively with the norm‖Φ‖L = ‖Φ/(1+ |y|2)‖L2(R2) and‖Φ‖H = (‖∇Φ‖2
L2(R2)

+ ‖Φ‖2
L)1/2. If S2

denotes the unit sphere inR3 with the standard metric andπN is the stereographic projection through the no
pole, let us point out that the mapΦ → Φ ◦ πN is an isometry from L toL2(S2) and from H toH 1(S2). Hence,
by the compactness of the embeddingH 1(S2) ↪→ L2(S2), we get the compactness of the embedding H↪→ L.

Assume thatξ ∈Oε for someε > 0, where

Oε = {
(q1, . . . , qk) ∈ Ωk: dist(qi, ∂Ω) � 2ε, |qi − qj | � 2ε for i �= j

}
.

Let χ :R → [0,1] be a smooth cut-off function such thatχ(x) = 1 if |x| � ε/2, χ(x) = 0 if |x| � ε. For any
i = 1, . . . , k set

φ̃i (y) = φi(y)χi(y), y ∈ Ωi := Ω − ξi

τiρ
,

whereφi(y) = φ(τiρy + ξi) andχi(y) = χ(τiρy). We will always consider̃φi extended to be zero outsideΩi .
Step 3.For anyi = 1, . . . , k

φ̃i ⇀ 0 weakly inH. (3.19)

First of all, we remark that the functioñφi satisfies (in a weak sense),{−�φ̃i = ai(y)φ̃i − �z̃i + ṽi in Ωi,

φ̃i = 0 on∂Ωi,
(3.20)

where

ai(y) = τ2
i ρ4V (τiρy + ξi)e

∑k
h=1 PUh(τiρy+ξi ),

z̃i (y) = zi(y)χi(y), zi(y) = (ψ + w)(τiρy + ξi),

ṽi(y) = −�χi(y)(φi − zi) − 2∇χi(y)∇(φi − zi).

Observe that by Lemma B.1 we have,

ρ2
k∑

h=1

∫
Ω

eUhφ2 = ρ2
∫
Ω

V (x)e
∑k

h=1 PUhφ2 + O

(∫
Ω

∣∣∣∣∣ρ2
k∑

h=1

eUh − ρ2V (x)e
∑k

h=1 PUh

∣∣∣∣∣φ2

)

= ρ2
∫
Ω

V (x)e
∑k

h=1 PUhφ2 + o(1). (3.21)

Multiplying (3.3) byφ, we obtain that

ρ2
∫
Ω

V (x)e
∑k

h=1 PUhφ2 =
∫
Ω

|∇φ|2 −
∫
Ω

∇ψ∇φ = O(1). (3.22)

By (3.21), (3.22) we get that̃φi is bounded in H, since∫
i

|∇φ̃i |2 = O

(∫
|∇φ|2

)
= O(1)
Ω Ω
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si-

),

r

and ∫
Ωi

(φ̃i(y))2

(1+ |y|2)2
dy = ρ2

8

∫
Ω

eUi φ2χ2(x − ξi) = O(1).

Hence, we can assume (up to a subsequence) thatφ̃i ⇀ φi
0 in H and strongly in L. On the other hand, by Propo

tion A.1 it follows that

ai(y) = V (τiρy + ξi)

τ2
i (1+ |y|2)2

e8π(H(τiρy+ξi ,ξi )+∑
h�=i G(τiρy+ξi ,ξh))+O(ρ2) → 8

(1+ |y|2)2
(3.23)

uniformly on compact sets ofR2. Furthermore,

‖∇ z̃i‖2
L2(R2)

= O

(∫
Ω

|∇ψ |2 + |∇w|2
)

→ 0 (3.24)

and, for anyΨ ∈ C∞
0 (R2) we have,∫

R2

ṽiΨ =
∫
Ω

[−�χ(x − ξi)(φ − ψ − w)(x) − 2∇χ(x − ξi)∇(φ − ψ − w)(x)
]
Ψ

(
x − ξi

τiρ

)
dx = 0 (3.25)

if ε/(2τiρ) � dist(SuppΨ,0). Finally, for j = 1,2 we see that,∫
R2

|y|2 − 1

(|y|2 + 1)3
φi

0 dy =
∫
R2

yj

(|y|2 + 1)3
φi

0 dy = 0. (3.26)

Indeed,

16

τi

∫
R2

|y|2 − 1

(1+ |y|2)3
φ̃i dy = ρ2

∫
Ω

eUi ψ0
i φχ(x − ξi) = (φ,Pψ0

i )H1
0
+ O(ρ2) → 0

(by Step 2), and the orthogonality conditions give,

32
∫
R2

yj

(1+ |y|2)3
φ̃i dy = τiρ

3
∫
Ω

eUi ψ
j
i φχ(x − ξi) = O(ρ3) → 0, j = 1,2,

and so (3.26) follows by observing thatφ̃i/(1+ |y|2) → φi
0/(1+ |y|2) in L2(R2). In conclusion, by (3.20)–(3.23

(3.25) we obtain thatφi
0 ∈ H is a (distributional) solution for

−�φi
0 = 8

(1+ |y|2)2
φi

0 in R
2 (3.27)

satisfying:∫
R2

|y|2 − 1

(|y|2 + 1)3
φi

0 dy =
∫
R2

yj

(|y|2 + 1)3
φi

0 dy = 0 for j = 1,2.

The isometry betweenH andH 1(S2) and elliptic regularity theory (see [24]) imply thatφi
0 is actually a regula

solution of (3.27). By Lemma D.1 we get that necessarilyφi
0 = 0 and (3.19) is established.

Step 4.A contradiction arises!
By the compactness of the embeddingL ↪→ H , we have that̃φi → 0 in L for any i= 1, . . . , k. By (3.21) and

‖ψ‖ = o(1) we have,
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at for

e

m

ρ2
∫
Ω

V (x)e
∑k

i=1 PUi φ2 +
∫
Ω

∇ψ∇φ = ρ2
k∑

i=1

∫
Ω

eUi φ2χ2(x − ξi) + o(1)

=
k∑

i=1

∫
R2

8

(1+ |y|2)2
(φ̃i)2 dy + o(1)→ 0,

in contradiction with the relation:

1=
∫
Ω

|∇φ|2 = ρ2
∫
Ω

V (x)e
∑k

i=1 PUi φ2 +
∫
Ω

∇ψ∇φ.

This completes the proof of Proposition 3.1.�
Remark 3.2.Let us remark that the result in Proposition 3.1 is “sharp" in the sense that in [22] it is shown th
k = 1 we have also‖(Lρ

ξ )−1‖ � c1|logρ| for some positive constantc1 < c.

4. The reduced problem and the functional expansion

Our first goal will be to prove that, for anyρ > 0 small enough and for any pointξ ∈ (Ω ′)k \ ∆, there exists
φ

ρ
ξ ∈ K⊥

ξ such that

Π⊥
ξ

[
k∑

i=1

PUi + φ
ρ
ξ − i∗

(
ρ2V (x)e

∑k
i=1 PUi+φ

ρ
ξ
)]= 0. (4.1)

Proposition 4.1.Let ξ = (ξ1, . . . , ξk) in a compact set of(Ω ′)k \ ∆ and τi = τi(ξ) be given in(2.6). For any
p ∈ (1, 4

3) there existsρ0 > 0 and R > 0 (uniformly in ξ ) such that for anyρ ∈ (0, ρ0) there exists a uniqu
φ

ρ
ξ ∈ K⊥

ξ such that

Π⊥
ξ

[
k∑

i=1

PUi + φ
ρ
ξ − i∗

(
ρ2V (x)e

∑k
i=1 PUi+φ

ρ
ξ
)]= 0 (4.2)

and

‖φρ
ξ ‖ � Rρ(2−p)/p|logρ|. (4.3)

Proof. According to Proposition 3.1, forρ small (L
ρ
ξ )−1 is a linear operator fromK⊥

ξ into itself such that

‖(Lρ
ξ )−1‖ � c2| logρ| uniformly in ξ . Let us point out thatφ is a solution of (4.2) if and only if it is a fixed

point of the operatorT ρ
ξ :K⊥

ξ → K⊥
ξ defined by

T
ρ
ξ (φ) = [

(L
ρ
ξ )−1 ◦ Π⊥

ξ ◦ i∗
]
M

ρ
ξ (φ),

M
ρ
ξ (φ) = ρ2V (x)e

∑k
i=1 PUi [eφ − 1− φ] +

[
ρ2V (x)e

∑k
i=1 PUi − ρ2

k∑
i=1

eUi

]
.

We prove that, forρ small enough andR large enough (but independent ofρ), T
ρ
ξ defines a contraction map fro

{‖φ‖ � Rρ(2−p)/p| logρ|} into itself.
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uce
Let us fix somer > 1 such thatr(3p − 2) < 2. By Lemma 2.2 and Proposition 3.1 we have that‖T ρ
ξ (φ)‖ �

C| logρ|‖Mρ
ξ (φ)‖p

L . Consequently, by Lemmata B.1, B.2 we deduce,

∥∥T ρ
ξ (φ)

∥∥� C|logρ|
[∥∥ρ2V (x)e

∑k
i=1 PUi (eφ − 1− φ)

∥∥p

L +
∥∥∥∥∥ρ2V (x)e

∑k
i=1 PUi − ρ2

k∑
i=1

eUi

∥∥∥∥∥
p

L

]
� C′‖φ‖2 ec2‖φ‖2

ρ2(1−pr)/(pr)|logρ| + C′ρ(2−p)/p|logρ|.
Hence, forR suitably large we get that

‖φ‖ � Rρ(2−p)/p|logρ| ⇒ ∥∥T ρ
ξ (φ)

∥∥� Rρ(2−p)/p|logρ| (4.4)

for ρ > 0 sufficiently small. Similarly, by Lemma B.2 we deduce∥∥T ρ
ξ (φ1) − T

ρ
ξ (φ2)

∥∥� C|logρ|∥∥ρ2V (x)e
∑k

i=1 PUi
[
eφ1 − eφ2 − (φ1 − φ2)

]∥∥p

L

� C′ρ(2+(2−3p)r)/(pr)(logρ)2‖φ1 − φ2‖ � L‖φ1 − φ2‖ (4.5)

for someL < 1, providedρ > 0 is small enough. By (4.4) and (4.5) we get thatT
ρ
ξ is a contraction map from

{‖φ‖ � Rρ(2−p)/p|logρ|} into itself for everyρ ∈ (0, ρ0), providedρ0 > 0 is sufficiently small. �
Let us introduce the functionalEρ : H1

0(Ω) → R defined by

Eρ(u) = 1

2

∫
Ω

|∇u|2 − ρ2
∫
Ω

V (x)eu. (4.6)

We have the following expansion:

Proposition 4.2.Let Ẽρ(ξ) := Eρ(
∑k

i=1 PUτi(ξ),ξi
+ φ

ρ
ξ ). It holds

Ẽρ(ξ) = (−16π logρ + 24π log 2− 8π(k + 1)
)− 32π2F(ξ) + o(1) (4.7)

asρ → 0, C1−uniformly in compact sets of(Ω ′)k \ � (see(1.3)).

Proof. SetPUi := PUτi(ξ),ξi
andφ := φ

ρ
ξ . It holds

Ẽρ(ξ) = 1

2

∫
Ω

∣∣∣∇(∑
PUi + φ

)∣∣∣2 − ρ2
∫
Ω

V (x)e
∑k

i=1 PUi+φ

= 1

2

(∑
i

∫
Ω

|∇PUi |2 +
∑
i �=j

∫
Ω

∇PUi∇PUj

)
− ρ2

∫
Ω

V (x)e
∑k

i=1 PUi

+ 1

2

(∫
Ω

|∇φ|2 +
∑

i

∫
Ω

∇φ∇PUi

)
− ρ2

∫
Ω

V (x)
(
e
∑k

i=1 PUi+φ − e
∑k

i=1 PUi
)
. (4.8)

By the inequality|es − 1|� e|s||s| for anys ∈ R and arguing as in Lemma B.2 we obtain∣∣∣∣ρ2
∫
Ω

V (x)
(
e
∑k

i=1 PUi+φ − e
∑k

i=1 PUi
)∣∣∣∣= O

(
ρ2
(∫

Ω

er
∑k

i=1 PUi

)1/r(∫
Ω

es|φ|
)1/s

‖φ‖Lt

)
= o(1) (4.9)

for r > 1 sufficiently close to 1 and1
r

+ 1
s

+ 1
t
= 1 (using (4.3)). By Lemmata C.1, C.2 and (4.8), (4.9) we ded

that expansion (4.7) holdsC0-uniformly in compact sets of(Ω ′)k \ �.
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To conclude, let us make some remarks:
– as a consequence of (4.2) we have that,

k∑
i=1

PUi + φ − i∗
(
ρ2V (x)e

∑k
i=1 PUi+φ

)=
k∑

i=1

2∑
j=1

c
ρ
ijPψ

j
i , (4.10)

for some coefficientscρ
ij . Inserting (4.10) into (C.15), by Lemma A.4 we deduce that

k∑
i=1

2∑
j=1

|cρ
ij | = O(ρ2); (4.11)

– the mapξ → φ = φ
ρ
ξ is aC1-function as it follows by the IFT applied to the equation

F(ξ,u) := Π⊥
ξ

[
k∑

i=1

PUi + Π⊥
ξ u − i∗

(
ρ2V (x)e

∑k
i=1 PUi+Π⊥

ξ u)]+ Πξu = 0.

Indeed,F(ξ,φ) = 0 and the linearized operator:

∂F

∂u
(ξ,φ) = Π⊥

ξ

[
Id−i∗

(
ρ2V (x)e

∑k
i=1 PUi+φΠ⊥

ξ

)]+ Πξ (4.12)

is invertible forρ small. In fact, by (4.3) and arguing as in Lemma B.2, it is easy to derive the estimate,∥∥Π⊥
ξ i∗

(
ρ2V (x)e

∑k
i=1 PUi (eφ − 1)Π⊥

ξ

)∥∥∥∥(Lρ
ξ )−1

∥∥< 1,

for ρ small. Hence, in view of Proposition 3.1 the invertibility of the operator in (4.12) easily follows.
To complete theC1-expansion, for anyj = 1, . . . , k andh = 1,2 we write

∂(ξj )hEρ

(
k∑

i=1

PUi + φ

)

=
(

k∑
i=1

PUi + φ − i∗
(
ρ2V (x)e

∑k
i=1 PUi+φ

)
,Pψh

j +
k∑

i=1

∂(ξj )hτi(ξ)Pψ0
i + ∂(ξj )hφ

)
H1

0(Ω)

= −32π2 ∂F
∂(ξj )h

(ξ1, . . . , ξk) +
k∑

s=1

2∑
m=1

cρ
sm

(
Pψm

s ,

k∑
i=1

∂(ξj )hτi(ξ)Pψ0
i + ∂(ξj )hφ

)
H1

0(Ω)

+ o(1) (4.13)

in view of (C.15) and (4.10). Lemma A.4 implies that

(Pψm
s ,Pψ0

i )H1
0(Ω) = O

(
1

ρ

)
,

and the orthogonality condition(Pψm
s ,φ)H1

0(Ω) = 0 implies that,

(Pψm
s , ∂(ξj )hφ)H1

0(Ω) = O
(‖φ‖‖∂(ξj )hPψm

s ‖)= O

(‖φ‖
ρ2

)
since, by a straightforward computation, we see that,

‖∂(ξj )hPψm
s ‖ � ‖∂(ξj )hψ

m
s ‖ = O

(
1

ρ2

)
.

Hence, by (4.3) we get
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s

(
k∑

i=1

PUi + φ − i∗
(
ρ2V (x)e

∑k
i=1 PUi+φ

)
,

k∑
i=1

∂(ξj )hτi(ξ)Pψ0
i + ∂(ξj )hφ

)
H1

0(Ω)

= o

(
1

ρ2

k∑
s=1

2∑
m=1

|cρ
sm|

)
. (4.14)

Finally, recalling (4.11), by (4.13), (4.14) we deduce

∂(ξj )hEρ

(
k∑

i=1

PUi + φ

)
= −32π2 ∂F

∂(ξj )h
(ξ1, . . . , ξk) + o(1) (4.15)

asρ → 0, and the proof is complete.�
The finite dimensional reduction is meaningful in view of the property:

Proposition 4.3.The function
∑k

i=1 PUτi(ξ),ξi
+ φ

ρ
ξ is a solution of(2.1) if and only ifξ is a critical point of the

reduced mapξ → Eρ(
∑k

i=1 PUτi(ξ),ξi
+ φ

ρ
ξ ).

Proof. Assume thatξ is a critical point of the reduced map. Then,ξ satisfies the relations(
k∑

i=1

PUi + φ − i∗(ρ2V (x)e
∑k

i=1 PUi+φ),Pψh
j +

k∑
i=1

∂(ξj )hτi(ξ)Pψ0
i + ∂(ξj )hφ

)
H1

0(Ω)

= 0

for anyj = 1, . . . , k andh = 1,2. By (4.10) and (4.14) we get that,

k∑
s=1

2∑
m=1

cρ
sm(Pψm

s ,Pψh
j )H1

0(Ω) + o

(
1

ρ2

k∑
s=1

2∑
m=1

|cρ
sm|

)
= 0.

By Lemma A.4, we conclude thatcρ
sm = 0 for anys = 1, . . . , k andm = 1,2, and then, by (4.10) we get

k∑
i=1

PUi + φ − i∗
(
ρ2V (x)e

∑k
i=1 PUi+φ

)= 0.

The proposition now follows since the converse property is always true.�

5. Proofs of Theorem 1.1, Theorem 1.2 and some examples

Let us recall the following notion of stability of critical points introduced in [26]:

Definition 5.1. Let F :D → R be aC1-function and letK be a bounded set of critical points ofF . We say thatK
is aC1-stable critical set ofF if for any µ > 0 there existsδ > 0 such that, ifG :D → R is aC1-function with

max
dist(x,K)�µ

(∣∣G(x) − F(x)
∣∣+ ∣∣∇G(x) − ∇F(x)

∣∣)� δ,

thenG has at least one critical pointx with dist(x,K) � µ.

Remark 5.2. It is easy to see that a bounded set of critical point ofF is stable if one of the following condition i
satisfied:
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n is not

ted

here a
(i) K is a strict local maximum set ofF, i.e. F(x) = F(y) for anyx, y ∈ K and for some open neighborhoodU

of K it holdsF(x) > F(y) for anyx ∈ K andy ∈ U \ K ;
(ii) K is a strict local minimum set ofF ;

(iii) the Brouwer degree deg(∇F,Uµ,0) �= 0 for anyµ > 0 small, whereUµ = {x ∈ R
N : dist(x,K) � µ}.

Let us give the proof of Theorem 1.1:

Proof of Theorem 1.1. By Propositions 4.2 and 4.3, we can find a pointξρ = (ξ1,ρ, . . . , ξk,ρ) such thatuρ =∑k
i=1 PUτi(ξρ),ξi,ρ

+ φ
ρ
ξρ

is a solution of (2.1). Moreover,uρ satisfies the “concentration” property:

ρ2
∫
Ω

V (x)euρ Ψ (x) → 8π

k∑
i=1

Ψ (qi) asρ → 0, ∀Ψ ∈ C( �Ω). (5.1)

In fact, by the inequality|es − 1|� e|s||s| for anys ∈ R, we can proceed as in Proposition 4.2 to obtain

ρ2
∫
Ω

V (x)euρ Ψ (x) = ρ2
∫
Ω

V (x)e
∑k

i=1 PUi Ψ (x) + o(1)= 8π

k∑
i=1

Ψ (qi) + o(1).

Along a sequenceρ → 0, we can assume that dist(ξρ,K) → 0 and the proof is completed.�
Let us stress that Theorem 1.1 allows to handle the cases where the maximum of the Robin’s functio

isolated (for example, in an annulus).
We are now in position to give the proof of Theorem 1.2:

Proof of Theorem 1.2. Let k = 1. It is easy to see thatF has a strict local maximum set in each connec
componentΩ ′

i for anyi = 1, . . . , ν. In fact, sinceH(ξ, ξ) → −∞ asξ → ∂Ω and logV (ξ) → −∞ asV (ξ) → 0,
it follows thatF(ξ) → −∞ asξ → ∂Ω ′

i . Therefore, the claim follows by Theorem 1.1.�
In next examples, we follow some ideas introduced in [33] in order to get some contractible domains w

large number of solutions to problem (1.1) exists, providedV (x) ≡ 1.
Let Ω0 = Ω1 ∪ . . . ∪ Ωh, whereΩ1, . . . ,Ωh areh smooth bounded domains inR2 such thatΩi ∩ Ωj = ∅ if

i �= j. Assume that

Ωi ⊂ {
(x1, x2) ∈ R

2: ai � x1 � bi

}
, Ωi ∩ {x2 = 0} �= ∅,

for somebi < ai+1 andi = 1, . . . , h. Let

Cε = {
(x1, x2) ∈ R

2 | |x2| � ε, x1 ∈ (a1, bh)
}
.

Let Ωε be a smooth simply connected domain such that

Ω0 ⊂ Ωε ⊂ Ω0 ∪ Cε.

We say that

Ωε is ah-dumbell. (5.2)

Lemma 5.3.We have that

lim HΩε (x, x) = HΩ0(x, x) (5.3)

ε→0
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C1-uniformly on compact sets ofΩ0 and

lim
ε→0

GΩε (x, y) = GΩ0(x, y) (5.4)

C1-uniformly on compact sets ofΩ0 × Ω0 \ {(x, y): x = y}.

Proof. We argue as in Lemma 3.2 of [33].�
Theorem 5.4.For anyh � 2 there exists anh-dumbellΩ for which problem(1.1)has at leasth different families
of solutions which blow-up at a pointqi in Ω, i = 1, . . . , h, along sequencesλ → 8π.

Proof. In virtue of Theorem 1.1, it is enough to find anh-dumbellΩ , constructed as in (5.2), so that the Robi
functionHΩ(·, ·) has at leasth disjoint stable critical sets. Since the Robin’s functionHΩi

(·, ·) has a strict loca
maximum set inΩi for any i = 1, . . . , h, by Lemma 5.3 we deduce that ifε is small enough, the Robin’s functio
HΩε(·, ·) hash different strict local maximum sets, each contained in the correspondingΩi . Since they are stabl
according to Definition 5.1, the claim follows.�
Theorem 5.5.For any h � 2 there exists anh-dumbellΩ for which problem(1.1) has at least one family o
solutions which blow-up ath pointsq1, . . . , qh in Ω, along a sequenceλ → 8πh.

Proof. In virtue of Theorem 1.1, it is enough to find anh-dumbellΩ , constructed as in (5.2), so that the fun
tion FΩ , defined as

FΩ(ξ1, . . . , ξh) =
h∑

i=1

HΩ(ξi, ξi) +
∑
j �=i

GΩ(ξj , ξi),

has a stable critical set according to Definition 5.1. It is easy to check that the functionFΩ0 in the connected
componentΩ1 × · · · × Ωh of the set(Ω0)

h reduces to take the form:

FΩ0(ξ1, . . . , ξh) =
h∑

i=1

HΩi
(ξi, ξi),

becauseHΩ0(x) = HΩi
(x) if x ∈ Ωi, GΩ0(x, y) = GΩi

(x, y) if (x, y) ∈ Ωi × Ωi andGΩ0(x, y) = 0 if (x, y) ∈
Ωi × Ωj, i �= j . Therefore,FΩ0 has a strict local maximum set. By Lemma 5.3 we deduce that ifε is small
enough, the functionFΩε also has a strict local maximum set, which is stable according to Definition 5.1, an
claim follows. �

As in the previous results, we easily get:

Corollary 5.6. For any h � 2 there exists anh-dumbellΩ for which problem(1.1) has at least
(
h
i

)
families of

solutions which blow-up ati points inΩ along sequencesλ → 8πi, for anyi = 1, . . . , h.

6. Proof of Theorem 1.3 and some examples

In this section, we will restrict to the caseV (x) ≡ 1. LetS, ∂Q andQ be compact subsets of a domainD. We
will say thatS linksQ via ∂Q by homotopy inD if ∂Q ⊂ Q, S ∩ ∂Q = ∅ andγ1(Q)∩S �= ∅ for anyγ ∈ Γ , where

Γ := {
γ ∈ C0([0,1] ×Q,D

)
: γ0 = Id, γt |∂Q = Id ∀t ∈ [0,1]}.
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Now, let us recall the following notion of stability of critical values introduced in [25]. LetF :D → R be a
C1-function. We say that:

Definition 6.1. c is a stable critical value ofF , if there exist compact subsetsS, ∂Q andQ of D such thatS links
Q via ∂Q by homotopy inD,

max
∂Q

F < min
S

F (6.1)

and the set{x ∈ D: c − ε � F(x) � c + ε} is complete for someε > 0, where

c := inf
γ∈Γ

max
u∈Q

F
(
γ1(u)

)
. (6.2)

Proof of Theorem 1.3. By Proposition 4.3 it is enough to prove that the functionẼρ given in Proposition 4.2 ha
a critical point. Using the stability ofc, the expansion (4.7) and arguing exactly as in Theorem 3.1 in [25], we
prove that ifρ is small enough there exists a critical pointξρ of the functionẼρ such thatξρ → ξ0 asρ → 0, with
H(ξ0, ξ0) = c and∇H(ξ0, ξ0) = 0. The claim follows as in the proof of Theorem 1.1.�

Let us prove that in a domain with “a hole” problem (1.1) has at least two families of solutions blowing
one point.

Theorem 6.2.LetΩ1 ⊂⊂ Ω2 be smooth bounded domains and letΩ = Ω2 \ Ω1. Assume that there exists a cur
σ joining ∂Ω1 and∂Ω2 such that

max
ξ∈σ

HΩ(ξ, ξ) < max
ξ∈Ω

HΩ(ξ, ξ). (6.3)

Then(1.1)has at least two families of solutions which blow-up at one point inΩ asλ → 8π.

Proof. By Theorem 1.3 it is enough to prove that the Robin’s functionHΩ(·, ·) has at least two different stab
critical values. LetS be a curve contained inΩ around the holeΩ1. SinceH(ξ, ξ) → −∞ as ξ → ∂Ω, it is
clear that there exist two pointsξ1 andξ2 in σ very close to∂Ω1 and∂Ω2, respectively, such that ifQ is a curve
contained inσ with endpointsξ1 andξ2 and∂Q := {ξ1, ξ2} then

max
ξ∈∂Q

H(ξ, ξ) < min
ξ∈S

H(ξ, ξ) (6.4)

and moreover the curveS links the segmentQ via ∂Q by homotopy inΩ. Moreover, since the Palais–Sma
condition inΩ is satisfied, the Robin’s functionHΩ(·, ·) has a critical valuec such that

min
ξ∈S

H(ξ, ξ) � c � max
ξ∈Q

H(ξ, ξ) < max
ξ∈Ω

H(ξ, ξ) (6.5)

in view of (6.3). Therefore,c is stable according to Definition 6.1. Finally, the claim follows, since the maxim
value of the Robin’s function is stable according to Definition 6.1.�

Let us show that in a “2-dumbell” domain problem (1.1) has at least three families of solutions blowing
one point.

Theorem 6.3.LetΩε be a2-dumbell as in(5.2). If ε is small enough then problem(1.1)has at least three familie
of solutions which blow-up at one point inΩε asλ → 8π.

Proof. By Theorem 1.1 and Theorem 1.3 it is enough to prove that the functionhε(ξ) := −HΩε(ξ, ξ) has at leas
two different stable critical points and one stable critical value. First of all, let us point out that there exist
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setsB1 ⊂ Ω1, B2 ⊂ Ω2, pointsξ1 ∈ B1, ξ2 ∈ B2 and a setS = {x ∈ Ω1 | dist(x, ∂Ω1) = µ}, with µ > 0 small
enough such that

h0(ξi) = min
Ωi

h0 < min
∂Bi

h0, i = 1,2, max
{
min
∂B1

h0,min
∂B2

h0

}
< min

S
h0.

By Lemma 5.3 it follows that forε small enough it holds

hε(ξi) < min
∂Bi

hε, i = 1,2, max
{
min
∂B1

hε,min
∂B2

hε

}
< min

S
hε. (6.6)

Let Q be a curve joiningξ1 andξ2 in Ωε and∂Q = {ξ1, ξ2}. It is clear that the curveS links the curveQ via ∂Q by
homotopy inΩε and property (6.1) holds. Moreover, since the Palais–Smale condition inΩε is satisfied, by (6.6
it follows that the functionhε has inB1 a minimum pointξ1ε and inB2 a minimum pointξ2ε (which provide two
different strict local minimum sets ofhε) and a stable critical valuecε such thatcε > max{hε(ξ1ε), hε(ξ2ε)}. The
claim is completely established.�

Appendix A

DefineΩε = {ξ ∈ Ω: dist(ξ, ∂Ω) � 2ε} for ε > 0. Let PUτ,ξ be the projection ofUτ,ξ into H1
0(Ω) (see (1.5)

and (1.6)).
We will estimatePUτ,ξ in terms of the Robin’s function and of the Green’s function. We assume all alon

section thatε is a fixed positive number andτ varies in(0,+∞). Arguing as in [37] we can prove the followin
crucial estimates:

Proposition A.1.We have

PUτ,ξ (x) = Uτ,ξ (x) + 8πH(x, ξ)− log(8τ2) + O(ρ2) (A.1)

in C0(Ω) and inC2
loc(Ω) asρ → 0,

PUτ,ξ (x) = 8πG(x, ξ)+ O(ρ2) (A.2)

in C0
loc(

�Ω \ {ξ}) and inC2
loc(Ω \ {ξ}) asρ → 0, and the convergences are uniform inξ ∈ Ωε andτ bounded away

from zero.

Proof. Let ητ,ξ (x) = PUτ,ξ (x) − Uτ,ξ (x) + log(8τ2). We have thatητ,ξ satisfies{
�ητ,ξ = 0 in Ω,

ητ,ξ (x) = 2 log(τ2ρ2 + |x − ξ |2) on∂Ω.

Recalling thatηξ (x) = 8πH(x, ξ) verifies{
�ηξ = 0 in Ω,

ηξ (x) = 2 log|x − ξ |2 on∂Ω,

we get
�(ητ,ξ − ηξ ) = 0 in Ω,

ητ,ξ (x) − ηξ (x) = −2 log
|x − ξ |2

τ2ρ2 + |x − ξ |2 on∂Ω.

Since|x − ξ | � 2ε for x ∈ ∂Ω , by the maximum principle we get

max|ητ,ξ − ηξ | = max|ητ,ξ − ηξ | = O(ρ2)

Ω̄ ∂Ω
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uniformly for ξ ∈ Ωε andτ bounded away from zero. By the representation formula for harmonic functio
derive the convergence inC2

loc(Ω). By (A.1) we deduce (A.2). �
We point out the following useful estimate:

Lemma A.2. If p � 1, then‖ρ2 eUτ,ξ ‖Lp = O(ρ2(1−q)/p) uniformly inξ ∈ Ωε andτ bounded away from zero.

Let Pψ
j
τ,ξ be the projection into H10(Ω) of ψ

j
τ,ξ for j = 0,1,2, (see (2.3)–(2.5)). Arguing as in the proof

Proposition A.1, we can prove the following crucial estimates:

Proposition A.3. If j = 0 we have

Pψ0
τ,ξ (x) = ψ0

τ,ξ (x) − 2

τ
+ O(ρ2) = −4

τρ2

τ2ρ2 + |x − ξ |2 + O(ρ2) (A.3)

in C0(Ω) and inC2
loc(Ω) asρ → 0,

Pψ0
τ,ξ (x) = O(ρ2) (A.4)

in C0
loc(

�Ω \ {ξ}) and inC2
loc(Ω \ {ξ}) asρ → 0, and the convergences are uniform inξ ∈ Ωε andτ bounded away

from zero. Ifj = 1,2 we have

Pψ
j
τ,ξ (x) = ψ

j
τ,ξ (x) + 8π

∂H

∂ξj

(x, ξ) + O(ρ2) (A.5)

in C0(Ω) and inC2
loc(Ω) asρ → 0,

Pψ
j
τ,ξ (x) = 8π

∂G

∂ξj

(x, ξ) + O(ρ2) (A.6)

in C0
loc(

�Ω \ {ξ}) and inC2
loc(Ω \ {ξ}) asρ → 0, and the convergences are uniform inξ ∈ Ωε andτ bounded away

from zero.

Finally, we have the following “orthogonality” relations:

Lemma A.4.Let j, l = 1,2. We have that

‖Pψ0
τ,ξ‖2 = D0

τ2

[
1+ O(ρ2)

]
,

(Pψ
j
τ,ξ ,Pψl

τ,ξ )H1
0(Ω) = D

τ2ρ2

[
δjl + O(ρ2)

]
,

(Pψ
j
τ1,ξ1

,Pψl
τ2,ξ2

)H1
0(Ω) = O(1)

as ρ → 0, uniformly in ξ, ξ1, ξ2 ∈ Ωε with |ξ1 − ξ2| � 2ε and τ, τ1, τ2 bounded away from zero. Here,D0 =
64

∫
R2(1− |y|2)/(1+ |y|2)4, D = 64

∫
R2 |y|2/(1+ |y|2)4 are positive constants andδjl denote the Kronecker’

symbols.

Proof. Note that fori, k = 0,1,2
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(Pψi
τ,ξ ,Pψk

τ,ξ )H1
0(Ω) = ρ2

∫
Ω

eUτ,ξ ψi
τ,ξPψk

τ,ξ

= ρ2
∫

B(ξ,ε)

eUτ,ξ ψi
τ,ξPψk

τ,ξ + ρ2
∫

Ω\B(ξ,ε)

eUτ,ξ ψi
τ,ξPψk

τ,ξ . (A.7)

We deduce by (A.3) that

ρ2
∫

B(ξ,ε)

eUτ,ξ ψ0
τ,ξPψ0

τ,ξ = 16τρ2
∫

B(ξ,ε)

|x − ξ |2 − τ2ρ2

(τ2ρ2 + |x − ξ |2)3

(
− 4τρ2

τ2ρ2 + |x − ξ |2 + O(ρ2)

)

= 64

τ2

∫
B(0,ε/τρ)

1− |y|2
(1+ |y|2)4

+ O(ρ2) = D0

τ2
+ O(ρ2), (A.8)

and by (A.5) that

ρ2
∫

B(ξ,ε)

eUτ,ξ ψ
j
τ,ξPψl

τ,ξ

= 32τ2ρ2
∫

B(ξ,ε)

(x − ξ)j

(τ2ρ2 + |x − ξ |2)3

(
4

(x − ξ)l

τ2ρ2 + |x − ξ |2 + 8π
∂H

∂ξl

(ξ, ξ) + O(|x − ξ | + ρ2)

)

= 128

τ2ρ2

∫
B(0,ε/τρ)

yj yl

(1+ |y|2)4
+ O(1)= D

τ2ρ2
δjl + O(1). (A.9)

On the other hand, by (A.4) and (A.6) we get that fori = 1, . . . , k

ρ2
∫

Ω\B(ξ,ε)

eUτ,ξ ψi
τ,ξPψi

τ,ξ = O(ρ2). (A.10)

The first two estimates follow inserting (A.8)–(A.10) into (A.7). As far as the third estimate, we can write

(Pψ
j
τ1,ξ1

,Pψl
τ2,ξ2

)H1
0(Ω) = ρ2

∫
B(ξ1,ε)

eUτ1,ξ1ψ
j
τ1,ξ1

Pψl
τ2,ξ2

+ ρ2
∫

Ω\B(ξ1,ε)

eUτ1,ξ1ψ
j
τ1,ξ1

Pψl
τ2,ξ2

, (A.11)

and by (A.6) we can estimate

ρ2
∫

B(ξ1,ε)

eUτ1,ξ1ψ
j
τ1,ξ1

Pψl
τ2,ξ2

= 8πρ2
∫

B(ξ1,ε)

eUτ1,ξ1ψ
j
τ1,ξ1

(
∂G

∂(ξ2)l
(x, ξ2) − ∂G

∂(ξ2)l
(ξ1, ξ2)

)
+ O(ρ) = O(1), (A.12)

and

ρ2
∫

Ω\B(ξ1,ε)

eUτ1,ξ1ψ
j
τ1,ξ1

Pψl
τ2,ξ2

= O
(
ρ2‖Pψl

τ2,ξ2
‖)= O(ρ). (A.13)

Inserting (A.12), (A.13) into (A.11) we obtain the last estimate.�



248 P. Esposito et al. / Ann. I. H. Poincaré – AN 22 (2005) 227–257

on A.1

e

Appendix B

In this appendix we prove some technical lemmata which allow to prove Proposition 4.1. By Propositi
we deduce the following useful estimate which will give in particular an estimate of the remainder termφ

ρ
ξ in the

finite dimensional reduction (see (4.3)).

Lemma B.1.Letξ = (ξ1, . . . , ξk) ∈ (Ω ′)k \∆ andτi(ξ) be defined as in(2.6). For anyp � 1 there exists a positiv
constantc = c(p), uniform in compact sets of(Ω ′)k \ ∆, such that for anyρ > 0 we have:

∥∥ρ2V (x)e
∑k

i=1 PUτi (ξ),ξi − ρ2
k∑

i=1

eUτi (ξ),ξi

∥∥p

L � cρ(2−p)/p.

Proof. SetUi = Uτi(ξ),ξi
, i = 1, . . . , k, and assume thatξ ∈Oε for someε > 0. We write,

∫
Ω

∣∣∣∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2
k∑

i=1

eUi

∣∣∣∣∣
p

=
k∑

j=1

∫
B(ξj ,ε)

∣∣∣∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2
k∑

i=1

eUi

∣∣∣∣∣
p

+
∫

Ω\⋃k
j=1 B(ξj ,ε)

∣∣∣∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2
k∑

i=1

eUi

∣∣∣∣∣
p

. (B.1)

By (A.2) we deduce that,∫
Ω\⋃k

j=1 B(ξj ,ε)

∣∣∣∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2
k∑

i=1

eUi

∣∣∣∣∣
p

= O(ρ2p). (B.2)

Moreover, for anyj = 1, . . . , k we have that∫
B(ξj ,ε)

∣∣∣∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2
k∑

i=1

eUi

∣∣∣∣∣
p

= O

( ∫
B(ξj ,ε)

∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2 eUj
∣∣p + ρ2p

)
. (B.3)

By (A.1), (A.2) for x ∈ B(ξj , ε), j = 1, . . . , k, we get

k∑
i=1

PUi − Uj = 8π

(
H(x, ξj ) − log(8τ2

j ) +
∑
i �=j

G(x, ξi)

)
+ O(ρ2) = − logV (ξj ) + O

(|x − ξj | + ρ2),
and then, by the boundedness of(ex − 1)/x on bounded sets, finally we obtain∫

B(ξj ,ε)

∣∣ρ2V (x)e
∑k

i=1 PUi − ρ2 eUj
∣∣p = O

(
ρ2p

∫
B(ξj ,ε)

epUj
(|x − ξj | + ρ2)p) (settingx = τjρy + ξj )

= O

(
ρ2−p

∫
B(0,ε/τj ρ)

(|y| + ρ)p

(1+ |y|2)2p

)
= O(ρ2−p). (B.4)

The claim follows by (B.1)–(B.4). �
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Lemma B.2.Let ε > 0. For anyp � 1 and r > 1 there exists positive constantsc1, c2 such that for anyρ > 0 it
holds ∥∥ρ2V (x)e

∑k
i=1 PUτi ,ξi (eφ1 − 1− φ1)

∥∥
Lp � c1 ec2‖φ1‖2

ρ(2−2pr)/(pr)‖φ1‖2, (B.5)∥∥ρ2V (x)e
∑k

i=1 PUτi ,ξi

(
eφ1 − eφ2 − (φ1 − φ2)

)∥∥
Lp

� c1 ec2(‖φ1‖2+‖φ2‖2)ρ(2−2pr)/(pr)‖φ1 − φ2‖
(‖φ1‖ + ‖φ2‖

)
(B.6)

for anyφ1, φ2 ∈ H1
0(Ω), uniformly forξ ∈ Oε andτi bounded away from zero.

Proof. Let us remark that (B.5) follows by choosingφ2 = 0 in (B.6). Let us prove (B.6). By the mean val
theorem we see that, for anyφ1, φ2 ∈ R∣∣eφ1 − eφ2 − (φ1 − φ2)

∣∣� e|φ1|+|φ2||φ1 − φ2|
(|φ1| + |φ2|

)
.

Hence, by Hölder’s inequality with1
r

+ 1
s

+ 1
t
= 1 and Remark 2.4, we find that(∫

Ω

ep
∑k

i=1 PUτi ,ξi

∣∣eφ1 − eφ2 − (φ1 − φ2)
∣∣p)1/p

� C

2∑
j=1

(∫
Ω

ep
∑k

i=1 PUτi ,ξi ep|φ1|+p|φ2||φ1 − φ2|p|φj |p
)1/p

� C

2∑
j=1

(∫
Ω

epr
∑k

i=1 PUτi ,ξi

)1/(pr)(∫
Ω

eps|φ1|+ps|φ2|
)1/(ps)(∫

Ω

|φ1 − φ2|pt |φj |pt

)1/(pt)

� C′
2∑

j=1

(∫
Ω

epr
∑k

i=1 PUτi ,ξi

)1/(pr)

e(ps)/(8π)(‖φ1‖2+‖φ2‖2)‖φ1 − φ2‖‖φj‖. (B.7)

On the other hand, by Proposition A.1 we deduce,(∫
Ω

epr
∑k

i=1 PUτi ,ξi

)1/(pr)

� C′
(

1+
k∑

i=1

∫
B(ξi ,ε)

1

(τ2
i ρ2 + |x − ξi |2)2pr

)1/(pr)

� Cρ(2−4pr)/(pr). (B.8)

Thus, (B.6) follows by means of (B.7) and (B.8).�

Appendix C

This last section contains the proof of some technical lemmata. All the results we will state here are un
compact sets of(Ω ′)k \ ∆. We will assume throughout the section the additional propertyξ ∈ Oε for someε > 0.
For j = 1,2, i = 1, . . . , k setUi := Uτi(ξ),ξi

andψ
j
i := ψ

j

τi(ξ),ξi
, whereτi = τi(ξ) is defined in (2.6).

Lemma C.1.We have:∫
Ω

|∇PUi |2 = (−32π logρ + 48π log2− 16π)− 64π2F(ξ) − 64π2
∑
j �=i

G(ξi, ξj ) + O(ρ) (C.1)

and
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∫
Ω

∇PUi∇PUj = 64π2G(ξi, ξj ) + O(ρ) (C.2)

asρ → 0.

Proof. By Proposition A.1 we get that∫
Ω

|∇PUi |2 = ρ2
∫
Ω

eUi PUi

=
∫

B(ξi ,ε)

8τ2
i (ξ)ρ2

(τ2
i (ξ)ρ2 + |x − ξi |2)2

(−2 log
(
τ2
i (ξ)ρ2 + |x − ξi |2

)
+ 8πH(ξi, ξi) + O

(|x − ξi | + ρ2))+ O(ρ2) (settingx = τi(ξ)ρy + ξi)

=
∫

B(0,ε/τi (ξ)ρ)

8

(1+ |y|2)2

(
−4 logρ + 6 log2− 8πF(ξ)

− 8π
∑
j �=i

G(ξi, ξj ) − 2 log
(
1+ |y|2))+ O(ρ)

= (−32π logρ + 48π log2− 16π)− 64π2F(ξ) − 64π2
∑
j �=i

G(ξi, ξj ) + O(ρ), (C.3)

where we have used the fact that we have the relation:∫
R2

1

(1+ |y|2)2
log

(
1+ |y|2)=

∫
R2

1

(1+ |y|2)2
= π

(by an integration by parts). By (C.3), in view of Proposition A.1 fori �= j we obtain∫
Ω

∇PUi∇PUj =
∫

B(ξi ,ε)

8τ2
i (ξ)ρ2

(τ2
i (ξ)ρ2 + |x − ξi |2)2

(
8πG(ξi, ξj ) + O

(|x − ξi | + ρ2))+ O
(
ρ2‖PUj‖

)
= 64π2G(ξi, ξj ) + O(ρ). �

Lemma C.2.We have:

ρ2
∫
Ω

V (x)e
∑

i PUi = 8πk + o(1) (C.4)

asρ → 0.

Proof. By Proposition A.1 we get

ρ2
∫
Ω

V (x)e
∑k

h=1 PUh =
k∑

i=1

ρ2
∫

B(ξi ,ε)

V (x)e
∑k

h=1 PUh + O(ρ2)

=
k∑

i=1

∫
ρ2V (ξi)

(τ2
i ρ2 + |x − ξi |2)2

e8π(H(ξi ,ξi )+∑
h�=i G(ξi ,ξh))
B(ξi ,ε)
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× (
1+ O

(|x − ξi | + ρ2))+ O(ρ2) (settingx = τiρy + ξi)

=
k∑

i=1

∫
B(0,ε/τiρ)

8

(1+ |y|2)2
dy + o(1)= 8πk + o(1). �

Lemma C.3.Let j = 1,2 andi, h = 1, . . . , k. We have:

ρ2
∫
Ω

eUi Pψ
j
h = 64π2 ∂H

∂(ξi)j
(ξi, ξi)δih + 64π2 ∂G

∂(ξh)j
(ξi, ξh)(1− δih) + O(ρ) (C.5)

asρ → 0 (hereδih is the Kronecker’s symbol).

Proof. Since

ρ2
∫
Ω

eUi Pψ
j
h = ρ2

∫
Ω\B(ξi ,ε)

eUi Pψ
j
h + ρ2

∫
B(ξi ,ε)

eUi Pψ
j
h (C.6)

and, by Lemma A.4,

ρ2
∫

Ω\B(ξi ,ε)

eUi Pψ
j
h = O(ρ), (C.7)

we are left to estimate the second term in (C.6). By (A.5) we find,

ρ2
∫

B(ξi ,ε)

eUi Pψ
j
i = ρ2

∫
B(ξi ,ε)

eUi

(
4

(x − ξi)j

τ2
i ρ2 + |x − ξi |2

+ 8π
∂H

∂(ξi)j
(x, ξi) + O(ρ2)

)

= 8π
∂H

∂(ξi)j
(ξi, ξi)ρ

2
∫

B(ξi ,ε)

eUi + O(ρ) = 64π2 ∂H

∂(ξi)j
(ξi, ξi) + O(ρ) (C.8)

since
∫
B(ξi ,ε)

eUi (x − ξi)j /(τ
2
i ρ2 + |x − ξi |2) = 0 by symmetry, and (A.6) provides fori �= h

ρ2
∫

B(ξi ,ε)

eUi Pψ
j
h = ρ2

∫
B(ξi ,ε)

eUi

(
8π

∂G

∂(ξh)j
(x, ξh) + O(ρ2)

)
= 8π

∂G

∂(ξh)j
(ξi, ξh)ρ

2
∫

B(ξi ,ε)

eUi + O(ρ)

= 64π2 ∂G

∂(ξh)j
(ξi, ξh) + O(ρ). (C.9)

Thus, (C.5) follows by (C.6)–(C.9).�
Lemma C.4.Let j = 1,2 andi = 1, . . . , k. We have:

ρ2
∫
Ω

V (x)e
∑k

h=1 PUhPψ
j
i

= 64π2 ∂

∂(ξi)j

(
k∑

l=1

H(ξl, ξl) +
∑
l �=h

G(ξl, ξh) + 1

8π

k∑
l=1

logV (ξl)

)
+ O(ρ) (C.10)

asρ → 0.
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Proof. Write,

ρ2
∫
Ω

V (x)e
∑k

h=1 PUhPψ
j
i = ρ2

∫
B(ξi ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i + ρ2

∑
l �=i

∫
B(ξl ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i

+ ρ2
∫

Ω\⋃k
l=1 B(ξl ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i , (C.11)

and by (A.2), Lemma A.4 deduce that,

ρ2
∣∣∣∣ ∫
Ω\⋃k

l=1 B(ξl ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i

∣∣∣∣� Cρ2
∫
Ω

|Pψ
j
i | = O(ρ). (C.12)

By Propositions A.1, A.3 we can also estimate the first term in (C.11) as follows:

ρ2
∫

B(ξi ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i

= ρ2
∫

B(ξi ,ε)

V (x)e8π(H(x,ξi )+∑
h�=i G(x,ξh))

(τ2
i ρ2 + |x − ξi |2)2

(
4

(x − ξi)j

τ2
i ρ2 + |x − ξi |2

+ 8π
∂H

∂(ξi)j
(x, ξi) + O(ρ)

)

=
∫

B(0,ε/(τiρ))

V (τiρy + ξi)e8π(H(τiρy+ξi ,ξi )+∑
h�=i G(τiρy+ξi ,ξh))

τ2
i (1+ |y|2)2

(
4

τiρ

yj

1+ |y|2 + 8π
∂H

∂(ξi)j
(ξi, ξi)

)
+ O(ρ)

= 32

τiρ

∫
B(0,ε/(τiρ))

[
1+ τiρ

2∑
s=1

ys

∂

∂(ξi)s

(
4πH(ξi, ξi) + 8π

∑
h�=i

G(ξi, ξh) + logV (ξi)

)]
yj

(1+ |y|2)3

+ 32π
∂

∂(ξi)j

(
H(ξi, ξi)

) ∫
B(0,ε/(τiρ))

1

(1+ |y|2)2
+ O(ρ)

= 64π2 ∂

∂(ξi)j

(
H(ξi, ξi) +

∑
h�=i

G(ξi, ξh) + 1

8π
logV (ξi)

)
+ O(ρ). (C.13)

If l �= i, by Propositions A.1, A.3 we get

ρ2
∫

B(ξl ,ε)

V (x)e
∑k

h=1 PUhPψ
j
i = ρ2

∫
B(ξl ,ε)

V (x)e8π(H(x,ξl )+∑
h�=l G(x,ξh))

(τ2
l ρ2 + |x − ξl |2)2

(
8π

∂G

∂(ξi)j
(x, ξi) + O(ρ2)

)

= 8π

∫
B(0,ε/(τlρ))

V (τlρy + ξl)e8π(H(τlρy+ξl ,ξl )+∑
h�=l G(τlρy+ξl ,ξh))

τ2
l (1+ |y|2)2

∂G

∂(ξi)j
(τlρy + ξl, ξi) + O(ρ2)

= 64π2 ∂G

∂(ξi)j
(ξl, ξi) + O(ρ). (C.14)

In view of (C.11), by (C.12)–(C.14) we derive (C.10).�
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Lemma C.5.It holds(
k∑

h=1

PUh + φ − i∗
(
ρ2V (x)e

∑k
h=1 PUh+φ

)
,Pψ

j
i

)
H1

0(Ω)

= −32π2 ∂F
∂(ξi)j

(ξ1, . . . , ξk) + o(1), (C.15)

asρ → 0, C1−uniformly forξ in a compact set of(Ω ′)k \ ∆.

Proof. Let p ∈ (1, 6
5) be fixed. We have,∫

Ω

∇
(

k∑
h=1

PUh + φ)∇Pψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUh+φPψ
j
i

=
k∑

h=1

∫
Ω

∇PUh∇Pψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUhPψ
j
i

− ρ2
∫
Ω

V (x)e
∑k

h=1 PUhφPψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUh(eφ − 1− φ)Pψ
j
i

= ρ2
k∑

h=1

∫
Ω

eUhPψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUhPψ
j
i

+
∫
Ω

(
ρ2

k∑
h=1

eUh − ρ2V (x)e
∑k

h=1 PUh

)
φPψ

j
i + ρ2

∫
Ω

eUi φ(ψ
j
i − Pψ

j
i )

− ρ2
∑
h�=i

∫
Ω

eUhφPψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUh(eφ − 1− φ)Pψ
j
i . (C.16)

In view of Lemmata C.3, C.4 we deduce that

ρ2
k∑

h=1

∫
Ω

eUhPψ
j
i − ρ2

∫
Ω

V (x)e
∑k

h=1 PUhPψ
j
i = −32π2 ∂F

∂(ξi)j
(ξ1, . . . , ξk) + O(ρ). (C.17)

Moreover, with the aid of Hölder’s inequality (here 1/q + 1/p <1), we can use Lemmata A.4, B.1 to find,∣∣∣∣∣
∫
Ω

(
ρ2

k∑
h=1

eUh − ρ2V (x)e
∑k

h=1 PUh

)
φPψ

j
i

∣∣∣∣∣� c‖φ‖Lq

∥∥∥∥∥ρ2
k∑

h=1

eUh − ρ2V (x)e
∑k

h=1 PUh

∥∥∥∥∥
Lp

‖Pψ
j
i ‖

� c‖φ‖ρ2(1−p)/p; (C.18)

while, by Lemma C.7 we get,∣∣∣∣∫
Ω

ρ2 eUi φ(ψ
j
i − Pψ

j
i )

∣∣∣∣� c‖φ‖Lq

∥∥ρ2 eUi (ψ
j
i − Pψ

j
i )
∥∥

Lp � c‖φ‖ρ2(1−p)/rp, (C.19)

and Lemma C.6 provides∣∣∣∣ρ2
∑
h�=i

∫
eUhφPψ

j
i

∣∣∣∣� c‖φ‖Lq

∑
h�=i

∥∥ρ2 eUhPψ
j
i

∥∥
Lp � c‖φ‖ρ2(1−p)/p. (C.20)
Ω
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in

t infini-
sions
ult was
Finally, Lemmata A.4, B.2 give,

ρ2
∣∣∣∣∫
Ω

V (x)e
∑k

h=1 PUh(eφ − 1− φ)Pψ
j
i

∣∣∣∣
� c

∥∥ρ2V (x)e
∑k

h=1 PUh(eφ − 1− φ)
∥∥

Lp‖Pψ
j
i ‖Lq � c‖φ‖2ρ(2−3pr)/(pr), (C.21)

for somer > 1. We fix r > 1 sufficiently close to 1 so that 2+ 4r − 5pr > 0. Inserting the estimate (4.3)
(C.18)–(C.21) and taking in account (C.17), by (C.16) the claim in (C.15) follows.�
Lemma C.6.Let j = 1,2 andi, h = 1, . . . , k. If p � 1 andi �= h, then

‖ρ2eUi Pψ
j
h‖Lp = O(ρ2(1−p)/p)

asρ → 0.

Proof. We have

ρ2p

∫
Ω

|eUi Pψ
j
h |p = ρ2p

∫
B(ξi ,ε)

|eUi Pψ
j
h |p + ρ2p

∫
Ω\B(ξi ,ε)

|eUi Pψ
j
h |p. (C.22)

By Lemma A.4 we get

ρ2p

∫
Ω\B(ξi ,ε)

|eUi Pψ
j
h |p = O(ρp). (C.23)

By (A.6) and Lemma A.2 we derive

ρ2p

∫
B(ξi ,ε)

|eUi Pψ
j
h |p = O

(‖ρ2eUi ‖p
Lp

)= O(ρ2−2p). (C.24)

By (C.22)–(C.24) we obtain the desired estimate.�
Lemma C.7.Let j = 1,2 andi = 1, . . . , k. If p � 1, then∥∥ρ2eUi (Pψ

j
i − ψ

j
i )
∥∥

Lp = O(ρ2(1−p)/p)

asρ → 0.

Proof. By (A.5) we obtain thatPψ
j
i − ψ

j
i = O(1), and by Lemma A.2 we get,∥∥ρ2eUi (Pψ

j
i − ψ

j
i )
∥∥

Lp = O
(‖ρ2eUi ‖Lp

)= O(ρ2(1−p)/p). �

Appendix D

We are interested to prove a result concerning the structure of the solutions of the linearized problem “a
ty”. This information will be crucial in the proof of Proposition 3.1. The corresponding result in higher dimen
is well known (cf. [1,7,37]). Here, we use some ideas of [20] (see also [1] and [18]). We recall that this res
first stated in [14] for solution inL∞(R2).



P. Esposito et al. / Ann. I. H. Poincaré – AN 22 (2005) 227–257 255

e

t

Lemma D.1.LetU ∈ C2(R2) be a solution of the following problem−�U = 8

(1+ |y|2)2
U in R

2,∫
R2 |∇U |2 dy <+∞.

(D.1)

Then,

U(y) = a0
1− |y|2
1+ |y|2 +

2∑
i=1

ai

yi

1+ |y|2

for some real numbersai , i = 0,1,2.

Proof. We expandU in Fourier series as follows,

U(y) = a0(r) +
∞∑

k=1

(
ak(r)cos(kθ)+ bk(r)sin(kθ)

)
, y = r(cosθ,sinθ).

Thus, (D.1) reduces to study, for anyk � 0, the ordinary differential equation

−ü(r) − 1

r
u̇(r) + k2

r2
u(r) = 8

(1+ r2)2
u(r) in (0,+∞) (D.2)

with the integral condition
∞∫

0

u̇(r)2r dr <+∞. (D.3)

Let us consider the casek = 0. A direct computation shows thatζ0(r) = (1− r2)/(1+ r2) is a solution of (D.2)|k=0
which satisfies (D.3). Let us prove that, ifw is a second linearly independent solution of (D.2)|k=0, thenw verifies∫∞

0 ẇ(r)2r dr = +∞. Writing w(r) = c(r)ζ0(r) for r < 1, we get that

−c̈ζ0 − ċ(2ζ̇0 + 1

r
ζ0) = 0

and so,

ċ(r) = C

rζ 2
0 (r)

= C
(1+ r2)2

r(1− r2)2
∼ C

r
for r small,

c(r) ∼ C logr for r small,

whereC �= 0 is a constant. Hence,̇w(r) ∼ C
r

for r small and
∫∞

0 ẇ(r)2r dr = +∞. Now we consider the cas
k = 1 in (D.2). Here, we have thatζ1(r) = r

1+r2 is a solution of (D.2)|k=1 which satisfies (D.3). As in casek = 0,
we obtain that, for a second linearly independent solutionw(r) in the formw(r) = c(r)ζ1(r) the functionc(r)

must satisfy

ċ(r) = C

rζ1(r)2
∼ C

r3
and c(r) ∼ − C

2r2
for r small,

whereC �= 0 is a constant. Hence,̇w(r) ∼ C/(2r2) for r small and
∫∞

0 ẇ(r)2r dr = +∞. Now, let us show tha
(D.2)|k for k � 2 has no nontrivial solution satisfying (D.3). In fact,

ζ 1
k (r) = (k + 1)+ (k − 1)r2

2
rk and ζ 2

k (r) = (k − 1)+ (k + 1)r2

2
r−k
1+ r 1+ r
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for k � 2 represent a set of fundamental solutions for(D.2)|k and they do not satisfy the integral condition (D
at infinity and at the origin respectively.

Hence,

U(y) = a0(r) + a1(r)cosθ + b1(r)sinθ = a0ζ0(r) + a1ζ1(r)cosθ + a2ζ1(r)sinθ

= a0
1− |y|2
1+ |y|2 +

2∑
i=1

ai

yi

1+ |y|2 ,

wherea0, a1, a2 are real numbers.�
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