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Abstract

In this paper we construct single and multiple blowing-up solutions to the mean field equation:

_ _ Vix)ée f
Au_)”ifQV(x)e“ in $2,
u=0 onos2,

where is a smooth bounded domainlit?, V is a smooth function positive somewhereinanda is a positive parameter.
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Résumé

Dans ce papier nous construisons des solutions qui explosent pour I'équation de champ moyen :

_ _ Vx)e! :
Au= )\T Viner in £2,
u=0 onos2,

ol1 2 est un domaine borné daié, V est une fonction positive da et A est un parameétre positif.
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1. Introduction

We consider the problem:

Tavoe

(1.1)
u=0 onos2,

{ —Au=rY0_in
where $2 is a smooth bounded domain R?, V is a smooth function positive somewherestnand € R is a
positive parameter.

This equation occurs in various context such as: conformal geometry (cf. [2]), statistical mechanics (cf. [9,10])
and several other area of applied mathematics (cf. e.g. [6,13,23,34]). In statistical mechanics it is referred as the
“mean field equation”. In all those contexts, there is a definite interest to construct solutions which “blow-up” and
“concentrate” at a set of given points, whose location carries relevant information about the geometrical/physical
properties of the problem under exam.

We are interested in finding solutions to (1.1) which blow-up ak different pointsgs, ..., g; in 2’ along a
sequence. — 8k, in the following sense:

V(x) e

k
[ Vx)ew — 87 Zéq; in the sense of measuressin (1.2)
2 ~

wheres,, denotes the Dirac measurezatHere2' = {g € 2: V(q) > 0}.
In order to state some new and old results it is useful to introduce some notatiofi oLeenote the Green’s
function of — A with Dirichlet boundary condition o2, namely for anyy < 2 it holds

—AGo(x,y)=6,(x) ifxes,
Go(x,y)=0 if x €082,

and letHo (x,y) = Go(x,y) + % log|x — y| be its regular part. We will refer t6¢ ;, Hg; simply asG and H
respectively when the dependenceris not relevant.

First of all, let us point out that if inf V > 0, it is known that if the sequenceg is a family of solutions to (1.1)
which is not uniformly bounded from above fatbounded, them; blows-up atk different pointsyy, ..., gx in 2
along a sequence— 8xk and(qs, ..., gx) is a critical point for the function:

k k 1 k
Fler...80=) Ho &)+ ) Gol &)+, logV ) (1.3)
i=1 ij=1 i=1
i#]

(cf. [8,22,28]; see also [35,38]). Secondly we note tha#, & (0,87) problem (1.1) admits a solutiommin
corresponding to a global minimum point for the functional

J,\(u)=%/|Vu|2—klog<f V(x)e“), u e HY(),
2 2

which is coercive by the Moser—Trudinger inequality (cf. [32,40]).
Let us consider the cadé(x) = 1. In [9,10] the authors study the asymptotic behaviotgh , asr — 87—,
and show that eithermin ;. converges to a minimum ok, or admits a single blow-up poigte £2, corresponding
to a maximum point of the Robin’s functiafi,; (-, -). They observe that both possibilities can occur. For instance,
if 2 is a disk or a simply connected domain sufficiently close to a disk, then concentration does dceuli8as .
On the contrary, there are simply connected regions (for instance, rectangles with large ratio between the sides
for which concentration cannot occur, as-> 87 ~. We also mention that Suzuki in [39] proves that the solution
of (1.1) is unique whemn. € (0,8m) and 2 is a simply connected domain. Af> 8x the situation becomes more
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complex. As well known (see [4]), if2 is the unit disk and. > 8, then there are no solutions to (1.1). In [41]

the author constructs a sequence of solutions on simply connected domains “blowing-up” at a critical point of the
Robin’s function (see also [29,30] and [31] for similar results in a more general setting). Non-simply connected
domains are considered in [19].

The general case concerning the existence of solutions with multiple blow-up points so far has been treated only
by Baraket—Pacard in [5]. They prove that any nondegenerate critical @aint . , gx) of the functionF defined
in (1.3) generates a family of solutioms which blow-up atgs, ..., gx asi — 8xk. In [21] the author extends
the previous result by allowing a general weight functiogx). We are aware of only another successful approach
to handle multiple peak blow-up solutions which has been introduced by Chen and Lin in [16] for the annulus.
A general degree formula for the corresponding Fredholm map can be found in [15].

Perturbative problems with exponential nonlinearities in dimension two seem to be much more difficult to han-
dle (beside [5], see also [11,12] and [36]) in contrast to similar problems in higher dimensions. Baraket—Pacard’s
method is too demanding in terms of assumptions (the non-degeneracy of the critical point) and functional frame-
work, and pays in return with a very accurate control on the asymptotics of the solutions. Instead, in the spirit
of some perturbation methods available in higher dimension (see e.g. [3] and [37]), we propose an alternative
approach to the existence of blowing-up solutions by introducing for our problem a perturbation setting in the
spaceHc}(Q). This more flexible approach allows to replace the non-degeneracy assumption of Baraket—Pacard,
by showing that “stable” (in a suitable sense) critical points of the functian (1.3) generate solutions for (1.1)
which blow-up at those points. It is important to point out that this “weaker” stability of critical points enables us
to construct some domains where a large number of blowing-up solutions exists.

Let us state now the main results of the paper. Re@al= {g € £2: V(¢) > 0} and letA = {(g1,...,qx) €
2% :g; = q, for somei # j}.

Theorem 1.1.Assume thak is a stable critical set fotF in (£2/)% \ A (see(1.3)and Definition5.1). Then there
exists a family of solutions fL..1) which blow-up at pointgs, ..., gx with the property(q1, ..., gx) € K, along a
sequence. — 8k, in the sense thdtl.2) holds.

In Section 5 we také/ (x) = 1 and we exhibit some simply connected domains where many solutions to (1.1)
blowing-up at one or more points exist: see Theorems 5.4, 5.5 and Corollary 5.6. This result is in striking contrast
with Suzuki's uniqueness result [39] for the case 8.

As a consequence of Theorem 1.1, changing sign weight functiéns generate many solutions as we show
in the following result:

Theorem 1.2.Let 21,..., £2| be the connected componentsfin §2. Then there exist at least families of
solutions of(1.1) which blow-up at a maximum poigt of the functionZ in 2/ fori =1, ..., v, along a sequence
A — 8, in the sense th4tl.2) holds.

As far as it concerns the existence of solutions blowing-up at a point Whigh= 1, we would like also to
quote the following existence result:

Theorem 1.3.Let V(x) = 1. Assume that is a stable critical value for the Robin’s functiaf, (-, -) (see De-
finition 6.1). Then there exists a family of solutions (f.1) which blow-up at a poiny with the properties
Hg(g,q9) =candVHg(q,q) =0, along a sequenck — 8, in the sense thatl.2) holds.

It allows to find solutions blowing-up at critical points of the Robin’s function of “saddle-type”, which a priori
are not stable according to Definition 5.1. In Section 6 we exhibit some domains where this kind of solutions
appears: see Theorems 6.2 and 6.3.
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Let us sketch the main ideas involved in the proof. A crucial role in the construction of our solution is played
by the problem:

—AU =p?é”  inR?,
fRz eU < 400,

wherep # 0 is a fixed parameter. In [14] (see also the Liouville representation formula in [27]) it is shown that all
the solutions to (1.4) take the form:

82
(t2p2 4 |x —§12)2’
for r > 0 and¢ e R2. Following Bahri’s idea (see [3] and also [37]) we look for solutions to (1.1) in the form

(1.4)

U..¢(x) =log x eR?, (1.5)

k
u(x) =Yy PUs &, (x)+¢"(x)
i=1
for suitable positive parametets = (1, 1, ..., Ta k) and pointss, = (&1, - - ., &1 k). Here, the remainder terg
goes to zero in %I(Q) asi goes to 8wkand PU. ¢ denotes the projection df; ¢ into Hé(s?), in other words,
PU. ¢ is uniquely defined as satisfying:

—APU, s =—AUr s = p?eV¢ in 2,
PU =0 onos2.

In order to determine; andé; in Section 4 we reduce the problem to a finite dimensional one. Although
this problem has many similarities to equations with critical growth in smooth domaik& otV > 3, our proof
displays important differences. First of all, we point out that the paramgteill be a priori prescribed in terms
of the pointg; (see formula (2.6)). An important consequence is that the fungttowill be found in a space of
codimension 2kWe recall that the standard procedure in elliptic problems involving the critical Sobolev exponent
takes place in spaces of codimensidi+ 1)k. This different choice of the space will require delicate computations
in order to establish some invertibility property of the corresponding linearized operator, which plays a crucial role
in the finite dimensional reduction. This analysis will be carried out in Section 3. In Section 4 we study the reduced
problem and give the expansion of the functional associated to the problem (1.1). We have collected some technice
computations in Appendix A, B, C, D.

We learnt that related results to this paper have been proved at the same time, independently and using differer
arguments by Del Pino, Kowalczyk and Musso (see [17]).

(1.6)

2. Setting of the problem

In order to prove the existence of blow-up solutions to (1.1), we will consider the problem:
—Au=p?V(x)e in 2, 2.1)
U=0 nage, '
and seek solutions such that

k
p?V(x)e' —~ 81 8, inthe sense of measuresdh asp — 0,
i=1
for some poiny = (g1, ..., qx) € (£2/) \ A. Via the transformatiop? = )L/(fQ V(x)€") it is possible to show
that for concentrating solutions problem (2.1) is equivalent to (1.1).
It will be useful to rewrite problem (2.1) in a more convenient setting. For this purpose, let us introduce the
following definition.
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Definition 2.1. For p > 1, let iniLP — H%(.Q) be the adjoint operator relative to the immers'ionﬂé(.(z) —

= (£2) and leti*: (.4 L? — Hé(fz) be defined by the property| » =i}, forany p > 1.
By definition,v = i*(«) holds if and only if

(v, p) = / updx, Voe H%(.Q),
2
and the following estimate holds:

Lemma 2.2.For any p > 1 there exists:, > 0 such that
li*@ | <cpllulll,  Vu e H5($2).
H%(Q) is an Hilbert space equipped with the usual inner product

(u,v) = / VuVuvdx
Q
and induced norm

1/2
ull = </|W|2dx> .
2

Next, we recall the Moser-Trudinger inequality (cf. [32,40]):

Lemma 2.3.There exists a constant> 0 such that for any smooth bounded domgirc R? we have:

Aru?lull%y 1
/e 0 < c|f2], VYueHy).
2

In particular, by Lemma 2.3 we deduce the following useful estimate:

Remark 2.4.There exists a constant- 0 such that for any; > 0,

2
2
Tzl

/e"”<c|9|e 0, VueH3R).
2

In particular, the map:
H3(2) — L7 (%),
u— e
is continuous for every > 1 and we can rewrite problem (2.1) in the following equivalent form:

u=i*(p?vx)e) ins,
u € HY(£2).

Let PU, ¢ be the projection onto 35-(!2) of U, ¢ (see (1.5), (1.6)). Thus, by Definition 2.1 we have

PU, s =i*(p?eVn¢).

(2.2)
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We are looking for solutions to (2.2) of the form

k
u(x) =y PUr,, ¢, (x) +¢"(x)
i=1
for suitable positive parametetg = (1,1, ..., 7,,1) and pointsé, = (65,1, ..., &,.x). The remainder terng”
belongs to a suitable space which will be defined as follows. Let

U 2 |x — &2 —12p?
0 7.5
= =— 2 2.3
Vg () ot ) T |x — &%+ 12p? res 3
and forj =1,2 let

J =" =4 (x = 8); xeq. (2.4)

08 22+ |x — £
Forj=0,1,2,the functiorwrjf is a solution for the equation Ay = p2eV=¢y in R2. LetPlp%’;S be the projection
into H3(£2) of w{’s, ie.

b 2aUrg . d i
_Af’l/ff’s =p°e’tiyYy . in 2, (2.5)
Py, =0 onas2.

For anyt = (&1,...,&) € (2)k\ A, set

VE ” s
() =/ (851) M (He 6 60 +Y 4 Go 6 .6)) (2.6)

SetU; = Uy e g andwl/ = w%’;@),sl_ for j=0,1,2,i =1,...,kand& e (£2)* \ A. We consider the subspace of
H3(2):
K: =span{ngf, j=1,2,i=1,...,k},
and its complement
Kf={peHi@) | (4. Py{)=0, j=1,2,i=1,....k},
and consider the corresponding orthogonal projections:
T H§(2) > Kz and [T :HG(2) — K

3. The linear problem: a key lemma

Let us introduce the linear operatbf : Kgl — Kg defined as follows:

LL@) = [T {¢ — i*[p?V (x) €21 PUig] ).

In order to solve Eq. (4.1), a crucial ingredient is given by the following result, which is similar in spirit to an
invertibility property established in [11]:

Proposition 3.1.Let& € (£2/)F \ A. There existgo > 0 and a constant > 0 such that for any € (0, pg) we have

IL2@)] = —— gl Vo e Ke.
§ llog | s
In particular, the operatomg’ is invertible and||(L§)‘1|| <|logp|/ec.

Moreover, the estimates are uniform in compact sets3§* \ A.
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Proof. We need onIy to establish the validity of the following estimate:
LY > Vo € K-, 3.1
ILZ @] = |Iog Toga 19l Ve €K 3.2)

for some uniform constant> 0. Indeed, by (3.1) we deduce tf‘b@ is an injective operator with closed image.

SinceL{ is selfadjoint, we also conclude that it is onto and its invezlsgé)—l satisfies| (L§)‘1|| <|logpl/ec.
To prove (3.1), we argue by contradiction. Suppose there exist sequences

p—0,E—>be@)V\A ¢k gl =1and|L{(@)| = <“0;p|>. (3-2)
Write,

¢ —i*[p2V (x) e =1 Plig] =y + w, (3.3)
wherey € K&, w € K¢ and||[y|| = o(1/|logp|) — 0. Equivalently (in a weak sense), there holds

{ —Ap=p?V(x)eXiaPlip — Ay +w) in L2,

=0 onasg.
Step 1.For anyp € (1, 2),
lw|| = 0(p@P/P) - 0. (3.4)

Letw = Z’;Zl 212:1 ChlP%lr We multiply (3.3) bwasj, j=1,2ands=1,...,k, and get

k

2
ZZchz(Pw,i,Pw!)Hé=—p2/V<x)e25‘:1PUf¢P1/f!. (3.5)

h=11=1 o
By Lemma A.4 the L.H.S. of (3.5) is estimated as follows:

LHS.= - 2(:?,+0(ZZ|CM|) (3.6)

h=11=1
Moreover, the R.H.S. of (3.5) takes the form:

2 / V(x) eXizi Pligy py]

2
k
= / [pzz e — p?V (x) er‘=1PU'1¢Pw! - pZ/ P plPyd —yil-p?y / oryl, (37)
o i=1 o i#s o

where we have used (2.5) agde KgL Fix p € (1,2) and use Lemmata A.4 and B.1, together with Holder's
inequality (here 1g +1/p < 1), to get

k
/[pZV(x>er"=l”Uf DI '1¢ow
i=1

2

<[ 02V (o) eZia Ui - ZZe IpliLe | Py | = 0(p2=P1P), (3.8)

Lr
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Using Lemma A.2, Proposition A.3 and Holder’s inequality (withly & 1/p = 1), we get,

o? / eV ol Py — i1 o(npze“ Il ||¢||Lq) = 0(p?1=P/P), (3.9)
2

Using Lemma C.6 and Hélder’s inequality (with 14¢1/p = 1), we obtain,

ZZ/e ‘pPyl| = (Z 102V Py 1Ly ||¢||L‘1> = 0(p?7). (3.10)
i#s o i#s

Then, by (3.7)—(3.10) it follows that the R.H.S. of (3.5) satisfies:

R.H.S.= 0(p?=P/p). (3.11)
Inserting the estimates (3.6) and (3.11) into (3.5), we deduce that
k2
D0 leml = 0(%P). (3.12)
h=11=1

Finally, by Lemma A.4 and by (3.12) we deduce that
lwl = 0(p® /7~ 0,

and claim (3.4) is proved.
Step 2.Foranyi =1,...,k

(¢, Pxp?)H% — 0. (3.13)
Leti =1, ..., k. Note that, forr; > 0 and§; € £2, the functions
?p?—x—&l> 8 7,0
PP+ x =& 312p2+ | — &2

w; (x) = 3—|Og(f p%+ |x — &)

and

2
Tip

() =—2—5————
’ 7% + |x — &I

satisfy: —Aw; — p? €5 w; = p2eVwéi g0 . and—Ar — p?eVdi = p?elid in R? respectively. A straight-
forward calculation shows that,

/ IVw;|? = M?(1+ o(1))(log p)?, / IV;|°=0(1) asp—0 (3.14)
2 2
with M; = g_rz,-(fRZ Mi 2)4)1/2 and (3.14) holds uniformly in dist(£§3£2) > ¢, ¢ > 0, andt; bounded away from

A+lyl
Zero.
Letnowr; =1; (g) and¢ as specified in (3.2). The projectidtu; € H} o(£2) of the function

i &

U, =w; +

3‘[,'
satisfies

k
—APu; — p?V(x) e i=1PUnpy. — peli 1/fl-0 2 E eU" G(Sh &)+ F,
h#i
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where
Fi(x)= —167(H<x, &) — HE. &))" + (ui — Pu; + 13‘1 H(x, s») 2l
k
16
i <pz]; eUn _ pzv(x)eZLlPUh)Pui + ngevh (3_:G(gh, £) — Pui>. (3.15)

Sinceu; — Pu; + 16”H(x, &;) is an harmonic function with boundary values satisfying

L&) < Cp?
37 2.0,082

for anya € (0, 1), by elliptic regularity theory it follows that

u;j — Pu;

167 2
u; — Pu; + H(x,§&) <Cp
3Ti 2,0,

foranya € (0, 1). Hence, we get that

Pu;(x) =

L&)+ 0(p%) In Ciog(2\ (1)), (3.16)
| Pu;|l = M;(1+0(1))|logpl, (3.17)
and by means of Lemmata A.2, B.1, from (3.15) we deduce fhati*(F;) satisfies:
I fill =0(1), asp—0.

Therefore,

16
Pui — i*(p2V (x) €i=1 PUs pyy;) = py® — 8

ZG@« E)PUL + f; (3.18)

T

with || ;|| — O. Multiply (3.3) by Pu; and use (3.18) to obtain:

Pu;
@, YO = o 3 GEr 606, PUh>H1+o(|”I u ”|>+0<1)
T hi
167
=3 §G@h,a>(¢,PUh>H%+o(1>,

1

where we have taken in account (3.2), (3.17) and the estimate in Step 1. In conclusion, we need to show tha
(o, PUh)Hl =o(1)foranyh =1, ..., k. Multiply (3.3) by Pl/fio and use Lemmata A.4, B.1 to obtain:

/e ‘() — PYP) = 22/ g Py +o(1).

o h;él
By (A.3), (A.4) and Lemmata A.2, A.4, finally we deduce that

<¢,Pui>H3=p2/eUf¢=o<1>,
2

and (3.13) is completely established.
Define the spaces
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(e}
L::{@: Hiz <+oo},
1+|y| LZ(RZ)
H {cp Ive| +‘ 2 + }
= . 2(R2 P E— < +00
LER%) 1+|y|2 L2(R?)

endowed respectively with the nom® || = [|®/(1+ [y[?) [l 22 and [ ®[ln = (| VD ”EZ(]RZ) + | @12)Y2. If $?
denotes the unit sphere & with the standard metric andy is the stereographic projection through the north
pole, let us point out that the map — @ oy is an isometry from L ta.2(S?) and from H toH(5?). Hence,
by the compactness of the embeddid(S?) <— L2(5?), we get the compactness of the embeddirrgH..

Assume that € O, for somes > 0, where
Oc ={(q1. ... qu) € 2% distg;, 32) > 2e, |g; — q;| > 2e fori # j}.

Let x :R — [0,1] be a smooth cut-off function such thatx) =1 if |x| < &/2, x(x) =0 if |x| > ¢. For any
i=1,...,kset
Zi i i i 2-&
M= WMx ), ye:=——
Tip
whereg! (y) = ¢ (tipy + &) and x' (y) = x (i py). We will always consides’ extended to be zero outsid2 .
Step3.Foranyi=1,...,k

é — 0 weakly inH. (3.19)
First of all, we remark that the functiapi satisfies (in a weak sense),
jA(?’i = ai()’)flzi —AF +3 in 2, . (3.20)
¢'=0 onosf2’,

where
al (v) = t20™V (zi py + ) eXies PUs 030,
FO=ZMx' ),  ZO) =@ +w(npy+E),
V) =—Ax' (' —2) =2V (V@ — 2.
Observe that by Lemma B.1 we have,

k
pZZ/ eU’1¢2=p2/V(x>eZ§:1P”h¢2+ 0(/
2

k
k
pZZ eUh o pzv(x) ethl PU,

‘)

h=l_Q o h=1
= pZ/ V(x) eXh1PUn g2 1 (1), (3.21)
2
Multiplying (3.3) by ¢, we obtain that
pZ/ V(x) X1 PUi g2 = / IVe|? — / ViVe = 0(1). (3.22)
2 22 2

By (3.21), (3.22) we get tha' is bounded in H, since

/|V¢3"|2= 0([ |V¢|2> — o)
Qi 2
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and

ol $

Hence, we can assume (up to a subsequence&hatcp(") in H and strongly in L. On the other hand, by Proposi-
tion A.1 it follows that

di (y) = VTPY 8D Bt ipy+6.60+ s G+t +0d) |, 8 (3.23)
21+ |y[2)? AL

uniformly on compact sets @?2. Furthermore,
IVZ 12 g2y = 0( / VY I?+ |Vw|2) —0 (3:24)
2

and, for any e C5°(R?) we have,

—&

/ﬁ"w:/[—Ax<x—si)(¢—w—w)<x>—2vX<x—&)V(as—w—w)(x)]( )dx—o (3.25)
2

Ti
if e/2tip) > dist(SuppI/, 0). Finally, for j = 1,2 we see that,

|y2 - ¢ d f Yj ot dy =0 (3.26)
(ly |2+1)3 0 (Iyl2+1)37° ' '
R2 R2

Indeed,

16 [ Iyl* - " o ,
T A+ 1y |2)3¢ y=p /e Vi ox(x —&) = (¢, PY; )H%-i-O(,O )—0
R2 2

(by Step 2), and the orthogonality conditions give,
Yij 7i 3 Ui i 3 .
32/7 dy=r1; /e' ; x —&)=0(p>) — 0, =1,2,
2 (1+|y|2)3¢> Y=Tip J Vidx(x —§&) p J
R

and so (3.26) follows by observing thaft/ (1 + y]?) — ¢{/(1+ [y]?) in L2(R?). In conclusion, by (3.20)—(3.23),
(3.25) we obtain tha,’bé € H is a (distributional) solution for

i __ i ; 2
satisfying:
ly? = Y
i = [ R =0 er=12
R2 R2

The isometry betweeH and H1(52) and elliptic regularity theory (see [24]) imply th@g is actually a regular
solution of (3.27). By Lemma D.1 we get that necessa;vgy: 0 and (3.19) is established.

Step 4.A contradiction arisels

By the compactness of the embeddihg— H, we have that’ — 0 in L forany i=1, ..., k. By (3.21) and
¥ = o(1) we have,
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k
pzf V() el P2 1 / ACES pZZf e”ig?x2(x — &) +0(1)

Q 2 i=lg
u 8
= E /7(¢~>i)2dy+0(1)—> 0,
22
pct A+ 1y19

in contradiction with the relation:

1=/|v¢|2=p2fV(x)e25"=1PUf¢2+/vwv¢.
2 2 2
This completes the proof of Proposition 3.1

Remark 3.2.Let us remark that the result in Proposition 3.1 is “sharp" in the sense that in [22] it is shown that for
k =1 we have alsqi(Lg’)‘lll > c1/log p| for some positive constani < c.

4. The reduced problem and the functional expansion

Our first goal will be to prove that, for any > 0 small enough and for any poisite (£2/)¥ \ A, there exists
¢t € Ké such that

k
mt [Z PU; + ¢f —i*(pZV(x)erlpUﬁ"’?)] =0. (4.1)

i=1

Proposition 4.1.Let & = (£1,...,&) in a compact set of2")f \ A and t; = 7;(£) be given in(2.6). For any
p € (1, %) there existsop > 0 and R > 0 (uniformly in &) such that for anyp € (0, pp) there exists a unique
¢f € Kg such that

k
IrFs [Z PU; + ¢f —i*(pZV(x)erklPUfWg)] =0 (4.2)

i=1
and

lg£ I < Rp®P/7|log p). (4.3)

Proof. According to Proposition 3.1, fop small (Lg’)‘l is a linear operator frorrKgl into itself such that
||(L§)‘l|| < cz|logp| uniformly in &. Let us point out that is a solution of (4.2) if and only if it is a fixed
point of the operatof : K — KSl defined by

T (@) = [(L) " o T3 0 i*] ML (9),
k
M{($) = P2V (x) i1 PUied — 1 ¢] + |:p2V(x)eZ{'(1PUi _ pZZ eUi:|.
i=1

We prove that, fop small enough an® large enough (but independent o, TE” defines a contraction map from
{loll < Rp?—P)/P|logpl|} into itself.
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Let us fix somer > 1 such that(3p — 2) < 2. By Lemma 2.2 and Proposition 3.1 we have tinﬁgf’(qs)n <
C|logp| ||M§ (¢)|If'. Consequently, by Lemmata B.1, B.2 we deduce,
p]
L
Hence, forR suitably large we get that
lpll < Rp>~P/Pllogp| = || T (#)] < Rp®>~ /7 llogpl (4.4)

for p > 0 sufficiently small. Similarly, by Lemma B.2 we deduce

k
k
02V (x) ei=a PUI _ 2 ZeU,-

i=1

| 72| < Cllogpl [szvu)er-‘wu,- € -1-9)| +

< C/||¢||2ec2u¢||2p2(1—pr>/<pr) llogp| + C'p@=P/P|log p|.

|72 1) — T (¢2)| < Cllogpl | 02V (x) €-i-1 PUi [ — 2 — (g1 — 6] |
< C'p@H@=30/() (log p)?|| g — ¢2ll < Llid1 — g2l (4.5)

for someL < 1, providedp > 0 is small enough. By (4.4) and (4.5) we get tﬂ?t is a contraction map from
{lloll < Rp@=P)/P|logp|} into itself for everyp € (0, po), providedpg > 0 is sufficiently small. O

Let us introduce the functiondl, : Hé(Q) — R defined by
1
E,(u) = 5/|W|2—p2fv(x)eﬂ. (4.6)
2 2

We have the following expansion:

Proposition 4.2.Let E,(£) := E,(Y*_; PUr ey, + ¢£). It holds
E, &) = (—167logp + 247log2— 87 (k + 1)) — 32722 F (&) + o(1) (4.7)

asp — 0, C1—uniformly in compact sets @f2')¢ \ A (see(1.3)).

Proof. SetPU; := PUy )5 andg :=¢;. It holds

E, &)= %/’V(Z PU; +¢)‘2—p2/V(x)eZL1PU,-+¢
2 2
Z/|VPU,-|2+Z/VPU,-VPUj> —pZ/v(x)er-;lPUi
i 2 i#j_q Q
- %</|V¢|2+2/V¢VPU,~> —pZ/V(x)(eZ?:1PUf+¢_er:1PUf)_ (4.8)
i Q 2

1
2
2

By the inequalityle’ — 1| < €!|s| for anys € R and arguing as in Lemma B.2 we obtain

_ 0<p2< / erZ?=1PUf)l/r< / é'¢')l/s||¢||Lr> —ol)  (49)

2 2

02/ V(x)(ezf=1 PUD _ s PUY
2

for r > 1 sufficiently close to 1 anél + % + 71 =1 (using (4.3)). By Lemmata C.1, C.2 and (4.8), (4.9) we deduce
that expansion (4.7) holds®-uniformly in compact sets af2’) \ A.
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To conclude, let us make some remarks:
—as a consequence of (4.2) we have that,

k ko2
ZPUi +¢_i*(pzv(x)ezf-‘:1PUi+¢) =ZZC5PW’ (4.10)

i=1 i=1j=1

for some coefﬁcientsfj. Inserting (4.10) into (C.15), by Lemma A.4 we deduce that

k 2
Y > Il =007 (4.11)

i=1j=1
—the mapt — ¢ = ¢§’ is aC1-function as it follows by the IFT applied to the equation
i : i 2 K PU+ITE
Fg.u) =3 Y PU; + MFu —i*(p?V (x) e==t Uty | gy =0,
i=1

Indeed,F (¢, ) = 0 and the linearized operator:

oF k .

S E®) = [T [1d —i*(p2V (x) e=i=1 PUe [1H)] 4 17 (4.12)
is invertible forp small. In fact, by (4.3) and arguing as in Lemma B.2, it is easy to derive the estimate,

k . —
| 18- (02V (x) e2=1 PUi (e — I | (LD < 1.

for p small. Hence, in view of Proposition 3.1 the invertibility of the operator in (4.12) easily follows.
To complete thec1-expansion, forany =1, ..., k andh = 1,2 we write

k
3(5_/.);‘ E, (Z PU; + ¢)
i=1

k k
k .
B (ZPUi +¢ =i (p7V (x) e PUEP) pylt 1) f3<sj>hfi(€)Pl/f?+3(&);1‘1))
H($2)

i=1 i=1

k2 k
dF
=327 EL.n B+ YD by (Pw;", > T E Py + 3(§j),l¢) +0(1) (4.13)
Hg(2)

E;)n s=lm=1 i—1

in view of (C.15) and (4.10). Lemma A.4 implies that
1
0 —
(PW}-”, Pl//i )H(l)(g) = 0(;),
and the orthogonality conditiofP ;" , ¢’)Hg(9) = 0 implies that,

(P, a(Sj)Iz¢)Hé(Q) = O (o119, Pyi"ll) = 0(”::;2”)

since, by a straightforward computation, we see that,

1
R R L 0(?)

Hence, by (4.3) we get
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k k
k .
(Z PU + ¢ — i*(,oZV(X) eZi:lPUl'Hb), Za(sj)hri(S)Pl//iO + 8(gj),,¢)
H3(£2)

i=1 i=1

1 k2
:0<?ZZ |c§m|), (4.14)

s=1m=1
Finally, recalling (4.11), by (4.13), (4.14) we deduce

k

oF

Oem En (E PU; + ¢> =—827° (1, &) +o(D) (4.15)
= Epn

asp — 0, and the proof is complete.0
The finite dimensional reduction is meaningful in view of the property:

Proposition 4.3.The functioan.‘:1 PU k) g + ¢§ is a solution of(2.1) if and only if¢ is a critical point of the
reduced mag — E,(Xj_; PUr ).z + ¢f).

Proof. Assume thag is a critical point of the reduced map. Thénsatisfies the relations

k k
k .
(Z PU; + ¢ — i*(p?V (x) exi=t PUi+¢) Pl//]h + Z e Ti E Py + B(gj)hcb) =0
Ho(22)

i=1 i=1
foranyj=1,...,kandh =1,2. By (4.10) and (4.14) we get that,
k2 L k2
Z Z o (P, ij}‘l)Hé(Q) + 0<_2 Z Z |C§)m|> =0.
s=1m=1 p s=1m=1

By Lemma A.4, we conclude thaf,, =0 foranys =1, ..., kandm = 1,2, and then, by (4.10) we get

k
k
Y PU +¢ —i*(p?V (x) eXi PUT9) =
i=1
The proposition now follows since the converse property is always true.

5. Proofs of Theorem 1.1, Theorem 1.2 and some examples
Let us recall the following notion of stability of critical points introduced in [26]:
Definition 5.1. Let F : D — R be aC-function and letk be a bounded set of critical points 8f We say thatk

is aCl-stable critical set of if for any . > 0 there exist$ > 0 such that, ifG : D — R is aC1-function with

_max_ (|Gx) = F)|+ |[VG(x) — VF(x)|) <3,
dist(x, K)<

thenG has at least one critical pointwith dist(x, K) < u.

Remark 5.2.1t is easy to see that a bounded set of critical poinf'd$ stable if one of the following condition is
satisfied:
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(i) K is a strict local maximum set df, i.e. F(x) = F(y) foranyx, y € K and for some open neighborhotd
of K itholds F(x) > F(y) foranyx €e K andy e U \ K;
(i) K is a strict local minimum set of’;
(iii) the Brouwer degree de§ F, U, 0) # 0 for anyp > 0 small, whereJ,, = {x € RV: dist(x, K) < u}.

Let us give the proof of Theorem 1.1:

Proof of Theorem 1.1. By Propositions 4.2 and 4.3, we can find a paipt= (1., ..., &,p) such thatu, =
Zle PUx ¢, .8, T ¢§p is a solution of (2.1). Moreovern,, satisfies the “concentration” property:

k
,02/ Vix)ery(x) — 87'[Zl1/(qi) asp — 0, V& € C(2). (5.1)
5 i=1

In fact, by the inequalitye’ — 1| < €*!|s| for anys € R, we can proceed as in Proposition 4.2 to obtain

k
p2/ V@) €rw(x) = p2/ V(@) = PUW () +0(1) =87 > W (gi) +o(D).
Q 2 i=1
Along a sequencpe — 0, we can assume that digf,, K) — 0 and the proof is completed.O
Let us stress that Theorem 1.1 allows to handle the cases where the maximum of the Robin’s function is not

isolated (for example, in an annulus).
We are now in position to give the proof of Theorem 1.2:

Proof of Theorem 1.2. Let k = 1. It is easy to see thaf has a strict local maximum set in each connected
component?; foranyi =1, ..., v.Infact, sinceH (§,£) — —oo as§ — 352 and logV (§) - —oc asV(§) — 0,
it follows that 7 (§) — —oo as¢é — 952/ Therefore, the claim follows by Theorem 1.1

In next examples, we follow some ideas introduced in [33] in order to get some contractible domains where a
large number of solutions to problem (1.1) exists, provittéd) = 1.

Let 20 =21 U...U £, wheres24, ..., 22, areh smooth bounded domains &7 such that2; N 2; = ¢ if
i # j. Assume that

2 C{(x1,x2) €R% @ <x1 <bi}, 2N {x2=0} #0,
for someb; <a;y1andi =1,...,h. Let
Ce = {(x1, x2) € R? | |x2| <€, x1 € (a1, bp)}.
Let £2¢ be a smooth simply connected domain such that
§£20 C 2 C 20U Ce.
We say that
2, is ah-dumbell. (5.2)

Lemma 5.3.We have that

|imOH_Q€(x,x) = Hgy(x, x) (5.3)
€—
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Ct-uniformly on compact sets @fy and
elinOGge (.X, J’) ZGQO(xv y) (54)

C1-uniformly on compact sets 6fg x 20\ {(x, y): x = y}.
Proof. We argue as in Lemma 3.2 of [33].0

Theorem 5.4.For anyh > 2 there exists ak-dumbells2 for which problem(1.1) has at least: different families
of solutions which blow-up at a poigf in £2,i =1, ..., h, along sequences— 8.

Proof. In virtue of Theorem 1.1, it is enough to find ardumbell 2, constructed as in (5.2), so that the Robin’s
function Hg (-, -) has at leask disjoint stable critical sets. Since the Robin’s functiéip, (-, -) has a strict local
maximum set in2; foranyi =1, ..., h, by Lemma 5.3 we deduce thatsifis small enough, the Robin’s function
Hg, (-, -) hash different strict local maximum sets, each contained in the correspomgiingince they are stable
according to Definition 5.1, the claim follows.OO

Theorem 5.5.For any i > 2 there exists arh-dumbell 2 for which problem(1.1) has at least one family of
solutions which blow-up &t pointsgs, ..., g, in §2, along a sequence — 8w h.

Proof. In virtue of Theorem 1.1, it is enough to find ardumbell £2, constructed as in (5.2), so that the func-
tion Fq,, defined as

h
For....80 =) HoGE.&)+ Y GalE. &),
i=1 i
has a stable critical set according to Definition 5.1. It is easy to check that the furfétipin the connected
component?2; x --- x 2, of the set(£20)" reduces to take the form:

h
FoaolEr, ... &) =Y Ho (i, &),
i=1
because o, (x) = Ho, (x) if x € 2;, Goy(x,y) =Gg,(x,y) if (x,y) € 2; x 2; andG o, (x,y) =0if (x,y) €
£2; x 82, i # j. Therefore, Fo, has a strict local maximum set. By Lemma 5.3 we deduce thatisfsmall
enough, the functiotF;, also has a strict local maximum set, which is stable according to Definition 5.1, and the
claim follows. O

As in the previous results, we easily get:
Corollary 5.6. For any h > 2 there exists ark-dumbell$2 for which problem(1.1) has at Ieasl(’l?) families of
solutions which blow-up atpoints in£2 along sequences— 8xi, foranyi =1, ..., h.
6. Proof of Theorem 1.3 and some examples

In this section, we will restrict to the casé(x) = 1. Let S, dQ and Q be compact subsets of a domdin We
will say thatS links Q via d Q by homotopy iD if 0Q C Q, SNaQ =@ andy1(Q) NS # B foranyy € I', where

=1y ec®10,11 x Q, D): yo=1d, ylsp =1d ¥r € [0,1]}.
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Now, let us recall the following notion of stability of critical values introduced in [25]. EetD — R be a
C-function. We say that:

Definition 6.1. c is a stable critical value of, if there exist compact subsefso Q and Q of D such thatS links
Q via 9 Q by homotopy inD,

maxF <minF (6.1)
30 S

and the setx € D: ¢ — ¢ < F(x) < ¢+ ¢} is complete for some > 0, where

c:= )/”2;‘ LneaQXF(yl(u)). (6.2)

Proof of Theorem 1.3. By Proposition 4.3 it is enough to prove that the functﬁ)pgiven in Proposition 4.2 has

a critical point. Using the stability af, the expansion (4.7) and arguing exactly as in Theorem 3.1 in [25], we can
prove that ifp is small enough there exists a critical pagptof the functionEp such tha&, — & asp — 0, with

H (%0, £0) = ¢ andV H (&p, &0) = 0. The claim follows as in the proof of Theorem 1.10

Let us prove that in a domain with “a hole” problem (1.1) has at least two families of solutions blowing-up at
one point.

Theorem 6.2.Let 21 CC £22 be smooth bounded domains anddet= £2; \ £21. Assume that there exists a curve
o joining 9£21 and 822 such that

rgngn (£,8) < Q%XHQ (£, 8). (6.3)

Then(1.1) has at least two families of solutions which blow-up at one pois2iasi — 8.

Proof. By Theorem 1.3 it is enough to prove that the Robin’s functia(-, -) has at least two different stable
critical values. LetS be a curve contained if2 around the hole?2;. Since H(§,&) — —oco asé — 982, itis
clear that there exist two poings andé; in o very close tod 21 andd 22, respectively, such that § is a curve
contained inr with endpointst; andé, ando Q := {&1, &2} then

max H (&, min H (¢, 6.4

maxH(€,€) <minH (&) (6.4)
and moreover the curvg links the segmenp via dQ by homotopy ins2. Moreover, since the Palais—Smale
condition ing2 is satisfied, the Robin’s functioH g (-, -) has a critical value such that

Eneing(é, §)<c< glanH(é, £) < g;a}sz(é, £) (6.5)

in view of (6.3). Thereforeg is stable according to Definition 6.1. Finally, the claim follows, since the maximum
value of the Robin’s function is stable according to Definition 6.0

Let us show that in a “2-dumbell” domain problem (1.1) has at least three families of solutions blowing-up at
one point.

Theorem 6.3.Let 2, be a2-dumbell as in5.2). If¢ is small enough then probleft.1) has at least three families
of solutions which blow-up at one pointip, asi — 8.

Proof. By Theorem 1.1 and Theorem 1.3 it is enough to prove that the funkti@ := —Hg, (§, £) has at least
two different stable critical points and one stable critical value. First of all, let us point out that there exist opens
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setsBy C 21, By C 29, points&y € B, & € Bp and a sefS = {x € £21 | dist(x, 0£21) = u}, with u > 0 small
enough such that

ho(§;) =minhg <minhg, i=1,2, max{minho, minhO] < minhg.
2; 0B; 9B B> S
By Lemma 5.3 it follows that for small enough it holds

he(&) < Tl';nhf i=1,2, max{lg"g?hg, r;wl;?hg} < mSinhg. (6.6)
Let Q be a curve joining1 andéz in 2, anda Q = {&1, &2}. Itis clear that the curvé links the curveQ via 0 Q by
homotopy ins2, and property (6.1) holds. Moreover, since the Palais—Smale conditi@y ia satisfied, by (6.6)
it follows that the functiom:, has inB1 a minimum point, and in B2 a minimum point,, (which provide two
different strict local minimum sets df,) and a stable critical value. such thaic, > maxh.(§1,), h-(§2,)}. The
claim is completely established.C

Appendix A

Define 2, = {£ € 2. dist(§, 082) > 2¢} for ¢ > 0. Let PU, ¢ be the projection ol/, ¢ into Hé(.Q) (see (1.5)
and (1.6)).

We will estimateP U, ¢ in terms of the Robin’s function and of the Green’s function. We assume all along this
section thak is a fixed positive number andvaries in(0, +00). Arguing as in [37] we can prove the following
crucial estimates:

Proposition A.1. We have

PU,£(x) = Urg(x) + 87 H(x, &) — log(87%) + 0(p?) (A.1)
in C%(£2) and inC2.(£2) asp — O,

PU.s(x) =81G(x, &)+ 0(p?) (A.2)

in CI%C(E\ {¢}) andin C,%C(_Q \ {€}) asp — 0, and the convergences are uniforneig 2, andr bounded away
from zero.

Proof. Letn,g(x) = PUyrg(x) — Ur £ (x) +109(872). We have thaty, ; satisfies
Anf,g =0 in 2,
nee(x) =2log(t?p? + |x —£]%) 0onds.
Recalling thatys (x) = 87 H (x, &) verifies
Ang =0 in 2,
ne(x) =2log|x —£2 onds,
we get
A(nrg —ns) =0 in £,
Mo (¥) — 0 (x) = —2Iog& onag.
’ 22+ |x — §2
Since|x — &| > 2¢ for x € 352, by the maximum principle we get

max|n..e — nel = Max|ne e — gl = O(p?)
o 982
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uniformly for & € £2, and t bounded away from zero. By the representation formula for harmonic function we
derive the convergence tq%c(sz). By (A.1) we deduce (A.2). O

We point out the following useful estimate:
LemmaA.2.1f p > 1, then|p2eV¢|Lr = O(p219/P) uniformly in¢ € £2, andt bounded away from zero.

Let ow’é be the projection into E;(Q) of w-r",s for j =0,1,2, (see (2.3)—(2.5)). Arguing as in the proof of
Proposition A.1, we can prove the following crucial estimates:

Proposition A.3.If j = 0we have

2

0 _ 0 _E 2y o 2
PYre(x) =97 (x) . 0(p°) = 4—t2p2+ i + 0(p°) (A.3)
in C%(£2) and inCZ.(2) asp — O,
Py (x) = 0(p? (A.9)

in Cgc(ﬁ \ {¢}) and in C%C(.Q \ {€}) asp — 0, and the convergences are uniforneir 2, andt bounded away
from zero. Ifj = 1,2 we have

Pyl )=y g(X)+8n 7 o 6)+ 002 (A.5)

J

in C%(£2) and in C,%C(Q) asp — 0,
Py] S(X)—Sﬂ %, C .0+ 00 (A.6)

in C|(<)3c(§ \ {¢}) and in C,OC(Q \ {¢€}) asp — 0, and the convergences are uniforneig 2, andt bounded away
from zero.

Finally, we have the following “orthogonality” relations:

LemmaA.4.Letj, 1 =1,2. We have that
Do
1PYel®=—[14 0],
D 2
(Pllf,i:a Pl/f-[ g)Hl(Q) 722 [ j1+0(p )]

PV, s PV, ey = OD)

as p — 0, uniformly in&, &1, & € 2, with |&1 — &| > 2¢ and 1, 71, T2 bounded away from zero. Her&g =
64 [r2(1— [y12)/(1+1y|>)*, D =64 [z 1y1?/(1+ |y[>)* are positive constants ang}; denote the Kronecker's
symbols.

Proof. Note that fori,k=0,1,2
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i k 2 | Ues i k
(Pl/f;g, Pw,,g)Hg(Q) =p /e ’El/f;,gpwr,g
e
=p? / eVesyl Pyt + p? / Vs yl Py, (A7)
B(.¢) 2\B(§.¢)
We deduce by (A.3) that

2 Ure O 0 2 |X—§|2_72P2 47/?2 2
glre P =16 - o0
i [ dreatervte=sen N W BT
B(.¢) B(.e)
64 1— |yl 2. Do 2
= — - 40 =—+0 , A.8
— f (1+|y|2)4+ (09 =2t (p°) (A.8)
B(0,¢/tp)

and by (A.5) that

,02 / eUr,gwg)gpwi’s

B(§,¢)
(x—8); (x—&) oH
=327%p? . < + 87— (£,8) + O(Ix — & + p?
p (T2p2+|x—§|2)3 ‘E2,02+|x—§|2 9, (£.,%) (Ix =&+ p%)
B(§.¢)
128 Yiyi D
=5 ———— 4+ 0(1)= =555+ 0(). A9
‘l,'2,02 / (1+|y|2)4+ ) ‘E2p2 i+ D ( )
B(0.e/7p)

On the other hand, by (A.4) and (A.6) we get thatfet 1, ... k

o [ uipui = 06d), (A.10)
$2\B(§,¢)

The first two estimates follow inserting (A.8)—(A.10) into (A.7). As far as the third estimate, we can write

j l 2 U: j I 2 Uz,. j I
(Pl/j'glfl’ owz,éz)Hé(Q) =p / e 1'[ffjlyé?lpwfzfz +p / erna wgl,flpwfz,éz’ (A-11)
B(é1.¢) £2\B(&1,¢)
and by (A.6) we can estimate
2 [ il i,
B(&1,¢)
; G G
= 8mp? / eVmay! (—(x, §2) — ——— (61, Ez)) + O0(p) =0(Q1), (A.12)
ERAICY d(&2)1
B(1.¢)
and
o[ Pl = 01 PUL, 1) = 0. (A13)
£2\B(1,¢)

Inserting (A.12), (A.13) into (A.11) we obtain the last estimatel
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Appendix B

In this appendix we prove some technical lemmata which allow to prove Proposition 4.1. By Proposition A.1
we deduce the following useful estimate which will give in particular an estimate of the remaindeﬁsg’cémlhe
finite dimensional reduction (see (4.3)). '

LemmaB.l.Leté = (&1,...,&) € (2))\ A and<; (¢) be defined as i(2.6). For anyp > 1 there exists a positive
constant = ¢(p), uniform in compact sets 6f2")F \ A, such that for any > 0 we have:

k
||p2V(x) er=1 PUr )4 — 'OZZ RUACE ||1L’ < cp@&PIp,
i=1

Proof. SetU; = Uy ¢)g,i =1, ...,k and assume thgte O, for somes > 0. We write,

/

k
k
P2V (x) eXi=t PUI _ pzz Ui

i=1

p

2
k . k p L k p
=Y P2V (x)eXi=tPU — p2 3 "eli| 4 / ‘pZV(x) eXi= Pl p2% " Vi (B.1)
I=1B ;) =t 2\Uj_1 BE&j0) =
By (A.2) we deduce that,
. k p
/ 'p2V<x) 1Pl — 2% " el = 0(p?). (B-2)
=1
2\U51 BEj0) '
Moreover, foranyj =1, ..., k we have that
k k P k
P2V (x)ei=tPUi — p2 % " eli| = 0( / |02V (x) ei=1PUi — p2eli|P 1 p2P>. (B.3)
B(j.¢) i=1 B(j.e)

By (A.1), (A.2)forx € B(§;,¢), j=1,...,k, we get

k
> PU-U;= 8n(H<x, &) —log®td) + Y G(x, s») +0(p*) =—logV (&) + O(Ix — &1 + p°),
i=1 i#]

and then, by the boundednesgef — 1)/x on bounded sets, finally we obtain

k .
|,o2V(x) eZi:l PU; _ ,02 gli |P = 0(p2p / epU_/(|x _ $j| + pZ)P) (settingx = Tjpy + ‘§j)

B(Ej.) B(j.0)
_ Iyl + p)? > 2
=0 p*?r / — T2 ) = 0(p%P). B.4
(p A1hRZ (P~ P) (B.4)
B(0,e/7jp)

The claim follows by (B.1)—(B.4). O
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Lemma B.2.Lete > 0. For any p > 1 andr > 1 there exists positive constants ¢ such that for any > 0 it
holds

102V () e i1 PUse (91— 1 — ¢y) I, <er ee2l91l? (2=200/ (0|, 112, (B.5)
02V ) &I PVt (1 — &2 — (g1 — ¢2) |,
< ey @2l +1921%) , @=20015D) 61— o (1] + I 21l) (B.6)

forany¢1, ¢2 € Hé(Q), uniformly foré € O, andt; bounded away from zero.

Proof. Let us remark that (B.5) follows by choosig = 0 in (B.6). Let us prove (B.6). By the mean value
theorem we see that, for agy, ¢> € R

|71 — &2 — (1 — ¢2)| < P19l 1ghy — g (1] + Ip2]).
Hence, by Holder’s inequality with + £ + 1 = 1 and Remark 2.4, we find that

1/p
</epi=1PUrifi e — 2 — (g1 —¢2)|p>

2

2 1/
<C Z(/ ePZf:l PUy & (_;.PI<I>1I+PI¢2||¢1 _ ¢2|P|¢j|l’) g

2 . 1/(pr) 1/(ps) 1/(p)
gCZ(/ePrZi=1PUTi-Ei) (/ epS¢l+PS¢2|) (/ |¢1_¢2|pt|¢j|pt>
j=1 2 2

1/(pr) 5 )
</ elr Yio 1 PUy, E,) ep9)/@m)(pal“+lg2l )”¢1 — 29 1l. (B.7)
j=1

On the other hand, by Proposition A.1 we deduce,

. 1/(pr) k 1 1/Gpr)
(/ eprzilpy,i,§i> <1+ / — - < Cp@4pr)/pr). (B.8)
S ) (@Rt xRy
2 Bi.0)

Thus, (B.6) follows by means of (B.7) and (B.8)

Appendix C

This last section contains the proof of some technical lemmata. All the results we will state here are uniform in
compact sets of2")F \ A. We will assume throughout the section the additional propeeyO, for somee > 0.

Forj=1,2,i=1,...,ksetU; := Uy andy; := I//r ).¢;» Wherer; = 7;(§) is defined in (2.6).

Lemma C.1.We have:

/|VPU| = (-32rlogp + 487log2— 167) — 647°F () — 64n° Y " G(&.£)) + O(p) (C.1)
J#i

and
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/VPU,-VPUj = 647%G (&, ;) + O(p) (C.2)
2
asp — 0.

Proof. By Proposition A.1 we get that

/|VPU,-|2=,02/6U PU
2 2

872(&)p?
- | ot e g 2laE @0 + &)
BE.e) ! !

+8TH (&, &)+ O(Ix — &+ p%)) + 0(p)  (settingx =7;(§)py + &)

_ / ﬁ <—4 logp + 6log 2— 8rF(£)

B(0.¢/7;(§)p)

~81) G &) —2log(1+ |y|2)) +0(p)
J#i
= (—32rlogp + 487log2— 167) — 647°F () — 64n” Y " G (&, &) + O(p), (C.3)
J#i
where we have used the fact that we have the relation:

1 1
/(1+|y|2)2 og(1+1F) 1+ 1y192
RZ RZ

(by an integration by parts). By (C.3), in view of Proposition A.1fg¢ j we obtain

/VPU VPU; / . 81 (6)p° (87G (&, &)+ O(Ix — &l + p%)) + 0 (21 PU;I)
J e (TF(E)p% + Ix — &[22

=647°G (&) + O(p). O
Lemma C.2.We have:

pZ/V(x)er”Ui =8k +o(1) (C.4)
2
asp — 0.

Proof. By Proposition A.1 we get

k
p? / V() @i PU = 37 2 / V(x) X P 4 0 (p?)

2 =1 Be.e

_ Z P2V (&) I CICRARS SR )

S, TP 2
B(&i e
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x (L+0(1x =&+ p%) + 0(p?)  (settingx =Tipy + &)

_Z [ (1+||2)2dy+0(1)_8nk+0(1) 0

=1p(0,¢/7p)

LemmaC.3.Letj=1,2andi,h=1,..., k. We have:

; oH
p? f eV Py = 64r? (&1, &)8in + 647> (&, En) (1 — i) + O(p)

9(&); 3(& )j
2
asp — 0 (hereé;;, is the Kronecker's symbpl
Proof. Since

pZ/eUwa,{ _ 2 / Ui Py 4 p? / e Py
Q

2\B(&;,¢) B(&i,e)
and, by Lemma A 4,

p? / " Pyl = 0(p),
2\B(&.¢)
we are left to estimate the second term in (C.6). By (A.5) we find,

o [ rui=p | eUf<4 ik DB L SR ))

Tizpz“r |x - §i|2 8(51);
B(§i,¢) B(&i,e)
oH U oH
= isSi ! o =64 i i o0
By 66007 | &0 " ey 6+ 00)

B(&;.¢)
since [, ) € (x — &);/(z?p? + |x — &%) = 0 by symmetry, and (A.6) provides foez h

2 Ui J_ 2 Ui
2 / e Py, =p / e (8713(g y (x, &)+ O(p )) a(s y — (&, En)p? /
B(&i.) B(&-,a) B(&.¢)
= 6472 s (0]
8(5 y —— (&, &) + O(p).

Thus, (C.5) follows by (C.6)—(C.9).O
LemmaC.4.Letj=1,2andi =1,..., k. We have:

,02/ V(x) eZLlPUhPl//l.j

2

k
ad
= 64”23@-) , (Z E&.6)+) G &)+ g Zlog wsn) +0(p)
1] 1

I#h T

asp — 0.

251

(C.5)

(C.6)

(C.7)

(C.8)

eV +0(p)

(C.9)

(C.10)
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Proof. Write,
pZ/V(x)eZL1PUhP¢{=p2 / Vo) e PUipyl 4 p23 [ v () eXimPUn py]
2 B(.¢) #i B e)

+p? / V(x) €=t PUs Pyl (C.11)
2\Ufz1 B&.0)
and by (A.2), Lemma A.4 deduce that,

/ V (x) eXi=1 PUn pyJ
2\Ui1 B&.e)

2
0

< CpZ/ 1Py 1= 00(p). (C.12)
2

By Propositions A.1, A.3 we can also estimate the first term in (C.11) as follows:

0° / V(x)eZLlPU"Pwl.j
B(;.e)
_ 2 V(x)eSJr(H(x,Ei)+Zh,+iG(x,Eh))( (x —&); e oH « é;.)_}_o(p))
(TP p? + |x — & |2)? o+l —E2 T 9E), T
B(&.e)
V(T py + &) T H @A HE E)T ) Gy 660 1 g _ Sl
_ (tipy + &) i 22 (_ Yj 2+8n—(§i,§i))
71+ yl9) Tip 1+ |yl (&)

B(0.&/(1ip))

+ O0(p)

32 2 9 yi
=— f 1+r,~p2ys—<4nH(a-,si)+8nZG<si,sh>+IogV(s,~))]7’ 3

Tip =) o L+ 1y

B(0.¢/(tip))
43270 (H(& L &)) f L + 0(p)
ys isSi 5
3(E, A+pyp2 " 7
B(0,¢/(zip))
3 1
= 64n” (H(&-, &)+ ) G, &)+ =—log V(sn) +0(p). (C.13)
(&) P 8w

If 1 i, by Propositions A.1, A.3 we get
V(x)eSn(H(x,§l)+Zh¢,G(x,Sh)) <8n 9G 6+ 0(,02))
(t2p2 + |x — &[2)2 aE;
V(1 0y + &) €8T H@O+HE.6)+ 50 Goy+6.60) o
2(1+ |y[2)2 0(&);

0° f V()C)ez“;:lPUhPlﬁij:pz

B(&.¢) B(&.¢)

=8r
B(0,g/(ti1p))

G
(&)

In view of (C.11), by (C.12)—(C.14) we derive (C.10)c

(wpy + &, &)+ 0(p?)

= 6472

&, &)+ 0(p). (C.14)
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Lemma C.5.1t holds

oF
9(&);

(‘gl’ "'15/{)"‘0(1), (C15)
h=1

k
(Z PU + ¢ — i*(0%V (x) €51 PUIH0), p¢g> = —327°
H5($2)

asp — 0, C1—uniformly for& in a compact set of2")* \ A.

Proof. Let p € (1, ) be fixed. We have,

k
/V(ZPUqu)VPw{ —pZ/V(x)e25:1PUh+¢P1//j

e =l 2
k . k .
:vapuhva —piV(x)eZhﬂPUth{
h=1g 0

—sz V(x) elima Ui py) —pZ/ V(x)eXi=t PUn(e? —1— g) pyr!

2 2
k
=p"y f e Py — p? f V(x) it PUn pyy ]
h=1g 2
k
+ / (pZZ &V — p?V (x) et PUh)ast/ + pzfe”fw,:" - Py))
Q h=1 Q
- pZZ/eUhquw,:’ - ,02/ V(x) eXi=t PUn(eb — 1 — ¢y Py (C.16)
h#i @ 2

In view of Lemmata C.3, C.4 we deduce that

oF
9(&);

k
pZZ/eUthl/' —pZ/ V(x) el PUr pyd — 3072 (1. ... &) + O0(p). (C.17)

h=1g Q
Moreover, with the aid of Holder's inequality (herggl+ 1/p < 1), we can use Lemmata A.4, B.1 to find,

k k
k P k i
f <p22eUh - p2V<x)eZh=l”Uh>¢Pw{ <cliglia |p? > e — p?V (x)ezi=t PUr | Pyl
Q h=1 h=1 Lr
<cllglp® PP, (C.18)

while, by Lemma C.7 we get,

/ p? g — Py| <cliglia] p?e” (wf — Py, <cligllp®=P/r, (C.19)

2
and Lemma C.6 provides

"’y / o Pyl <clelia Y | p? e Py, <cligllp®P/P. (C.20)

h#i & heti
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Finally, Lemmata A.4, B.2 give,

2
P

/ V(x) Xt PUn(eb — 1 — )Py
2

<] p?V (x) €=t PU e —1— )|, I1PY] lILa < cllgl|Zp @30/ Pr), (C.21)

for somer > 1. We fix r > 1 sufficiently close to 1 so that-2 4r — 5pr > 0. Inserting the estimate (4.3) in
(C.18)—(C.21) and taking in account (C.17), by (C.16) the claim in (C.15) follows.

LemmaC.6.Letj=1,2andi,h=1,...,k. If p>1andi #h, then
102" Py liLr = 0(pP=P/7)
asp — 0.

Proof. We have

p2”f|eUwa,1|"=p2" f &Y Py 1P + p?P / e py|r. (C.22)
2 B(&;,e) 2\B(&;,¢)

By Lemma A.4 we get

PP / €% Pyl1? = 0(p"). (C.23)
\B(;,¢)

By (A.6) and Lemma A.2 we derive

o [ Pulir =012 ,) = 02 %) (C.24)
B(i.e)
By (C.22)—(C.24) we obtain the desired estimatel
LemmaC.7.Letj=1,2andi =1,...,k. If p > 1, then
[p?e Pyl = w ], = 0G2HPIT)
asp — 0.

Proof. By (A.5) we obtain thath/fij — wij = 0(1), and by Lemma A.2 we get,

[*e Py = w)]

L =0(Ilp?e" |Lr) = 0(p*P/P). O

Appendix D

We are interested to prove a result concerning the structure of the solutions of the linearized problem “at infini-
ty”. This information will be crucial in the proof of Proposition 3.1. The corresponding result in higher dimensions
is well known (cf. [1,7,37]). Here, we use some ideas of [20] (see also [1] and [18]). We recall that this result was
first stated in [14] for solution iL.%°(R?).
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Lemma D.1.LetU € C%(R?) be a solution of the following problem

U=——_U inR?
1+ 1y2)2 (D.1)
fR2|VU|2dy<+oo.
Then,
2
1—yl? Vi
U(@py)=a + ) a—7
0 =a0g e+ 2T

for some real numbers,i =0,1, 2.

Proof. We expand/ in Fourier series as follows,

U(y) =ao(r) + Z(ak (r) cos(kO)+ by (r)sin(k®)), y=r(cosd,sing).
k=1

Thus, (D.1) reduces to study, for aky= 0, the ordinary differential equation

2
—ii(r) — %I;t(}’) + r—zu(r) = ﬁu(r) in (0, +00) (D.2)
with the integral condition
0o
/ll(r)zr dr < 4o0. (D.3)
0

Let us consider the cage= 0. A direct computation shows thag(r) = (1 — r2)/(1+ r?) is a solution of (D.2)—o
which satisfies (D.3). Let us prove thatuifis a second linearly independent solution of (.2y, thenw verifies
Jo~ w(r)?r dr = +oo. Writing w(r) = c(r)o(r) for r < 1, we get that

. At 1
—C%o — (280 + ;Eo) =0
and so,

C (1+r?)?
ré”g(r) - r(l— r2)2 r
c(r)~Clogr forrsmall

for r small

c(r) =

whereC # 0 is a constant. Hencejj(r) ~ % for r small andfcg’<J w(r)r dr = +00. Now we consider the case
k=1in(D.2). Here, we have thai(r) = ﬁ is a solution of (D.2).—1 which satisfies (D.3). As in case= 0,
we obtain that, for a second linearly independent solutign) in the formw(r) = ¢(r)¢1(r) the functionce(r)

must satisfy

¢ ¢
Cram? o8

¢(r)

C
and C(r)’v—ﬁ for r small,
s

whereC # 0 is a constant. Hence(r) ~ C/(2r?) for r small andfooo w(r)2r dr = +o00. Now, let us show that
(D.2)|, for k > 2 has no nontrivial solution satisfying (D.3). In fact,

(k+1)+(k—12 , k-4 Gk+1)r2
r r

and Z2(r) =
1472 &) 1+4r2

) =
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for k > 2 represent a set of fundamental solutions(r2)|, and they do not satisfy the integral condition (D.3)
at infinity and at the origin respectively.
Hence,

U(y) = ao(r) +ai(r) cost + by (r) sinf = aplo(r) + a151(r) oSt + az¢1(r) sing
2
1—y? Vi
=ao————+ ) ai———>,
1+1y2 ; 1+ yP2
whereag, a1, a are real numbers. O
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