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Abstract

We address and answer the question of optimal lifting estimates for unimodular complex valued maps: given s > 0 and 1 ≤ p <

∞, find the best possible estimate of the form |ϕ|Ws,p � F(|eıϕ |Ws,p ).
The most delicate case is sp < 1. In this case, we extend the results obtained in [3,4] for p = 2 (using L2 Fourier analysis 

and optimal constants in the Sobolev embeddings) by developing non-L2 estimates and an approach based on symmetrization. 
Following an idea of Bourgain (presented in [3]), our proof also relies on averaged estimates for martingales. As a byproduct of 
our arguments, we obtain a characterization of fractional Sobolev spaces with 0 < s < 1 involving averaged martingale estimates.

Also when sp < 1, we propose a new phase construction method, based on oscillations detection, and discuss existence of a 
bounded phase.

When sp ≥ 1, we extend to higher dimensions a result on optimal estimates of Merlet [20], based on one-dimensional arguments. 
This extension requires new ingredients (factorization techniques, duality methods).
© 2014 
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1. Introduction

Our first motivation is provided by the following problem.

Lifting estimate question. Let Ω ⊂ R
n be smooth bounded simply connected. Let 0 < s < ∞, 1 ≤ p < ∞. Assume 

that Ws,p(Ω; S1) has the lifting property, i.e., that every u ∈ Ws,p(Ω; S1) has a phase ϕ ∈ Ws,p(Ω; R). Which is the 
best possible estimate of the form

|ϕ|Ws,p � F
(|u|Ws,p

)
? (1.1)

Here, A � B means A ≤ CB , with C possibly depending on p and on the space dimension n, but not on s or u.
Estimate (1.1) can be seen as a reverse estimate for superposition operators. Superposition operators are mappings 

of the form

TΦ(ϕ) = Φ ◦ ϕ, ∀ϕ ∈ X,

with X a function space. Classical questions concerning such operators are: under which regularity assumptions on Φ
we have TΦ : X → X, and existence of estimates of the form∥∥TΦ(ϕ)

∥∥
X

≤ G
(‖ϕ‖X

); (1.2)

see e.g. [27] for a detailed account of these topics. The questions we discuss in the present paper are related to a sort 
of converse of (1.2), namely existence of estimates of the form

‖ϕ‖X ≤ F
(‖TΦ(ϕ)‖X

)
(1.3)

(or of a similar estimate where the full norm ‖ ‖X is replaced by a semi-norm | |X). Clearly, (1.3) cannot hold for 
every Φ , even smooth (take Φ = 0). A hint is given by the analysis of the case where X = W 1,p . The fact that∥∥∇(Φ ◦ ϕ)

∥∥
Lp = ∥∥Φ ′(ϕ)∇ϕ

∥∥
Lp

suggests that, in order to have both (1.2) and (1.3), a reasonable condition is that

0 < a ≤ ∣∣Φ ′∣∣ ≤ b < ∞.

This suggests considering the model nonlinearity Φ(t) = eıt , which satisfies |Φ ′| = 1, and then the corresponding 
problem is given by (1.1).

For simplicity, we consider only periodic maps u :Tn → S
1, where Tn =R

n/Zn (but it will be transparent from the 
proofs that the constructions and arguments we present extend to maps defined on Lipschitz bounded domains). We 
set C = [0, 1)n. If u : Tn → S

1 is smooth, then u has a smooth phase ϕ : C → R. Of course, such a phase need not be 
Z

n-periodic and thus cannot be identified with a smooth map on Tn. However, for notational simplicity, we still write 
most of the times ϕ : Tn →R. When periodicity may play a role, we turn back to the notation ϕ : C = [0, 1)n →R.

The maps we consider are normed in the standard way (over a period); e.g., we let ‖f‖Lp := ‖f ‖Lp(C).
Before presenting our contribution, let us briefly recall some previously known results concerning the existence of 

phases ϕ : C → R of maps u : Tn → S
1, and the corresponding estimates. First, the characterization of s and p such 

that Ws,p(Ω; S1) has the lifting property was obtained in [3] and is the following.

1.1. Theorem. (See [3].) The space Ws,p(Tn; S1) has the lifting property precisely in the following cases:

1. sp < 1.
2. sp ≥ n.
3. s ≥ 1 and sp ≥ 2.
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Concerning optimal estimates of the form (1.1), two qualitatively different situations are to be considered. As 
an illustration, let us assume that we have an estimate of the form (1.1) at our disposal, and also that the equality 
|ϕ0|Ws,p = F(|u|Ws,p ) holds for some ϕ0 ∈ Ws,p , with u := eıϕ0 . Starting from this, we would like to assert that (1.1)
is optimal. This is easily obtained when sp ≥ 1. Indeed, in this case, if u = eıϕ1 = eıϕ2 with ϕ1, ϕ2 ∈ Ws,p , then 
ϕ1 = ϕ2 (mod 2π) [3, Theorem B.1]; thus the phase (if it exists) is unique. Consequently, there is no phase ϕ ∈ Ws,p

of u such that |ϕ|Ws,p < F(|u|Ws,p ), and thus (1.1) is optimal. We will present in Section 5 the optimal estimates 
corresponding to the range sp ≥ 1; for the time being let us only mention the strategy. First, an inspection of the 
construction of phases in [3] and [21] leads to estimates of the form (1.1). Next, we test these estimates on typical 
Ws,p functions (like x �→ |x|−α , with (α + s)p < n) and conclude to their optimality.1

Much more involved is the case where sp < 1. Indeed, assume that we have established an estimate of the type (1.1)
and that we want to prove its optimality. This time, if ϕ is a Ws,p phase of u, then so is ϕ + 2π1A, with A a smooth 
compact subset of Ω . Thus even if the estimate (1.1) cannot be improved for a specific ϕ, it could be possible to obtain 
another phase of u satisfying a better estimate.

Optimality when sp < 1 and p = 2 was investigated in [3] and [4]; the corresponding optimal estimates have impli-
cations in the analysis of the Ginzburg–Landau equation [5] and were part of the original motivation in studying (1.1). 
In order to explain the results obtained in [3,4], we first recall a phase construction method due to Bourgain and 
presented in [3]. Assume that sp < 1 and let u ∈ Ws,p(Tn; S1). For j ∈ N, we let Pj denote the set of the (dyadic) 
cubes of the form 2−j

∏n
l=1[ml, ml +1), with m = (m1, . . . , mn) ∈ Z

n. Thus each x ∈ R
n belongs to exactly one cube 

Qj(x) ∈ Pj , and we have Qj(x) ⊂ Qj−1(x) if j ≥ 1. If u ∈ L1
loc(R

n), then we let

uj (x) = Eju(x) denote the average of u on Qj(x). (1.4)

We let Ej denote the set of functions which are constant on every cube of Pj . For a given u ∈ Ws,p(Tn; S1), the 
construction of a phase ϕ goes as follows. Let uj be as in (1.4), and set Uj := uj

|uj | ∈ Ej , with the convention 0
0 = 1. 

We then let ϕ0 be any real number such that U0 = eıϕ0
and next construct inductively a phase ϕj ∈ Ej of Uj such that∣∣ϕj − ϕj−1

∣∣ � ∣∣Uj − Uj−1
∣∣. (1.5)

The arguments developed in [3] imply that the sequence (ϕj ) converges in Lp to a phase ϕ of u satisfying the 
estimate (1.6) below.

1.2. Theorem. (See [3].) Assume that sp < 1. Then every u ∈ Ws,p(Tn; S1) has a phase ϕ ∈ Ws,p satisfying

|ϕ|pWs,p � 1

sp(1 − sp)p
|u|pWs,p . (1.6)

Here, | · |Ws,p is the standard Gagliardo semi-norm,

|f |pWs,p =
ˆ ˆ |f (x) − f (y)|p

|x − y|n+sp
dx dy.

As explained above, when sp < 1 the phase is not unique, and this raises the question of the optimality of (1.6). It 
turns out that (1.6) is not optimal.2 When p > 1, an improved estimate is provided by the following result.

1.3. Theorem. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < 1. Let u ∈ Ws,p(Tn; S1). Then there exists a phase ϕ
of u satisfying the estimate

|ϕ|pWs,p � 1

sp(1 − sp)
|u|pWs,p . (1.7)

1 Special cases of the results in Section 5 were obtained by Merlet [20].
2 It is proved in [3, Section 5 and Appendix A] that the estimates used in the proof of Theorem 1.2 are essentially optimal and thus cannot lead 

to an estimate better than (1.6). However, this does not imply that the phase obtained via the iterative construction in formula (1.5) does not satisfy 
an improved estimate. We do not have an example of u such that the corresponding ϕ does not satisfy (1.7).
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When p = 2, the above result is due to Bourgain [3, Theorem 3.1]. Bourgain’s proof relies on an averaging method, 
reminiscent of Garnett and Jones [13]. The idea is to perform the dyadic construction explained above starting from 
uy := u(· − y) instead of u, and obtain a corresponding phase ϕy . Then prove that, for some y ∈ T

n, ϕy(· + y) (which 
is clearly a phase of u) satisfies the improved estimate (1.7). While the first part of the proof (construction of ϕy) does 
not depend on p, the argument leading to the last part (existence of an appropriate y) in [3] is based on L2 Fourier 
analysis. Thus, in the proof of Theorem 1.3, our main task was to develop new, non-L2, arguments.

We continue with a digression related to the use of the averaging method. In [3], the proof of (1.6) (and of the 
corresponding phase existence result) is based on the semi-norm equivalence [3, Theorem A.1]

|f |pWs,p ∼
∑
j≥1

2sjp‖fj − fj−1‖p
Lp . (1.8)

Here, the averages fj are as in (1.4) (with u replaced by f ), and | |Ws,p is any standard semi-norm on Ws,p, e.g. the 
Gagliardo one.3 It is easy to see that the above semi-norm equivalence cannot hold when sp ≥ 1. Indeed, let 0 < s < 1
and 1 ≤ p < ∞ be such that sp ≥ 1. Let f be (the periodic extension of) the characteristic function of [0, 1/2)n. 
Then the right-hand side of (1.8) is finite,4 but f /∈ Ws,p , as one may easily check. However, we have the following 
result, proving that the semi-norm equivalence (1.8) is valid in average when 0 < s < 1, irrespective of the assumption 
sp < 1.

1.4. Theorem. Let 0 < s < 1 and 1 ≤ p < ∞. Let f y(x) := f (x − y). Then we have

|f |pWs,p ∼
ˆ

Tn

∑
j≥1

2sjp
∥∥(

f y
)
j
− (

f y
)
j−1

∥∥p

Lp dy. (1.9)

This leads to the following picture, reminiscent of the connection discovered in [13] between BMO and dyadic 
BMO semi-norms:

1. The dyadic semi-norm (
∑

j≥1 2sjp‖fj − fj−1‖p
Lp)1/p is equivalent to the standard semi-norm | |Ws,p precisely 

when sp < 1. This is Bourdaud’s result [2, Théorème 5]. We note that this equivalence requires 0 < s < 1, and 
for such s it holds for only for some p’s in the range [1, ∞).

2. However, in average, the two semi-norms are equivalent in the full range 0 < s < 1, 1 ≤ p < ∞.

We next turn to the question of the optimality of the estimate (1.6), settled in [3, Remark 7] for p = 2 and n ≥ 2, 
and in [4, Theorem 2] for p = 2 and n = 1.

1.5. Theorem. Assume that 1 < p < ∞. Then estimate (1.7) is optimal.

Here, optimality means that (1.7) cannot be improved to

|ϕ|pWs,p ≤ ε(s)

sp(1 − sp)
|u|pWs,p ,

with ε(s) → 0 as sp ↗ 1.
The original argument in [4, Theorem 2] relies on an involved result: the behavior of the best constant in the 

embedding W 1−ε,1((0, 1)) ↪→ L1/ε((0, 1)). We develop here a related, but simpler, argument, whose main ingredient 
is the fact that the nonincreasing rearrangement on an interval does not increase the fractional Sobolev norms. This is 
well-known on the real line, and goes back to Riesz when p = 2 [17, Lemma 3.6]; on an interval, the corresponding 
result is more recent and is due to Garsia and Rodemich [14].

As it turns out, the proofs of Theorems 1.3 and 1.5 we present below are slightly simpler than the original ones 
even when p = 2.

3 See formula (3.1) below.
4 Since fj = f , ∀j ≥ 1.
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The reader may wonder about the role of the assumption p > 1 in Theorem 1.5. It turns out that this result is wrong 
when p = 1. Instead, we have the following improved estimate.

1.6. Proposition. Let 0 < s < 1. Then every map u ∈ Ws,1(Tn; S1) has a phase ϕ such that

|ϕ|Ws,1 ≤ 2|u|Ws,1 . (1.10)

Estimate (1.10) is essentially optimal, since we clearly have |u|Ws,1 ≤ |ϕ|Ws,1 . The proof of Proposition 1.6 follows 
the approach of Dávila and Ignat [12], who established, for BV maps u : Tn → S

1, the existence of a BV phase ϕ
satisfying the (optimal) estimate |ϕ|BV ≤ 2|u|BV.

Our paper is organized as follows. Sections 3, 4 and 5 are devoted to optimal estimates. In Section 3, we prove 
Theorem 1.3, which leads to an optimal estimate when sp < 1 and p > 1, and Proposition 1.6, giving an optimal 
estimate when s < 1 and p = 1. Section 4 contains the proof of Theorem 1.5, which asserts the optimality of the 
estimate in Theorem 1.3. In Section 5, we examine optimal estimates when sp ≥ 1.

Sections 6 and 7 are devoted to further developments. In Section 6.1 we discuss the existence of a bounded phase 
when sp < 1. In Section 6.2, we describe a new method for constructing phases when sp < 1. This construction 
combines a factorization technique developed by the first author [22,23] with an averaging idea due to Dávila and 
Ignat [12]. Section 7 is devoted to the proof of Theorem 1.4.

The final Section 8 gathers various useful auxiliary estimates.

2. Notation

We present here some notation that we use throughout the paper.

1. |x| = |(x1, . . . , xn)| := maxj∈�1,n� |xj |.
2. If r ≤ 1 and x ∈ T

n, then B(x, r) = {y ∈ T
n; |y − x| < r}.

3. {ei}ni=1 is the canonical basis of Rn.
4. Pj , j ≥ 0, is the family of dyadic cubes of side length 2−j of Tn. Thus an element of Pj is of the form 

Qj = 2−j
∏n

	=1[m	, m	 + 1), with m = (m1, . . . , mn) ∈ �0, 2j − 1�n.
5. If x ∈ T

n, then Qj(x) is the (one and only one) cube Qj ∈ Pj such that x ∈ Qj .
6. Ej := {f : Tn →C; f is constant on each Qj ∈ Pj }.
7. The average of f on Qj(x) is denoted either fj (x) or Ejf (x). Thus fj (x) = Ejf (x) := ffl

Qj (x)
f .

8. τhf (x) := f (x − h).
In the next four items, we let 0 < s < 1 and 1 ≤ p < ∞.

9. |f |pWs,p(Tn) := ´
Tn

´
Tn

|f (x)−f (y)|p
|x−y|n+sp dx dy = ´

Tn

´
Tn

|f (x)−τhf (x)|p
|h|n+sp dx dh.

10. We also sometimes denote X(f ) := |f |pWs,p .
11. Y(f ) := ∑

j≥1 2spj‖fj − fj−1‖p
Lp .

12. Z(f ) := ∑
j≥0 2spj‖f − fj‖p

Lp .
13. The characteristic function of A is denoted 1A.
14. cA is the complement of A.
15. � denotes a disjoint union.
16. If u = (f, g) ∈ C1(Ω; R2), with Ω ⊂R

2, then the Jacu := det(∇f, ∇g) is the Jacobian determinant of u.
17. A(f ) � B(f ) stands for A(f ) ≤ CB(f ), with C a constant independent of f . When f ∈ Ws,p , we will further 

specify whether C depends on the parameters n, s and p.
18. A(f ) ≈ B(f ) stands for B(f ) � A(f ) � B(f ).
19. “∧” is used for the vector product of complex numbers: (u1 + ıu2) ∧ (v1 + ıv2) = u1v2 − u2v1. Similarly, 

(u1 + ıu2) ∧ ∇(v1 + ıv2) = u1∇v2 − u2∇v1.

3. Optimal estimates when sp < 1. Proof of Theorem 1.3

We start with some preliminary results. We recall that Qj(x) is the unique cube in Pj such that x ∈ Qj(x). We 
set fj (x) := ffl

f , τhf (x) := f (x − h), and we associate with f , s and p the following quantities:

Qj (x)
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X(f ) := |f |pWs,p =
ˆ

Tn

ˆ

Tn

|f (x) − f (y)|p
|x − y|n+sp

dx dy =
ˆ

Tn

ˆ

Tn

|f (x) − τhf (x)|p
|h|n+sp

dx dh, (3.1)

Y(f ) :=
∑
j≥1

2spj‖fj − fj−1‖p
Lp , (3.2)

Z(f ) :=
∑
j≥0

2spj‖f − fj‖p
Lp . (3.3)

When sp < 1, we have that X(f ), Y(f ) and Z(f ) are equivalent semi-norms in Ws,p(Tn). This fact was estab-
lished by Bourdaud [2]; see [3, Theorem A.1] for a quantitative form of this equivalence. For the convenience of the 
reader, we briefly recall in Section 8.1 the result in [3] with a slightly different proof; see Lemma 8.3.

It can be easily shown that the phases ϕj given by (1.5) satisfy the following inequality [3, (1.5)]:∣∣ϕj − ϕj−1
∣∣� |u − uj | + |u − uj−1|, ∀j ≥ 1. (3.4)

In [3], estimate (1.6) is obtained by combining (3.4) with the (quantitative form of) the equivalence between X(u), 
Y(u) and Z(u) (with X, Y and Z as in (3.1)–(3.3)).

The proof of the improved estimate (1.7) is more subtle. In order to obtain (1.7), we follow the approach in [3], 
which is itself inspired by a result of Garnett and Jones [13] showing that one can recover the standard BMO norm of 
a function u from the dyadic BMO norm of a suitable translation τhu of u. More specifically, the argument goes as 
follows. Let uy := τyu and let ϕy be the phase of uy obtained via Bourgain’s construction, i.e., ϕy := limj→∞ ϕy,j . 
Here, ϕy,j ∈ Ej is a phase of uy

j /|uy
j | satisfying∣∣ϕy,j − ϕy,j−1

∣∣� ∣∣uy − u
y
j

∣∣ + ∣∣uy − u
y

j−1

∣∣, ∀j ≥ 1. (3.5)

In the spirit of [3], we will prove that
ˆ

Tn

∣∣ϕy
∣∣p
Ws,p dy � 1

sp(1 − sp)
|u|pWs,p . (3.6)

Indeed, for every measurable function f : Tn →C we clearly have

|f |pWs,p =
ˆ

Tn

ˆ

Tn

|(τh − id)f (x)|p
|h|n+sp

dx dh ≤
∑
j≥0

2(n+sp)(j+1)

ˆ

|h|∈Ij

ˆ

Tn

∣∣(τh − id)f (x)
∣∣p dx dh,

where Ij := [2−j−1, 2−j ). We find that the average of |ϕy|pWs,p can be estimated by
ˆ

Tn

∣∣ϕy
∣∣p
Ws,p dy ≤

ˆ

Tn

∑
j≥0

2(n+sp)(j+1)

ˆ

|h|∈Ij

ˆ

Tn

∣∣(τh − id)ϕy
∣∣p dx dhdy. (3.7)

In order to estimate the right-hand side of (3.7), we start from∣∣(τh − id)ϕy
∣∣ ≤ ∣∣(τh − id)ϕy,j

∣∣ + ∣∣(τh − id)
(
ϕy − ϕy,j

)∣∣, ∀j ≥ 0. (3.8)

Consider now ρ = 1(−1/2,1/2)n , and set ρε(x) := ε−nρ(x/ε), ∀ε > 0, ∀x. We define

Ak,j := {
x ∈ T

n;dist(x, ∂Q) ≤ 2−j for some Q ∈ Pk

}
.

By Lemma 8.6 in Section 8.2, when |h| ∈ Ij we have

∣∣(τh − id)ϕy,j
∣∣ = ∣∣(τh − id)

(
ϕy,j − ϕy,0)∣∣ =

∣∣∣∣ ∑
1≤k≤j

(τh − id)
(
ϕy,k − ϕy,k−1)∣∣∣∣

≤
∑ ∣∣(τh − id)

(
ϕy,k − ϕy,k−1)∣∣� ∑ ∣∣ϕy,k − ϕy,k−1

∣∣ ∗ ρ22−k1Ak,j
. (3.9)
1≤k≤j 1≤k≤j
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Before going further, let us note that

ρ22−k � ρ23−k and Ak+1,j ⊂ Ak,j . (3.10)

By (3.5), (3.9) and (3.10), we thus have∣∣(τh − id)ϕy,j
∣∣ � ∑

0≤k≤j

∣∣uy − u
y
k

∣∣ ∗ ρ23−k1Ak+1,j
.

Thus ∣∣(τh − id)ϕy,j (x)
∣∣p �

( ∑
0≤k≤j

∣∣uy − u
y
k

∣∣ ∗ ρ23−k1Ak+1,j
(x)

)p

=: J1,j (x, y). (3.11)

On the other hand, (3.5) implies∥∥(τh − id)
(
ϕy − ϕy,j

)∥∥p

Lp �
∥∥ϕy − ϕy,j

∥∥p

Lp ≤
ˆ

Tn

( ∑
k≥j+1

∣∣ϕy,k(x) − ϕy,k−1(x)
∣∣)p

dx

�
ˆ

Tn

(∑
k≥j

∣∣uy(x) − u
y
k (x)

∣∣)p

dx =: J2,j (y). (3.12)

By combining the estimates (3.11) and (3.12) with (3.7) and (3.8), we find thatˆ

Tn

∣∣ϕy
∣∣p
Ws,p dy �

ˆ

Tn

ˆ

Tn

∑
j≥0

2spj J1,j (x, y) dy dx +
ˆ

Tn

∑
j≥0

2spj J2,j (y) dy =: L1 + L2.

We first estimate the term L2, via a Schur type estimate (Corollary 8.2) and Lemma 8.3:∑
j≥0

2spj J2,j (y) =
ˆ

Tn

∑
j≥0

(∑
k≥j

2s(j−k)
(
2sk

∣∣uy(x) − u
y
k (x)

∣∣))p

dx � 1

sp

∑
k≥0

2skp
∥∥uy − u

y
k

∥∥p

Lp

= 1

sp
Z

(
uy

)
� 1

sp
X

(
uy

) = 1

sp
|u|pWs,p , ∀y ∈ T

n.

Consequently,

L2 �
1

sp
|u|pWs,p .5 (3.13)

We now turn to L1. We decompose the sets Ak,j , which are increasing with k, as a finite disjoint union of sets by 
defining

Bk,j := Ak,j \ Ak−1,j , ∀k ≥ 2 and B1,j := A1,j .

Thus, Ak,j = ⊔
1≤t≤k Bt,j and we have

L1 =
∑
j≥0

2spj

ˆ

Tn

ˆ

Tn

(
j∑

k=0

k+1∑
t=1

∣∣uy − u
y
k

∣∣ ∗ ρ24−k1Bt,j
(x)

)p

dy dx

=
∑
j≥0

2spj
∑

1≤t≤j+1

ˆ

Bt,j

∥∥∥∥ ∑
t−1≤k≤j

∣∣uy − u
y
k

∣∣ ∗ ρ24−k (x)

∥∥∥∥p

L
p
y (Tn)

dx.

Using Minkowski’s inequality and noting that |Bt,j | ≤ |At,j | � 2t−j , we find

5 As in [3], the integration with respect to y does not play any role in the estimate satisfied by L2.
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L1 �
∑
j≥0

2spj
∑

1≤t≤j+1

2t−j

( ∑
t−1≤k≤j

sup
x

∥∥∣∣uy − u
y
k

∣∣ ∗ ρ24−k (x)
∥∥

L
p
y (Tn)

)p

.

Now comes the key estimate.

3.1. Lemma. Assume that 0 < s < 1. Let u ∈ Ws,p(Tn), and define gk : Tn ×T
n →R by

gk(x, y) := ∣∣uy − u
y
k

∣∣ ∗ ρ24−k (x).

Consider also the quantity

ak := 2sk sup
x

∥∥gk(x, ·)∥∥
Lp , ∀k ≥ 0.

Then 
∑

k≥0 a
p
k ≤ 2|u|pWs,p .

Proof. Hölder’s inequality combined with the fact that the integral of ρ equals 1 givesˆ

Tn

∣∣gk(x, y)
∣∣p dy ≤

ˆ

Tn

ˆ

Tn

∣∣uy − u
y
k

∣∣p(x − z)ρ24−k (z) dy dz. (3.14)

We next note that∣∣uy − u
y
k

∣∣p(x − z) =
∣∣∣∣  

Qk(x−z)

(
uy(x − z) − uy(w)

)
dw

∣∣∣∣p ≤ 2nk

ˆ

B(x−z,2−k)

∣∣uy(x − z) − uy(w)
∣∣p dw; (3.15)

here, we use Hölder’s inequality together with the fact that Qk(x − z) ⊂ B(x − z, 2−k).
Integration of (3.15) over y leads toˆ

Tn

∣∣uy − u
y
k

∣∣p(x − z) dy ≤ 2nk

ˆ

Tn

ˆ

B(x−z,2−k)

∣∣uy(x − z) − uy(w)
∣∣p dy dw

= 2nk

ˆ

Tn

ˆ

|h|≤2−k

∣∣u(t) − u(t − h)
∣∣p dhdt, ∀x, z ∈ T

n. (3.16)

Using (3.14), we obtain∑
k≥0

a
p
k ≤

∑
k≥0

ˆ

Tn

ˆ

|h|≤2−k

2(n+sp)k
∣∣u(t) − u(t − h)

∣∣p dhdt

=
ˆ

Tn

ˆ

Tn

∑
2k≤1/|h|

2(n+sp)k
∣∣u(t) − u(t − h)

∣∣p dhdt ≤ c

ˆ

Tn

ˆ

Tn

|u(t) − u(t − h)|p
|h|n+sp

dhdt,

with

c = c(n, s,p) := sup
|h|≤1

|h|n+sp
∑

2k≤1/|h|
2(n+sp)k ≤ 2.

Therefore, we have 
∑

k≥0 a
p
k ≤ 2|u|pWs,p . �

Proof of Theorem 1.3 completed. By the above lemma and Corollary 8.2 we have

L1 �
∑
j≥0

2(sp−1)j
∑

1≤t≤j+1

2t

( ∑
t−1≤k≤j

2−skak

)p

=
∑
t≥1

∑
j≥t−1

2(sp−1)(j−t)

( ∑
t−1≤k≤j

2−s(k−t)ak

)p

� 1

1 − sp

∑( ∑
2−s(k−t)ak

)p

� 1

sp(1 − sp)

∑
a

p
k � 1

sp(1 − sp)
|u|pWs,p .
t≥1 k≥t−1 k≥0
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By combining this with the estimate (3.13) of L2, we find thatˆ

Tn

∣∣ϕy
∣∣p
Ws,p dy � 1

sp(1 − sp)
|u|pWs,p . �

Proof of Proposition 1.6. As mentioned in the introduction, we rely on an argument devised, for BV maps, by 
Dávila and Ignat [12]. Let u ∈ Ws,1(Tn; S1). For every α ∈ S

1 define ϕα := θα(u), where θα(z) represents the unique 
argument of z ∈ S

1 in the interval (α − 2π, α]. The functions ϕα are clearly measurable phases of u. We claim that 
there exists α ∈ S

1 such that |ϕα|Ws,1 ≤ 2|u|Ws,1 . For this purpose, we estimate the average of |ϕα|Ws,1 over S1:
 

S1

|ϕα|Ws,1 dα =
 

S1

(ˆ
Tn

ˆ

Tn

|ϕα(x) − ϕα(y)|
|x − y|n+s

dx dy

)
dα

= 1

2π

ˆ

Tn

ˆ

Tn

1

|x − y|n+s

(ˆ
S1

∣∣θα

(
u(x)

) − θα

(
u(y)

)∣∣dα

)
dx dy. (3.17)

Applying Lemma 8.12 and using (3.17), we obtain 
ffl
S1 |ϕα|Ws,1 dα ≤ 2|u|Ws,1 , which proves the claim and completes 

the proof of the proposition. �
4. Optimality when sp < 1. Proof of Theorem 1.5

The next result quantifies the asymptotic optimality of Theorem 1.3 in the special case where n = 1, 1 < p < ∞
and s = (1 − ε)/p, with ε → 0. As we will see, the general case is an easy consequence of Proposition 4.1.

4.1. Proposition. For every ε ∈ (0, 1/2), there exists uε ∈ W(1−ε)/p,p(T; S1) such that any phase ϕ ∈
W(1−ε)/p,p((0, 1); R) of uε satisfies

|ϕ|W(1−ε)/p,p � ε−1/p|u|W(1−ε)/p,p .

The above proposition is a variant of [4, Theorem 2]. In turn, [4, Theorem 2] relies on a very involved result 
[4, Theorem 1] providing the asymptotic behavior of the best Sobolev constant in the embedding W 1−ε,1((0, 1)) ↪→
L1/ε((0, 1)). We present below a cousin argument, based on an inequality involving non-increasing rearrangements 
of functions, obtained by Garsia and Rodemich [14].

Proof of Proposition 4.1. As in [4, Proof of Theorem 2], the key step consists in establishing the following estimate

|A|∣∣cA∣∣ ≤
(

Cε

ˆ

A

ˆ
cA

dxdy

|x − y|2−ε

)1/ε

, (4.1)

for every ε ∈ (0, 1/2) and every measurable set A ⊂ (0, 1). Here, cA is the complement of A, and C is an absolute 
constant.

Step 1. Proof of (4.1).
Recall that, if f : (0, 1) → R+ is a measurable function, then its non-increasing rearrangement f ∗ : (0, 1) → R+

is defined by

f ∗(x) = inf
{
λ ∈ R; ∣∣{t ∈ [0,1);f (t) > λ

}∣∣ ≤ x
}
, ∀x ∈ (0,1).

It is easy to see that, when A ⊂ (0, 1) is a measurable set, we have (1A)∗ = 1A∗ , with A∗ = (0, |A|). Thus

ˆ

A∗

ˆ
c(A∗)

dxdy

|x − y|2−ε
=

|A|ˆ

0

1ˆ

|A|

dxdy

|x − y|2−ε
= (1 − |A|)ε + |A|ε − 1

ε(1 − ε)
= |A|ε + |cA|ε − 1

ε(1 − ε)
. (4.2)

On the other hand, we have
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|A|ε∣∣cA∣∣ε � (
1 − |A|)ε + |A|ε − 1 (4.3)

(see Lemma 8.13 in Section 8.4).
In view of (4.2) and (4.3), in order to establish (4.1) it suffices to prove thatˆ

A∗

ˆ
c(A∗)

dxdy

|x − y|2−ε
≤
ˆ

A

ˆ
cA

dxdy

|x − y|2−ε
.

This is precisely the rearrangement inequality of Garsia and Rodemich [14, Theorem I.1]

1ˆ

0

1ˆ

0

Ψ

(
f ∗(x) − f ∗(y)

p(x − y)

)
dx dy ≤

1ˆ

0

1ˆ

0

Ψ

(
f (x) − f (y)

p(x − y)

)
dx dy,

applied with f := 1A, p(t) := |t |2−ε and Ψ (t) := |t |.
Step 2. Proof of Proposition 4.1 completed.

This part follows closely [4, Proof of Theorem 2], with some slight simplifications. For the convenience of the 
reader, we also detail some arguments which are only sketched in [4].

For δ ∈ (0, 1/2), we define the phase

ϕδ(x) :=
{0, if x < 1/2,

(2x − 1)π/δ, if 1/2 < x < 1/2 + δ,

2π, if 1/2 + δ < x.

(4.4)

We next choose δ = δ(ε) := e−1/ε . For this choice of δ, the map uε(x) := eıϕδ(x), for x ∈ (0, 1), satisfies

|u|W(1−ε)/p,p((0,1)) ≈ 1 when ε → 0 (4.5)

(see Lemma 8.14 in Section 8.4).
In order to prove Proposition 4.1, it suffices to show that any lifting ϕ of uε satisfies

|ϕ|W(1−ε)/p,p � ε−1/p,

for ε ∈ (0, 1/2). Arguing by contradiction, we assume that, for every η > 0, there are some ε ∈ (0, 1/2) and ϕ ∈
W(1−ε)/p,p((0, 1); R) such that uε ≡ eıϕ and

|ϕ|p
W(1−ε)/p,p <

η

ε
. (4.6)

We set ψ := ϕ−ϕδ

2π
. Since both ϕ and ϕδ are liftings of uε , the function ψ takes its values into Z. Straightforward 

calculations (see Lemma 8.15) show that∣∣ψ(x) − ψ(y)
∣∣ ≤ ∣∣ϕ(x) − ϕ(y)

∣∣ if x, y ∈ I1 :=
(

0,
1

2
+ 2δ

3

)
, or if x, y ∈ I2 :=

(
1

2
+ δ

3
,1

)
. (4.7)

We next invoke the following result, whose proof is postponed to Section 8.4.

4.2. Lemma. Let I ⊂ R be an interval and let ψ : I → Z be any measurable function. Then there exists some k ∈ Z

such that∣∣{x ∈ I ;ψ(x) �= k
}∣∣ ≤ 4

(
Cε

ˆ

I

ˆ

I

|ψ(x) − ψ(y)|p
|x − y|2−ε

dx dy

)1/ε

,

for all ε ∈ (0, 1/2), where C is the absolute constant in (4.1).

Step 2 continued. Applying Lemma 4.2 with I = I1 and with I = I2, and using (4.7) together with (4.6), we obtain 
that there exist m1, m2 ∈ Z such that∣∣c(A1)

∣∣ ≤ 4(Cη)1/ε and
∣∣c(A2)

∣∣ ≤ 4(Cη)1/ε, (4.8)
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where

A1 := {
x ∈ I1;ψ(x) = m1

}
and A2 := {

x ∈ I2;ψ(x) = m2
}
.

We now choose η > 0 such that η < 1√
24Ce

. With this choice of η, we have (using (4.8))

|A1 ∩ A2| = |A1 ∩ A2 ∩ I1 ∩ I2| ≥ |I1 ∩ I2| −
∣∣c(A1)

∣∣ − ∣∣c(A2)
∣∣ ≥ δ(ε)

3
− 8(Cη)1/ε > 0,

and thus we must have m1 = m2. We may further assume that m1 = m2 = 0.
Consider the following sets:

B1 := {
x ∈ (0,1/2);ψ(x) �= 0

} ⊂ (0,1/2) and B2 := {
x ∈ (1/2 + δ,1);ψ(x) �= 0

} ⊂ (1/2 + δ,1).

We clearly have

ϕ = ϕδ on c(B1) and ϕ = ϕδ on c(B2)

and, in addition, by (4.8) we also have

|B1| ≤ δ/6 and |B2| ≤ δ/6. (4.9)

By the definition of ϕδ , we then find

|ϕ|p
W(1−ε)/p,p ≥

ˆ
c(B1)

ˆ
c(B2)

|ϕ(x) − ϕ(y)|p
(x − y)2−ε

dx dy =
ˆ

c(B1)

ˆ
c(B2)

|ϕδ(x) − ϕδ(y)|p
(x − y)2−ε

dx dy

≥ (2π)p
ˆ

c(B1)

ˆ
c(B2)

dxdy

(x − y)2−ε
.

It is easy to see that the latter quantity does not increase if the sets B1 and B2 are replaced respectively by the intervals 
B̃1 := ( 1

2 −|B1|, 12 ), and B̃2 := ( 1
2 + δ, 12 + δ +|B2|); see Lemma 8.16. Hence, using (4.9) and the fact that δ = e−1/ε , 

we obtain

|ϕ|p
W(1−ε)/p,p ≥ (2π)p

1/2−δ/6ˆ

0

1ˆ

1/2+7δ/6

dxdy

(x − y)2−ε
= (2π)p

ε(1 − ε)

(
1 − 1/e + o(1)

)
, (4.10)

when ε → 0. For an appropriate choice of η, (4.10) contradicts (4.6). �
Proof of Theorem 1.5. The optimality of the estimate (1.7) in Theorem 1.3 means that, for every 0 < s < 1 with 
1 − sp � 1, there exists a map u ∈ Ws,p(Tn; S1) such that any lifting ϕ ∈ Ws,p((0, 1)n; R) of u satisfies

|ϕ|pWs,p � 1

1 − sp
|u|pWs,p . (4.11)

This is true in dimension n = 1 by the above Proposition 4.1. In order to prove (4.11) in arbitrary dimension, we use 
a dimensional reduction argument. More specifically, for every s ∈ (1/(2p), 1/p) we define

u(x) = u(x1, x2, . . . , xn) = u
(
x1, x

′) := us(x1), ∀x ∈ T
n.

Here, us is a map in Ws,p(T; S1) that satisfies the property that for any lifting ϕ ∈ Ws,p([0, 1]; R) of us we have

|ϕ|pWs,p([0,1]) �
1

1 − sp
|us |pWs,p(T)

. (4.12)

Note that the existence of us follows from Proposition 4.1.
Consider an arbitrary lifting ψ ∈ Ws,p((0, 1)n; R) of u. Clearly, for almost every x′ := (x2, . . . , xn) ∈ (0, 1)n−1, 

the map x1 �→ ψ(x1, x′) =: ϕx′(x1) is a lifting of us , and thus satisfies the estimate (4.12). By combining this fact with 
Corollary 8.19, we find
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|ψ |p
Ws,p(Tn)

≈ |ϕx′ |p
Ws,p(T)

� 1

1 − sp
|us |pWs,p(T)

. (4.13)

On the other hand, we have, again by Corollary 8.19, that |u|Ws,p(Tn) ≈ |us |Ws,p(T), which, together with (4.13), leads 
to

|ψ |p
Ws,p(Tn)

� 1

1 − sp
|u|p

Ws,p(Tn)
. �

5. Optimal estimates when sp ≥ 1

As we will see below, when sp ≥ 1 two quantitatively different types of estimates occur: linear estimates of the 
form |ϕ|Ws,p � |u|Ws,p , and superlinear estimates of the form

|ϕ|Ws,p � |u|Ws,p + |u|αWs,p , (5.1)

with α > 1.
The linear regime corresponds to the case where s ≥ 1. When s = 1, we actually have the identity |ϕ|W 1,p = |u|W 1,p , 

and optimality is irrelevant. When s > 1, several natural semi-norms6 | · |Ws,p can be considered, and optimal estimates 
do depend on the choice of such a semi-norm. Therefore, we restrict ourselves to a more modest task, which consists 
in proving that optimal estimates are indeed linear.

When s < 1, we will obtain superlinear estimates of type (5.1). In this case, we focus on the optimality of the 
exponent α (when |u|Ws,p is large) and of the linear term |u|Ws,p (when |u|Ws,p is small).

5.1. Theorem. Let s ≥ 1, 1 ≤ p < ∞ be such that sp ≥ 2. Let u ∈ Ws,p(Tn; S1) and let ϕ ∈ Ws,p(Tn; R) be a lifting 
of u. Then

|ϕ|Ws,p ≤ C(s,p)|u|Ws,p . (5.2)

Moreover, the above estimate is optimal in the sense that

lim sup
|ϕ|Ws,p →0

|ϕ|Ws,p

|u|Ws,p
> 0, and lim sup

|u|Ws,p →∞
|ϕ|Ws,p

|u|Ws,p
> 0.

Proof. Since the estimate (5.2) does not depend on the choice of the semi-norm, we can work for convenience with 
the semi-norm |f |Ws,p := ‖∇f ‖Ws−1,p .

Step 1. Proof of (5.2).
Since s ≥ 1, we may differentiate once the equality u = eıϕ and find that ∇ϕ = u ∧∇u.7 Thus we have to establish 

the estimate ‖u ∧ ∇u‖Ws−1,p � |u|Ws,p . We first extend u to a map in Rn using a standard extension operator P :
Ws,p(Tn) → Ws,p(Rn). This goes as follows. We first define v := P(u − ´

Tn u), which belongs to Ws,p(Rn) and 
then w := v + ´

Tn u is an extension of u. We next note that

‖u ∧ ∇u‖Ws−1,p(Tn) ≤ ‖w ∧ ∇w‖Ws−1,p(Rn) =
∥∥∥∥(

v +
ˆ

Tn

u

)
∧ ∇v

∥∥∥∥
Ws−1,p(Rn)

� ‖v ∧ ∇v‖Ws−1,p(Rn) + ‖∇v‖Ws−1,p(Rn) = ‖v ∧ ∇v‖Ws−1,p(Rn) + |v|Ws,p(Rn).

In the last inequality we used the fact that | ffl u| ≤ 1. Therefore, by Lemma 8.21, and by the fact that |v| ≤ 2, we obtain

‖u ∧ ∇u‖Ws−1,p(Tn) � ‖v‖Ws,p(Rn) =
∥∥∥∥P

(
u −

ˆ

Tn

u

)∥∥∥∥
Ws,p(Rn)

�
∥∥∥∥u −

ˆ

Tn

u

∥∥∥∥
Ws,p(Tn)

� |u|Ws−1,p(Tn)

(the last inequality following from Poincaré’s inequality).

6 A natural semi-norm is a semi-norm modulo constant functions and equivalent to the standard norm on the quotient space Ws,p/C.
7 Recall that (u1 + ıu2) ∧ ∇(v1 + ıv2) = u1∇v2 − u2∇v1.
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Step 2. Optimality in dimension n = 1.
The optimality of (5.2) needs to be checked for |ϕ|Ws,p → 0 and for |u|Ws,p → ∞, that is we need to show that:

1. There exists (ϕj )j≥1 in Ws,p(T; R) such that |ϕj |Ws,p → 0 and |uj |Ws,p � |ϕj |Ws,p , where uj := eıϕj .
2. There exists (uj )j≥1 in Ws,p(T; S1) such that |uj |Ws,p → ∞ and |uj |Ws,p � |ϕj |Ws,p , where ϕj is the (unique 

modulo 2π ) lifting of uj .

For the optimality “at zero”, we let f ∈ C∞
c ((0, 1); R), and define ϕj := f/j , and uj := eıϕj . Clearly, we have

|ϕj |Wr,p = |f |Wr,p

j
≈ 1

j
→ 0 as j → ∞, ∀r > 0. (5.3)

Using (5.3) and a straightforward induction, it is easy to see that, when k ≥ 1 is an integer, we may write

Dkuj = gk,j uj , for some gk,j ∈ C∞
c

(
(0,1);C)

such that |gk,j |Wr,p � 1/j, ∀r > 0. (5.4)

We now establish item 1 for the above choice of ϕj and uj . Assume first that s is an integer. Then by (5.4) we have

|uj |Ws,p = ‖∇uj‖Ws−1,p =
∑

1≤k≤s

∥∥Dkuj

∥∥
Lp � 1

j
. (5.5)

By (5.3) and (5.5), we find that |uj |Ws,p � |ϕj |Ws,p .
Assume next that s is not an integer and set σ := s − [s] ∈ (0, 1). By (5.5), we have∥∥Dkuj

∥∥
Lp � 1/j, ∀1 ≤ k ≤ [s]. (5.6)

As a consequence of (5.6) with k = 1, we also have

|uj |Wr,p � 1/j, ∀r ∈ (0,1). (5.7)

In order to conclude, it suffices to establish the estimate |D[s]uj |Wσ,p � 1/j . This estimate is an immediate conse-
quence of (5.4), of (5.7) and of the inequality∣∣D[s]uj

∣∣p
Wσ,p � |uj |pWσ,p + |g[s],j |pWs,p � |uj |pWσ,p + 1/jp. (5.8)

In turn, (5.8) follows from∣∣g[s],j (x)uj (x) − g[s],j (y)uj (y)
∣∣ ≤ ∣∣g[s],j (x)

∣∣∣∣uj (x) − uj (y)
∣∣ + ∣∣g[s],j (x) − g[s],j (y)

∣∣
�

∣∣uj (x) − uj (y)
∣∣ + ∣∣g[s],j (x) − g[s],j (y)

∣∣.
In order to prove the optimality of (5.2) “at infinity” we take ϕj to be a sum of j copies of a properly scaled 

C∞
c function. More precisely, we fix f ∈ C∞

c ((0, 1); R) and we define the functions ϕj := ∑j−1
k=0 f (xj − k), ∀j ≥ 1, 

whose semi-norms can be estimated by

|ϕj |Ws,p ≈ j s (5.9)

(see Lemma 8.20). 8 Next, we take g := eıf − 1 ∈ C∞
c ((0, 1); C) and

uj :=
j−1∑
k=0

g(xj − k) + 1, ∀j ≥ 1.

Since uj (x) = ∑j−1
k=0(e

ıf (xj−k) − 1) + 1 = ∏j−1
k=0 eıf (xj−k) = eıϕj (x), the function ϕj is “the” lifting of uj . On the 

other hand, by Lemma 8.20 we have

|uj |Ws,p ≈ j s. (5.10)

By (5.9) and (5.10), we have |uj |Ws,p ≈ |ϕj |Ws,p → ∞ when j → ∞, which proves item 2 when n = 1.

8 Recall that A ≈ B stands for B � A � B .
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Step 3. Optimality in higher dimension.
Let ϕj , uj be as in Step 2. As in the proof of Proposition 4.1, we let:

ψj

(
x1, x

′) := ϕj (x1), vj

(
x1, x

′) := uj (x1) = eıϕj (x1), ∀x1 ∈ T, x′ ∈ T
n−1. (5.11)

Then vj = eıψj and, by Corollary 8.19, we have the equivalence of norms |ψj |Ws,p ≈ |ϕj |Ws,p and |vj |Ws,p ≈ |uj |Ws,p . 
Therefore, since ϕj and uj were chosen such that |uj |Ws,p � |ϕj |Ws,p , we also have |vj |Ws,p � |ψj |Ws,p . �

We next turn to the case where 0 < s < 1. In view of [3] (see also the Introduction), when 0 < s < 1, Ws,p has the 
lifting property if and only if sp ≥ n. We start by presenting an exceptional case, already observed in [3], where there 
is no possible estimate of ϕ in terms of u. More specifically, we have the following:

5.2. Proposition. (See [3].) Let 1 < p < ∞. Then there is no estimate of the form |ϕ|W 1/p,p ≤ F(|u|W 1/p,p ).

Let us briefly recall the argument in [3]. Let ϕδ be as in (4.4) and set uδ := eıϕδ . Then it is easily checked that 
|uδ|W 1/p,p � 1 and |ϕ|W 1/p,p → ∞ as δ → 0. Since ϕδ is the unique phase (mod 2π) of uδ , we obtain the non-existence 
of an estimate of the form |ϕ|W 1/p,p ≤ F(|u|W 1/p,p ).

As we will see below, this is the only exceptional case. In the remaining cases, we will establish several positive 
results. We start by recalling an elementary estimate, due to Merlet [20, Theorem 1.1], and whose proof is postponed.

5.3. Theorem. (See [20].) Let n = 1. Assume that 0 < s < 1, 1 < p < ∞ and sp > 1. Let u ∈ Ws,p(T; S1) and let 
ϕ ∈ Ws,p(T; R) be a lifting of u. Then

|ϕ|Ws,p � |u|Ws,p + |u|1/s
Ws,p . (5.12)

In higher dimensions, we obtain the same result as the one in Theorem 5.3, but the corresponding proof is much 
more involved.

5.4. Theorem. Let n ≥ 2. Assume that 0 < s < 1, 1 < p < ∞ and sp ≥ n. Let u ∈ Ws,p(Tn; S1) and let ϕ ∈
Ws,p(Tn; R) be a lifting of u. Then

|ϕ|Ws,p � |u|Ws,p + |u|1/s
Ws,p . (5.13)

We start with the

Proof of Theorem 5.4. Estimate (5.13) will be obtained via the factorization method presented in [21]. More pre-
cisely, the arguments in [21], that we will detail below, lead to the existence of some ϕ1 ∈ Ws,p(Tn; R) such that

|ϕ1|Ws,p � |u|Ws,p and
∥∥∇(

ue−ıϕ1
)∥∥

Lsp � |u|1/s
Ws,p .

The construction of the map ϕ1 goes as follows. First, by suitably extending u,9 we may identify u with a map in Rn, 
still denoted u, with the following properties:

1. |u|Ws,p(Rn) � |u|Ws,p(Tn).
2. |u| ≤ 2.
3. u is S1-valued in (−3, 4)n.
4. u is constant outside (−4, 5)n.

9 As in Step 1 in the proof of Theorem 5.1.
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We next consider a mollifier ρ ∈ C∞
c (Rn) satisfying: ρ ≥ 0, 

´
Rn ρ = 1 and suppρ ⊂ B(0, 2) \ B(0,1). We then let

w(x, ε) := u ∗ ρε(x), ∀x ∈R
n, ∀ε > 0, (5.14)

and define

ϕ1(x) := −
∞̂

0

Π ◦ w(x, ε) ∧ ∂

∂ε
Π ◦ w(x, ε) dε. (5.15)

Here,

Π ∈ C∞(
R

2;R2) and Π(z) = z/|z| when |z| ≥ 1/2. (5.16)

We now explain the motivation behind this construction. Intuitively, ϕ1 encodes the small amplitude oscillations 
of u, while the remainder ue−ıϕ1 encodes the large amplitude oscillations (as those contained in the topological 
singularities of type z/|z|). The reason is the following. Assume that u has only small amplitude oscillations, say 
around the value 1. Then the extension w of u is still close to 1, and thus the restriction of Π ◦ w to Tn × (0, ∞)

is a smooth S1-valued extension of u. It follows that Π ◦ w has a smooth phase ψ . By differentiating the identity 
Π ◦ w ≡ eıψ , we find that

∂

∂ε
ψ(x, ε) = Π ◦ w(x, ε) ∧ ∂

∂ε
(Π ◦ w)(x, ε), ∀x ∈ T

n, ∀ε > 0. (5.17)

Assuming in addition that Π ◦ w converges sufficiently fast to 1 as ε → ∞, we may integrate (5.17) and find that

u(x) = lim
ε→0

w(x, ε) = eıϕ1(x) for a.e. x, with ϕ1 given by (5.15).

Therefore, ϕ1 gives (under some reasonable assumptions) a phase of u provided u has small amplitude oscillations. 
In general, u need not have small amplitude oscillations, and the remainder ue−ıϕ1 measures what is left, i.e., the large 
amplitude oscillations.

We now turn to the implications of this construction for the proof of Theorem 5.4. The next two results are 
from [21].

5.5. Lemma. Let n ≥ 1, 0 < s < 1 and 1 ≤ p < ∞. Let u : Rn → C satisfy items 1, 2 and 4 above. Let ϕ1 be as 
in (5.15). Then:

1. The function ϕ1 is well-defined a.e. on Tn, in the sense that the integral in (5.15) is absolutely convergent for a.e. 
x ∈ T

n.
2. ϕ1 ∈ Ws,p(Tn) and

|ϕ1|Ws,p � |u|Ws,p . (5.18)

5.6. Lemma. Let n ≥ 1, s > 0 and 1 ≤ p < ∞ be such that sp ≥ 1. Let u : Rn → C satisfy properties 1–4 above. Let 
ϕ1 be as in (5.15).

Then ue−ıϕ1 ∈ W 1,sp(Tn; S1) and∥∥∇(
ue−ıϕ1

)∥∥
Lsp(Tn)

� |u|1/s

Ws,p(Tn)
. (5.19)

Proof of Theorem 5.4 completed. Let ϕ1 be as in (5.15). By Lemma 5.6, the map ue−ıϕ1 belongs to the space 
W 1,sp(Tn; S1). Since sp ≥ 2, by Theorem 1.1 we may write ue−ıϕ1 = eıϕ2 with ϕ2 ∈ W 1,sp(Tn). Since sp ≥ n, 
we have W 1,sp(Tn) ↪→ Ws,p(Tn), and thus u = eıϕ with ϕ := ϕ1 + ϕ2 ∈ Ws,p(Tn; R). Since sp ≥ 1, ϕ is the unique 
(mod 2π) phase of u in Ws,p [3, Theorem B.1]. Moreover, using (5.18) and (5.19), we can estimate |ϕ|Ws,p as follows.

|ϕ|Ws,p � |ϕ1|Ws,p + |ϕ2|Ws,p � |u|Ws,p + |ϕ2|W 1,sp = |u|Ws,p + ‖∇ϕ2‖Lsp

= |u|Ws,p + ∥∥∇(
ue−ıϕ1

)∥∥
sp � |u|Ws,p + |u|1/s

s,p . � (5.20)

L W
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We now turn to Theorem 5.3 and present three different proofs, with different flavors. The first one is a variant of 
the proof of Theorem 5.4. The second one simplifies Merlet’s original argument. The third one is non-constructive
(unlike the proof of Theorem 5.4) and is inspired by an argument in Nguyen [26].

First proof of Theorem 5.3. The following argument is similar to the one in Theorem 5.4. We consider the phase ϕ1
defined therein. This time, we have ue−ıϕ1 in W 1,sp(T; S1) with sp ≥ 1. Since (by Theorem 1.1) in dimension n = 1
all the Sobolev spaces do have the lifting property, we can write ue−ıϕ1 = eıϕ2 with ϕ2 ∈ W 1,sp(T). Since sp > 1, we 
have W 1,sp(T) ↪→ Ws,p(T), and thus u = eıϕ with ϕ := ϕ1 + ϕ2 ∈ Ws,p(T; R). We now obtain the estimate (5.12)
following the argument leading to (5.20). �
Second proof of Theorem 5.3. The starting point is the estimate (5.21) below, due to Merlet [20]:∣∣ϕ(x) − ϕ(y)

∣∣p �
∣∣u(x) − u(y)

∣∣p + (y − x)p−1/s |u|p/s

Ws,p((x,y)), 0 ≤ x < y ≤ 1. (5.21)

(For a simplification of Merlet’s original argument leading to (5.21), see the proof of Lemma 8.25.)
Dividing the inequality (5.21) by (y − x)1+sp and then integrating in x and y, we find that

|ϕ|p
Ws,p(T)

� |u|p
Ws,p(T)

+
1ˆ

0

yˆ

0

|u|p/s

Ws,p((x,y))

(y − x)α
dx dy, (5.22)

with α := 1 + sp − p + 1/s. Next we note that, since s < 1, we have p/s > p and therefore

|u|p/s

Ws,p((x,y)) ≤ |u|p/s−p

Ws,p(T)|u|pWs,p((x,y)). (5.23)

On the other hand, since s < 1 and sp > 1, we have α < 2. We obtain

1ˆ

0

yˆ

0

|u|pWs,p((x,y))

(y − x)α
dx dy ≈

1ˆ

0

yˆ

0

1

(y − x)α

yˆ

x

zˆ

x

|u(z) − u(t)|p
(z − t)1+sp

dt dz dx dy

=
1ˆ

0

zˆ

0

|u(z) − u(t)|p
(z − t)1+sp

1ˆ

z

tˆ

0

1

(y − x)α
dx dy dt dz

≤
1ˆ

0

zˆ

0

|u(z) − u(t)|p
(z − t)1+sp

t+1ˆ

t

tˆ

t−1

1

(y − x)α
dx dy dt dz ≤ C|u|p

Ws,p(T)
.

Here, C := ´ 0
−1

´ 1
0

1
(y−x)α

dx dy < ∞ (since α < 2). The above inequality together with (5.22) and (5.23) implies 

|ϕ|pWs,p � |u|pWs,p + |u|p/s
Ws,p . Thus (5.13) holds. �

Third proof of Theorem 5.3.
Step 1. Proof of (5.13) when u is smooth and has a smooth periodic phase.

Suppose that u belongs to C∞(T; S1) and that we may write u = eıϕ , with ϕ ∈ C∞(T; R).10 In this case, we will 
prove the existence of two linear maps, T1 and T2, such that for every ζ ∈ C∞(T; R) we have

1.
´
T

ϕ′(x)ζ(x) dx = T1(ζ ) + T2(ζ ).
2. T1(1) = T2(1) = 0.
3. |T1(ζ )| � ‖ζ‖

L(sp)′ |u|1/s
Ws,p .

4. |T2(ζ )| � |ζ |
W 1−s,p′ |u|Ws,p .

10 This is equivalent to deg(u; T) = 0.
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Assume for the moment that items 1 to 4 are proved. Using the dualities (L(sp)′)∗ = Lsp , respectively (W 1−s,p′
)∗ =

Ws−1,p , we find that there exist some ψ1 ∈ Lsp and ψ2 ∈ Ws−1,p such that

a) ϕ′ = ψ1 + ψ2 in the distributional sense.
b)

´
T

ψ1 = 0 and ψ2(1) = 0.

c) ‖ψ1‖Lsp � |u|1/s
Ws,p .

d) ‖ψ2‖Ws−1,p � |u|Ws,p .11

By estimates c) and d) and by property b), we may find some ϕ1 ∈ W 1,sp and ϕ2 ∈ Ws,p such that ϕ′
1 = ψ1 and 

ϕ′
2 = ψ2. In addition, we note the estimates |ϕ1|W 1,sp � |u|1/s

Ws,p and |ϕ2|Ws,p � |u|Ws,p . By construction, we have 
ϕ = ϕ1 + ϕ2 (up to an additive constant). Using the Sobolev embedding W 1,sp(T) ↪→ Ws,p(T), we obtain

|ϕ|Ws,p ≤ |ϕ2|Ws,p + |ϕ1|Ws,p � |ϕ2|Ws,p + |ϕ1|W 1,sp � |u|Ws,p + |u|1/s
Ws,p ,

which is the desired conclusion.
So let us construct T1 and T2 satisfying items 1–4. We identify T with the boundary S1 of the unit disc D and 

we identify the derivative on T with the tangential derivative on S1. Let ξ be the harmonic extension to D of ζ , 
and let ũ = ũ1 + ıũ2 be a smooth extension of u = u1 + ıu2 to D.12 Noting the fact that the Jacobian determinant 
Jac(f, g) := det(∇f, ∇g), f, g :D → R, satisfies the identitiesˆ

S1

f
∂g

∂τ
=
ˆ

D

Jac(f, g) and Jac(f, gh) = h Jac(f, g) + g Jac(f,h), ∀f,g,h ∈ C1(D;R),

we find thatˆ

T

ϕ′ζ ≡
ˆ

S1

∂ϕ

∂τ
ζ =

ˆ

S1

[
(u1ζ )

∂u2

∂τ
− (u2ζ )

∂u1

∂τ

]
=
ˆ

D

(
Jac(̃u1ξ, ũ2) − Jac(̃u2ξ, ũ1)

)
= 2

ˆ

D

ξ Jac ũ +
ˆ

D

(̃
u1 Jac(ξ, ũ2) − ũ2 Jac(ξ, ũ1)

)
= 2

ˆ

D

ξ Jac ũ +
ˆ

D

∇ξ ∧ (̃u ∧ ∇ũ) := T1(ζ ) + T2(ζ ).

We next prove that, for an appropriate choice of ̃u, T1 and T2 satisfy items 2, 3 and 4 above.

Proof of 2. We clearly have T2(1) = 0 and 
´
T

ϕ′ = 0. This leads to T1(1) = 0. �
Proof of 3. Let Mζ denote the maximal function of ζ . Recall the inequality

sup
0≤r≤1

∣∣ξ(rω)
∣∣ ≤ Mζ(ω), ∀ω ∈ S

1 (5.24)

(see Lemma 8.26). We have

1

2

∣∣T1(ζ )
∣∣ ≤

ˆ

D

∣∣ξ(x)
∣∣∣∣Jac ũ(x)

∣∣dx =
ˆ

S1

1ˆ

0

∣∣ξ(rω)
∣∣∣∣Jac ũ(rω)

∣∣r dr dω ≤
ˆ

S1

1ˆ

0

∣∣ξ(rω)
∣∣∣∣Jac ũ(rω)

∣∣dr dω

≤
ˆ

S1

sup
0≤r≤1

∣∣ξ(rω)
∣∣ 1ˆ

0

∣∣Jac ũ(rω)
∣∣dr dω ≤

ˆ

S1

(Mζ)(ω)

1ˆ

0

∣∣Jac ũ(rω)
∣∣dr dω =:

ˆ

S1

(Mζ)(ω)ε(ω)dω.

11 Item d) requires a proof. In view of item 4, of the Poincaré inequality ‖u − ffl
u‖Wσ,q � |u|Wσ,q (with 0 < σ < 1 and 1 ≤ q ≤ ∞) and of the 

fact that T2(1) = 0, we find that |T2(ζ )| = |T2(ζ − ffl
ζ )| � |ζ |

W1−s,p′ |u|Ws,p � ‖ζ‖
W1−s,p′ |u|Ws,p . This leads to item d).

12 The choice of ̃u will be specified later.
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Here, ε(ω) := ´ 1
0 | Jac ũ(rω)| dr . Applying Hölder’s inequality, we obtain

1

2

∣∣T1(ζ )
∣∣ ≤ ‖Mζ‖

L(sp)′ ‖ε‖Lsp � ‖ζ‖
L(sp)′ ‖ε‖Lsp , (5.25)

by the maximal function theorem.
We now specify ̃u. Let v be the harmonic extension of u to D. Let Π be as in (5.16). Then we set

ũ := Π ◦ v. (5.26)

The key estimate is

‖ε‖Lsp � |u|1/s
Ws,p (5.27)

(see Lemma 8.27). This estimate, combined with (5.25), leads to |T1(ζ )| � ‖ζ‖
L(sp)′ |u|1/s

Ws,p , i.e., item 3 holds. �
Proof of 4. We have∣∣T2(ζ )

∣∣ ≤
ˆ

D

∣∣∇ξ ∧ (̃u ∧ ∇ũ)
∣∣(x) dx ≤

ˆ

D

∣∣∇ξ(x)
∣∣∣∣∇ũ(x)

∣∣dx =
ˆ

D

(
h(x)−1

∣∣∇ξ(x)
∣∣)(h(x)

∣∣∇ũ(x)
∣∣)dx,

where h(x) will be specified afterwards. By Hölder’s inequality we obtain

∣∣T2(ζ )
∣∣ � (ˆ

D

h(x)−p′ ∣∣∇ξ(x)
∣∣p′

dx

)1/p′(ˆ
D

h(x)p
∣∣∇ũ(x)

∣∣p dx

)1/p

. (5.28)

In order to estimate the right-hand side of (5.28), we rely on Lemma 8.31, which implies thatˆ

D

(
1 − |x|)p−sp−1∣∣∇ũ(x)

∣∣p dx � |u|pWs,p (5.29)

and ˆ

D

(
1 − |x|)sp′−1∣∣∇ξ(x)

∣∣p′
dx � |ζ |p′

W 1−s,p′ . (5.30)

By combining (5.29), (5.30) and (5.28) (applied with h(x) := (1 − |x|)1−s−1/p), we obtain the desired estimate 
|T2(ζ )| � |ζ |

W 1−s,p′ |u|Ws,p . �
Step 2. Proof of (5.13) in the general case.

We assume now that u ∈ Ws,p(T; S1) and that ϕ ∈ Ws,p((0, 1); R) is a phase of u. In order to use the result from 
Step 1, we proceed as follows. By extending ϕ by reflection and 2-periodicity we obtain a function ψ which belongs 
to Ws,p

loc (R; R) and is periodic. We define w := eıψ . We clearly have |w|Ws,p ≈ |u|Ws,p . If ρ is a mollifier, then the 
maps ψε := ψ ∗ ρε and wε := eıψε are smooth and verify ψε → ψ and wε → w in Ws,p , as ε → 0.13 By the previous 
step, we can write ψε as the sum of two functions ψε,1 and ψε,2 in Ws,p(T; R) that satisfy the estimates

|ψε,1|Ws,p � |wε|1/s
Ws,p and |ψε,2|Ws,p � |wε|Ws,p .

Since |wε|Ws,p → |w|Ws,p , we can apply Fatou’s lemma to find some convergent subsequences ψj,1 → ψ1 and ψj,2 →
ψ2 in Lp such that

|ψ1|Ws,p � lim inf
j

|ψj,1|Ws,p and |ψ2|Ws,p � lim inf
j

|ψj,2|Ws,p .

13 The convergence wε → w relies on the continuity of the map Ws,p(Tn; R) � ψ �→ eıψ ∈ Ws,p(Tn; S1) when 0 < s < 1 and 1 ≤ p < ∞ [27, 
Theorem 1, Section 5.3.6].
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We thus have ψ = ψ1 + ψ2. Consequently, we may write ϕ = ϕ1 + ϕ2, with ϕ1 := ψ1|(0,1) ∈ Ws,p(T; R) and ϕ2 :=
ψ2|(0,1) ∈ Ws,p(T; R) satisfying the estimates

|ϕ1|Ws,p � |w|1/s
Ws,p ≈ |u|1/s

Ws,p and |ϕ2|Ws,p � |w|Ws,p ≈ |u|Ws,p . �
We end this section by establishing the optimality of the estimates (5.12) and (5.13).

5.7. Proposition. The estimates (5.12) (when n = 1) and (5.13) (when n ≥ 2) are optimal in the sense that 
lim sup|ϕ|Ws,p →0

|ϕ|Ws,p

|u|Ws,p
> 0 and lim sup|u|Ws,p →∞

|ϕ|Ws,p

|u|1/s

Ws,p

> 0.

Proof. When n = 1, the optimality of (5.12) “at ∞” was obtained by Merlet [20, Theorem 1.1]. We reproduce here 
its argument. Let f ∈ C∞

c ((0, 1); [0, 1)) be such that f �≡ 0. Define, for j ≥ 1, ϕj := jf and uj := eıϕj . Clearly, we 
have

|ϕj |Ws,p = j |f |Ws,p ≈ j. (5.31)

In computing |uj |Ws,p , we use the estimates∣∣uj (x) − uj (y)
∣∣ ≈ j

∣∣f (x) − f (y)
∣∣ when |x − y| < 1/j,

1−hˆ

0

∣∣f (x + h) − f (x)
∣∣a dx ≈ |h|a, ∀h ∈ (0,1/2) (with a ∈R fixed),

and ∣∣uj (x) − uj (y)
∣∣ � 1 when |x − y| ≥ 1/j.

Thus we have

j sp ≈ jp

¨

|x−y|<1/j

dxdy

|x − y|1+(s−1)p
� |uj |pWs,p

� jp

¨

|x−y|<1/j

dxdy

|x − y|1+(s−1)p
+

¨

|x−y|>1/j

dxdy

|x − y|1+sp
≈ j sp. (5.32)

In particular, we have |uj |pWs,p → ∞ when j → ∞. Moreover, (5.32) together with (5.31) yield |uj |1/s
Ws,p ≈ |ϕj |Ws,p .

The above example extends to higher dimension as in the Step 3 of the proof of Theorem 5.1.
The optimality “at zero” is obvious since |eıϕ|Ws,p ≤ |ϕ|Ws,p for any ϕ ∈ Ws,p(Tn; R). �

6. Further thoughts when sp < 1

6.1. Existence of bounded phases and the sum-intersection property

We address here the following question.14

Question (Q). Let 0 < s < 1, 1 ≤ p < ∞ be such that sp < 1. Let u ∈ Ws,p(Tn; S1). Is there some ϕ ∈ Ws,p ∩
L∞(Tn; R) such that u = eıϕ?

The motivation behind this question is the following. The phase ϕ whose construction is described in the introduc-
tion depends only on u, not on s or p. This has the following consequence. Let 0 ≤ θ < 1, 0 < s < 1 and 1 ≤ p < ∞
be such that sp < 1. Let u ∈ Ws,p(Tn; S1). Then u belongs to all the spaces Wθs,p/θ (Tn; S1) (by the Gagliardo–
Nirenberg embeddings) and thus ϕ ∈ Wθs,p/θ , ∀θ ∈ (0, 1]. We find that

14 Also discussed in [7].
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ϕ ∈
⋂

0<θ≤1

Wθs,p/θ ⊂ Ws,p ∩
⋂

q<∞
Lq.

It is then natural to ask whether the above conclusion can be improved to ϕ ∈ Ws,p ∩ L∞.
We start by noting that the answer to (Q) is positive when p = 1. Indeed, an inspection of the proof of Proposi-

tion 1.6 shows that the phase constructed there is bounded.
We next turn to the relevant range 0 < s < 1, 1 < p < ∞, sp < 1. Our main result here is the reduction of (Q) 

to a sum-intersection property of function spaces. In order to describe this property, we start with a very simple case 
which requires no technology. If f ∈ L2, then f ∈ L1 + L∞ (since [L1, L∞]1/2 = L2) and thus L2 ⊂ L1 + L∞. 
Thus each map f ∈ L2 splits as f = f1 + f2, with f1 ∈ L1 and f2 ∈ L∞. But more can be said. Indeed, we have 
f = f1 + f2, with f1 := f 1{|f |>1} ∈ L2 ∩ L1 and f2 := f 1{|f |≤1} ∈ L2 ∩ L∞. Thus L2 = (L2 ∩ L1) + (L2 ∩ L∞). 
This is the sum-intersection property for the triple (L2, L1, L∞). This property extends to other function spaces. Here 
is an example [21]. If σ > 1 is not an integer and p > σ , then

W 1,σ = (
W 1,σ ∩ Wσ/p,p

) + (
W 1,σ ∩ Wσ,1).

For an investigation of this property in usual function spaces, see the forthcoming work [18].
We are now ready to reformulate (Q).

6.1. Proposition. (Q) holds if and only if (R) holds, where (R) is the property

(R). Ws,p(Tn; R) = (Ws,p ∩ L∞)(Tn; R) + (Ws,p ∩ Wsp,1)(Tn; R).

Proof. We may assume that p > 1, since both (Q) and (R) hold when p = 1.

Implication “(Q) ⇒ (R)”. Let ϕ ∈ Ws,p(Tn; R). Let u := eıϕ . Consider some ψ ∈ Ws,p ∩ L∞(Tn; R) such that u =
eıψ . Then ϕ = ψ +2πf , where f := (ϕ−ψ)/2π ∈ Ws,p(Tn; Z). We leave to the reader the following straightforward 
inequality. If 0 < s < 1, 1 ≤ p < ∞ and if f ∈ Ws,p is integer-valued, then

|f |Wsp,1 ≤ |f |pWs,p . (6.1)

Using (6.1), we obtain that ϕ = ψ + 2πf , with ψ ∈ Ws,p ∩ L∞ and 2πf ∈ ∩Ws,p ∩ Wsp,1. Therefore, (R) holds.

Implication “(R) ⇒ (Q)”. Let u ∈ Ws,p(Tn; S1). Let ϕ ∈ Ws,p(Tn; R) be such that u = eıϕ . Write ϕ = ϕ1 + ϕ2, with 
ϕ1 ∈ Ws,p ∩ L∞ and ϕ2 ∈ Ws,p ∩ Wsp,1. Set v := eıϕ2 ∈ Wsp,1. Then v = eıϕ3 for some ϕ3 ∈ Wsp,1 ∩ L∞ (by the 
proof of Proposition 1.6). By the Gagliardo–Nirenberg embeddings, we have ϕ3 ∈ Ws,p ∩ L∞. Thus u = eıψ , where 
ψ := ϕ1 + ϕ3 ∈ Ws,p ∩ L∞. �

We do not know whether (R) holds. It is easy to see that a weaker form of (R), where L∞ is replaced by the slightly 
larger Besov space B0∞,∞, is valid:

Ws,p = (
Ws,p ∩ B0∞,∞

) + (
Ws,p ∩ Wsp,1)

(see Lemma 8.32).

6.2. Lifting via the factorization method

In this section, we propose a new lifting construction in the case where sp < 1. Our method relies on three ingre-
dients:

1. The factorization method.15

2. The averaging method of Dávila and Ignat [12].16

3. The theory of weighted Sobolev spaces, due among others to Uspenskiı̆ [30].17

15 Explained in Section 5, and used in the proof of Theorem 5.4.
16 Which proved useful in Section 3, in the proof of Proposition 1.6.
17 For the results we use here, see also [19, Section 10.1.1, Theorem 1, p. 512] and the comprehensive discussion in [24].
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Let us explain the construction. Let u : Tn → S
1. We first extend u to Rn as explained in the proof of Theorem 5.4, 

and define ϕ1 as in (5.15). Recall that ϕ1 ∈ Ws,p (Lemma 5.5). The key is the following substitute of Lemma 5.6.

6.2. Lemma. Let 1 ≤ p < ∞ and 0 < s < 1 be such that sp < 1. Let u ∈ Ws,p(Tn; S1) and let ϕ1 be as in (5.15). 
Then we have ue−ıϕ1 ∈ Wsp,1(Tn; S1).

Assuming Lemma 6.2 proved for the moment, we complete the construction of a phase of u as follows. Set v :=
ue−ıϕ1 . Since the map v belongs to Wsp,1, we find that v has a phase ϕ2 in the space Wsp,1 ∩ L∞ (by the proof of 
Proposition 1.6). The Gagliardo–Nirenberg embeddings and the fact that ϕ2 belongs to Wsp,1 ∩ L∞ imply that we 
also have ϕ2 ∈ Ws,p . In conclusion, ϕ := ϕ1 + ϕ2 is a Ws,p phase of u.

It remains to proceed to the

Proof of Lemma 6.2. A first ingredient of the proof is the following flat version of [6, Lemma 1.3].18 Let w be given 
by (5.14). For x ∈ R

n, set

λ(x) := inf
{
ε > 0; ∣∣w(x, ε)

∣∣ = 1/2
}
. (6.2)

Then λ satisfiesˆ

(−2,3)n

1

λsp(x)
dx � |u|pWs,p + 1. (6.3)

Estimate (6.3) is established in [21]. Alternatively, (6.3) can be obtained by adapting the proof of Lemma 8.28.
A second ingredient is provided by the following local estimate in the spirit of the theory of weighted Sobolev 

spaces.

6.3. Lemma. Let 0 < σ < 1. Let U : Tn × (0, ∞) → C be a smooth map. Assume that

f (x) := lim
ε→0

U(x, ε) exists for a.e. x ∈ T
n. (6.4)

Then

|f |Wσ,1(Tn) �
ˆ

Tn×(0,1)

ε−σ
∣∣∇U(x, ε)

∣∣dx dε. (6.5)

The proof of Lemma 6.3 is postponed to Section 8.6.
We will apply Lemma 6.3 with σ := sp and U(x, ε) := Π ◦ w(x, ε)e−ıψ(x,ε). Here, w is as in (5.14), Π satis-

fies (5.16), and we set

ψ(x, ε) := −
∞̂

ε

Π ◦ w(x, t) ∧ ∂

∂t
Π ◦ w(x, t) dt, ∀x ∈R

n, ∀ε > 0. (6.6)

We now explain how these ingredients lead to the conclusion of Lemma 6.2.

Step 1. U is smooth and (6.4) holds with f := ue−ıϕ1 .
Indeed, since u equals a constant C in the set Rn \ (−4, 5)n, we have

w(x, ε) = C + 1

εn

ˆ

Rn

ρ

(
x − y

ε

)[
u(y) − C

]
dy = C + 1

εn

ˆ

(−4,5)n

ρ

(
x − y

ε

)[
u(y) − C

]
dy. (6.7)

On the other hand, a straightforward induction on |α| leads to

18 For a related result, see Lemma 8.28.
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∂α

(
1

εn
ρ

(
x − y

ε

))
= O

(
1

εn+|α|

)
, ∀α ∈ N

n+1. (6.8)

By combining (6.7) with (6.8) and with the fact that u is bounded, we find that

∂αw(x, ε) =
ˆ

(−4,5)n

∂α

(
1

εn
ρ

(
x − y

ε

))[
u(y) − C

]
dy = O

(
1

εn+|α|

)
, ∀α ∈N

n+1 \ {0}. (6.9)

In view of (6.9), we obtain by induction on |α| ≥ 1 that

∂α(Π ◦ w)(x, ε) = O

(
1

εn+|α|

)
+ O

(
1

ε|α|n+|α|

)
, ∀α ∈ N

n+1 \ {0}. (6.10)

This shows that ψ defined by (6.6) is smooth, and thus so is U . For further use, we also note that all derivatives of ψ
are obtained by differentiating under the integral sign.

On the other hand, by Lebesgue’s differentiation theorem we have limε→0 w(x, ε) = u(x) for a.e. x ∈ R
n. In addi-

tion, Lemma 5.5 1 implies that limε→0 ψ(x, ε) = ϕ1(x) for a.e. x ∈ Tn. We find that limε→0 U(x, ε) = u(x)e−ıϕ1(x)

for a.e. x ∈ T
n.

Step 2. Basic estimates.
Let us note the fact that the inequality |u| ≤ 2 implies that, in addition to (6.9), we have∣∣∂αw(x, ε)

∣∣ � 1

ε|α| , ∀α ∈N
n+1. (6.11)

In turn, (6.11) and formulas (5.14) and (5.16) lead, by induction on |α|, to∣∣∂α(Π ◦ w)(x, ε)
∣∣ � 1

ε|α| , ∀α ∈ N
n+1. (6.12)

Finally, (6.12) combined with the definition (6.6) of ψ leads to∣∣∂αU(x, ε)
∣∣ � 1

ε|α| , ∀α ∈ N
n+1. (6.13)

Step 3. The role of λ(x).

Let λ(x) be as in (6.2). In this step, we establish several identities valid at a point (x, ε) with ε < λ(x).
To start with, it follows from the definition (6.2) of λ(x) and from (5.16) that∣∣Π ◦ w(x, ε)

∣∣ ≡ 1 in the open set V := {
(x, ε) ∈ R

n × (0,∞);0 < ε < λ(x)
}
. (6.14)

By differentiating the identity (6.14), we find that

∇(Π ◦ w)(x, ε) ⊥ Π ◦ w(x, ε), ∀(x, ε) ∈ V . (6.15)

By combining (6.15) with the identity

y = ıω(ω ∧ y), ∀y ∈ C, ∀ω ∈ S
1 such that y ⊥ ω,

we find that

∇(Π ◦ w)(x, ε) = ı
(
Π ◦ w(x, ε)

)[
Π ◦ w(x, ε)) ∧ (∇(Π ◦ w)(x, ε)

)]
in V . (6.16)

On the other hand, (6.15) implies that in V the partial derivatives of Π ◦ w are mutually parallel. This leads to(
∂

∂ε
(Π ◦ w)

)
∧

(
∂

∂xj

(Π ◦ w)

)
(x, ε) = 0 in V , ∀j ∈ �1, n�. (6.17)

We are now in position to compute ∇U in V .
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First, using (6.6) and (6.16) we find that

∂

∂ε
U(x, ε) = ∂

∂ε
(Π ◦ w)(x, ε)e−ıψ(x,ε) − ı

∂

∂ε
ψ(x, ε)Π ◦ w(x, ε)e−ıψ(x,ε)

=
(

∂

∂ε
(Π ◦ w)(x, ε) − ıΠ ◦ w(x, ε)

[
(Π ◦ w) ∧

(
∂

∂ε
(Π ◦ w)

)]
(x, ε)

)
e−ıψ(x,ε)

= 0 in V . (6.18)

We next note that an integration by parts combined with (6.6) and (6.17) leads to

∂

∂xj

ψ(x, ε) = −
∞̂

ε

(Π ◦ w) ∧
(

∂2

∂t∂xj

(Π ◦ w)

)
(x, t) dt

−
∞̂

ε

(
∂

∂xj

(Π ◦ w)

)
∧

(
∂

∂t
(Π ◦ w)

)
(x, t) dt

= (Π ◦ w) ∧
(

∂

∂xj

(Π ◦ w)

)
(x, ε) − 2

∞̂

ε

(
∂

∂xj

(Π ◦ w)

)
∧

(
∂

∂t
(Π ◦ w)

)
(x, t) dt

= (Π ◦ w) ∧
(

∂

∂xj

(Π ◦ w)

)
(x, ε)

− 2

∞̂

λ(x)

(
∂

∂xj

(Π ◦ w)

)
∧

(
∂

∂t
(Π ◦ w)

)
(x, t) dt in V . (6.19)

A calculation similar to the one leading to (6.18) yields (using (6.19))

∇xU(x, ε) = 2ıU(x, ε)

∞̂

λ(x)

(∇x(Π ◦ w)
) ∧

(
∂

∂t
(Π ◦ w)

)
(x, t) dt. (6.20)

Step 4. Estimate of ∂U/∂ε.

By combining (6.13) with (6.18), we find that

ˆ

Tn×(0,∞)

ε−sp

∣∣∣∣ ∂

∂ε
U(x, ε)

∣∣∣∣dx dε �
ˆ

Tn

∞̂

λ(x)

ε−sp−1 dε dx �
ˆ

Tn

1

λ(x)sp
dx. (6.21)

Step 5. Estimate of ∇xU .

This time, (6.13) combined with (6.20) and with the fact that sp < 1 leads to

ˆ

Tn×(0,∞)

ε−sp
∣∣∇xU(x, ε)

∣∣dx dε �
ˆ

Tn

∞̂

λ(x)

ε−sp−1 dε dx +
ˆ

Tn

( λ(x)ˆ

0

ε−sp dε

)( ∞̂

λ(x)

1

t2
dt

)
dx

�
ˆ

Tn

1

λ(x)sp
dx. (6.22)

Step 6. Final conclusion.

By combining Step 1 and Lemma 6.3 with estimates (6.3), (6.21) and (6.22), we find that ue−ıϕ1 ∈ Wsp,1(Tn), 
which is the conclusion of Lemma 6.2. �
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7. Another application of the averaging method. Proof of Theorem 1.4

In this section, we prove a quantitative version of Theorem 1.4. For the convenience of the reader, we start with 
the case n = 1, which is easier to follow. In this case, the main ingredient is Proposition 7.1. Once this proposition is 
obtained, the one-dimensional case follows easily; see the proof of Theorem 7.2.

Our first result in this section is a sort of averaged “discrete” semi-norm estimate.

7.1. Proposition. Let 0 < s < 1, 1 ≤ p < ∞ and f ∈ Ws,p(T). Then∑
j≥1

2spj
∥∥(τ2−j − id)f

∥∥p

Lp(T)
�

[
1

s

(
Cp

1 − s

)1/(1−s)]p ˆ

T

Y
(
f y

)
dy.

Proof. By Lebesgue’s differentiation theorem we have, for a.e. x ∈ T,

f (x) = lim
k→∞

x+2−k 

x

f (z) dz =
∑
k≥1

( x+2−k 

x

f −
x+21−k 

x

f

)
+
ˆ

T

f =:
∑
k≥1

δ2−k f (x) +
ˆ

T

f. (7.1)

Here, δεf (x) := ffl x+ε

x
f (z) dz − ffl x+2ε

x
f (z) dz.

Let j ≥ 1. Applying the operator τ2−j − id to the identity (7.1), we obtain

(τ2−j − id)f (x) = (τ2−j − id)

(∑
k≥1

δ2−k f (x)

)
, for a.e. x ∈ T.

By Minkowski’s inequality and the above estimate, we obtain that∥∥(τ2−j − id)f
∥∥

Lp ≤
∑
k≥1

∥∥(τ2−j − id)δ2−k f
∥∥

Lp . (7.2)

We split the sum in (7.2) as 
∑

k≥1 · · · = ∑
1≤k≤j−	 · · · + ∑

k≥j−	+1 · · · =: S1 + S2 (with 	 integer to be determined 
later). On the one hand, we estimate S1 via Lemma 8.10. On the other hand, we estimate S2 using the trivial inequality∥∥(τh − id)g

∥∥
Lp ≤ 2‖g‖Lp . (7.3)

By combining (7.2), Lemma 8.10 and (7.3), we obtain∥∥(τ2−j − id)f
∥∥

Lp �
∑

1≤k≤j−	

2k−j
∥∥(τ2−k − id)f

∥∥
Lp +

∑
k≥j−	+1

‖δ2−k f ‖Lp .

Hence for every j ≥ 1 we have

2sj
∥∥(τ2−j − id)f

∥∥
Lp �

∑
1≤k≤j−	

2k−(1−s)j
∥∥(τ2−k − id)f

∥∥
Lp +

∑
k≥j−	+1

2sj‖δ2−k f ‖Lp . (7.4)

Raising the inequalities in (7.4) to the power p and summing over j we find∑
j≥1

2spj
∥∥(τ2−j − id)f

∥∥p

Lp �
∑
j≥1

( ∑
1≤k≤j−	

2k−(1−s)j
∥∥(τ2−k − id)f

∥∥
Lp

)p

+
∑
j≥1

( ∑
k≥j−	+1

2sj‖δ2−k f ‖Lp

)p

. (7.5)

In what follows we use the notation Xj := 2sj‖(τ2−j − id)f ‖Lp and Yk := 2sk‖δ2−k f ‖Lp . In terms of Xj and Yk , 
(7.5) reads∑

X
p
j �

∑( ∑
2−(1−s)(j−k)Xk

)p

+
∑( ∑

2s(j−k)Yk

)p

. (7.6)

j≥1 j≥1 1≤k≤j−	 j≥1 k≥j−	+1
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In order to estimate the sums in the right-hand side of (7.6), we apply Corollary 8.2. By combining (7.6) with Corol-
lary 8.2, we obtain∑

j≥1

X
p
j ≤ C1

(
2−(1−s)	

1 − s

)p ∑
k≥1

X
p
k + C2

(
2s	

s

)p

Y
p
k .

Hence[
1 − C1

(
2−(1−s)	

1 − s

)p]∑
j≥1

X
p
j �

(
2s	

s

)p ∑
k≥1

Y
p
k . (7.7)

We may choose a fixed real M and an integer 	 = 	(s, p) such that

	 = − log2(1 − s)

(1 − s)
+ M + o(1)

1 − s
and 1 − C1

(
2−(1−s)	

1 − s

)p

= 1

2
+ o(1) as s ↗ 1. (7.8)

With this choice of 	, (7.7) and (7.8) lead to∑
j≥1

2spj
∥∥(τ2−j − id)f

∥∥p

Lp ≤
(

1

2
+ o(1)

)(
1

s(1 − s)s
2M+o(1)

)p/(1−s) ∑
k≥1

2spk‖δ2−k f ‖p
Lp

≤
(

1

2
+ o(1)

)(
1

s(1 − s)
2M+o(1)

)p/(1−s) ∑
k≥1

2spk‖δ2−k f ‖p
Lp

≤ Kp

[
1

s

(
Cp

1 − s

)1/(1−s)]p ∑
k≥1

2spk‖δ2−k f ‖p
Lp . (7.9)

By Lemma 8.7, we have

‖δ2−k f ‖p
Lp ≤ 2

ˆ

T

∥∥(
f y

)
k
− (

f y
)
k−1

∥∥p

Lp dy. (7.10)

We complete the proof of Proposition 7.1 by combining (7.9) with (7.10). �
We now state and prove a quantitative form of Theorem 1.4 with n = 1.

7.2. Theorem. Let 0 < s < 1, 1 ≤ p < ∞ and f ∈ Ws,p(T). Then

X(f ) �
[

1

s2

(
Cp

1 − s

)1/(1−s)]p ˆ

T

Y
(
f y

)
dy.

Proof. We first note that

X(f ) =
ˆ

T

‖(τh − id)f ‖p
Lp

h1+sp
dh =

∑
j≥1

21−jˆ

2−j

‖(τh − id)f ‖p
Lp

h1+sp
dh

≤
∑
j≥1

2j (1+sp)

21−jˆ

2−j

∥∥(τh − id)f
∥∥p

Lp dh. (7.11)

Let j ≥ 1. For every h ∈ [1/2j , 1/2j−1) and k ≥ j , we denote by εk(h) ∈ {0, 1} the kth binary digit of h; thus

h =
∑
k≥j

εk(h)

2k
=

∑
k≥j

1

2k
. (7.12)
εk(h)=1
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We also note that

[0,1) � h �→ ∥∥(τh − id)f
∥∥

Lp is subadditive.19 (7.13)

From (7.12) and (7.13), we obtain that∥∥(τh − id)f
∥∥

Lp ≤
∑
k≥j

εk(h)=1

∥∥(τ2−k − id)f
∥∥

Lp ≤
∑
k≥j

∥∥(τ2−k − id)f
∥∥

Lp , ∀h ∈ [
2−j ,21−j

)
. (7.14)

Inserting (7.14) into (7.11), we find that

X(f ) ≤
∑
j≥1

2j (1+sp)

21−jˆ

2−j

(∑
k≥j

∥∥(τ2−k − id)f
∥∥

Lp

)p

dh

=
∑
j≥1

2spj

(∑
k≥j

∥∥(τ2−k − id)f
∥∥

Lp

)p

=
∑
j≥1

[∑
k≥j

2s(j−k)
(
2sk

∥∥(τ2−k − id)f
∥∥

Lp

)]p

. (7.15)

If we estimate the last sum in (7.15) via Corollary 8.2, we find that

X(f ) � 1

sp

∑
k≥1

2spk
∥∥(τ2−k − id)f

∥∥p

Lp . (7.16)

We complete the proof of Theorem 7.2 by combining (7.16) with Proposition 7.1. �
We now consider the case of an arbitrary n.
We start by adapting Proposition 7.1.

7.3. Proposition. Let 0 < s < 1, 1 ≤ p < ∞ and f ∈ Ws,p(Tn). Let {ei}ni=1 be the canonical basis of Rn. Then, for 
every i ∈ �1, n�,

∑
j≥1

2spj
∥∥(τ2−j ei

− id)f
∥∥p

Lp(Tn)
�

[
1

s

(
Cp

1 − s

)1/(1−s)]p ˆ

Tn

Y
(
f y

)
dy.

Proof. We start by noting that, for a.e. x ∈ T,

f (x) = lim
k→∞

 

x+(0,2−k)n

f (z) dz =
∑
k≥1

(  

x+(0,2−k)n

f −
 

x+(0,21−k)n

f

)
+
ˆ

T

f =:
∑
k≥1

δ2−k f (x) +
ˆ

T

f. (7.17)

Here, δεf (x) := ffl
x+(0,ε)n

f (z) dz − ffl
x+(0,2ε)n

f (z) dz.
Let j ≥ 1 and i ∈ �1, n�. Applying the operator τ2−j ei

− id to the identity (7.17), and then Minkowski’s inequality, 
we obtain∥∥(τ2−j ei

− id)f
∥∥

Lp(Tn)
≤

∑
k≥1

∥∥(τ2−j ei
− id)δ2−k f

∥∥
Lp(Tn)

. (7.18)

As in the proof of Proposition 7.1, we split the sum in (7.18) as 
∑

k≥1 · · · = ∑
1≤k≤j−	 · · ·+∑

k≥j−	+1 · · · =: S1 +S2, 
with 	 an integer to be determined. We estimate S1 via Lemma 8.11, and S2 using the trivial inequality∥∥(τhei

− id)g
∥∥

Lp(Tn)
≤ 2‖g‖Lp(Tn). (7.19)

Therefore, by combining (7.18), Lemma 8.11 and (7.19), we obtain

19 This follows from |(τh+l − id)f | ≤ |τh(τl − id)f | + |(τh − id)f | together with Minkowski’s inequality.
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∥∥(τ2−j ei
− id)f

∥∥
Lp(Tn)

�
∑

1≤k≤j−	

2k−j
∥∥(τ2−kei

− id)f
∥∥

Lp(Tn)
+

∑
k≥j−	+1

‖δ2−k f ‖Lp(Tn). (7.20)

As in the proof of (7.5), this leads to∑
j≥1

2spj
∥∥(τ2−j ei

− id)f
∥∥p

Lp(Tn)
�

∑
j≥1

( ∑
1≤k≤j−	

2k−(1−s)j
∥∥(τ2−kei

− id)f
∥∥

Lp(Tn)

)p

+
∑
j≥1

( ∑
k≥j−	+1

2sj‖δ2−k f ‖Lp(Tn)

)p

. (7.21)

Using the notation Xi
j := 2sj‖(τ2−j ei

− id)f ‖Lp(Tn) and Yk := 2sk‖δ2−k f ‖Lp(Tn), (7.21) reads∑
j≥1

(
Xi

j

)p �
∑
j≥1

( ∑
1≤k≤j−	

2−(1−s)(j−k)Xi
k

)p

+
∑
j≥1

( ∑
k≥j−	+1

2s(j−k)Yk

)p

. (7.22)

As in the proof of (7.9), Corollary 8.2 combined with (7.22) leads, for an appropriate choice of 	, to∑
j≥1

2spj
∥∥(τ2−j ei

− id)f
∥∥p

Lp(Tn)
≤ Kp

[
1

s

(
Cp

1 − s

)1/(1−s)]p ∑
k≥1

2spk‖δ2−k f ‖p

Lp(Tn)
. (7.23)

We complete the proof of Proposition 7.3 by combining (7.23) with the inequality

‖δ2−k f ‖p

Lp(Tn)
≤ 2n

ˆ

Tn

∥∥(
f y

)
k
− (

f y
)
k−1

∥∥p

Lp(Tn)
dy (7.24)

(see Lemma 8.9). �
Proof of Theorem 1.4. Let f ∈ Ws,p(Tn). Since [0, 1)n � v �→ ‖(τv − id)f ‖Lp(Tn) is subadditive, we can estimate 
X(f ) by

X(f ) =
ˆ

Tn

‖(τv − id)f ‖p

Lp(Tn)

|v|n+sp
dv �

n∑
i=1

ˆ

Tn

‖(τviei
− id)f ‖p

Lp(Tn)

|(v1, . . . , vn)|n+sp
dv1 . . . dvn

�
n∑

i=1

ˆ

T

‖(τhei
− id)f ‖p

Lp(Tn)

h1+sp
dh ≤

n∑
i=1

∑
j≥1

2j (1+sp)

21−jˆ

2−j

∥∥(τhei
− id)f

∥∥p

Lp(Tn)
dh. (7.25)

In (7.25), we rely on Corollary 8.19 in order to justify the second inequality.
Following the proof of (7.16), we obtain, for every i ∈ �1, n�, the estimate

∑
j≥1

2j (1+sp)

21−jˆ

2−j

∥∥(τhei
− id)f

∥∥p

Lp(Tn)
dh� 1

sp

∑
k≥1

2spk
∥∥(τ2−kei

− id)f
∥∥p

Lp(Tn)
. (7.26)

By combining (7.25) and (7.26), we find that

X(f ) � 1

sp

n∑
i=1

∑
k≥1

2spk
∥∥(τ2−kei

− id)f
∥∥p

Lp(Tn)
. (7.27)

Applying Proposition 7.3 to (7.27), we obtain

X(f ) �
[

1

s2

(
Cp

1 − s

)1/(1−s)]p ˆ

Tn

Y
(
f y

)
dy, (7.28)

hence the conclusion. �
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7.4. Remark. It would be interesting to obtain the analog of Theorem 1.4 when s ≥ 1. Here is a hint suggesting that 
such an analog should exist. Using Fourier series, it is easy to see that the right-hand side of (1.9) converges when 
f ∈ W 1,2 = H 1, and that we have the estimate

|f |2
W 1,2 �

ˆ

Tn

∑
j≥1

22j
∥∥(

f y
)
j
− (

f y
)
j−1

∥∥2
L2 dy. (7.29)

Here, we consider e.g. the semi-norm∣∣∣∣ ∑
m∈Zn

cme2ıπm·x
∣∣∣∣2

W 1,2
=

∑
m∈Zn

|m|2|cm|2.

The analog of (7.29) for other values of s ≥ 1 and p has not been investigated.

7.5. Remark. The quantitative form of Theorem 1.4 is not optimal, at least when p = 1. Indeed, when p = 1 estimate 
(7.28) deteriorates exponentially fast when s ↗ 1, while we know from estimate (8.4) that the growth is of the order 
of 1/(1 − s). We do not know the optimal blow up rate when 1 ≤ p < ∞ and s ↗ 1.

8. Toolbox

We present here the proofs of several auxiliary estimates used in the previous sections.

8.1. Schur’s criterion and applications

The material presented in this section was mainly used in the proof of Theorem 1.3.
We start by recalling (a slight generalization of) Schur’s condition—or Schur’s criterion—on the boundedness of 

integral operators and by presenting some of its consequences of interest to us. For a further discussion on Schur’s 
criterion, see e.g. [16, Appendix I].

8.1. Lemma. Let (X, μ) and (Y, ν) be two measure spaces, and let p, q be conjugated exponents. Consider the 
integral operator T associated with a measurable kernel κ : X × Y → C, defined formally by

T u(x) =
ˆ

Y

κ(x, y)u(y) dν(y), ∀u : Y →C.

Let f : X × Y →C be a measurable function on X, and set g(x) := ‖f (x, ·)|κ(x, ·)|1/q‖Lq(Y ).
If M := ess supy ‖ g

f (·,y)
|κ(·, y)|1/p‖Lp(X) is finite, then T defines a bounded operator from Lp(Y ) into Lp(X), 

with ‖T ‖ ≤ M .
In particular (with the choice f ≡ 1) we have

‖T ‖ ≤ M
1/q

1 M
1/p

2 , (8.1)

where M1 := ess supx

´
Y

|κ(x, y)| dν(y) and M2 := ess supy

´
X

|κ(x, y)| dμ(x).

Proof. By a standard argument, it suffices to establish the bound ‖T u‖Lp ≤ M‖u‖Lp when κ , f and u are non-
negative. We assume that p < ∞; the case where p = ∞ is similar. By a suitable application of Hölder’s inequality, 
we find that(ˆ

Y

κ(x, y)u(y) dν(y)

)p

=
(ˆ

Y

(
f (x, y)κ1/q(x, y)

)(
κ1/p(x, y)

u(y)

f (x, y)

)
dν(y)

)p

≤ gp(x)

ˆ

Y

κ(x, y)
up(y)

f p(x, y)
dν(y).

Therefore,
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ˆ

X

(
T u(x)

)p
dμ(x) ≤

ˆ

Y

(ˆ
X

gp(x)

f p(x, y)
κ(x, y) dμ(x)

)
up(y)dν(y) ≤ Mp‖u‖p

Lp(Y ).

The special case is obtained by noting that, when f ≡ 1, we have g ≤ M
1/q

1 , which implies that M ≤ M
1/q

1 M
1/p

2 . �
By taking f ≡ 1 in the above lemma, we obtain the following consequence.

8.2. Corollary. Let (αj,k)j,k≥0 be an infinite matrix, and let 1 ≤ p < ∞. Consider the operator T formally defined by 
T (xk)k≥0 = (

∑
k≥0 αj,kxk)j≥0.

If the quantity M := supi≥0(
∑∞

j=0 |αj,i |(∑∞
k=0 |αj,k|)p−1)1/p is finite, then T is continuous from 	p into 	p , with 

‖T ‖ ≤ M .
In particular, we have, for 1 ≤ p ≤ ∞,

‖T ‖ ≤
(

sup
j

∑
k

|αj,k|
)1/q(

sup
k

∑
j

|αj,k|
)1/p

.

We continue with a quantitative form of the equivalence X(f ) ∼ Y(f ) ∼ Z(f ) when sp < 1. Here, X(F), Y(f )

and Z(f ) are given by (3.1)–(3.3). The next result and its proof follow closely [3, Appendix A].

8.3. Lemma. Let 0 < s < 1 and 1 ≤ p < ∞. Let f ∈ Lp(Tn), and let X(f ), Y(f ) and Z(f ) be as in (3.1)–(3.3). 
Then

spZ(f ) � Y(f ) ≤ 2Z(f ), (8.2)

Z(f )� X(f ) (8.3)

and, if sp < 1,

X(f ) � 1

sp(1 − sp)p
Y (f ). (8.4)

Proof.

Step 1. Proof of (8.4).
We have that

X(f ) =
ˆ

Tn

ˆ

Tn

|(τh − id)f (x)|p
|h|n+sp

dx dh ≤
∞∑

j=1

2(n+sp)j

ˆ

|h|∈Ij

∥∥(τh − id)f
∥∥p

Lp dh, (8.5)

where Ij = [2−j , 2−(j−1)). Since fk → f in Lp(Tn), and f u0 = ´
Tn f is constant, we have

∥∥(τh − id)f
∥∥

Lp =
∥∥∥∥∥

∞∑
k=1

(τh − id)(fk − fk−1)

∥∥∥∥∥
Lp

≤
∞∑

k=1

∥∥(τh − id)(fk − fk−1)
∥∥

Lp . (8.6)

We next invoke [3, Lemma A.2] in the following form:

8.4. Lemma. Let f ∈ Ek , j ≥ 1 and h ∈ T
n be such that |h| < 21−j . Then∥∥(τh − id)f

∥∥
Lp � βj,k‖f ‖Lp, (8.7)

where

βj,k :=
{

1, if j ≤ k,

(2k−j )1/p, if j > k.
(8.8)
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Step 1 completed.
Let xk := 2sk‖fk − fk−1‖Lp , ∀k ≥ 1,20 and set αj,k := 2s(j−k)βj,k . We note that∑

j

αj,k =
∑

k

αj,k = 1

1 − 2−s
+ 1

2s−1/p − 1
� 1

s
+ 1

1 − sp
� 1

s(1 − sp)
. (8.9)

Next, Lemma 8.4 combined with (8.5) and (8.6) gives

X(f ) �
∞∑

j=1

( ∞∑
k=1

αj,kxk

)p

. (8.10)

We obtain (8.4) by combining (8.10) with Corollary 8.2.

Step 2. Proof of (8.2).
Since ‖fj − fj−1‖Lp = ‖Ej(f − fj−1)‖Lp ≤ ‖f − fj−1‖Lp , we find that

Y(f ) ≤ 2spZ(f ) ≤ 2Z(f ).

On the other hand, we have

‖f − fj‖Lp =
∥∥∥∥ ∑

k≥j+1

(fk − fk−1)

∥∥∥∥
Lp

≤
∑

k≥j+1

‖fk − fk−1‖Lp ,

and thus

Z(f ) ≤
∑
j≥0

( ∑
k≥j+1

2−s(k−j)xk

)p

� 1

sp
Y (f )

(the last inequality following from Corollary 8.2).

Step 3. Proof of (8.3).
By Hölder’s inequality we have

‖f − fj‖p
Lp ≤

ˆ

Tn

(  

Qj (x)

∣∣f (x) − f (y)
∣∣dy

)p

dx ≤
ˆ

Tn

 

Qj (x)

∣∣f (x) − f (y)
∣∣p dy dx.

Therefore,

Z(f ) ≤
∑
j≥0

2(n+sp)j

ˆ

Tn

ˆ

Qj (x)

∣∣f (x) − f (y)
∣∣p dy dx

=
ˆ

Tn

ˆ

Tn

(
|x − y|n+sp

∑
j≥0

2(n+sp)j1Qj (x)(y)

) |f (x) − f (y)|p
|x − y|n+sp

dy dx.

In order to evaluate the above expression between brackets, we fix x �= y in Tn and we let k be such that |x − y| ∈ Ik . 
Then

|x − y|n+sp
∑
j≥0

2(n+sp)j1Qj (x)(y) ≤ |x − y|n+sp
k−1∑
j=0

2(n+sp)j � 1,

which implies (8.3). �
For further use, let us recall the following cousin of Lemma 8.3 [3, Corollary A.1].

20 So that Y (f ) = ‖(xk)k≥1‖p
p .
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8.5. Lemma. Let 0 < s < 1 and 1 ≤ p < ∞ be such that sp < 1. Let f j : Tn → R be a sequence of functions such 
that f j ∈ Ej , ∀j .21 If∑

j≥1

2spj
∥∥f j − f j−1

∥∥p

Lp < ∞,

then f j converges in Lp to a function f ∈ Ws,p . In addition, we have

|f |pWs,p �
∑
j≥1

2spj
∥∥f j − f j−1

∥∥p

Lp .

8.2. Estimates for averages

The material in this section was used in the proofs of Theorems 1.3 and 1.4.
We start with a version of [3, (E.17)].

8.6. Lemma. Let f belong to Ek , ρ := 1(−1/2,1/2)n , and ρε(x) := ε−nρ(x
ε
), ∀ε > 0, ∀x. Let h satisfy |h| < 2−j , where 

j ≥ k. Then

|τhf − f | ≤ 22n+1|f | ∗ ρ22−k1Ak,j
,

where

Ak,j := {
x ∈ T

n;dist(x, ∂Q) ≤ 2−j for some Q ∈ Pk

}
.

Proof. Since f is constant in each cube Q ∈ Pk and |h| < 2−k , we have

|τhf |(x) =
 

Qk(x−h)

|f | ≤ 2nk

ˆ

B(x−h,2−k)

|f | ≤ 2nk

ˆ

B(x,21−k)

|f |. (8.11)

We note also that

|f | ∗ ρ22−k (x) = 2n(k−2)

ˆ

B(x,21−k)

|f |. (8.12)

By combining (8.11) with (8.12) we obtain

|τhf | ≤ 22n|f | ∗ ρ22−k . (8.13)

By letting h → 0 in (8.13), we find that

|f | ≤ 22n|f | ∗ ρ22−k . (8.14)

By (8.13) and (8.14), we obtain

|τhf − f | ≤ |τhf | + |f | ≤ 22n+1|f | ∗ ρ22−k .

Now the conclusion follows by noting that, when x does not belong to Ak,j we have Qk(x − h) = Qk(x), and thus 
τhf (x) = f (x). �

We next turn to Lemmas 8.7, 8.9, 8.10 and 8.11 which were used in Section 7.

21 We recall that Ej denotes the class of functions which are constant on each dyadic cube of Pj .
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8.7. Lemma. Let 1 ≤ p < ∞ and f ∈ Lp(T). Let δε be the operator given by

δεf (x) :=
ε 

0

f (x + z) dz −
2ε 

0

f (x + z) dz. (8.15)

Then, for every k ≥ 1,ˆ

T

∥∥(
f y

)
k
− (

f y
)
k−1

∥∥p

Lp(T)
dy ≥ 1

2
‖δ2−k f ‖p

Lp(T)
.

Recall that f y(x) = f (x − y).

Proof. We first note that for every x ∈ T, the dyadic cube (interval) of x of order k is given by

Qk(x) = 2−k
[
2kx

] + [
0,2−k

)
.

Note also that if x belongs to an interval of the form Jk,	 := [21−k	, 2−k(2	 + 1)) with 	 ∈ �0, 2k−1 − 1�, then we 
have 21−k[2k−1x] = 2−k[2kx]. Thus, for every such x and every y ∈ T, we have

 

Qk(x)

f y −
 

Qk−1(x)

f y =
2−k 

0

f y
(
z + 2−k

[
2kx

])
dz −

21−k 

0

f y
(
z + 21−k

[
2k−1x

])
dz

= δ2−k f y
(
2−k

[
2kx

])
. (8.16)

We next note that δεf
y(x) = δεf (x − y), ∀x, y ∈ T

n. If x ∈ Jk,	, then by integrating (8.16) with respect to y we find 
that ˆ

T

∣∣∣∣  

Qk(x)

f y −
 

Qk−1(x)

f y

∣∣∣∣p dy =
ˆ

T

∣∣δ2−k f
y
(
2−k

[
2kx

])∣∣p dy

=
ˆ

T

∣∣δ2−k f
(
2−k

[
2kx

] − y
)∣∣p dy =

ˆ

T

∣∣δ2−k f (y)
∣∣p dy. (8.17)

We obtain the conclusion by integrating the left-hand side of (8.17) with respect to x ∈ Jk,	, ∀	. �
8.8. Remark. It is not difficult to see that the following extension of (8.16) holds for every x ∈ T:∣∣∣∣  

Qk(x)

f y −
 

Qk−1(x)

f y

∣∣∣∣ = ∣∣δ2−k f y
(
2−k

[
2kx

])∣∣.
Hence the conclusion of Lemma 8.7 can be improved toˆ

T

∥∥(
f y

)
k
− (

f y
)
k−1

∥∥p

Lp(T)
dy = ‖δ2−k f ‖p

Lp(T)
.

However, the advantage of Lemma 8.7 stated as above is that its proof can be easily generalized to higher dimension.

Lemma 8.7 has the following n-dimensional analog.

8.9. Lemma. Let 1 ≤ p < ∞ and f ∈ Lp(Tn). Let δε be the operator given by

δεf (x) :=
 

n

f (x + z) dz −
 

n

f (x + z) dz. (8.18)
(0,ε) (0,2ε)
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Then, for every k ≥ 1,ˆ

Tn

∥∥(
f y

)
k
− (

f y
)
k−1

∥∥p

Lp(Tn)
dy ≥ 1

2n
‖δ2−k f ‖p

Lp(Tn)
.

The proof of Lemma 8.9 is identical to the proof of Lemma 8.7 and is left to the reader.

8.10. Lemma. Let f ∈ Lp(T) and let δε the operator given by (8.15). Then∥∥(τh − id)δεf
∥∥

Lp ≤ h

ε

∥∥(τε − id)f
∥∥

Lp , ∀h ∈ [0, ε].

Proof. Let 0 ≤ h ≤ ε. For every x ∈ [0, 1), by the definition of δε we have

(τh − id)δεf (x) = 1

2ε

(
2

ε−hˆ

−h

f (x + z) dz −
2ε−hˆ

−h

f (x + z) dz

)

− 1

2ε

(
2

εˆ

0

f (x + z) dz −
2εˆ

0

f (x + z) dz

)

= 1

2ε

( 0ˆ

−h

f (x + z) dz − 2

εˆ

ε−h

f (x + z) dz +
2εˆ

2ε−h

f (x + z) dz

)

= 1

2ε

( 0ˆ

−h

f (x + z) dz −
εˆ

ε−h

f (x + z) dz

)

− 1

2ε

( εˆ

ε−h

f (x + z) dz −
2εˆ

2ε−h

f (x + z) dz

)

= 1

2ε

[ εˆ

ε−h

(τε − id)f (x + z) dz −
2εˆ

2ε−h

(τε − id)f (x + z) dz

]
.

Hence, for every x ∈ T, we have

∣∣(τh − id)δεf (x)
∣∣ ≤ 1

2ε

[ εˆ

ε−h

∣∣(τε − id)f (x + z)
∣∣dz +

2εˆ

2ε−h

∣∣(τε − id)f (x + z)
∣∣dz

]
. (8.19)

We note that for any F ∈ Lp(T) and for ρ = 1(−1/2,1/2) we have F ∗ ρh(t) = 1
h

´ t+h/2
t−h/2 F(z) dz. Thus

1

h

( εˆ

ε−h

∣∣(τε − id)f (x + z)
∣∣dz +

2εˆ

2ε−h

∣∣(τε − id)f (x + z)
∣∣dz

)

= ∣∣(τε − id)f (x + ·)∣∣ ∗ ρh(ε − h/2) + ∣∣(τε − id)f (x + ·)∣∣ ∗ ρh(2ε − h/2)

= ∣∣(τε − id)f
∣∣ ∗ ρh(x + ε − h/2) + ∣∣(τε − id)f

∣∣ ∗ ρh(x + 2ε − h/2). (8.20)

Since the Lp norm on T is independent of translations, we obtain from (8.19) and (8.20) that∥∥(τh − id)δεf
∥∥

Lp ≤ 2
h ∥∥∣∣(τε − id)f

∣∣ ∗ ρh

∥∥
Lp ≤ h∥∥(τε − id)f

∥∥
Lp‖ρh‖L1 = h∥∥(τε − id)f

∥∥
Lp . �
2ε ε ε
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The same argument leads to the following n-dimensional version of Lemma 8.10.

8.11. Lemma. Let f ∈ Lp(Tn) and let δε the operator given by (8.18). Then, for every i ∈ �1, n�,∥∥(τhei
− id)δεf

∥∥
Lp(Tn)

≤ h

ε

∥∥(τεei
− id)f

∥∥
Lp(Tn)

, ∀h ∈ [0, ε].

8.3. A lemma on cuts

The following lemma is due to Merlet [20], and was used in the proof of Proposition 1.6. For the convenience of 
the reader, we reproduce the argument in [20].

8.12. Lemma. Let α ∈ S
1. For every z ∈ S

1, we let θα(z) be the unique θ ∈ (α − 2π, α] such that z = eıθ . Then, for 
every z, w ∈ S1,ˆ

S1

∣∣θα(w) − θα(z)
∣∣dα = 2| ︷ ︷

zw |(2π − | ︷ ︷
zw |) ≤ 4π |z − w|.

Here, 
︷ ︷
zw is (one of) the geodesic arc(s) that connects z and w on the circle, and | ︷ ︷

zw | is the geodesic distance on the 
circle.

Proof. It is easy to see that∣∣θα(z) − θα(w)
∣∣ =

{
2π − | ︷ ︷

zw |, if α ∈ ︷ ︷
zw,

| ︷ ︷
zw |, if α /∈ ︷ ︷

zw .

Henceˆ

S1

∣∣θα(w) − θα(z)
∣∣dα =

ˆ

α /∈
︷ ︷
zw

| ︷ ︷
zw |dα +

ˆ

α∈
︷ ︷
zw

(
2π − | ︷ ︷

zw |)dα = 2| ︷ ︷
zw |(2π − | ︷ ︷

zw |). (8.21)

We now use the inequality sinx ≥ x(1 − x/π), valid for every x ∈ [0, π/2], to find that

|z − w| = 2

∣∣∣∣sin

︷ ︷
zw

2

∣∣∣∣ ≥ 2
| ︷ ︷
zw |
2

(
1 − | ︷ ︷

zw |
2π

)
= 1

4π
2| ︷ ︷

zw |(2π − | ︷ ︷
zw |),

which together with (8.21) proves the lemma. �
8.4. Toolbox for the proof of Theorem 1.5

We gather here the auxiliary results used in the proof of Theorem 1.5 in Section 4, as well as the proof of 
Lemma 4.2.

We start by establishing estimate (4.3), that we recall in the next statement.

8.13. Lemma. Let a, ε ∈ (0, 1). Then

(1 − a)ε + aε − 1 ≥ (1 − ε)aε(1 − a)ε.

Proof. By symmetry, we may assume that a ≤ 1/2. By the mean value theorem, we have, for some ξ ∈ (0, a),

1 − (1 − a)ε = εa(1 − ξ)(ε−1) ≤ εaε

(since 1 − ξ ≥ a and therefore (1 − ξ)ε−1 ≤ aε−1). Thus

(1 − a)ε + aε − 1 ≥ (1 − ε)aε ≥ (1 − ε)aε(1 − a)ε. �
We continue with a proof of the estimate (4.5); this is the purpose of the next lemma.
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8.14. Lemma. Let 1 < p < ∞. Set δ(ε) := e−1/ε , for every 0 < ε < 1, and uε := eıϕδ(ε) , where ϕδ is given by (4.4). 
Then |uε|W(1−ε)/p,p ≈ 1.

Proof. We start with the following obvious estimate of |uε|W(1−ε)/p,p :

|uε|pW(1−ε)/p,p ≈
1/2ˆ

0

1/2+δˆ

1/2

|eı2π(x−1/2)/δ − 1|p
(x − y)2−ε

dx dy +
1/2+δˆ

1/2

1/2+δˆ

1/2

|eı2π(x−1/2)/δ − eı2π(y−1/2)/δ|p
|x − y|2−ε

dx dy

+
1ˆ

1/2+δ

1/2+δˆ

1/2

|eı2π(x−1/2)/δ − 1|p
(y − x)2−ε

dx dy =: I1 + I2 + I3.

We next estimate each of the three integrals I1, I2 and I3, using simple calculations and the fact that δε = 1/e. To start 
with, we have

I2 ≈
1/2+δˆ

1/2

1/2+δˆ

1/2

| sinπ(x − y)/δ|p
|x − y|2−ε

dx dy =
(

δ

π

)ε
π/(2δ)+πˆ

π/(2δ)

π/(2δ)+πˆ

π/(2δ)

| sin(x − y)|p
|x − y|2−ε

dx dy

=
(

δ

π

)ε
π/(2δ)+πˆ

π/(2δ)

( π/(2δ)+π−yˆ

π/(2δ)−y

| sin t |p
|t |2−ε

dt

)
dy ≈

π̂

−π

| sin t |p
|t |2−ε

dt ≈ 1;

the latter conclusion uses the fact that p > 1.
We next estimate I1 as follows.

I1 ≈
1/2ˆ

0

1/2+δˆ

1/2

| sinπ(x − 1/2)/δ|p
(x − y)2−ε

dx dy ≈
0ˆ

−π/(2δ)

π̂

0

sinp x

(x − y)2−ε
dx dy =

π̂

0

x+π/(2δ)ˆ

x

sinp x

t2−ε
dt dx

≈
π̂

0

sinp x

(
1

x1−ε
− 1

(x + π/(2δ))1−ε

)
dx =

π̂

0

sinp x

x
dx + oε(1) −

π̂

0

sinp x

(x + π/(2δ))1−ε
dx

=
π̂

0

sinp x

x
dx + oε(1) + O(δ) =

π̂

0

sinp x

x
dx + oε(1) ≈ 1.

Similarly, we have

I3 ≈
1ˆ

1/2+δ

1/2+δˆ

1/2

| sinπ(x − 1/2)/δ|p
(y − x)2−ε

dx dy ≈
π/(2δ)ˆ

π

π̂

0

sinp x

(y − x)2−ε
dx dy =

π̂

0

π/(2δ)−xˆ

π−x

sinp x

t2−ε
dt dx

≈
π̂

0

sinp x

(
1

(π − x)1−ε
− 1

(π/(2δ) − x)1−ε

)
dx ≈ 1.

By the above estimates of I1, I2 and I3, we conclude that |uε|W(1−ε)/p,p ≈ 1 as ε → 0. �
We next present the proof of Lemma 4.2, in the spirit of [4, Lemma 2].

Proof of Lemma 4.2. By scale invariance, we may assume that I = (0, 1).
For every 	 ∈ Z, we define the sets A	 := {x ∈ I ; ψ(x) < 	}. Since (A	) is a non-decreasing sequence with |A	| →

0 when 	 → −∞ and |A	| → 1 when 	 → ∞, there exists some k ∈ Z such that |Ak| ≤ 1/2 and |Ak+1| > 1/2.
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Note that∣∣ψ(x) − ψ(y)
∣∣ ≥ 1, ∀	 ∈ Z, ∀x ∈ A	, ∀y ∈ c(A	). (8.22)

Hence, by applying inequality (4.1) first to Ak and next to Ak+1, and by using (8.22), we get

1/2|Ak| ≤
(

Cε

ˆ

Ak

ˆ
c(Ak)

1

|x − y|2−ε
dx dy

)1/ε

≤
(

Cε

ˆ

Ak

ˆ
c(Ak)

|ψ(x) − ψ(y)|
|x − y|2−ε

dx dy

)1/ε

and

1/2
∣∣c(Ak+1)

∣∣ ≤
(

Cε

ˆ

Ak+1

ˆ
c(Ak+1)

1

|x − y|2−ε
dx dy

)1/ε

≤
(

Cε

ˆ

Ak+1

ˆ
c(Ak+1)

|ψ(x) − ψ(y)|
|x − y|2−ε

dx dy

)1/ε

.

We find that:∣∣{x ∈ I ;ψ(x) �= k
}∣∣ = |Ak| +

∣∣c(Ak+1)
∣∣ ≤ 4

(
Cε

ˆ

I

ˆ

I

|ψ(x) − ψ(y)|p
|x − y|2−ε

dx dy

)1/ε

. �

8.15. Lemma. Let ϕ be a lifting of u = eıϕδ , where ϕδ is given by (4.4), i.e.,

ϕδ(x) :=
{0, if x < 1/2,

(2x − 1)π/δ, if 1/2 < x < 1/2 + δ,

2π, if 1/2 + δ < x.

Let ψ := ϕ−ϕδ

2π
.

Then, if x, y ∈ (0, 12 + 2δ
3 ), or if x, y ∈ ( 1

2 + δ
3 , 1), we have∣∣ψ(x) − ψ(y)

∣∣ ≤ ∣∣ϕ(x) − ϕ(y)
∣∣. (8.23)

Proof. We will verify (8.23) when x, y ∈ (0, 1/2 + 2δ/3), since the proof when x, y both belong to the second 
interval is similar. Estimate (8.23) being clear when 0 < x ≤ 1/2 and 0 < y ≤ 1/2, we may assume that y > 1/2. 
To summarize, we will establish (8.23) when y ∈ (1/2, 1/2 + 2δ/3) and x ∈ (0, 1/2 + 2δ/3). Two cases will be 
considered: x ∈ (0, 1/2] and x ∈ (1/2, 1/2 + 2δ/3).

Since ϕ and ϕδ are liftings of the same function u, for every x there exists an integer k(x) such that ϕ(x) =
ϕδ(x) + 2πk(x). Same for y. We may always assume, with no loss of generality, that k(y) = 0.

To start with, assume that x ∈ (0, 1/2]. Then (8.23) is equivalent to∣∣k(x)
∣∣ ≤ ∣∣2πk(x) − (2y − 1)π/δ

∣∣ = ∣∣2πk(x) − Y
∣∣, (8.24)

where we let Y := (2y − 1)π/δ. Note that 0 < Y < 4π/3. If k(x) ≤ 0, then (8.24) is obviously true. In the case where 
k(x) > 0 is nonnegative, (8.24) becomes

(2π − 1)k(x) ≥ Y, (8.25)

and follows from Y < 4π/3.
Suppose next that we have x ∈ (1/2, 1/2 + 2δ/3). Then (8.23) becomes∣∣k(x)

∣∣ ≤ ∣∣2(x − y)π/δ + 2πk(x)
∣∣ = ∣∣X + 2πk(x)

∣∣, (8.26)

where X := 2(x − y)π/δ. Note that −4π/3 < X < 4π/3. We investigate the validity of (8.26) when X ≥ 0; the case 
where X < 0 is similar and is left to the reader. When X ≥ 0, inequality (8.26) is always true if k(x) is non-negative. 
When k(x) < 0, (8.26) amounts to

(2π − 1)
(−k(x)

) ≥ X,

which holds since X < 4π/3. �
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8.16. Lemma. Let A, B ⊂ (a, b) be such that “A is on the left of B”, i.e., y < x, ∀y ∈ A, ∀x ∈ B . Define A	 :=
(a, a + |A|) and Br := (b − |B|, b). Let t > 0.

Thenˆ

A

ˆ

B

1

(x − y)t
dx dy ≥

ˆ

A	

ˆ

Br

1

(x − y)t
dx dy.

Proof. It suffices to establish the inequality
ˆ

A

dy

(x − y)t
≥
ˆ

A	

dy

(x − y)t
, ∀x ∈ (a, b) such that y < x,∀y ∈ A. (8.27)

Indeed, assume that (8.27) holds. Then by symmetry we have
ˆ

B

dx

(x − y)t
≥
ˆ

Br

dx

(x − y)t
, ∀y ∈ (a, b) such that x > y,∀x ∈ B. (8.28)

By (8.27) and (8.28), we have
ˆ

B

(ˆ
A

dy

(x − y)t

)
dx ≥

ˆ

B

(ˆ
A	

dy

(x − y)t

)
dx =

ˆ

A	

(ˆ
B

dx

(x − y)t

)
dy ≥

ˆ

A	

ˆ

Br

1

(x − y)t
dx dy.

It remains to prove (8.27). We first note that (8.27) is true when A is an interval.22 By a standard argument, we find 
that (8.27) holds: first when A is an open set, next when A is compact, and finally for every measurable A. �
8.17. Lemma. Let 0 < s < 1 and 1 ≤ p < ∞. Then, for any ϕ ∈ Ws,p(Tn; R), we have

|ϕ|p
Ws,p(Tn)

�
ˆ

Tn−1

∣∣ϕ(·, x2, . . . , xn)
∣∣p
Ws,p(T)

dx2 . . . dxn. (8.29)

Proof. Let A denote the integral in the right-hand side of (8.29), that is,

A =
ˆ

Tn−1

ˆ

T

ˆ

T

|ϕ(x1, x
′) − ϕ(z1, x

′)|p
|x1 − z1|1+sp

dx1 dz1 dx′.

We will use the notation x := (x1, x′) and z := (z1, x′), with x1, z1 ∈ T and x′ ∈ T
n−1. Integrating the inequality∣∣ϕ(x) − ϕ(z)

∣∣p ≤ 2p−1(∣∣ϕ(x) − ϕ(y)
∣∣p + ∣∣ϕ(y) − ϕ(z)

∣∣p)
, ∀y ∈ T

n,

with respect to y ∈ B((x + z)/2, |x1 − z1|/4), we find that

A�
ˆ

Tn

ˆ

T

 

B((x+z)/2,|x1−z1|/4)

|ϕ(x) − ϕ(y)|p
|x1 − z1|1+sp

dy dz1 dx.

Noting that B((x + z)/2, |x1 − z1|/4) ⊂ B(x, 3|x1 − z1|/4), we find that

A�
ˆ

Tn

ˆ

Tn

ˆ

|x1−z1|≥4|x−y|/3

dz1

|x1 − z1|n+1+sp

∣∣ϕ(x) − ϕ(y)
∣∣p dy dx �

ˆ

Tn

ˆ

Tn

|ϕ(x) − ϕ(y)|p
|x − y|n+sp

dy dx. �

22 By explicit calculation of both sides in (8.27).
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8.18. Lemma. Let 0 < s < 1 and 1 ≤ p < ∞. Set

Kn(x1, y1) :=
ˆ

Tn−1

ˆ

Tn−1

dx′dy′

|(x1, x′) − (y1, y′)|n+sp
, ∀x1, y1 ∈ T.

Then we have

Kn(x1, y1)�
1

|x1 − y1|1+sp
.

Proof. Set t := x1 − y1 and z′ := x′ − y′. Then

Kn(x1, y1) =
ˆ

Tn−1

ˆ

Tn−1

dx′dy′

|(t, x′ − y′)|n+sp
≤

ˆ

|x′|≤1

ˆ

|z′|≤2

dz′dx′

|(t, z′)|n+sp

�
ˆ

Rn−1

dz′

|(t, z′)|n+sp
� 1

|t |1+sp
. �

8.19. Corollary. Let s > 0 and 1 ≤ p < ∞. Let f ∈ Ws,p(T; C) and consider the function F : Tn → C defined by 
F(x1, x′) := f (x1), ∀x = (x1, x′) ∈ T

n.
Then F ∈ Ws,p(Tn; C) and |F |Ws,p(Tn) ≈ |f |Ws,p(T).

Proof. If k is an integer and k ≤ s, then we clearly have∥∥DkF
∥∥

Lp(Tn)
= ∥∥Dkf

∥∥
Lp(T)

. (8.30)

In particular, the conclusion of the lemma holds when s is an integer.
Suppose now that s is not an integer and write s = [s] + σ , with σ ∈ (0, 1). By Lemma 8.17, we have∣∣D[s]F

∣∣p
Wσ,p(Tn)

�
ˆ

Tn−1

∣∣D[s]F
(·, x′)∣∣p

Wσ,p(T)
dx′ =

ˆ

Tn−1

∣∣D[s]f
∣∣p
Wσ,p(T)

dx′ = ∣∣D[s]f
∣∣p
Wσ,p(T)

. (8.31)

On the other hand, using Lemma 8.18 for s = σ , we obtain∣∣D[s]F
∣∣p
Wσ,p(Tn)

=
ˆ

Tn

ˆ

Tn

|D[s]F(x1, x
′) − D[s]F(y1, y

′)|p
|x − y|n+σp

dx dy

=
1ˆ

0

1ˆ

0

∣∣D[s]f (x1) − D[s]f (y1)
∣∣pKn(x1, y1) dx1 dx2

�
1ˆ

0

1ˆ

0

|D[s]f (x1) − D[s]f (y1)|p
|x1 − y1|1+σp

dx1 dx2 = ∣∣D[s]f
∣∣p
Wσ,p(T)

. (8.32)

From (8.30), (8.31) and (8.32), we have |F |Ws,p(Tn) ≈ |f |Ws,p(T). �
8.5. Toolbox for optimal estimates when sp ≥ 1

In this section, we establish the auxiliary results required in Section 5.

8.20. Lemma. Let s > 0 and 1 ≤ p < ∞. Let f ∈ C∞
c ((0, 1); C), f �≡ 0. Consider the functions fj :=∑

0≤k≤j−1 f (xj − k), ∀j ≥ 1. Then

|fj |Ws,p((0,1)) ≈ j s. (8.33)
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Proof. If s, k are integers and k ≤ s, then we have∥∥Dkfj

∥∥ ≈ jk. (8.34)

In particular, (8.33) holds when s is an integer.
Suppose now that s /∈N and let σ := s − [s] ∈ (0, 1). Then we have

∣∣D[s]fj

∣∣p
Wσ,p = j [s]p

j−1∑
k,	=0

Ik,	, (8.35)

with

Ik,	 :=
(k+1)/jˆ

k/j

(	+1)/jˆ

	/j

|f ([s])(xj − l) − f ([s])(yj − k)|p
|x − y|1+σp

dx dy = j1−σp

1ˆ

0

1ˆ

0

|f ([s])(X) − f ([s])(Y )|p
|	 − k + X − Y |1+σp

dXdY.

If k �= 	, then Ik,	 can be estimated as follows.

Ik,	 � sup
∣∣f ([s])∣∣p jσp−1

|	 − k|1+σp
. (8.36)

(When |	 − k| ≥ 2, estimate (8.36) follows from the fact that |	 − k + X − Y | ≈ |	 − k|. When |	 − k| = 1, we 
rely on the fact that f ∈ C∞

c ((0, 1)), and thus there exists some ε > 0 such that |f ([s])(X) − f ([s])(Y )| = 0 when 
|	 − k + X − Y | ≤ ε.)

Thus∑
k �=	

Ik,	 � jσp−1
j−1∑
	=1

	−1∑
k=0

1

(l − k)1+σp
� jσp−1

(
j

j−1∑
k=1

1

k1+σp
−

j−1∑
k=1

1

kσp

)
� jσp. (8.37)

On the other hand, for k = 	 we obtain

Ik,k =
(k+1)/jˆ

k/j

(k+1)/jˆ

k/j

|f ([s])(xj − k) − f ([s])(yj − k)|p
|x − y|1+σp

dx dy = jσp−1
∣∣f ([s])∣∣p

Ws,p((0,1))
≈ jσp−1.

Therefore, we have

j−1∑
k=0

Ik,k ≈ jσp. (8.38)

By combining (8.34)–(8.38), we find that |D[s]fj |Wσ,p((0,1)) ≈ j s , and therefore |fj |Ws,p((0,1)) ≈ j s . �
The next result is a variant of [3, Lemma D.2].

8.21. Lemma. Let s ≥ 1, 1 ≤ p < ∞ and v ∈ Ws,p(Rn) ∩ L∞(Rn). Then

‖v ∧ ∇v‖Ws−1,p � ‖v‖L∞‖v‖Ws,p . (8.39)

The proof of Lemma 8.21, as well as the one of Lemma 8.32, relies on Littlewood–Paley decompositions. For the 
convenience of the reader, we gather some standard properties of such decompositions.

Let ζ ∈ C∞
c (B(0, 1); R+) be such that

ζ ≡ 1 in B(0,3/4) and supp ζ ⊂ B(0,4/5). (8.40)

Define ϕj , j ≥ 0, by

ϕ̂0(ξ) := ζ(ξ) and, for every j ≥ 1, ϕ̂j (ξ) := ζ
(
ξ/2j+1) − ζ

(
ξ/2j

)
. (8.41)
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Given f ∈ S ′, we let f = ∑
fj = ∑

f ∗ ϕj be its Littlewood–Paley decomposition, and recall [29, Section 2.3.1, 
Definition 2, p. 45], [29, Section 2.5.7, Theorem, p. 90] that

‖f ‖B0∞,∞ ∼ sup
j

‖fj‖L∞ , (8.42)

‖f ‖p
Ws,p ∼

∑
j

2spj‖fj‖p
Lp , ∀s > 0, ∀1 ≤ p < ∞, s non-integer. (8.43)

Recall also the following Nikolskiı̆ type inequalities [31]. Set C0 := B(0, 2) and, for j ≥ 1, Cj := B(0, 2j+1) \
B(0, 2j−1). If f j ∈ S ′ and

supp f̂ j ⊂
⋃

|	−j |≤k

C	 for some fixed k, (8.44)

then ∥∥∥∥∑
j

f j

∥∥∥∥
B0∞,∞

� sup
j

∥∥f j
∥∥

L∞ (8.45)

and ∥∥∥∥∑
j

f j

∥∥∥∥p

Ws,p

�
∑
j

2spj
∥∥f j

∥∥p

Lp , ∀s > 0, ∀1 ≤ p < ∞, s non-integer. (8.46)

8.22. Remark. The inequality (8.46) also holds if the assumption (8.44) is weakened to supp f̂ j ⊂ B(0, 2j+k) for 
some fixed k [8, Lemma 1]; see also [31].

We next recall the following standard inequalities; see e.g. [11, Lemma 2.1.1] for the first result, and [8, Corollary 1, 
Lemma 2] for the next one.

8.23. Lemma. Let f ∈ S ′(Rn) be such that supp f̂ ⊂ B(0, R). Then, for any 1 ≤ q ≤ ∞,

‖∇f ‖Lq ≤ C(q)R‖f ‖Lq .

8.24. Lemma. Let 1 ≤ q ≤ ∞ and f ∈ Lq(Rn). Let f = ∑
fi be the Littlewood–Paley decomposition of f . Then∥∥∥∥∑

k≤j

fk

∥∥∥∥
Lq

≤ C(q)‖f ‖Lq .

Proof of Lemma 8.21. Suppose first that s ≥ 1 is an integer. Then we have

‖v ∧ ∇v‖p

Ws−1,p � ‖v ∧ ∇v‖p
Lp + ∥∥Ds−1(v ∧ ∇v)

∥∥p

Lp � ‖v‖p
L∞‖∇v‖p

Lp +
∑

|α|+|β|=s

∥∥Dαv ∧ Dβv
∥∥p

Lp . (8.47)

By applying the Hölder and the Gagliardo–Nirenberg inequalities, we find that, for every m1, m2 ∈ N with 
m1 + m2 = s,∥∥Dm1v ∧ Dm2v

∥∥
Lp �

∥∥Dm1v
∥∥

Lsp/m1

∥∥Dm2v
∥∥

Lsp/m2 �
(‖v‖1−m1/s

L∞
∥∥Dsv

∥∥m1/s

Lp

)(‖v‖1−m2/s
L∞

∥∥Dsv
∥∥m2/s

Lp

)
= ‖v‖L∞

∥∥Dsv
∥∥

Lp � ‖v‖L∞‖v‖Ws,p ,

which, together with (8.47), proves (8.39).
We next assume that s > 1 is not an integer. In this case, the proof uses the same idea as in [3, Lemma D.2]. We 

consider the Littlewood–Paley decomposition of v in S ′(Rn), v = ∑
j≥0 vj := ∑

j≥0 v ∗ ϕj , with the functions ϕj

previously defined by (8.40) and (8.41).
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We next define

rj := vj ∧ ∇
∑
k<j

vk, ∀j ≥ 1, r0 := 0, and sj :=
∑
k≤j

vk ∧ ∇vj , ∀j ≥ 0.

Then we have v ∧ ∇v = ∑
j≥0(rj + sj ). Note that supp(r̂j + ŝj ) ⊂ B(0, 2j+2) and that s − 1 > 0. Hence, by (8.46)

and Remark 8.22, we have that

‖v ∧ ∇v‖p

Ws−1,p =
∥∥∥∥∑

j≥0

(rj + sj )

∥∥∥∥p

Ws−1,p

�
∑
j≥0

2(s−1)pj‖rj + sj‖p
Lp �

∑
j≥0

2(s−1)pj
(‖rj‖p

Lp + ‖sj‖p
Lp

)
. (8.48)

We will now estimate ‖rj‖Lp and ‖sj‖Lp using Lemmas 8.23 and 8.24. First, since supp
∑

k<j v̂k ⊂ B(0, 2j+1), we 
have

‖rj‖Lp ≤ ‖vj‖Lp

∥∥∥∥∇
∑
k<j

vk

∥∥∥∥
L∞

� 2j‖vj‖Lp

∥∥∥∥∑
k<j

vk

∥∥∥∥
L∞

� 2j‖vj‖Lp‖v‖L∞ .

Next, since supp v̂j ⊂ B(0, 2j+1), we have

‖sj‖Lp ≤
∥∥∥∥∑

k≤j

vk

∥∥∥∥
L∞

‖∇vj‖Lp � 2j

∥∥∥∥∑
k≤j

vk

∥∥∥∥
L∞

‖vj‖Lp � 2j‖v‖L∞‖vj‖Lp .

Combining the two above estimates with (8.43), (8.46) and (8.48), we find

‖v ∧ ∇v‖p

Ws−1,p � ‖v‖p
L∞

∑
j≥0

2spj‖vj‖p
Lp � ‖v‖p

L∞‖v‖p
Ws,p . �

We now turn to the proof of some estimates used in the different proofs of Theorem 5.3 (Lemmas 8.25, 8.26, 8.27, 
8.28, 8.30 and 8.31).

The next result appears in Merlet [20]. We present below a simplified argument.

8.25. Lemma. Let 0 < s < 1 and 1 < p < ∞ be such that sp > 1, and let 0 ≤ x ≤ y ≤ 1. Let u ∈ Ws,p(T; S1) and let 
ϕ ∈ Ws,p(T; R) be a lifting of u. Then∣∣ϕ(x) − ϕ(y)

∣∣p �
∣∣u(x) − u(y)

∣∣p + (y − x)p−1/s |u|p/s

Ws,p((x,y))
.

Proof. We will show that

(a) |ϕ(x) − ϕ(y)| ≤ π �⇒ |ϕ(x) − ϕ(y)| � |u(x) − u(y)|.
(b) |ϕ(x) − ϕ(y)| > π �⇒ |ϕ(x) − ϕ(y)| � (y − x)1−1/sp|u|1/s

Ws,p((x,y)).

The first case is obvious. Indeed, if |ϕ(x) − ϕ(y)| ≤ π , then∣∣ϕ(x) − ϕ(y)
∣∣ ≤ π

∣∣∣∣sin
ϕ(x) − ϕ(y)

2

∣∣∣∣ = π

2

∣∣u(x) − u(y)
∣∣.

Consider now the case where |ϕ(x) −ϕ(y)| > π . We may assume that ϕ(x) = 0. In addition, using the monotonicity 
in y of the right-hand side of (b), it suffices to establish (b) when y is replaced by z ∈ [x, y] such that |ϕ(z)| =
max[x,y] |ϕ|. Therefore, with no loss of generality we may assume that ϕ(y) = max[x,y] |ϕ|. Let α be such that π <

α < min{|ϕ(y)|, 2π}, and decompose the interval [x, y] as

[x, y] = [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xJ , xJ+1],
with

x0 := x, J :=
[
ϕ(y)

α

]
, xj := the smallest solution t of ϕ(t) = jα, ∀j ∈ �1, J �, and

xJ+1 := y. (8.49)
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We then have J ≥ 1 and, by (8.49),∣∣ϕ(x) − ϕ(y)
∣∣ = ϕ(y) < α(J + 1)� J. (8.50)

We next note, as in [20], the following quantitative form of the continuous embedding Ws,p((t, z)) ↪→
C0,s−1/p([t, z]), with sp > 1 and 0 ≤ t ≤ z ≤ 1:∣∣u(z0) − u(t0)

∣∣ ≤ c(z − t)s−1/p|u|Ws,p((z,t)), ∀0 ≤ t < t0 < z0 < z ≤ 1, (8.51)

where c = c(s, p).23

When |ϕ(z) − ϕ(t)| > π for some t < z, (8.51) implies that we necessarily have

(z − t)s−1/p|u|Ws,p((t,z)) > 1/c

(with c as in (8.51)). Indeed, argue by contradiction. If (z − t)s−1/p|u|Ws,p((t,z)) ≤ 1/c, then, by (8.51), we have∣∣u(z0) − u(t0)
∣∣ ≤ 1, ∀0 ≤ t < t0 < z0 < z ≤ 1. (8.52)

Using (8.52) and the continuity of u and ϕ, we find that |ϕ(z0) − ϕ(t0)| ≤ π/3 for every t0 and z0 as above. In 
particular, we obtain the contradiction ϕ(z) − ϕ(t) < π .

Therefore, for every 1 ≤ j ≤ J , we have

(xj − xj−1)
s−1/p|u|Ws,p((xj−1,xj )) > 1/c. (8.53)

Using (8.53), we find that

J = c1/s
∑

1≤j≤J

1/c1/s ≤ c1/s
∑

1≤j≤J

(xj − xj−1)
1−1/sp|u|1/s

Ws,p((xj−1,xj ))
. (8.54)

Applying in (8.54) Hölder’s inequality with the exponents sp/(sp − 1) and sp, we obtain

J �
( ∑

1≤j≤J

(xj − xj−1)

)1−1/sp( ∑
1≤j≤J

|u|pWs,p((xj−1,xj ))

)1/sp

� (y − x)1−1/sp|u|1/s

Ws,p(x,y).

This combined with (8.50) proves the assertion (b). �
We next establish several estimates used in the third proof of Theorem 5.3.
We start with the proof of (5.24). This estimate is certainly well-known to experts, but we were unable to find it in 

the literature and we present an argument for the sake of completeness.

8.26. Lemma. Let f ∈ L1(S1; C) and let f̃ be the harmonic extension of f . Let Mf be the maximal function of f . 
Then we have∣∣f̃ (rω)

∣∣ ≤ Mf (ω), ∀ω ∈ S
1, ∀r ∈ [0,1].

Proof. Let P(x, y) be the Poisson kernel on the unit disc, i.e., P(x, y) := 1−r2

2π |x−y|2 . Here, x = rω, ω ∈ S
1, r ∈

[0, 1], and y ∈ S
1. We note that P(x, ·) is positive and “symmetric with respect to Oω and decreasing in y”. More 

specifically, if y and y′ are symmetric with respect to Oω, then P(x, y) = P(x, y′). On the other hand, P(x, ·)
decreases with the distance from y to ω. This allows us to mimic the proof in [28, Chapter II, Section 2.1, formula (17), 
p. 57] and obtain the estimate∣∣f̃ (x)

∣∣ ≤
ˆ

S1

∣∣f (y)
∣∣P(x, y) dy ≤ Mf (ω)

ˆ

S1

P(x, y) dy = Mf (ω). �

We continue with the proof of the estimate (5.27), that we restate here for the convenience of the reader.

23 Estimate (8.51) follows e.g. from [15, Lemma 1.1] (with Ψ (t) := |t |p and p(t) := |t |s+1/p).
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8.27. Lemma. Let 1 ≤ p < ∞ and 0 < s < 1 be such that sp ≥ 1. Let u ∈ Ws,p(S1; S1) and let ̃u be given by (5.26). 
Define ε(ω) := ´ 1

0 | Jac ũ(rω)| dr , ∀ω ∈ S
1. Then

‖ε‖Lsp � |u|1/s
Ws,p . (8.55)

In the proof of the above lemma, we will need the following cousin of [6, Lemma 1.3].

8.28. Lemma. Let 1 ≤ p < ∞ and 0 < s < 1. Let u ∈ Ws,p(T; S1) and let v ∈ Ws+1/p,p(D; D) be its harmonic 
extension. Define d(ω) := sup{r ∈ (0, 1); |v(rω)| ≤ 1/2}, ∀ω ∈ S

1 (with the convention d(ω) = 0 if |v(rω)| > 1/2 for 
every r). Then

ˆ

S1

1

(1 − d(ω))sp
dω � |u|pWs,p + 1. (8.56)

Proof of Lemma 8.28. We may estimate the integral in (8.56) as follows:
ˆ

S1

1

(1 − d(ω))sp
dω �

ˆ

{d(ω)>1/2}

1

(1 − d(ω))sp
dω + 1.

Thus it suffices to consider the ω’s such that d(ω) > 1/2 and to prove, instead of (8.56), that
ˆ

{d(ω)>1/2}

1

(1 − d(ω))sp
dω � |u|pWs,p . (8.57)

We next note the following norm equivalence. In the domain D \D1/2 (where D1/2 is the disc {x ∈ C; |x| ≤ 1/2}) we 
have

|v|p
Ws+1/p,p(D\D1/2)

≈
ˆ

S1

∣∣v(·ω)
∣∣p
Ws+1/p,p((1/2,1))

dω +
1ˆ

1/2

∣∣v(r·)∣∣p
Ws+1/p,p(S1)

dr. (8.58)

The above equivalence is standard in the flat case, where D \D1/2 is replaced by Rn × (1/2, 1), and S1 is replaced 
by Rn × {1} [1, Theorem 7.46]. Estimate (8.58) is a straightforward variant of its “flat analog”. We now note that 
(8.58) implies that for a.e. ω ∈ S

1, the map (1/2, 1) � r �→ v(rω) belongs to Ws+1/p,p((1/2, 1)), and the latter space 
embeds into C0,s([1/2, 1]).24 Therefore, we have

|v(ω) − v(d(ω)ω)|
(1 − d(ω))s

≤ sup
r,t∈[1/2,1]

|v(rω) − v(tω)|
|r − t |s = ∣∣v(·ω)

∣∣
C0,s ([1/2,1]) �

∣∣v(·ω)
∣∣
Ws+1/p,p((1/2,1))

. (8.59)

Since |v(ω) − v(d(ω)ω)| ≥ |v(ω)| − |v(d(ω)ω)| = 1/2, we obtain from (8.59) that

1

(1 − d(ω))sp
� 1

|v(ω) − v(d(ω)ω)|p
∣∣v(·ω)

∣∣p
Ws+1/p,p((1/2,1))

�
∣∣v(·ω)

∣∣p
Ws+1/p,p((1/2,1))

. (8.60)

Integrating the above estimate, and using (8.58), we find that
ˆ

S1

1

(1 − d(ω))sp
�
ˆ

S1

∣∣v(·ω)
∣∣p
Ws+1/p,p((1/2,1))

� |v|p
Ws+1/p,p(D\DR)

≤ |v|p
Ws+1/p,p(D)

. (8.61)

Finally, since the Poisson extension operator is bounded from Ws,p(S1) onto Ws+1/p,p(D) [29, Thm. 4.3.3(i)], we 
have |v|Ws+1/p,p(D) � |u|Ws,p(S1), which combined with (8.61) gives (8.57). �
24 In particular, for a.e. ω ∈ S

1 we have d(ω) < 1.
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Proof of Lemma 8.27. We start by establishing (8.55) when |u|Ws,p � 1. In this case, by the continuous embedding 
Ws,p(S1) ↪→ VMO(S1) (valid when sp ≥ 1), we also have |u|BMO � 1. Next we use the following property of the 
harmonic extension v of an S1-valued function:

dist
(
v(x),S1)� |u|BMO, ∀x ∈D;

see Lemma 8.30 below. By combining the above estimate with the fact that |u|BMO � 1, we find that dist(v(x), S1) ≤
1/2, ∀x ∈ D. Therefore, |v(x)| ≥ 1/2, ∀x ∈ D. Recalling the definition of ũ, this implies that |̃u| = 1 in D and thus 
| Jac ũ(x)| = 0, ∀x ∈ D. Thus the estimate (8.55) is trivially satisfied when |u|Ws,p � 1.

Suppose now that |u|Ws,p is greater than some constant C. In this case, it suffices to prove, instead of (8.55), the 
following weaker estimate

ˆ

S1

( 1ˆ

0

∣∣Jac ũ(rω)
∣∣dr

)sp

dω � |u|pWs,p + 1. (8.62)

Again considering the definition of ũ, we note that | Jac ũ(x)| � |∇v(x)|2, and that the Jacobian Jac ũ(x) van-
ishes whenever |v(x)| > 1/2. Since the map v : D → D is harmonic, its gradient satisfies the estimate |∇v(x)| ≤
1/ dist(x, S1) = (1 − |x|)−1. Consequently, using the notation d(ω) given in Lemma 8.28, we have

1ˆ

0

∣∣Jac ũ(rω)
∣∣dr =

d(ω)ˆ

0

∣∣Jac ũ(rω)
∣∣dr �

d(ω)ˆ

0

∣∣∇v(rω)
∣∣2

dr ≤
d(ω)ˆ

0

1

(1 − r)2
dr = 1

1 − d(ω)
. (8.63)

Using (8.63) together with Lemma 8.28, we obtain (8.62). �
8.29. Remark. By the Gagliardo–Nirenberg embedding Ws,p ∩ L∞ ↪→ Wθs,p/θ , 0 < θ < 1 (valid except when s =
p = 1), it is possible to remove the condition s < 1 in the statement of Lemma 8.27.

In contrast, if we remove the condition sp ≥ 1, then the first part of the proof of Lemma 8.27 does not hold anymore. 
However, the second part of the proof is still valid, and leads to the weaker conclusion ‖ε‖Lsp � |u|1/s

Ws,p + 1 (valid 
whether for semi-norm |u|Ws,p is small or not).

The next result was used in the proof of Lemma 8.27.

8.30. Lemma. Let u ∈ VMO(S1; S1) and let v :D → D be its harmonic extension to D. Then

dist
(
v(x),S1)� |u|BMO, ∀x ∈D.

Proof. Let I (ω, δ) := Bδ(ω) ∩ S
1, ∀ω ∈ S

1, ∀0 < δ < 1. By [10, Lemma A3.1], there exists an R ∈ (0, 1) such that∣∣∣∣v(rω) −
 

I (ω,1−r)

u

∣∣∣∣� |u|BMO, ∀r > R, ∀ω ∈ S
1.25 (8.64)

On the other hand, from [9, Eq. (7), p. 206] we have

dist

(  

I (ω,δ)

u,S1
)
� |u|BMO, ∀ω ∈ S

1, ∀δ ≤ 2. (8.65)

By combining (8.64) and (8.65) we find that

dist
(
v(rω),S1)� |u|BMO, ∀r > R, ∀ω ∈ S

1. (8.66)

It remains to obtain the conclusion of the lemma when |x| ≤ R. For this purpose, we proceed as follows. We integrate 
the inequality dist(v(x), S1) ≤ |v(x) − u(z)|, ∀z ∈ S

1, and find that

25 A crucial point is that R does not depend on u.
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dist
(
v(x),S1) ≤

 

S1

∣∣v(x) − u(z)
∣∣dz =

 

S1

∣∣∣∣ˆ
S1

P(x, y)u(y) dy − u(z)

∣∣∣∣dz;

we recall that P(x, y) denotes the Poisson kernel. Since 
´
S1 P(x, y) dy ≡ 1 and |x| ≤ R, we find that

dist
(
v(x),S1) ≤

 ∣∣∣∣ˆ
S1

P(x, y)
[
u(y) − u(z)

]
dy

∣∣∣∣dz �
 

S1

 

S1

P(x, y)
∣∣u(y) − u(z)

∣∣dy dz

�
 

S1

 

S1

∣∣u(y) − u(z)
∣∣dy dz � |u|BMO.26

This estimate together with (8.66) concludes the proof. �
We now establish the following result, in the spirit of the theory of weighted Sobolev spaces [30], [29, Sec-

tion 2.12.2, Theorem, p. 184]. For related results, see also [21,25].

8.31. Lemma. Let 1 ≤ p < ∞ and 0 < s < 1. Given u ∈ C∞(T; C), let v be the harmonic extension of u and let ̃u be 
given by (5.26). Let δ(x) := 1 − |x|, ∀x ∈ D. Thenˆ

D

δ(x)p−sp−1
∣∣∇v(x)

∣∣p dx � |u|pWs,p and
ˆ

D

δ(x)p−sp−1
∣∣∇ũ(x)

∣∣p dx � |u|pWs,p . (8.67)

Proof. We start by noting that it suffices to prove the first inequality in (8.67). Indeed, we have ũ = Π ◦ v, with Π
smooth, and therefore |∇ũ| � |∇v|. Therefore, the second estimate in (8.67) is a consequence of the first one.

Let P(x, y) denote the Poisson kernel in the unit disc D. Since v is the harmonic extension of u in D and ´
S1 ∇xP (x, y) dy = 0,27 we have

∇v(x) =
ˆ

S1

∇xP (x, y)u(y) dy =
ˆ

S1

∇xP (x, y)
[
u(y) − u(ω)

]
dy, ∀ω ∈ S

1. (8.68)

We next pass to polar coordinates into the first integral in (8.67). Using the fact that r ≤ 1, we obtain

ˆ

D

δ(x)p−sp−1
∣∣∇v(x)

∣∣p dx ≤
1ˆ

0

ˆ

S1

δ(rω)p−sp−1
∣∣∇v(rω)

∣∣p dωdr. (8.69)

We next estimate |∇v(rω)|. For this purpose, we rely on the following properties of ∇xP (x, y):∣∣∇xP (x, y)
∣∣ � 1

δ(x)2
, ∀x ∈ D, ∀y ∈ S

1 (8.70)

and ∣∣∇xP (rω,y)
∣∣ � 1/|y − ω|2, ∀ω ∈ S

1, ∀r ∈ [0,1), ∀y ∈ S
1 such that |y − ω| ≥ δ(rω). (8.71)

The above inequalities are obtained as follows. We start from the straightforward estimates∣∣∇xP (x, y)
∣∣ � 1

|x − y|2 + 1 − |x|
|x − y|3 � 1

|x − y|2 . (8.72)

Then (8.70) is a consequence of (8.72) combined with |x − y| ≥ δ(x). On the other hand, we have |y − rω| ≥ 1 − r

and therefore

26 The next to the last inequality comes from the fact that P(x, y) is uniformly bounded when |x| ≤ R and y ∈ S
1.

27 This follows by differentiating the identity ́
S1 P(x, y) dy ≡ 1.
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|y − ω| ≤ |y − rω| + |ω − rω| = |y − rω| + 1 − r ≤ 2|y − rω|. (8.73)

Estimate (8.71) is a consequence of (8.72) and of (8.73).
We return to (8.68) and we split the integral as follows:∣∣∇v(rω)

∣∣p ≤
(ˆ
S1

∣∣∇xP (rω,y)
∣∣∣∣u(y) − u(ω)

∣∣dy

)p

�
( ˆ

|y−ω|≤δ(rω)

∣∣∇xP (rω,y)
∣∣∣∣u(y) − u(ω)

∣∣dy

)p

+
( ˆ

|y−ω|≥δ(rω)

∣∣∇xP (rω,y)
∣∣∣∣u(y) − u(ω)

∣∣dy

)p

=: I1(r,ω) + I2(r,ω). (8.74)

Then estimates (8.69) and (8.74) lead to

ˆ

D

δ(x)p−sp−1
∣∣∇v(x)

∣∣p dx �
1ˆ

0

ˆ

S1

δ(rω)p−sp−1[I1(r,ω) + I2(r,ω)
]
dωdr =: J1 + J2. (8.75)

It remains to estimate J1 and J2.
Using (8.70) and Hölder’s inequality we find

I1(r,ω) �
( ˆ

|y−ω|≤δ(rω)

|u(y) − u(ω)|
δ(rω)2

dy

)p

= 1

δ(rω)2p

( ˆ

|y−ω|≤δ(rω)

∣∣u(y) − u(ω)
∣∣dy

)p

� 1

δ(rω)2p
δ(rω)p−1

ˆ

|y−ω|≤δ(rω)

∣∣u(y) − u(ω)
∣∣p dy = 1

δ(rω)p+1

ˆ

|y−ω|≤δ(rω)

∣∣u(y) − u(ω)
∣∣p dy.

Inserting the above estimate of I1(r, ω) in the expression of J1, we find that

J1 �
1ˆ

0

ˆ

S1

1

δ(rω)sp+2

ˆ

|y−ω|≤δ(rω)

∣∣u(y) − u(ω)
∣∣p dy dωdr

=
ˆ

S1

ˆ

S1

( 1−|y−ω|ˆ

0

1

(1 − r)sp+2
dr

)∣∣u(y) − u(ω)
∣∣p dy dω

�
ˆ

S1

ˆ

S1

|u(y) − u(ω)|p
|y − ω|sp+1

dy dω = |u|pWs,p . (8.76)

Similarly, for I2 we use (8.71) and Hölder’s inequality as follows:

I2(r,ω) �
( ˆ

|y−ω|>δ(rω)

1

|y − ω|2
∣∣u(y) − u(ω)

∣∣dy

)p

=
( ˆ

|y−ω|>δ(rω)

|u(y) − u(ω)|
|y − ω|2−α

|y − ω|−α dy

)p

≤
ˆ

|y−ω|>δ(rω)

|u(y) − u(ω)|p
|y − ω|(2−α)p

dy

( ˆ

|y−ω|>δ(rω)

|y − ω|−αp/(p−1) dy

)p−1

. (8.77)

Assuming that α > 1 − 1/p, the last integral in (8.77) can be estimated as follows:ˆ
|y − ω|−αp/(p−1) dy � δ(rω)−αp/(p−1)+1.
|y−ω|>δ(rω)
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Hence, returning to (8.77), we have

I2(r,ω) � δ(rω)−αp+p−1
ˆ

|y−ω|>δ(rω)

|u(y) − u(ω)|p
|y − ω|(2−α)p

dy.

Using the above estimate of I2(r, ω) in J2 we find

J2 �
1ˆ

0

ˆ

S1

δ(rω)2p−sp−2−αp

ˆ

|y−ω|≥δ(rω)

|u(y) − u(ω)|p
|y − ω|(2−α)p

dy dωdr

=
ˆ

S1

ˆ

S1

( 1ˆ

1−|y−ω|
(1 − r)2p−sp−2−αp dr

)
|u(y) − u(ω)|p
|y − ω|(2−α)p

dy dω. (8.78)

By the above, if we choose α ∈ (1 −1/p, 2 −s−1/p), then we obtain J2 � |u|pWs,p . This estimate, together with (8.76)
and (8.75), leads to 

´
D

δ(x)p−sp−1|∇v(x)|p dx � |u|pWs,p . �
8.6. Toolbox for “further thoughts”

This section contains the lemmas needed in Section 6.
We start by proving that property (R) discussed in Section 6.1 holds in the following weaker form.

8.32. Lemma. Let 0 < s < ∞ and 1 ≤ p < ∞ be such that s and sp are not integers.
Then

Ws,p
(
(0,1)n

) = (
Ws,p

(
(0,1)n

) ∩ B0∞,∞
(
(0,1)n

)) + (
Ws,p

(
(0,1)n

) ∩ Wsp,1((0,1)n
))

. (8.79)

Proof. By a standard extension argument, it suffices to prove that the above holds when (0, 1)n is replaced by Rn.
In order to obtain the analog of (8.79) in the whole Rn, we rely on Littlewood–Paley decompositions.28 Let η, λ ∈

C∞
c (B(0, 1); R+) be such that η = 1 in B(0, 4/5) and λ ≡ 1 in B(0, 4/5) \ B(0, 3/8). Define ψj , j ≥ 0, by

ψ̂0(ξ) := η(ξ) and, for every j ≥ 1, ψ̂j (ξ) := λ
(
ξ/2j

)
.

It is easy to check that, with ϕj given by (8.40) and (8.41), we have ϕ̂j ψ̂j = ϕ̂j , and thus

ϕj ∗ ψj = ϕj , ∀j. (8.80)

On the other hand, we have

‖ψj‖L1 = ∥∥(
F−1λ

)
2−j

∥∥
L1 = ∥∥F−1λ

∥∥
L1, ∀j ≥ 1. (8.81)

Let f ∈ Ws,p . We split fj = gj + hj , where gj := fj1{|fj |≤1} and hj := fj1{|fj |>1}. Clearly,

‖gj‖Lp ≤ ‖fj‖Lp , ‖gj‖L∞ ≤ 1, ‖hj‖L1 ≤ ‖fj‖p
Lp . (8.82)

Using (8.80), (8.81) and (8.82), we obtain

fj = fj ∗ ψj = gj ∗ ψj + hj ∗ ψj := Gj + Hj ,

with

‖Gj‖Lp � ‖fj‖Lp, ‖Gj‖L∞ � 1, ‖Hj‖L1 � ‖fj‖p
Lp (8.83)

and

28 Alternatively, we could use wavelets as in [18].
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supp Ĝj , supp Ĥj ⊂ supp ψ̂j ⊂ Cj ∪ Cj−1. (8.84)

By (8.45), (8.46), (8.83) and (8.84), we find that f = g + h, where g := ∑
Gj and h := ∑

Hj satisfy

g ∈ Ws,p ∩ B0∞,∞, h ∈ Ws,p ∩ Wsp,1, ‖g‖B0∞,∞ � 1, ‖g‖p
Ws,p + ‖h‖Wsp,1 � ‖f ‖p

Ws,p . � (8.85)

We now prove Lemma 6.3, used in Section 6.2 for constructing a lifting in Ws,p(Tn; S1) when sp < 1.

Proof of Lemma 6.3. Assume first that U is smooth in Tn ×[0, 1]. In this case we have f (x) = U(x, 0). Let x, y ∈ T
n

and set r := |y − x| ∈ [0, 1] and ω := (y − x)/|y − x|, which satisfies |ω| = 1. We have∣∣f (y) − f (x)
∣∣ ≤ ∣∣f (y) − U(y, r)

∣∣ + ∣∣f (x) − U(x, r)
∣∣ + ∣∣U(y, r) − U(x, r)

∣∣
≤

rˆ

0

∣∣∇U(y, ε)
∣∣dε +

rˆ

0

∣∣∇U(x, ε)
∣∣dε +

rˆ

0

∣∣∇U(x + εω, r)
∣∣dε := F(x, r,ω). (8.86)

Integrating (8.86), we find thatˆ

Tn

∣∣f (x + rω) − f (x)
∣∣dx ≤

ˆ

Tn

F (x, r,ω)dx. (8.87)

Assume next that U is not necessarily smooth up to ε = 0. Then we may assume thatˆ

Tn×(0,1)

ε−σ
∣∣∇U(x, ε)

∣∣dx dε < 0,

for otherwise there is nothing to prove. Then U ∈ W 1,1(Tn × (0, 1)). By a standard approximation procedure, we find 
that (with f = trU ) inequality (8.87) still holds for such U .

By combining (8.87) with the formula of the Wσ,1 semi-norm and passing to spherical coordinates, we find that

|f |Wσ,1(Tn) =
ˆ

Tn×Tn

|f (y) − f (x)|
|y − x|n+σ

dx dy

�
ˆ

Tn×Tn

1

|y − x|n+σ

( |y−x|ˆ

0

∣∣∇U(x, ε)
∣∣dε

)
dx dy

+
ˆ

Tn×Tn

1

|y − x|n+σ

( |y−x|ˆ

0

∣∣∇U
(
x + ε(y − x)/|y − x|, |y − x|)∣∣dε

)
dx dy

�
ˆ

Tn

1ˆ

0

1

r1+σ

rˆ

0

∣∣∇U(x, ε)
∣∣dε dr dx +

ˆ

Tn

1ˆ

0

ˆ

Sn−1

1

r1+σ

rˆ

0

∣∣∇U(x + εω, r)
∣∣dε dωdr dx

�
ˆ

Tn×(0,1)

( 1ˆ

ε

1

r1+σ
dr

)∣∣∇U(x, ε)
∣∣dx dε

+
ˆ

(0,1)

1

r1+σ

( ˆ

Sn−1×(0,r)

(ˆ
Tn

∣∣∇U(x + εω, r)
∣∣dx

)
dωdε

)
dr

�
ˆ

Tn×(0,1)

ε−σ
∣∣∇U(x, ε)

∣∣dx dε,

i.e., (6.5) holds. �
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