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Abstract

We derive homogenized von Kármán shell theories starting from three dimensional nonlinear elasticity. The original three di-
mensional model contains two small parameters: the period of oscillation ε of the material properties and the thickness h of the 
shell. Depending on the asymptotic ratio of these two parameters, we obtain different asymptotic theories. In the case h � ε we 
identify two different asymptotic theories, depending on the ratio of h and ε2. In the case of convex shells we obtain a complete 
picture in the whole regime h � ε.
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1. Introduction

This paper is about von Kármán’s theory for thin elastic shells. There is a vast literature on shell theories in 
elasticity. An overview of the derivation of models for linear and nonlinear shells by the method of formal asymptotic 
expansions can be found in [7]. In the case of linearly elastic shells, the models thus obtained can also be justified by 
a rigorous convergence result, starting from three dimensional linearized elasticity.

In the last two decades, rigorous justifications of nonlinear models for rods, curved rods, plates and shells were 
obtained by means of Γ -convergence, starting from three dimensional nonlinear elasticity. The first papers in that 
direction are [20,21] for membranes (plate and shells, respectively). The rigorous derivation of the nonlinear bending 
theory of plates was achieved in [9]. The Föppl-von Kármán theory for plates was derived in [10]. In [11] the nonlinear 
bending theory for shells was derived, and in [22] the von Kármán theory for shells was derived. In [23] the authors 
obtain limit models, in an intermediate energy scaling regime between bending and von Kármán theories, for the 
special case of elliptic surfaces.

Here we are interested in an ansatz-free derivation of the homogenized von Kármán shell theory by simultaneous 
homogenization and dimension reduction. Our starting point is the energy functional of 3d nonlinear elasticity. It 
attributes to a deformation u of a given shell Sh ⊂ R

3 of small thickness h > 0 around a surface S ⊂ R
3 the stored 

elastic energy

1

h4|Sh|
ˆ

Sh

Wε

(
x,∇u(x)

)
dx, u ∈ H 1(Sh,R3). (1)

Here Wε is a non-degenerate stored energy function that oscillates periodically in x, with some period ε � 1. We are 
interested in the effective behavior when both the thickness h and the period ε are small. The separate limits h → 0 and 
ε → 0 are reasonably well understood: In [22] it is shown that, when Wε does not depend on ε, then the functionals (1)
Γ -converge, as h → 0, to a two-dimensional von Kármán shell theory. Regarding the limit ε → 0, which is related to 
homogenization, the first rigorous results relevant in nonlinear elasticity were obtained by Braides [6] and indepen-
dently by Müller [26]. They proved that, under suitable growth assumptions on Wε, the energy (1) Γ -converges as 
ε → 0 (for fixed h) to the functional obtained by replacing Wε in (1) with the homogenized energy density given by 
an infinite-cell homogenization formula.

In this paper we study the asymptotic behavior when both the thickness h and the period ε tend to zero simultane-
ously. Such a combination of dimensional reduction and homogenization has already been studied in numerous papers; 
we shall mention just few of them. In [13] the authors study the effects of simultaneous homogenization and dimen-
sional reduction for linear elasticity system without periodicity assumption introducing a variant of H -convergence 
adapted to dimensional reduction. In [5] the authors study the same effects for nonlinear systems (membrane plate) 
by means of Γ -convergence, also without periodicity assumptions. In [8] the authors study nonlinear monotone op-
erators in the context of simultaneous homogenization and dimensional reduction, without periodicity assumption. 
Much earlier in [19] the authors study the same effects for the linear rod case where it was assumed that the rod is 
homogeneous along its central line, but the microstructure is given in the cross section. We also mention the work 
of Arrieta on Laplace equation in thin domains with an oscillatory boundary (see e.g. [4]). In [27,28] the author sys-
tematically combined the techniques from [9,10] with two-scale convergence to obtain a model of homogenized rods 
in the bending regime. Independently, the second author obtained a model of periodically wrinkled plate in the von 
Kármán regime, also by a combination of dimensional reduction and two-scale convergence techniques (see [33]). 
This work was inspired by the earlier works [1,3] on wrinkled plates derived from Koiter shell models by two-scale 
convergence techniques (without dimensional reduction).

In this paper, we obtain two-dimensional von Kármán shell theory with homogenized material properties as asymp-
totic theories (i.e., Γ -limits). Recently the plate model in the von Kárman regime (see [29]) and the bending regime 
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(see [15,31]) was analyzed. As explained there (and before in [27,33,28]), in these cases one does not obtain an 
infinite-cell homogenization formula as in the membrane case (see [5]). The basic reason for that is the fact that we 
are in the small strain regime and that the energy is essentially convex in the strain. This is why we can use two-scale 
convergence techniques in all these cases. However, every case has its own peculiarities. In the von Kármán theory of 
plates, one obtains a limiting quadratic energy density which is continuous in the asymptotic ratio γ between h and ε, 
for all γ ∈ [0, ∞]. Moreover, the case γ = 0 corresponds to the situation when the dimensional reduction dominates 
and the resulting model is just the homogenized plate model in von Kármán regime. The situation γ = ∞ corresponds 
to the case when homogenization dominates and the resulting model is the plate model in the von Kármán regime 
corresponding to the homogenized functional. Recently the second author identified the limiting model of a homog-
enized plate in the von Kármán regime without periodicity assumption (see [32]). The nonlinear bending theory of 
plates is more involved in the periodic case. In [15] the authors obtain asymptotic models in the case γ ∈ (0, ∞]. In 
[31] the author obtained the asymptotic model corresponding to the regime γ = 0 under the additional assumption 
that ε2 � h � ε.

We also emphasize the fact that bending theories of plates and von Kármán shell theories require a different and 
more involved approach when compared to earlier results (such as [27,33,28,29]). This is partially due to the fact that 
the compactness results given in [9,22] are more subtle than those for rods and for the von Kármán theory of plates, 
and that is more difficult to identify the oscillatory part of the limiting strain. In the case of the von Kármán theory it is 
not even clear how to homogenize the two-dimensional equations of shells, due to the appearance of the space B (the 
space of L2-limits of symmetrized gradients on shells) in the compactness result, cf. Section 4. The result of our paper 
shows, in particular, that in order to answer questions about the homogenization of von Kármán shell theories one 
necessarily needs to start from the 3d elasticity equations and perform simultaneous homogenization and dimensional 
reduction. As in the case of the bending theory of plates, the regimes where dimensional reduction dominates are of 
particular interest. The case of the bending theory of shells is still open, and it seems likely to be even more involved.

Here we encounter two different scenarios in the regime h � ε, depending on whether h ∼ ε2 or h 
 ε2. Our main 
result is presented in Theorem 3.1. We are not able to cover the case h � ε2 in a generic way for arbitrary reference 
surfaces S. A stronger influence of the geometry of the reference surface S is expected in this case. In fact, in the case 
when S is a convex surface, we are able to derive the limiting model even in the regime h � ε2, see Theorem 6.2
below. For a heuristic explanation why the scaling h ∼ ε2 is critical for shells, but not for plates, we refer to Remark 1
below.

Our analysis requires both techniques from dimension reduction, in particular, the quantitative rigidity estimate and 
approximation schemes developed in [9,10]; and techniques from homogenization methods, in particular, two-scale 
convergence [2,34,35].

Other questions about the homogenization of shells are addressed in numerous papers in the mathematical and 
engineering literature, see e.g. [24] and references therein, see also [12] in the context of linear piezoelectric perforated 
shell. The homogenization for linearly elastic shells was carried out in [25]. To our knowledge, ours is the first rigorous 
result combining homogenization and dimension reduction for shells in the von Kármán energy regime, and indeed 
the first one addressing the rigorous derivation of homogenized nonlinear shell theories from 3d elasticity. Along the 
way we develop a geometric framework for the von Kármán shell theory which is new and applicable even in the 
homogeneous case studied in [23].

This paper is organized as follows: after introducing the setting and basic objects in Sections 2 and 3 we state the 
main result in Section 3. In Section 4 we identify the two-scale limit of the strain and prove the lower bound for the 
Γ -limit. In Section 5 we construct the recovery sequences and thus prove the sharpness of the lower bound. All these 
results are obtained for general surfaces and in the scaling regimes h 
 ε2 and h ∼ ε2. In the last section, we address 
the scaling regime h � ε2 under the additional assumption that the shell be convex.

Notation. The notation A � B means that A ≤ CB with C depending only on quantities regarded as constant in 
the context in question; we also write A � B to denote that A/B → 0. We set Y = [0, 1)2 and we denote by Y
the Euclidean space R2 equipped with the torus topology, that is for all z ∈ Z

2 the points y+z and y are identified 
in Y . We write C0(Y) to denote the space of continuous functions f : R2 → R satisfying f (y + z) = f (y) for 
all z ∈ Z

2. We denote by Ck(Y) those functions in Ck(R2) ∩ C0(Y) whose derivatives up to the k-th order belong 
to C0(Y). We denote by L2(Y), H 1(Y) and H 1(S×Y) the Banach spaces obtained as the closure of C∞(Y) and 
C∞(S̄, C∞(Y)) with respect to the norm in L2(Y ), H 1(Y ) and H 1(S×Y), respectively. By L̇2(Y), Ḣ k(Y) etc. we 
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denote the subspaces of L2(Y), Hk(Y) etc. whose mid-value over Y is zero. For A ⊂R
d measurable and X a Banach 

space, L2(A, X) is understood in the sense of Bochner. We identify the spaces L2(A, L2(B)) and L2(A ×B) in usual 
way. Standard basis vectors in R2 are denoted by ei . By SO(3) we denote the set of rotational matrices in R3×3, by 
so(3) the space of skew symmetric matrices in R3×3, while by R3×3

sym the space of symmetric matrices in R3×3.

2. Setting the stage

2.1. Geometry

Throughout this paper, ω ⊂ R
2 is a bounded domain with boundary of class C3. We set I = (− 1

2 , 12 ) and Ωh =
ω × (hI), and Ω = ω × I . From now on, S denotes a compact connected oriented surface with boundary which is 
embedded in R3. For convenience we assume that S is parametrized by a single chart: From now on, ψ ∈ C3(ω; R3)

denotes an embedding with ψ(ω) = S. The inverse of ψ is denoted by r : S → ω, and we assume it to be C3 up to 
the boundary. We leave it to the interested reader to verify to which extent these regularity assumptions on S can be 
weakened without altering our arguments.

By g = (∇ψ)T (∇ψ) we denote the Riemannian metric on ω induced by ψ . Its Christoffel symbols are denoted 
by Γ

γ
αβ . In what follows we recall some standard notions and set the notation. Readers who are unfamiliar with 

geometry may safely regard objects such as Hessf simply as short-hand notations. All notions are discussed in detail 
in most basic textbooks on Riemannian geometry.

• The volume element on S is denoted by dvolS .
• The scalar product on a vector space V is denoted by 〈x, y〉V , and we define x · y = 〈x, y〉R3 .
• We denote by T S the tangent bundle over S, i.e., the collection of tangent spaces TxS with x ∈ S. A basis of TxS

is given by τ1(x), τ2(x), defined by

τα(x) = (∂αψ)
(
r(x)

)
for all x ∈ S.

We can regard TxS as a subspace of R3; then we write σ · τ = 〈σ, τ 〉TxS .
• By T ∗S we denote the cotangent bundle. A basis of T ∗

x S is given by (τ 1(x), τ 2(x)) dual to (τ1, τ2). It is uniquely 
determined by the condition

τα(τβ) = δαβ,

where δαβ is the Kronecker symbol. Observe that τα is more commonly denoted by dxα , but we will not use that 
notation. We can identify TxS with T ∗

x S via τ �→ 〈τ, ·〉. Via this identification we can identify τ ∈ T ∗S with the 
unique vector v ∈ TxS ⊂R

3 with the property that τ = 〈v, ·〉R3 on TxS.
• By n : S → S

2 we denote the unit normal to S, i.e.,

n(x) = τ1(x) ∧ τ2(x)

|τ1(x) ∧ τ2(x)| for all x ∈ S.

We define τ 3 = τ3 = n. The normal bundle of S is denoted by NS and by definition has fibers NxS given by the 
span of n(x). We denote by

TS(x) = I − n(x) ⊗ n(x)

the orthogonal projection from R3 onto TxS. We will frequently deal with vector fields V : S → R3 on the surface. 
By Vtan we denote the projection of a vector field V onto the tangent space, i.e., Vtan = TSV .

• The tensor product bundles T S ⊗ T S etc. are defined fiberwise. If TxS is regarded as a subspace of R3, then 
T ∗

x S ⊗ T ∗
x S can be regarded as a subspace of R3×3.

The symmetric product E � F of two vector spaces (or bundles) E and F by definition consists of elements of 
the form

a � b := 1

2
(a ⊗ b + b ⊗ a)

with a ∈ E and b ∈ F .
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Sections of the bundle T ∗S � T ∗S are called quadratic forms on S. We define the pull-back of a quadratic form 
q by

ψ∗q = q(ψ)(∇ψ,∇ψ).

Sections B of T ∗S ⊗ T ∗S can be regarded as maps from S into R3×3 via the embedding ι defined by 
ι(B) = B(TS, TS). (On the right-hand side and elsewhere we identify (R3)∗ ⊗ (R3)∗ with R3×3.) By definition, 
B(TS, TS) : S →R

3×3 takes the vector fields v, w : S → R
3 into the function x �→ B(x)(TS(x)v(x), TS(x)w(x)).

• For any vector bundle E over S we denote by L2(S; E) the space of all L2-sections of E. The spaces H 1(S; E)

etc. are defined similarly. Explicitly, e.g. for E = T S we have

L2(S;T S) = {
f ∈ L2(S;R3) : f (x) ∈ TxS for a.e. x ∈ S

}
.

• For any vector bundle E over S with fibers Ex , we denote by L2(Y, E) the vector bundle over S with fibers 
L2(Y, Ex). The bundles H 1(Y, E) etc. are defined similarly. For example, L2-sections of the bundle H 1(Y, T S)

are given by

L2(S;H 1(Y, T S)
)= {

Z ∈ L2(S;H 1(Y,R3)) : Z(x) ∈ H 1(Y;TxS) for a.e. x ∈ S
}
.

• For a scalar function f : S → R its gradient field along S will be denoted by df , which is also the notation for 
the corresponding 1-form. In other words,

df (x)(τ ) = ∇τ f (x) for all τ ∈ TxS.

Here and elsewhere ∇ denotes the usual gradient on R3 (or on R2) of the extension of f , and ∇τ f = τ · ∇f =∑
i τi∂if . We extend these definitions componentwise to maps into R3.

• For tangent vectorfields τ , σ we define the covariant derivative Dστ of τ in direction σ as usual by the formula 
Dσ τ = TS(∇σ τ ) The covariant derivative extends naturally to cotangent vectorfields and to tensor fields.

• For a scalar function f : S → R the Hessian Hessf is defined as usual to be the section of T ∗S � T ∗S given by 
the covariant derivative of the gradient field of f , i.e., Hessf = Ddf . In local coordinates we have

(Hessf )(ψ) = (
∂α∂β(f ◦ ψ) − Γ

γ
αβ∂γ (f ◦ ψ)

)
τα(ψ) ⊗ τβ(ψ). (2)

Here and in what follows we tacitly sum over repeated greek indices from 1 to 2. We extend the definition of Hess
componentwise to maps f : S → Rk .

• For functions f ∈ L2(S, H 2(Y)) we define HessY f to be the section of the bundle L2(Y; T ∗S � T ∗S) over S
given by

(HessY f )(x, y) = (∇2
yf
)
αβ

(x, y)τα(x) ⊗ τβ(x),

where (∇2
yf )αβ = ∂yα∂yβ f .

• For v ∈ L2(S; H 1(Y; R2)) we define the section DefY v of the bundle L2(Y, T ∗S � T ∗S) by

(DefY v)(x, y) = (
sym∇yv(x, y)

)
αβ

τα(x) ⊗ τβ(x).

Here and elsewhere ∇y is gradient in Y with respect to the variable y.
• The Weingarten map S of S is given by S = dn, i.e.,

S(x)τ = (∇τ n)(x) for all x ∈ S, τ ∈ TxM.

We extend S to a linear map on T S ⊕ NS
∼=R

3 by setting S = S ◦ TS , i.e., we define S(x)n(x) = 0.
Using the Weingarten map, the covariant derivative of a tangent vector field τ along another tangent vector field 
σ is given by

Dσ τ = ∇σ τ + 〈Sτ, σ 〉n, (3)

or briefly: Dτ = ∇τ + n ⊗ Sτ .
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2.2. Displacements and infinitesimal bendings

With a given displacement V : S → R
3 one associates the following quantities:

• The quadratic form (dV )2 given by (dV )2(τ, η) = ∇τ V · ∇ηV for all tangent vectorfields τ , η along S.
• The quadratic form qV given by

qV (τ, η) = 1

2
(η · ∇τV + τ · ∇ηV ),

for all tangent vectorfields τ , η along S. Setting Ṽ = V ◦ ψ , we the following expression for the pull-back of qV :

ψ∗qV = sym
(
(∇ψ)T ∇Ṽ

)
. (4)

It is well-known that the quadratic form qV typically arises in the context of thin elastic shells, because it is just 
the first variation of the metric of S under the displacement V . For example, in [14] its pullback is denoted (in 
coordinates) by γαβ and in [22] qV is denoted by sym∇V .

• The cotangent vectorfield μV given by

μV = −n · dV ≡ −
3∑

i=1

nidVi. (5)

• The map ΩV : S →R
3×3 given by

ΩV = dV ◦ TS + μV ⊗ n. (6)

• The quadratic form bV (called linearized Weingarten map) given by

bV = n · HessV ≡
3∑

i=1

ni · HessVi. (7)

Following common notation, for tangent vector fields v along S the quadratic form corresponding to qv is denoted 
by DefS v and called deformation tensor of v. It is given by the Lie-derivative of the metric in direction v, i.e.,

(DefS v)(τ, η) = 1

2
(η · Dτv + τ · Dηv) = 1

2
(η · ∇τ v + τ · ∇ηv),

for all tangent vectorfields τ and σ .
A displacement V : S → R

3 is called an infinitesimal bending of S provided that qV = 0, i.e.,

τ · ∇σ V + σ · ∇τ V = 0 on S (8)

for all tangent vector fields τ and σ . Infinitesimal bendings have been studied extensively both in the applied literature 
(see e.g. [7]) and in the geometry literature (see e.g. the references in [17]). Recently, they have been found to be 
relevant as well to fully nonlinear bending theories, cf. [16]. In the next lemma we collect some useful identities.

Lemma 2.1. Let V ∈ H 1(S; R3). Then we have, almost everywhere on S,

qV = DefS Vtan + (V · n)S (9)

symΩV = qV (TS,TS) (10)

μV = TS

∇τ1V ∧ τ2 + τ1 ∧ ∇τ2V

|τ1 ∧ τ2| . (11)

If, moreover, V is an infinitesimal bending, then we have

Ω2
V (TS,TS) = −(dV )2(TS, TS), (12)

that is, Ω2 (τ, σ) = −∂τV · ∂σ V for all tangent vector fields τ , σ along S.
V
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Proof. The identities (9) and (11) can be verified by direct computations. To prove (10), note that n ·ΩV n = n ·μV = 0
and for any tangent vector field τ along S we have

τ · ΩV n + n · ΩV τ = τ · μV + n · ∂τV = 0

by (5). For any tangent vector field σ we have τ · ΩV σ + σ · ΩV τ = 2qV (σ, τ).
To prove (12) note that, by skew symmetry (cf. (8)), Ω2

V (τ, σ) = −ΩV τ · ΩV σ , and ∂τV = ΩV τ . �
We denote by B the L2-closure of the set {qV : V ∈ H 1(S; R3)}. As this is a linear space, its strong and its weak 

L2-closure coincide. The set B is a closed linear subspace of L2(S; T ∗S � T ∗S). The space B is also encountered in 
the context of shell models derived from linearized elasticity; see [14] for details.

2.3. The nearest point retraction

The nearest point retraction of a tubular neighbourhood of S onto S will be denoted by π . Hence

π
(
x + tn(x)

)= x whenever |t | is small enough.

After rescaling the ambient space, we may assume that the curvature of S is as small as we please. In particular, we 
may assume without loss of generality that π is well-defined on a domain containing the closure of {x + tn(x); x ∈ S,

−1 < t < 1}, and that |Id + tS(x)| ∈ (1/2, 3/2) for all t ∈ (− 1
2 , 12 ) and all x ∈ S.

For a subset A ⊂ S and h ∈ (0, 1] we define Ah = {x + tn(x) : x ∈ S, −h/2 < t < h/2}. In particular, the shell is 
given by

Sh = {
x + tn(x) : x ∈ S, t ∈ (−h/2, h/2)

}
.

We introduce the function t : S1 →R by

t (x) = (
x − π(x)

) · n(x) for all x ∈ S1. (13)

We extend all maps f : S →Rk trivially from S to S1, simply by defining

f (x) = f
(
π(x)

)
for all x ∈ S1. (14)

In particular, we extend r , TS and S trivially to S1, i.e., we have S(x) = S(π(x)) and TS(x) = TS(π(x)) and r(x) =
r(π(x)) for all x ∈ S1.

Lemma 2.2. For all x ∈ S1 we have (∇π)(x) = TS(x)(I + t (x)S(x))−1.

Proof. Let t ∈ [−1, 1], let x ∈ S, let τ ∈ TxS and let γ ∈ C1((−1, 1), M) with γ (0) = x and γ̇ (0) = τ . Then π(γ +
tn(γ )) = γ on (−1, 1). Taking the derivative in zero this implies (∇π)(γ + tn(γ ))(τ + tS(γ )τ ) = τ . As x ∈ S and 
τ ∈ TxS were arbitrary, we conclude that

(∇π)
(
x + tn(x)

)(
I + tS(x)

)= TS(x), (15)

on TxS. But by definition S(x)n(x) = 0, and clearly (∇π)(x + tn(x))n(x) = 0, too. Hence both sides of (15) agree on 
all of R3. �

The easy proof of the following lemma is left to the reader.

Lemma 2.3. Let f : S → R
k . Then the following formula holds for the full derivative of its trivial extension f ◦ π in 

terms of the derivative of f :

∇(f ◦ π)(x) = (df )
(
π(x)

)
TS

(
π(x)

)(
I + t (x)S

(
π(x)

))−1
for all x ∈ S1. (16)

The following formula links the Hessian of f to that of its trivial extension:

(Hessf )(τ, σ ) = ∇2(f ◦ π) : (τ ⊗ σ) on S for all tangent vector fields τ, σ.



1046 P. Hornung, I. Velčić / Ann. I. H. Poincaré – AN 32 (2015) 1039–1070
The following lemma summarizes a computation that will later be used for the generic type of ansatz functions.

Lemma 2.4. Let h ∈ (0, 1/2), let V ∈ H 2(S; R3), and for x ∈ Sh define the displacement ρ : Sh → R
3 by setting 

ρ(x) = V (π(x)) + t (x)μV (π(x)) for all x ∈ Sh. Then the following equality holds on Sh:

∇ρ = ΩV − tbV (TS, TS) − 2tqV (S ◦ TS,TS) − t2∇μV ◦ S + (dV + t∇μV ) ◦ TS ◦ Q, (17)

where Q is as in (18) below, and where we extend V , μV , ΩV , bV , dV etc. trivially from S to Sh.

Proof. For all x ∈ Sh define

Q(x) = (
I + t (x)S(x)

)−1 − (
I − t (x)S(x)

)
. (18)

Since clearly ∇t = n, formulae (16) and (3) show that on Sh:

∇ρ = (dV + t∇μV )TS(I + tS)−1 + μV ⊗ n

= (dV + tDμV − tn ⊗ SμV )TS(I − tS) + μV ⊗ n + (dV + t∇μV )TSQ.

By the definition of ΩV it remains to show that

(DμV − n ⊗ Sμ − dV ◦ S) ◦ TS = 2qV (S ◦ TS,TS) − bV (TS,TS).

But in fact, recalling (11), the action of the left-hand side on a tangent vector τ is given by

−Dτ (n · dV ) + (n · ∇SτV )n − ∇SτV

= −n · DτdV − (Sτ)i dVi ◦ TS − TS(∇SτV ).

The first term on the right gives rise to −bV , and the last two are readily seen to give rise to −2qV (S ◦ TS, TS). �
2.4. Thin films

To deal with thin films, we introduce the map Ψ : ω ×R → R
3 by setting

Ψ
(
z′, z3

)= ψ
(
z′)+ z3n

(
ψ
(
z′)) for all z′ ∈ ω and z3 ∈ R.

As in [9] we will use the diffeomorphism Φ̃h : Ωh → Ω given by Φ̃h(z1, z2, z3) = (z1, z2, z3/h), and for a map 
ỹ : Ω → R

3 we introduce the scaled gradient ∇̃hy = (∂1y, ∂2y, 1
h
∂3y). The counterpart of Φ̃h on the shell is the 

diffeomorphism Φh : Sh → S1 given by

Φh(x) = π(x) + t (x)

h
n(x). (19)

It is easy to see that

Φh ◦ Ψ = Ψ ◦ Φ̃h on Ωh. (20)

For given u : Sh → R
3 we define its pulled back version ũ : Ωh → R

3 by ũ = u ◦ Ψ . We also define its rescaled 
version y : S1 → R

3 by y(Φh) = u on Sh and we define the pulled back version ̃y of this map by ̃y = y ◦ Ψ . Then it 
is easy to see that

(∇̃hỹ) ◦ Φ̃h = ∇ũ on Ωh. (21)

We define the rescaled gradient ∇hy of y by the condition

(∇hy) ◦ Φh = ∇u on Sh. (22)

Using (21) and (20) it is easy to see that

∇̃hỹ = ∇u(Ψ )
(
(∇Ψ ) ◦ (Φ̃h

)−1)
. (23)

Since ∇t = n, Lemma 2.2 and formula (16) show (recall that n is extended trivially to S1):
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∇Φh = ∇π + t

h
∇n + 1

h
n ⊗ n = TS(I + tS)−1 + t

h
STS(I + tS)−1 + 1

h
n ⊗ n.

Since TS clearly commutes with S, we see that TS commutes with (I + tS)−1 as well. Hence

∇Φh =
(

Ih + t

h
S
)

(I + tS)−1 on Sh, (24)

where Ih = TS + 1
h
n ⊗ n. To express ∇hy in terms of ∇y, insert the definition of y into (22) and use (24) to find

∇hy = ∇y(Ih + tS)(I + htS)−1 on S1. (25)

2.5. Two-scale convergence

Recall that we extend the chart r trivially from S to S1. We make the following definitions:

• A sequence (f h) ⊂ L2(S1) is said to converge weakly two-scale on S1 to the function f ∈ L2(S1, L2(Y)) as 
h → 0, provided that the sequence (f h) is bounded in L2(S1) and

lim
h→0

ˆ

S1

f h(x)ρ
(
x, r(x)/ε

)
dx =

ˆ

S1

ˆ

Y

f (x, y)ρ(x, y) dy dx, (26)

for all ρ ∈ C0
c (S1, C0(Y)).

• We say that f h strongly two-scale converges to f if, in addition,

lim
h→0

∥∥f h
∥∥

L2(S1)
= ‖f ‖L2(S1×Y).

• For a sequence (f h) ⊂ L2(S1) and for f1 ∈ L2(S1 × Y) with 
´
Y f1(x, y) dy = 0 for almost every x ∈ S1, we 

write f h osc−−⇀ f1 provided thatˆ

S1

f h(x)ϕ(x)ρ
(
r(x)/ε

)
dx →

ˆ

S1

ˆ

Y

f1(x, y)ϕ(x)ρ(y) dy dx (27)

for all ϕ ∈ C∞
0 (S1) and all ρ ∈ C∞(Y) with 

´
Y ρ dy = 0.

We write f h 2−⇀ f to denote weak two-scale convergence and f h
2−→ f to denote strong two-scale convergence. 

If f h 2−⇀ f then f h ⇀
´
Y f (·, y) dy weakly in L2. If f h is bounded in L2(S1) then it has a subsequence which 

converges weakly two-scale to some f ∈ L2(S1; L2(Y)). These and other facts can be deduced from the corresponding 
results on planar domains (cf. [2,34]) by means of the following simple observations.

Defining f̃ h = f h ◦ Ψ and f̃ (z, y) = f (Ψ (z), y), and taking

ρ̃(z, y) = ρ
(
Ψ (z), y

)(
det∇Ψ T (z)∇Ψ (z)

)1/2
,

a change of variables shows that (26) is equivalent toˆ

Ω

f̃ h(z)ρ̃
(
z, z′/ε

)
dz →

ˆ

Ω

ˆ

Y

f̃ (z, y)ρ̃(z, y) dy dz, (28)

where z′ is the projection of z onto R2. Hence f h 2−⇀ f on S1 if and only if f̃ h 2−⇀ f̃ on Ω in the usual sense.

When f h : S → R, then f h 2−⇀ f on S means, by definition, that the trivial extensions converge weakly two-scale 

on S1. In particular, f h 2−⇀ f on S if and only if f̃ h 2−⇀ f̃ on ω. All these definitions are extended componentwise to 

vector-valued maps. For quadratic forms q , qh on S we say qh 2−⇀ q if qh(τ, σ) 
2−⇀ q(τ, σ) for all τ, σ ∈ C1(S, T S). 

A similar definition applies to other bundles. Using the pull-back ψ∗q of the quadratic form q , it is easy to see that
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qh 2−⇀ q on S if and only if ψ∗qh 2−⇀ ψ∗q on ω. (29)

It is also easily seen that if f h 2−⇀ f then f h osc−−⇀ f − ´
Y f (·, y) dy.

Lemma 2.5. Let (wh) be a bounded sequence in H 2(S, Rk). Then there exist w0 ∈ H 2(S, Rk) and w1 ∈
L2(S; Ḣ 2(Y; Rk)) such that (after passing to a subsequence)

Hesswh 2−⇀ Hessw0 + HessY w1 on S (30)

as sections of Rk ⊗T ∗S ⊗T ∗S. Moreover, if k = 3 and if we define ŵ1 ∈ L2(S, Ḣ 2(Y, R2)) by setting (ŵ1)α = w1 ·τα

for α = 1, 2, then qwh/ε
osc−−⇀ DefY ŵ1.

Proof. We assume without loss of generality that k = 1 and we set w̃h = wh(ψ). Clearly ∇2w̃h is bounded in L2(ω), 
so by classical results about two-scale convergence there exist w̃0 ∈ H 2(ω) and w̃1 ∈ L2(ω; H 2(Y)) such that

∇2w̃h 2−⇀ ∇2w̃0 + ∇2
y w̃1 on ω. (31)

Define w0 and w1 by w0(ψ) = w̃0 and w1(ψ(z′), y) = w̃1(z
′, y). Since the lower order term in (2) converges strongly, 

(31) implies that

ψ∗(Hesswh
) 2−⇀ ψ∗(Hessw0) + ψ∗(HessY w1) on ω.

By (29) this is equivalent to (30).
To prove the last assertion, recall (31) and apply Lemma 2.6 with f h = ∇w̃h (componentwise). It implies that

(∇ψ)T ∇w̃h osc−−⇀ (∇ψ)T ∇yw̃1 = ∇y

(
(∇ψ)T w̃1

)
.

But by definition ŵ1(ψ(z′), y) = (∇ψ(z))T w̃1(z
′, y), and

ψ∗(DefY ŵ1)
(
z′, y

)= sym∇y

(
ŵ1
(
ψ
(
z′), y)).

Hence the claim follows from (4) and (29). �
Results such as the following one (which was used as it stands in the proof of Lemma 2.5) can be also adapted to 

the curved setting following the same pattern as above (writing just S1 instead of Ω):

Lemma 2.6.

(i) Let f0 and f h ∈ H 1(Ω) be such that f h ⇀ f0 weakly in H 1(Ω) and assume that ∇f h 2−⇀ ∇f0 + ∇yφ for some 

φ ∈ L2(Ω; Ḣ 1(Y)). Then f
h

ε

osc−−⇀ φ.

(ii) Let f0 and f h ∈ H 1(Ω) be such that f h ⇀ f0 weakly in H 2(Ω) and assume that ∇f h 2−⇀ ∇f0 + ∇yφ for some 

φ ∈ L2(Ω; Ḣ 1(Y)). ∇2f h 2−⇀ ∇2f0 + ∇2
yφ for some φ ∈ L2(Ω; Ḣ 2(Y)). Then f

h

ε2

osc−−⇀ φ.

Proof. The proof of (i) can be found in [15, Lemma 3.7], and that of (ii) is similar. �
3. Elasticity framework and main result

Throughout this paper we assume that the limit

γ := lim
h→0

h

ε(h)

exists in [0, ∞]. We will frequently write ε instead of ε(h), but always with the understanding that ε depends on h.
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From now on we fix a Borel measurable energy density

W : S1 ×R
2 ×R

3×3 →R
+ ∪ {+∞}

with the following properties:

• W(·, y, F ) is continuous for almost every y ∈ R2 and F ∈ R3×3.
• W(x, ·, F ) is Y-periodic for all x ∈ S1 and almost every F ∈ R

3×3.
• For all (x, y) ∈ S1 ×Y we have W(x, y, I ) = 0 and W(x, y, RF ) = W(x, y, F ) for all F ∈R

3×3, R ∈ SO(3).
• There exist constants 0 < α ≤ β and ρ > 0 such that for all (x, y) ∈ S1 ×Y we have

W(x,y,F ) ≥ α dist2
(
F ,SO(3)

)
for all F ∈R

3×3

W(x,y,F ) ≤ β dist2
(
F ,SO(3)

)
for all F ∈ R

3×3 with dist2
(
F ,SO(3)

)≤ ρ.

• For each (x, y) ∈ S1 ×Y there exists a quadratic form Q(x, y, ·) :R3×3 →R such that

ess sup
(x,y)∈S1×Y

|W(x,y, I + G) −Q(x, y,G)|
|G|2 → 0 as G → 0. (32)

Clearly Q(·, y, ·) is continuous for almost every y ∈ R
2 and Q(x, ·, G) is Y -periodic for all x ∈ S1 and all F ∈

R
3×3.
The elastic energy per unit thickness of a deformation uh ∈ H 1(Sh; R3) of the shell Sh is given by

Jh
(
uh
)= 1

h

ˆ

Sh

W
(
Φh(x), r(x)/ε,∇uh(x)

)
dx.

In order to express the elastic energy in terms of the new variables, we associate with y : S1 →R
3 the energy

Ih(y) =
ˆ

S1

W
(
x, r(x)/ε,∇hy(x)

)
det
(
I + t (x)S(x)

)−1
dx

=
ˆ

S

ˆ

I

W
(
x + tn(x), r(x)/ε,∇hy

(
x + tn(x)

))
dt dvolS(x).

By a change of variables we have

Jh
(
uh
)= 1

h

ˆ

S1

W
(
x, r(x)/ε,∇hy

h(x)
)∣∣det∇(Φh

)−1
(x)
∣∣dx.

Using (24) it is easy to see that

Jh
(
uh
)= Ih

(
yh
)(

1 + O(h)
)

as h → 0, (33)

where |O(h)| ≤ Ch.

3.1. Asymptotic energy functionals and main result

Next we will introduce the asymptotic energy functionals. In order to do so, we need the definition of the relaxation 
fields and the cell formulas.

Recall that a � b = 1
2 (a ⊗ b + b ⊗ a). We now define relaxation operators with range in the space of L2-sections 

of the vector bundle over S with fibers given for each x ∈ S by

L2(I ×Y; (T ∗
x S � T ∗

x S
)⊕ (

T ∗
x S � N∗

x S
)⊕ (

N∗
x S � N∗

x S
))

. (34)

Of course each of these fibers is isomorphic to L2(I ×Y; R3×3
sym ). We now make the following definitions:
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Set D(U0) = Ḣ 1(Y; R2) × L2(I ×Y; R3) and define

U0(ζ, g) = DefY ζ + 2gατα � n + g3n ⊗ n for all (ζ, g) ∈ L2(S,D(U0)
)
.

Set D(U0
0 ) = D(U1

0,γ1
) = Ḣ 1(Y; R2) × Ḣ 2(Y) × L2(I ×Y; R3) and define

U0
0 (ζ , ϕ, g) = U0(ζ, g) − t HessY ϕ for all (ζ,ϕ, g) ∈ L2(S,D

(
U0

0

))
,

U1
0,γ1

(ζ,ϕ, g) = U0(ζ, g) − t HessY ϕ + 1

γ1
ϕS for all (ζ,ϕ, g) ∈ L2(S,D

(
U1

0,γ1

))
.

Set D(U∞) = L2(I ; Ḣ 1(Y; R2)) × L2(I ; Ḣ 1(Y)) × L2(I ; R3) and define

U∞(ζ, ρ, c) = DefY ζ + 2(∂yαρ + cα)τα � n + c3n ⊗ n for all (ζ, ρ, c) ∈ L2(S,D(U∞)
)
.

Set D(Uγ ) = Ḣ 1(I ×Y; R2) × Ḣ 1(I ×Y) and define

Uγ (ζ, ρ) = DefY ζ +
(

∂yαρ + 1

γ
∂3ζα

)
τα � n +

(
1

γ
∂3ρ

)
n ⊗ n

for all (ζ, ρ) ∈ L2(S, D(Uγ )).
By trivially embedding D(U0) as constant maps into L2(S, D(U0)), we can regard U0 also as a map from D(U0)

itself into (34). For each x ∈ S the fiberwise action U (x)
0 of U0 is

U (x)
0 (ζ, g) = (DefY ζ )(x) + 2gατα(x) � n(x) + g3n(x) ⊗ n(x) for all (ζ, g) ∈ D(U0).

For each x ∈ S we define L(x)
0 (I ×Y) = U (x)

0 (D(U0)), i.e.,

L
(x)
0 (I ×Y) = {

U (x)
0 (ζ, g) : (ζ, g) ∈ D(U0)

}
.

This is a subspace of (34), i.e., of L2(I × Y; R3×3
sym ). We denote by L0(I × Y) the vector bundle over S with fibers 

L
(x)
0 (I ×Y); in what follows we will frequently omit the index (x) for the fibers. The bundles L0

0(I ×Y), L1
0,γ1

(I ×Y), 
L∞(I ×Y) and Lγ (I ×Y) are defined analogously. The elements of these spaces are the relaxation fields.

For γ ∈ (0, ∞] and x ∈ S we define Qγ (x) : (T ∗
x S ⊗ T ∗

x S)2 → R by setting

Qγ

(
x, q1, q2)= inf

U∈L
(x)
γ (I×Y)

ˆ

I

ˆ

Y

Q
(
x + tn(x), y, q1 + tq2 + U(t, y)

)
dy dt (35)

for each x ∈ S and q1, q2 ∈ T ∗
x S ⊗ T ∗

x S. For γ1 ∈ (0, ∞) we define Q0
0(x), Q1

0,γ1
(x) analogously, replacing Lγ by L0

0

(resp. L1
0,γ1

).

For γ ∈ (0, ∞] define the functionals Iγ : H 2(S; R3) × L2(S; T ∗S ⊗ T ∗S) → R by setting

Iγ (V,Bw) =
ˆ

S

Qγ

(
x,Bw(x) + 1

2
(dV )2(x),−bV (x)

)
dvolS(x). (36)

For γ1 ∈ (0, ∞), the functionals I 1
0,γ1

, I 0
0 : H 2(S; R3) ×L2(S; T ∗S ⊗T ∗S) → R are defined analogously, by replacing 

Qγ by Q0,γ1 (resp. Q0
0).

This is our main result:

Theorem 3.1. Let W be as above and assume that uh ∈ H 1(Sh; R3) satisfy

lim sup
h→0

h−4Jh
(
uh
)
< ∞. (37)

Define ȳh : S1 → R
3 by ȳh(Φh) = uh. Then the following are true:
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(i) (compactness) There exists a subsequence, still denoted by (ȳh), and there exist Qh ∈ SO(3) and ch ∈ R
3 such 

that the sequences yh and V h defined by yh = (Qh)T ȳh − ch and

V h(x) = 1

h

(ˆ
I

yh
(
x + tn(x)

)
dt − x

)
for all x ∈ S,

satisfy the following:
(a) We have yh → π strongly in H 1(S1; R3).
(b) There exists an infinitesimal bending V ∈ H 2(S; R3) of S such that V h → V , strongly in H 1(S; R3).
(c) There exists Bw ∈ L2(S; T ∗S � T ∗S) such that 1

h
qV h ⇀ Bw weakly in L2(S).

(ii) (lower bound) We have

lim inf
h→0

h−4Jh
(
uh
)≥

⎧⎪⎨⎪⎩
Iγ (V,Bw) if h/ε → γ ∈ (0,∞],
I 0

0 (V ,Bw) if ε 
 h 
 ε2,

I 1
0,γ1

(V ,Bw) if ε2/h → 1
γ1

∈ (0,∞).

(iii) (recovery sequence) For any infinitesimal bending V ∈ H 2(S, R3) of S and any Bw ∈ B, there exist uh ∈
H 1(Sh; R3) satisfying (37), and such that the conclusions of part (i) are true with Qh = I and ch = 0. Moreover,

lim
h→0

h−4Jh
(
uh
)=

⎧⎪⎨⎪⎩
Iγ (V,Bw) if h/ε → γ ∈ (0,∞],
I 0

0 (V ,Bw) if ε 
 h 
 ε2,

I 1
0,γ1

(V ,Bw) if ε2/h → 1
γ1

∈ (0,∞).

We will prove the lower bound in Section 4. The upper bound will be an immediate consequence of (33) and of 
Proposition 5.5 below.

For x ∈ S and q1, q2 ∈ T ∗
x S � T ∗

x S define the homogeneous relaxation (cf. [22]):

Q2
(
x, t, q1, q2)= min

M∈R3×3
sym

{
Q
(
x + tn(x),M

) : M(TS,TS) = (
q1 + tq2)(TS, TS)

}
. (38)

Then it is easy to see that

Q0
0

(
x, q1, q2)= inf

ˆ

I×Y

Q2
(
x + tn(x), y, q1 + tq2 + DefY ζ − t HessY ϕ

)
dt dy,

Q1
0,γ1

(
x, q1, q2)= inf

ˆ

I×Y

Q2
(
x + tn(x), y, q1 + tq2 + DefY ζ − t HessY ϕ + γ −1

1 ϕS
)
dt dy,

where both infima are taken over all ζ ∈ Ḣ 1(Y, R2) and all ϕ ∈ Ḣ 2(Y). In the case when Q does not depend on t , 
i.e., the material is homogeneous in the thickness direction, the relaxation decouples and we find:

Q0
0

(
x, q1, q2)= inf

ζ∈Ḣ 1(Y,R2)

ˆ

Y

Q2
(
x, y, q1 + DefY ζ

)
dy + 1

12
inf

ϕ∈Ḣ 2(Y)

ˆ

Y

Q2
(
x, y, q2 + HessY ϕ

)
dy.

The analogous formula holds for Q1
0,γ1

, too.

As in [29], one can prove also here that for all q1, q2 ∈ T ∗
x S � T ∗

x S we have

lim
γ→∞Qγ

(
x, q1, q2)=Q∞

(
x, q1, q2) and lim

γ→0
Qγ

(
x, q1, q2)=Q0

0

(
x, q1, q2).

Note that in the particular case of a plate (i.e. S = 0), for γ1 ∈ (0, ∞) all spaces L1
0,γ1

coincide with L0
0. This 

corresponds to the fact that in the von Kármán plate theory for γ = 0 one obtains only one relaxation space, cf. [29]
for details.
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3.2. FJM-compactness

From now on uh ∈ H 1(Sh; R3) will always denote a sequence satisfying (37). The following lemma proves the 
first part of Theorem 3.1. It is a direct consequence of [9, Theorem 3.1] and of arguments in [10]. We refer to [22] for 
the extension to the present setting.

Lemma 3.2. There exist a constant C > 0, independent of h, and a sequence of matrix fields (Rh) ⊂ H 1(S; SO(3))

(extended trivially to Sh) and there exists a sequence of matrices (Qh) ⊂ SO(3) such that:

(i) lim suph→0 h−5/2‖∇uh − Rh‖L2(Sh) < ∞.
(ii) lim suph→0 h−1‖∇Rh‖L2(S) < ∞.

(iii) lim suph→0 h−1‖(Qh)T Rh − I‖Lp(S) < ∞, for all p ∈ [1, ∞).
(iv) (Qh)T Rh → I strongly in H 1.

Moreover, there exists a matrix field A ∈ H 1(S, so(3)) taking values in the space of skew symmetric matrices, such 
that (after passing to subsequences)

(v) 1
h
((Qh)T Rh − I ) ⇀ A, weakly in H 1(S).

(vi) 1
h2 sym((Qh)T Rh − I ) → 1

2A2, strongly in Lp(S), for all p ∈ [1, ∞).

Moreover, if we define ȳh : S1 → R
3 by ȳh(Φh) = uh, the following are true:

(i) lim suph→0
1
h2 ‖∇hȳ

h − Rh‖L2(S1) < ∞.

(ii) 1
h
((Qh)T ∇hȳ

h − I ) ⇀ A, weakly in H 1 up to a subsequence.

Define yh ∈ H 1(S1; R3) by yh = (Qh)T ȳh − ch, where ch = ffl
S

´
I
((Qh)T ȳh(x + tn(x)) − x) dt dvolS(x). Introduce 

the (average) midplane displacements V h : S →R
3 by setting

V h(x) := 1

h

(ˆ
I

yh
(
x + tn(x)

)
dt − x

)
for all x ∈ S. (39)

Then 
ffl
S
V h = 0 and (after passing to a subsequence)

(iii) yh → π strongly in H 1(S1).
(iv) There exists an infinitesimal bending V ∈ H 2(S; R3) of S with ΩV = A and such that V h → V strongly in 

H 1(S; R3).
(v) 1

h
qV h is bounded in L2(S).

In what follows we replace the sequence Rh by (Qh)T Rh and the sequence yh by ȳh, so we assume without loss 
of generality that Qh = Id. Expressed in unrescaled variables, we have

V h(x) = 1

h2

(ˆ
Ih

uh
(
x + tn(x)

)
dt − x

)
,

i.e. x + hV h(x) = ffl
Ih uh(x + tn(x)) dt .

We begin by modifying the displacement fields V h into more regular fields V h∗ enjoying a similar compactness. 
(The asterisk in the notation does not denote any push-forward operation.)

Lemma 3.3. There exist V h∗ ∈ H 2(S; R3) with 
ffl
S
V h∗ = 0 satisfying

lim suph−1
∥∥V h∗ − V h

∥∥
H 1(S)

< ∞ (40)

h→0
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and ∥∥∥∥(dV h∗ − Rh − I

h

)
◦ TS

∥∥∥∥
L2(S)

≤
∥∥∥∥(dV h − Rh − I

h

)
◦ TS

∥∥∥∥
L2(S)

. (41)

Moreover, (V h∗ ) is uniformly bounded in H 2(S) and

V h∗ ⇀ V weakly in H 2(S;R3). (42)

Proof. We follow [29, Proposition 3.1]. For i = 1, 2, 3 denote by pi the i-th row of the matrix R
h(ψ)−I

h
∇ψ . We define 

Ṽ h∗ ∈ H 2(ω; R3) such that (Ṽ h∗ )i is a minimizer of the functional v �→ ´
ω

|∇v − pi |2 dx among all v ∈ H 1(ω) with 
average zero, and we define V h∗ via V h∗ (ψ) = Ṽ h∗ . The bound (41) follows from the minimality of V h∗ . Combining the 
uniform bounds on the tangential components of Fh and Fh∗ introduced in Lemma 3.4 below (note that these bounds 
follow from (41) alone), we obtain ‖dV h∗ − dV h‖L2(S) ≤ Ch. Hence (40) follows from Poincaré’s inequality on S. 
Standard estimates for minimizers imply that V h∗ ∈ H 2(S) with bounds∥∥V h∗

∥∥
H 2(S)

≤ C
(‖divp‖L2(ω) + ‖p‖L2(ω)

)
.

Hence Lemma 3.2 (v) ensures that the V h∗ are uniformly bounded in H 2(S). Since V h → V in H 1, the bound (40)
therefore implies (42). �
Lemma 3.4. Let V h∗ be as defined in Lemma 3.3. Then the maps Fh∗ , Fh ∈ L2(S; R3×3) defined by Rh = I + hΩV h +
h2Fh and Rh = I + hΩV h∗ + h2Fh∗ satisfy

lim sup
h→0

(∥∥Fh∗
∥∥

L2(S)
+ ∥∥Fh

∥∥
L2(S)

)
< ∞.

Moreover,

symFh + 1

h
qV h(TS, TS) → 1

2
Ω2

V in all Lp with p ∈ [1,∞). (43)

Proof. Note that (43) follows from Lemma 3.2 and (10). From (43) and from Lemma 3.2 we deduce that symFh is 
uniformly bounded in L2.

For brevity, we set μh∗ = μV h∗ and μh = μV h . In order to verify the L2-bound on FhTS , let τ be a C1 tangent vector 
field along S. Then by the definition of V h, we see that (I + hdV hTS)τ equals

∇τ

(
id + hV h

)= 1

h
∇τ

(ˆ
hI

uh
(
x + tn(x)

)
dt

)
= 1

h

ˆ

hI

∇uh
(
x + tn(x)

)(
I + tS(x)

)
dtτ (x).

Introducing

Mh(x) = − 1

h

ˆ

hI

(∇uh
(
x + tn(x)

)− Rh(x)
)(

I + tS(x)
)
dt

and using 
´
hI

Rh(x)tS(x) dt = 0, we conclude that Fhτ = h−2Mh. And
ˆ

S

∣∣Mh
∣∣2 dvolS = 1

h

ˆ

S×hI

∣∣∇uh
(
x + tn(x)

)− Rh(x)
∣∣2∣∣I + tS(x)

∣∣2 dvolS(x) dt

≤ C

h

ˆ

Sh

∣∣∇uh(x) − Rh(x)
∣∣2 dx ≤ Ch4.

This proves that Fhτ is L2-bounded for every regular tangent vector field τ along S. But since symFh is bounded 
in L2, this already implies that Fh itself is bounded in L2.
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To prove the bound on Fh∗ note that (41) simply reads ‖Fh∗ TS‖L2(S) ≤ ‖FhTS‖L2(S), so Fh∗ TS is clearly bounded 
in L2. As we saw in Lemma 3.3, this implies (40), which in turn shows that ‖ΩV h − ΩV h∗ ‖L2(S) ≤ Ch. Since by 
definition Fh∗ − Fh = (ΩV h − ΩV h∗ )/h, the boundedness of Fh∗ follows from that of Fh. �
4. Two-scale compactness and lower bound

Lemma 4.1. Let vh ∈ H 1(S, T S) be such that vh osc−−⇀ 0, and assume that there is B ∈ L2(S, L2(Y, T ∗S � T ∗S))

such that DefS vh osc−−⇀ B . Then there exists v ∈ L2(S, Ḣ 1(Y, R2)) such that B = DefY v.

Proof. For α, β = 1, 2, let G̃αβ ∈ C∞(ω) satisfy G̃12 = G̃21, and define G by setting G(x) = G̃αβ(r(x))τα(x) ⊗
τβ(x). Then we have (with the usual definition of the divergence, see e.g. [18] for details)

(divS G)(x) = ∂βG̃αβ
(
r(x)

)
τα(x) + G̃αβ

(
r(x)

)
X(αβ)(x), (44)

where each X(α,β) is a continuous tangent vector field on S (which involves the Christoffel symbols). Now let ραβ ∈
Ċ∞(Y) be symmetric and divergence-free in R2, i.e., ∂βραβ = 0, and let ϕ ∈ C∞

0 (S). Apply (44) to Gh defined like 

G above, but with G̃αβ
h (z) = ραβ(z/ε)ϕ(ψ(z)) for z ∈ ω instead of G̃αβ . That shows:

(divS Gh)(x) = ραβ
(
r(x)/ε

)
(∇τβ ϕ)(x) + ϕ(x)ραβ

(
r(x)/ε

)
X(αβ)(x), (45)

because the term involving ε−1 is zero since ραβ is divergence-free.
Hence, since the formal adjoint of DefS is − divS and since Gh has compact support in S, we have (identifying 

T ∗S with T S as usual)

−
ˆ

S

〈
DefS vh,Gh

〉
T S⊗T S

=
ˆ

S

〈
vh,divS(Gh)

〉
T S

=
ˆ

S

〈
vh(x), ραβ

(
r(x)/ε

)
(∇τβ ϕ)(x) + ϕ(x)ραβ

(
r(x)/ε

)
X(αβ)(x)

〉
TxS

dvolS(x).

As h → 0, this converges to zero because vh osc−−⇀ 0. Hence by the definition of B and Gh, writing B(x, y) =
Bαβ(x, y)τα(x) ⊗ τβ(x) and then using arbitrariness of ϕ, we conclude that

ˆ

Y

Bαβ(x, y)ραβ(y) dy = 0 for almost every x ∈ S

and for all ραβ as above. This implies the claim because in Y the L2-orthogonal complement of divergence free maps 
is the space of symmetrized gradients. �
Proposition 4.2. Let (wh) be a bounded sequence in H 2(S; R3) such that 1

h
qwh is bounded in L2(S; T ∗S ⊗ T ∗S). 

Then there exist w0 ∈ H 2(S), w1 ∈ L2(S; Ḣ 2(Y; R3)) and B ∈ L2(S, L̇2(Y; T ∗S � T ∗S)) such that, after passing to 

a subsequence, qwh/h 
2−⇀ B and Hesswh 2−⇀ Hessw0 + HessY w1. Set Bw = ´

Y
B(·, y) dy. Then the following are 

true:

(i) If h 
 ε2 then there exists a unique v ∈ L2(S; Ḣ 1(Y; R2)) such that

B = Bw + DefY v.

(ii) If h ∼ ε2 and if we set 1
γ1

= limh→0
ε2

h
, then there exists a unique v ∈ L2(S; Ḣ 1(Y; R2)) such that

B = Bw + DefY v + 1

γ1
(w1 · n)S.
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(iii) If h � ε2, then there exists a unique v ∈ L2(S; Ḣ 1(Y; R2)) such that

DefY v + (w1 · n)S = 0.

Remark 1. This proposition explains why the scaling h ∼ ε2 is critical. In fact, the (corrected) displacements V h∗
satisfy the hypotheses, and thus (heuristically) V h∗ = V + ε2Vo(x, r(x)

ε
), where Vo ∈ L2(S, Ḣ 2(Y, R3)). Since qV h∗ =

DefS V h∗,tan + (V h∗ ·n)S and since the corrector Vo ·n is of order ε2 when h ∼ ε2, the normal component of the corrector 
arises in the relaxation field of qV h∗ /h. This phenomenon clearly does not occur in the case of plates, where S = 0. 
This normal component, with its second gradient, also appears in the two-scale limit of the strain, when one looks at 
the displacement across the thickness, see (52) below.

Proof. The existence of w0 and w1 is ensured by Lemma 2.5. Applied to wh and to wh
tan it also implies that

qwh

ε

osc−−⇀ DefY ŵ1 and
DefS wh

tan

ε

osc−−⇀ DefY ŵ1 on S, (46)

where the R2-valued map ŵ1 is defined by (ŵ1)α = τα · w1. By Lemma 2.6 we have

wh

ε2

osc−−⇀ w1 on S. (47)

Claim 1. If h � ε then (w1)tan = 0.

In fact, since qwh/h is bounded in L2, we have qwh/ε → 0 in L2. So (46) implies that DefY ŵ1 = 0. Since ŵ1(x, ·)
is Y-periodic with average zero, Korn’s inequality applied in Y shows that ŵ1 = 0, so indeed (w1)tan = 0.

Claim 2. If ε2 � h then there exists v ∈ L2(S, Ḣ 1(Y, R2)) such that DefS wh
tan

h

osc−−⇀ DefY v.

In fact, if ε2 � h � ε, then Claim 1 and (47) imply that vh := wh
tan/h 

osc−−⇀ 0. Hence Lemma 4.1 implies the claim 
in this case. If ε � h then Claim 2 follows from (46), simply by taking v = (lim ε/h)ŵ1.

Now we prove the proposition in the case ε2 � h. In this case, (wh · n)/h 
osc−−⇀ γ −1

1 w1 · n (with the understanding 
that the right-hand side is zero if γ1 = ∞), by (47). Hence Claim 2 shows that there exists v such that

qwh

h
= DefS wh

tan

h
+ wh · n

h
S

osc−−⇀ DefY v + 1

γ1
(w1 · n)S.

This proves the first two parts of the proposition.
Finally consider the supercritical case h � ε2. Claim 1 implies that (w1)tan = 0. Hence the tangential part of (47)

implies that ε−2wh
tan

osc−−⇀ 0. Lemma 4.1 shows that ε−2 DefS wh
tan

osc−−⇀ DefY v for some v. On the other hand,

DefS wh
tan

ε2
= qwh

ε2
− wh · n

ε2
S

osc−−⇀ − (w1 · n)S,

because ε−2qwh → 0 (by the boundedness of qwh/h) and because of the normal part of (47).
In all cases uniqueness of v follows from the fact that zero is the only Y-periodic skew affine map. �

Lemma 4.3. Let wh ∈ H 1(S1; R3) be such that

lim sup
h→0

(∥∥wh
∥∥

L2(S1)
+ ∥∥∇hw

h
∥∥

L2(S1)

)
< ∞.

Then there exists a map w0 ∈ H 1(S; R3) and a field Hγ ∈ L2(S × I ×Y; R3×3) of the form
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Hγ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∇yw1,w2) for some

{
w1 ∈ L2(S; Ḣ 1(Y;R3))

w2 ∈ L2(S ×Y × I ;R3)

}
if γ = 0,

(∇yw1,
1
γ
∂3w1) for some w1 ∈ L2(S, Ḣ 1(I ×Y;R3))

if γ ∈ (0,∞),

(∇yw1,w2) for some

{
w1 ∈ L2(S × I ; Ḣ 1(Y;R3))

w2 ∈ L2(S × I ;R3)

}
if γ = ∞,

(48)

such that, up to a subsequence, wh → w0 in L2 and

∇hw
h 2−⇀ dw0 ◦ TS +

3∑
i,j=1

(Ĥγ )ij τ
i ⊗ τ j weakly two-scale on S1.

Here, w0 is the weak limit in H 1(S) of 
´
I
wh(x + tn(x)) dt and Ĥγ ∈ L2(S1 × Y; R3×3) is defined by Ĥγ (x, y) =

Hγ (π(x), t (x), y).

Proof. The hypotheses imply, e.g. by (25), that the wh are uniformly bounded in H 1(S1), so up to a subsequence 
wh ⇀: w0 in H 1(S1). Set w̃h = wh ◦ Ψ , so clearly w̃h is uniformly bounded in L2(Ω). From the uniform L2-bound 
on ∇hw

h and from (23) we deduce that ∇̃hw̃
h is uniformly bounded in L2(Ω). Hence there is w̃0 ∈ H 1(Ω; R3) with 

∂3w̃0 = 0 such that w̃h ⇀ w̃0 weakly in H 1(Ω; R3); clearly w̃0 = w0 ◦ Ψ , so (since ∂3w̃0 = 0) in particular w0 is the 
trivial extension of a map defined on S.

By uniform boundedness in L2(Ω), in the case γ ∈ (0, ∞) there exists (see [27, Proposition 6.3.5]) w̄1 ∈
L2(ω; Ḣ 1(I ×Y; R3)) such that

∇̃hw̃
h 2−⇀ (∂1w̃0, ∂2w̃0,0) +

(
∂y1w̄1, ∂y2w̄1,

1

γ
∂3w̄1

)
in Ω.

By (23) the left-hand side equals (∇hw)(Ψ )∇Ψ (Φ̃−1
h ). As ∇Ψ (Φ̃−1

h ) converges uniformly on S1 to (∂1ψ, ∂2ψ, n(ψ))

(extended trivially in the x3-direction), we conclude:

∇hw
h(Ψ )

2−⇀
(

(∂1w̃0, ∂2w̃0,0) +
(

∂y1w̄1, ∂y2w̄1,
1

γ
∂3w̄1

))(
∂1ψ,∂2ψ,n(ψ)

)−1
.

On the right-hand side we use(
∂1ψ,∂2ψ,n(ψ)

)−1 ◦ Ψ −1 = (τ1, τ2, n)−1 = (
τ 1, τ 2, n

)T
and (∂αw̃0) ◦Ψ −1 = dw0(τα) to obtain the claim when γ ∈ (0, ∞), after defining (w1)i = (w̄1 ◦ r) · τi , for i = 1, 2, 3. 
The other two cases are proven similarly. �

The following lemma goes by a truncation argument already exploited in [9,10]; we refer to [27, Corollary 2.3.4]
for a proof.

Lemma 4.4. Let (Eh
app) ⊂ L2(Ω; R3×3) be such that Eh

app
2−⇀ Eapp in L2(Ω ×Y; R3×3). Then

h−2
(√(

I + h2Eh
app

)T (
I + h2Eh

app

)− I
) 2−⇀ symEapp in L2(Ω ×Y;R3×3). (49)

We continue to use the notation from Lemmas 3.2 and 3.3.

Proposition 4.5. After passing to subsequences, there exists B ∈ L2(S; L2(Y; T ∗S � T ∗S)) such that 1
h
qV h∗

2−⇀ B in 

L2(S, T ∗S ⊗ T ∗S), there exists Bw ∈ L2(S, T ∗S � T ∗S) such that 1
h
qV h ⇀ Bw weakly in L2(S; T ∗S ⊗ T ∗S), and 

there exists ϕ ∈ L2(S; Ḣ 2(Y)) such that
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n · HessV h∗
2−⇀ n · HessV + HessY ϕ. (50)

Set

Eh = h−2(((∇hy
h
)T ∇hy

h
)1/2 − I

)
(51)

and Ḃ = B − ´
Y

B(·, y) dy. Then there exists Uγ ∈ L2(S; Lγ (I × Y)) such that, after passing to a subsequence, 

Eh 2−⇀ E on S1, with E given by

E =
(

Bw + Ḃ + 1

2
(dV )2 − tbV

)
(TS, TS) − t HessY ϕ + Ûγ . (52)

In particular, the following are true:

(i) If γ ∈ (0, ∞] then there exists Uγ ∈ L2(S; Lγ (I ×Y)) such that

E = Bw + 1

2
(dV )2 − tbV + Ûγ . (53)

(ii) If ε2 � h � ε, there exists U ∈ L2(S; L0
0(I ×Y)) such that

E = Bw + 1

2
(dV )2 − tbV + Û . (54)

(iii) If h ∼ ε2, with limh→0
ε2

h
= 1

γ1
∈ (0, ∞), there exists U ∈ L2(S; L1

0,γ1
(I ×Y)) such that

E = Bw + 1

2
(dV )2 − tbV + Û . (55)

Here we have denoted by Ûγ (i.e. Û ) the appropriate mapping defined on S1 ×Y by Ûγ (x, y) = Uγ (π(x), t (x), y).

Proof. First we note that Lemma 3.2 combined with Lemmas 2.5 and 3.3 ensure the existence of B , Bw and of ϕ. 
By L2-boundedness of Eh (which follows from (37) and the properties of the energy density W ), there exist E and a 

subsequence such that Eh 2−⇀ E on S1. Denote by Eh
app the approximate strain

Eh
app := (Rh)T ∇hy

h − I

h2
, (56)

and note that Eh agrees with the left-hand side of (49). Hence Lemma 4.4 implies that E = symEapp, where Eapp is 
the weak two-scale limit of Eh

app, which exists by the properties of Rh stated in Lemma 3.2. So it is enough to identify 
the two-scale limit of symEh

app. Clearly

RhEh
app = ∇hy

h − I

h2
− Rh − I

h2
. (57)

We have sym(RhEh
app) 

2−⇀ E, because Rh → I boundedly in measure. By property (vi) of Lemma 3.2 the symmetric 
part of the second term converges strongly in L2 (and thus two-scale) to Ω2

V /2. So we need to identify the two-scale 

limit of sym(
∇hyh−I

h2 ).

For brevity we set μh∗ = μV h∗ . As usual, we extend V h∗ , n and μh∗ trivially to Sh. In what follows we abuse notation 
using t also as an independent variable. We define the maps zh : Sh → R

3 by setting

zh(x) = x + h
(
V h∗ (x) + t (x)μh∗(x)

)
for all x ∈ Sh.

Define Q(x) as in (18) and define bh(x) = bV h∗ (x) ≡ n · HessV h∗ and (compare (6))

Ωh(x) = Ω h(x) ≡ dV h∗ (x) ◦ TS(x) + μh∗(x) ⊗ n(x).
V∗
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Then Lemma 2.4 shows that

∇zh = I + hΩh − htbh − 2htqV h∗ (S ◦ TS,TS) − ht2∇μh∗ ◦ S + h
(
dV h∗ + t∇μh∗

) ◦ TSQ. (58)

Note that |Q| ≤ Ct2 ≤ Ch2 on Sh, so ‖Q‖L2(Sh) ≤ Ch5/2. In what follows Θh ∈ L2(Sh) denote maps which may 
change from expression to expression, but which always satisfy ‖Θh‖L2(Sh) ≤ Ch5/2. We see from (58) that

∇zh = I + hΩh + Θh = Rh + Θh,

by Lemma 3.4. On the other hand, Lemma 3.2 shows that ∇uh = Rh + Θh. Hence∥∥∇uh − ∇zh
∥∥

L2(Sh)
≤ Ch5/2. (59)

However, by the definition of V h and of zh we have, for x ∈ S,

1

h

ˆ

Ih

zh
(
x + tn(x)

)− uh
(
x + tn(x)

)
dt = h

(
V h∗ (x) − V h(x)

)
.

Hence Poincaré’s inequality implies that∥∥uh − zh
∥∥

L2(Sh)
≤ ∥∥uh − zh − h

(
V h∗ − V h

)∥∥
L2(Sh)

+ h
∥∥V h∗ − V h

∥∥
L2(Sh)

≤ ∥∥∇uh − ∇zh
∥∥

L2(Sh)
+ h3/2

∥∥V h∗ − V h
∥∥

L2(S)
≤ Ch5/2,

by (59) and (40). Defining Zh : S1 →R
3 by setting Zh(Φh) = zh on Sh, we have the equivalent bounds∥∥yh − Zh

∥∥
L2(S1)

+ ∥∥∇h

(
yh − Zh

)∥∥
L2(S1)

≤ Ch2.

Thus, using Lemma 4.3, we conclude that there exists Hγ ∈ L2(S × I × Y; R3×3) of the form given in Lemma 4.3
and w ∈ H 1(S; R3) such that (after passing to a subsequence)

1

h2
∇h

(
yh − Zh

) 2−⇀ dw ◦ TS +
3∑

i,j=1

(Ĥγ )ij τ
i ⊗ τ j . (60)

Here w is the weak H 1(S; R3)-limit of (V h −V h∗ )/h, which exists by Lemma 3.3. We will now identify the two-scale 

limit on S1 of the quantity sym(
∇hZh−I

h2 ). By (58) there is Mh such that for all x ∈ Sh:

∇zh(x) − I

h2
= 1

h
Ωh(x) − t (x)

h
bh(x) + Mh(x), (61)

where ‖Mh‖L2(Sh) ≤ Ch3/2 because qV h∗ /h is bounded in L2(S). We must therefore identify the two-scale limits on 
S of the symmetric part of the first two terms in (61). But formula (50) just asserts that the two-scale limit of bh is 
bV + HessY ϕ. And by definition of B , Lemma 2.1 implies that

1

h
symΩh = 1

h
qV h∗ (TS, TS)

2−⇀ B(TS,TS) on S. (62)

By (61), these convergence results on S imply that

sym

(∇hZ
h − I

h2

)
2−⇀ (B − tbV )(TS, TS) − t HessY ϕ (63)

weakly two-scale on S1. We conclude from (60) and (63) that

E = B + sym(dw ◦ TS) − 1

2

(
Ω2

V

)− t HessY ϕ − tbV + ˆ̃
Uγ , (64)

for some Ũγ ∈ L2(S; Lγ (I ×Y)). It is not difficult to see that

B + sym(dw ◦ TS) − (Bw + Ḃ) ∈ L2(S;Lγ (I ×Y)
)
,
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after identification of S1 with S × I . Hence by (64) and using (12), formula (52) follows. The remaining claims now 
follow from Proposition 4.2. Indeed, parts (ii) and (iii) follow at once, and (i) is a consequence of the fact that, setting 
ζ(t, y) = t∇yϕ, we have t HessY ϕ = Uγ (ζ, −ϕ/γ ) for all γ ∈ (0, ∞). �
Lemma 4.6. Let (yh) ⊂ H 1(S1; R3), define Eh : S1 →R

3×3 by (51) and let E be such that Eh 2−⇀ E. Then we have

lim inf
h→0

ˆ

S

ˆ

I

Q
(
x + tn(x), r(x)/ε,Eh

(
x + tn(x)

))
dt dvolS(x)

≥
ˆ

S

ˆ

I

ˆ

Y

Q
(
x + tn(x), y,E

(
x + tn(x), y

))
dy dt dvolS(x),

and

lim inf
h→0

1

h4

ˆ

S

ˆ

I

W
(
x + tn(x), r(x)/ε, I + h2Eh

(
x + tn(x)

))
dt dvolS(x)

≥
ˆ

S

ˆ

I

ˆ

Y

Q
(
x + tn(x), y,E

(
x + tn(x), y

))
dy dt dvolS(x).

Proof. For the first claim we refer to [34,35]. The second claim then follows from a standard truncation argument 
already exploited in [9,10] (see [27] for details). �

The lower bound parts of Theorems 3.1 and 6.2 are now direct consequences of Proposition 4.5 and of Lemma 4.6.

5. Upper bound

The proof of upper bound uses the construction in [22], but is more complex due to the fact that we need to add the 
additional oscillations. It is easy to see, by using Korn’s inequality, that each fiber of Lγ (I ×Y) as well as L0

0(I ×Y), 
L1

0,γ1
(I ×Y) for γ ∈ [0, ∞] and γ1 ∈ (0, ∞) is a closed subspace of L2(I ×Y, R3×3

sym ). Also by Korn’s inequality it is 
easy to see (see also [27,28]) that the following coercivity bound is satisfied:∥∥U0(ζ , g)

∥∥2
L2 ≥ C

(‖ζ‖2
H 1 + ‖g‖2

L2

)
for all (ζ, g) ∈ D(U0),

where the constant C depends on the embedding ψ . Analogous bounds are satisfied by U0
0 , U1

0,γ1
and U∞, with the 

obvious norms on their respective domains of definition.
The following two lemmas and remark are analogous to [29, Lemma 2.10, 2.11].

Lemma 5.1. For γ ∈ (0, ∞] there exists a bounded linear operator

Πγ : L2(S,T ∗S ⊗ T ∗S
)× L2(S,T ∗S ⊗ T ∗S

)→ L2(S,Lγ (I ×Y)
)
,

such that for almost every x ∈ S we have

Qγ

(
x, q1(x), q2(x)

)=
ˆ

I

ˆ

Y

Q
(
x + tn(x), y, q1(x) + tq2(x) + Πγ

[
q1, q2](x, t, y)

)
dy dt.

Moreover, if q1, q2 ∈ C0(S, T ∗S ⊗ T ∗S) then Πγ [q1, q2] ∈ C0(S × I × Y). Similar maps Π0
0 resp. Π1

0,γ1
enjoying 

similar properties exist for Q0
0 resp. Q1

0,γ1
.

Before stating the next lemma we observe that the definition (35) of Qγ makes sense even for arbitrary q1, q2 ∈
R

3×3. The same is true for Q0,γ1 and Q0.
0
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Lemma 5.2. For every γ ∈ (0, ∞) the function Qγ : S × (R3×3)2 → R
+ is continuous, and there exists a constant 

C > 0 depending only on the energy density W and the surface S such that, for all x ∈ S and all q1, q2 ∈ T ∗
x S �T ∗

x S,

C−1(∣∣q1
∣∣2 + ∣∣q2

∣∣2)≤ Qγ

(
x, q1, q2)≤ C

(∣∣q1
∣∣2 + ∣∣q2

∣∣2).
Similar statements apply to Q0

0 and Q1
0,γ1

.

We will need the following fact about the linearization of the square root of a matrix.

Lemma 5.3. There exists η > 0 and a modulus of continuity m, i.e., a function m ∈ C0([0, ∞), R+) with m(0) = 0, 
such that the following is true for all M ∈R and all δ ∈ (0, η):

Assume that Gh ∈ L2(S1, R3×3) and Kh ∈ L4(S1, R3×3) satisfy

lim sup
h→0

(∥∥symGh
∥∥

L2(S1)
+ ∥∥Kh

∥∥
L4(S1)

)≤ M

and lim suph→0 h‖Kh‖L∞(S1) ≤ δ as well as lim suph→0 h2‖Gh‖L∞(S1) ≤ δ, and that h−1 symKh → 0 strongly in 
L2(S1) and hGh → 0 strongly in L4(S1) as h → 0. Set

Eh = h−2(((I + hKh + h2Gh
)T (

I + hKh + h2Gh
))1/2 − I

)
and Eh

app = symGh − 1
2 (Kh)2. Then we have lim suph→0 ‖Eh − Eh

app‖L2(S1) ≤ M2m(δ), and

lim sup
h→0

∣∣∣∣ 1

h4

ˆ

S

ˆ

I

W
(
x + tn(x), r(x)/ε, I + h2Eh

(
x + tn(x)

))
dt dvolS(x)

−
ˆ

S

ˆ

I

Q
(
x + tn(x), r(x)/ε,Eh

app

(
x + tn(x)

))
dt dvolS(x)

∣∣∣∣≤ (M + 1)4m(δ). (65)

If, moreover, Eh
app

2−→ E strongly two-scale, then

lim sup
h→0

∣∣∣∣ 1

h4

ˆ

S

ˆ

I

W
(
x + tn(x), r(x)/ε, I + h2Eh

(
x + tn(x)

))
dt dvolS(x)

−
ˆ

S

ˆ

I

ˆ

Y

Q
(
x + tn(x), y,E

(
x + tn(x), y

))
dy dt dvolS(x)

∣∣∣∣≤ (M + 1)4m(δ). (66)

Proof. We will only sketch the proof. By Taylor expansion there exists η1 > 0 and a modulus of continuity m1 such 
that for every A ∈R

3×3 with |A − I | < η1 we have∣∣∣∣√(I + AT
)
(I + A) −

(
I + symA + 1

2
AT A

)∣∣∣∣≤ m1
(|A − I |)(symA + 1

2
AT A

)
. (67)

Applying this to A = hKh + h2Gh, we obtain

lim sup
h→0

∥∥Eh − Ẽh
app

∥∥
L2 ≤ m1(δ)

∥∥Ẽh
app

∥∥
L2 ,

where

Ẽh
app = symKh

h
+ symGh + 1

2

(
Kh
)T

Kh + h sym
((

Gh
)T

Kh
)+ 1

2
h2(Gh

)T
Gh.

It is easy to deduce from the hypotheses that ‖Ẽh
app −Eh

app‖L2 → 0. Now the L2-bound on Eh −Eh
app follows at once. 

Formula (65) follows from (32) and the triangle inequality, while (66) follows from the fact that
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ˆ

S

ˆ

I

Q
(
x + tn(x), r(x)/ε,Eh

app

(
x + tn(x)

))
dt dvolS

→
ˆ

S

ˆ

I

ˆ

Y

Q
(
x + tn(x), y,E

(
x + tn(x), y

))
dy dt dvolS(x).

The latter is a consequence of the continuity of integral functionals with respect to strong two-scale convergence, cf. 
[34,35]. �

We provide here a general computation that will be needed in the proof of the following result. Let P ∈
C1(S1; C1(Y; R3)) define P h : S1 → R

3 by P h = P(·, r/ε), where, as usual, r is extended trivially from S to S1. 
Then by (25)

∇hP
h = 1

h
∂nP

h ⊗ n + ∇P hTS(I + tS)(I + htS)−1TS

= 1

h
∂nP (·, r/ε) ⊗ n

+
(

∇P(·, r/ε) + 1

ε
∇yP (·, r/ε)∇r ◦ TS(I + tS)−1

)
(I + tS)(I + htS)−1TS,

because having extended r trivially to S1, we have ∂nr = 0 and (16) applies. We use the notation ∂nP to denote 
the n-derivative with respect to the first argument only. Since (I + htS)−1 agrees with I up to a term that on S1 is 
uniformly bounded by h, and if h ≤ Cε, then we conclude that∥∥∥∥∇hP

h − 1

ε
Fγ (P )(·, r/ε)

∥∥∥∥
L∞(S1)

≤ C, (68)

where for x ∈ S1 and y ∈ Y we have introduced

Fγ (P )(x, y) = 1

γ
∂nP (x, y) ⊗ n(x) + (∂yαP )(x, y) ⊗ τα(x).

We have used that the restriction of the linear operator ∇r to the tangent space can be expressed as

∇r ◦ TS = e1 ⊗ τ 1 + e2 ⊗ τ 2,

which is just the pullback operator ψ∗ acting on tangent vector fields. A short computation shows that setting

ζα(x, t, y) = P
(
x + tn(x), y

) · τα(x) (69)

ρ(x, t, y) = P
(
x + tn(x), y

) · n(x) (70)

for all x ∈ S, t ∈ I and y ∈ Y , we have for γ ∈ (0, ∞):

symFγ (P )
(
x + tn(x), y

)= Uγ (ζ, ρ)(x, t, y).

Lemma 5.4. There exists a modulus of continuity m and for every M > 0 there exists a constant C(M) such that for 
every δ ∈ (0, 1) the following is true:

• Let V ∈ H 2(S; R3) be an infinitesimal bending with ‖V ‖H 2(S) ≤ M and let vh ∈ W 2,∞(S, R3) be such that 
vh → V strongly in H 2(S) and H2({vh �= V }) � h2, and such that

lim sup
h→0

h
∥∥vh

∥∥
W 2,∞(S)

≤ δ. (71)

• Let B , b ∈ L2(S, L2(Y, T ∗S � T ∗S)) be such that

‖B‖L2(S×Y) + ‖b‖L2(S×Y) ≤ M. (72)
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Let wh ∈ H 2(S, R3) and be such that

qwh

2−→ B and hbwh

2−→ b strongly two-scale on S (73)

and such that

h
∥∥dwh

∥∥
L4(S)

+ h2
∥∥dwh

∥∥
L∞(S)

+ h2
∥∥Hesswh

∥∥
L2(S)

+ h3
∥∥Hesswh

∥∥
L∞(S)

→ 0. (74)

• Let p, o ∈ C1(S1, C1(Y, R3)). Moreover, if h � ε then assume that o = o ◦ π , while if h 
 ε then assume that 
p does not depend on y. (If h ∼ ε then we make no extra assumption.) Set ph = p(·, r/ε) and oh = o(·, r/ε) and 
define zh : Sh →R

3 by

zh = id + h
(
vh + hwh + tμvh+hwh

)+ h3ph
(
Φh
)+ εh2oh

(
Φh
)
,

and define yh ∈ H 1(S1, R3) by yh(Φh) = zh, and define V h by (39). Assume also that

‖p̌‖L2(S;H 1(I×Y)) + ‖ǒ‖L2(S;H 1(I×Y)) ≤ M, if γ ∈ (0,∞),

‖∂np‖L2(S1×Y) + ‖o‖L2(S1;H 1(Y)) ≤ M, otherwise. (75)

Here p̌(x, t, y) = p(x + tn(x), y) and ǒ(x, t, y) = o(x + tn(x), y).
• Define Ξ : S1 ×Y → R3×3 by

Ξ =
{
Fγ (o) + γFγ (p) if γ ∈ (0,∞)

∂np ⊗ n + ∇yo∇r ◦ TS otherwise,

• Define Eh : S1 → R
3×3 by Eh = h−2(((∇hy

h)T (∇hy
h))1/2 − I ) and define E : S1 ×Y →R

3×3 by setting

E(x, y) = B(x, y)
(
TS(x), TS(x)

)− t (x)
(
b(x, y) + bV (x)

)(
TS(x), TS(x)

)
− 1

2
Ω2

V (x) + symΞ(x,y).

Then yh → π strongly in H 1(S1) and V h → V strongly in H 1(S) and

1

h
qV h ⇀

ˆ

Y

B(·, y) dy weakly in L2(S), (76)

and

lim sup
h→0

∥∥∥∥1

h
qV h

∥∥∥∥
L2(S)

≤ C(M), (77)

and ∣∣∣∣h−4
ˆ

S

ˆ

I

W
(
x + tn(x), r(x)/ε, I + h2Eh

(
x + tn(x)

))
dt dvolS(x)

−
ˆ

S

ˆ

I

ˆ

Y

Q
(
x + tn(x), y,E

(
x + tn(x)

))
dy dt dvolS(x)

∣∣∣∣≤ C(M)m(δ). (78)

Proof. Notice that (73) and (72) imply that

lim sup
h→0

(
h‖bwh‖L2 + ‖qwh‖L2

)≤ M (79)

We claim that there is a constant C1 depending only on S such that

lim sup‖qvh‖L∞(S) ≤ C1. (80)

h→0
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In fact, note that by (71) the Lipschitz constants of all qvh are bounded in particular by 1/h. Since qvh = qV = 0
almost everywhere on {vh = V }, there exists a constant C depending only on S such that for H2 a.e. x ∈ S we have∣∣qvh(x)

∣∣≤ C
1

h
dist

(
x,
{
vh = V

})
. (81)

But due to the hypothesis on the measure of {vh �= V } and to the bounded curvature of S, for small h the set {vh �= V }
cannot contain a disk of radius h. Hence (80) follows from (81).

Next we claim that
qvh

h
→ 0 strongly in L2(S). (82)

In fact, since qvh = qV = 0 almost everywhere on {vh = V },
1

h
‖qvh‖L2(S) ≤ 1

h

(
H2({vh �= V

}))1/2 · ‖qvh‖L∞(S), (83)

and this converges to zero by (80) and by the hypothesis on {vh �= V }.
Clearly we have yh → π strongly in H 1(S1). Moreover, defining p̃h, ̃oh : S → R

3 by ̃oh(x) = ´
I
oh(x + tn(x)) dt

and p̃h(x) = ´
I
oh(x + tn(x)) dt , we see that

V h = vh + hwh + εhõh + h2p̃h. (84)

From (73) and (82) we deduce that qvh/h + qwh

2−→ B strongly two-scale on S. It is easy to see that the weak L2-limit 
of εqõh and of hqp̃h is zero. Hence the convergence (76) follows from (84). From (84) and from (82), (79), (75) we 
deduce the bound (77), because clearly εhqõh and h2qp̃h converge strongly to zero in L2 – this is certainly true if 
h � ε, and if h 
 ε then it follows from the hypothesis that p be independent of y.

Next we address the limiting behaviour of Eh. Define Gh : S1 →R
3×3 by the formula

∇hy
h
(
Φh
)= ∇zh = I + hΩvh + h2Gh

(
Φh
)
.

Defining Q : Sh → R
3×3 by (18) and using Lemma 2.4 we see that the following equation is satisfied on Sh:

Gh
(
Φh
)= Ωwh − t

h
bvh(TS, TS) − tbwh(TS, TS) − t2

h
∇μvh+hwhS

+ 1

h

(
dvh + hdwh + t∇μvh+hwh

)
TSQ

+ h∇hp
h
(
Φh
)+ ε∇ho

h
(
Φh
)
. (85)

We deduce from (68) (applied with P = p and P = o) that

h∇hp
h + ε∇ho

h 2−→ Ξ. (86)

Notice that by (68) the convergence (86) is indeed also true for γ = 0 because in that case we assume that ∂no ≡ 0, 
and for γ = ∞ because in that case we assume that ph does not depend on y.

The hypotheses on vh imply that bvh(TS, TS) → bV (TS, TS) strongly in L2 and those on wh imply that(
tbwh(TS, TS)

) ◦ (Φh
)−1 = thbwh(TS, TS)

2−→ tb(TS, TS) on S1.

Lemma 2.1 and (73) show that

symΩwh = qwh(TS, TS)
2−→ B(TS,TS) on S. (87)

We conclude that

symGh 2−→ B(TS,TS) − t (bV + b)(TS,TS) + symΞ (88)

strongly two-scale in S1. By (88) the map Eh
app : S1 →R

3×3 defined by

Eh
app = symGh − 1

2
(Ωvh)2

converges strongly two-scale on S1 to E.
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In order to deduce (78) we apply Lemma 5.3 to Eh and Eh
app. This finishes the proof once we have verified that the 

hypotheses of Lemma 5.3 are satisfied (with Kh = Ωvh ).
Regarding the bounds on Ωvh , notice that vh → V in H 2 implies that Ωvh → ΩV in H 1. Hence the L4-bound 

on Ωvh follows from the H 2-bound on V and Sobolev embedding. Since h−1 symΩvh = h−1qvh(TS, TS) by (10), we 
have h−1 symΩvh → 0 in L2 by (82). And (71) implies that ‖hΩvh‖L∞ ≤ Cδ.

Regarding the bounds on Gh, first note that (88) implies convergence of norms, so the bounds on V , B , b, o, 
p imply that limh→0 ‖ symGh‖L2(S1) is bounded by a multiple of M . It remains to show that hGh → 0 in L4 and 
that lim suph→0 ‖h2Gh‖L∞ is dominated by δ (we will show that it is equal to zero). We see from (85) that Gh is 
dominated pointwise on S1 by

|Ωwh | + |bvh | + h|bwh | + h2
∣∣Hesswh

∣∣+ h
∣∣Hessvh

∣∣+ ∣∣h∇hp
h + ε∇ho

h
∣∣ (89)

plus terms of lower order. By (75) the last term in (89) remains bounded in L2 as h → 0. Hence h(h∇hp
h + ε∇ho

h)

converges strongly to zero L2. As it is uniformly bounded in L∞ by (68), we see that h2(h∇hp
h + ε∇ho

h) converges 
to zero in L∞.

The analogous claim is valid for the forth and fifth term by (71) and (74). Regarding the first term in (89) note that 
h‖Ωwh‖L4 and h2‖Ωwh‖L∞ converge to zero by (74) because |Ωwh | ≤ C|dwh|.

Regarding the second term in (89) note that |bvh | ≤ | Hessvh|. And h Hessvh is bounded by 1 in L∞ by (71), so in 
particular h2 Hessvh → 0 in L∞.

Finally, h3bwh → 0 in L∞ by (74) and hbwh is L2-bounded by (79). So by interpolation h2bwh → 0 in L4. �
Proposition 5.5. Assume that ε2 � h, let Bw ∈ B and let V ∈ H 2(S; R3) be an infinitesimal bending of S. Then there 
exists a sequence (yh) ⊂ H 1(S1, R3) such that yh → π strongly in H 1(S1; R3) and such that V h given by (39) satisfy 
V h → V strongly in H 1(S) and qV h/h ⇀ Bw weakly in L2(S). Moreover,

lim
h→0

h−4Ih
(
yh
)=

⎧⎪⎨⎪⎩
Iγ (V,Bw) if limh/ε = γ ∈ (0,∞],
I 0

0 (V ,Bw) if ε 
 h 
 ε2,

I 1
0,γ1

(V ,Bw) if h ∼ ε2 with lim ε2/h = 1/γ1.

Proof. By definition and by density, since Bw ∈ B, there exist wn ∈ C∞
0 (S; R3) such that qwn → Bw strongly in 

L2(S). By choosing a suitable index sequence nh → ∞, we may assume that the maps w̃h = wnh
satisfy

hw̃h → 0 strongly in W 2,∞(S) (90)

and

qw̃h → Bw strongly in L2(S). (91)

For each δ ∈ (0, 1) let ϕδ ∈ C1(S; Ċ2(Y)) and define

wδ,h = w̃h + ε2

h
ϕδ(·, r/ε)n. (92)

If ε � h then we choose ϕδ ≡ 0 for all δ.
We claim that wδ,h satisfies the hypotheses of Lemma 5.4 for each fixed δ (with wδ,h playing the role of the wh

from Lemma 5.4) but with δ-independent M , provided that

lim sup
δ→0

(∥∥ϕδ
∥∥

L2(S×Y)
+ ∥∥∇2

yϕδ
∥∥

L2(S×Y)

)
< ∞. (93)

In fact, the bounds (74) follow from (90) (recall that ε2/h � 1).
It is easy to see that

ε2 Hess
(
ϕ(·, r/ε)) 2−→ HessY ϕ on S.

Since moreover qwδ,h = qwh + ε2
ϕδ(·, r/ε)S, we see that (73) is satisfied with b = HessY ϕδ and with
h
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B = Bw + 1

γ1
ϕδ(x, y)S

(
with 1/γ1 := 0 when h 
 ε2).

In particular, the bound (72) is satisfied for some δ-independent M provided that (93) holds.
We will also choose δ-dependent pδ and oδ . Defining Ξδ in analogy to Ξ in Lemma 5.4, we need to choose pδ

and oδ in such a way that they satisfy (75). This will follow from the construction of pδ, oδ below.
Next, for each δ ∈ (0, 1), we approximate V by a sequence vδ,h ∈ W 2,∞(S; R3) such that the map vδ,h satisfies the 

same hypotheses as vh in Lemma 5.4 (where the index in vδ,h is the δ from (71)). The existence of such vδ,h follows 
from [10, Proposition 2].

Let Aδ ∈ C2(S; so(3)) be such that Aδ → ΩV strongly in H 1(S) as δ → 0. Notice that

A2
δ − A2

δ(TS, TS) = (n ⊗ n)A2
δ − (n ⊗ n)A2

δ(n ⊗ n) + A2
δ (n ⊗ n)

= 2 sym

(
A2

δn ⊗ n + |Aδn|2
2

n ⊗ n

)
. (94)

because Aδ is skew symmetric. With Aδ at hand, we can now construct the oscillations pδ and oδ . We have to 
distinguish the three basic cases; observe that for γ �= 0 the bound (93) is trivial because here we chose ϕδ ≡ 0.

The case γ ∈ (0, ∞) (i.e. h ∼ ε). Define pδ : S1 ×Y → R
3 by

pδ(x, y) = t (x)

( |Aδ(x)n(x)|2
2

I + A2
δ(x)

)
n(x);

note that pδ does not depend on y. Since the right-hand side of (94) equals 2 sym(∂np
δ ⊗ n) because clearly ∂np

δ =
|Aδn|2

2 n + A2
δn, we conclude that

γ symFγ

(
pδ
)= sym

(
∂np

δ ⊗ n
)= 1

2

(
A2

δ − A2
δ(TS, TS)

)
. (95)

Now we choose ζ δ ∈ C1(S, Ċ1(I ×Y; R2)) and ρδ ∈ C1(S, Ċ1(I ×Y)) in such a way that

Uγ

(
ζ δ, ρδ

)→ Πγ

(
Bw + (dV )2

2
,−bV

)
strongly in L2. (96)

as δ → 0. (Here, the operator Πγ is as in Lemma 5.1.)
Defining oδ via (69), (70) (with oδ playing the role of P ), we have

Ûγ

(
ζ δ, ρδ

)= symFγ

(
oδ
)
. (97)

Here Ûγ (x, y) = Ûγ (π(x), t (x), y). From (95), (97) and from the definition of Eδ and Ξδ in Lemma 5.4 (with obvious 
notational changes involving the index δ), we conclude:

Eδ =
(

Bw − tbV − 1

2
A2

δ

)
(TS, TS) + Ûγ

(
ζ δ, ρδ

)+ 1

2

(
A2

δ − Ω2
V

)
.

Then

Eδ →
(

Bw − tbV + 1

2
(dV )2

)
(TS, TS) + Π̂γ

(
Bw + (dV )2

2
,−bV

)
, strongly in L2(S), (98)

as δ → 0 by the choice of Aδ and because −A2
δ(TS, TS) → (dV )2 by (12). Here we define Π̂γ with respect to Πγ in 

the analogous way as Ûγ with respect to Uγ . By (98) and by Lemma 5.4, we see that

k(δ,h) = ∥∥yδ,h − π
∥∥

H 1(S1)
+ ∥∥V δ,h − V

∥∥
H 1(S)

+ d̃K

(
1

h
qV δ,h ,Bw

)
+
∣∣∣∣ 1

h4
Ih
(
yh
)− Iγ (V,Bw)

∣∣∣∣,
satisfies lim supδ→0 lim suph→0 k(δ, h) = 0. Here d̃K : L2(S; R3×3) × L2(S; R3×3) → R is defined as follows: For 
K > 0 there exists a metric dK which defines the weak topology on the ball of radius K . We define:

d̃K(M1,M2) =
{

dK(M1,M2), if ‖M1‖L2 < K and ‖M2‖L2 < K,
+∞, otherwise.
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By (77) the constant K can indeed be chosen independently of δ. Finally, a standard diagonalization procedure then 
yields a sequence δh → 0 such that k(δh, h) → 0 as h → 0.

The case γ = ∞ (i.e. h 
 ε). Define ζ δ ∈ C1(S; Ċ1(I ×Y; R2)), ψδ ∈ C1(S; Ċ1(I ×Y)), cδ ∈ C1(S; Ċ1(I ; R3))

such that

U∞
(
ζ δ,ψδ, cδ

)→ Π∞
(

Bw + (dV )2

2
,−bV

)
strongly in L2(S)

as δ → 0. We will use the following fact: if f : I × Y → R
3 then F(x, y) = ´ t (x)

0 f (s, y) ds satisfies ∂nF (x, y) =
f (t (x), y). We wish to have pδ independent of y, in order to satisfy the hypotheses of Lemma 5.4. We define

pδ(x, y) = t (x)

( |Aδ(x)n(x)|2
2

I + A2
δ(x)

)
n(x) + 2

t (x)ˆ

0

cα(s) dsτα +
t (x)ˆ

0

c3(s) dsτ 3.

Then ∂np
δ = |Aδn|2

2 n + A2
δn + 2cα(t)τα + c3(t)τ

3. For x ∈ S1 and y ∈ Y set

oδ(x, y) = ζ δ
α

(
π(x), t (x), y

)
τα(x) + 2ψδ

(
π(x), t (x), y

)
n(x).

Then ∇yo
δ = τα ⊗ ∇yζ

δ
α + 2n ⊗ ∇yψ

δ . Since γ = ∞, we have

symΞδ = sym
(
∂np

δ ⊗ n + ∇yo
δ∇r ◦ TS

)= Û∞
(
ζ δ,ψδ, cδ

)+ 1

2

(
A2

δ − A2
δ(TS, TS)

)
.

From now on the proof is analogous to the case γ ∈ (0, ∞).
Construction for γ = 0 (i.e. h � ε). If ε 
 h 
 ε2 then choose ϕδ in (92) and ζ δ ∈ C1(S; Ċ1(Y; R2)) as well as 

gδ ∈ C1(S; Ċ1(I ×Y; R3)) such that

U0
0

(
ζ δ, ϕδ, gδ

)→ Π0
0

(
Bw + (dV )2

2
,−bV

)
strongly in L2(S), (99)

as δ → 0. If h ∼ ε2 with ε2/h → 1/γ1, choose them such that

U1
0,γ1

(
ζ δ, ϕδ, gδ

)→ Π1
0,γ1

(
Bw + (dV )2

2
,−bV

)
strongly in L2(S). (100)

Extend ζ δ trivially to S1 and define

oδ(x, y) = ζ δ
α(x, y)τα(x).

Then ∂no
δ ≡ 0, so the hypotheses of Lemma 5.4 are satisfied. We define

pδ(x, y) = t (x)

( |Aδ(x)n(x)|2
2

I + A2
δ(x)

)
n(x) + 2

t (x)ˆ

0

gδ
α

(
π(x), s, y

)
dsτα(x)

+
t (x)ˆ

0

gδ
3

(
π(x), s, y

)
dsτ 3(x).

Arguing as in the case γ ∈ (0, ∞), we conclude the proof of the proposition. Finally, note that (99) and (100) together 
with the coercivity properties of U0

0 and of U1
0,γ1

ensure that (75) and (93) are indeed satisfied. �
6. Convex shells

In this chapter we shall identify the Γ -limit for convex shells in the remaining case, i.e. h � ε2. We wish to 
illustrate the stronger influence of the geometry in this case. We work under the assumption that S is uniformly 
convex, i.e., there exists C > 0 such that
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S(x)τ · τ ≥ C|τ |2TxS, ∀x ∈ S, τ ∈ TxS. (101)

For x ∈ S we define a relaxation operator with values in the bundle (34) as follows: Set D(U2,c
0 ) = L̇2(Y; R2×2

sym ) ×
L2(I ×Y; R3) and for all (Ḃ, g) ∈ D(U2,c

0 ) define

U2,c
0 (Ḃ, g) =

3∑
i,j=1

⎛⎝ Ḃ
g1
g2

g1 g2 g3

⎞⎠
ij

τ i ⊗ τ j .

As usual, we introduce the vector bundle L2,c
0 (I × Y) of relaxation fields to be the range of U2,c

0 similarly to the 
bundles L0(I × Y) introduced earlier. As in the case of general surfaces, each fiber of L2,c

0 (I × Y) is a closed 
subspace of L2(I ×Y; R3×3

sym ). We also define the functional I 2,c
0 : H 2(S; R3) × L2(S; S) → R by

I
2,c
0 (V ,Bw) =

ˆ

S

Q2,c
0

(
x,Bw + 1

2
(dV )2,−bV

)
dx, (102)

with the quadratic form Q2,c
0 (x) : (T ∗S � T ∗S)2 → R given by

Q2,c
0

(
x, q1, q2)= inf

U∈L
2,c
0 (I×Y)

¨

I×Y

Q
(
x + tn(x), y, q1 + tq2 + U

)
dt dy. (103)

As before, one can relax slicewise, and when the energy is homogeneous in the thickness direction then we have a 
decoupling similar to the one described for general shells.

Under the assumption (101) it is well-known that B = L2(S, T ∗S�T ∗S), cf. e.g. [7]. Thus if one wants additionally 
to relax the functional I 2,c

0 with respect to Bw , one obtains the functional Ĩ 2,c
0 : H 2(S; R3) → R given by

Ĩ
2,c
0 (V ) = 1

12

ˆ

S

ˆ

Y

Q2
(
x, y,−bV (x)

)
dy dvolS(x). (104)

This functional is the same as the one arising in the ordinary von Kármán model. For the form Q2,c
0 one can make 

assertions analogous to Lemma 5.1 with the appropriate operator Π2,c
0 and Lemma 5.2. We introduce the space

FL
(
S; Ċ∞(Y)

)=
{
(x, y) �→

∑
k∈Z2, |k|≤n, k �=0

ck(x)e2πik·y : n ∈ N and ck ∈ C1
0(S;C) with ck = c−k

}
.

By Fourier transform it can be easily seen that FL(S; C∞(Y)) is dense in L2(S; Ḣm(Y)), for any m ∈N0.
The following lemma resembles Lemma 3.3 in [30]. The same system arises in [23, Chapter 3]. However, here we 

deal with a linear PDE system with constant coefficients, which is of course much easier than the linear system with 
variable coefficients in [23, Chapter 3].

Lemma 6.1. Assume that (101) is satisfied and let Ḃ ∈ L2(S; L̇2(Y; T ∗S ⊗ T ∗S)). Then there exist unique w ∈
L2(S; Ḣ 1(Y; R2)) and ϕ ∈ L2(S; L̇2(Y )) such that

DefY w + ϕS = Ḃ. (105)

Moreover, if Ḃij ∈ FL(S; Ċ∞(Y)) for every i, j = 1, 2 then wi ∈ FL(S; Ḣ 1(Y)), for i = 1, 2 and ϕ ∈ FL(S; Ḣ 1(Y)).

Proof. There exist bk
ij such that for all i, j = 1, 2:

Ḃ(x, y)ij =
∑
k∈Z2

bk
ij (x)e2πik·y, where

∑
k∈Z2

∥∥bk
ij

∥∥
L2 < ∞, bk

ij = b−k
ij , b0

ij = 0.

We assume that for i = 1, 2:
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wi =
∑
k∈Z2

ck
i (x)e2πik·y, ck

i = c−k
i , c0

i = 0, ϕ =
∑
k∈Z2

dk(x)e2πik·y, dk = d−k, d0 = 0.

Equation (105) is equivalent to the following problem for every (k1, k2) ∈ Z
2 find complex coefficients ck

j , bk
ij , dk

such that

k1c
k
1 + dkS11 = bk

11,

1

2

(
k2c

k
1 + k1c

k
2

)+ dkS12 = bk
12,

k2c
k
2 + dkS22 = bk

22.

By the hypotheses on the embedding ψ and by (101) it is easy to see that there exists C > 0 such that the de-
terminant of the system is bounded from below by C(k2

1 + k2
2). Using this it follows that there exists C > 0 such 

that

∣∣dk(x)
∣∣2 +

2∑
i=1

|k|2∣∣ck
i (x)

∣∣2 ≤ C

(
2∑

i,j=1

∣∣bk
ij (x)

∣∣2), ∀x ∈ S.

Now all claims follow easily. �
Theorem 6.2. Under the hypotheses and with the notation of Theorem 3.1 and assuming, in addition, that S is uni-
formly convex and that h � ε2, the conclusion of Theorem 3.1(i) is satisfied and, moreover, the following are true:

• We have

lim inf
h→0

h−4Jh
(
uh
)≥ I

2,c
0 (V , B̃w).

• For any infinitesimal bending V ∈ H 2(S, R3) of S and any Bw ∈ L2(S, T ∗S � T ∗S) there exist uh ∈ H 1(Sh; R3)

satisfying (37), and such that the conclusions of Theorem 3.1(i) are satisfied with Qh = I and ch = 0. Moreover,

lim
h→0

h−4Jh
(
uh
)= I

2,c
0 (V ,Bw).

Proof. We will only sketch the proof as it is similar to the previous cases. As in Proposition 4.5 there exists ϕ ∈
L2(S; Ḣ 2(Y)) such that (50) is satisfied. Using Proposition 4.2(iii) as well as Lemma 6.1, we conclude that ϕ = 0. 
Thus by Proposition 4.5 there exist U ∈ L2(S; L0(I ×Y)) and Ḃ ∈ L2(S; L̇2(Y; T ∗S ⊗ T ∗S)) such that the maps Eh

defined as in (51) converge weakly two-scale to

E = Bw + Ḃ + 1

2
(dV )2 − tbV + Û ,

Hence lower bound part follows readily from Lemma 4.6 and the definition of the functional I 2,c
0 .

To prove the upper bound, we follow the proof of Proposition 5.5 in the case γ = 0. Let Aδ be as in that proof. Let 
Ḃδ with (Ḃδ)ij ∈ FL(S; Ċ∞(Y)) for i, j = 1, 2 and gδ ∈ C1(S; C1(I ×Y; R3)) be such that

U2,c
0

(
Ḃδ, gδ

)→ Π
2,c
0

(
Bw + 1

2
(dV )2,−bV

)
strongly in L2(S)

as δ → 0. By Lemma 6.1 there exist zδ ∈ (FL(S; Ċ∞(Y)))2 and ϕδ ∈ FL(S; Ċ∞(Y)) solving the system DefY zδ +
ϕδS = Ḃδ . We choose vδ,h and w̃h as in the proof of Proposition 5.5, and we define

wδ,h = w̃h + ϕδ(·, r/ε)n + ε
(
zδ

1(·, r/ε)τ 1 + zδ
2(·, r/ε)τ 2).

We define pδ by
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pδ(x, y) = t (x)

( |Aδ(x)n(x)|2
2

I + A2
δ(x)

)
n(x) + 2

t (x)ˆ

0

gδ
α

(
π(x), s, y

)
dsτα(x)

+
t (x)ˆ

0

gδ
3

(
π(x), s, y

)
dsτ 3(x).

Now we can argue as in the proof of Proposition 5.5. �
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[15] Peter Hornung, Stefan Neukamm, Igor Velčić, Derivation of the homogenized bending plate model from 3D nonlinear elasticity, Calc. Var. 

Partial Differ. Equ. (2014), http://dx.doi.org/10.1007/s00526-013-0691-8, in press.
[16] Peter Hornung, Continuation of infinitesimal bendings on developable surfaces and equilibrium equations for nonlinear bending theory of 

plates, Commun. Partial Differ. Equ. (2014), in press.
[17] Peter Hornung, The Willmore functional on isometric immersions, 2012, MIS MPG preprint.

http://refhub.elsevier.com/S0294-1449(14)00050-X/bib41674A754D61s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib416C6C616972652D3932s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib41674D615475s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib417272696574613936s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib417272696574613936s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib427261696465732D466F6E736563612D4672616E63666F72742D3030s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib427261696465732D466F6E736563612D4672616E63666F72742D3030s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib427261696465732D3835s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib427261696465732D3835s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib436961726C65747368656C6C3030s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib436961726C65747368656C6C3030s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib436F7572696C6C6561753034s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib436F7572696C6C6561753034s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D2D3032s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D2D3032s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D2D3036s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D2D3036s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D4D7368656C6C733033s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib464A4D4D7368656C6C733033s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib676865726775s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib676865726775s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib67757374616673736F6E3036s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib67757374616673736F6E3036s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib4765796D6F6E61742D53616E6368657A2D3935s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib4765796D6F6E61742D53616E6368657A2D3935s1
http://dx.doi.org/10.1007/s00526-013-0691-8
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib486F726E756E672D43504445s1
http://refhub.elsevier.com/S0294-1449(14)00050-X/bib486F726E756E672D43504445s1
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