
Ann. I. H. Poincaré – AN 24 (2007) 711–739
www.elsevier.com/locate/anihpc

Harnack inequalities, exponential separation, and perturbations
of principal Floquet bundles for linear parabolic equations

Inégalités de Harnack, séparation exponentielle, et fibré principal
de Floquet pour des équations linéaires paraboliques
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Abstract

We consider the Dirichlet problem for linear nonautonomous second order parabolic equations with bounded measurable coeffi-
cients on bounded Lipschitz domains. Using a new Harnack-type inequality for quotients of positive solutions, we show that each
positive solution exponentially dominates any solution which changes sign for all times. We then examine continuity and robust-
ness properties of a principal Floquet bundle and the associated exponential separation under perturbations of the coefficients and
the spatial domain.

Résumé

On considère le problème de Dirichlet pour des équations paraboliques linéaires non autonomes du second ordre avec coefficients
bornés mesurables sur un domaine borné de Lipschitz. Utilisant une nouvelle inégalité du type Harnack pour les quotients de
solutions strictement positives, on montre que toute solution positive domine exponentiellement toute solution qui change de signe
en tout temps. On examine ensuite les propriétés de continuité et de robustesse pour un fibré principal de Floquet et la séparation
exponentielle associée à des perturbations des coefficients et du domaine spatial.
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1. Introduction

Consider the following Dirichlet problem for a linear nonautonomous parabolic equation

ut + Lu = 0 in Ω × J,

u = 0 on ∂Ω × J. (1.1)

Here Ω ⊂ R
N is a bounded domain, J is an open interval in R, and L is a time-dependent second-order elliptic

operator of either the divergence form

Lu = −∂i

(
aij (x, t)∂ju + ai(x, t)u

) + bi(x, t)∂iu + c0(x, t)u (D)

or the non-divergence form

Lu = −aij (x, t)∂i∂ju + bi(x, t)∂iu + c0(x, t)u (ND)

(we use the summation convention and the notation ∂i = ∂/∂xi ). We assume that the coefficients are real valued and
bounded:

aij , ai, bi, c0 ∈ Bd0 (i, j = 1, . . . ,N), (1.2)

where d0 > 0 is a fixed constant and

Bd0 := {
f ∈ L∞(Ω × R): ‖f ‖L∞(Ω×R) � d0

}
. (1.3)

For some results in the case (ND), when explicitly indicated, we in addition assume that aij ∈ C(Ω × R), i, j =
1, . . . ,N . We always consider uniformly parabolic equations: there exists α0 > 0 such that

aij (x, t)ξiξj � α0|ξ |2 ((x, t) ∈ Ω × R, ξ ∈ R
N). (1.4)

Concerning Ω , our assumption is that it is a bounded Lipschitz domain in R
N . This means that there are positive

constants rΩ and mΩ such that for each y ∈ ∂Ω , there is an orthonormal coordinate system centered at y in which

Ω ∩ BrΩ (y) = {
x = (x′, xN): x′ ∈ R

N−1, xN > φ(x′), |x| < rΩ
}
, (1.5)

and

‖∇φ‖L∞ � mΩ. (1.6)

Here and below Br(x) denotes the ball in R
N of radius r > 0 and center x. For the remainder of this paper, if not

stated otherwise, we shall assume that Ω is a domain as above with

rΩ � r0, mΩ � M0, diamΩ � R0, (1.7)

where r0,M0,R0 are fixed positive constants.
The main goal of our paper is to examine, in this general context, properties of solutions of (1.1) that are analo-

gous to properties of principal eigenfunctions of time-independent (elliptic) or time-periodic parabolic problems. The
analogy is best seen in one of our main results, Theorem 2.6, where we establish the existence of two time-dependent
spaces X1(t), X2(t). For each t ∈ R, these are subspaces of a suitable Banach space X in which the initial conditions
for (1.1) are taken (X = L2(Ω) in the divergence case and X = C0( 
Ω), the space of continuous functions vanishing
on the boundary, in the nondivergence case); X1(t) is the (one-dimensional) span of a positive function, X2(t) \ {0}
does not contain any nonnegative function and the subspaces are complementary to one another:

X = X1(t) ⊕ X2(t) (t ∈ R).

The subspace X2(s) is characterized by the property that if a nontrivial solution of (1.1) has its initial condition at
time s contained in X2(s), then it changes sign for all t > s. On the other hand, the solutions starting from X = X1(s)

do not change sign for any t > s. These characterizations imply the invariance of the bundles Xi(t), t ∈ R, i = 1,2: if
u1(t), u2(t) are solutions with ui(s) ∈ Xi(s), then ui(t) ∈ Xi(t) for all t > s. Finally, for any such pair of solutions ui ,
assuming u1 is nontrivial, we have the estimate (which we call the exponential separation)

‖u2(·, t)‖X � Ce−γ (t−s) ‖u2(·, s)‖X
(t � s),
‖u1(·, t)‖X ‖u1(·, s)‖X
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where C,γ > 0 are universal positive constants (they are determined by the quantities N , α0, d0, r0, R0, M0 from
the above assumptions). See Section 2 for the precise formulation of these results. The existence of the invariant
bundles with exponential separation extends in a natural way a well known theorem on the existence of a spectral
decomposition associated with the principal eigenvalue of elliptic or time-periodic parabolic operators (see [17], for
example). Indeed, the principal eigenvalue of a time-independent operator L is simple and has a positive eigenfunction
(which spans the first space X1 in the spectral decomposition) and no other generalized eigenfunction is nonnegative
(thus the codimension-one subspace X2 in the spectral decomposition contains no nontrivial nonnegative function).
Moreover, the principal eigenvalue is smaller than the real part of any other eigenvalue, which can be equivalently
formulated as exponential separation for the corresponding parabolic equation. Similar results hold for time-periodic
parabolic problems in which case one finds a Floquet decomposition X = X1(t) ⊕ X2(t) with time-periodic spaces.
Again X1(t) is spanned by a positive function and the solutions in X2(t) are exponentially dominated by solutions
in X1(t).

In elliptic and periodic-parabolic problems, theorems on principal eigenvalues and eigenfunctions are classical. In
the non-selfadjoint case, they are usually associated with and derived from the Krein–Rutman theorem. A derivation
can be found in [17] and many other monographs; for more recent results see [2–4,8].

The origins of the results on invariant bundles and exponential separation in nonautonomous parabolic equations
with general time-dependence are in the papers [27,38] (an ODE predecessor is [39]). These results were motivated
by certain problems in nonlinear parabolic equations where Eqs. (1.1) naturally appear as linearizations. More specifi-
cally, it is well known that if the nonlinear equation has a dissipation property, then each bounded solution approaches
a set of entire solutions (that is, solutions defined for all times in R). For further understanding of the behavior of the
solution, the linearization of the equation at the entire solutions is often very useful. Now, if the nonlinear equation has
a gradient structure, then the entire solutions are steady states and the linearization just gives elliptic operators. How-
ever, if no such a priori knowledge of the limit entire solutions is available (this is typically the case in time-periodic
equations), to employ the linearization one needs to study Eqs. (1.1) with general time dependence. The principal
Floquet bundle and exponential separation then play a similar role as the principal eigenfunction and related spec-
tral properties of elliptic operators do in the local analysis of solutions near steady states. Perhaps the most striking
application of such a linearization technique appears in the results on the large time behavior of typical solutions of
periodic parabolic problems, as given in [37] and later, with improvements, in [18,41]. For other applications we refer
the reader to [18,20,22,28–32,36,37,40,41]. We also remark that in one space dimension, related results on invariant
bundles characterized by nodal properties of solutions, as in the classical Sturm–Liouville theory, can be found in
[5,42]. See also the survey [35] for a discussion of these results, for both N = 1 and N > 1, and some perspective.

Available results on Floquet bundles and exponential separation cover a much broader class of problems than (1.1);
in particular, [38,41] deal with abstract parabolic equations admitting a strong comparison principle. However, in
the context of the specific problem (1.1), they are restricted by various regularity conditions on the domain and
coefficients. The results we present here do not rely on any regularity assumptions other than those mentioned above
(continuity of aij in the nondivergence case and Lipschitz continuity of the domain). Another major contribution of
our paper is a new approach which leads to more specific results. An example is the fact that the constants C and
γ in the exponential separation are determined only by explicit quantities from conditions (1.4), (1.2), and (1.7). We
derive the exponential separation result from a new elliptic-type Harnack estimate for quotients of positive solutions
of (1.1), which itself has many other interesting consequences regarding solutions of (1.1) (the uniqueness of positive
entire solutions among them). A significant portion of this paper is devoted to perturbation results in the divergence
case. We prove the continuous dependence of the bundles X1(t), X2(t), t ∈ R, on the coefficients and the domain
and establish a robustness property of the exponential separation. We also prove the continuous dependence of the
principal spectrum (see Subsection 2.3 for the definition). These results generalize continuous dependence on the
domain and coefficients of the principal eigenvalue and eigenfunctions of uniformly elliptic operators.

In this paper we only consider the Dirichlet problem which has many specific features. Indeed, the behavior of
the solutions near the boundary ∂Ω , where they vanish, is a major concern in this paper. For the oblique derivative
problem, an exponential separation theorem is proved in a similar generality in [19].

The paper is organized as follows. Section 2 contains the statements of our main results. We have grouped them
in three subsections. Subsection 2.1 contains the Harnack-type estimate for the quotients of positive solutions and
a result on exponential separation between any positive solution and any solution that changes sign for all times.
Among corollaries of these theorems, we state the uniqueness of positive entire solutions and a theorem on a universal
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spectral gap for elliptic operators. Subsection 2.2 contains a theorem on invariant bundles and exponential separation,
as discussed above, and in Subsection 2.3 we formulate our perturbation results for the divergence case. We have
included two preliminary sections; Section 3 contains basic estimates of positive solutions, relying on various Harnack
inequalities. In these estimates we make no reference to existence theorems on initial-boundary value problems, thus
we do not need the continuity assumption on the coefficients aij in the nondivergence case. In Section 5 we list
several properties of the evolution operator associated with Eq. (1.1). The remaining sections consist of the proofs of
our theorems. The appendix contains the proof of an existence result from Section 5.

2. Statement of the main results

Recall the standing hypothesis that Ω is a bounded Lipschitz domain satisfying (1.7). In the whole section, L is
as in (D) or (ND) with coefficients satisfying (1.2), (1.4). We use the notation C0( 
Ω) for the space of continuous
functions on 
Ω vanishing on ∂Ω . Whenever needed, we assume it is equipped with the supremum norm.

We say that a function changes sign if it assumes both positive and negative values. We use the standard notions of
solutions of the equation ut +Lu = 0 as well as for the boundary value problem (1.1) and for the initial value problem

ut + Lu = 0 in Ω × (s, T ),

u = 0 on ∂Ω × (s, T ),

u = u0 in Ω × {s},
(2.1)

where s, T ∈ R, s < T . In the divergence case, assuming u0 ∈ L2(Ω), we consider the usual weak solutions (see [1,24,
26]). Under our standing assumptions, (2.1) has a unique weak solution and this solution is continuous on 
Ω × (s, T )

(more properties of weak solutions are recalled in Sections 3 and 5). In the nondivergence case, we take u0 ∈ C0( 
Ω)

and the solution always refers to a strong solution [26], that is, a function u ∈ W
2,1,N+1
loc (Ω × (s, T )) ∩ C( 
Ω × [s, T ])

which satisfies the initial and boundary conditions everywhere and the equation almost everywhere. The assumed
regularity guarantees that the solution is unique. If the coefficients aij , i, j = 1, . . . ,N , are continuous on Ω × R then
the solution exists for each u0 ∈ C0( 
Ω) (see Section 5).

2.1. Harnack inequality for quotients and exponential separation

Our first theorem contains a new Harnack-type estimate for quotients of positive solutions. This is our basic tech-
nical tool in the proofs of exponential separation theorems, but it is a result of independent interest.

Theorem 2.1. Let δ0 > 0 and let u1, u2 (u2 �≡ 0) be two nonnegative solutions of (1.1) on Ω × (0,∞). Then for all
t � δ0 the following estimate holds

sup
x∈Ω

u2(x, t)

u1(x, t)
� C inf

x∈Ω

u2(x, t)

u1(x, t)
, (2.2)

with a constant C > 1 depending only on δ0,N,α0, d0, r0,R0,M0.

Theorem 2.1 is an extension of [13, Theorem 4.3] and [12, Theorem 5], where the authors prove boundedness of
quotients of positive solutions of (1.1).

The next theorem states that sign-changing solutions are exponentially dominated by positive solutions.

Theorem 2.2. In case L is as in (ND) assume that aij ∈ C(Ω × R), i, j = 1, . . . ,N . Let u0 ∈ C0( 
Ω), T = ∞, and
assume that (2.1) has a solution u(·, t; s, u0) which changes sign for all t > s. Let moreover v be a positive solution
(vanishing on ∂Ω) of the same equation on Ω × (s − 1,∞). Then there are constants C,γ > 0, depending only on
N , α0, d0, r0,R0,M0, such that

‖u(·, t; s, u0)‖L∞(Ω)

‖v(·, t)‖L∞(Ω)

� Ce−γ (t−s) ‖u0‖L∞(Ω)

‖v(·, s)‖L∞(Ω)

(t � s). (2.3)
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If L is in the divergence form (D), the statement remains valid if instead of C0( 
Ω) the initial conditions are taken
in Lp(Ω), for some 2 � p � ∞, and the L∞-norms in (2.3) are replaced by the Lp-norms. We refer to estimate (2.3)
as an exponential separation between sign-changing and positive solutions of (1.1). We emphasize that the constants
C and γ in (2.3) depend only on the specific bounds in conditions (1.4), (1.2) and (1.7), and not on the solutions, or
directly on L and Ω .

We next state several interesting and useful consequences of the previous results. The first one deals with the
oscillation in the space domain Ω of the quotient of two solutions of (1.1). Below we shall often abuse the notation
slightly and omit the arguments x of the functions considered, for example, we write u(t) for a solution of (1.1). This
should cause no confusion. For any continuous function f :Ω × R → R, we define

osc
Ω

f (t) := sup
x∈Ω

f (x, t) − inf
x∈Ω

f (x, t),

whenever either the supremum or infimum is finite.

Corollary 2.3. Let u and v be solutions of (1.1) on Ω × (0,∞), and let v > 0 on Ω × (0,∞). Then, assuming the
quantities below are defined and finite, we have

ω(t) := osc
Ω

u(t)

v(t)
� ω(s) for t � s > 0, (2.4)

and

ω(t) � μ · ω(s) (t � s + 1) (2.5)

where μ := 1 − C−1 ∈ (0,1), C > 1 being the constant from Theorem 2.1 with δ0 set equal to 1.

The proof is given in Section 4. It can be verified (see the proof of Lemma 6.1) that the finiteness assumption in
Corollary 2.3 is always satisfied in the divergence case and assuming aij ∈ C(Ω × R), i, j = 1, . . . ,N , also in the
nondivergence case.

In the next corollary we state the uniqueness (up to scalar multiples) of positive solutions of (1.1) defined on Ω ×R;
we refer to such solutions as positive entire solutions.

Corollary 2.4. If u1 and u2 are positive entire solutions of (1.1), then there is a constant q such that u2 ≡ qu1.

For nonautonomous parabolic equations in the divergence form, under additional conditions on the coefficients and
the domain, the uniqueness of entire solutions was proved in earlier papers; the first one seems to be that of Nishio [34],
later results can be found in [29,30,36]. We gave a simple proof of Corollary 2.4 for equations in divergence form in
[20]. The approach we used there originated in [36]. Our present proof, see Section 4, is different, still rather simple,
and, being based on Theorem 2.1, it works for both types of equations.

The fact that the constants appearing in the estimates of Theorems 2.1, 2.2 depend only on the bounds in (1.4),
(1.2), and (1.7), and not directly on L, has an interesting consequence for elliptic operators. Namely, it allows us to
establish a universal gap between the first (principal) eigenvalue and the rest of the spectrum. This result is nontrivial
for non-divergence form operators and to our knowledge it has not been noted so far (a proof for operators without
lower order terms is given in [21]). With L independent of t , consider the eigenvalue problem

Lu = λu in Ω,

u = 0 on ∂Ω.
(2.6)

The principal eigenvalue λ1 of this problem is the eigenvalue which is real and has a positive eigenfunction. It is well
known (see for example [3,10]) that λ1 is well defined by these requirements.

Corollary 2.5. Assume the coefficients of L are independent of t . In case L is as in (ND) assume that aij ∈ C(Ω),
i, j = 1, . . . ,N . Let λ1 be the principal eigenvalue and let λ be any other eigenvalue of (2.6). Then

Re(λ) − λ1 � γ > 0, (2.7)

where γ = γ (N,α0, d0, r0,R0,M0) is as in (2.3).
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Proof. Let ϕ1 > 0 be an eigenfunction associated with λ1. The function v1(x, t) := e−λ1t ϕ1(x) is a positive entire
solution of (1.1). Let λ �= λ1, λ = a + ib (a, b ∈ R), be an eigenvalue of (2.6) and let ϕλ, ϕλ(x) = f (x) + ig(x),
x ∈ Ω , denote an eigenfunction corresponding to λ. For (x, t) ∈ Ω × R define

u1(x, t) := Re
(
e−λtϕλ(x)

) = e−at
(
cos(bt)f (x) + sin(bt)g(x)

)
.

This function is also an entire solution of (1.1). Since eatu1(·, t) is periodic in t , the maximum principle implies that
u1(·, t) is either of one sign for t ∈ R or it changes sign for all t ∈ R. Assume u1(·, t) is, say, positive for t ∈ R. In
view of λ �= λ1, the functions u1, v1 are then two linearly independent positive entire solutions of (1.1), violating
Corollary 2.4. Thus u1(·, t) changes sign for all t ∈ R and applying Theorem 2.2, we conclude that a − λ1 � γ , with
γ as in (2.3). �
2.2. Exponential separation and Floquet bundles

In the following result, we state the conclusion of Theorem 2.2 in a different form and complement it by additional
information, introducing the principal Floquet bundles. We denote by u(·, t; s, u0) the solution of (1.1) with the initial
condition u(·, s) = u0 ∈ X. Here X stands for L2(Ω) with the standard norm in case L is as in (D) and X = C0( 
Ω)

if L is as in (ND). The existence and uniqueness theorems for the initial-boundary value problems are recalled in
Section 5.

For any continuous f : 
Ω × R → R define

λ(f ) = lim inf
t−s→∞

log‖f (·, t)‖X − log‖f (·, s)‖X

t − s
, (2.8)

and

λ̄(f ) = lim sup
t−s→∞

log‖f (·, t)‖X − log‖f (·, s)‖X

t − s
. (2.9)

Theorem 2.6. In case L is as in (ND) assume that aij ∈ C(Ω × R), i, j = 1, . . . ,N . The following statements hold
true.

(i) There exists a unique positive entire solution ϕL of (1.1) satisfying ‖ϕL(·,0)‖L2(Ω) = 1. This solution satisfies
−C � λ(ϕL) � λ̄(ϕL) � C for some positive constant C = C(N,α0, d0, r0,R0,M0).

(ii) Set

X1
L(t) := span

{
ϕL(·, t)},

X2
L(t) := {

u0 ∈ X: u(·, t̃ , t, u0) has a zero in Ω for all t̃ > t
}
.

These sets are closed subspaces of X. They are invariant under (1.1) in the following sense: if i ∈ {1,2},
u0 ∈ Xi

L(s), then u(·, t; s, u0) ∈ Xi
L(t) (t � s). Moreover, X1

L(t), X2
L(t) are complementary subspaces of X:

X = X1
L(t) ⊕ X2

L(t) (t ∈ R). (2.10)

(iii) There are constants C,γ > 0, depending only on N , α0, d0, r0, R0, M0, such that for any u0 ∈ X2
L(s) one has

‖u(·, t; s, u0)‖X

‖ϕL(·, t)‖X

� Ce−γ (t−s) ‖u0‖X

‖ϕL(·, s)‖X

(t � s). (2.11)

We refer to the collection of the one-dimensional spaces X1
L(t), t ∈ R, as the principal Floquet bundle of (1.1) and

to X2
L(t), t ∈ R, as its complementary Floquet bundle. Property (iii) as stated is an exponential separation between

these two bundles. Following [31,32], we call the interval [λ(ϕL), λ̄(ϕL)] the principal spectrum of (1.1). As discussed
in the introduction, the existence of the Floquet bundles with exponential separation extends in a natural way results
on spectral decomposition associated with the principal eigenvalue of time-independent or time-periodic parabolic
problems. The principal spectrum [λ(ϕL), λ̄(ϕL)] and the positive entire solution ϕL serve as analogues of the principal
eigenvalue and eigenfunction.
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2.3. Perturbation results in the divergence case

In this subsection we assume that L is in the divergence form (D). In this case, the invariant bundle X2
L(t), t ∈ R,

as introduced in the previous section, can be characterized using the principal Floquet bundle for the adjoint equation
to (1.1). This way we are also able to study continuity properties of both bundles X1

L(t), X2
L(t) under perturbations of

the coefficients and the domain. We also examine the robustness properties of the associated exponential separation
and continuity properties of the principal spectrum.

Let us first introduce the adjoint problem to (1.1):

− vt + L∗v = 0 in Ω × J,

v = 0 on ∂Ω × J,
(2.12)

with L∗ defined by

L∗v = −∂j

(
aij (x, t)∂iv + bj (x, t)v

) + aj (x, t)∂j v + c0(x, t)v. (2.13)

The next theorem characterizes the invariant bundle X2
L(t), t ∈ R, using an entire solution of (2.12).

Theorem 2.7. Assume L is as in (D). There exists a unique positive entire solution ψL of (2.12), satisfying
‖ψL(0)‖L2(Ω) = 1. It satisfies −C � λ(ψL) � λ̄(ψL) � C for some positive constant C = C(N,α0, d0, r0,R0,M0).
The space X2

L(t) defined in Theorem 2.6 can be characterized as

X2
L(t) :=

{
v ∈ L2(Ω):

∫
Ω

ψL(x, t)v(x)dx = 0

}
(t ∈ R).

In our first perturbation result, we assume that the domain Ω in (1.1) is fixed. Given an operator L, we say that
L admits exponential separation with bound C and exponent γ if for the entire solution ϕL and the invariant bundle
X2

L(t), t ∈ R, inequality (2.11) holds for each u0 ∈ X2
L(s). Theorem 2.6 guarantees the existence of a bound and

exponent which are common to all operators satisfying (1.2) and (1.4), but now we are interested in robustness of the
exponential separation with a possibly larger specific exponent for L.

Theorem 2.8. Assume L is as in (D) and let L̃ be another operator of the form (D) with coefficients (ãij )
N
i,j=1,

ãi , b̃i , c̃0, i = 1, . . . ,N , satisfying (1.2) and (1.4). Assume that for some δ > 0{‖aij − ãij‖,‖ai − ãi‖,‖bi − b̃i‖,‖c0 − c̃0‖
} ⊆ [0, δ] (i, j = 1, . . . ,N), (2.14)

where ‖ · ‖ is the norm of L∞(Ω × R). Then the following statements hold true.

(i) For each ε > 0 there exist a constant δ1 > 0, depending only on ε and N , α0, d0, r0, R0, M0, such that if δ � δ1
then

max
{∣∣λ(ϕL) − λ(ϕ

L̃
)
∣∣, ∣∣λ̄(ϕL) − λ̄(ϕ

L̃
)
∣∣} � ε (2.15)

and ∥∥∥∥ ϕL(t)

‖ϕL(t)‖L∞(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L∞(Ω)

∥∥∥∥
L∞(Ω)

� ε (t ∈ R). (2.16)

The statement is also valid with ϕL and ϕ
L̃

replaced by ψL and ψ
L̃

, respectively.
(ii) Suppose that L admits exponential separation with bound CL and exponent γL. For each ε > 0 there exists δ2

depending only on ε, CL, γL, N , α0, d0, r0, R0, M0, such that if δ � δ2 then L̃ admits exponential separation
with some bound C(ε,CL,γL) > 0 and exponent γ

L̃
� γL − ε.

Remark 2.9. If the L∞-norms in (2.16) are replaced by the L2-norms, the following more precise result can be proved
(see Section 8). There exist positive constants δ0 and C depending only on N , α0, d0, r0, R0, M0, such that if (2.14)
holds with δ � δ0, then∥∥∥∥ ϕL(t)

‖ϕ (t)‖ 2
− ϕ

L̃
(t)

‖ϕ (t)‖ 2

∥∥∥∥
2

� Cδ (t ∈ R). (2.17)

L L (Ω) L̃ L (Ω) L (Ω)
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In our last theorem we assume that L is fixed and we vary the domain Ω . We use the phrase that Ω admits
exponential separation with bound C and exponent γ , in an analogous way as when varying L above. For each
bounded Lipschitz domain Ω denote by ϕΩ , ψΩ the unique positive entire solutions of (1.1), (2.12), respectively
satisfying ‖ϕΩ(0)‖L2(Ω) = ‖ψΩ(0)‖L2(Ω) = 1. By d(∂Ω,∂Ω̃) we denote the Hausdorff distance of ∂Ω and ∂Ω̃ :

d(∂Ω,∂Ω̃) = max
{
dist(∂Ω,∂Ω̃),dist(∂Ω̃, ∂Ω)

}
,

dist(∂Ω,∂Ω̃) = sup
x∈∂Ω

dist(x, ∂Ω̃).

Theorem 2.10. Assume L is a fixed operator as in (D) with coefficients defined on R
N+1 and satisfying the ellipticity

and boundedness conditions (1.2), (1.4) on R
N+1. Let Ω , Ω̃ be two Lipschitz domains such that their Lipschitz

constants satisfy (1.7). Then the following statements hold.

(i) For each ε > 0 there exists δ1 > 0 depending only on ε,N,α0, d0, r0, R0, M0, such that if d(∂Ω,∂Ω̃) � δ1, then

max
{∣∣λ(ϕΩ) − λ(ϕΩ̃)

∣∣, ∣∣λ̄(ϕΩ) − λ̄(ϕΩ̃)
∣∣} � ε (2.18)

and ∥∥∥∥ ϕΩ(t)

‖ϕΩ(t)‖L∞(Ω)

− ϕΩ̃(t)

‖ϕΩ̃(t)‖L∞(Ω̃)

∥∥∥∥
L∞(RN)

� ε (t ∈ R). (2.19)

Estimates (2.18) and (2.19) are also valid with ϕΩ and ϕΩ̃ replaced by ψΩ and ψΩ̃ , respectively.
(ii) Suppose that Ω admits exponential separation with bound CΩ and exponent γΩ . Then for each ε > 0 there

exists δ2 > 0 depending only on ε,CΩ,γΩ,N,α0, d0, r0,R0,M0, such that if d(∂Ω,∂Ω̃) � δ2, then Ω̃ admits
exponential separation with some bound C(ε,CΩ,γΩ) > 0 and exponent γΩ̃ � γΩ − ε.

Remark 2.11. In estimate (2.19) the functions ϕΩ(·, t) and ϕΩ̃(·, t), t ∈ R, are thought of as extended by zero outside
Ω and Ω̃ , respectively.

Theorems 2.8 and 2.10 give robustness of the exponential separation and continuity of the principal spectrum
and principal Floquet bundle under perturbations of the operator L and the domain Ω . More precisely, (2.15) and
(2.18) imply that the principal spectrum depends continuously on such perturbations. Similarly, (2.17), (2.19) give
the continuous dependence of the principal Floquet bundles. The interesting and nontrivial part here is that in our
general time-dependent case the estimates are uniform with respect to t ∈ R (cp. [20, Theorem 1.1(i)]). These results
extend the well-known continuity properties of the principal eigenvalue and eigenfunction of elliptic and time-periodic
parabolic operators (see [2,3,6–8], for example). It is also well-known that in the elliptic or time-periodic case, the gap
between the principal eigenvalue and the rest of the spectrum of the corresponding operator is a lower semicontinuous
function of the domain and the coefficients. Our lower estimate on γ

L̃
(γΩ̃ ) extends this result to general time-

dependent equations.
The robustness results do not seem to hold in the non-divergence case in the same generality. The main obstacle is

the lack of similar continuity properties of the evolution operator as in the divergence case, see Sections 8, 9.

3. Preliminaries I: Harnack inequalities and estimates of positive solutions

For the results in this section we do not need any existence theorem for (1.1). In particular, no continuity assumption
on the coefficients of L are needed. For simplicity of notation we state the results on the interval (0,∞), the results
being true on any interval.

First we state the comparison principle (see [26]).

Theorem 3.1. Let u1, u2 be two solutions of (1.1) on Ω × (0,∞), and let u1 � u2 on Ω × {0}. Then u1 � u2 on
Ω × (0,∞).



J. Húska et al. / Ann. I. H. Poincaré – AN 24 (2007) 711–739 719
Corollary 3.2. Let u1, u2 be two solutions of (1.1) on Ω × (0,∞), and let u1 > 0 on Ω × (0,∞). Then we have for
any s > 0

sup
Ω×(s,∞)

u2

u1
= M(s) := sup

Ω×{s}
u2

u1
, inf

Ω×(s,∞)

u2

u1
= m(s) := inf

Ω×{s}
u2

u1
. (3.1)

In particular,

M(t) � M(s), m(t) � m(s) for t � s > 0. (3.2)

Proof. The inequality for M(t) is trivial if M(s) = ∞, and it follows directly from Theorem 3.1 if M(s) = 0 or
M(s) = 1. In case M(s) /∈ {0,∞}, dividing u2 by M(s), we can reduce the proof of the first equality in (3.1) to the
case M(s) = 1. The equality for m(t) follows by changing the sign of u2. �

In case L is as in (ND), the following theorem is a simple consequence of the standard maximum principle (see
e.g. [26, Theorem 7.1]). In case L is as in (D), it is proved in [24, Theorem III.7.1].

Theorem 3.3. Let u be a solution of (1.1) on Ω × (0,∞) such that u ∈ C( 
Ω × [0,∞)). Then there is a constant C

depending on N , α0, and d0, such that for any t � 0 one has∥∥u(t + τ)
∥∥

L∞(Ω)
� C

∥∥u(t)
∥∥

L∞(Ω)
(τ ∈ [0,1]). (3.3)

Next we state the interior Harnack inequality [23,26,33]. For any δ > 0, define

Ωδ := {
x ∈ Ω: dist(x, ∂Ω) > δ

}
.

Theorem 3.4. Let v be a nonnegative solution of vt + Lv = 0 on Ω × (0,∞) and let T > 0 be arbitrary. Suppose
δ ∈ (0, T ) is such that δ � r0/2 (r0 as in (1.7)) and let X = (x, t), Y = (y, s) be such that x, y ∈ Ωδ , s � δ2, and
T � t − s � δ2. Then there is a positive constant C depending only on δ, T , N , α0, d0, R0 such that one has

v(Y ) � Cv(X). (3.4)

To state the next results, we introduce some notation. For X = (x, t) ∈ R
N+1, we define a parabolic cylinder to be

Cr(X) = Cr(x, t) ≡ Br(x) × (
t − r2, t + r2).

Further, let us denote

Qr(X) = (
Ω × (0,∞)

) ∩ Cr(X).

According to the Lipschitz properties of Ω , for y ∈ ∂Ω there is an orthonormal system with y as the origin (0,0)

and (0, r) ∈ Ω for all r ∈ (0, r0]. The new coordinates for Y = (y, s) ∈ R
N+1 are (0,0, s). In this coordinate system

write

Y r = (
0, r, s + 2r2), Y r = (

0, r, s − 2r2).
We now recall two results from [12,13]. The first one is often referred to as a boundary Harnack inequality. We say
that a function defined on an open set Q ⊂ R

N+1 continuously vanishes on Γ ⊂ ∂Q if it has a continuous extension
to Q ∪ Γ , which vanishes on Γ .

Theorem 3.5. Let Y = (y, s) ∈ ∂Ω × (0,∞) and 0 < r � 1
2 min(r0,

√
s ). Then for any nonnegative solution v of

vt + Lv = 0 on Ω × (0,∞) which continuously vanishes on (∂Ω × (0,∞)) ∩ C2r (Y ), we have

sup
Qr(Y )

v � Cv(Y r).

The constant C depends only on N , d0, α0, M0.

The next estimate states that the quotient of two positive solutions is bounded near the portion of the lateral bound-
ary where each solution vanishes.
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Theorem 3.6. Let X0 = (x0, t0) ∈ ∂Ω × (0,∞). Assume that u and v are two positive solutions of wt + Lw = 0 on
Ω × (0,∞) which continuously vanish on (∂Ω × (0,∞)) ∩ C2r (X0) with 0 < r � 1

2 min(r0,
√

t0 ). Then

sup
Qr(X0)

u

v
� C

u(X0r )

v(X0 r
)
.

The constant C depends only on N , d0, α0, M0.

Theorems 3.5, 3.6 are proved in [12] for equations of divergence form and in [13] for equations of nondivergence
form. Although only equations without lower order terms are considered in these papers, the results hold also in the
general case. Indeed, since these results are local (solutions are required to vanish on a portion of the boundary only),
they carry over to the present situation by considering the method of additional variable. This is done in two steps.
First, one assumes that the coefficients of the equation in question are smooth. Applying the method of additional
variable (see, e.g., [14] or [20] for details), one derives the results for equations containing lower order terms. Finally,
since all the estimates are independent of smoothness, one can take limits (as in [14]) to obtain the results in our more
general setting.

Combining the above results, we will be able to prove the following elliptic-type Harnack inequality.

Theorem 3.7. Suppose v is a nonnegative solution of (1.1) on Ω ×(0,∞) and let T ∈ (0,∞), 0 < r � 1
2 min(r0,

√
T ).

Then

sup
Ωr×(r2,T )

v � C inf
Ωr×(r2,T )

v. (3.5)

The constant C depends only on r , T , N , α0, d0, M0, R0.

Let us mention that this inequality is known for equations without lower order terms (see [11,15]). The general
case follows from the above results as in the proof of Theorem 1.3 in [11]. Since the proof is short we include it here
for the reader’s convenience (note that the method of additional variable does not apply here as the result is not local).

Proof of Theorem 3.7. Let (x0, t0), (x1, t1) ∈ Ωr × (r2, T ). Theorems 3.5 and 3.4 imply that for all x2 ∈ Ω such
that dist(x2, ∂Ω) � r one has supx∈Ω v(x, r2/8) � Cv(x2, r

2/4). Applying (3.4) to the right-hand side of the last
inequality and using Theorem 3.3, we obtain for i = 0,1

sup
x∈Ω

v
(
x, r2/8

)
� C1v(xi, ti) � C1 sup

x∈Ω

v(x, ti) � C2 sup
x∈Ω

v
(
x, r2/8

)
, (3.6)

with a constant C2 depending only on r , T , N , α0, d0, M0, R0. Inequality (3.6) with i = 0,1 implies (3.5). �
The next proposition will be used in the proof of Lemma 3.9 below. It is proved in [12,13].

Proposition 3.8. Let v be a nonnegative solution of vt + Lv = 0 on Ω × (0,∞). Take Y = (y, s) ∈ ∂Ω × (0,∞) and
0 < r � 1

2 min(r0,
√

s ). Then

v(Y r) � Crθ inf
Qr(Y )

(
d−θ v

)
,

where d = d(x) ≡ dist(x, ∂Ω), and C,θ are positive constants depending only on N , d0, α0, r0, R0, M0.

The following lemma contains an important pointwise estimate, which is also of independent interest. In a slightly
weaker form the lemma has been proved in [20].

Lemma 3.9. For any δ > 0 and any positive solution v of (1.1) on Ω × (0,∞) one has

v(x, t)

‖v(t)‖L∞(Ω)

� C
(
d(x)

)θ (
(x, t) ∈ Ω × [δ,∞)

)
, (3.7)

where d(x) = dist(x, ∂Ω) and θ is as in Proposition 3.8. The constant C depends only on δ, N , d0, α0, r0, R0, M0.
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Proof. Fix t � δ, r1 = 1
2 min(r0,

√
δ). Note that if x ∈ Ω is such that d(x) = dist(x, ∂Ω) � r1/

√
M2

0 + 1, then (3.6)
implies (3.7) with a constant C depending only on δ, N , d0, α0, r0, R0, M0. We now consider x ∈ Ω such that d(x) �
r1/

√
M2

0 + 1. Using the notation introduced just before Theorem 3.5, we let y = (0,0) ∈ ∂Ω . An easy geometric
argument shows that for r ∈ (0, r0) we have

dist
(
(0, r), ∂Ω

) ∈
[

r√
M2

0 + 1
, r

]
. (3.8)

Our assumption on d(x) implies that there exists Y = (y, t) ∈ ∂Ω × {t} such that (x, t) ∈ Qr1(Y ). Moreover, we can
find x̃ ∈ Ω such that Y r1

= (x̃, t − 2r2
1 ). Using Proposition 3.8, we see that

v(x, t) � C−1r−θ
1 d(x)θv

(
x̃, t − 2r2

1

)
.

Notice that by (3.8) we have d(x̃) ∈ [r1/

√
M2

0 + 1, r1]. Thus, by what we said at the beginning of this proof, we have

C1v(x̃, t − 2r2
1 ) � ‖v(t − 2r2

1 )‖L∞(Ω) for some positive constant C1 depending only on r1, N , d0, α0, r0, R0, M0.
Finally, by Theorem 3.3, C2‖v(t − 2r2

1 )‖L∞(Ω) � ‖v(t)‖L∞(Ω). Combining the above estimates we obtain the desired
inequality with C = C−1C1C2. �

As an immediate consequence we get

Corollary 3.10. Let δ > 0. Then there exists a positive constant C depending only on δ, N , d0, α0, r0,R0,M0, such
that if v is a positive solution of (1.1) on Ω × (0,∞) one has for any τ ∈ [0,1]

‖v(t + τ)‖L∞(Ω)

‖v(t)‖L∞(Ω)

∈
[

1

C
,C

]
(t > δ). (3.9)

Proof. The upper bound is a trivial consequence of Theorem 3.3. The lower bound is proved as follows. Choose a
point x0 ∈ Ω such that dist(x0, ∂Ω) � r0/(1 + M0). The Harnack inequality (3.4) implies v(x0, t) � Cv(x0, t + 1)

with some positive constant C. Our special choice of x0 and Lemma 3.9 imply that v(x0, t + i) is comparable to
‖v(t + i)‖L∞(Ω), i = 0,1, and we thus get the desired lower bound for τ = 1. Combining it with Theorem 3.3 we get
the lower bound for any τ ∈ [0,1]. �
4. Proofs of Theorem 2.1 and its corollaries

Proof of Theorem 2.1. The desired estimate will be obtained by combining the results from the previous section. We
start by a preliminary estimate. Fix an arbitrary X0 = (x0, t0) with x0 ∈ ∂Ω and t0 � δ0. Set

r1 := min

{
r0

2
,

√
δ0

2

}
, ρ := r1

1 + M0
,

Qr1 := (
Ω ∩ Br1(x0)

) × (
t0 − r2

1 , t0 + r2
1

)
.

By Theorem 3.6,

sup
Qr1

u2

u1
� C1

u2(X0 r1)

u1(X0 r1
)

(4.1)

with a constant C1 � 1 depending only on N , d0, α0, M0. As in the proof of Lemma 3.9 we can write X0 r1
=

(y0, t0 − 2r2
1 ) for some y0 ∈ Ω ∩ Br1(x0), such that d(y0) := dist(y0, ∂Ω) > ρ. Note that the points (y0, t0 ± 2r2

1 )

belong to the cylinder

Qρ := Ωρ ×
(

t0 − δ0
, t0 + δ0

)
, where Ωρ := {

x ∈ Ω: d(x) > ρ
}
. (4.2)
4 4
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Therefore, the previous estimate implies

sup
Qr1

u2

u1
� C1M2m

−1
1 , where Mj := sup

Qρ

uj , mj := inf
Qρ

uj . (4.3)

We now derive inequality (2.2) for any t � δ0. Take t0 = t . For each x ∈ Ω consider separately the two possible cases:
(i) d(x) := dist(x, ∂Ω) � ρ, and (ii) d(x) > ρ. In the case (i), we take x0 ∈ ∂Ω such that |x − x0| = d(x) � ρ < r1, so
that (x, t0) ∈ Qr1 . Then, by (4.3), u2(x, t0)/u1(x, t0) does not exceed C1M2m

−1
1 . In the other case (ii), (x, t0) ∈ Qρ ,

so that u2(x, t0)/u1(x, t0) � M2m
−1
1 � C1M2m

−1
1 as well. We have thus shown that

M(t) := sup
Ω×{t}

u2

u1
� C1M2

m1
. (4.4)

Interchanging u1 and u2, we also get

m(t) := inf
Ω×{t}

u2

u1
=

(
sup

Ω×{t}
u1

u2

)−1

�
(

C1M1

m2

)−1

= m2

C1M1
. (4.5)

Now it remains to apply (3.5) which guarantees that Mj � C2mj for j = 1,2, with another constant C2 � 1 depending
only on δ0, N,α0, d0, r0,R0,M0. This gives the desired estimate (2.2) with C := C2

1C2
2 . �

Proof of Corollary 2.3. Using Corollary 3.2 with u1 := v and u2 := u, we immediately get (2.4):

ω(t) = M(t) − m(t) � M(s) − m(s) = ω(s) (t � s).

For the proof of (2.5), we use Corollary 3.2 with u1 := v and

u2(x, t) := u(x, t) − m0(s) · u1(x, t), where m0(s) := inf
Ω×{s}

u

u1
.

(Note that we are assuming that m0(s) is finite.)
Since m(s) = 0, the corollary gives u2 � 0 in Ω × (s,∞), and (2.5) then follows from Theorem 2.1:

ω(t) = M(t) − m(t) �
(
1 − C−1)M(t) = μM(t) � μM(s) = μ

(
M(s) − m(s)

) = μω(s) (t � s + 1).

Thus the corollary is proved. �
Proof of Corollary 2.4. For any t ∈ R define

�max(t) := sup
Ω

(
u2(t)

u1(t)

)
, �min(t) := inf

Ω

(
u2(t)

u1(t)

)
.

Thus oscΩ(u2(t)/u1(t)) = �max(t) − �min(t). Theorem 2.1 implies that oscΩ(u2(t)/u1(t)) < ∞ for all t ∈ R. By
Corollary 3.1, �max(t) is nonincreasing and �min(t) is nondecreasing. By Corollary 2.3, we have

lim
t→∞ oscΩ

(
u2(t)

u1(t)

)
= 0.

Thus for some q ∈ (0,∞)

lim
t→∞�max(t) = lim

t→∞�min(t) = q.

It follows that the function u = u2 − qu1 is a solution of (1.1) on Ω × R, which vanishes somewhere in Ω for all
t ∈ R and consequently infΩ(u2(t)/qu1(t)) � 1 for all t . Using this fact and Theorem 2.1 we discover that

sup
Ω

u2(t)

qu1(t)
� C inf

Ω

u2(t)

qu1(t)
� C,

with a constant C independent of t ∈ R. This implies that oscΩ(u2(t)/qu1(t)) is bounded on all of R. Moreover, by
Corollary 2.3, this function is exponentially decreasing on R. This is only possible if oscΩ(u2(t)/qu1(t)) ≡ 0 for all
t ∈ R and that happens only if u2 ≡ qu1. The proof is complete. �
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5. Preliminaries II: The evolution operator

Consider the following initial value problem

ut + Lu = 0 in Ω × (s, T ),

u = 0 on ∂Ω × (s, T ),

u = u0 in Ω × {s},
(5.1)

where s, T ∈ R, s < T .
In this section we give the basic existence result for this problem and list several properties of the corresponding

evolution operator. Since the assumptions differ slightly in the divergence and non-divergence cases, we treat these
cases separately.

5.1. Divergence case

In this subsection we assume that L is as in (D) with coefficients satisfying (1.4) and (1.2).
Recall that our notion of the solution of (5.1) coincides with the notion of the weak solution from [24,26]. For

any u0 ∈ L2(Ω), and s < T , the weak solution of (5.1) exists, it is unique and can be (uniquely) extended to a
solution on (s,∞). Denote the solution by U(t, s)u0, t � s. Let ‖ · ‖p,q stand for the operator norm of the space
L(Lp(Ω),Lq(Ω)) of bounded linear operators from Lp(Ω) to Lq(Ω). It is well known that the evolution operator
U(t, s), t � s, satisfies the following Lp − Lq estimates (see [9], for example).

Proposition 5.1. For all 1 � p � q � ∞, t, s ∈ R, t > s, one has U(t, s) ∈L(Lp(Ω),Lq(Ω)) and∥∥U(t, s)
∥∥
L(Lp(Ω),Lq(Ω))

� C(t − s)
− N

2 ( 1
p

− 1
q
) eω(t−s),

where C � 1 and ω ∈ R are constants depending only on N , d0, α0. Moreover, for any u0 ∈ L2(Ω) and T � s one
has U(·, s)u0 ∈ C([s, T ];L2(Ω)).

Another property of the evolution operator U(t, s) we will use is positivity. For any p ∈ (1,∞) and u0 ∈ Lp(Ω),
u0 � 0, we have U(t, s)u0 � 0 for all t � s (see [9]). This can be improved on: nonnegative nontrivial solutions are
strictly positive. It is a direct consequence of the Harnack inequality (3.4).

Besides positivity, the evolution operator has a smoothing property. In this regard, we mention the following stan-
dard regularity result [24, Chapter III, Theorem 10.1]. We use the usual notation for the parabolic Hölder spaces.

Theorem 5.2. Let u be the (weak) solution of (5.1) with u0 ∈ L2(Ω). Then for any T > s we have u ∈ C
α, α

2
loc ( 
Ω ×

(s, T ]), and for any δ > 0 (δ < T − s) the norm ‖u‖
C

α, α
2 ( 
Ω×[s+δ,T ]) is estimated from above by a constant depend-

ing only on N , d0 in (1.2), supΩ×(s,T ) |u|, α0 in (1.4), constants r0,R0,M0 in (1.7) and δ. The exponent α > 0 is
determined only by N,d0, α0.

If, in addition, it is known that u0 ∈ Cβ( 
Ω) ∩ C0( 
Ω) for some β > 0, then the norm ‖u‖
C

α, α
2 ( 
Ω×[s,T ]) is estimated

from above by a constant depending only on N , d0, supΩ×(s,T ) |u|, α0, r0, R0, M0, β and the norm ‖u0‖Cβ( 
Ω). The
exponent α belongs to (0, β] and is determined by N,d0, α0.

Combining Lp–Lq estimates, Corollary 3.10, and Lemma 3.9, one proves the following result.

Corollary 5.3. There exists a constant C depending only on N , d0, α0, r0, R0, M0, such that for any 1 � p,q � ∞
and any positive entire solution u of (1.1) the following statements hold:

(i)
u(x, t)

‖u(t)‖Lp(Ω)

� C
(
d(x)

)θ
((x, t) ∈ Ω × (−∞,∞)), (5.2)

where d(x) = dist(x, ∂Ω) and θ is as in Lemma 3.9 (it is a constant depending only on N , d0, α0, r0, R0 and M0).
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(ii) sup
|t−s|�1
s,t∈R

‖u(s)‖Lp(Ω)

‖u(t)‖Lq(Ω)

� C. (5.3)

Let us now turn our attention to (2.12). One can prove (see [9]) that there is a well defined evolution operator,
henceforth denoted by U∗(t, s), t � s, for the adjoint problem (2.12). Reversing time, we obtain

U∗(t, s) = Ũ (−t,−s) (t � s),

where Ũ (t, s), t � s, is the (“forward”) evolution operator for the problem

wt + L̃∗w = 0, x ∈ Ω,

w = 0 x ∈ ∂Ω,

where L̃∗ is obtained from L∗ by replacing t with −t . This problem is of the same form as (5.1) and thus U∗(t, s) has
the same smoothing and positivity properties as U(t, s). We will use this fact frequently without notice.

The following proposition summarizes some properties of weak Green’s functions we will need later. The first
three statements below are proved in [1] and for the last one we refer the reader to [9].

Proposition 5.4. There exists a unique weak Green’s function k(x, t; ξ, s) associated with (5.1) with the following
properties.

(i) For any u0 ∈ L2(Ω) the solution u = U(t, s)u0 of (5.1) is given by

u(x, t) =
∫
Ω

k(x, t; ξ, s)u0(ξ)dξ ((x, t) ∈ Ω × (s,∞)),

and the solution v = U∗(s, t)u0 of the adjoint problem (2.12) is given by

v(ξ, s) =
∫
Ω

k(x, t; ξ, s)u0(x)dx ((ξ, s) ∈ Ω × (−∞, t)).

(ii) The function k(·, ·; ξ, s): Ω × (s,∞) → R is a positive solution of (1.1) on Ω × (s,∞).
(iii) The function k(·, ·; ξ, s) is bounded on Ω × (s + τ, s + 1) by a constant C(τ) depending only on τ ∈ (0,1), N ,

α0 and d0.
(iv) Let Ω1 ⊆ Ω2 be two bounded domains in R

N and let ki(x, t; ξ, s), i = 1,2, be the corresponding weak Green’s
functions. Then, extending k1(·, ·; ξ, s) by zero outside Ω1, we have

k1(x, t; ξ, s) � k2(x, t; ξ, s) ((x, t) ∈ Ω2 × (s,∞)).

The integral representation of solutions, as given in statement (i), and the Fubini theorem readily imply the follow-
ing identity〈

U(t, s)u, v
〉 = 〈

u,U∗(s, t)v
〉

(u, v ∈ L2(Ω), t � s). (5.4)

5.2. Non-divergence case

Let us now handle the case when L is as in (ND). In this case we assume, in addition to (1.4) and (1.2), that
aij ∈ C(Ω × R), i, j = 1, . . . ,N . Consider again the initial value problem (5.1). Recall that this time we consider
strong solutions as defined in the beginning of Section 2. We have the following result regarding the well-posedness.

Proposition 5.5. Assume u0 ∈ C0( 
Ω). Then the initial value problem (5.1) has a unique solution u; the solution is
contained in W

2,1,p

loc (Ω × (s, T )) ∩ C( 
Ω × [s, T ]) for all p > 1 and it satisfies the following estimate∥∥u(t)
∥∥

L∞(Ω)
� em(t−s)‖u0‖L∞(Ω) (t ∈ [s, T ]), (5.5)

where m = supΩ×(s,T )(−c0) � d0 (d0 is as in (1.2)).
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This result can be derived from uniform estimates of the moduli of continuity of solutions vanishing on the lateral
side of a Lipschitz cylinder. In a more general setting, these estimates are contained in Theorem 6.32 (in the case (D))
and Corollary 7.30 (in the case (ND)) of the monograph [26]. For completeness of presentation, we give an alternative
proof in Appendix A.

6. Proof of Theorem 2.2

As a preparatory step we prove the following technical lemma.

Lemma 6.1. Let u and v be as in the statement of Theorem 2.2. Suppose that for some k � s and some constant η > 0
the following inequality holds∥∥u(k)

∥∥
L∞(Ω)

� η
∥∥u(k + 1)

∥∥
L∞(Ω)

. (6.1)

Then one has

sup
Ω

|u(k + 1)|
v(k + 1)

� Cη
‖u(k + 1)‖L∞(Ω)

‖v(k + 1)‖L∞(Ω)

, (6.2)

where C is a constant depending only on N,d0, α0, r0,R0,M0.

For future use we note that for all positive bounded functions a, b on Ω we have the following elementary inequal-
ities

inf
Ω

a

b
� ‖a‖L∞(Ω)

‖b‖L∞(Ω)

� sup
Ω

a

b
. (6.3)

Proof of Lemma 6.1. For any real valued function f , denote by f+ (f−) the positive (negative) part of f . As above
let u(·, t; s, u0) denote the solution of (1.1) on Ω × (s,∞) with the initial condition u(·, s) = u0. By uniqueness of
solutions of initial value problems, we see that for all (x, t) ∈ 
Ω × [k,∞)

u(x, t) = u1(x, t) − u2(x, t),

where u1(x, t) = u(x, t; k,u+(k)), u2(x, t) = u(x, t; k,u−(k)). Our assumption on u implies that for each t > k the
functions u1(·, t) and u2(·, t) are equal at some point x(t) ∈ Ω . Since they are nonnegative, by Lemma 3.4 either both
of them are identically zero or they are positive in Ω × (k,∞). The first case is trivial so we shall assume that u1 (and
hence also u2) is positive. Taking this into account and applying Theorem 2.1, we get

sup
Ω

u2(k + 1)

u1(k + 1)
� C1 inf

Ω

u2(k + 1)

u1(k + 1)
� C1, (6.4)

where C1 = C1(N,α0, d0, r0,R0,M0). Using Theorem 3.3 and our assumption (6.1), we derive∥∥u1(k + 1)
∥∥

L∞(Ω)
� C

∥∥u1(k)
∥∥

L∞(Ω)
= C

∥∥u+(k)
∥∥

L∞(Ω)
� C

∥∥u(k)
∥∥

L∞(Ω)
� Cη

∥∥u(k + 1)
∥∥

L∞(Ω)
. (6.5)

Estimates in (6.3) and Theorem 2.1 imply the following inequalities

inf
Ω

u1(k + 1)

v(k + 1)
� ‖u1(k + 1)‖L∞(Ω)

‖v(k + 1)‖L∞(Ω)

� sup
Ω

u1(k + 1)

v(k + 1)
� C1 inf

Ω

u1(k + 1)

v(k + 1)
. (6.6)

Utilizing (6.6), (6.4), and (6.5), we finally get

sup
Ω

|u(k + 1)|
v(k + 1)

= sup
Ω

u1(k + 1)

v(k + 1)

|u(k + 1)|
u1(k + 1)

� sup
Ω

u1(k + 1)

v(k + 1)
sup
Ω

|u(k + 1)|
u1(k + 1)

� C1 inf
Ω

u1(k + 1)

v(k + 1)
sup
Ω

u1(k + 1) + u2(k + 1)

u1(k + 1)
� C1(1 + C1)

‖u1(k + 1)‖L∞(Ω)

‖v(k + 1)‖L∞(Ω)

� C1C(1 + C1)η
‖u(k + 1)‖L∞(Ω)

‖v(k + 1)‖L∞(Ω)

,

completing the proof. �
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We are ready to give the proof of Theorem 2.2.

Proof of Theorem 2.2. Let u and v be as in the statement of the theorem. Theorem 3.3 gives∥∥u(t)
∥∥

L∞(Ω)
� C

∥∥u(s + n)
∥∥

L∞(Ω)
for t ∈ [s + n, s + n + 1], n � 0

with a constant C independent of u, s, n. This estimate and Corollary 3.10 imply

‖u(t)‖L∞(Ω)

‖v(t)‖L∞(Ω)

� C1
‖u(s + n)‖L∞(Ω)

‖v(s + n)‖L∞(Ω)

(t ∈ [s + n, s + n + 1], n � 0) (6.7)

with a possibly bigger constant C1, which is again independent of u, v, s, n.
Let μ ∈ (0,1) be as in (2.5) and denote by C2 the constant in Corollary 3.10 (with δ set equal to 1 in it). We have

the following two (mutually exclusive) possibilities:
(a) For all k � s

‖u(k + 1)‖L∞(Ω)

‖u(k)‖L∞(Ω)

<
μ

C2

(
� μ

‖v(k + 1)‖L∞(Ω)

‖v(k)‖L∞(Ω)

)
or else

(b) the assumptions of Lemma 6.1 are satisfied for some k with η = C2/μ.
Assume (a) holds. Using first (6.7) and afterward the assumed inequality repeatedly, we find that

‖u(t)‖L∞(Ω)

‖v(t)‖L∞(Ω)

� C1
‖u(s + [t − s])‖L∞(Ω)

‖v(s + [t − s]‖L∞(Ω)

� C1μ
[t−s] ‖u0‖L∞(Ω)

‖v(s)‖L∞(Ω)

(t � s)

� C1

μ
e−(− logμ)(t−s) ‖u0‖L∞(Ω)

‖v(s)‖L∞(Ω)

, (6.8)

where [t] stands for the integer part of t . We thus get the estimate of Theorem 2.2 with C = C1
μ

and γ = − logμ.
Assume now that (b) occurs, i.e., for some k � s

‖u(k + 1)‖L∞(Ω)

‖u(k)‖L∞(Ω)

� μ

C2
.

Let us call k0 the smallest k � s such that the above inequality holds. Just as in (a), we get estimate (6.8) for all
t ∈ [s, k0]. Note that, in view of (6.7), the same estimate holds for t ∈ [s, k0 + 1] possibly after C1 is made larger.
Suppose now t � k0 + 1. We claim supΩ(|u(t̃ )|/v(t̃ )) < ∞ for all t̃ > s. Indeed, we can write

u(x, t̃ ) = u1(x, t̃ ) − u2(x, t̃ ),

where u1(x, t̃ ) = u(x, t̃; s, u+(s)), u2(x, t̃ ) = u(x, t̃; s, u−(s)) are nonnegative solutions of (1.1). By Theorem 2.1
one has supΩ(ui(t̃ )/v(t̃ )) < ∞, i = 1,2, which proves the claim. This observation enables us to use Corollary 2.3.
Using successively estimates (6.7), (6.3), (2.5), estimate (6.2) with k = k0 and η = C2

μ
, and (6.8) for t ∈ [s, k0 + 1],

we deduce

‖u(t)‖L∞(Ω)

‖v(t)‖L∞(Ω)

� C1
‖u(k0 + [t − k0])‖L∞(Ω)

‖v(k0 + [t − k0])‖L∞(Ω)

� C1 sup
Ω

|u(k0 + [t − k0])|
v(k0 + [t − k0]) � C1 osc

Ω

u(k0 + [t − k0])
v(k0 + [t − k0])

� C1μ
[t−k0]−1 oscΩ

u(k0 + 1)

v(k0 + 1)
� 2C1μ

[t−k0]−1 sup
Ω

|u(k0 + 1)|
v(k0 + 1)

� 2C1μ
[t−k0]−1 CC2

μ

‖u(k0 + 1)‖L∞(Ω)

‖v(k0 + 1)‖L∞(Ω)

� 2C2
1CC2μ

[t−k0]−2 ‖u(s + [k0 + 1 − s])‖L∞(Ω)

‖v(s + [k0 + 1 − s])‖L∞(Ω)

� 2C3μ
[t−k0]−2μ[k0+1−s] ‖u0‖L∞(Ω)

‖v(s)‖L∞(Ω)

� 2C3

μ3
μ(t−s) ‖u0‖L∞(Ω)

‖v(s)‖L∞(Ω)

.

Thus in this case we have established estimate (2.3) from Theorem 2.2 with C = 2C3
μ3 and γ = − logμ, as desired.

Since all possibilities were covered, the proof is complete. �
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Remark 6.2. We remark that in our general setting, the unique continuation theorem may not hold. Therefore it may
happen, in principle, that for some u0 ∈ C0( 
Ω) the solution u(·, t; s, u0) changes sign for all t in some interval (s, t1)

and it is identical to 0 for t = t1 (hence, by Theorem 3.3, also for all t � t1). The statement of Theorem 2.2 remains
valid for such initial data as well. Indeed, as in the above proof, one shows that the estimate is valid for t ∈ (s, t1). For
t � t1, the estimate is trivial.

7. Proofs of Theorem 2.6 and Theorem 2.7

Proof of Theorem 2.6. For the proof of existence of the positive entire solution ϕL, we refer the reader to [20]. The
uniform bound on λ(ϕL), λ̄(ϕL) follows immediately from Corollaries 3.10 and 5.3. This proves statement (i).

We continue with the proof of (iii). Let u0 ∈ X2
L(s) (with X2

L(s) as defined in statement (ii)). Then, either
u(·, t; s, u0) changes sign for all t , or it becomes (and remains) nonnegative or nonpositive. In the latter case it must
be identically zero for all sufficiently large t , for the Harnack inequality rules out the possibility of it being nontrivial
and having a zero in Ω . Thus Theorem 2.2 applies to u(·, t; s, u0) (see also Remark 6.2). Estimate (2.11) now follows
from (2.3) and an easy combination of Corollary 3.10 and the L2–L∞ estimates from Proposition 5.1.

Finally, we prove (ii). The invariance properties of Xi
L(t), t ∈ R, i = 1,2, are obvious from the definitions. To

prove that X2
L(t) is a closed subspace of X (for X1

L(t) this is trivial), we first give an equivalent characterization of
the set X2

L(s), for any s ∈ R. Fix γ as in (iii). Then

X2
L(s) =

{
u0 ∈ X:

‖u(·, t; s, u0)‖X

‖ϕL(·, t)‖X

eγ (t−s) is bounded for t � s

}
. (7.1)

Indeed, by statement (iii), the expression in (7.1) is bounded for each u0 ∈ X2
L(s). On the other hand, if u0 /∈

X2
L(s), then u(·, t; s, u0) is of one sign (positive or negative) for all large t . Then Theorem 2.1 with u1 = ϕL,

u2 = |u(·, t; s, u0)| readily implies that the expression in (7.1) is unbounded.
From (7.1) and the linear dependence of u(·, t; s, u0) on u0 it clearly follows that X2

L(s) is a subspace of X. To
prove that it is closed, consider a sequence un ∈ X2

L(s) approaching some u0 ∈ X. It follows from statement (iii) that
the expression in (7.1) with u0 replaced by un is bounded by a constant independent of n. Taking the limit we obtain
that the expression with u0 is bounded, hence u0 ∈ X2

L(s).
It remains to prove (2.10). Obviously, X1

L(t)∩X2
L(t) = {0}. Let u0 ∈ X. The arguments in the proof of Theorem 2.3

show that supΩ |u(t̃, t, u0)|/ϕL(t̃ ) < ∞ for all t̃ > t . As in the proof of Corollary 2.4, for some q ∈ R we have

sup
Ω

u(t̃, t, u0)

ϕL(t̃)
↗ q, inf

Ω

u(t̃, t, u0)

ϕL(t̃)
↘ q

as t̃ → ∞. Then w(t̃ ) := u(t̃, t, u0) − qϕL(t̃ ) is a solution of (1.1) on Ω × (t,∞) which has a zero in Ω for all t̃ � t .
In particular, w(t) ∈ X2

L(t). Since u0 = w(t) + qϕL(t), (2.10) is proved. �
Proof of Theorem 2.7. The proof of the existence of ψL with the required properties is the same as the proof of (i) of
Theorem 2.6. To prove the characterization for X2

L(t), t ∈ R, we refer to the following general fact. If u is a solution
of (1.1) on (−∞, t0) and v is the solution of (2.12) with v(·, t0) = v0 ∈ L2(Ω) then, using (5.4), one easily verifies
that we have〈

u(·, t), v(·, t)〉 := ∫
Ω

u(x, t)v(x, t)dx ≡ const. (7.2)

This relation implies that the orthogonal complement (in L2(Ω)) of ψL(t) is a codimension one subspace of L2(Ω)

contained in X2
L(t). Therefore it must be equal to X2

L(t). �
8. Proof of Theorem 2.8

We shall use the same notation as in the statement of the theorem. Let UL(·, ·), U
L̃
(·, ·) be the evolution operators

associated with L, L̃, respectively, see Subsection 5.1. They have the following continuity property with respect to the
coefficients.
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Lemma 8.1. Let L, L̃ be as in Theorem 2.8 and assume that (2.14) holds for some δ > 0. Then there is a constant
C = C(N,α0, d0,R0) such that for any t, s ∈ R with 0 � t − s � 1 we have∥∥UL(t, s) − U

L̃
(t, s)

∥∥
L(L2(Ω))

� Cδ. (8.1)

Proof. Let u0 ∈ L2(Ω) and let u be the solution of (5.1). Similarly, for the same u0, let ũ be the solution of (5.1),
where L is replaced by L̃. We will use some well known facts from [24] (see Chapter III, in particular) and adhere to
the notation used in that book. Let w = u − ũ. Then it is the solution of the following initial value problem

vt + Lv = ∂ifi − f in Ω × (s,∞),

v = 0 on ∂Ω × (s,∞),

v = 0 in Ω × {s},
(8.2)

where

fi = (aij − ãij )∂j ũ + (ai − ãi )ũ,

f = (bi − b̃i )∂i ũ + (c0 − c̃0)ũ

(we use the summation convention as above).
The energy inequality [24, Theorem III.2.1] implies

max
s�t�s+1

∥∥w(t)
∥∥

L2(Ω)
+ ‖w‖

L2((s,s+1),W
1,2
0 (Ω))

� C

(
N∑

i=1

‖fi‖L2(Ω×(s,s+1)) + ‖f ‖L2(Ω×(s,s+1))

)
� Cδ‖ũ‖

L2((s,s+1),W
1,2
0 (Ω))

, (8.3)

where C depends only on N,α0, d0,R0. Now, the same energy inequality applied to the solution ũ of (5.1) gives
that the right-hand side of (8.3) is bounded above by Cδ‖u0‖L2(Ω) with a possibly larger C. Putting these estimates
together, we obtain

max
s�t�s+1

∥∥w(t)
∥∥

L2(Ω)
� Cδ‖u0‖L2(Ω).

Since w(t) = UL(t, s)u0 − U
L̃
(t, s)u0 and u0 ∈ L2(Ω) was arbitrary, the assertion of Lemma 8.1 is proved. �

Remark 8.2. Note that by Proposition 5.1 we have ‖UL(t, s)‖L(L2(Ω)) � 
C for a suitable constant 
C, whenever
0 � t − s � 1. Combining this with estimate (8.1) and the fact that UL(·, ·) satisfies the usual composition property
of evolution operators, we get ‖UL(t, s) − U

L̃
(t, s)‖L(L2(Ω)) � n
CCn−1δ, where C is as in Lemma 8.1, n � 1 is an

integer and t, s ∈ R are such that 0 � t − s � n. Obviously, n
CCn−1 is estimated from above by (2 max{
C,C})n,
which, in turn, can be written as Cn for another constant C depending only on the constants listed in Lemma 8.1.
Thus, replacing the assumption 0 � t − s � 1 in Lemma 8.1 by 0 � t − s � n, n being an integer with n � 1, we get
estimate (8.1) with C replaced by Cn. We will use this observation in the sequel.

We next prove the continuity properties of λ̄(ϕL), λ(ϕL).

Proposition 8.3. Let L, L̃ be as in Theorem 2.8. For each ε > 0 there exist numbers C(ε) > 0, δ(ε) > 0, depending
only on ε and N , α0, d0, r0, R0, M0, such that if (2.14) holds with δ � δ(ε) then for all t � s

e−ε(t−s)

C(ε)

‖ϕ
L̃
(t)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

� ‖ϕL(t)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

� C(ε)eε(t−s)
‖ϕ

L̃
(t)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

. (8.4)

Remark 8.4. By Corollary 5.3, the L∞-norms in Proposition 8.3 can be replaced by the Lp-norms for any p ∈ [1,∞).

Proof of Proposition 8.3. We start with several estimates of quotients appearing in (8.4). Fix s ∈ R and let uL(t) =
UL(t, s)1, that is, uL is the solution of (5.1) with the initial condition uL(·, s) ≡ 1. For any t > s define �max(t) :=
supΩ(uL(t)/ϕL(t)), �min(t) := infΩ(uL(t)/ϕL(t)). Thus oscΩ(uL(t)/ϕL(t)) = �max(t)−�min(t). Then Corollary 2.3
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implies that limt→∞ oscΩ(uL(t)/ϕL(t)) = 0 and by Corollary 3.2 we also have that �max(t) (�min(t)) is a positive
nonincreasing (nondecreasing) function of t . Thus for some q(s) > 0 the following holds

lim
t→∞�max(t) = lim

t→∞�min(t) = q(s). (8.5)

Utilizing (7.2), one easily shows that∫
Ω

1ψL(s)dx = lim
t→∞

∫
Ω

uL(t)ψL(t)dx = lim
t→∞

∫
Ω

uL(t)

ϕL(t)
ϕL(t)ψL(t)dx = q(s)

〈
ϕL(s),ψL(s)

〉
.

Thus q(s) = ∫
Ω

ψL(s)dx/kL, where kL := 〈ϕL(s),ψL(s)〉 is independent of s by (7.2).
By Proposition 5.1, ‖uL(s + 1)‖L∞(Ω) � C1 for some constant C1. Equality (8.5) combined with inequalities in

(6.3) (applied to a = uL and b = ϕL), a repeated application of estimate (2.5), Theorem 2.1, the upper bound on
‖uL(s + 1)‖L∞(Ω) and Corollary 3.10 imply∣∣∣∣‖uL(s + n)‖L∞(Ω)

‖ϕL(s + n)‖L∞(Ω)

− q(s)

∣∣∣∣ � oscΩ

uL(s + n)

ϕL(s + n)
� μn−1 oscΩ

uL(s + 1)

ϕL(s + 1)
� μn−1 sup

Ω

uL(s + 1)

ϕL(s + 1)

� Cμn−1 inf
Ω

uL(s + 1)

ϕL(s + 1)
� Cμn−1 ‖uL(s + 1)‖L∞(Ω)

‖ϕL(s + 1)‖L∞(Ω)

� μn−1 CC1

‖ϕL(s + 1)‖L∞(Ω)

� μn−1 C2C1

‖ϕL(s)‖L∞(Ω)

, (8.6)

where n � 1 is an arbitrary integer and μ is as in (2.5). Define

cL(s) := ∥∥ϕL(s)
∥∥

L∞(Ω)

∫
Ω

ψL(s)dx

〈ϕL(s),ψL(s)〉 = ∥∥ϕL(s)
∥∥

L∞(Ω)
q(s). (8.7)

Obviously cL(s) � 1. Applying Lemma 3.9 to both ϕL and ψL, one finds a constant C2 > 1 such that cL(s) ∈ [1,C2]
for any s ∈ R. Using (8.6) and (8.7), we obtain∣∣∣∣∥∥uL(s + n)

∥∥
L∞(Ω)

− cL(s)
‖ϕL(s + n)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

∣∣∣∣ � C3μ
n−1 ‖ϕL(s + n)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

, (8.8)

where C3 = C2C1. Carrying out again the same procedure with L replaced in all places by L̃, we derive∣∣∣∣∥∥u
L̃
(s + n)

∥∥
L∞(Ω)

− c
L̃
(s)

‖ϕ
L̃
(s + n)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

∣∣∣∣ � C3μ
n−1 ‖ϕ

L̃
(s + n)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

, (8.9)

with obvious meanings of the new notation.
Assume now that (2.14) holds for some δ > 0. Using the definitions of uL, u

L̃
and Lemma 8.1 (see also Re-

mark 8.2), we get the following bound∣∣∥∥uL(s + n)
∥∥

L∞(Ω)
− ∥∥u

L̃
(s + n)

∥∥
L∞(Ω)

∣∣∣∣ �
∥∥uL̃

(s + n) − uL(s + n)
∥∥

L∞(Ω)
� Cnδ. (8.10)

Obviously, (8.8), (8.9) and (8.10) imply∣∣∣∣cL(s)
‖ϕL(s + n)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

− c
L̃
(s)

‖ϕ
L̃
(s + n)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

∣∣∣∣
� C3μ

n−1 ‖ϕL(s + n)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

+ C3μ
n−1 ‖ϕ

L̃
(s + n)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

+ Cnδ, (8.11)

where, as before, n � 1 is an arbitrary integer and μ ∈ (0,1) is as in (2.5). Note that we have proved above that for
a suitable constant C2 one has 1 � cL(s) � C2 and the same is true for c

L̃
(s), s ∈ R. Choose now an integer n0 � 1

such that in (8.11) we have C3μ
n−1 � 1/2 for all n � n0 (n0 is determined only by N , α0, d0, r0, R0, M0). The choice

of n0, the two sided bounds on cL(s), c
L̃
(s), and (8.11) imply that for all n � n0

‖ϕL(s + n)‖L∞(Ω)

‖ϕ (s)‖ ∞
� C4

‖ϕ
L̃
(s + n)‖L∞(Ω)

‖ϕ (s)‖ ∞
+ Cnδ, (8.12)
L L (Ω) L̃ L (Ω)
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where C4 is some positive constant. Although we fixed s ∈ R at the beginning of this proof, all estimates that we
derived are independent of s, hence (8.12) is valid for any s ∈ R.

To complete the proof of the proposition, let ε > 0 be arbitrary. Let C5 be the maximum of the constants appearing
in (8.12), (3.9), and (5.3), and fix n � n0 so large that log(C5 + 1)/n < ε. Set δ = C−2n

5 , and assume that (2.14) holds.
With this choice of δ, (8.12) implies

‖ϕL(s + n)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

� (C5 + 1)
‖ϕ

L̃
(s + n)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

. (8.13)

Now, given any t � s, we write t − s = kn + r , where k � 0 is an integer and 0 � r < n. Then, repeatedly using (3.9),
(8.13), and (5.3) (with p = q = ∞), we obtain

‖ϕL(t)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

� Cn
5
‖ϕL(s + kn)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

� Cn
5 (C5 + 1)k

‖ϕ
L̃
(s + kn)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

� C2n
5 (C5 + 1)k

‖ϕ
L̃
(t)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

. (8.14)

We can rewrite (8.14) as follows

‖ϕL(t)‖L∞(Ω)

‖ϕL(s)‖L∞(Ω)

� C2n
5 eC5(t−s)/n

‖ϕ
L̃
(t)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

� Ceε(t−s)
‖ϕ

L̃
(t)‖L∞(Ω)

‖ϕ
L̃
(s)‖L∞(Ω)

(t � s), (8.15)

with C = C2n
5 . Interchanging the role of L and L̃ in the above arguments, starting from (8.11), we obtain (8.15)

with L replaced with L̃. These estimates give (8.4). We also see that δ(ε), C(ε) in Proposition 8.3 can be expressed
as δ(ε) = C−1/ε , C(ε) = C1/ε , respectively, where C depends only on N , α0, d0, r0, R0, M0. Thus the proof of
Proposition 8.3 is complete. �

Proposition 8.3 and Remark 8.4 imply the statement of Theorem 2.8(i) regarding λ(ϕL) and λ̄(ϕL).
We derive the remaining statements of Theorem 2.8 from well-known robustness properties of exponential di-

chotomies for abstract evolution operators. We first introduce the concept of exponential dichotomy.
By an evolution operator T on a Banach space X we mean a family {T (t, s); t, s ∈ R, t � s} ⊂ L(X) with the

following two properties (I denotes the identity on X):

T (t, s)T (s, r) = T (t, r), T (t, t) = I (t, s, r ∈ R, t � s � r),

t �→ T (t, s)x: [s,∞) → X is continuous for all x ∈ X, t, s,∈ R.

Definition 8.5. We say that an evolution operator T admits exponential dichotomy (on R) if there are positive constants
�, κ and projections P(t) ∈ L(X), t ∈ R, such that

(i) T (t, s)P (s) = P(t)T (t, s) (t, s ∈ R, t � s);
(ii) For each t � s, the restriction T (t, s)|R(P (s)) of T (t, s) to the range of P(s) is an isomorphism onto R(P (t)); we

define T (s, t) as the inverse of this isomorphism;
(iii) ‖T (t, s)(I − P(s))‖L(X) � κe−�(t−s) (t, s ∈ R, t � s);
(iv) ‖T (t, s)P (s)‖L(X) � κe−�(s−t) (t, s ∈ R, t < s).

The constants � and κ (which are of course not unique) are referred to as an exponent and bound of the dichotomy.
It is not difficult to prove (cf. Exercise 4 in [16, Section 7.6]) that if T admits exponential dichotomy, then the
projections P(t) are uniquely determined (interestingly, a similar uniqueness property for exponential separations is
not valid). Given the projections P(t), one defines the associated Green’s function G(t, s) by

G(t, s) =
{

T (t, s)(I − P(s)) if t > s,

T (t, s)P (s) if t < s.

Observe that � and κ being an exponent and bound for the dichotomy is equivalent to the Green’s function satisfying
the estimate∥∥G(t, s)

∥∥ � κe−�|s−t | (t �= s).
L(X)
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Also note that limt→s+ G(t, s) = I − P(s) in the strong (pointwise) operator topology. In the following proposition
we summarize the standard robustness properties of exponential dichotomies.

Proposition 8.6. Let T , T̃ be evolution operators on a Banach space X satisfying

K := sup
t,s∈R

0�t−s�1

∥∥T (t, s)
∥∥
L(X)

< ∞, sup
t,s∈R

t−s=1

∥∥T (t, s) − T̃ (t, s)
∥∥
L(X)

< ε.

Assume T admits exponential dichotomy with exponent �, bound κ , and projections P(t). Given any �̃ < �, κ̃ > κ ,
there exists ε1 depending only on κ , κ̃ , �, �̃, and K , with the following property. If ε < ε1, then T̃ admits exponential
dichotomy with exponent �̃, bound κ̃ , and projections P̃ (t) satisfying∥∥P(t) − P̃ (t)

∥∥
L(X)

< Cε (t ∈ R), (8.16)

where C is a constant depending only on κ , �, and K .

Proof. With the exception of (8.16), the statement is the same as that of Theorem 7.6.10 in [16]. Estimate (8.16)
follows from the estimate on ‖G̃(t, s) − G(t, s)‖L(X), for the associated Green’s functions, as given in the proof
of [16, Theorem 7.6.10]. Note that the proofs of these results in [16] are based on the relation between discrete
and continuous dichotomies and apply to abstract evolution operators, independently of any underlying parabolic
equation. �

To apply the above abstract result, we define the following evolution operators on X = L2(Ω)

U�,L(t, s) := e�(t−s)
‖ϕL(s)‖L2(Ω)

‖ϕL(t)‖L2(Ω)

UL(t, s), (8.17)

V
�,L̃

(t, s) := e�(t−s)
‖ϕL(s)‖L2(Ω)

‖ϕL(t)‖L2(Ω)

U
L̃
(t, s) (t � s). (8.18)

Here UL and U
L̃

are the evolution operators of (1.1) and (2.12), respectively, and � is a suitable positive number.
A key observation employed below is that if L admits exponential separation with bound C and exponent γ , and
� ∈ (0, γ /2] , then U�,L admits exponential dichotomy with exponent � and some bound κ . Indeed, define projections
PL(t) by

PL(t)u = 〈u,ψL(t)〉
〈ϕL(t),ψL(t)〉ϕL(t) (u ∈ X). (8.19)

Note that PL(t) has the range and kernel given by the invariant subspaces X1
L(t), X2

L(t) of Theorem 2.6. Also note
that PL(t) is bounded: by Corollary 5.3, for some C0 > 0

C0 �
〈

ϕL(t)

‖ϕL(t)‖L2(Ω)

,
ψL(t)

‖ψL(t)‖L2(Ω)

〉
� 1, (8.20)

which gives the bound∥∥PL(t)
∥∥
L(X)

� C−1
0 . (8.21)

Using this bound, properties of X1
L(t), X2

L(t), and (2.11), it is straightforward to verify that U�,L admits exponential
dichotomy with exponent �, bound C(1 + C−1

0 ) and projections PL(t).
Building on this observation, our first aim is to show that if L is close to L̃, then the projection P

L̃
(t) corresponding

to L̃ is close to PL(t) and, consequently, statement (i) of Theorem 2.8 holds.

Lemma 8.7. There exist constants δ0 and C depending only on N , α0, d0, r0, R0, M0, such that if (2.14) holds with
δ � δ1, then∥∥PL(t) − P ˜ (t)

∥∥
2 � Cδ (t ∈ R) (8.22)
L L(L (Ω))
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and ∥∥∥∥ ϕL(t)

‖ϕL(t)‖L2(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L2(Ω)

∥∥∥∥
L2(Ω)

� Cδ (t ∈ R). (8.23)

Proof. Let γ = γ (N,α0, d0, r0,R0,M0) be as in Theorem 2.6 and set � = γ /2. As remarked above, U�,L admits
exponential dichotomy with exponent � and projections PL(t). Suppose (2.14) holds with δ > 0 sufficiently small (as
specified below). Using Corollary 5.3 and Lemma 8.1, one gets

sup
t−s=1
s,t∈R

∥∥U�,L(t, s) − V
�,L̃

(t, s)
∥∥
L(L2(Ω))

� eγ /2Cδ = C1δ (8.24)

and also, by Proposition 5.1 and Corollary 5.3,

sup
t,s∈R

0�t−s�1

∥∥U�,L(t, s)
∥∥
L(X)

= K < ∞, (8.25)

where C1 and K depend only on N , α0, d0, r0, R0, M0. By Proposition 8.6, if δ is small enough, say δ < δ̃ =
δ̃(N,α0, d0, r0,R0,M0), then V

�,L̃
admits exponential dichotomy with exponent γ /4 and some projections P̃

L̃
(t)

satisfying∥∥PL(t) − P̃
L̃
(t)

∥∥
L(L2(Ω))

< C2δ (t ∈ R),

with C2 = C2(N,α0, d0, r0,R0,M0). Now assume also that δ � δ(γ /8), where δ(γ /8) is given by Proposition 8.3
(with ε = γ /8). Then, as one easily verifies, V

�,L̃
at the same time admits exponential dichotomy with exponent γ /4

and projections P
L̃
(t). As remarked above, the projections of exponential dichotomies are uniquely determined. Thus

P
L̃
(t) = P̃

L̃
(t), which proves (8.22).

In the remaining part of this proof ‖ · ‖ means ‖ · ‖L2(Ω). By (8.22),

Cδ �
∥∥∥∥PL(t)

ϕL(t)

‖ϕL(t)‖ − P
L̃
(t)

ϕL(t)

‖ϕL(t)‖
∥∥∥∥ =

∥∥∥∥ ϕL(t)

‖ϕL(t)‖ − P
L̃
(t)

ϕL(t)

‖ϕL(t)‖
∥∥∥∥

�
∥∥∥∥ ϕL(t)

‖ϕL(t)‖ − ϕ
L̃
(t)

‖ϕ
L̃
(t)‖

∥∥∥∥ −
∥∥∥∥ ϕ

L̃
(t)

‖ϕ
L̃
(t)‖ − PL̃

(t)
ϕL(t)

‖ϕL(t)‖
∥∥∥∥. (8.26)

We obviously have

ϕ
L̃
(t)

‖ϕ
L̃
(t)‖ = P

L̃
(t)

ϕL(t)

‖P
L̃
(t)ϕL(t)‖ .

Thus ∥∥∥∥ ϕL̃
(t)

‖ϕ
L̃
(t)‖ − P

L̃
(t)

ϕL(t)

‖ϕL(t)‖
∥∥∥∥ =

∣∣∣∣1 − ‖PL̃
(t)ϕL(t)‖

‖ϕL(t)‖
∣∣∣∣ �

∥∥∥∥ ϕL(t)

‖ϕL(t)‖ − P
L̃
(t)

ϕL(t)

‖ϕL(t)‖
∥∥∥∥ � Cδ. (8.27)

Comparing (8.26) and (8.27), we conclude∥∥∥∥ ϕL(t)

‖ϕL(t)‖L2(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L2(Ω)

∥∥∥∥
L2(Ω)

� 2Cδ (t ∈ R). �
We can now complete the proof of Theorem 2.8(i). By Corollary 5.3 and Proposition 5.2, the function

ϕL(t)

‖ϕL(t)‖L2(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L2(Ω)

is bounded in L∞(Ω) and consequently in a Hölder space Cα( 
Ω), by a constant depending on N , α0, d0, r0, R0, M0.
This and (8.23) imply that the L∞-norm of this function tends to 0 as δ → 0 (uniformly in t ). Finally, we note that
the normalizations in L2(Ω) can be replaced by the normalizations in L∞(Ω). Indeed, the previous L∞-estimate and
Corollary 5.3 imply that

‖ϕL(t)‖L2(Ω)

‖ϕ (t)‖ ∞
− ‖ϕ

L̃
(t)‖L2(Ω)

‖ϕ (t)‖ ∞
L L (Ω) L̃ L (Ω)
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tends to 0 as δ → 0. Estimating the function

ϕL(t)

‖ϕL(t)‖L∞(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L∞(Ω)

= ϕL(t)

‖ϕL(t)‖L2(Ω)

‖ϕL(t)‖L2(Ω)

‖ϕL(t)‖L∞(Ω)

− ϕ
L̃
(t)

‖ϕ
L̃
(t)‖L2(Ω)

‖ϕ
L̃
(t)‖L2(Ω)

‖ϕ
L̃
(t)‖L∞(Ω)

using the triangle inequality we obtain the desired conclusion.
We are finished with the proof of statement (i) of Theorem 2.8 regarding ϕL and ϕ

L̃
. The conclusion regarding

ψL, ψ
L̃

is obtained by applying the proved statement to the operators L∗ and L̃∗ (see the discussion following Theo-
rem 5.2).

We next prove Theorem 2.8(ii).

Lemma 8.8. Suppose that L admits exponential separation bound CL and exponent γL. For each ε > 0 there is δ3 =
δ3(ε,CL,γL,N,α0, d0, r0,R0,M0) > 0 such that if (2.14) holds with δ � δ3, then L̃ admits exponential separation
with some bound C(ε,CL,γL) > 0 and exponent γ

L̃
� γL − ε.

Proof. Initially, we proceed as in the proof of Lemma 8.7. Suppose that (2.14) holds with δ > 0 sufficiently small (as
specified below). Setting � = γL/2, we observe that U�,L admits exponential dichotomy with exponent γL/2, bound
CL(1 + C−1

0 ) (cp. (8.21)), and projections PL(t), and that (8.24), (8.25) hold, where the constants C1 and K now
also depend on γL. Using Proposition 8.6, we find δ3 = δ3(ε,CL,γL,N,α0, d0, r0,R0,M0) > 0 such that if δ < δ3,
then V

�,L̃
admits exponential dichotomy with exponent (γL − ε)/2 and some projections P̃

L̃
(t). These projections are

close to PL(t), in particular, their range is one-dimensional. We make δ3 smaller, if necessary, so that

δ3 < min
{
δ(ε/2), δ(γ /4)

}
, (8.28)

where δ(·) is given by Proposition 8.3 and γ is as in Theorem 2.6. We claim that

P̃L̃
(t) = P

L̃
(t). (8.29)

Although this time we do not know a priori that V
�,L̃

admits exponential dichotomy with the latter projections (hence
we cannot refer to the uniqueness), we do know, as in the proof of Lemma 8.7, that

V
γ/2,L̃

(t, s) = e
γ−γL

2 (t−s)V
�,L̃

(t, s)

admits such a dichotomy. This is sufficient for (8.29). For example, by definition of exponential dichotomy, the range
of I − P̃

L̃
(s) consists of all v ∈ X such that e(γL/2−ε/2)(t−s)‖V

�,L̃
(t, s)v‖X is bounded as t → ∞. If ε < 2γL − γ ,

which we may assume without loss of generality (note that, by Theorem 2.6, Lemma 8.8 is trivial if γL � γ ), then for
any such v also ‖V

γ/2,L̃
(t, s)v‖X is bounded. Hence, again by definition of exponential dichotomy, v is in the range

of I − P
L̃
(s). Similarly one proves that the range of P

L̃
(s) is contained in the range of P̃

L̃
(s). These two inclusions

give (8.29).
Using (8.29), the exponential dichotomy for V

�,L̃
, and Proposition 8.3 (recall (8.28)), a straightforward estimate

implies the conclusion of the lemma. �
Lemma 8.8 implies statement (ii) of Theorem 2.8. The proof of the theorem is now complete.

9. Proof of Theorem 2.10

This proof will be carried out in several steps analogous to those in Section 5. We work with a fixed operator L as
in (D), whose coefficients satisfy (1.4) and (1.2) on R

N+1. Since in this part we consider varying domains, we will
henceforth denote by UΩ(·, ·) the evolution operator associated with problem (1.1). It has the following continuity
property with respect to the domain.

Lemma 9.1. Let Ω1, Ω2, with Ω1 ⊂ Ω2, be any two Lipschitz domains, whose Lipschitz constants satisfy (1.7). Then
for each ε > 0 there exists δ(ε) > 0 depending only on ε and N , α0, d0, r0, R0, M0, such that if d(∂Ω1, ∂Ω2) � δ(ε),
then ∥∥UΩ1(s + 1, s) − UΩ2(s + 1, s)

∥∥
L(L∞(RN))

� ε (s ∈ R). (9.1)
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Remark 9.2. As a matter of definition, the evolution operator UΩ(t, s) acts on L∞(Ω), but it has a natural extension
to L∞(RN). Specifically, given any u0 ∈ L∞(RN), we first compute UΩ(t, s)(u0|Ω), where u0|Ω is the restriction of
u0 to Ω and then extend the resulting function by zero outside Ω . This way, UΩ(t, s) can be viewed as a continuous
operator on L∞(RN). We use this convention throughout the section and, abusing the notation slightly, we use the
same symbol UΩ(t, s) for the extended operator.

Proof of Lemma 9.1. Given any constant δ > 0 and a domain Ω , we set

Ωδ = {
x ∈ Ω: dist(x, ∂Ω) > δ

}
.

For each σ > 0 (small enough) let ζσ ∈ C∞
0 (RN), 0 � ζσ � 1, be a function with ζσ ≡ 1 on Ω2σ

1 , ζσ ≡ 0 on R
N \ Ωσ

1
and ‖∇ζσ ‖L∞(Ω1) � C/σ for some constant C. We can always choose ζσ so that the constant C depends only on N ,
r0, R0, and M0. Let ui , i = 1,2, be the solutions of (1.1) on Ωi × (s,∞), respectively, such that ui(x, s) = ζσ (x) in
Ωi , i = 1,2, where s ∈ R is fixed from now on. Note that u1, u2 are positive. If we define w = u1 −u2, then w satisfies
(weakly) wt +Lw = 0 in Ω1 × (s,∞) with w(·, s) ≡ 0 on Ω1 and w(x, t) = u2(x, t) for (x, t) ∈ ∂Ω1 × (s,∞). Using
a standard L∞ estimate (see [24, Chapter III, Theorem 7.1]), we get

sup
Ω1×[s,s+1]

|u1 − u2| � C sup
∂Ω1×[s,s+1]

u2, (9.2)

where C depends only on N,α0, d0,R0. Theorem 3.3 guarantees that u2 is bounded on Ω2 × [s, s + 1] by a constant
depending only on N , α0, d0. This fact, our choice of ζσ and Theorem 5.2 imply that

sup
∂Ω1×[s,s+1]

u2 � C(σ)
(
d(∂Ω1, ∂Ω2)

)α (9.3)

for some α > 0, which depends only on N,d0, α0. The constant C(σ) depends only on σ , α, N , α0, d0, r0, R0, M0.
Combining the last two inequalities, we obtain

sup
Ω1×[s,s+1]

|u1 − u2| � C(σ)
(
d(∂Ω1, ∂Ω2)

)α
. (9.4)

By Proposition 5.4, we can write

ui(x, t) =
∫
Ωi

ki(x, t; ξ, s)ζσ (ξ)dξ ((x, t) ∈ Ωi × (s,∞)), (9.5)

where ki(x, t; ξ, s) is the weak Green’s function associated with problem (1.1) with Ω replaced by Ωi , i = 1,2.
Statements (ii), (iii) in Proposition 5.4 in combination with Theorem 5.2 imply that we have the following inequality

ki(x, s + 1; ξ, s) � C
(
d(∂Ω1, ∂Ω2) + 2σ

)α
(x ∈ Ωi \ Ω2σ

1 , ξ ∈ Ωi, i = 1,2), (9.6)

with α > 0 the same as in (9.4) and C depends only on α, N , α0, d0, r0, R0, M0. Using (iv) in Proposition 5.4, the
choice of ζσ , (9.5), (9.4) and (9.6), we derive∥∥UΩ1(s + 1, s) − UΩ2(s + 1, s)

∥∥
L(L∞(RN))

= sup
x∈Ω2

∫
Ω2

(
k2(x, s + 1; ξ, s) − k1(x, s + 1; ξ, s)

)
dξ

� sup
x∈Ω2

∫
Ω2\Ω2σ

1

(
k2(x, s + 1; ξ, s) − k1(x, s + 1; ξ, s)

)
dξ

+ sup
x∈Ω2\Ω2σ

1

∫
Ω2σ

1

(
k2(x, s + 1; ξ, s) − k1(x, s + 1; ξ, s)

)
dξ

+ sup
x∈Ω2σ

1

∫
Ω2σ

1

(
k2(x, s + 1; ξ, s) − k1(x, s + 1; ξ, s)

)
dξ

� C
∣∣Ω2 \ Ω2σ

1

∣∣ + C
∣∣Ω2σ

1

∣∣(d(∂Ω1, ∂Ω2) + 2σ
)α + sup

Ω2σ
1

∣∣u1(s + 1) − u2(s + 1)
∣∣

� C
∣∣Ω2 \ Ω2σ

∣∣ + C1
(
d(∂Ω1, ∂Ω2) + 2σ

)α + C(σ)
(
d(∂Ω1, ∂Ω2)

)α
, (9.7)
1
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where |Ω| denotes the measure of Ω , the constants C, C1, C(σ) depend on α, N , α0, d0, r0, R0, M0 and C(σ) in
addition depends on σ . Notice that, under our assumptions on Ω1, Ω2, the measure |Ω2 \Ω2σ

1 | can be estimated from
above by C(d(∂Ω1, ∂Ω2) + 2σ), where C depends only on N , r0, R0, M0. Hence,∥∥UΩ1(s + 1, s) − UΩ2(s + 1, s)

∥∥
L(L∞(RN))

� C
(
d(∂Ω1, ∂Ω2) + 2σ

)α + C(σ)
(
d(∂Ω1, ∂Ω2)

)α
. (9.8)

Here, we assumed without loss of generality that σ , d(∂Ω1, ∂Ω2) are sufficiently small and α ∈ (0,1). It is now
apparent that, given any ε > 0, it is sufficient to choose σ of order ε1/α and then d(∂Ω1, ∂Ω2) of order (ε/C(σ))1/α

to get the assertion of Lemma 9.1. �
In the next corollary we remove the restriction Ω2 ⊂ Ω1.

Corollary 9.3. Let Ω1 be a Lipschitz domain, whose Lipschitz constants satisfy (1.7) and let Ω2 be any bounded
Lipschitz domain. Then for each ε > 0 there exists δ(ε) > 0, depending only on ε and N , α0, d0, r0, R0, M0, such that
if d(∂Ω1, ∂Ω2) � δ(ε), then∥∥UΩ1(s + 1, s) − UΩ2(s + 1, s)

∥∥
L(L∞(RN))

� ε (s ∈ R). (9.9)

More precisely, there exists δ1 = δ1(N,α0, d0, r0,R0,M0) such that (9.8) holds, provided d(∂Ω1, ∂Ω2) � δ1 and
σ � δ1.

Proof. Assume d(∂Ω1, ∂Ω2) is small compared to r0 in (1.7). We can then find two domains Ω̃1, Ω̃2 such that
d(∂Ω̃1, ∂Ω̃2) � 2d(∂Ω1, ∂Ω2), Ω̃1 ⊂ Ωi ⊂ Ω̃2, i = 1,2, and Ω̃1, Ω̃2 are Lipschitz domains satisfying (1.5), (1.6),
replacing the constants r0, M0, R0 by r0/2, 2M0, 2R0, if necessary. The result now follows from the monotonicity of
the weak Green’s functions with respect to the domain (see Proposition 5.4) and the estimates of Lemma 9.1. �
Remark 9.4. A similar extension as in Remark 8.2 applies here. Using the boundedness of the evolution operator
(Theorem 3.3) one shows that the statements of Corollary 9.3 remain valid if one replaces s + 1 by s + n, n � 1 being
any integer; in this case, the constants C, C(σ) in (9.8) have to be replaced by Cn, C(σ)n, where C, C(σ) may have
to be made larger, but they do not depend on n ∈ N.

With the above estimates on the evolution operators, the proof of Theorem 2.10 can be carried out along the lines
of the proof of Theorem 2.8. We limit the further exposition to indicating the necessary modifications.

The next proposition is analogous to Proposition 8.3.

Proposition 9.5. Let Ω , Ω̃ be as in Theorem 2.10. Then for each ε > 0 there exist numbers C(ε), δ(ε) > 0, depending
only on ε and N , α0, d0, r0, R0, M0, such that if d(∂Ω,∂Ω̃) < δ(ε), then for all t � s

e−ε(t−s)

C(ε)

‖ϕΩ̃(t)‖L∞(Ω̃)

‖ϕΩ̃(s)‖L∞(Ω̃)

� ‖ϕΩ(t)‖L∞(Ω)

‖ϕΩ(s)‖L∞(Ω)

� C(ε)eε(t−s)
‖ϕΩ̃(t)‖L∞(Ω̃)

‖ϕΩ̃(s)‖L∞(Ω̃)

. (9.10)

Proof. The only noteworthy difference from the proof of Proposition 8.3. is that we use (9.8) (and Remark 9.4) in
place of (8.1) (and Remark 8.2). Thus the estimate corresponding to (8.12) reads as follows

‖ϕΩ(s + n)‖L∞(Ω)

‖ϕΩ(s)‖L∞(Ω)

� C4
‖ϕΩ̃(s + n)‖L∞(Ω̃)

‖ϕΩ̃(s)‖L∞(Ω̃)

+ Cn
(
d(∂Ω,∂Ω̃) + 2σ

)α + (
C(σ)

)n(
d(∂Ω,∂Ω̃)

)α
. (9.11)

One now easily derives the estimate corresponding to (8.13) by first choosing σ sufficiently small followed by a
suitable choice of d(∂Ω,∂Ω̃). The rest of the arguments used in the proof of Proposition 8.3 are straightforward to
modify. We omit the details. �

By Corollary 5.3, we can replace in (9.10) the L∞-norms on the respective domains by the L2-norms. This implies
the statement of Theorem 2.10(i) regarding λ(ϕΩ) and λ̄(ϕΩ).
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In the following it is convenient to view the functions ϕΩ(t), ψΩ(t) as elements of Y := L∞(RN) (extending
them by 0 outside Ω). Understanding that 〈·, ·〉 now stands for the standard inner product in L2(RN), we define a
continuous projection PΩ(t) on Y by

PΩ(t)u = 〈u,ψΩ(t)〉
〈ϕΩ(t),ψΩ(t)〉ϕΩ(t). (9.12)

With these conventions and notation, arguing similarly as in the proof of Lemma 8.7, one proves the following propo-
sition.

Proposition 9.6. Let Ω , Ω̃ be as in Theorem 2.10. Then for each ε > 0 there exists δ(ε) > 0, depending only on ε and
N , α0, d0, r0, R0, M0, such that if d(∂Ω,∂Ω̃) � δ(ε), then∥∥PΩ(t) − PΩ̃(t)

∥∥
L(L∞(RN))

� ε (t ∈ R), (9.13)

and ∥∥∥∥ ϕΩ(t)

‖ϕΩ(t)‖L∞(Ω)

− ϕΩ̃(t)

‖ϕΩ̃(t)‖L∞(Ω̃)

∥∥∥∥
L∞(RN)

� ε (t ∈ R). (9.14)

With this result we have completed the proof of the statement of Theorem 2.10(i) regarding ϕΩ , ϕΩ̃ . The conclusion
regarding ψΩ , ψΩ̃ is again taken care of by the discussion following Theorem 5.2. The proof of statement (ii) of
Theorem 2.10 is completely analogous to the proof of Lemma 8.8 and is omitted.

Appendix A

Proof of Proposition 5.5. By a standard modification (multiplication of u by e−m(t−s)), one reduces the proof to the
case with m = supΩ×(s,T )(−c0) = 0. Henceforth we assume this extra condition.

Let D(Ω) denote the space of smooth functions with compact support in Ω . The proof consist of a two step
approximation procedure. First, assuming the initial condition is in D(Ω), we find the solution as the limit of solutions
of approximating problems on smooth subdomains of Ω . Then we approximate a general initial condition by functions
in D(Ω) and take the limit of the solutions of these approximate problems.

We start with preliminary estimates of solutions on approximating subdomains. Fix any �0 ∈ (0, r0/4], where r0 is
as in (1.7). Choose a family of smooth domains Ωε , ε ∈ (0, �0), which is decreasing in ε (with respect to inclusion)
and such that for each ε one has Ωε ⊂ 
Ωε ⊂ Ω , d(∂Ωε, ∂Ω) � ε, and (1.7) is satisfied with Ω replaced by Ωε , and
r0, M0 replaced by r0/2, 2M0, respectively.

Let fε ∈ D(Ω) be any real-valued function with

dist(x, ∂Ω) � 2�0 (x ∈ suppfε)

and consider the following problem

ut + Lu = 0 in Ωε × (s, T ),

u = 0 on ∂Ωε × (s, T ),

u = fε in Ωε × {s}.
(A.1)

It has a unique solution uε and the solution is contained in W 2,1,p(Ωε × (s, T )) ∩ C( 
Ωε × [s, T ]) for all p > 1 (see
[26, Theorem 7.17]). We claim that for all � ∈ (0, �0] one has

ωε(�) := sup
dist(x,∂Ωε)��

∣∣uε(x, t)
∣∣ � sup

x∈Ωε

∣∣fε(x)
∣∣(2�

�0

)θ0

(t ∈ [s, T ]), (A.2)

where θ0 > 0 depends only on N , d0, α0, r0, R0, M0. Note that, by the maximum principle,

sup
x∈Ωε

∣∣uε(x, t)
∣∣ � sup

x∈Ωε

∣∣fε(x)
∣∣ (t ∈ [s, T ]). (A.3)

This implies that in order to verify (A.2) it suffices to show that ωε(�) � 2−θ0ωε(2�) for any fixed � ∈ [0, �0/2]. For
this purpose, let (x0, t0) be any point in Ωε × [s, T ] with dist(x0, ∂Ωε) � �. The assumptions on Ωε imply that there
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are two positive numbers K1, K2, depending only on N , r0, R0, M0, and a point y0 ∈ R
N \Ωε such that the following

holds. If we set r = dist(x0, ∂Ωε)/K1, then |x0 − y0| = K2r and Br(y0) ∩ Ωε = ∅. Following ideas of [25], we define
the slant cylinder V by

V :=
{
(x, t) ∈ R

N × R:

∣∣∣∣x − y0 − (t − (t0 − r2))

r2
(x0 − y0)

∣∣∣∣ < r, t0 − r2 < t < t0

}
. (A.4)

We will show at the end of this proof that there is a function v ∈ C∞(RN+1) such that v vanishes on the lateral
side of ∂V , 0 � v � 1, vt + Lv � 0 in V , and v(x0, t0) � κ0 > 0, where κ0 ∈ (0,1) is a constant depending only
on N , d0, α0, r0, R0, M0. Assume for now such a function v exists. In W := (Ωε × (s, T )) ∩ V define the function
w := uε + ωε(2�)v. Clearly, wt + Lw � 0 in W . Moreover, since the base of V is outside Ω × (s, T ), properties of
v imply that w � ωε(2�) on the parabolic boundary ∂pW of W . Thus, by the maximum principle, w � ωε(2�) in W .
In particular, w(x0, t0) � ωε(2�) and hence

uε(x0, t0) �
(
1 − v(x0, t0)

)
ωε(2�) � (1 − κ0)ω

ε(2�). (A.5)

This inequality holds for −u as well and since (x0, t0) was arbitrary we conclude that ωε(�) � 2−θ0ωε(2�) with
θ0 = − log2(1 − κ0). Thus estimate (A.2) is established.

Consider now an arbitrary f̃ ∈ D(Ω) and set

�0 := inf
({

dist(x, ∂Ω): x ∈ supp f̃
} ∪ {r0/4}).

For ε ∈ (0, �0/2) take fε := f̃ |Ωε in (A.1). Extending the corresponding solution uε by zero outside Ωε , we view it
as a function on Ω . Let 0 < ε1 < ε2 < �0/2 be arbitrary. Recall that Ωε2 ⊂ Ωε1 , by the monotonicity of the family.
The maximum principle and (A.2) imply

sup
x∈Ω

s�t�T

∣∣uε1(x, t) − uε2(x, t)
∣∣ � sup

x∈Ωε1\Ωε2
s�t�T

∣∣uε1(x, t)
∣∣ + sup

x∈∂Ωε2
s�t�T

∣∣uε1(x, t)
∣∣

� 2
(

sup
x∈Ωε1

∣∣fε1(x)
∣∣)(

2ε2

�0

)θ0

= 2
(

sup
x∈Ω

∣∣f̃ (x)
∣∣)(

2ε2

�0

)θ0

.

This estimate implies that uε , ε ∈ (0, �0/2), is a Cauchy family in C( 
Ω × [s, T ]) and, by the interior Lp-estimates
[26, Theorem 7.13], also in (the Fréchet space) W

2,1,p

loc (Ω × (s, T )) for each p ∈ (1,∞). It follows that, as ε → 0, uε

converges to a solution ũ of (5.1) with u0 = f̃ and the solution is in W
2,1,p

loc (Ω × (s, T )) for each p ∈ (1,∞). By the

maximum principle, the solution (as a function in W
2,1,N+1
loc (Ω × (s, T )) ∩ C( 
Ω × [s, T ])) is uniquely determined

by f̃ .
We have thus proved Proposition 5.5 under the extra assumption u0 = f̃ ∈D(Ω). To remove this assumption, take

an arbitrary f ∈ C0( 
Ω) and choose a sequence fn ∈ D(Ω) such that fn → f in C0( 
Ω). For the solution un of (5.1)
with u0 = fn we have, by the maximum principle,

sup
x∈Ω

s�t�T

∣∣um(x, t) − un(x, t)
∣∣ � sup

x∈Ω

∣∣fm(x) − fn(x)
∣∣ (m,n = 1,2, . . .).

This and the interior Lp-estimates imply that un is a Cauchy sequence in C( 
Ω × [s, T ]) and in W
2,1,p

loc (Ω × (s, T ))

for each p ∈ (1,∞). Arguing as above, we conclude that un converges to a unique solution of (5.1) with u0 = f and
the solution has the regularity as stated in Proposition 5.5.

To finish this proof, we still need to construct the function v with the properties stated above. Define

v(x, t) := 1

r4
e−β

(t−(t0−r2))

r2

(
r2 −

∣∣∣∣x − y0 − (t − (t0 − r2))

r2
(x0 − y0)

∣∣∣∣2)2

, (A.6)

where (x, t) ∈ V and β > 0 is to be determined. It is obvious that 0 � v � 1 in V and v vanishes on the lateral side
of ∂V . Denoting

A :=
∣∣∣∣x − y0 − (t − (t0 − r2))

2
(x0 − y0)

∣∣∣∣ and B := r2 − A2,

r
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by a simple computation, using (ND), (1.4) and (1.2), one shows

−vt − Lv � 1

r4
e
−β

(t−(t0−r2))

r2

(
8α0A

2 − 4Nd0B − 4Nd0AB − d0B
2 − 4N

r2
|x0 − y0|AB + β

r2
B2

)
. (A.7)

From now on, we assume r � 1 without loss of generality. Let us first consider the case when A � (1 − ε)r and ε > 0
is small. Using this assumption, the fact that A � r , |x0 − y0| = K2r , r � 1 and (A.7), we compute

−vt − Lv � 1

r4
e
−β

(t−(t0−r2))

r2 (r2)
(
8α0(1 − ε)2 − 16Nd0ε − 4d0ε

2 − 8NK2ε
)
.

The right-hand side of this inequality is nonnegative, independently of β > 0, provided ε is chosen sufficiently
small. The choice of ε depends only on N , d0, α0 and K2. Fix such a number and call it ε0. If, on the other hand,
A � (1 − ε0)r , an elementary inequality implies that ε0r

2 � B � r2 � 1. Using this fact and (A.7), we obtain

−vt − Lv � 1

r4
e−β

(t−(t0−r2))

r2 B(−8Nd0 − d0 − 4NK2 + βε0).

If β is big enough, as determined by N , d0, K2, ε0, the right hand side of this inequality becomes positive. In view
of the dependences of K2 and ε0, β can be chosen depending only on N , d0, α0, r0, R0, M0. With this β we have
vt + Lv � 0 in V and v(x0, t0) = e−β . Defining κ0 = e−β , the function v has all the properties claimed above. The
proof is now complete. �
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[27] J. Mierczyński, Flows on order bundles, unpublished.
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