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Abstract

We consider the global classical solutions near the Maxwellians to the two-species Vlasov—Maxwell-Landau system in the
whole space. It is shown that the cancelation properties between two species coupled with the electric effect yield the faster time
decay of the electric field, which leads to our construction of global solutions.
© 2014 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The dynamics of charged dilute particles (e.g., electrons and ions) is described by the Vlasov—Maxwell-Landau
system:
Oy +v-ViFy +(E+vXxXB) Vo Fy =Q(Fy, Fy)+ Q(F-, Fy),
F_+v-ViF_—(E4+vXxB)-VyF_=Q(Fy,F_)+ Q(F_, F_),
Fi(0,x,v) = Fy +(x,v). (1.1)
Here F4(t, x,v) > 0 are the number density functions for the ions (+) and electrons (—) respectively, at time ¢ > 0,

position x = (x1, x2, x3) € R3 and velocity v = (v, v2, v3) € R3. The collision between charged particles is given by
the Landau (Fokker—Planck) operator:

0(G1,G2)(v) =V, - / @ (v—0')(G1(V)VyG2(v) — G2(v)Vy Gy (V'))dV', (1.2)
R3
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where
dﬁ(v):L(I—g). (1.3)
[v] [v]

The self-consistent electromagnetic field (E (¢, x), B(¢, x)) in (1.1) is coupled with Fy(t, x, v) through the Maxwell
system

3;E—VXXB=—/U(F+—F_)dU, Vx-E=/(F+—F_)dv,
R3 R3
#B+VyxE=0, V,-B=0,
E(0, x) = Eo(x), B(0, x) = Bo(x). (1.4)
It turns out that all the physical constants will not create essential mathematical difficulties along our analysis, for

notational simplicity, we have normalized all constants in the Vlasov—-Maxwell-Landau system to be one. Accord-
ingly, we normalize the global Maxwellian as

w() = s () = p_(v) =e 1P, (1.5)
We define the standard perturbation fi (¢, x, v) to u as

Fr=p+Jif+. (1.6)
Letting f(t,x,v) = (?_’ Eiﬁg;), the Vlasov—-Maxwell-Landau system for the perturbation now takes the form

{0 +v-Ve+qo(E+vxB)-Vy} f—2E -vnqi +Lf =T(f, f)+qoE - vf,

HE -V, x B =—/vﬁ(f+ — fydv, Vx~E=/ﬁ(f+ — f)dv,
R3 R3
0B+V,yx E=0, V,-B=0, (1.7)

for the matrix go = diag(1, —1) and the vector g1 = (_,). For g = (g;), the linearized collision operator Lg in (1.7) is
given by the vector

<L+g) Q. gD + 77 Q(JH(81 + 82). 1)
Lg = =— (1.8)
L-g Q. Jig2) + 7z Q (81 + 82). 1)
For g = (g) and h = (Z;) the nonlinear collision operator I"(g, k) in (1.7) is given by the vector
1
e b= <F+(g,h)) _ ﬁQ(\/ﬁ(gl‘i‘gZ)»\/ﬁhl) (19)
I=(e.m)\ Zz0(/H(s1 + g2). V/ith2)
For the Landau operator (1.2), we define
i)y =0V xp= f oY (v—0)u(v)adv'. (1.10)
R3

We denote | - |, to be the Lz(Rg) norm, and we define Lg (Rg) to be the space with norm

12 =/[a”affajf+<r""vz-vjf2]dv- (1.11)

R3
From Lemma 3 in [9], we have
—1 1 _3 v _1 v
Cflo < ()72 |, + | (V) ZVuf'm + [{(v) 72V f x ol =<Clfls (1.12)
2 2
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with (v) = /1 + |v|2. It is well known [1,9] that the linear collision operator L > 0 and

2 (1.13)

(Lf f)Z [{(L-P}f

where (-, -) is the L? inner product in R% and P denotes the L% orthogonal projection on the null space of L:

N(L)Espan{ﬁ(é),ﬁ(?),vﬁ@,|v|2ﬁ(i)}. (1.14)

There are three major mathematical difficulties in the study of the Vlasov—Maxwell-Landau system (1.7): the
intrinsic difficulty associated with the Landau kernel (cf. (1.12)); the velocity-growth in the nonlinear term E - vf
(and v x B -V, f); the regularity-loss of the electromagnetic field. We may refer to [11] and [2] for the more de-
tailed explanation. For the Landau equation, Guo [9] proved the first result of the global unique solution near the
Maxwellians. The Vlasov—-Maxwell-Boltzmann system with hard-sphere interaction was solved by Guo [10] due to
that the hard-sphere kernel has the stronger dissipation ()12 f |%. Also, the relativistic Vlasov—Maxwell-Landau
system was solved by Strain and Guo [16] since the relativistic velocity is bounded and | f |% is controlled by the
relativistic Landau dissipation. Recently, for the Vlasov—Poisson-Landau system (in which B =0 and so £ = —V,¢
with the electric potential ¢ satisfying the Poisson equation), Guo [11] made the important progress of proving the
first result of the global unique solution. The key point in [11] is to introduce the exponential weight factor e*?. The
observation is that upon multiplying by e*? one can rewrite

o Ve fe £ Vipvfel=v- Vi{e™ fi}, (1.15)

and such a perfect derivative leads to no contribution in the integration. The pay of this trick is that one needs to drive
a strong enough decay rate of ¢ in order to control the nonlinear terms resulting from when e hits 9, f V¢ - V, f.
As remarked by Guo, the strong decay rate of ¢ in [11] is a consequence of the periodic box. To get the sufficient
decay rate of ¢ in the whole space, Strain and Zhu [19] assumed additionally that the L2L! norm of the initial
data is small so as to use the linear decay analysis. Later in [20], the author showed that the cancelation property
between two species coupled with the Poisson equation yield the electric potential decaying at the same rates as the
periodic box case, which then allows one to remove the L%L }C assumption in [19]. Guo’s observation works for all
forces given by a potential, but it does not work for the Vlasov—-Maxwell-Landau system. On the other hand, Duan,
Yang and Zhao [4] used a different approach, which was previously developed in Duan, Yang and Zhao [5,6] for
the Vlasov—Poisson—-Boltzmann system with general angular cutoff potentials, to construct the global solutions to the
one-species Vlasov—Poisson-Landau system in the whole space. The key point in [4] is to introduce a time-velocity

exponential weight factor e4 /(140" The observation is that upon multiplying by e4W?/ 140" one can rewrite
(w2 (w2

q{v q{v Vg q(w)?
e (+n? o f= 8,{e(l+f>ﬁ f}

+ m(v>2e o f, (1.16)

and this induces an artificial dissipation term with the good factor (v)2 if g, 9 > 0, which then can be used to con-
trol the nonlinear velocity growth if V,¢ decays faster than (1 + r)~U+?)_ This observation works for all forces.
Subsequently, Duan [2] used this observation to prove the first result of the global unique solution to the Vlasov—
Maxwell-Landau system, and a time-weighted energy method motivated by [13] was employed to overcome the
difficulty caused by the regularity-loss feature. The argument in [2] was further adapted by Duan, Liu, Yang and Zhao
[7] to construct the global unique solution to the Vlasov—Maxwell-Boltzmann system without angular cutoff. As [19],
in order to get the sufficient decay of the solution for closing the energy estimates, [2] also assumed that the L%L }C
norm of the initial data is small. Motivated by our previous work [20] for the Vlasov—Poisson-Landau system, it is our
purpose in this paper to construct global solutions to the Vlasov—Maxwell-Landau system without any low frequency
assumption.

For notational simplicity, we use || - ||, to denote L” norms in Rf’c X R?j or Ri and we use | - |, for the L? norms
in ]R?}. Letting w(v) > 1 be a weight function, we denote | - |2 ,, for the weighted Lz(Rg) norm and | - |4,y for the
weighted norm of (1.12). We will write || - l2. = Il - l2.wll2: | * loow = Il lowll2 and [ - o = || - llo,1. We use V*
with £ € R for the usual spatial derivatives. Letting the multi-indices & and § be @ = [«1, a2, @3], 8 = [B1, B2, B3],
we define Bg = 8?1‘ 8?22 8?3 8{?1] 85322 8{)333. If each component of 6 is not greater than that of 9’s, we denote by 6 < 0:0 <0
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means 0 < 6, and || < |@|. Throughout the paper we let C denote positive universal constants. We will use A < B
(AZ Band A~ B)if A<CB, and we willuse ;A + B <D ifB,A—i—C_lB < D, etc.
Motivated by [11] and [2], we define the following time-velocity weight

q(? 2
w(a, B)(v) = e2+07 (v)2XI=D 1> o) + 18], 0<g « 1 (1.17)
for a fixed constant ¢ > 0. Letting / > m > 2, we define the instant energy by
2 2
Emslq (1) ~ Z ”8gf”2,w(a,ﬂ) +[E. B[ (1.18)
lee|+IBl<m

and the corresponding dissipation rate by

Dip;,4(t) = Z ||3§{1—P}f||§,w(a,ﬁ>+ Z ”3an”§

le|+IBl<m 1<|a|<m
2
FNEN s + IVBIZ s+ | (fe = OIS (1.19)
and
2
Futg@®= Y [@FA=PIf|, s (1.20)

la|+1Bl<m

Note that there is a cascade of velocity weights in (1.18)—(1.20) so that fewer derivatives of f demand stronger velocity
weights. We also define the instant energy and dissipation rate for the pure spatial derivatives of the solution without
the velocity weight:

En()~ Y| VEFIS + 1B B (1.21)

k<m
and
Du =Y [VHI-PIf[2+ D [VFPf;
k<m I1<k<m
FNEI s + IV BIZ s + [ (e — O 2 (1.22)

Our main result is as follows.

Theorem 1.1. Let m >9, I > m 4+ 1/4 and 0 < g < 1. Fix the constants 0 < ¢ <1/5 and 0 < €y <7/5. Assume that
fo satisfies Fo+(x,v) = u+ /i fo,+(x,v) > 0, and that (fo, Eo, Bo) satisfy the compatibility conditions Vy - Eg =
fR3 I (fo,+ — fo,-)dv and V, - By = 0. There exists a sufficiently small M > 0 such that if .1 4(0) < M, then
there exists a unique global solution (f(t,x,v), E(t,x), B(t, x)) to the Vlasov—Maxwell-Landau system (1.7) with
Fe(t,x,v) =p+ /ufe(t,x,v) >0and

1+€
En() + EmrgO + A+ T Ept g ()

t

+f{Dm(f) +Dm71;l,q(7:) + fml;l,q(t)}df

_vq
(1+41)l+0

vq

0
t
_ltea
“r/(l +71) 2 {Dm;l,q(f)-f‘m
0

Fm;l,q(t)}dt < C&ui1,4(0). (1.23)

Furthermore, fork =0, 1,2, 3,

|V* £ O], + | V*E, BY®)|, < CfEmitg @)1 477, (1.24)
and fork=0,1, 2,
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IV = fO ], + [VFED |, < € fEmitg 1+~ 55, (125)
where e =3/(41 — 7).

The followings are several remarks for our theorem.

Remark 1.2. k =3 in the decay estimates (1.24) and k =2 in (1.25) are the largest derivative indexes we can derive.
But fortunately, it is just enough for our use. €p > 0 in the energy estimates (1.23) is introduced to overcome the
difficulty caused by the regularity-loss of E. The extra 1/4 in the velocity moment [ is crucial for guaranteeing the
derivation of (1.23); otherwise, the restriction (5.12) would change to be (1 +€0)/2+ 1+ ¢ <5/4 — ¢ /2. Notice that
we have no choice of €y > 0 for this new restriction, and hence we may fail to close our energy estimates.

Remark 1.3. m =9 is the lowest spatial regularity we require in our analysis. We remark that if we impose some
kind of low frequency assumption on the initial data, then we can lower the regularity. For example, if the initial
data is small in L%H;S with s > 0, then we need m > 8; if s > 1, then we need m > 6. Note that L” C H™ with
s=3(1/p—1/2)€[0,3/2) for p e (1,2].

Remark 1.4. We can consider the generalized Landau operator with, see [12,1,9],

@(v)=#<l—%), y > 3. (1.26)

|v|)’+2
One may conclude from our proof that the global unique solution to the Vlasov—Maxwell-Landau system exists for
all y > —3.If y > —2, then we can take ¢ =0 in (1.25). We also believe that our observation can be used to remove
the L%L )1( assumption of the initial data in [7]. Furthermore, as in [20] if we assume further that the initial data belongs
to L%H % with s € [0, 3/2), then the decay rates in (1.24)—(1.25) can be enhanced with the index s /2. These improve
the decay result of the Vlasov—-Maxwell-Boltzmann system (cf. y > —1) in [3] since we do not require the L%H s
norm of the initial data to be small and the L°>° norm of E decays faster than that of [3].

Theorem 1.1 will be proved in Section 5 by combining the energy estimates of Section 3 and the decay estimates
of Section 4. We will prove in Section 3 by the nonlinear weighted energy method that

d vq
—Emilg + Dot g + W}-m;l'q

dt
S(1Ellso + 1VBIZ) Fnitg + |V E |,/ Do (1.27)

The derivation of the energy estimates (1.27) is very delicate, and the great advantage of the weight (1.17) is intensively
exploited as in [10]. Note that (1.27) is a refined one of [2], especially for the factor || E|s + |[VB ||c2>o which decays
faster than |V (E, B)||;n, with some integer No obtained in [2] (this forces the author in [2] to impose the L%L}C
assumption). The reason for this refinement is as follows. From the linear L> — L? decay estimates [3,2] one may
expect the L? decay rate of the whole solution is as stated in (1.24). By the Sobolev interpolation, ||VB||%O then
decays at the rate of (1 4 7)™/ which is more than sufficient for closing the B term. But || E| o only decays at the
rate of (1 4 )~3/4 which is definitely not fast enough. Our intuition is that since E is included in the dissipation (cf.
[15,3,2]), it would suggest that E may decay at a faster rate. In fact, one can see from (1.25) that the decay of E can
be improved with the index (1 — ¢)/2. This thus can close the E term since € > 0 can be made small.

The decay estimates (1.24)—(1.25) will be established in Section 4 by the energy method. As noted in [20], the real
thing we need to close the first term in (1.27) is a strong decay rate of (E, B) rather than the whole solution! Look
back at the system (1.7), and we note that (E, B) in the Maxwell system depends only on f; — f_ and also that there

are some cancelations between the “+” and “—” equations. This motivates us to consider the sum and difference of
fy and f_:
A=fi+f and fr=fi—f. (1.28)

The Vlasov—Maxwell-Landau system (1.7) can be equivalently rewritten as
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Sfi+v- Vifi+Lifi=l(fi, V+E-(wW=Vy)fpr—vxB -V, f,
O frt+v-Vifo—4E - v/u+Lrfor=Ts(f1. L)+ E-(v—=Vy)fi —v X B-V,fi,
3;E—VXXB=—/Uﬁf2dU, VX~E=/ﬁf2dv,

R3

R3
B+V,xE=0, V,-B=0, (1.29)

where the linearized collision operators are given by

5185_%{Q(M’ﬂ8)+Q(\/ﬁg,M)} (1.30)
and
Ezgz—iQ(u,ﬁg), (1.31)
I
and the nonlinear collision operator is given by
(g, h)= \/LEQ(\/ﬁg, Jih). (1.32)

Notice that [L; f1, L2 f2] is equivalent to Lf, and their null spaces are

N(L1) =span{ /i, v/i, [v*/It}, but N(L2) = span{,/z}. (1.33)

Let P; be the L? orthogonal projection on the null space of £; respectively, then

2 .
(Lig.g) =do|[{T-PiJg| . i=12. (1.34)

Then our key observation in [20] is that we can include the full term || f2||§ in the dissipation: £, controls the micro-
scopic part {I — P} f> by (1.34); while the Poisson equation can control the hydrodynamic part P5 f>!

To get the sufficiently fast decay of (E, B) from the system (1.29) by the energy method is much more subtle than
that of [20] for the Vlasov—Poisson-Landau system. In [20], we can plug out the subsystem for f, and ¢ to derive
a differential inequality similar as [11] which allow us to extract a fast enough decay rate of ¢. But as noted in [3]
the magnetic field B decays at the lowest rate, so at the first stage we could not expect to use the subsystem for f;
and (E, B) to derive the faster decay. However, as far as our strategy of showing the decay by the energy method the
system (1.29) is still more effective than the original system (1.7): when doing the energy estimates for (1.7) we will
encounter the typical difficult term B x P f x P f since both B and P f are not included in the dissipation; but when
doing the energy estimates for (1.29), the situation is a bit better since now the term changes to be B x P f1 x P> f>
but P f> is included in the dissipation! This observation makes us be able to derive the decay (1.24) in Proposition 4.2.
With (1.24) in hand, we then further explore the structure of the subsystem for f> and E (c.f. (4.32)) to derive the
faster decay (1.25) in Proposition 4.4.

Note that the second term in (1.27) is due to the incoordination of the regularity-loss of E with the weighted energy
method. In order to get around this difficulty, as in [2] a time-weighted energy estimates with the time rate of negative
power will be employed in Section 5. The pay of this trick is that &,/ ,(#) may increase in time as stated in (1.23).

The rest of our paper is organized as follows. In Section 2, we recall some useful estimates for the collision
operators and collect some analytic tools. In Section 3, we establish the nonlinear energy estimates. In Section 4, we
establish the decay estimates. Finally, we complete the proof of Theorem 1.1 in Section 5.

2. Preliminary

In this section, we use L to uniformly denote the linear collision operators L, £1 and £;, and we use I to denote
the nonlinear collision operators I” and I',. We first recall the basic property of the linear collision operator L.
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Lemma 2.1. We have (Zg, h) =g, Zh), (Zg, g) >0, and Zg =0ifandonlyifg = ﬁg, where P is the L% orthogonal
projection onto the null space of L, correspondingly. Moreover,

~ ~ 2
(Lg.g)Z |1 — Plg|.. @2.1)
Proof. We refer to Lemma 5 in [9] and Lemma 2.1 in [20]. O
Next we recall the weighted estimates for L.

Lemma 2.2. Let w = w(e, B) in (1.17). For any small n > O, there exists Cy; > 0 such that

(0°Lg. w(@. 00°g) 2 (1 = 4> = n)|0“g ;00— Cul0“s ;. 22)
and for B #0
~ 2 2 2
<8ng’ wz(a’ ﬂ)agg> Z ’agg|a,w(a,ﬂ) - Z |aglg|a,w(a,ﬁ) - C’7 Z |aglg|a,w(a,/31) (23)
1B11=I81 |Bil<IBl

Proof. We refer to Lemmas 8 and 9in [18]. O
We then recall the following refined estimates for the nonlinear collision operator r.

Lemma 2.3. Let w = w(w, B) in (1.17). Then we have

<8gf;[g1’g2]’w28g83>5 Z "uaaglgl|2|ag:gllg2|(r,w‘agg3|a,w' (2'4)
o <o

B<p1<p
Hereafter 6 > 0 is a sufficiently small universal number.

Proof. We refer to Lemma 2.3 in [20]. O

In what follows, we will collect the analytic tools which will be used in this paper. The first one is the Sobolev
interpolation among the spatial regularity:

Lemma 2.4. Let2 < p <ocoandk,l,m € R, then we have

[v¥ell, SIv°slslvmsl, ™ 2.5)
Here 0 <0 <1 (if p =400, then we require that 0 < 0 < 1) and k satisfies
k+3<l—l>=€9+m(1—9). (2.6)
2 p

Proof. For the case 2 < p < oo, we refer to Lemma 2.4 in [20]; for the case p = oo, we refer to Exercise 6.1.2
in[8]. O

In many places, we will use the Minkowski’s integral inequality to interchange the orders of integration over x and
v without mentioning.

Lemma 2.5. For 1 < p < g < 00, we have
gl a0 < lgllppo- @.7)
Proof. It is standard, see [8] for instance. O

The following product estimates of V¥ will simply our some calculations.
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Lemma 2.6. Let k € Z, then we have
k k k
[VE@eml,, S leln [V, + V5], 11,
with po, p2, p3 € (1,+00) and 1/po =1/p1 +1/p2 =1/p3 + 1/ pa.
Proof. We referto Lemma 3.1in [14]. O

The last one we need is the basic time decay estimates of certain integrals.

Lemma 2.7. Suppose that 0 <& < 1, A > 0 and 6 > 0, then

t
/e*’\((”’)m’“”)l*s)(l+r)*9d15C,\’9’8(1+t)*9+8.
0

Proof. We refer to Lemma 18in [19]. O

3. Nonlinear energy estimates

2.8)

(2.9)

In this section, we will do a refined energy estimates for the solution to the Vlasov—Maxwell-Landau system (1.7).
We begin with the estimates for the spatial derivatives of the solution without the velocity weight. We use [ g to

denote the integration of g over R? x R3 or R3.

Proposition 3.1. Let m > 4. Assume that £, < M is small, then we have

d
Egm + Do SVMDyu1:m.0 + 1EN2 Fmr1/4.0 + IV B2 Fn—t:m—1/4.0-

(3.1)

Proof. Applying V¥ with k < m to the first equation in (1.7) and then taking the L%L% inner product with V¥ £, using

the Maxwell system and the collision invariant property, we obtain
1d
SV B+ 2w e B2 + [ (vt o)
= / VA HVHI=PYf + / goE vV fVEf

+ > C,{/qova.(u—vv)vk*fkaf

0#£j<k
‘ 4
— Z cy /qov x VJB-VUVk_Jkaf:ZIi.
0s£j<k i=1
We now estimate /1 — I4. For the term I, we apply Lemma 2.3 to obtain
nS Y [IV L9 ], [ -,
Jj<k
When k =0, we take L2 — L> — L? in (3.3) to have an upper bound of
170k 32 [Vl a=Pirl, < V&

(=1,2

(3.2)

(3.3)

(3.4)

Whenkzl,ifj=0wetakeL°°—L2—L2;ifj:kwetakeLz—Loo—LZ;iflgjgk—l(itonlyoccurswhen

k >2) we take L> — L® — L? in (3.3) respectively to have an upper bound of
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2 VLIV AL IV =Pl + 15 F 22 19 f 1 IV =Py f ],

=12 =12

+ Y VLIV VR =Py f | S VD (3.5)

£=0,1

For the term I», when k = 0, we take L2 — L3 — L to have

LSIE Y |V, e,

£=0,1

SVDEDrn; (3.6)
When k > 1, we take L® — L2 — L2 to have
1 S Elloo | 0)2VE £, [ V£,
S NE oo/ Fanim+1/4.0V D (3.7)
Notice that the term /4 only occurs when k > 1, and we perform an integration by parts in v to have

L= )" C,{/v"—ffqov x VIB .V, Vkf
0#j <k

< Z /|VjB||(v)5/2Vk_jf|2|ka|g. (3.8)
0s#j <k
When k =1, then so j = 1, we take L3—L1°—1%in (3.8) to have an upper bound of
Y IVVBL [PV IV £lle S VEDasp0v D2 (3.9)
=0,1

For k > 2,if j =1, we take L™ — L2 —L?%in (3.8) to have an upper bound of

IV Blloo [ 02V £, IVE £, S 1V Bllooy/ Fnetim—1/4.0v D (3.10)

When k = 2, the remaining case is j = 2, we take L3 — L% — L? to have an upper bound of
S I8, | @£, 1927 ], < VEs\DaspovDs. G.11)
£=0,1

For k > 3,if j =2, we take L™ — L?2—L%in (3.8) to have an upper bound of
3198, 952, 9 £, £ Ve Pusin-1/2.0v/ Do 6.12)
=12

When k = 3, the remaining case is j = 3, we take L> — L® — L? in (3.8) to have an upper bound of
2NV B3IV 7, < Ve Dasjpov/Ds. (3.13)
¢=0,1

Now when k > 4, if j =k, we take L? — L™ — L2 the remaining cases are of 3 < j <k — 1, and we take
L3 — L% — L? in (3.8), respectively, to have an upper bound of

IVEBI, D0 Tl ve s Ve £l + D2 IV B, v vE £ Ve £l

(=1,2 £=0,1

SVEmD27/2.07 D + vVEmy/ Din—2:m—1/2.07/ D (3.14)

Hence, we conclude that
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14 SV Eny/Dmn—2:m-1/2,07 P + IV Blloor) Fin—1:m—1/4,07 Din- (3.15)

Similarly, for the rest term /3, we again perform an integration by parts in v to have

=) ¢l / VK foVIE - (v + V) VE £
0+ <k
<> /]VjE||(v)3/2Vk’jf|2|ka|a. (3.16)
0s£j<k
For k > 2,if j =1, we take L™ — L2 —L%in (3.16) to have an upper bound of
S IV VE w9 7], 19 71, £ vEny/ Do im0/ Do G.17)
(=12

For the remaining cases, we may argue in the same as that for B, together with the bound (3.17), to conclude that

13 S v5mv Dm—l;m,OV Dm- (3-18)
Collecting the estimates for /1 — I4, together with Lemma 2.1 and by Cauchy’s inequality, we deduce from (3.2)

that
d

AV 2V E B )+ IV - Rir]] (3.19)

k<m k=<m
SWEm+MDm + vVEnDm—1:m0+ Co(I1EN2Fm:m+1/4.0 + | VBl 2 Fn—1:m—1/4,0)-

Notice that the dissipation estimates in (3.19) only controls the microscopic part {I — P} f, but it follows from [10,15,
3,2] that there exists a function G, (¢) with |G, (¢)| < &y, (¢) such that

d 2 2
—nt D IV PL NN + 1V B2 S Y| VU= PLF [ + €D (3.20)

I<k=m k<m

A suitable linear combination of (3.19) and (3.20), taking » sufficiently small and since &,, < M, implies that there is
an instant energy &, (¢) satisfying (1.21) such that (3.1) holds. We may refer to Lemma 4.3 later for the reason that
we can include || (f} — f,)||(27 in the dissipation. O

Next, we turn to the energy estimates with the velocity weight, and we first deal with the pure spatial derivatives of
the solution.

Lemma 3.2. Let | > m > 4. Assume that £, < M is small. Let w = w(a, 0) in (1.17). Then for 1 < |a| < m, we have
that for any n > 0

d 2 2 Uq 2
g 18 + 19 £ 15 + oy ms 197/ 2
S (VM 4Dt g + 1 EllooFmst.g + 1V BIZFuraq + [0°E |8 £, + |89 72 (3.21)

Proof. Applying 0% with 1 < |a| < m to the first equation in (1.7) and then taking the L%L% inner product with
w28°‘f, we obtain
1d
2dt

1 Bq ’
sl + [ (o fwe )

g 20— la)
=2 [ 9“E- 29« 1
/ vV f+/[ a0 T I e

+ / U (f. e f + Y. €O / God™ E - (v — V)0 fu?d® f

0#a) <o

2
[0 £1l5.0 +

]qu 3% fw?d f
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5
- > /qov X 0% B - V0"~ fw?d¥ f =Y ;. (3.22)
0#a) <a i=l

First, by Lemma 2.2, we have

2 2
/(La“f, w?d* f)dx 2 | £, — C[9° £ (3.23)
We now estimate /1 — I5. Clearly,
nsloelfa s, 624
and
b §/|E||<v>‘/28“f|2,w SElooFmsig- (3.25)
Next, we apply Lemma 2.3 to obtain
LY, /|3°“f|z|3“_°“f|g,w|3“f|a,w~ (3.26)
o =<a
If @] =0, we take L™ — L2 — L2 in (3.26) to have an upper bound of
S 197 Ll 12, S VE Dy, 6.27)

I<|y|=2
When || = 1, the remaining case is «] = «, and we take L3—L%—1L%in (3.26) to have an upper bound of
S 75y 31 0% ], S VEDr1. (.28)

lyl=<l lyl=1

Here we have used the fact w(a, 0) = w(y, 0) for |y| = 1. This concludes the case || = 1.
Now when |a| > 2, if @] = a, we take L2 — L — L2 the remaining cases are of 1 < || < || — 1, and we take
L3 — L% — L% in (3.26), respectively, to have an upper bound of

[0 sl D2 197 Flloullo®Fllo+ 22 N070% rlly 32 070 =0 £, 10% £,

I<|yl=2 lyl<l lyl=1

SV Daitg/Pinitg + vV En Dt g- (3.29)

Here we have used the facts w(«, 0) < w(y,0) for 1 <|y| <2 and w(e,0) < w(a — a1 + y,0) for || > 1 and
|y| = 1. This concludes the case || > 2. Hence we conclude that

I < EnDmilg- (3.30)
For the term /s, we perform an integration by parts in v to have

Is= Z co / w29 fgov x 9% B - V,9% f
0#£a) <a

< 2 [l e gl [0 ], (3.31)
0#0; <«
When |a| = 1, then so aj = «, we use the split f =P f + (I — P} f in the factor [(v)%/2 f|5.,, in (3.31) and then take
L? — L*® — L? and L™ — L? — L?, respectively, to have an upper bound of

[0°B, Y [o7Pr] 0% F], ., + 0B )2 A=Pye|, 0% ],
I<ly|=2

SVEND2 Doty + IVBllcoy) Fatgy/ Dot g (3.32)
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Here we have used the fact (v)zw(oz, 0) =w(0, 0).
For || > 2, if || = 1, we take L% — L? — L? in (3.31) to have an upper bound of

o Bl | w205 £, 0% £, S 1V Bllooy For-ro Dot (.39

Here we have used the fact (v)2w(a, 0) = w(x — a1, 0) for |aq| = 1.
When |o| = 2, the remaining case is o1 = o, and we use the split f =P f + {I — P} f in the factor |(v 5/2f|2
(3.31) and then take L> — L™ — L? and L™ — L2 L?, respectively, to have an upper bound of

lo*Bl, 3= lo7erl Mo sl + 22 (97 Bl, P a=Pir], [0 7],

I=ly|=2 I<|y|=2
S VD2 Dot g +VED21 4. (3.34)

Here we have used the fact (v)3w(a, 0) < w(0, 0). This concludes the case |o| =2
For || > 3, if || = 2, we take L% — L? — L? in (3.31) to have an upper bound of

S oo Bl e £, [0% 1,0 S VEPr2ay/ Pty (339)
I=ly|=2

Here we have used the fact (v)3w(a, 0) < w (e — a1, 0) for |a| = 2.
When || = 3, the remaining case is o] = o, and we take L3 — L% — L? in (3.31) to have an upper bound of

Z HayaaB”Z Z ” (v>3ayf||a,w ” aaf”a,w 5 \/874\/ D2:l,t] V D3;l’q. (336)
lyl<i lyl=1

Here we have used the fact (v)3w(e, 0) < w(y, 0) for |y| = 1. This concludes the case |a| = 3.
Now when |«| > 4, if @1 = «, we take L2 —L® — L2 the remaining cases are of 3 < |o| < |a| — 1, and we take
L3 — L% — L?in (3.31), respectively, to have an upper bound of

”3013”2 Z ||(v>3ayf||a,w||aaf||a,w

1=ly|=2
+ Y o7eB], Y [wierac s, o],
lyl=<l lyl=1

SVEmyD2tg/ Dinitg + @m\/ Dinz1.q- (3.37)

Here we have used the facts (v)3w (e, 0) < w(y,0) for 1 < |y| <2 and (v)3w(e, 0) < w(w — a1 + ¥, 0) for |ay| > 3
and |y | = 1. This concludes the case |«| > 4. Hence we conclude that

15 < \/ Dm g + ”VBHOOV m—1;l,q Dm;l,q~ (338)

Similarly, for the rest term /4, we again perform an integration by parts in v to have

o 20—« o 2(1 — lal) a
= > Cl/ 9% FgodUE - ([1+(1+I)0+ I ]u+vv)a f

0#0) <a

< X [l ellwrmoea g, i, 639
0#0; <« ’ ,

When |a| = 1, then so aj = «, we use the split f =P f + (I — P} f in the factor [(v)3/2 f|5.,, in (3.31) and then take
L?—L>® — L2 and L® — L? — L?, respectively, to have an upper bound of

[0“El, D loerl,lofl, 0+ Do [070°E] | A—=Pr], 0% f],.

l=ly|=2 l=ly|=2

SVEND2 Dty +VEDr1 . (3.40)
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Here we have used the fact (v)zw(a, 0) =w(0, 0).
For || > 2, if |or;| = 1, we take L™ — L% — L% in (3.39) to have an upper bound of

> oo Ef | w?o et £, 9% £ 1.0 SV Pu-titigy/ Pmit- (3.41)
I=lyl=2

Here we have used the fact (v)2w(a, 0) = w(a — a1, 0) for |ap| = 1.
For the remaining cases, we may argue in the same as that for B, together with the bounds (3.40) and (3.41), to
conclude that

Iy S Vv &an;l,q- (3.42)

Plugging these estimates for /1 — I5 and (3.23) into (3.22), by Cauchy’s inequality we thus conclude the esti-
mate (3.21). O

We now turn to the mixed spatial-velocity derivatives of the solution. Notice that in view of Proposition 3.1 and
Lemma 3.2, it suffices to estimate the remaining microscopic part Bg{l —P}f for |o| 4+ |B| <m and || <m — 1.

Lemma 3.3. Let [ > m > 4. Assume that £, < M is small. Let w = w(«, B) in (1.17). Then for |a| + |B| < m with
|| <m — 1, we have that for any n > 0

d 2 2 Uq 2
SR, + [P, s - P,
S (\/a"" 77)’Dm;l,q + ”E”oo]:mgl,q + ”VB”go}—m—l;l,q

+Cy Y ||3°‘/{1—P}f||§,w(a,ﬁ/) + D (3.43)
1B/1<I8]

Proof. We will use the following macro-micro decomposition from (1.7):

{0 +v-Vi+qo(E+vxB)-V,}{I-P}f —2E -v/uqi + Lf

=I(f. f)+qkE -viI-P}f +Sgp+P-Vif)—v-V,Pf, (3.44)
where we have denoted by
SE.B=qoE - vPf —P(qoE - vf) —qo(E+v x B)-V,Pf —}—P(qo(E +v X B)- va). (3.45)

Applying 8;‘ with |a| 4+ |B] <m and |o| <m — 1 to (3.44) and then taking the L%L% inner product with w2ag{1 —
P} f, we obtain
1d

2 1 vq
S =Py, +

2 +0)Ho

zzfa“E.aﬁ(uﬁ)qlwzag{I—P}f—/agfagfjj{l—P}fwzag{I—P}f

g 20—lal= 1D o
+/|:(1+t)’9+ 1+ [P ]‘IOE'vaﬂ{I P} fw g {L—P}f

laga—Pisll,, + /(BE‘L{I —~P) /w35 (1P} )

+/agr(f, f)wzag{I—P}f—i-/qu-aﬁ[vaa{I—P}f]wzag{I—P}f

+ Z Cgf]/6103””E-8,3[(11—Vv)a"‘_“l{l—P}f]wzag{I—P}f
0#a; <o

- Yooy /qoaﬂ, v x 91 B -V, 05 ST — P} fw?df{(I—P}f
0. B)=(@.B)

+y o fagSE,szag{I—P}f

o <o
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9

+ [P vn -0 VPRI -PI =0 (3.46)

i=1

Here 5§i =1 if ¢; < B; otherwise, 6? =0.
First, by Lemma 2.2, we have that if 8 =0,

f(B“L{I — P} f, w?d*{I — P} f) 2 [o“(X— P}f||(27’w — C|o*{1—P}f| i; (3.47)
if B # 0, then for any n > 0,
f(agL{I —P}f. w?dg{I-P}f)
= |05 0=PIf [, =0 20 105 I=PIF [} ey = Cr 20 (35 T=PIF] e, (3.48)
1B'1=I8I IB'1<IBI
We now estimate 1 — Iy. Clearly,
n S [9%E|* + [0 (- Py ]2 < D, (3.49)
and
L+1Is SIElee Y ) 25 0=y f|| [0} Pog =Py f |, ,
p'<p
5 ”E”oo]:m;l,q- (350)
For any n > 0 and 8 > e;, by Lemma 6 in [11] we have
12 § ”573" ag—ei {I - P}f ”a,w(oz,ﬁ—e,-) ” 8/‘;1_:: {I - P}fHa,w(ot+e,—,ﬁ—e,-)
< 1Dty () + |85 9o U=PIF [ ey (3.51)
Next, we apply Lemma 2.3 to obtain
ns Y [lue rLogT s, =P, (.52
o <a
Bflﬂlfﬂ

If (@1, B1) =0, we take L> — L> — L% in (3.52) and we use the split f =P/ + {I — P} f in the factor |35 f o, to
have an upper bound of

> ot sl o],z —pr,,

I=ly|=2
+ ) ol legu—ris,  Joga—pis],,
1<|yl=2
< VDaEny/Pinitg + vV EDmit g (3.53)

Note that we have concluded the case || + |8] = 0.
When |a| + |B| = 1, the remaining case is (o1, 81) = (@, B), and we take L3 — L% — L? in (3.52) to have an upper
bound of

8
S a7 aplly Y107 71, 1050~ Pif,, S VEDxs,. G54
lyl=1 lyl=1
Here we have used the fact w(a, 8) = w(y, 0) for |y| = 1. This concludes the case ||+ |8| = 1.
Now when |a| + 8] > 2, if (a1, 1) = («, B) we take L> — L>° — L?; the remaining cases are of 1 < ||| + |81 <
|| + B8] — 1, and we take L3—L1%—1L%in (3.52), respectively, to have an upper bound of
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[og 71, 22 197 fl,ulo5a=Pis],,

1<|y|=2
+ 2 lworastrl, Do 197 o5 g £, 95 = Pis],
lyl=1 lyl=1

5 gm\/DZ;l,q\/'Dm;l,q +\/51Dm;l,q- (355)

Here we have used the facts w(a, 8) < w(y,0) for1 <|y| <2and w(a, ) <w(ae—a;+y, B—By) for |ay|+|B81] =
1 and |y | = 1. This concludes the case |«| + |8]| > 2. Hence we conclude that

It S VEnDuiiy- (3.56)

Notice that the term 77 only occurs when || 4+ | 8| > 1, and we perform an integration by parts in v to have

I; = Z cy / zag a‘{I P} fqodp,v x 3*'B - Vvag{I—P}f
0# (a1, B1) = (@, )
S > f’aﬂ“ B|[(v)*?0p,v0g " gHI =P} f|, , [0 {T—P}f| (3.57)
0 (a1, B1)=(a, B)
If |a1| + |B1]| = 1, then either |a;| =1, |B1| =0 or || =0, |B81] = 1, and we both take L — L?> — L?in (3.57) to
have an upper bound of

o 5], v S/ZaHlu—P}fumuaz{l—mfua,w
b Y 1Bl g 0 Ris, |5 n P,

I=ly|<2

SNIVBllooy) Fintit.gr/ Dmitig + v/ €4/ Dm—t:1,4+) Pimstg- (3.58)

Here we have used the facts (v)?w(a, ) = w(x — a1, B) for |ai| = 1 and (v)2w(e, B) = w(w, B — 1) for |B1] = 1.
Note that we have concluded the case |o1]| + |81| = 1.

When || + | 8| = 2, the remaining case is («1, 1) = («, B), and we take L*> — L?>—L%in (3.57) to have an upper
bound of

> lora“Bl, | =Pir], 95 L=PIf],, < VEDx. (359)

I=ly|=2

Here we have used the fact (v)3w(e, 8) < w(0, 0). This concludes the case |a| + | 8] =
For || + |B] = 3, if |ae1| + |B1] = 2, we take L> — L? — L? in (3.57) to have an upper bound of

> e B|,| o gla—Pis], 05 I—Pif|,

I<|y|=2

5\/?4\/Dm72;l,q\/,Dm;l,q- (3.60)

Here we have used the fact (v)3w(a, B) <w(a —ay, B — By) for |ar| + |B1] =2.
When || + || = 3, the remaining case is (a1, B1) = (o, 8), and we take L3 — L% — L? in (3.57) to have an upper
bound of

> fora B, Y [wiera—rif], loga—Pif] .,

lyl=1 lyl=1

S VE4 Dt g/ D3itg- 3.61)

Here we have used the fact (v)3w(a, ) < w(y, 0) for |y| = 1. This concludes the case |a| + |B] = 3.
Now when |a| + |8| = 4, if (a1, B1) = (a, B), we take L? — L™ — L?; the remaining cases are of 3 < |a1|+ |B1]| <
la| + |B] — 1, and we take L3 — L% — L? in (3.57), respectively, to have an upper bound of
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[0“B|, Y [’ora—pis|, , |ogT—Pir|,

1<ly|=2
+ ) |o7aB], Y |wieragg a—Pyf|, o —Pir|,,
lyl=1 lyl=1

5 \/a,/ IDZ;l,q\/ Dm;l,q + gm,/ ,Dm—Z;Z,q\/ Dm;l,q- (3.62)

Here we have used the facts (v)3w(e, B) < w(y,0) for 1 < |y| <2 and (v)3w(e, B) < w(ex — a1 + ¥, B — B1) for
loe1] 41811 = 3 and |y | = 1. This concludes the case || + || > 4. Hence we conclude that

I ,S vV 5mDm;l,q + VBl ]:m—l;l,q\/ Dm,l,q- (3.63)

Similarly, for the term /¢, we again perform an integration by parts in v to have

s X [prElwagu-rsl, pa-pl,,
0(a1,B1)=(@,8)
+ Z |8°“E||(v)2ag_“1{l—P}f|a’w|8g{I—P}f|g’w. (3.64)
0#£a <o

For the first term, if 1|+ |B1]| = 1, then either |o1| = 1, |B1| =0or |o1| =0, | B1] = 1; for the second term, if |o1| =1,
we all take L> — L? — L? to have an upper bound of

Yo e E| e a-Pys, o5 T-Pi 1],
I=ly|=2

+ 2 [0 El [ wagp =PI, [o5X-PIf,,
1=<ly|=2

S VE Dntit.gy/ Dmitg- (3.65)

Here we have used the facts (v)2w(e, 8) = w(a — oy, B) for |a| =1 and (v)w(a, B) < w(a, B — Bi) for |B1] = 1.
For the remaining cases, we may argue in the same as that for B, together with the bound (3.65), to conclude that
Is § AY ngm;l,q' (3.66)

Now for the term Ig, we integrate by parts in v and make use of the exponential decay in v of the hydrodynamic
part to get

Is S Z f(|a°“E| + 0% B|) |1’ 9 £, |nPo* (T — P} £, (3.67)

o=

We may then easily have the an upper bound as

I3 SVERDy. (3.68)
Similarly, we easily have
2 2
I ST =Py + |V £|IS < D (3.69)
Plugging these estimates for /1 — Iy and (3.47)—(3.48) into (3.46), by Cauchy’s inequality we thus conclude the
estimate (3.43). O

We now summarize the energy estimates in the following proposition.

Proposition 3.4. Let m > 4 and | > m + 1/4. Assume that E,, < M is small, then we have
Uq
5 ”E”oo}—m;l,q + ”VB”goJ:m—l;l,q + ” VmE”2\/ Dy (3.70)

d
Egm;l,q + Dm;l,q +
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Proof. We define

gm;l,q = (‘:m + Z Na “ 8()[f”i,w(oz,O) + Z No,B ” 8/(;{1 - P}f”i,w(o{,ﬁ)' (371)
1<la|=m l%\tlfnlfr

Then &,,,.1 4 satisfies (1.18). By further taking 7y, 1o, g, n sufficiently small orderly and choosing M sufficiently small,
we deduce the proposition from Proposition 3.1 and Lemmas 3.2-3.3. O

4. Time decay rates

In light of the energy estimates (3.70) in Proposition 3.4, we now turn to derive a strong decay of the electromag-
netic field (E, B). We recall the notations f; = f 4+ f— and f» = f4 — f— for the solution f to the Vlasov—Maxwell—
Landau system (1.7), and we recall the system (1.29).

We first derive an energy estimates which allows us to prove the basic decay rate of (E, B).

Lemma 4.1. There exist an instant energy €(t) with
e~ Y {IVi I+ VEE B3} (4.1)
k=3,4,5

and the corresponding dissipation rate

o0~ [VI-PiAl, + 3 (VAL + X IVERlL + D IVREL + (V4B (4.2)
k=4,5 k=3,4,5 k=34
such that
d
EQE + 0 S (V& +/E5.354.009. (4.3)

Proof. The V¥ (k =3, 5) energy estimates on (1.29) yield
ST A+ 209 E B} + |94 (1= P i, - Pal 1)
< [Vrch v A [ VG e
+/Vk(E-(v—Vv)f2)ka1+/Vk(E-(v—Vv)f1)ka2

6
—ka(v x B -V, f2) V¥ fi —/vk(v X B-Vy OV fa:=) "I (4.4)

i=1
We first estimate /7 — I when k = 3. For the term I, by the collision invariant property and Lemmas 2.3, 2.6, 2.5,
we obtain

I =fv3r*(f1,f1)v3{I—Pl}f1
S il 2 IV Al 2 ps + 10092 fill s 102 ) [ VP = Pad £,
SVa|VHa|L |VI-Py A, SVED. (4.5)

Note that /> can be estimated in the same way, at least. For the term Ig, we integrate by parts in v and use the split
fi=Pifi + {I—P1} fi to have

Iﬁzfv%v X Bfi)- VoV fy

S(IV@BPi |, + |V (B HI-Pi A1) [,) |V 2], (4.6)
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By Lemmas 2.6, 2.5, 2.4 and Holder’s inequality, we obtain
|V BPLD |, SUBI3|VPPLf 26 + VB[P fill 213
SIBI[V*PL A, + | VB[, 1P fill2is S VEND 4.7)
and
|V (B@)HI-P1} f1)],
SUBlloo | (0) 2V =Pi} fi] 22 + | V2B | 0)HI=P1} fi] 2
SIBIE VB )32V — oy 3° e
+ VB[ WP =P fi]

Sy 53;27/4,0@+ 52;9/4,0@- (4.8)

Hence, we conclude that

lo S/ €3:27/4.09. 4.9)

Note that 14 can be estimated in the same way. For the term /5, we integrate by parts in both v and x to have

[y 231 =P £

Is = —/VZ(U X Bf) - Vvv4f1 < |}V2(B(v)5/2f2) ||2||V4f1 ”U @.10)
By Lemmas 2.6, 2.5, 2.4 and Holder’s inequality, we obtain

[V2(B@P L), S 1Bl 07292 o], + V2B | )72 f2] 131

SIBIE VB[ [ 29 f ] )2 ]}

B VB W ] ) 2 ]

S \/52;19/4,0«/54- E11/4.0VD. 4.11)

Hence, we conclude that

14 5/ E3:27/4,09. (4.12)

Note that /3 can be estimated in the same way. This completes the estimates for k = 3.
We now estimate /1 — I when k = 5. For the term 11, by Lemmas 2.3, 2.6 and 2.5, we obtain

DS (1Al e 192 Al + 1092 il A ) [ V2 A,
SVE.0||V A ||,2I <V&3:309. (4.13)
Note that /> can be estimated in the same way. For the term /¢, we integrate by parts in v to have
= [ V30 x B -V R S [V (B0 A) T £, (4.14)
By Lemmas 2.6, 2.5, 2.4 and Holder’s and Young’s inequalities, we obtain
PPV fily + [V Bl 072 fill e
SIBIC IV B J@ e a1 2 e ]
VBV B A w2

2 2 2 2

< (/535740 + V& + \/52;43/20,0)\/5 (4.15)

IV2 (B2 f1)], SIBllLee
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Hence, we conclude that

Is S (V& + /E5:35/4.0)D. (4.16)

Note that I3 — I5 can be estimated in the same way. This completes the estimates for k = 5.
Summing over k = 3, 5 and summing up all these estimates above, we deduce from (4.4) that

d
o 2Vt w2l vEE. B [3)

k=3,5
+ 3 IVHI =Py fi, T= P2} o) |2 € V& + [ E5:35/4.0)D. 4.17)
k=3,5

Notice that the dissipation estimates in (4.17) only controls the microscopic parts, but it follows from [10,15,3,2,
20] that for k = 3, 4 there exists a function 6’}1 (1) with

&5 O S [V A+ 1V Al 4.18)
such that

d

O+ [V S VR Py A )+ [V =P ]+ 63D, (4.19)
and that there exists a function & g, (1) with

en0 S Y {IViel+IViE B3 (4.20)

k=3,4,5

such that

d
505+ 2 VRl 3 IVREL + VB,

k=3,4,5 k=3,4
S D IVHI-Paf] + 65D .21
k=3,4,5

Note that the point in (4.21) is that we can include || V3P f> ||% in the dissipation. One can check this in details later in
Lemma 4.3. Hence, if we define

= Y {IV'U L+ [VHE B[S} +n(e), + 6 +67,). (4.22)
k=3,5

then for n sufficiently small, by the Sobolev interpolation, we deduce that &(r) satisfies (4.2) and that (4.3) follows
from (4.17), (4.19) and (4.21). O

We then record the decay estimates resulting from Lemma 4.1.

Proposition 4.2. Let m > 8 and | > max{m, 35/4}. Assume that £, + Es.1.,0 < M is small, then for t € [0, T] and for
k=0,1,2,3,

IV ro |, + |V*E, BY®)|, < ca +1)7% sup VE(®) + Es.1.0(T). (4.23)

0<t<T
Proof. Under the assumption of the proposition, we obtain from Lemma 4.1 that
d
—¢4+9<0. (4.24)

dt

In order to derive the decay from the time differential inequality (4.24), the point is to estimate € in terms of . We
will use the interpolation as in [17,11,20]. First, by Holder’s inequality, we interpolate among velocity moments to
have that for k = 3,4, 5,
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971, = o= | et 7

” ka” 4([ 5>+1 {m} IT=5+1 5)+1

This implies
IVa—pusl,+ D IVl + X IVEel,
k=4,5 k=3,4,5
: 3 k k S
s{\/es;l,o(o}w5>+1{Hv a=Pyal, + Y IVal,+ D v f2||g} .

k=4,5 k=3,4,5

Next, we interpolate among spatial regularity to have

3
IV3Pufi]l, < [V*Pusi 30 ||2 <& |vinl

V8], < VBl 1BIS <& [v*B]3.

and

_ 1 m=5
IV B, = [V4E. BE7 |97 E B <67 |V E. B
In light of (4.26)—(4.29), we deduce from (4.24) that for ¢ € [0, T]

d —0
—cs+{ sup {55;,,0(r)+5m(r)}} ¢+ <,
dt 0<t<T

where 6 = max{ % ﬁ, ﬁ }. Solving the inequality (4.30) directly, we obtain

&(t) < (@(0)—9+9{ sup {85;1‘0(0+5m(r)}}_0t)_1/9

0<t<T

SA+07Y sup {Es.1.0(0) + En(D)}.

0<t<T

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Notice that if we have required that m > 8 (and [ > %), then 6 = 1/3. This in particular proves the decay estimates

(4.23) for k = 3. Note that (4.23) for k = 0 is trivial, and the cases k = 1, 2 follow by the Sobolev interpolation.

O

We now derive an energy estimates which allows us to prove the faster decay rate of E. The key point is to consider

the following evolution of f> and E separating from (1.29):
hfot+v-Vifo—4E-v/u+Lofo=T(f1, 2)+E-(v—Vy)fi—vxB-V,fi,
oE—-V,xB =—/vﬂf2dv, Vi - EZ/\/Efzdv.

R3 R3

Lemma 4.3. For k =0, 1,2, there exist an energy k(1) with

2 2
o~ [VERl;+ | VEE],
and the corresponding dissipation rate
2 2
o' =V al, +VFEL

such that

d
T DS JE3010,000 + [V F [+ [V B

(4.32)

(4.33)

(4.34)

(4.35)
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Proof. The V¥ (k =0, 1, 2) energy estimates on (4.32) yield
d
VR R+ 4V E) + [V T - P22

S/ka*(fhfz)ka2+/Vk(E-(v—Vu)fl)kaz

4
—ka(v X B~Vuf1)ka2+4/VkE~Vx x VEB =Y "1 (4.36)
i=1

We now estimate I; — I4. For the first term, by Lemmas 2.3, 2.6 and 2.5, we obtain
0 (1 Al e IV £l + 10V il a1 2z ) IVE £2l
SV&20(|9* 2l + [V A1) (4.37)
For the term I3, we integrate by parts in v to have
L= / Vi x Bfi) - VyVE o < [ V5 (B2 1), V¥ 2], - (4.38)
By Lemmas 2.6, 2.5, 2.4 and Holder’s and Young’s inequalities, we obtain

[V (B@?2 A1), S 1Bl )2V fill 2y + VB[ 02 i 21
< ”B”g/(kﬂ) HVkHB ||;/(k+1) ” <U)S(k+1)/2v(k+1)/2f1 ”;/(k%-l) ||Vk+1f1 ||/2</(k+1)

+ VB, [0 fill .

S (&m0 + 2010 (IVF il + [V B ). (4.39)
Hence, we conclude that
IS\ Eaao(|VE L2+ [V AL + [V B]). (4.40)

Note that /> can be estimated in the same way. By Cauchy’s inequality, we easily bound
2 2
la <[ VEE[y + Cy[ VF1 B, (441)

Summing up the estimates above, we deduce
d 2 2 2
TV Rl +4|VEES} + [ VEI =Pt o]

< ((JE321/a0 + WD + €y (| VFH! f||§ + ||Vk+lB|}§). (4.42)

Notice that the dissipation estimate in (4.42) only controls the microscopic part {I — P»} f>, we thus want to include
the hydrodynamic part P> f> and the electric field E in the dissipation. We now explain this in details, and this should
confirm the statements of Lemma 4.1 and Proposition 3.1. We will use the local conservation laws and the macroscopic
equations derived from the macro-micro decomposition. Taking the L% inner product of the first equation in (4.32)
with /i, plugging in f> = P2 f> + {I — P2} > and denoting P> f> = d(¢, x),/i, we obtain the local conservation
laws:

dd + Vy - A({T =P} f2) =0, (4.43)
where the moment function A(g) = (g, v,/it). We write the second equation in (4.32) as

WE—Vyx B=—A({I-P2}f2), Vi -E=d. (4.44)
Notice that by plugging f> = P f2 + {I — P2} f into the first equation (4.32),

P2fr+v-ViPafo —4E v /u=—0,{I-P2} o+ L2+ (4.45)



1120 Y. Wang / Ann. I. H. Poincaré — AN 32 (2015) 1099-1123

where the linear term £, is denoted by

Ly=—v-Vi{I-P2} fo - Lo{I - P2} fo (4.46)

and 91, is the nonlinear term in the right hand side of the first equation in (4.32). Taking the L% inner product of (4.45)
with v/, we obtain the macroscopic equations:

WAL= P2} f2) + Vod — 4E = A(£2 + ). (4.47)

Applying V¥ to (4.47), taking the L)zc inner product of the resulting equations with —V*E, and then integrating by
parts, since V, - E =d, we get

| V*d|; + 4| V¥E|; = - / yVEA(I =P} f2) - VFE + / VEA(E +9) - VFE. (4.48)
For the first term, we integrate by part in time to have, using the equation (4.44),

— / HVEA({I-Pa} o) - VFE

d
BT / VEA(I- P2} f2) - VFE + / VEA(L=Po}f) - 8,V'E

d 1 2
< _E/va({I—PZ}fz)-v"E+ Z||v’<+119||2. (4.49)
We may bound the second term as usual by

fv"A(sz +9) - VEE S| VRE| + €| VHI - P} o

+VE(|V Rl + [TEL + [V AL+ [V B (4.50)
Plugging (4.49)—(4.50) into (4.48) implies that there exists a functional Qik(t) with
[ 0| S [V Al + [ VHE]; (4.51)
such that

d

Lot 1 |Vl + |VEEL:

SIVHE=Pafa| ) + D4 + [V AL+ [ B (4.52)
Hence, if we define
& (1) = |V |5 + | VRE |3 + nek, (4.53)

then for n sufficiently small, we deduce that ¢k (1) satisfies (4.33) and that (4.35) follows from (4.42) and (4.52). O
We then record the decay estimates resulting from Lemma 4.3.

Proposition 4.4. Let m > 8 and | > max{m, 35/4}. Assume that &, + Es.;.0 < M is small, then for t € [0, T'] and for
k=0,1,2,

IV* )|, + [VE®D], S 0+~ S En @+ B0, (4.54)
<t<T
where e =3/(41 — 7).

Proof. Under the assumption of the proposition, we obtain from Lemma 4.3 that

%@k + 0% S|V A+ [VEH B (4.55)
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We now use a splitting method (velocity-time) as in [18,11,20]. For any ¢ > 0 and k =0, 1, 2, we have

IV 52 2 / () V[ VE 2 = / +

ol=(14+0)*  [v[=(1+0)*

>(1+n7* / V¥ £
ol <(140)°
=(1+t)—f||v’<f2||§—(1+t)—f f VX )2, (4.56)

[v|=(1+1)*
and we bound by

A+0"° / |V"fz|25(1+r)*8(1+r>*4”*">€f|v|4<’*’<>|kaz|2

[v|=(1+2)*
<L+~ WHEDeg, 0@). (4.57)
Plugging the estimates (4.23) of Lemma 4.1 and (4.56)—(4.57) into (4.55), we obtain
d
ST HU+TE S AT G 0+ A+ sup {E,(1) + €500}
0<t<T
SA+07" sup {En(0) +Esu0(m)}. (4.58)
0<t<T

where 6 = min{(4/ — 4k + 1)e, k + 1}. By Lemma 2.7, we deduce from (4.58) that for0 < ¢ < 1,

t
nl—e ol—¢
k(1) e T (ek(0)+ sup {Em(r)+55;1’0(r)}/eki(li)s (l—l—t)—adt)
0<t<T 0
S sup {En(T) + Esuo(0 (L +1) 70T (4.59)

0<t<T

Notice that if we have chosen ¢ so that (4] —7)e > 3, then 6 = k+ 1. Taking ¢ = 3/(4] —7) yields the decay (4.54). O
5. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. Let m > 9 and [ > m + 1/4. We denote
T, = sup{t = 0] £ (1) + Ep—1;1,4(1) < M. (5.1)

Clearly T, > 0 follows from the local-in-time existence theory if &,,.; 4(0) is sufficiently small (it can follow by
combining the arguments in [10,11] and our energy estimates, and the detail is omitted for brevity). Our goal is to
show T, = oo if we further choose &,,;; 4(0) small.

By Proposition 4.2, Proposition 4.4 and the Sobolev interpolation of Lemma 2.4, we deduce

VB, SVMA+0)7i (5.2)
and
|E®] ., SVMA+07it3, (5.3)

where ¢ =3/(4] —7) < 1/10 since [ > 9 + 1/4. Substituting (5.2)—(5.3) into the estimates (3.70) of Proposition 3.4,
we obtain

vq
+ mfm;l,q
S (IE oo + IVBIZ) Fnitg + | V" E| ;v/ D

SVMU+D" 5 Fp g + |V E| 3/ D (5.4)

Eé‘m;l,q + Dt g
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Note that if we have fixed 0 <@ < 1/5,then 1 +9 <5/4 — ¢/2. Then (5.4) implies

d
_gm;l,q + Dm;l q

o )1+19 Fnitg S||V"E|| v/ D (5.5)

(141
Similarly, substituting (5.2)—(5.3) into the estimates (3.1) of Proposition 3.1, we deduce
d
T7En+ Do SYMDyii1g + (1N + IV BIZ) Fnitg

S_, v MDm—l;l,q + M(l + t)7%+€fm;l,q~ (56)

Note that we could not simply close the estimates (5.5)—(5.6) since || V™ E||, is not included in D,, but rather in &,
(or Dy,+1). This is caused by the regularity-loss property of the Maxwell system. We shall overcome this difficulty by
using the time-weighted energy method with the time rate of negative power as [2]. Multiplying (5.6) by (1 4 7)™
with €9 > 0 gives

d
_{(1 + t)—e()gm} +Q +t)—(l+€0)gm +(1+ t)—GO’Dm
SVYMUA+1)" Dy g +MA+1)" A +1)" +-leq (5.7
Multiplying (5.5) by (1 4 ) ~(1+€0)/2 yields
d _l+g 3+ _l+g vq
E{(l—i—l‘) 2 m;l,q}+(1 +8)7 72 Epg+ A+ 72 {Dm;l,q—i-m}-m;l’q}

1+€
<A+ [V"E| ;WD S A+ 1) H0E, + D, (5.8)
We then combine (5.7) and (5.8) to obtain

d 1+¢
AarnTog, +a+ D7 Emig) + 1+~ 0F0E, 4 (1 41)79D,,

vq

SVMA+1) D1, +MA +1)"C0 + t)‘%“fm;z,q + Dy (5.9)

_34< _l4e
+(1+t) 2 m;l,q+(1+t) 2 Dm;l,q+

It is easy to check that (1 +€p)/2 + 1 4+ < €09+ 5/2 — ¢. Hence (5.9) implies

d 1+€
E{(l +1)708, + (1 + r)*T"Sm;l,q} + (140~ H0g, + (1 +1)"“D,

_Hea _le Uq
+ A+ 2 m;[,q‘i‘(l—i-l) 2 Dm;lq m]:m;],q

SVMA 417D, 144 + Dy (5.10)

We now want to absorb the right hand side of (5.10). Notice that (5.5) holds for m > 8, hence we may replace m
with m — 1 (now m > 9) to have

d 14
—En—titg + Dntitg + ﬁ w-titq S |V E| /Dt S D (5.11)

Note that if we have fixed 0 < €9 < 7/10, then

5
+1+l9<§—8. (5.12)

Hence we may combine (5.10), (5.11) and (5.6) to deduce
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d 1+4¢
E{5,,, ity + A +D) "+ A+ 7 Ery)

vq

* W}—m—l;l,q + (14~ Utog,

+ Dm + Dm—l;l,q

_3e _l+q vq
+(A+)""72 Eppg+A+1)" 2 Dm;l,q‘i‘m]:m;l,q <0. (5.13)

The direct integration in time of the inequality (5.13) in particular yields (1.23) for O <t < T,. Upon choosing the
initial condition &,,; 4(0) further smaller, we deduce that for 0 <t < T,

M
En@®) +En—1;1,4@) < 5 < M. (5.14)

This implies that 7, = oo, which then implies (1.23) for all 7. Thus the solution is indeed global. Also, the decay
estimates (1.24)—(1.25) follows from Propositions 4.2, 4.4 and (1.23). This concludes Theorem 1.1. O

Conflict of interest statement
The author declares that there is no conflict of interest.

References

[1] P. Degond, M. Lemou, Dispersion relations for the linearized Fokker—Planck equation, Arch. Ration. Mech. Anal. 138 (2) (1997) 137-167.
[2] R.J. Duan, Global smooth dynamics of a fully ionized plasma with long-range collisions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire
(2013), http://dx.doi.org/10.1016/j.anihpc.2013.07.004.
[3] R.J. Duan, R.M. Strain, Optimal large-time behavior of the Vlasov—-Maxwell-Boltzmann system in the whole space, Commun. Pure Appl.
Math. 24 (11) (2011) 1497-1546.
[4] R.J. Duan, T. Yang, H.J. Zhao, Global solutions to the Vlasov—Poisson-Landau system, unpublished note, arXiv:1112.3261v1.
[5] R.J. Duan, T. Yang, H.J. Zhao, The Vlasov—Poisson-Boltzmann system in the whole space: the hard potential case, J. Differ. Equ. 252 (12)
(2012) 6356-6386.
[6] R.J. Duan, T. Yang, H.J. Zhao, The Vlasov—Poisson—Boltzmann system for soft potentials, Math. Models Methods Appl. Sci. 23 (6) (2013)
979-1028.
[7] R.J. Duan, S.Q. Liu, T. Yang, H.J. Zhao, Stability of the nonrelativistic Vlasov—Maxwell-Boltzmann system for angular non-cutoff potentials,
Kinet. Relat. Models 6 (1) (2013) 159-204.
[8] L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, Inc., Prentice Hall, 2004.
[9] Y. Guo, The Landau equation in a periodic box, Commun. Math. Phys. 231 (3) (2002) 391-434.
[10] Y. Guo, The Vlasov—-Maxwell-Boltzmann system near Maxwellians, Invent. Math. 153 (3) (2003) 593-630.
[11] Y. Guo, The Vlasov—Poisson-Landau system in a periodic box, J. Am. Math. Soc. 25 (3) (2012) 759-812.
[12] E. Hilton, Collisional transport in plasma, in: Handbook of Plasma Physics, vol. I: Basic Plasma Physics, North-Holland, Amsterdam, 1983.
[13] T. Hosono, S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models
Methods Appl. Sci. 16 (11) (2006) 1839-1859.
[14] N. Ju, Existence and uniqueness of the solution to the dissipative 2D Quasi-Geostrophic equations in the Sobolev space, Commun. Math.
Phys. 251 (2) (2004) 365-376.
[15] R.M. Strain, The Vlasov—-Maxwell-Boltzmann system in the whole space, Commun. Math. Phys. 268 (2) (2006) 543-567.
[16] R.M. Strain, Y. Guo, Stability of the relativistic Maxwellian in a collisional plasma, Commun. Math. Phys. 251 (2) (2004) 263-320.
[17] R.M. Strain, Y. Guo, Almost exponential decay near Maxwellian, Commun. Partial Differ. Equ. 31 (1-3) (2006) 417-429.
[18] R.M. Strain, Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal. 187 (2) (2008) 287-339.
[19] R.M. Strain, K. Zhu, The Vlasov—Poisson-Landau system in Ri, Arch. Ration. Mech. Anal. 210 (2) (2013) 615-671.
[20] Y.J. Wang, Golobal solution and time decay of the Vlasov—Poisson—-Landau system in R3, SIAM J. Math. Anal. 44 (5) (2012) 3281-3323.


http://refhub.elsevier.com/S0294-1449(14)00052-3/bib444C3937s1
http://dx.doi.org/10.1016/j.anihpc.2013.07.004
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib4453s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib4453s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib44595A3131s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib44595A313231s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib44595A313231s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib44595A313232s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib44595A313232s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib444C595As1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib444C595As1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib476C61s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib473032s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib47303332s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib473132s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib483833s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib484Bs1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib484Bs1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib4A3034s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib4A3034s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib53303631s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib53473034s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib53473036s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib53473038s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib535A3132s1
http://refhub.elsevier.com/S0294-1449(14)00052-3/bib573132s1

	The two-species Vlasov-Maxwell-Landau system in R3
	1 Introduction
	2 Preliminary
	3 Nonlinear energy estimates
	4 Time decay rates
	5 Proof of Theorem 1.1
	Conﬂict of interest statement
	References


