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Abstract

In this paper we will prove the existence of weak solutions to the Korteweg–de Vries initial value problem on the real line 
with H−1 initial data; moreover, we will study the problem of orbital and asymptotic Hs stability of solitons for integers s ≥ −1; 
finally, we will also prove new a priori H−1 bound for solutions to the Korteweg–de Vries equation. The paper will utilise the 
Miura transformation to link the Korteweg–de Vries equation to the modified Korteweg–de Vries equation.
© 2014 
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1. Introduction and statement of result

Consider the initial value problem (IVP) of the Korteweg–de Vries (KdV) equation:{
ut + uxxx − 6uux = 0
u(0, x) = u0(x),

(1)

for x ∈ R and rough initial data u0 in the Sobolev space Hs .
It is well known that the KdV equation exhibits special travelling wave solutions, known as solitons – indeed such 

solutions provided much of the historical impetus to study the equation. Explicitly, up to a spatial translation, these 
solutions may be written in the form

u := Rc(x − ct), (2)

where c > 0 and

Rc := − c

2
sech2

(√
cx

2

)
. (3)
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Let us summarise the well-posedness theory and stability results. The initial value for KdV is known to be globally 
well-posed1 for s ≥ − 3

4 , (see [4,2,22,10]). The problem is known to be ill-posed for s < − 3
4 in the sense that the flow 

map cannot be uniformly continuous [9]. One may hope for Hadamard well-posedness for s ≥ −1, (cf. [11,14,5]). 
Using the inverse scattering transform, Kappeler and Topalov proved that the flow map extends continuously to H−1

in the periodic case, which provides motivation to address the supposedly simpler question of well-posedness in H−1

on the real line. In a similar situation for the Nonlinear Schrödinger equation, a-priori bounds have been obtained (cf. 
[1] and [11]) using heavily recent techniques in dispersive equations, in contrast to the more elementary approach of 
the paper at hand. The techniques have since been adapted to KdV by Liu [14] in order to obtain a-priori bounds for 
s ≥ − 4

5 .
On the other hand Molinet [19] has shown that no well-posedness can possibly hold below s = −1: the solution 

map u0 → u(t) does not extend to a continuous map from Hs , for s < −1, to distributions.
Orbital stability of the soliton in the energy space H 1 follows from Weinstein’s convexity argument [24], this 

argument even holds for other sub-critical gKdV equations. Weinstein’s argument is at the basis of a considerable 
amount of work since then, with one direction culminating in the seminal work of Martel and Merle to some version 
of asymptotic stability, again in the energy space [15]. Merle and Vega proved orbital stability and asymptotic stability 
of the soliton manifold in L2 using the Miura map [16] in a similar fashion to our approach. Their approach to the 
stability of the kink however is closer to the arguments of Martel and Merle for generalised KdV.

We now present our principal results.

Theorem 1 (New H−1 a priori estimate for KdV). Suppose s ≥ − 3
4 and u ∈ C([0, ∞); Hs(R)) is a solution to (1), 

then ∥∥u(t, ·)∥∥
H−1 � 2‖u0‖H−1 + ‖u0‖3

H−1 for t ∈ [0,∞). (4)

Remark 1. Applying scaling, the dependence on the H−1 norm of the initial data in (4) can be made more explicit, 
i.e. if λ is such that

0 < λ ≤ ‖u0‖−2
H−1,

then we have∥∥u(t, λ·)∥∥
H−1 �

∥∥u0(λ·)∥∥
H−1 for t ∈ [0,∞).

Theorem 2 (Orbital stability of KdV solitons). There exists an ε > 0 such that the following statement holds: Given any 
integer s ≥ −1, let u be a solution to (1) satisfying u ∈ C([0, ∞); H−3/4(R)) if s = −1 and u ∈ C([0, ∞); Hs(R))

for s ≥ 0. Furthermore, assume u satisfies the bound ‖Rc − u0‖H−1 < εc1/4 for some c > 0. Then there exists a 
continuous function y : [0, ∞) → R such that∥∥u − Rc

(· − y(t)
)∥∥

Hs ≤ γs

(
c,‖Rc − u0‖Hs

)
for any t ≥ 0, where γs : (0, ∞) × [0, ∞) is a continuous function, polynomial in the second variable, which satisfies 
γ (·, 0) = 0.

Remark 2. If we rescale c to 4, we obtain a more precise result. The smallness assumption becomes∥∥4c−1u0
(
2c−1/2x

) − R4
∥∥

H−1 ≤ ε,

which is weaker and more natural than the assumption of the theorem.

Theorem 3 (Asymptotic stability of KdV solitons). Given real γ > 0 and integer s ≥ −1, there exists an εγ > 0 such 
that if u ∈ C([0, ∞); Hs(R) ∩ H−3/4(R)), is a solution to (1), satisfying

1 See [22] for a discussion on the subtleties in the definition of well-posedness.
2 Throughout this article we will adopt the notation a � b to signify a ≤ Cb, where C is an insignificant constant.
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‖Rc − u0‖H−1 < εγ c1/4

for c > 0, then there is a continuous function y : [0, ∞) → R and c̃ > 0 such that

lim
t→∞

∥∥u − Rc̃

(
x − y(t)

)∥∥
Hs((γ t,∞))

= 0

for any t ≥ 0. Moreover we have the bound |c − c̃| � c
3
4 ‖Rc − u0‖H−1 .

The decay follows from an explicit quantitative estimate in Proposition 17 for H−1, and similar estimates for higher 
norms in Corollary 19. The estimates we obtain are sufficiently strong to obtain existence of weak solutions by a 
standard approximation and compactness argument.

Theorem 4 (Existence of global H−1 weak solutions to KdV IVP). For any u0 ∈ H−1, there exists a weak solution u
to (1) satisfying

u ∈ Cω

([0,∞);H−1(R)
)
, 3 (5)

u ∈ L2([0, T ] × [−R,R]) for R,T < ∞, (6)

u(t, ·) → u0 in H−1 as t ↓ 0. (7)

Furthermore u satisfies the bounds given in Theorem 1.

A closely related problem to the initial value problem of the Korteweg–de Vries equation is that of the modified
Korteweg–de Vries (mKdV) equation:{

ut + uxxx − 6u2ux = 0
u(0, x) = u0(x),

(8)

for x ∈ R and initial data u0.
An explicit family of solutions of the mKdV equation, called kink solutions, can be written up to translations as

Qλ(t, x) := λ tanh
(
λx + 2λ3t

)
,

for any λ > 0.
The mKdV problem and the KdV may be connected via a differential transformation known as the Miura map:

u �→ ux + u2; (9)

which sends solutions of (8) to solutions of (1). To see this property formally, set

KdV(u) = ut + uxxx − 6uux,

mKdV(u) = ut + uxxx − 6u2ux, and

M(u) = ux + u2.

One can then easily check that

KdV
(
M(u)

) = (
mKdV(u)

)
x

+ 2u · mKdV(u), (10)

from which it follows that KdV(M(u)) = 0 whenever mKdV(u) = 0. Additionally, note the mKdV equation satisfies 
the reflection symmetry: if u is a solution to (8), then −u is also a solution. Hence if we define

M∗(u) := M(−u) = −ux + u2,

then M∗(u) maps solutions to the mKdV equation to solutions to the KdV equation.

3 Here Cω([0, ∞); H−1(R)) denotes the space of weakly continuous functions from R to H−1.
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The Korteweg–de Vries equation is invariant under the Galilean transformation:

u(t, x) �→ u(t, x − ht) − h

6
, (11)

for h ∈ R, i.e. if u is a solution to the KdV equation, then its image under the above transformation is also a solution, 
which is easily verified.

The Korteweg–de Vries equation also satisfies the following scaling symmetry:

u(t, x) �→ 1

λ2
u

(
t

λ3
,
x

λ

)
, (12)

for λ > 0 and Ḣ− 3
2 is the critical space.

In Section 2 we will show how to use the Miura map combined with the Galilean symmetry to relate mKdV 
solutions near a kink solutions to either KdV solutions near 0, or to KdV solutions near a soliton. This will afford us 
the freedom to choose the most convenient setting in order to prove the stated results. The H−1 a priori estimate of 
Theorem 1 will then follow as a consequence of the L2 stability of the kink (Theorem 14). The orbital (Theorem 2) 
and asymptotic stability (Theorem 3) of the soliton in the H−1 norm will follow from the corresponding statement for 
the mKdV kink in L2 (Theorem 14 and Theorem 18). Higher conserved energies imply stability of the trivial solution 
in Hs for nonnegative integers s, and Kato’s local smoothing argument along a moving frame implies asymptotic 
stability of the trivial solution to the right. We use the Miura map to derive orbital and asymptotic stability of the 
soliton for KdV, as well as orbital and asymptotic stability of the kink for mKdV in higher norms, requiring smallness 
of the deviation only in H−1, see Corollary 16 and the proof of Corollary 19.

The Miura map has been used in a simpler setting by Kappeler et al. [6]. Their results are limited by the fact that the 
Miura map is not invertible. Our additional ingredient is the shift of the initial data using the Galilean invariance. To 
the best of our knowledge the corresponding results on the Miura map are new, and we believe them to be appealing 
and of independent interest.

Of course this is intimately related to the integrable structure of KdV and mKdV, and also the Lax-Pair is clearly 
in the background. Nevertheless we do not explicitly use the integrable machinery, and the use of elementary key 
elements of the theory of integrable systems in combination with a PDE oriented approach seems to be new and 
promising.

It is worthwhile to point out that unlike the corresponding asymptotic stability results for generalised KdV, the 
scale c̃ is independent of time. This holds since the scale of the kink is related to its size at infinity, and this does not 
change by adding L2 perturbations.

2. Inverting the Miura map

Kappeler et al. showed in the paper [6] that if the initial data u0 ∈ H−1 is contained in the image of L2 under the 
Miura map restricted to L2, then there exists a global weak solution to the IVP (1). The proof consists of constructing 
a weak solution to mKdV corresponding to initial data in the preimage under the Miura map of the original initial 
data, and then transforming the solution back, under the Miura map, to a solution to KdV. The following proposition 
is one of the key tools used by Kappeler et al. to characterise the range of the Miura map.

Proposition 5. (See [6].) Let u0 ∈ H−1
loc . The following three statements are equivalent.

(1) The Schrödinger operator Hu0 := −∂xx + u0 is positive semi-definite.
(2) There exists a strictly positive function φ with −φxx + u0φ = 0.
(3) u0 ∈ H−1

loc is in the range of the Miura map on L2
loc.

In order to remove the restrictions on the initial data imposed in [6], we will employ the use of the Galilean 
transformation in order to transform KdV into the range of the Miura map. This allows us to link rough H−1 KdV 
initial data to mKdV initial data. The corresponding mKdV initial data will be in the form of a sum of an L2 function 
and a tanh kink. The authors would like to note that the original idea to use such an argument was somewhat motivated 
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by the papers [16] and [18] – related to the L2 stability of soliton solutions to the KdV equation and KP-II equation 
respectively.

Appendix A contains results for Schrödinger operators with H−1 potentials, which we will use below.
Our aim now is to construct an “inverse” of the Miura map for Galilean transformed initial data. The Galilean 

transformation essentially adds a constant to the potential of the Schrödinger operator corresponding to the initial 
data. We easily achieve positive definiteness by adding a large enough constant; the caveat being that the initial data 
will no longer remain in H−1.

Given initial data u0 ∈ H−1, applying the Galilean symmetry to u0, with h set to −6λ2, for some λ > 0 and t = 0, 
yields the function u0 + λ2. Now consider the problem of finding a function r ∈ L2 that is in the preimage of u0 + λ2

under the Miura transformation. Observe that M(λ tanh(λ·)) = λ2; it then seems natural to consider the problem

(r + λ tanhλx)x + (r + λ tanhλx)2 = u0 + λ2. (13)

For the problem of stability of solitons, we assume we are given some initial data u0 ∈ Hs , where s ≥ − 3
4 . Applying 

the Galilean transform with h as above, and noting that M∗(λ tanh(λ·)) = λ2 − 2λ2 sech2(λ·), we are led to consider 
the problem

−(
r + λ tanh(λ·))

x
+ (

r + λ tanh(λ·))2 = u0 + λ2. (14)

We now state sufficient and necessary conditions for the problems (13) and (14) to have a solution.

Proposition 6. Let λ > 0. The ground state energy of Hu0 , u0 ∈ H−1 is −λ2 if and only if there exists r ∈
L2 − λ tanh(λ·) such that

M(r) = u0 + λ2.

The spectrum of Hu0 is contained in (−λ2, ∞) if and only if there exists r ∈ L2 + λ tanh(λ·) with

M(r) = u0 + λ2.

Proof. Let φ be the ground state. Observe then r = d
dx

lnφ satisfies the Ricatti equation (see Appendix A)

rx + r2 = u0 + λ2.

Then as a consequence of Lemma 25 we have either

r − λ ∈ L2(0,∞) or r + λ ∈ L2(0,∞).

Note however the property that

e
∫ x

0 r ∈ L2

enforces r + λ ∈ L2(0, ∞). Similarly, we obtain r − λ ∈ L2(−∞, 0) and thus

r + λ tanh(λx) ∈ L2.

Hence u0 + λ2 is in the range of the Miura map on −λ tanh(λx) + L2 if the ground state energy is −λ2.
Now assume that

λ2 + u0 = rx + r2 and r + λ tanh(λx) ∈ L2.

Then φ = e
∫ x

0 r is a strictly positive function in H 1 satisfying(
Hu0 + λ2)φ = 0,

i.e. φ is the ground state with ground state energy −λ2.
Now we turn to the case when the spectrum is contained in (−λ2, ∞). Since Hu0+λ2 is positive semi-definite, by 

Proposition 5, there exists strictly positive φ ∈ L2
loc satisfying(

Hu0 + λ2)φ = 0. (15)
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Note that φ /∈ L2, otherwise φ would be the ground state. Since d
dx

lnφ solves the Ricatti equation, it follows by 
Lemma 25 that either φ grows exponentially as x → ∞ or as x → −∞.

We aim to construct a solution φ̃ to (15) satisfying

φ̃(x) → ∞ as x → ±∞. (16)

Suppose φ is not such a solution; then without loss of generality we can assume

φ(x) → ∞ as x → ∞,

and

φ(x) → 0 as x → −∞.

We obtain using Lemma 25 that d
dx

lnφ − λ ∈ L2. It is then not difficult to show that

φ̃(x) = Cφ(x) + φ(x)

x∫
0

φ−2(s)ds (17)

for large C > 0, is a solution to (15), satisfying the growth conditions (16).
We now define r = d

dx
ln φ̃. It satisfies the Ricatti equation; moreover, by Lemma 25,

r − λ tanh(λx) ∈ L2.

Thus u0 + λ2 is in the range of the Miura map restricted to L2 + λ tanh(λx) if the spectrum of u0 is contained in 
(−λ2, ∞).

Now suppose that u0 + λ2 = rx + r2 for r − λ tanh(λx) ∈ L2; hence φ = e
∫ x

0 r satisfies the equation

−φ′′ + u0φ = −λ2φ,

and

φ(x) → ∞ as x → ±∞.

Observe that Proposition 5 implies that the Schrödinger operator Hu0 has spectrum contained in [−λ2, ∞). We want to 
show that −λ2 is not an eigenvalue. If it were, then there would be a non-negative, strictly positive L2 ground state ψ . 
This is not possible since φ/ψ cannot attain a minimum (see Lemma 24). Therefore the spectrum is contained in 
(−λ2, ∞). �

We now turn to the problem of relating the two sides of (13) and (14) by analytic diffeomorphisms. We begin with 
a technical statement.

Lemma 7. The multiplication map (u, v) → uv can be extended from the bilinear map C∞
0 × C∞

0 → C∞
0 to continu-

ous bilinear maps

L2 × L2 → L1 ⊂ Hs, for any s < −1

2

L2 × Hs′ → Hs, −1

2
< s ≤ 0, s′ > 1

2
+ s

Hs1 × Hs2 → Hs1, for any s2 >
1

2
, 0 ≤ s1 ≤ s2.

Proof. The first two statements may be proved using Sobolev embedding inequalities and their corresponding dual 
inequalities. The last case is a particular case of Theorem 1, of Section 4.6.1 of [21], alternatively it may be proved by 
interpolating the second statement with the well known algebraic property of Sobolev spaces Hs for s > 1 . �
2
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For s ≥ −1, let Fλ : Hs+1 → Hs ×R and F ∗ : Hs+1 × (0, ∞) → Hs to be the maps:

Fλ(r) =
(

r2 + 2rλ tanh(λx) + rx,

∫
r sech2(λx) dx

)
,

F ∗(r, λ) = r2 + 2rλ tanh(λx) − rx − 2λ2 sech2(λ·).
It then follows from Lemma 7, that the above maps define quadratic (neglecting λ for F ∗ here), and hence analytic 
maps from Hs+1 → Hs ×R and Hs+1 × (0, ∞) → Hs , respectively. Analyticity in λ (and joined analyticity) follows 
from the obvious holomorphic extension of λ into the complex plane.

The equations

r2 + 2r tanhx + rx = u0,

and

r2 + 2rλ tanh(λ·) − rx − 2λ2 sech2(λ·) = u0;
relating functions in range and image come from the expansion of the left hand sides of (13) and (14) respectively.

Now let Lλ,r denote the first component of the Fréchet derivative at r , and similarly let L∗
λ,r denote the Fréchet 

derivative of F ∗ with respect to the first component at (r, λ), i.e.

Lλ,rv := 2
(
λ tanh(λ·) + r

)
v + vx,

and L∗
λ,r is its formal adjoint:

L∗
λ,rv := 2

(
λ tanh(λ·) + r

)
v − vx.

Lemma 8. For any s ∈ R and r ∈ Hs ∩ L2, the abstract operator Lλ,r and its formal adjoint operator L∗
λ,r define 

bounded operators from Hs+1(R) to Hs(R), which we denote by Lλ,r and L∗
λ,r , respectively, suppressing s from the 

notation.
Both Lλ,r and L∗

λ,r are Fredholm operators of index 1 and −1 respectively. Moreover, setting φr = sech2(λ·) ×
e−2

∫ ·
0 r dy , the operator Lλ,r is surjective, with null space spanned by φr ; and the formal adjoint L∗

λ,r is injective with 
closed range and cokernel spanned by φr .

Proof. It follows from Lemma 7 that the operators Lλ,r and L∗
λ,r define continuous linear operators from Hs+1 to 

Hs . A simple calculation shows that

Lλ,r sech2(λx) exp

(
−2

x∫
0

r dy

)
= 0.

Since Lλ,rφ = 0 is a scalar ordinary differential equation, every solution is a multiple of sech2(λx) exp(−2 
∫ x

0 r dy)

and the null space is one dimensional. Similarly, one can easily check that L∗
λ,r is injective (since solutions to the 

homogeneous equation are multiples of cosh2(λx) exp(2 
∫ x

0 r dy)) and sech2(λx) exp(−2 
∫ x

0 r dy) spans the cokernel 
of L∗

λ,r .
To complete the proof we need to show Lλ,r is surjective, and L∗

λ,r is injective with closed range. By scaling, it 
suffices to show the case when λ = 1. For reasons of brevity we will use the shorthand Lr := L1,r , and L := L1,0.

We start by defining an integral operator from L2 to H 1 which is a right inverse of Lr . We begin with the simpler 
case when r = 0.

Let η ∈ C∞
0 ([−2, 2]) be a non-negative function such that η ≡ 1 on [−1, 1] and consider the operator T defined by

T (g) = e−2
∫ x

0 tanh s ds

x∫
−∞

e2
∫ y

0 tanh s′ ds′
η(y)g(y) dy + e−2

∫ x
0 tanh s ds

x∫
0

e2
∫ y

0 tanh s′ ds′(
1 − η(y)

)
g(y) dy.

Note that T is a well defined operator for functions in C∞
0 . It can then be easily checked that T g satisfies LTg = g. 

Now let K(x, y) be the kernel of T :
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K(x,y) ≡

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η(y) cosh2 y sech2 x y < x ≤ 0
η(y) cosh2 y sech2 x y < 0 < x

−(1 − η(y)) cosh2 y sech2 x x ≤ y ≤ 0
cosh2 y sech2 x 0 ≤ y < x

0 otherwise.

(18)

Now consider the case for general r : formally we have

Trg := exp

(
−2

·∫
0

r

)
T exp

(
2

·∫
0

r

)
g,

satisfies LrTrg = g; furthermore the kernel of Tr is given by

Kr(x, y) = K(x,y) exp

(
−2

x∫
0

r + 2

y∫
0

r

)
.

We now claim that

‖Trg‖H 1 � ‖g‖L2 .

Observe that

Kr(x, y) � e−2|y−x|+√|y−x|‖r‖
L2 � e

−|y−x|+‖r‖2
L2 , (19)

and hence

‖Trg‖L2 �
∥∥e−|·| ∗ g

∥∥
L2 � ‖g‖L2 . (20)

The equality

∂xTrg + 2
(
tanh(x) + r

)
Trg = g, (21)

implies

‖∂xTrg‖L2 ≤ 2‖Trg‖L2 + 2‖rTrg‖L2 + ‖g‖L2

� ‖g‖L2 + ‖r‖L2‖Trg‖L∞

� ‖g‖L2 + ‖r‖L2‖∂xTrg‖1/2
L2 ‖Trg‖1/2

L2 ,

where we used the L2 estimate (20), Hölder’s inequality and Gagliardo–Nirenberg’s inequality. Finally applying 
Young’s inequality and (20) again, we obtain

‖∂xTrg‖L2 �
(
1 + ‖r‖2

L2

)‖g‖L2 . (22)

Hence if r ∈ L2, then Tr extends to a bounded operator from L2 to H 1, satisfying LrTrg = g, thus Lr : H 1 → L2

is surjective.
By duality, for every r ∈ L2, the adjoint operator L∗

r : L2 → H 1 is injective with closed range, or equivalently

‖f ‖L2 �
∥∥L∗

r f
∥∥

H−1 (23)

for all f ∈ L2.
We will now show that given any f ∈ Hs+1 and h ∈ Hs ∩ L2, if

g := 2
(
tanh(·) + h

)
f ± fx,

then we have the following inequality

‖f ‖Hs+1 ≤ C
(‖f ‖L2 + ‖g‖Hs

)
, (24)

for some constant C depending on ‖h‖Hs + ‖h‖L2 .
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First note the trivial estimate

‖f ‖Hs+1 � ‖f ‖L2 + ‖∂xf ‖Hs

� ‖f ‖L2 + ‖g‖Hs + ‖f ‖Hs + ‖hf ‖Hs . (25)

Consider the case for −1 ≤ s < − 1
2 : it follows from Lemma 7 and (25) that

‖f ‖Hs+1 � ‖f ‖L2 + ‖g‖Hs + (
1 + ‖h‖L2

)‖f ‖L2 . (26)

Now consider the case when s ≥ − 1
2 : again from Lemma 7 and (25) we have

‖f ‖Hs+1 � ‖f ‖Hs + ‖g‖Hs + (
1 + ‖h‖Hs + ‖h‖L2

)‖f ‖Hs+3/4 .

Using (26) and applying the above estimate recursively we obtain (24).
Combining (23) with (24) (h = r), it follows that for all s ≥ −1, f ∈ Hs+1 and r ∈ L2 ∩ Hs

‖f ‖Hs+1 �
∥∥L∗

r f
∥∥

Hs ,

i.e. L∗
r : Hs+1 → Hs is injective with closed range.

By duality it follows that if r ∈ L2 then Lr : L2 → H−1 is surjective; moreover, as a consequence of (24) (h = r) 
we obtain Lr : Hs+1 → Hs is surjective for all s ∈R and r ∈ L2 ∩Hs , and again the full statement for L∗

r follows. �
Let Us

>κ ⊂ Hs denote the set of all functions in Hs whose associated Schrödinger operator has spectrum contained 
in (κ, ∞). Similarly, define Us

<κ to be the subset of Hs of all functions f whose associated Schrödinger operator has 
spectrum ω(Tf ) such that ω \ (κ, ∞) �= ∅.

Theorem 9. For any s ≥ −1 the map Fλ : Hs+1 → Hs × R is an analytic diffeomorphism onto its range. Moreover, 
for any f ∈ Us

>−λ2 , there exists ρ ∈R such that (f, ρ) is contained in the range of Fλ : Hs+1 → Hs ×R.

For any s ≥ −1 the map F ∗ : Hs+1 × (0, ∞) → Hs is an analytic diffeomorphisms onto Us
<0.

Proof. First we show the two maps are local analytic diffeomorphisms.
Note the second component of DFλ|r is simply the map f �→ 〈f, sech2(λ·)〉; hence from Lemma 8 we obtain 

DFλ|r is invertible – here we use the fact〈
φr, sech2(λ·)〉 > 0,

where φr is defined as in Lemma 8. Hence by the inverse function theorem, Fλ is a local analytic diffeomorphism.
Let G : H−1 → R be the map from potentials to the ground state energy of their corresponding Schrödinger 

operator. By Proposition 6 we have that G(F ∗(f, λ)) = −λ2, from which it follows that the derivative of F ∗ with 
respect to the second component is not contained in the range of the derivative with respect to the first component. 
Then from Lemma 8 and the implicit function theorem, it follows that F ∗ is a local analytic diffeomorphism.

We now prove the injectivity of the two maps. Suppose ri , i ∈ {1, 2} satisfy Fλ(r1) = Fλ(r2). Then, with w = r2 −r1
we have

wx + (
2λ tanh(λx) + r2 + r1

)
w = 0,

∫
sech2(λx)w(x)dx = 0.

The same argument as for invertibility implies that w = 0, hence r1 = r2 and Fλ is injective.
We now show F ∗ is injective. First of all, if F ∗(r1, λ1) = F ∗(r2, λ2), then by Lemma 6 we necessarily have 

λ1 = λ2. Next, with w = r2 − r1

wx − (
2λ tanh(λx) + r1 + r2

)
w = 0.

The only solution in L2 to this equation is w = 0. This implies injectivity.
Now we make the following observation: if Fλ(r) = (g, ρ) for r ∈ L2 and g ∈ Hs , s > −1 then we also have 

r ∈ Hs+1; similarly, if F ∗(r, λ) = g for r ∈ L2 and g ∈ Hs , s > −1 then we also have r ∈ Hs+1. This follows by 
iteratively applying (24), with h = r/2.
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Thus as a consequence of Proposition 6, together with the above observation, we obtain that the range of the 
projection of Fλ(r) : Hs+1 → Hs × R onto its first component is precisely Us

>−λ2 , and the range of F ∗ : Hs+1 ×
(0, ∞) → Hs is Us

<0. �
Remark 3. Note that working out the details of the Hs+1 estimates in the proof above, one may show that if

v(t, x) := w(t, x − y0)
2 + 2w(t, x − y0) tanh(x − y1) + wx(t, x − y0),

for some y0, y1 ∈ R then for every integer s ≥ −1 there exists an N > 0 such that

‖w‖Hs+1 �
(
1 + ‖w‖L2 + ‖v‖Hs

)N (‖v‖Hs + ‖w‖L2

)
.

This estimate will be used later in Section 3.

3. The modified Korteweg–de Vries equation close to a kink

In Section 2, we mapped Hs KdV initial data to mKdV initial data – the mKdV initial data being in the form of a 
sum of an Hs+1 function, and a kink of the form λ tanh(λ·). In this section we will study the corresponding mKdV 
problem.

First note by scaling, we may restrict to the case λ = 1. Recall that Q1(t, x) ≡ Q(t, x) ≡ tanh(x + 2t) is an explicit 
kink solution to (8). We now consider solutions to mKdV equation:{

ut + uxxx − 6u2ux = 0

u(0, x) = v0(x) + tanh(x),
(27)

for initial data v0 ∈ Hs , s ≥ 0, such that u − Q ∈ Hs . Equivalently, writing u = v + Q, we have:{
vt + vxxx − 2∂x

(
3Q2v + 3Qv2 + v3) = 0

v(0, x) = v0(x).
(28)

In order to construct global solutions to (27), we will need to prove a number of energy estimates. In our discussions 
below, we will use a number of formal calculations, which are not difficult to justify rigorously.

Lemma 10. Let p be any C∞(R2) function with uniformly bounded derivatives and assume v ∈ C([0, ∞); H 1(R))

to be a solution to (28). Then

d

dt

[∫
pv2 dx

]
=

∫ [
ptv

2 − 3pxv
2
x + pxxxv

2 − 6pxQ
2v2 − 8pxQv3 − 3pxv

4

+ 12pQQxv
2 + 4pQxv

3] dx. (29)

Proof. Note that by (28), v also has some time regularity. Thus, Eq. (29) follows by employing (28) and applying a 
series of integrations by parts. �

We are now in the position to prove global bounds on the L2 norm of smooth solutions to (28), as well as a “Kato 
smoothing” type estimate.

Lemma 11. Suppose v ∈ C([0, ∞); H 1(R)) is a solution to (28); then for any t ∈ [0, ∞), we have∥∥v(t, ·)∥∥
L2 � ‖v0‖L2 + t1/2. (30)

Moreover for any T > 0

T∫
0

∞∫
−∞

Qx(t, x)vx(t, x)2 dx dt ≤ C
(
T ,

∥∥v(0, ·)∥∥
L2

)
. (31)
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Proof. From (29), with p ≡ 1, we have

d

dt

[∫
v2 dx

]
=

∫
12QQxv

2 + 4Qxv
3 dx. (32)

Using (29) again, but with p ≡ Q, yields

d

dt

[∫
Qv2 dx

]
=

∫ [
Qtv

2 − 3Qxv
2
x + Qxxxv

2 − 6Q2Qxv
2 − 8QQxv

3 − 3Qxv
4

+ 12Q2Qxv
2 + 4QQxv

3] dx. (33)

Observe that the terms Q2Qxv
2, QQxv

2, Qtv
2 and Qxxxv

2 are all bounded above by a multiple of Q1/2
x v2. 

Furthermore, we have∫
Qxv

2 dx ≤ ∥∥Q
1/2
x

∥∥
L2

∥∥Q
1/2
x v2

∥∥
L2

≤ 1

τ

∫
Qxv

4 dx + τ
∥∥Q

1/2
x

∥∥2
L2 , (34)

for τ > 0 by Young’s inequality. Note also |QQxv
3| ≤ |Qxv

3| and∫ ∣∣Qxv
3
∣∣ dx ≤ ∥∥Q

1/2
x v

∥∥
L2

∥∥Q
1/2
x v2

∥∥
L2

≤ 1

κ

∫
Qxv

4 dx + κ

∫
Qxv

2 dx,

for any κ > 0. Applying (34), we find that for any κ > 0, there exists a constant Cκ > 0, such that∫ ∣∣Qxv
3
∣∣ dx ≤ 1

κ

∫
Qxv

4 dx + Cκ. (35)

Combining Eqs. (32)–(35) we obtain

d

dt

[∫ [
v2 + 1

10
Qv2

]
dx

]
� 1. (36)

Since v2 � v2 + 1
10Qv2, we can conclude that for any t ≥ 0∥∥v(t, ·)∥∥

L2 �
∥∥v(0, ·)∥∥

L2 + t1/2.

The proof of (31) follows from (30) and the estimate (33). �
As a consequence of the above estimates, we obtain the following well-posedness result for initial mKdV data near 

a kink.

Theorem 12. Let s ∈ N satisfy s ≥ 1. Then there exists a unique, global, strong solution to (28), for any initial data 
v0 ∈ Hs . Moreover, for any T > 0, the solution map from Hs to Ct([0, T ]; Hs(R)) is continuous.

The proof of this theorem follows essentially from the same arguments as those given in [8] and [16] – since the 
L2 estimate (30) is available.

We now establish global a priori bounds on the deviation of a solution u to (27) from a translated kink, i.e. we aim 
to establish bounds on w := u − tanh(x − y(t)) for some continuous function y : R+ → R yet to be determined. We 
start by providing some motivation for the full argument given later.

From (27) we obtain

wt + wxxx − 2∂x

(
3 tanh2(x − y(t)

)2
w + 3 tanh

(
x − y(t)

)
w2 + w3) = (ẏ + 2) sech2(x − y(t)

)
(37)

To define the position y(t), we impose an orthogonality condition〈
w,ψ(x − y)

〉 = 0, (38)
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where for the moment we choose ψ(x) = ex sech2(x) for reason which will become clear below – later we will 
actually choose ψ(x) = η(x) sech2(x), where η is defined by (43). If w is sufficiently close to the kink then y exists 
and is unique by an application of the implicit function theorem – see Lemma 13 below.4 It is not hard to work out an 
equation for ẏ + 2 by formally differentiating the condition (38) with respect to t .

It is instructive to first consider the linearised problem at the Q(x, t) = tanh(x + 2t) kink, in a frame moving with 
the kink:

w̃t (t, x) − 4w̃x(t, x) + w̃xxx + 6∂x

(
sech2(x)w̃(t, x)

) = α(t) sech2(x), (39)

where α(t) is chosen as indicated above so that orthogonality condition〈
w̃, ex sech2(x)

〉 = 0 (40)

is preserved over time. To obtain a formula for α, we differentiate the above orthogonality condition with respect to t . 
Thus we obtain〈

w̃,
(−4∂x + ∂xxx + 6 sech2 ∂x

)
ex sech2(x)

〉 + α(t)
〈
sech2(x), ex sech2(x)

〉 = 0,

which expresses α as a linear function of w̃.
From (39) we obtain

d

dt

∫
exw̃2dx = −3B

(
ex/2w̃

) + 2α(t)

∫
w̃(t, x)ex sech2(x) dx, (41)

where here B is the quadratic form defined by

B(f ) :=
∫

f 2
x +

(
5

4
− 2 sech2(x) − 4 sech2(x) tanh(x)

)
f (x)2 dx. (42)

Note that the second term on the right hand side of (41) vanishes due to (40).
According to the bound (97) of Proposition 26, taking into account the choice of ψ , we have

B
(
ex/2w

) ≥ 1

10

∥∥ex/2w
∥∥2

H 1 .

As a consequence 
∫

exw̃2dx decays monotonically, and the time derivative controls B(ex/2w̃).
We will pursue a non-linear variant of this simple strategy. The weight ex will be replaced by the following bounded 

and monotone weight function

ηR,δ(x) = η(x) = tanh

(
x − R

2

)
+ 1 + δ. (43)

We will also define y in terms of an orthogonality condition, similar to (40).

Lemma 13. There exists an ε > 0 and a unique analytic function y on BL2
(tanh(·), ε) such that〈

f (·) − tanh
(· − y(f )

)
, η

(· − y(f )
)

sech2(· − y(f )
)〉 = 0,

and y(tanh(·)) = 0.

Proof. Consider the mapping

F : BL2(
tanh(·), ε) ×R→ R

– here BL2
(tanh(·), ε) denotes by an abuse of notation the set of sums of L2 functions of norm < ε and tanh – defined 

by

F(f,y) = 〈
f − tanh(· − y), η(· − y) sech2(· − y)

〉
.

4 In Lemma 13 the weight ψ(x) = η(x) sech2(x) is actually used; however, the proof may be easily adapted to the case ψ(x) = ex sech2(x).



T. Buckmaster, H. Koch / Ann. I. H. Poincaré – AN 32 (2015) 1071–1098 1083
Clearly F(tanh(·), 0) = 0. Differentiating with respect to y at f := tanh(·) we obtain

d

dy
F

(
tanh(·), y)∣∣

y:=0 = 〈
sech2(· − y), η(· − y) sech2(· − y)

〉
> 0.

The implicit function theorem then yields the assertion. �
Theorem 14. There exists a δ > 0 such that if u the solution to (27) of Theorem 12 with initial data satisfying 
u(0, ·) − tanh(·) ∈ H 1(R) and ‖u(0, ·) − tanh(·)‖L2 < δ, then there is a continuous function y : [0, ∞) → R such that∥∥u(t, .) − tanh

(
x − y(t)

)∥∥
L2 �

∥∥u(0, ·) − tanh(·)∥∥
L2 . (44)

Moreover, writing w := u − tanh(· − y(t)) we have the estimates

∞∫
0

∥∥ηx

(· − y(t)
)1/2

w
∥∥2

H 1 dt �
∥∥u(0, ·) − tanh(·)∥∥2

L2 , (45)

and

|ẏ + 2| � ∥∥ηx

(· − y(t)
)1/2

w
∥∥

L2 + ∥∥ηx

(· − y(t)
)1/2

w
∥∥

L2

∥∥ηx

(· − y(t)
)1/2

w
∥∥2

L∞ . (46)

Proof. First define

ψ(x) = η(x) sech2(x). (47)

Our aim is to find a function y satisfying the orthogonality condition:〈
u(t, ·) − tanh

(· − y(t)
)
,ψ

(
x − y(t)

)〉 = 0 (48)

for all t ≥ 0 such that y(0) = y0, where y0 is given by Lemma 13. The existence of such a function, at least initially, 
for t ∈ [0, T ], for some T > 0, is a consequence of Lemma 13 and the fact u − tanh(x + 2t) ∈ C(R; H 1(R)).

Now define w(t, x) by

w(x, t) = u(t, x) − tanh
(
x − y(t)

)
,

from which we obtain

wt + wxxx − 2∂x

(
3 tanh2(x − y)w + 3 tanh(x − y)w2 + w3) = (2 + ẏ) sech2(x − y). (49)

Again by perhaps taking a smaller T if necessary, we can assume for t ∈ [0, T ]
‖w‖L2 ≤ 2ε.

By (49) and (48) we obtain:

d

dt

∫
η(x − y)w2 dx

=
∫ [−3ηx(x − y)w2

x + (−ẏηx(x − y) + ηxxx(x − y)

− 6 tanh2(x − y)ηx(x − y) + 12η(x − y) tanh(x − y) sech2(x − y)
)
w2

+ (
4η(x − y) sech2(x − y) − 8ηx(x − y) tanh(x − y)

)
w3 − 3ηx(x − y)w4] dx. (50)

Rewriting the quadratic part of the above equation by using the identity sech2(x) + tanh2(x) = 1 numerous times, 
together with the observation

ηxxx = −3η2
x + ηx, (51)

along with the trivial identity ẏ = −2 + (ẏ + 2) we obtain
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d

dt

∫
η(x − y)w2 dx

=
∫ [

−3ηx(x − y)w2
x + (−3 + 6 sech2(x − y)

+ 24η(x − y) tanh(x − y) sech2(x − y)
(
ηx(x − y)

)−1)
ηx(x − y)w2

− (2 + ẏ)

∫
ηx(x − y)w2 dx −

∫
3
(
ηx(x − y)

)2
w2 dx

+ (
4η(x − y) sech2(x − y) − 8ηx(x − y) tanh(x − y)

)
w3 − 3ηx(x − y)w4

]
dx. (52)

Now observe∫ (
η

1/2
x w

)2
x

dx =
∫ [

ηxw
2
x + η2

xx

4ηx

w2 + ηxxwwx

]
dx

=
∫ [

ηxw
2
x +

(
η2

xx

4ηx

− 1

2
ηxxx

)
w2

]
dx

=
∫ [

ηxw
2
x +

(
η2

x − 1

4
ηx

)
w2

]
dx,

where in the last line we used (51) in addition with the identity

η2
xx

ηx

= ηx − 2η2
x.

We define the quadratic form:

Bε,R(f ) :=
∫

f 2
x +

(
5

4
− 2 sech2(x)

− 8 sech2(x) tanh(x) cosh2
(

x − R

2

)(
1 + ε + tanh

(
x − R

2

)))
f (x)2 dx

and rewrite Eq. (52) as

d

dt

∫
η(x − y)w2 dx = −3Bε,R

(
ηx(x − y)1/2w

) − (2 + ẏ)

∫
ηx(x − y)w2 dx

+
∫ (

4η(x − y) sech2(x − y) − 8ηx(x − y) tanh(x − y)
)
w3 dx

−
∫

3ηx(x − y)w4 dx.

We observe that ηx is positive and hence the last line is non-positive. We will now estimate the cubic term:∣∣∣∣
∫ (

4η(x − y) sech2(x − y) − 8ηx(x − y) tanh(x − y)
)
w3dx

∣∣∣∣� CR

∫
ηx |w|3dx

� CR‖w‖L2

∥∥η
1/2
x w

∥∥2
L4

� CR‖w‖L2

∥∥η
1/2
x w

∥∥2
H 1 .

We turn to bounding |ẏ + 2|. Note we have from (49) and (47):

0 = d

dt

〈
w,ψ(x − y)

〉
=

∫ [
wψxxx(x − y) − 2

(
3 tanh2(x − y)w + 3 tanh(x − y)w2 + w3)ψx(x − y)

+ (2 + ẏ) sech2(x − y)ψ(x − y) − ẏw(x)ψx(x − y)
]
dx. (53)
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Thus we obtain

|ẏ + 2| � CR

(
1 + |ẏ + 2|)‖w‖L2 + ∥∥η

1/2
x w

∥∥2
L2 + ∥∥η

1/2
x w

∥∥
L2

∥∥η
1/2
x w

∥∥2
L∞

� CR‖w‖L2 + ‖w‖L2

∥∥η
1/2
x w

∥∥2
L∞, (54)

where in the last line we use the fact that ‖w‖L2 � 1.
Collecting the above estimates together, we obtain:

d

dt

∫
η(x − y)w2dx ≤ −3Bε,R

(
ηx(x − y)1/2w

) + Λ‖w‖L2

∥∥η
1/2
x w

∥∥2
H 1, (55)

for some constant Λ depending on R, which will be a positive number.
We now compare the quadratic form Bε,R with the quadratic form B from Appendix B:

B(f ) =
∫

f 2
x +

(
5

4
− 2 sech2(x) − 4 sech2(x) tanh(x)

)
f (x)2 dx.

The difference V (x) of the potentials in the quadratic forms is

4 sech2(x) tanh(x)

(
2 cosh2

(
x − R

2

)(
1 + ε + tanh

(
x − R

2

))
− 1

)
.

Observe that

cosh2
(

x − R

2

)(
1 + tanh

(
x − R

2

))
= 1

2

(
ex−R + 1

)
hence the difference V can be bounded by

|V | ≤ 8ε sech2(x) cosh2
(

x − R

2

)
+ 4 sech2(x)ex−R ≤ 16εeR + 8e−R.

Thus we obtain∣∣B(f ) − Bε,R(f )
∣∣ ≤ (

16εeR + 4e−R
)‖f ‖2

L2 . (56)

Now define the modified quadratic form

B̂ε,R(f ) := Bε,R(f ) + 2eR
〈
η

−1/2
x η sech2, f

〉2
.

Observe that

ηR,ε − ηR,0 = ε,

and

cosh

(
x − R

2

)(
1 + tanh

(
x − R

2

))
= e

x−R
2 ,

from which it follows that(
eR/2η

−1/2
x η(x) − ex/2) sech2(x) = √

2εeR/2 cosh

(
x − R

2

)
sech2(x) ≤ 2εeR,

which yields the estimate∣∣eR/2〈η−1/2
x η sech2, f

〉 − 〈
ex/2 sech2(x), f

〉∣∣ ≤ 2εeR‖f ‖L2 .

By estimate (56) together with the estimate (97) we obtain:

Lemma 15. With R = 10 we have for all f ∈ H 1

B̂e−2R,R(f ) ≥ 1

20
‖f ‖2

H 1 .
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We now fix R = 10 and set ε := e−2R = e−20 – noting that we only require the existence of R such that the conclusion 
of the lemma holds, with its size being neither optimal nor important.

If we for the moment assume that

sup
0≤t≤T

∥∥w(t, ·)∥∥
L2 ≤ 1

80Λ
,

then it follows from the above lemma, and the orthogonality condition (48) that we can control the second term in 
Eq. (55) with the first term, which implies∫

η
(
x − y(t)

)
w(t, x)2dx ≤

∫
η
(
x − y(0)

)
w(0, x)2dx.

Hence we obtain

ε
∥∥w(t, ·)∥∥2

L2 ≤
∫

η(x − y)w(t, x)2dx

≤
∫

η
(
x − y(0)

)
w(0, x)2dx

≤ (1 + ε)
∥∥w(0, ·)∥∥2

L2

and thus∥∥w(t, ·)∥∥
L2 ≤ 2eR

∥∥w(0, ·)∥∥
L2 .

A continuity argument gives the desired global bound provided (recall ε = e−2R)

∥∥w(0, ·)∥∥
L2 ≤ 1

120Λ
e−R. �

Corollary 16. Suppose u satisfies the conditions in the above theorem, furthermore assume u(0, ·) − tanh(·) ∈ Hs , 
where s is a positive integer, then there exist C > 0 and N > 0 depending only on s such that∥∥u(t, ·) − tanh

(
x − y(t)

)∥∥
Hs ≤ C

∥∥u(0, ·) − tanh(·)∥∥
Hs

(
1 + ∥∥u(0, ·) − tanh(·)∥∥

Hs

)N
. (57)

Proof. Let w be as in Theorem 14 and define:

v(t, x) := w(t, x − 6t)2 + 2w(t, x − 6t) tanh
(
x − y(t) − 6t

) + wx(t, x − 6t), (58)

i.e. v is a solution to (1).
Note as a consequence of infinite conservation laws associated with the KdV equation (see Appendix C), we have∥∥v(t, ·)∥∥

Hs �
∥∥v(0, ·)∥∥

Hs−1

(
1 + ∥∥v(0, ·)∥∥

Hs−1

)N ′

�
∥∥w(0, ·)∥∥

Hs

(
1 + ∥∥w(0, ·)∥∥

Hs

)N ′′
(59)

for some positive integers N ′ and N ′′.
Then from Remark 3 at the end of Section 2, Theorem 14 and (59) we obtain (57). �
We now consider the problem of asymptotic stability of the mKdV equation near a kink. We will require an 

additional weight function:

φx0,A(t, x) = φ(t, x) = 1 + tanh

(
x − x0 + γ t

A

)
.

Proposition 17. Let γ < 6, then there exists δ, A > 0 such that if u is the solution to (27) with initial data satisfying 
u(0, ·) − tanh(·) ∈ H 1(R) and ‖u(0, ·) − tanh(·)‖L2 < δ, and x0 ∈R we have the bounds∫

η
(
x − y(t)

)
φA,x0(t, x)w(t, x)2 dx ≤

∫
η
(
x − y(0)

)
φA,x0(0, x)w(0, x)2 dx, (60)
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where t > 0, w := u − tanh(· − y) and y references to the continuous function constructed in Theorem 14. Moreover, 
we have the following smoothing estimate:

∞∫
0

∥∥(
η(x − y)φA,x0

)1/2
x

w
∥∥2

H 1 dt �
∫

η
(
x − y(0)

)
φA,x0(0, x)w(0, x)2 dx. (61)

Proof. Using the shorthand η = η(x − y(t)), ηx = ηx(x − y(t)), . . . , sech2 = sech2(x − y(t)), . . . we obtain:

d

dt

∫
φηw2 dx = −Bε,R

(
(φηx)

1/2w
) +

∫ [−(2 + ẏ)φηxw
2 + φ

(
4η sech2 −8ηx tanh

)
w3 − 3φηxw

4

+ η
(−3φxw

2
x + (

γφx + φxxx − 6 tanh2 φx

)
w2 − 8φx tanhw3 − 3φxw

4)
+ 4(φxxηx + φxηxx)w

2 + (2 + ẏ)φη sech2 w
]
dx.

We first note that(
γ − 6 tanh2(x − y)

)
φx(t, x) = (

(γ − 6) + 6 sech2(x − y)
)
φx(t, x)

≤ (γ − 6)φx(t, x) + CA−1φ(t, x)ηx(x − y),

where we used the fact that φx � A−1φ. We also have the estimate∫
η(x − y)φx(t, x) tanh(x − y)w3 � ‖w‖L2

∥∥(
η(x − y)φx(t, ·)

)1/2
w

∥∥2
H 1 .

Thus if we assume ‖w‖L2 to be suitably small and A to be large, then by the above estimates and the arguments in 
Theorem 14 we obtain:

d

dt

∫
φηw2 dx ≤ −κ

∥∥(φη)
1/2
x w

∥∥2
H 1 +

∫ [
4(φxxηx + φxηxx)w

2 + φ(2 + ẏ)
(
η sech2(x − y)w − ηxw

2)] dx

+ C
〈
φ1/2w,η(x − y) sech2(x − y)

〉2
. (62)

The plan is bound the last two terms on the right hand side in terms of the first term.
First note for large A we have the following simple estimates∣∣φ(t, x) − φ

(
t, y(t)

)∣∣ sech(x − y)� A−1e−2|(y−x0+γ t)/A|,
φ(t, x)−1/2 � e−(x−x0+γ t)/A + 1,

φ(t, x)1/2 � e(x−x0+γ t)/A

e(x−x0+γ t)/A + 1
and

sech(x − y) � ηx(x − y).

Applying the above estimates we obtain∣∣∣∣
∫

φη sech2(x − y)w dx

∣∣∣∣ =
∣∣∣∣
∫ (

φ(t, x) − φ(t, y)
)
η sech2(x − y)w dx

∣∣∣∣
� A−1e−2|(y−x0+γ t)/A|∥∥(φηx)

1/2w
∥∥

L2

∥∥η
1/2
x φ−1/2

∥∥
L2

� A−1e−|(y−x0+γ t)/A|∥∥(φηx)
1/2w

∥∥
L2 . (63)

Similarly we obtain∣∣∣∣
∫

φηxw
2 dx

∣∣∣∣� ∥∥(φηx)
1/2

∥∥
L∞

∥∥(φηx)
1/2w

∥∥
L2‖w‖L2

� e(y−x0+γ t)/A

(y−x +γ t)/A

∥∥(φηx)
1/2w

∥∥
L2‖w‖L2 . (64)
e 0 + 1
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By (53) we have

|ẏ + 2|�
∫

sech2(x − y)
(|w| + |w|3)

�
∥∥(φηx)

1/2w
∥∥

L2

∥∥η
1/2
x φ−1/2

∥∥
L2 + ∥∥(φηx)

1/2w
∥∥

L∞
∥∥η

1/2
x φ−1/2

∥∥
L∞‖w‖2

L2

�
(
e−(y−x0+γ t)/A + 1

)(∥∥(φηx)
1/2w

∥∥
L2 + ∥∥(φη)

1/2
x w

∥∥
H 1

)
�

(
e−(y−x0+γ t)/A + 1

)∥∥(φη)
1/2
x w

∥∥
H 1 . (65)

Combining (63), (64) and (65) we get∣∣∣∣
∫

φ(2 + ẏ)
(
η sech2(x − y)w − ηxw

2) dx

∣∣∣∣� (
A−1 + δ

)∥∥(φη)
1/2
x w

∥∥2
H 1,

and similarly for the last term we get〈
φ1/2w,η(x − y) sech2(x − y)

〉2 � ∥∥(
φ(t, ·)1/2 − φ

(
t, y(t)

)1/2) sech1/2(· − y)η
∥∥2

L∞

×∥∥φ1/2 sech1/2(· − y)w
∥∥2

L2

∥∥sech(· − y)φ−1/2
∥∥2

L2

� A−1
∥∥(φη)

1/2
x w

∥∥2
H 1 .

Then from the above estimates, if we assume A to be suitably large and δ to be suitably small we obtain

d

dt

∫
φηw2 dx ≤ 0,

from which we obtain our claim. �
As a consequence of Proposition 17 and Theorem 14 we obtain the following theorem.

Theorem 18. Let γ < 6. Then there exists δγ > 0 such that if u is a solution to (8) with initial data u0, satisfying 
u0 − tanh(x) ∈ H 1(R) and ‖u(0, ·) − tanh(x)‖L2 < δγ ,

lim
t→∞

∥∥u(t, .) − tanh
(
x − y(t)

)∥∥
L2((−γ t,∞))

= 0 (66)

where y : [0, ∞) → R refers to the continuous function constructed in Theorem 14.

Making use of the Miura transformation to relate mKdV near the kink with KdV near zero, we will replace L2

in the statement of the above theorem with Hs for any non-negative integer s. Specifically we have, denoting again 
w = u − tanh(. − y(t)):

Corollary 19. Let γ < 6 and s any positive integer. Then there exists δγ > 0 such that if u is a solution to (27) with 
initial data u0, satisfying u0 − tanh(·) ∈ Hs(R) and ‖u(0, ·) − tanh(x)‖L2 < δγ ,

lim
t→∞

∥∥u(t, ·) − tanh
(
x − y(t)

)∥∥
Hs((−γ t,∞))

= 0 (67)

where y : [0, ∞) → R refers to the continuous function constructed in Theorem 14. Moreover we have the smoothing 
estimate

∞∫
0

∥∥ρx(t, · + 6t)1/2w(t, ·)∥∥2
Hs+1 dt ≤ C

∥∥ρ(0, ·)1/2w(0, ·)∥∥2
Hs , (68)

where C depends on γ and ‖u(0, ·) − tanh(·)‖Hs , and ρ is defined as

ρ(x, t) = 1 + tanh

(
x − x0 + (γ − 6)t

A

)
,

for some large constant A > 0.
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Proof. Note that the absolute values of the derivatives of ρ are bounded above by a constant multiple of ρ. The same 
property is also true for the function ρx . This property of ρ and ρx will be used extensively below without further 
comment.

Define v as in (58), hence v is a solution to (1). Fixing t ≥ 0, observe from (58), Lemma 7 we have for f := ρ1/2

or f := ρ
1/2
x the following estimate∥∥f (t, ·)v(t, ·)∥∥

Hs−1 �
∥∥f (t, · + 6t)w(t, ·)2

∥∥
Hs−1 + ∥∥f (t, · + 6t)w(t, ·) tanh(· − y)

∥∥
Hs−1

+ ∥∥f (t, · + 6t)wx(t, ·)
∥∥

Hs−1

�
(
1 + ∥∥w(t, ·)∥∥

Hs−1

)∥∥f (t, · + 6t)w(t, ·)∥∥
Hs

≤ C
∥∥f (t, · + 6t)w(t, ·)∥∥

Hs , (69)

for all integers s ≥ 1, where C depends on ‖w(t, ·)‖Hs−1 .
Similarly we also have the estimate∥∥f (t, · + 6t)w(t, ·)∥∥

Hs �
∥∥f (t, · + 6t)w(t, ·)∥∥

L2 + ∥∥f (t, · + 6t)wx(t, ·)
∥∥

Hs−1

�
∥∥f (t, · + 6t)w(t, ·)∥∥

L2 + ∥∥f (t, ·)v(t, ·)∥∥
Hs−1 + ∥∥f (t, · + 6t)w(t, ·)2

∥∥
Hs−1

+ ∥∥f (t, · + 6t)w(t, ·) tanh(· − y)
∥∥

Hs−1

�
(
1 + ∥∥w(t, ·)∥∥

Hs−1 + ∥∥w(t, ·)∥∥
H 1

)∥∥f (t, · + 6t)w(t, ·)∥∥
Hs−1 + ∥∥f (t, ·)v(t, ·)∥∥

Hs−1

≤ C
(∥∥f (t, · + 6t)w(t, ·)∥∥

Hs−1 + ∥∥f (t, ·)v(t, ·)∥∥
Hs−1

)
, (70)

for all integers s ≥ 1, where C depends on ‖w(t, ·)‖Hs−1 + ‖w(t, ·)‖H 1 .
The inequalities (69) and (70) will essentially allow to shift our focus from a study of mKdV near a kink to that 

of KdV in a neighbourhood of zero. In particular, note that by Theorem 14 and Corollary 16, the constants in (69)
and (70) depend only on the initial data ‖u(0, ·) − tanh(·)‖Hs−1 and ‖u(0, ·) − tanh(·)‖Hs−1 + ‖u(0, ·) − tanh(·)‖H 1

respectively.
Now consider the case s = 1. Below C will denote a positive constant depending on ‖u(0, ·) − tanh(·)‖H 1 and γ , 

which may change from line to line.
A simple energy estimate yields

d

dt

∫
ρv2dx =

∫
ρtv

2 + ρxxxv
2 − 3ρxv

2
x − 4ρxv

3 dx.

Note that replacing ρ with 1 we recover the L2 conservation law for KdV.
Also, we have the simple estimate∫

ρxv
3 dx ≤ ‖v‖L2

∥∥ρ
1/2
x v

∥∥
L2

∥∥ρ
1/2
x v

∥∥
L∞

�
∥∥v(0, ·)∥∥

L2

∥∥ρ
1/2
x v

∥∥
L2

∥∥ρ
1/2
x v

∥∥
H 1

≤ C
(
ε−1

∥∥ρ
1/2
x v

∥∥2
L2 + ε

∥∥ρ
1/2
x v

∥∥2
H 1

)
,

for any ε > 0.
Hence from the above estimates

d

dt

∫
ρ(t, x)v2(t, x) dx ≤ −2

∥∥ρx(t, ·)1/2vx(t, ·)
∥∥2

L2 + C
∥∥ρx(t, · + 6t)1/2w(t, ·)∥∥2

H 1 .

Therefore from (61) we obtain

∫
ρ(t, x)v2(t, x) dx + 2

∞∫
0

∥∥ρx

(
t ′, ·)1/2

vx

(
t ′, ·)∥∥2

L2 dt ′ �
∫

ρ(0, x)v(0, x)2 dx + C

∫
ρ(0, x)w(0, x)2 dx.

Then from the above inequality, (70) (with f = ρ1/2), and (66), we obtain (67) for s = 1. Similarly from the above 
inequality, (70) (with f = ρ

1/2
x ), and (61), we obtain (67) for s = 1.
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We now will provide a sketch of the proof for s > 1. We proceed by induction, assuming as our inductive hypothesis 
that (67) and (68) holds for a given positive integer s. Below C will denote a positive constant depending on ‖u(0, ·) −
tanh(·)‖Hs+1 and γ , which may change from line to line.

From (103) we have

d

dt

∫
ρT (s)dx =

∫
ρtT

(s) + ρxX
(s) dx. (71)

Observe that from the two monomials 2∂s
xu∂s+2

x u and −(∂s
xu)2 in X(s) we recover (after a couple of integration by 

parts) the terms

−3ρx

(
∂s+1
x u

)2 + ρxxx

(
∂s
xu

)2
, (72)

in the integrand on the right hand side of (71).
We now proceed in a similar manner to the case of s = 1, using extensively the properties of X(s) and T (s) as stated 

in Appendix C. In this way, one can show that∫
ρtT

(s) + ρxX
(s) + 3ρx

(
∂s+1
x u

)2
dx �

(
1 + ‖v‖s+1

Hs

)∥∥ρ
1/2
x v

∥∥2
Hs

≤ C
∥∥ρ

1/2
x v

∥∥2
Hs .

Integrating (71) with respect to t , and using our induction hypothesis together with (69) and (70) leads to

∫
ρ(t, x)T (s)(t, x) dx + 3

∞∫
0

∥∥ρx

(
t ′, ·)1/2(

∂s+1
x v

)(
t ′, ·)∥∥2

L2 dt ′

≤ C
∥∥ρ(0, ·)1/2w(0, ·)∥∥2

Hs +
∫

ρ(0, x)T (s)(0, x) dx.

We observe that the terms on the left hand side of the above equation resulting from lower order terms in T (s) can 
be bounded by a constant multiple of(

1 + ‖v‖s
Hs

)∥∥ρ1/2v
∥∥2

Hs−1 ≤ C
∥∥ρ1/2v

∥∥2
Hs−1 .

Similarly, the terms on the right hand side resulting from lower order terms in T (s) can be bounded by 
C‖ρ(0, ·)1/2v(0, ·)‖2

Hs−1 . Thus we obtain

∫
ρ(t, x)

(
∂s
xv

)2
(t, x) dx + 3

∞∫
0

∥∥ρx

(
t ′, ·)1/2(

∂s+1
x v

)(
t ′, ·)∥∥2

L2 dt ′

≤
∫

ρ(0, x)
(
∂s
xv

)2
(0, x) dx + C

(∥∥ρ(0, ·)1/2w(0, ·)∥∥2
Hs + ∥∥ρ(t, ·)1/2v(t, ·)∥∥2

Hs−1 + ∥∥ρ(0, ·)1/2v(0, ·)∥∥2
Hs−1

)
.

Then applying (69) and (70), together with our induction hypothesis, we obtain (67) and (68) for s + 1. �
4. Existence of weak solutions to the Korteweg–de Vries equation with initial data in H−1

With the help of Theorem 12, Lemma 11 and Lemma 31, we will now prove the existence of weak L2 solutions to 
the IVP (28).

Proposition 20. For any v0 ∈ L2, there exists a weak solution u = v + Q to (28) satisfying

v ∈ Cω

([0,∞);L2), (73)

vx ∈ L2([0, T ] × [−R,R]) for R,T < ∞, (74)∥∥v(t, ·)∥∥
L2 �

∥∥v(0, ·)∥∥
L2 + t1/2 for t ∈ [0,∞), (75)

v(t, ·) → v0 in L2 as t ↓ 0. (76)
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Furthermore there exists a δ > 0 such that if ‖v0‖L2 < δ then there exists a continuous function y : R → R such that 
if we write u = w + tanh(· + y(t)), we have

‖w‖L2 � ‖v0‖L2 . (77)

Proof. Let v(j)

0 ∈ H 1 be a sequence such that v(j)

0 → v0 in L2, and ‖v(j)

0 ‖L2 = ‖v0‖L2 . Define v(j) ∈ C([0, ∞); H 1)

to be the solution to (28) with v(j)(0, ·) = r0,j , corresponding to Theorem 12.
If in addition we have ‖v0‖L2 < δ, and we write

u(j)(t, x) = v(j)(t, x) + Q(t, x) = w(j)(t, x) + tanh
(
x + y(j)(t)

)
,

where y(j) is defined as in Theorem 14, then using (46), (44), and (45) we obtain a uniform bound of y(j) in 
H 1([0, T ]), and thus by Morrey’s inequality we have a uniform bound of y(j) in C0,1/2([0, T ]), for any fixed T > 0. 
By the Azelà–Ascoli theorem, and a suitable diagonal argument we can construct a subsequence (v(Nj)) such that for 
all T > 0, y(Nj ) converges uniformly to some continuous function y : R+ →R. Moreover from (44), we have for any 
t ≥ 0, there exists a k such that if j > k∥∥u(Nj )(t, ·) − tanh

(· − y(t)
)∥∥

L2 � ‖v0‖L2 . (78)

Now applying an almost identical argument to the one given in [7] to construct weak L2 KdV solutions – here the 
smoothing estimate is replaced by (31), and L2 conservation replaced by (30) – we obtain a subsequence (v(N ′

j )
) such 

that for any R, T > 0 the sequence converges weakly in L2([0, T ]; H 1([−R, R])), strongly in L2([0, T ] × [−R, R])
and weak-* in L∞([0, ∞); L2) to a limit v satisfying (73)–(75), and solves (28) in the distributional sense.

In order to prove (76) we set ṽ = v

√
1 + 1

10Q, and observe that ṽ is continuous at t = 0 if and only (76) is satisfied. 
Note that weak continuity of ṽ in t follows from weak continuity of v. Estimating we obtain∥∥ṽ(t, ·) − ṽ(0, ·)∥∥2

L2 = ∥∥ṽ(t, ·)∥∥2
L2 + ∥∥ṽ(0, ·)∥∥2

L2 − 2
〈
ṽ(t, ·), ṽ(0, ·)〉

≤ (∥∥ṽ(t, ·)∥∥2
L2 − ∥∥ṽ(0, ·)∥∥2

L2

) + 2
∥∥ṽ(0, ·)∥∥2

L2 − 2
〈
ṽ(t, ·), v0

〉
= (∥∥ṽ(t, ·)∥∥2

L2 − ∥∥ṽ(0, ·)∥∥2
L2

) + 2
〈
ṽ(0, ·) − ṽ(t, ·), ṽ(0, ·)〉.

Then from (36) and the weak continuity of ṽ we obtain (76).
Finally, note (77) is a simple consequence of (78). �
We will now construct weak H−1 solutions to the Korteweg–de Vries equation. Using the scaling symmetry, we 

may restrict to small initial data in H−1.

Proposition 21. For any u0 ∈ H−1 satisfying ‖u0‖H−1 ≤ ε, for ε > 0 chosen suitably small, there exists a weak 
solution u to (28), and a continuous function y : [0, ∞) → R satisfying

u ∈ Cω

([0,∞);H−1), (79)

u ∈ L2([0, T ] × [−R,R]) for R,T < ∞, (80)

‖u‖H−1 � ‖f ‖H−1, (81)

u(t, ·) → u0 in H−1 as t ↓ 0. (82)

Proof. Define v0 such that F(v0) = (u0, 0), where F is defined as in Theorem 9. Then by Proposition 20, there exists 
a weak solution ũ to the mKdV equation corresponding to initial data v0 + tanh(·). Let u be map obtained by applying 
the Galilean transformation (h = 6) to M(ũ). It is then easy to check that u satisfies (79)–(82). What remains to be 
shown is that u satisfies (1) in a distributional sense, which is equivalent to M(ũ) satisfying (1) in a distributional 
sense – this is the subject of Lemma 22 below. �
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Lemma 22. Let v0 ∈ L2, and suppose ũ is a weak solution to (8), satisfying the properties (73)–(76), then u :=
∂x(ũ) + (ũ)2 satisfies (1), in a distributional sense, i.e.∫

R2

[−uϕt − uϕxxx + 3u2ϕx

]
dt dx = 0,

for all ϕ ∈ C∞
0 .

For a proof of the above lemma we refer the reader to the papers [23] and [6].
By utilising the scaling symmetry of the KdV equation and Proposition 21, one easily obtains existence of weak 

solutions of Theorem 4.

5. A priori bounds and soliton stability

Theorem 1. Suppose u ∈ C([0, ∞); Hs(R)) is a solution to (1), for some s ≥ − 3
4 , then∥∥u(t, ·)∥∥

H−1 � ‖u0‖H−1 + ‖u0‖3
H−1 for t ∈ [0,∞). (83)

Proof. First consider the case when s = 0. By scaling, the problem reduces to showing that for all solutions u ∈
C([0, ∞); L2(R)) to (1) satisfying ‖u‖H−1 ≤ ε for some suitably chosen ε > 0, we have∥∥u(t, ·)∥∥

H−1 � 1 for t ∈ [0,∞). (84)

From Theorem 9, Theorem 12 and the well-posedness theory of the KdV equation, it follows that there exists a 
solution ũ ∈ C([0, ∞); H 1(R)) to (8), such that the Galilean transformation (h = 6) of M(ũ) is u. Assuming we 
chose ε sufficiently small, then as a consequence of Lemma 11 and Theorem 14, we obtain (84).

The general case when s ≥ − 3
4 can be proven via approximation. �

Theorem 2. There exists an ε > 0 such that if u ∈ C([0, ∞); Hs(R) ∩H−3/4(R)) is a solution to (1), for some integer 
s ≥ −1, satisfying ‖Rc − u0‖H−1 < εc1/4 for some c > 0, then there is a continuous function y : [0, ∞) → R such 
that ∥∥u − Rc

(
x − y(t)

)∥∥
Hs ≤ γs

(
c,‖Rc − u0‖Hs

)
for any t ≥ 0, where γs : (0, ∞) × [0, ∞) is a continuous function, polynomial in the second variable, which satisfies 
γ (·, 0) = 0.

Proof. The proof follows in a similar manner to that of Theorem 1. Again, without loss of generality we may assume 
u0 ∈ H 1. By scaling we may also assume that c = 4. Then assuming ‖Rc − u(0, ·)‖H−1 to be suitably small, and 
making use of the arguments in Section 2, we may link the KdV IVP with initial data u(0, ·) to the mKdV IVP with 
initial data ũ0 := λ tanh(λ·) + v0, for some λ ≈ 1, such that v0 ∈ Hs+1 and ‖v0‖L2 � ‖R4 − u0‖H−1 . By scaling on 
the mKdV side, we can assume λ = 1. The conclusion then follows from Theorem 12, the well posedness theory of 
the KdV equation, Theorem 14, and Corollary 16. �

Making use of Theorem 18, Corollary 19, and following a similar argument to that given above we obtain:

Theorem 3. Given real γ > 0 and integer s ≥ −1, there exists an εγ > 0 such that if u ∈ C([0, ∞); Hs(R) ∩
H−3/4(R)), is a solution to (1), satisfying

‖Rc − u0‖H−1 < εγ c1/4

for c > 0, then there is a continuous function y : [0, ∞) → R and c̃ > 0 such that

lim
t→∞

∥∥u − Rc̃

(
x − y(t)

)∥∥
Hs((γ t,∞))

= 0

for any t ≥ 0. Moreover we have the bound |c − c̃| � c
3
4 ‖Rc − u0‖H−1 .
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Appendix A. Schrödinger operators with rough potentials

In this section we collect a couple of useful results concerning Schrödinger operators with distributional H−1

potentials. This subject was partially studied by Kappeler et al. [5] in a direction similar to ours as discussed above. The 
Miura map is a central part of the integrable structure of KdV and mKdV, and hence it provides a link to Schrödinger 
operators and inverse scattering. Typically the inverse scattering methods requires integrability of the potentials and 
even some decay. Nevertheless trace identities allow to express the L2 norm (as well as higher norms) in terms of the 
scattering data. This is relation has been used by Deift and Killip [3] to study the spectral density for L2 potentials. 
The available results indicate that the spectrum of L2 potentials is a highly non-trivial and difficult object. The failure 
of surjectivity of the Miura map in the work of Kappeler et al. can be seen as a shadow of this complexity.

Here we aim for something considerably simpler: our main spectral object is the ground state energy, which is 
much more robust. We start by noting that there is a factorisation of the Schrödinger operator

Hq := −∂2
xx + q = −(∂x + r)(∂x − r),

if q satisfies the Ricatti equation q = rx + r2. Moreover, with φ = e
∫ x

0 rdx

∂xxφ = φ
(
rx + r2) = φq

and φ is a non-negative solution to the Schrödinger equation:

Hqφ = 0.

Conversely, if φ is non-negative and satisfies

φxx + qφ = 0

then, with

r = −∂x lnφ,

we have

rx + r2 = −φxx

φ
= q.

Lemma 23. Let q ∈ H−1. Then the Schrödinger operator

φ → Hqφ = −φxx + qφ

has a unique self-adjoint, semi-bounded below extension.

Proof. Note that it suffices to show Hq is semi-bounded below: the unique self-adjoint, semi-bounded below exten-
sion follows by Friedrichs’ construction [20]. We now turn to the bound from below.

Using a combination of duality, a product estimate, Gagliardo–Nirenberg inequality and Young’s inequality we 
obtain∫

qf 2 ≤ ‖q‖H−1

∥∥f 2
∥∥

H 1

� ‖q‖H−1‖f ‖H 1‖f ‖L∞

� ‖q‖H−1‖f ‖3/2
H 1 ‖f ‖1/2

L2

� C−4/3‖f ‖2
1 + C4‖q‖4

−1‖f ‖2
2 .
H H L
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Thus taking C large we obtain

〈Tf,f 〉 =
∫

f 2
x + qf 2

�−(
1 + ‖q‖4

H−1

)‖f ‖2
L2 . �

Lemma 24. Let qi ∈ H−1(a, b) and suppose that φ, ψ ∈ H 1(a, b) are strictly positive functions satisfying

−φ′′ + q1φ = 0, −ψ ′′ + q2ψ = 0,

and q2 ≤ q1. Then φ/ψ has no interior minimum unless it is constant.

Proof. We will proceeding formally, however we note that it is not difficult to make the calculations rigorous, then

− d2

dx2

φ

ψ
+ (q1 − q2)

φ

ψ
− 2

ψ ′

ψ

d

dx

φ

ψ
= 0

and since q2 ≤ q1 we obtain

− d2

dx2

φ

ψ
− 2

ψ ′

ψ

d

dx

φ

ψ
≤ 0.

We claim that u(x) = φ/ψ cannot have an interior positive minimum. We search for a contradiction, and assume that 
u(x0) = M = infx∈(a,b) u(x) and u(a), u(b) > M . We test with uε = ((M + ε) − u)+; setting Uε = {x : M < u <
M + ε} yields∫

Uε

(uε)
2
x − 2uε

ψ ′

ψ
(uε)xdx ≤ 0.

By assumption, for ε sufficiently small, the quotient ψ ′/ψ is uniformly bounded by some constant c > 0. Thus∫
Uε

u2
x ≤ 1

2

∫
Uε

(uε)
2
xdx + c2

∫
Uε

u2
εdx

≤
(

1

2
+ c2|Uε|2

)∫
Uε

u2
xdx

and hence, since the left hand side is nonzero,

|Uε| ≥ 1

2c
.

Letting ε tend to 0 we obtain a contradiction. �
Lemma 25. Suppose λ > 0, r ∈ L2

loc , q ∈ H−1 and

rx + r2 = λ2 + q

Then either

r − λ ∈ L2(0,∞) or r + λ ∈ L2(0,∞) (85)

and either

r − λ ∈ L2(−∞,0) or r + λ ∈ L2(−∞,0). (86)



T. Buckmaster, H. Koch / Ann. I. H. Poincaré – AN 32 (2015) 1071–1098 1095
Proof. By the symmetry of the problem, it suffices to restrict our attention to (85).
Since q ∈ H−1, there exists functions f, g ∈ L2 such that q = f + g′. Define y = r − g; hence f satisfies

yx + y2 + 2gy = λ2 + f − g2 (87)

in the distribution sense.
Now for a given large x0, we will now investigate the behaviour of y on the interval [x0, x0 +1]. Define η := e

2
∫ x
x0

g
, 

H = ∫ x

x0
η(f − g2) and

ỹ = yη − H. (88)

Thus, ỹ satisfies

ỹx + y2η = ηλ2. (89)

Taking x0 to be sufficiently large we may assume η to be arbitrarily close to 1 and H arbitrarily small on the 
interval [x0, x0 + 1]. More precisely, we can show for a given δ > 0, there exists z ∈ R such that if x0 > z then on the 
interval [x0, x0 + 1]

ỹ − y = e1, (90)

and

ỹx = λ2 − ỹ2 + e2 (91)

where the functions e1 and e2 satisfy the bound

|e{1,2}| ≤ δ|ỹ| + δ. (92)

That is, ỹ behaves like the non-linear ODE h′ = λ2 − h2, which has a stable fixed point at λ and an unstable fixed 
point at −λ. Since ỹ ∈ L2

loc, it is then not difficult to show from (91) and (92) that |y| → λ.
Now consider the case when y → λ. Pick z ∈R such that ‖y − λ‖L∞[z,∞) < min{1, λ}; hence from (87) we obtain

‖y − λ‖L2[z,∞) �
1

λ

(
1 + ‖g‖2

L2[z,∞)
+ λ‖g‖L2[z,∞) + ‖f ‖L2[z,∞)

)
. (93)

Similarly for the case when y → −λ, if we pick z ∈R such that ‖y + λ‖L∞[z,∞) < min{1, λ} we obtain

‖y + λ‖L2[z,∞) �
1

λ

(
1 + ‖g‖2

L2[z,∞)
+ λ‖g‖L2[z,∞) + ‖f ‖L2[z,∞)

)
. � (94)

Appendix B. Quadratic form estimates

We consider the quadratic form defined by

B(f ) :=
∫

f 2
x +

(
5

4
− 2 sech2(x) − 4 sech2(x) tanh(x)

)
f (x)2 dx. (95)

Proposition 26. The quadratic form B satisfies the following inequality

B(f ) + 2
〈
f, e·/2 sech2(·)〉2 ≥ 1

3
‖f ‖2

L2 , (96)

holds for all f ∈ H 1; moreover we also have the estimate

B(f ) + 2
〈
f, e·/2 sech2(·)〉2 ≥ 1

20
‖f ‖2

H 1 . (97)
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Remark 4. The inequality (97) is actually a simple consequence of (96). A straightforward calculation yields

5

4
− 2 sech2(x) − 4 sech2(x) tanh(x) ≥ −5

and hence, using (96)

‖f ‖2
H 1 ≤ B(f ) + 6‖f ‖2

L2 ≤ 20
(
B(f ) + 2

〈
f, e·/2 sech2(·)〉2), (98)

we obtain (97). Note also that the constant 1/20 is neither optimal nor of any particular importance in the context of 
the paper, as we will simply require the existence of a non-negative constant.

Proof. First consider the Schrödinger H = −∂xx + V (x) operator with potential V (x) := −2 sech2(x) −
4 sech2(x) tanh(x). A celebrated theorem by Lieb and Thirring [13] gives us a bound on the moments of the bound 
states energies (negative eigenvalues) ej of H :∑

j

|ej |γ ≤ Lγ,1

∫ ∣∣V (x)
∣∣γ+n/2
−

for γ ≥ 3
2 , where |V (x)|− = (|V (x)| − V (x))/2 and

Lγ,1 = 1

2
√

π
Γ (γ + 1)/Γ

(
γ + 3

2

)
.

In particular for γ := 3
2 we have

∑
j

|ej |3/2 ≤ 3

16

∫ ∣∣V (x)
∣∣2
− = 567/320, (99)

where the second equality involves determining the support of |V (x)|−, and an evaluation of the integral. This was 
done with the help of Mathematica, but could easily be done by hand.

It follows immediately that the ground state satisfies the bound

e0 ≥ −(567/320)2/3 > −3

2
. (100)

Now, let u = √
2/πex/2 sech2(x) – this is normalised so that the L2 norm of u is 1. Then an explicit calculation yields〈

H(u),u
〉 = −5/4,

and thus

−5/4 ≥ e0 ≥ −(567/320)2/3.

Furthermore from (99) if we denote the ground state as v0 we have

−5/4 = H(u) ≥ e0
∣∣〈u,v0〉

∣∣2 − (
567/320 − |e0|3/2)2/3(1 − ∣∣〈u,v0〉

∣∣2)
,

hence

∣∣〈u,v0〉
∣∣2 ≥ −5/4 + (567/320 − |e0|3/2)2/3

e0 + (567/320 − |e0|3/2)2/3

Denoting the right hand side by h(s) evaluated at e0; then one can check – either with the help of a software pack-
age such as Mathematica, or by hand, with patience – that for s satisfying the bounds (100), h has a minimum 
1701+√

1 435 533
3402 at s = − 721 489+567

√
1 435 533

960 000 . Hence we obtain

∣∣〈u,v0〉
∣∣2 ≥ 1701 + √

1 435 533

3402
>

5

6
. (101)

Also as a consequence of (99) and (100), we have that for any v ∈ H 2 in the orthogonal complement of v0
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〈
H(v), v

〉 ≥ −(
567/320 − (5/4)3/2)2/3‖v‖2

L2 ≥ −5

9
‖v‖2

L2 . (102)

Now pick f ∈ H 2 and let f (x) = av0(x) + g(x) be an L2 orthonormal decomposition. Then applying Young’s 
inequality in the first inequality and orthogonality of v0 and g for the second inequality we have

〈f,u〉2 = a2〈v0, u〉2 + 2a〈v0, u〉〈g,u〉 + 〈g,u〉2

≥ a2

2
〈v0, u〉 − 〈g,u〉2

≥ a2

2
〈v0, u〉2 − ‖g‖2

L2

(
1 − 〈v0, u〉2),

hence〈
H(f ),f

〉 + 2〈f,u〉2 ≥ a2(e0 + 〈v0, u〉2) + ‖g‖2
L2

(
−5

9
− 2

(
1 − 〈v0, u〉2)).

The claim (97) follows from the observations

e0 + 〈v0, u〉2 ≥ −3

2
+ 5

6
= −2

3
, and −5

9
− 2

(
1 − 〈v0, u〉2) ≥ −5

9
− 2

6
= −8

9
,

since 5
4 − 8

9 > 1
3 . �

Appendix C. Higher energies

In order to study higher regularity we need to make use of higher order polynomial conservation laws (see [17]
and [12]) associated with KdV. Specifically, if u is a smooth solution to (1), then for every integer k ≥ 0, there exists 
polynomials T (k) and X(k) in u and its derivatives such that

∂tT
(k) + ∂xX

(k) := 0, (103)

and the following additional properties are satisfied:

• The polynomial T (k) is irreducible.
• The rank5 of all monomials contained in T (k) is 2 + k.
• The rank of all monomials contained in X(k) is 3 + k.
• The dominant6 term of T (k) is (∂k

xu)2.
• The polynomial X(k) has two terms with maximal derivative index,7 namely 2∂k

xu∂k+2
x u and −(∂k+1

x u)2.
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