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Abstract

We consider a system of n-th order nonlinear quasilinear partial differential equations of the form

ut +P
(
∂

j
x
)
u + g

(
x, t,

{
∂

j
xu

}) = 0; u(x,0) = uI(x)

with u ∈ Cr , for t ∈ (0, T ) and large |x| in a poly-sector S in Cd (∂j
x ≡ ∂

j1
x1 ∂

j2
x2 · · · ∂jd

xd
and j1 + · · · + jd � n). The principal part

of the constant coefficient n-th order differential operator P is subject to a cone condition. The nonlinearity g and the functions uI
and u satisfy analyticity and decay assumptions in S.

The paper shows existence and uniqueness of the solution of this problem and finds its asymptotic behavior for large |x|.
Under further regularity conditions on g and uI which ensure the existence of a formal asymptotic series solution for large |x| to

the problem, we prove its Borel summability to the actual solution u.
The structure of the nonlinearity and the complex plane setting preclude standard methods. We use a new approach, based on

Borel–Laplace regularization and Écalle acceleration techniques to control the equation.
These results are instrumental in constructive analysis of singularity formation in nonlinear PDEs with prescribed initial data, an

application referred to in the paper.
In special cases motivated by applications we show how the method can be adapted to obtain short-time existence, uniqueness

and asymptotic behavior for small t , of sectorially analytic solutions, without size restriction on the space variable.

Keywords: Sectorial existence for nonlinear PDEs; Asymptotic behavior; Borel summability

1. Introduction

1.1. General considerations

There are relatively few general results on existence, uniqueness and regularity of solutions of partial differen-
tial equations in the complex domain when the conditions of the classical Cauchy–Kowalewski (C–K) theorem are
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not met. The C–K theorem holds for first-order analytic systems (or those equivalent to them) with analytic non-
characteristic data, and for these it guarantees local existence and uniqueness of analytic solutions. As is well known,
its proof requires convergence of local power series expansions. Evolution equations with higher spatial derivatives
do not satisfy the C–K assumptions and even when formal power series solutions exist their radius of convergence
is zero. One of the goals of this paper is to provide a theory for existence, uniqueness and regularity of solutions in
such cases, in a relatively general setting. The theory also applies to classes of equations of higher order in time and
sufficiently high order in space after reduction (by well known transformations, see e.g. [16]) to evolution systems.

The present paper generalizes [7] to d dimensions and arbitrary order in the spatial variable, to r-dimensional
dependent variable, proves additional results about short term existence and shows Borel summability of formal
solutions. A fortiori we obtain results on the asymptotic character of these solutions. (In Appendix A.2, we briefly
discuss the definition and properties of Borel summation.)

Under assumptions to allow for formal expansions for large x, we show that series solutions are Borel summable
to actual solutions of the PDE. For this purpose we make use of Écalle acceleration techniques. In special cases we
obtain existence and uniqueness results for t in a compact set and large enough x, and separately for small t and fewer
restrictions on x.

Properties of solutions of PDEs in the complex plane, apart from their intrinsic interest, are relevant for properties
in the real domain, as initial singularities in C may give rise to blow-up at later times in the physical domain. Repre-
sentation of solutions as Borel sums is instrumental in extending techniques originally developed for ODEs [6] to find
the location and type of singularities of solutions to nonlinear PDEs [9].

It is certainly difficult to give justice to the existing theory of nonlinear PDEs, and we mention a number of results in
the literature relevant to the current paper. For certain classes of PDEs in the complex domain Sammartino and Caflisch
[13,14] proved the existence of nonlinear Prandtl boundary layer solutions for analytic initial data in a half-plane.
This work involves inversion of the heat operator ∂t − ∂YY and uses the abstract Cauchy–Kowalewski theorem for the
resulting integral equation. While their method is likely to be generalizable to certain higher-order partial differential
equations, it appears unsuitable for problems where the highest derivative terms appear in a nonlinear manner. Such
terms cannot be controlled by inversion of a linear operator and estimates of the kernel, as used in [13,14].

The complex plane setting, as well as the type of nonlinearity allowed in our paper, do not allow for an adaptation
of classical, Sobolev space based, techniques. This can be also seen in simple examples which show that existence
fails outside the domain of validity of the results we obtain.

Certainly, many evolution equations are amenable to our setting; to illustrate canonical form transformations and
the general results we chose a third order equation with quartic nonlinearity arising in fluid dynamics. Detailed singu-
larity study [9] of solutions of this equation relies on the present analysis.

Our approach extends Borel transform regularization to a general class of nonlinear partial differential equations.
A vast literature has emerged recently in Borel summability theory, starting with the fundamental contributions of
Écalle (see e.g. [10]) whose consequences are far from being fully explored and it is impossible to give a quick account
of the breadth of this field. See for example [6] for more references. Yet, in the context of relatively general PDEs,
very little is known. For small variables, Borel summability has been recently shown for the heat equation [12,3], and
generalized to linear PDEs with constant coefficients by Balser [2]. One large space variable was considered by us
in [7], in special classes of higher order nonlinear PDEs. The methods in the present paper are different and apply, for
large |x|, to a wide class of equations.

1.2. Notation

We use the following conventions. For vectors in Cd or multiindices we write

|u| =
d∑

j=1

|ui |

and for multiindices we define

k � m if ki > mi for all i.

If a is a scalar we write xa = (xa, xa, . . . , xa).
1 2 d
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With p, x and j vectors of same dimension d , we define

pj =
d∏

i=1

p
ji

i

and

∂
j
x = ∂

j1
x1 ∂

j2
x2 · · · ∂jd

xd
.

We write 1 = (1,1, . . . ,1) and more generally, if α is a scalar, we write α = α1; thus x1 = ∏d
i=1 xi . For d-dimensional

vectors a and b we write

b∫
a

·dp =
b1∫

a1

b2∫
a2

· · ·
bd∫

ad

·dp1 dp2 · · · dpd.

The directional Laplace transform along the ray argpi = ϕi , i = 1, . . . , d , of F is given by

{LϕF }(x) ≡
∞eiϕ∫
0

F(p)e−p·x dp (1)

where xeiθ will denote the vector with components xieiθi . Convolution is defined as

(f ∗ g)(p) :=
p∫

0

f (s)g(p − s)ds (2)

and ∗∏ denotes convolution product (see also [5]). Whenever used as sum or product indices, l takes all integer
values between 1 and m, i is between 1 and d , As a sum or product multiindex, |j| indicates all j with positive integer
components subject to the constraint 1 � |j| � n.

2. Problem statement and main results

2.1. Setting and assumptions

Consider the initial value problem for a quasilinear system

ut +P
(
∂

j
x
)
u + g

(
x, t,

{
∂

j
xu

}
|j|�n

) = 0; u(x,0) = uI (x). (3)

In (3), P(∂x)u collects the constant coefficient linear terms of the partial differential equation.
Emphasizing quasilinearity, we rewrite the equation as

∂tu +P(∂x)u +
∑
|J|=n

g2,J
(
x, t,

{
∂

j
xu

}
|j|<n

)
∂J

x u = g1
(
x, t,

{
∂

j
xu

}
|j|<n

); u(x,0) = uI(x). (4)

The restrictions on g1, g2, and uI are simpler in a normalized form, more suitable for our analysis. By applying ∂
j
x

to (4) for all j with 1 � |j| � n − 1, we get an extended system of equations for f ∈ C
m, consisting in u and its spatial

derivatives of order less than n, of the type (see Appendix A for further details):

∂t f +P(∂x)f =
∑
q�0

′
bq(x, t, f)

∏
l,|j|

(
∂

j
xfl

)ql,j + r(x, t) with f(x,0) = fI (x) (5)

where
∑′ means the sum over the multiindices q with

m∑ ∑
|j|ql,j � n. (6)
l=1 1�|j|�n
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The matrix P is assumed to be diagonalizable, and modulo simple changes of variables we assume it is presented
in diagonal form, P = diagPj , j = 1, . . . ,m. In (5), q = (ql,j), 1 � |j| � n, 1 � l � m, is a vector of integers and
Pj is an n-th order polynomial. We let Pn;j be the principal part of Pj , i.e. the part that contains all monomials of
(total) degree n. The inequality (6) implies in particular that none of the ql,j can exceed n and that the summation in
(5) involves only finitely many terms. The fact that (6) can always be ensured leads to important simplifications in the
proofs. Let ρ > ρ0 > 0, φ < π

2n
, ε > 0 and

Dφ,ρ;x =
{

x: | argxi | < π

2
+ φ; |xi | > ρ; i � d

}
, (7)

Dφ,ρ =Dφ,ρ;x × [0, T ]. (8)

Assumptions 1.

(1) There is a φ ∈ (0, π
2n

) such that for all p �= 0 with maxi | argpi | � φ we have

	Pn;j (−p) > 0. (9)

(2) The functions bq(·, t, ·) are analytic in D π
2n

,ρ0 × {f: |f| < ε}. We write

bq(x, t; f) =
∑
k�0

bq,k(x, t)fk. (10)

(3) For some constants αr � 1 independent of T (see also Appendix A.1), Ar(T ) > 0, αq > 01

sup
x∈D π

2n
,ρ0;x

∣∣xαr r(x, t)
∣∣ = Ar(T ) < ∞, (11)

sup
x∈D π

2n
,ρ0;x

∣∣xαr fI (x, t)
∣∣ = Af (T ) < ∞, (12)

sup
k,q;x∈D π

2n
,ρ0;x

∣∣xαq bq,k
∣∣ = Ab(T ) < ∞. (13)

(4) The analysis is interesting for n > 1, which we assume is the case.

2.2. Existence and uniqueness for large |x|

Theorem 1. Under the Assumptions 1, there is a unique solution f of (5) satisfying the following properties in Dφ,ρ0;x:
(a) f analytic and (b) |x1||f| bounded. Furthermore, this solution satisfies f = O(x−αr ) as x → ∞ in Dφ,ρ̃;x, for
large ρ̃.

The proof of Theorem 1 is given in Section 4.

Notes.

1. As shown in [7,9] for special examples, f, in a larger sector is expected to have singularities with an accumulation
point at infinity.

2. In Section 6, we also show that in some special cases, there is a duality between small t and large x.
3. Relatively simple examples in which the assumptions apply after suitable transformations are the modified Harry–

Dym equation Ht + Hx = H 3Hxxx − H 3/2, Kuramoto–Sivashinsky ut + uux + uxx + uxxxx = 0 and thin-film
equation ht + ∇ · (h3∇
h) = 0 (the latter with initial conditions such as h(x,0) = 1 + (1 + ax2

1 + bx2
2)−1 in

d = 2). The former equation is discussed in detail in [7] and the normalizing process, adapted to short time
analysis, is described in Section 6.

1 A restriction of the form |x|α̃ |r(x, t)| < Ar(T )(∗) may appear more natural. However, since every component of x is bounded below in Dφ,ρ0,x,
it is clear that (∗) implies (11) with αr = α̃/d . The same comment applies for condition (13). This form is more convenient in the present analysis.
See also Note 4 following Theorem 1.
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4. The condition αr � 1 is not particularly restrictive in problems with algebraically decaying coefficients. For
these, as discussed in [7], one can redefine f by subtracting out from it the first few terms of its formal asymptotic
expansion for large x. The new f decays faster at ∞ and the condition to αr � 1 can be ensured.

2.3. Borel summability of power series solutions and their asymptotic character

Determining asymptotic properties of solutions of PDEs is substantially more difficult than the corresponding
question for ODEs. Borel–Laplace techniques however provide a well suited modality to overcome this difficulty. The
paper shows that formal series solutions are Borel summable to actual solutions (a fortiori are asymptotic to them).
A few notes on Borel summability are found in Appendix A.2.

In addition to hypothesis of Theorem 1 we need, first of all, to impose restrictions to ensure that there exist series
solutions, to which end the coefficients of the equation should be expandable for large x. In many practical applications
these coefficients turn out to be finite combinations of ramified inverse powers of xi .

Condition 2. For large |x| and some N ∈ N
d , the functions bq,k(x, t) and r(x, t) are analytic in (x

−1/N1
1 , . . . , x

−1/Nd

d ).

Theorem 2. If Condition 2 and the assumptions of Theorem 1 are satisfied, then the unique solution f found there is
the Borel sum of its own asymptotic series. More precisely, f can be written as

f(x, t) =
∫

R+d

e−p·x n
n−1 F1(p, t)dp (14)

where F1 is (a) analytic at zero in (p
1/(nN1)

1 , . . . , p
1/(nNd)
d ); (b) analytic in p �= 0 in the poly-sector | argpi | < n

n−1φ +
π

2(n−1)
, i � d ; and (c) exponentially bounded in the latter poly-sector.

Comment. For PDEs it is known that it difficult to show, by classical methods, the existence of actual solutions
given formal ones, when the formal solutions diverge. Borel summability of a formal asymptotic series solution
shows in particular, using Watson’s lemma [4], that there always indeed exist actual solutions of the PDE asymptotic
to it. Borel summability also entails uniqueness of the actual solution if a sufficiently large sector of asymptoticity is
prescribed (see, e.g. [1]). The Borel summability parameters proven in the present paper are optimal, as explained in
the following remarks, and the sharp Gevrey class of the formal solutions follows too.

Remark 3.

(i) It follows from the same proof that xn/(n−1) can be replaced with xβ for any β ∈ [1, n
n−1 ]. The canonical variable

in Borel summation is that in which the generic Gevrey class of the formal series solution is one (i.e., the series
diverge factorially, with factorial power one; [1]). This variable, in our case, is xn/(n−1).

(ii) At least in simple examples, the sector of summability is optimal. See also Note 43.
(iii) In many problems of interest the conditions of Theorem 2 are met by the equation in more than one sector (after

suitable rotation of coordinates). Then the functions F1 obtained in (2) are analytic continuations of each-other,
as it follows from their construction.

(iv) If we had made the change of variable x → xn/(n−1) first, (yielding the normalized Borel variable), the trans-
formed PDE would have been more difficult to handle. Borel transforming directly from the x to p instead
requires us to perform, in the proof of Theorem 2, an acceleration in the sense of Écalle to establish Borel
summability, but is technically simpler.

The proof of Theorem 2 is given in Section 5.
See also Appendix A.1.

2.4. Spontaneous formation of singularities in nonlinear PDEs

Borel summability of formal solutions associated to solutions with prescribed initial data is a key ingredient in the
detailed analysis of spontaneous singularities of solutions and in the study of their global properties. Applications of
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the present techniques in these directions, partly relying on extensions to PDEs of the methods in [6], are discussed in
the paper [9].

3. Inverse Laplace transform and associated integral equation

The inverse Laplace transform (ILT) G(p, t) of a function g(x, t) analytic in x in Dφ,ρ;x and vanishing algebraically
as x → ∞ (cf. Lemma 4 below and Note following it) is given by:

G(p, t) = [
L−1{g}](p, t) ≡ 1

(2π i)d

∫
Cd

D

ep·xg(x, t)dx (15)

with a contour CD as in Fig. 1 (modulo homotopies), Cd
D ⊂ Dφ,ρ;x, and p restricted to the dual (polar) domain Sφ

defined by

Sφ ≡ {
p: |pi | > 0; argpi ∈ (−φ,φ), i = 1, . . . , d

}
(16)

to ensure convergence of the integral.
The following lemma connects the p behavior of the ILT of functions of the type considered in this paper to their

assumed behavior in x.

Lemma 4. If g(x, t) is analytic for x in Dφ,ρ;x, and satisfies∣∣xα
∣∣∣∣g(x, t)

∣∣ � A(T ) (17)

for α � α0 > 0, then for any δ ∈ (0, φ), the ILT G = L−1g exists in Sφ−δ and satisfies∣∣G(p, t)
∣∣ � C

A(T )

[
(α)]d |pα−1∣∣e2|p|ρ (18)

for some C = C(δ,α0).

Proof. The proof is a higher-dimensional version of that of Lemma 3.1 in [7]. We first consider the case when 2 �
α � α0. Let Cρ1 be a contour so that the integration path in each x component is as shown in Fig. 1: it passes through

Fig. 1. Contour CD in the (p)i -plane.
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point ρ1 + |pi |−1, and s = ρ1 + |pi |−1 + ir exp(iφsignum(r)) with r ∈ (−∞,∞). Choosing 2ρ � ρ1 � (2/
√

3)ρ, we
have |s| > ρ along the contour and therefore, with arg(pi) = θ ∈ (−φ + δ,φ − δ),∣∣g(s, t)

∣∣ � A(T )
∣∣s−α

∣∣ and
∣∣es·p∣∣ � eρ1|p|+de−r|p| sin |φ+θ |.

Thus, ∣∣∣∣ ∫
Cρ1

es·pg(s, t)ds

∣∣∣∣ � 2A(T )eρ1|p|+d
∏
i

∞∫
0

∣∣ρ1 + |pi |−1 + ireiφ
∣∣−αe−|pi |r sin δ dr

� K̃A(T )eρ1|p| ∏
i

{∣∣ρ1 + |pi |−1
∣∣−α

∞∫
0

e−|pi |r sin δ dr

}
� Kδ−d

∣∣pα−1|e2ρ|p| (19)

where K̃ and K are constants independent of any parameter. Thus, the lemma follows for 2 � α � α0, if we note that

(α) is bounded in this range of α, the bound only depending on α0.

For α > 2, there exists an integer k > 0 so that α − k ∈ (1,2]. Taking

[
(k − 1)!]dh(x, t) =

x∫
∞

g(z, t)(x − z)k−1 dz

(clearly h is analytic in x, in Dφ,ρ and ∂k
x h(x, t) = g(x, t)), we get

h(x, t) = (−1)dkxk1

[(k − 1)!]d
∞∫

1

g(x · y, t)(y − 1)(k−1)1 dy

= (−1)dkx(k−α)1

[(k − 1)!]d
∞∫

1

A(x · y, t)y−α(y − 1)(k−1)1 dy

with |A(x · p, t)| � A(T ), whence∣∣h(x, t)
∣∣ � A(T )[
(α − k)]d

|x1|α−k[
(α)]d .

From the arguments above with α − k playing the role of α, we get∣∣L−1{h}(p, t)
∣∣ � C(δ)

A(T )

[
(α)]d |p1|α−k−1e2|p|ρ.

Since G(p, t) = (−1)kdp1kL−1{h}(p, t), by multiplying the above equation by |p1|k , the lemma follows for α > 2 as
well. �
Remark 5. The constant 2ρ in the exponential bound can be lowered to ρ +0, but (18) suffices for our purposes. Note
also that the statement also holds for ρ = 0, a fact that will be used in Section 6.

Remark 6. Corollary 9 below implies that for any p ∈ Sφ , the ILT exists for the functions r(x, t), bq,k(x, t), as well
as for the solution f(x, t), whose existence is shown in the sequel.

Remark 7. Conversely, if G(p, t) is any integrable function satisfying the exponential bound in (18), it is clear that
the Laplace Transform along a ray (1) exists and defines an analytic function of x in the half-plane for each component
defined by 	[eiθi xi] > 2ρ for θi ∈ (−φ,φ). Due to the width of the sector it is easy to see, by Fubini, that LG = g.

Remark 8. The next corollary finds bounds for Bq,k = L−1{bq,k} and R = L−1{r} independent of argpi for p ∈ Sφ ,
following from the properties of bq,k and r in D π

2n
,ρ0 ⊃Dφ,ρ .
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Corollary 9. The ILT of the coefficients bq,k (cf. (10)) and of the inhomogeneous term r(x, t) satisfy the following
upper bounds for any p ∈ Sφ∣∣Bq,k(p, t)

∣∣ � C1(φ,αq)

[
(αq)]d Ab(T )
∣∣pαq−1∣∣ e2ρ0|p|, (20)

∣∣R(p, t)
∣∣ � C2(φ)

[
(αr)]d Ar(T )
∣∣pαr−1∣∣ e2ρ0|p|. (21)

Proof. The proof is similar to that of Corollary 3.2 in [7]. From the conditions assumed we see that bq,k is analytic
in x ∈ Dφ1,ρ0;x for any φ1 satisfying (2n)−1π > φ1 > φ > 0. So Lemma 4 can be applied, with g(x, t) = bq,k, with
φ1 = φ + ((2n)−1π − φ)/2 replacing φ, and with δ replaced by φ1 − φ = ((2n)−1π − φ)/2. The same applies to
R(p, t), leading to (20) and (21). In the latter case, since αr � 1, α0 in Lemma 4 can be chosen to be 1. Thus, one can
choose C2 to be independent of αr . �
Lemma 10. For some R ∈ R

+ and all p with |p| > R and maxi�d | argpi | � φ we have for some C > 0

	Pj (−p) > C|p|n. (22)

Proof. For the proof, we take B = {p: |p| = 1, maxj�d | argpj | � φ} and note that

C0 = inf
p∈B

1�j�m

	Pn;j (−p) > 0 (23)

(cf. definitions following (6)). Indeed, if C0 = 0, then by continuity 	Pn;j (−p) would have a root in B which is
ruled out by (9). The conclusion now follows, since on a sphere of large radius R, Pj is given by RnPn;j (−p/R) +
o(Rn). �

The formal inverse Laplace transform (Borel transform) of (5) with respect to x (see also (10)) for p ∈ Sφ is

∂tF +P(−p)F =
∑
q�0

′ ∑
k�0

Bq,k ∗ F∗k ∗ ∗∏
l,|j|

(
(−p)jFl

)∗ql,j + R(p, t) (24)

where F = L−1f. After inverting the differential operator on the left side of (24) with respect to t , we obtain the
integral equation

F(p, t) =N (F) ≡ F0(p, t)

+
t∫

0

e−P(−p)(t−τ)
∑
q�0

′ ∑
k�0

Bq,k(p, τ ) ∗ F∗k(p, τ ) ∗ ∗∏
l,|j|

(
(−p)jFl(p, τ )

)∗ql,j dτ (25)

where

F0(p, t) = e−P(−p)tFI (p) +
t∫

0

e−P(−p)(t−τ)R(p, τ )dτ and FI = L−1{fI }. (26)

Our strategy is to reduce the problem of existence and uniqueness of a solution of (5) to the problem of existence
and uniqueness of a solution of (25), under appropriate conditions.

4. Solution to the associated integral equation

To establish the existence and uniqueness in (25) we first introduce suitable function spaces.

Definition 11. Denoting by Sφ the closure of Sφ defined in (16), ∂Sφ = Sφ \ Sφ and K = Sφ × [0, T ], we define for
ν > 0 (later to be taken appropriately large) the norm ‖ · ‖ν as

‖G‖ν = Md
0 sup

(p,t)∈K

(∏(
1 + |pi |2

))
e−ν|p|∣∣G(p, t)

∣∣ (27)

i
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where the constant M0 (about 3.76) is defined as

M0 = sup
s�0

{
2(1 + s2)(ln(1 + s2) + s arctan s)

s(s2 + 4)

}
(28)

Note. For fixed F, ‖F‖ν is nonincreasing in ν.

Definition 12. Consider the following Banach space.

Aφ = {
F: F(·, t) analytic in Sφ and continuous in Sφ for t ∈ [0, T ] s.t. ‖F‖ν < ∞}

. (29)

Remark 13. If G ∈ Aφ , then g(x, t) =: Lθ {G} exists for suitable θ if ρ cos(θi + argxi) > ν. Furthermore, g(x, t) is
analytic in x, and |x1g(x, t)| is bounded in Dφ,ρ;x.

Lemma 14. For ν > 4ρ0 + αr , FI in (26) satisfies

‖FI‖ν � C(φ)AfI
(ν/2)−dαr+d

while R satisfies the inequality

‖R‖ν � C(φ)Ar(T )(ν/2)−dαr+d

and therefore

‖F0‖ν � C(φ)A0(T )(ν/2)−dαr+d . (30)

Proof. This proof is similar to that of Lemma 4.4 in [7]. We use (21), note that αr � 1 and also that for ν > 4ρ0 + αr

we have

sup
|p1|>0

|p1|αr±1


(αr)
e−(ν−2ρ0)|p1| � (αr ± 1)αr±1


(αr)
e−αr∓1(ν − 2ρ0)

−αr∓1 � Kα
1/2±1
r (ν/2)−αr∓1 (31)

where K is independent of ν and αr . The latter inequality follows from Stirling’s formula for 
(αr) for large αr .
Using the definition of the ν-norm and the two equations above, the inequality for ‖R‖ν follows. Since fI (x) is

required to satisfy the same bounds as r(x, t), a similar inequality holds for ‖FI‖ν . Now, from the relation (26) and
the fact that 	Pj (−p) is, by Lemma 10, bounded below for p ∈ Sφ , we get the following inequality, implying (30)∣∣F0(p, t)

∣∣ �
∣∣FI (p)

∣∣ + T Â0(T ) sup
0�t�T

∣∣R(p, t)
∣∣. �

It is convenient to introduce a space of sectorially analytic functions possibly unbounded at the origin but integrable.

Definition 15. Let

H := {
H: H(p, t) analytic in Sφ,

∣∣H(p, t)
∣∣ � C

∣∣pα−1∣∣eρ|p|}
(C, α and ρ may depend on H).

Lemma 16. If H ∈H and F ∈ Aφ , then for ν > ρ + 4, for any j , H ∗ Fj ∈ Aφ , and:2

‖H ∗ Fj‖ν �
∥∥|H| ∗ |Fj |

∥∥
ν
� C

[

(α)

]d2dα(ν − ρ)−dα‖F‖ν (32)

where C is independent of α.

Proof. The proof is a vector adaptation of that of Lemma 4.6 in [7]. From the elementary properties of convolution,
it is clear that H ∗ Fj is analytic in Sφ and continuous in Sφ . Let θi = argpi . We have∣∣H ∗ Fj (p)

∣∣ �
∣∣|H| ∗ |Fj |(p)

∣∣ �
∫

∏
i [0,|pi |]

∣∣H(
seiθ )∣∣∣∣Fj

(
p − seiθ )∣∣ds.

2 In the following equation, ‖ · ‖ν is extended naturally to functions which are only continuous in K.
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Now ∣∣H(
seiθ )∣∣ � C

∣∣sα−1∣∣e|s|ρ (33)

and ∫
∏

i [0,|pi |]
sα−1e|s|ρ∣∣Fj

(
p − seiθ

)∣∣ds � ‖Fj‖νeν|p||pα|
∏
i

[ 1∫
0

sα−1
i e−(ν−ρ)|pi |si

M0(1 + |pi |2(1 − si)2)
dsi

]
. (34)

Since ν − ρ � 4, we can readily use (122) in Appendix A with μ = |pi |, ν replaced by ν − ρ, σ = 1 and m = 1 to
conclude

|pi |α
1∫

0

sα−1
i e−(ν−ρ)|pi |si

M0(1 + |pi |2(1 − si)2)
dsi � K
(α)2α(ν − ρ)−α

M0(1 + |pi |2) . (35)

Therefore, from (34), we obtain∫
∏

i [0,|pi |]
sα−1e|s|ρ∣∣Fj

(
p − seiθ )∣∣ds � K

[

(α)

]d ‖Fj‖νeν|p|2dα|ν − ρ|−dα

Md
0

∏
i (1 + |pi |2)

. (36)

From this relation, (32) follows by applying the definition of ‖ · ‖ν . �
Remark 17. Lemma 16 holds for ρ = 0 as well, when ν > 4.

Corollary 18. For F ∈Aφ , and ν > 4ρ0 + 4 we have Bq,k ∗ Fl ∈ Aφ and

‖Bq,k ∗ Fl‖ν �
∥∥|Bq,k| ∗ |F|∥∥

ν
� KC1(φ,αq)(ν/4)−dαqAb(T )‖F‖ν.

Proof. The proof follows simply by using Lemma 16, with H replaced by Bq,k and using the relations in Corol-
lary 9. �
Lemma 19. For F ∈Aφ , with ν > 4ρ0 + 4, for any j, l,∣∣Bq,k ∗ (

pjFl

)∣∣ � KC1|pj|eν|p|Ab(T )

Md
0

∏
i (1 + |pi |2)

‖F‖ν

(
ν

4

)−dαq

.

Proof. From the definition (2), it readily follows that∣∣Bq,k ∗ (
pjFl

)∣∣ �
∣∣pj∣∣|Bq,k| ∗ |Fl |.

The rest follows from Corollary 18, and the definition of ‖ · ‖ν . �
Lemma 20. For F, G ∈ Aφ and j � 0∣∣(pjFl1

) ∗ Gl2

∣∣ �
∣∣pj∣∣∣∣|F| ∗ |G|∣∣. (37)

Proof. Let p = (p1eiθ1,p2eiθ2, . . . , pdeiθd ). Then the result follows from the inequality

∣∣pjFl1 ∗ Gl2

∣∣ =
∣∣∣∣∣

p∫
0

s̃jFl1(s̃)Gl2(p − s̃)ds̃

∣∣∣∣∣ �
∣∣pj∣∣ ∫

∏
i [0,|p|i ]

∣∣F(
eiθ s

)∣∣∣∣G(
p − eiθ s

)∣∣ds. � (38)

Corollary 21. If F ∈ Aφ , then∣∣∣∣∗∏l,|j|
(
pjFl

)∗ql,j

∣∣∣∣ �
∏
i

|pi |
∑

l,|j| jiql,j

∣∣∣∣∗∏l,|j||F|∗ql,j

∣∣∣∣. (39)
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Proof. This follows simply from repeated application of Lemma 20. �
Lemma 22. For F, G ∈ Aφ ,

∣∣|F| ∗ |G|∣∣ � eν|p|

Md
0

∏
i (1 + |pi |2)

‖F‖ν‖G‖ν.

Proof.

∣∣|F| ∗ |G|∣∣ =
∣∣∣∣∣

p∫
0

∣∣F(s̃)
∣∣∣∣G(p − s̃)

∣∣ds̃

∣∣∣∣∣ �
∫

∏
i [0,|p|i ]

∣∣F(
eiθ s

)∣∣∣∣G(
p − eiθ s

)∣∣ds. (40)

Using the definition of ‖ · ‖ν , the above expression is bounded by

eν|p|

M2d
0

‖F‖ν‖G‖ν

∏
i

|pi |∫
0

dsi

(1 + s2
i )[1 + (|pi | − si)2] � |pj|eν|p|

Md
0

∏
i (1 + |pi |2)

‖F‖ν‖G‖ν.

The last inequality follows from the definition (28) of M0 since

|pi |∫
0

dsi

(1 + s2
i )[1 + (|pi | − si)2] = 2

ln(|pi |2 + 1) + |pi | tan−1 |pi |
|pi |(|pi |2 + 4)

. �

Corollary 23. For F, G ∈Aφ , then∥∥|F| ∗ |G|∥∥
ν
� ‖F‖ν‖G‖ν.

Proof. This is an application of Lemma 22 and the definition of ‖ · ‖ν . �
Lemma 24. For ν > 4ρ0 + 4,∣∣∣∣Bq,k ∗ F∗k ∗ ∗∏

l,|j|
(
pjFl

)∗ql,j

∣∣∣∣ � eν|p| ∏
i |pi |

∑
jiql,j

Md
0

∏
i (1 + |pi |2)

‖F‖|q|+|k|−1
ν

∥∥|Bq,k| ∗ |F|∥∥
ν

(41)

if (q,k) �= (0,0) and is zero if (q,k) = (0,0).

Proof. For (q,k) = (0,0) we have Bq,k = 0 (see remarks after Eq. (10)). If k �= 0, Corollary 21 shows that the
left-hand side of (41) is bounded by∏

i

|pi |
∑

jiql,j

∣∣∣∣|Bq,k| ∗ |F| ∗ |F|∗(|k|−1) ∗ ∗∏
l,|j||F|∗ql,j

∣∣∣∣.
Using Corollaries 21 and 23 and Lemma 22, the proof follows for k �= 0. Similar steps work for the case k = 0 and
q �= 0, except that Bq,k is convolved with pj′Fl1 for some (j′, l1), for which the corresponding ql1,j′ �= 0, and we now
use Lemma 20 and the definition of ‖ · ‖ν . �
Corollary 25. For ν > 4ρ0 + 4,∣∣∣∣Bq,k ∗ F∗k ∗ ∗∏

l,|j|
(
pjFl

)∗ql,j

∣∣∣∣ � KC1Ab(T )eν|p| ∏
i |pi |

∑
jiql,j

Md
0

∏
i (1 + |pi |2)

(
ν

4

)−dαq

‖F‖|q|+|k|
ν . (42)

The proof follows immediately from Corollary 18 and Lemma 24.
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Lemma 26. For ν > 4ρ0 + 4, we have∣∣∣∣∣
t∫

0

e−P(−p)(t−τ)Bq,k ∗ F∗k ∗ ∗∏
l,|j|

(
pjFl

)∗ql,j dτ

∣∣∣∣∣ � CÃb(T )eν|p|

Md
0

∏
i (1 + |pi |2)

(
ν

4

)−dαq

‖F‖|q|+|k|
ν (43)

for some Ãb(T ) � Ab(T ) (evaluated in the proof ) and where the constant C is independent of T , but depends on φ

and αq.

Proof. This is a consequence of Lemmas 19 and 24 and the fact that for 0 � |l′| � n we have, for |p| � R (with R as
in Lemma 10),

J := ∣∣pl′ ∣∣ t∫
0

e−	P(−p)(t−τ) dτ � C2(T ). (44)

For |p| > R we have, by Lemma 10, P(−p) > C|p|n, and J is majorized by

mmax
j�m

|pl′ |
	Pj (−p)

[
1 − e−	Pj (−p)t

]
� max

j�m

T 1−|l′|/n|p||l′|
|	Pj (−p)||l′|/n

sup
γ>0

1 − e−γ

γ 1−|l′|/n
� CT 1−|l′|/n (45)

where l′ = ∑
j,l jql,j. �

Definition 27. For F and h in Aφ , and Bq,k ∈H, as above, define h0 = 0 and for k � 1,

hk ≡ Bq,k ∗ [
(F + h)∗k − F∗k]

. (46)

Lemma 28. For ν > 4ρ0 + 4, and for k �= 0,

‖hk‖ν � |k|(‖F‖ν + ‖h‖ν

)|k|−1∥∥|Bq,k| ∗ |h|∥∥
ν

(47)

and is zero for k = 0.

Proof. The cases |k| = 0,1 follow from the definition of h0 and (46) respectively. Assume formula (47) holds for all
|k| � l. Then all multiindices of length l + 1 can be expressed as k + êi , where êi ∈ R

m is the m-dimensional unit
vector in the i-th direction, and |k| = l.

‖hk+êi
‖ν = ∥∥Bq,k ∗ (Fi + hi) ∗ (F + h)∗k − Bq,k ∗ Fi ∗ F∗k∥∥

ν
= ∥∥Bq,k ∗ hi ∗ (F + h)∗k + Fi ∗ hk

∥∥
ν
.

Using (47) for |k| = l, we get

�
∥∥|Bq,k| ∗ |h|∥∥

ν

(‖F‖ν + ‖h‖ν

)l + l‖F‖ν

(‖F‖ν + ‖h‖ν

)l−1∥∥|Bq,k| ∗ |h|∥∥
ν

� (l + 1)
(‖F‖ν + ‖h‖ν

)l∥∥|Bq,k| ∗ |h|∥∥
ν
.

Thus (47) holds for |k| = l + 1. �
Definition 29. For F ∈Aφ and h ∈Aφ , and Bq,k as above define g0 = 0, and for |q| � 1,

gq ≡ Bq,k ∗ ∗∏
l,|j|

(
pj[Fl + hl]

)∗ql,j − Bq,k ∗ ∗∏
l,|j|

(
pjFl

)∗ql,j . (48)

Lemma 30. For ν > 4ρ0 + 4, g0 = 0 and for |q| � 1

|gq| � ∣∣p∑
jql,j

∣∣ eν|p||q|
Md

0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|q|−1∥∥|Bq,k| ∗ |h|∥∥
ν

(49)

and is zero for q = 0.
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Proof. The cases |q| = 0,1 follow from the definition of g0 and (48) respectively (since only terms linear in F are
involved in (48)). Assuming (49) holds if |q| � l we show that it holds for q + ê, where ê is a unit vector, say in the
(l1, j

′
1, j

′
2, . . . , j

′
d) direction. We have

|gq+ê| �
∣∣∣∣Bq,k ∗ [

pj′(Fl1 + hl1)
] ∗ ∗∏

l,|j|
[
pj(Fl + hl)

]∗ql,j − Bq,k ∗ [
pj′Fl1

] ∗ ∗∏
l,|j|

[
pjFl

]∗ql,j

∣∣∣∣∣
�

∣∣Bq,k ∗ (
pj′hl1

)∣∣ ∗
∣∣∣∣∗∏l,|j|

[
pj(Fl + hl)

]∗ql,j

∣∣∣∣ + ∣∣(pj′Fl1

) ∗ gq
∣∣. (50)

Using Lemma 24 and Eq. (49), we get the following upper bound implying the induction step

|gq+ê| � |pj′+∑
jql,j |eν|p|

Md
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)∑
ql,j

∥∥|Bq,k| ∗ |h|∥∥
ν

+ |pj′+∑
jql,j ||q|eν|p|

Md
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|q|−1‖F‖ν

∥∥|Bq,k| ∗ |h|∥∥
ν

� |p
∑

j(ql,j+el,j)||q + ê|eν|p|∏
i M

d
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|q|∥∥|Bq,k| ∗ |h|∥∥
ν
. �

Lemma 31. For F and h in Aφ , ν > 4ρ0 + 4,∣∣∣∣Bq,k ∗ (F + h)∗k ∗ ∗∏
l,|j|

(
pj(Fl + hl)

)∗ql,j − Bq,k ∗ F∗k ∗ ∗∏
l,|j|

(
pjFl

)∗ql,j

∣∣∣∣
� |p

∑
jql,j |(|q| + |k|)eν|p|

Md
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|k|+|q|−1∥∥|Bq,k| ∗ |h|∥∥
ν

(51)

if (q,k) �= (0,0) and is zero otherwise.

Proof. It is clear from (46) that the left side of (51) is simply∣∣∣∣hk ∗ ∗∏
l,|j|

(
pj(Fl + hl)

)∗ql,j + F∗k ∗ gq

∣∣∣∣.
However, from Corollary 21, Lemmas 22 and 28,∣∣∣∣hk ∗ ∗∏

l,|j|
(
pj(Fl + hl)

)∗ql,j

∣∣∣∣ � |p
∑

jql,j ||k|eν|p|

Md
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|k|+|q|−1∥∥|Bq,k| ∗ |h|∥∥
ν

and from Corollary 21, Lemmas 22 and 30,∣∣F∗k ∗ gq
∣∣ � |p

∑
jql,j ||q|eν|p|

Md
0

∏
i (1 + |pi |2)

(‖F‖ν + ‖h‖ν

)|k|+|q|−1∥∥|Bq,k| ∗ |h|∥∥
ν
.

Combining these two inequalities, the proof of the lemma follows. �
Lemma 32. For ν > 4ρ0 + 4 we have∥∥∥∥∥

t∫
0

e−P(−p)(t−τ)

[
Bq,k ∗ (F + h)∗k ∗ ∗∏

l,|j|
(
pj(Fl + hl)

)∗ql,j − Bq,k ∗ F∗k ∗ ∗∏
l,|j|

(
pjFl

)∗ql,j

]
dτ

∥∥∥∥∥
ν

� Ãb(T )C(φ)
(|q| + |k|)(‖F‖ν + ‖h‖ν

)|k|+|q|−1
(

ν

4

)−dαq

‖h‖ν. (52)

Proof. This follows from Corollary 18 and Lemma 31 and the definition of ‖ · ‖ν together with the bounds (44)
and (45). �
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Lemma 33. For F ∈ Aφ , and ν > 4ρ0 + αr + 3 large enough (see Note after Definition 11), N (F) defined in (25)
satisfies the following bounds∥∥N (F)

∥∥
ν
� ‖F0‖ν + C(φ)Ãb(T )

∑
q�0

′ ∑
k�0

(
ν

4

)−dαq

‖F‖|q|+|k|
ν , (53)

∥∥N (F + h) −N (F)
∥∥

ν
� C(φ)Ãb(T )‖h‖ν

∑
q�0

′ ∑
k�0

(
ν

4

)−dαq(|q| + |k|)(‖F‖ν + ‖h‖ν

)|q|+|k|−1
. (54)

Proof. The proofs are immediate from the expression (25) of N (F) and Lemmas 26, 28 and 32. Note also that the
sum with respect to q only involves finitely many terms, see (6). �
Remark 34. Lemma 33 is the key to showing the existence and uniqueness of a solution in Aφ to (25), since it provides
the conditions for the nonlinear operator N to map a ball into itself as well the necessary contractivity condition.

Lemma 35. If there exists some b > 1 so that

b‖F0‖ν < 1 (55)

and

C(φ)Ãb(T )
∑
q�0

′ ∑
k�0

(
ν

4

)−dαq

‖bF0‖|k|+|q|
ν < 1 − 1

b
(56)

then the nonlinear mapping N , as defined in (25), maps a ball of radius b‖F0‖ν into itself. Furthermore, if

C(φ)Ãb(T )
∑
q�0

′ ∑
k�0

(|q| + |k|)(ν

4

)−dαq

(3b)|k|+|q|−1‖F0‖|k|+|q|−1
ν < 1 (57)

then N is a contraction there.

Proof. This is a simple application of Lemma 33, if we note that in the ball of radius b‖F0‖, ‖F‖k
ν < bk‖F0‖k

ν and
using in (54) the fact that ‖F‖ν + ‖h‖ν � 3b‖F0‖ν if max{‖F‖ν,‖F + h‖ν} < b‖F0‖. �
Lemma 36. Consider T > 0 and φ ∈ (0, (2n)−1π) so that (9) is satisfied. Then, for all sufficiently large ν, there exists
a unique F ∈ Aφ that satisfies the integral equation (25).

Proof. We choose b = 2 for definiteness. It is clear from the bounds on ‖F0‖ν in Lemma 14 that for given T , since
αr � 1, we have b‖F0‖ν < 1 for all ν large. Further, it is clear by inspection that all conditions (55), (56) and (57) are
satisfied for all sufficiently large ν. The lemma now follows from the contractive mapping theorem. �
4.1. Behavior of sF near p = 0

In the following proposition, we denote by sF the solution F of Lemma 36.

Proposition 37. For some K1 > 0 and small p we have |sF| � K1|p1|αr−1 and thus |sf| � K2|x1|−αr for some K2 > 0
in Dφ,ρ as |x| → ∞.

Proof. The idea of the proof is to note that, once we have found sF, this function also satisfies in a neighborhood of
the origin Sa = S ∩ {p: |pi | � ai} a linear equation of the form

sF = G
(
sF

) + F0 or sF = (1 − G)−1F0 (58)

where, of course, G depends on the previously found sF; there are many choices of G that work. Every term in the
sum in (25) is a convolution product; in each of them we replace all but one component of F by the corresponding
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component of sF; GF is defined as the sum of the terms thus constructed. Estimates of the form used for Lemma 33
show uniform convergence of the sum for large enough ν (or small a). The result is a G as below, where the sum over
μ contains only finitely many terms and which has manifestly small norm if a is small (or ν is large)

GF =
t∫

0

e−P(−p)(t−τ)

[∑
l

Gl ∗ Fl +
∑
μ

Ĝμ ∗ (
(−p)μFlμ

)]
dτ. (59)

By (11), (12), (26) and Lemma 4, we see that ‖F0‖∞ � K3|aαr−1| in Sa for some K3 > 0 independent of a. Then,
from (58) for small enough |a|, we have

max
Sa

∣∣sF(p, t)
∣∣ = ∥∥sF

∥∥ �
(
1 − ‖G‖)−1 max

Sa

‖F0‖ � 2K3
∣∣aαr−1

∣∣
and thus for small |p|, we have |F(p, t)| � 2K3|pαr−1| and the proposition follows. Indeed, the arguments also show
that the same estimates hold when any component pi → 0, if the others are bounded. �
4.2. End of proof of Theorem 1

Lemma 4 shows that if f is a solution of (5) satisfying |x1||f| � A(T ) for x ∈ Dφ,ρ,x, then L−1{f} ∈ Aφ−δ for
0 < δ < φ for ν sufficiently large. For large enough ρ, the series (10) converges uniformly for x ∈ Dφ,ρ,x and thus
F = L−1{f} satisfies (25), which by Lemma 36 has a unique solution in Aφ for any φ ∈ (0, (2n)−1π) for which (9)
holds. Conversely, if sF ∈ Aφ̃ is the solution of (25) for ν > ν1, then, for sufficiently large ρ, sf = L sF is analytic

in x in Dφ,ρ for 0 < φ < φ̃ < (2n)−1π (cf. Remark 13). Proposition 37 shows that sf = O(x−αr) and entails uniform
convergence of the series in (5). By the properties of Laplace transforms, sf solves the problem (5).

5. Borel summability of formal solutions to the PDE

We now assume Condition 1 in addition to Assumption 1. In our approach it was technically convenient to use
oversummation, in that the inverse Laplace transform was performed with respect to x. Showing Borel summability
in the appropriate variable (x

n
n−1 , as explained) requires further arguments.

5.1. Behavior of F for large |p| outside Sφ

For the purpose of showing Borel summability of formal series solutions we need to control F for large |p| uni-
formly in C

d . For this purpose we introduce two other Banach spaces, relevant to the properties we are aiming to show.
Firstly, let B(ν, n,S) be the Banach space of functions analytic in the sector S = {p: |pi | > 0, arg(pi) ∈ (ai, bi)}
and continuous in its closure, where bi − ai will be chosen larger than 2πNi (cf. Condition 2) The Banach space is
equipped with the norm

‖Ψ ‖νn = sup
p∈S; t∈[0,T ]

∣∣Ψ (p, t)e−ν(t+1)
∑

j (|pj |+|pj |n)
∣∣. (60)

Lemma 38. For any intervals (ai, bi), i = 1, . . . , d , the solution F of (25) given in Lemma 36 is in B(ν, n,S).

Proof. Because of the obvious embeddings, it suffices to show that for any S , (25) has a unique solution in B(ν, n,S).
The proof of this property is very close to that of Lemma 36, after adaptations of the inequalities to the new norms,
which are explained in Appendix A.4. �
5.2. Ramification of F at p = 0 and global properties

We define B(ν, n, ε1) to be the Banach space of functions defined on Sd
ε1

= {p: maxi |pi | � ε1} in the norm (60)
with S replaced by Sd

ε .

1
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Lemma 39. Let

G(p) =
∑

0� j≺N

p
j1/N1
1 · · ·pjd/Nd

d Aj1,...,jd
(p) (61)

where Aj1,...,jd
are analytic at p = 0. Then the functions Aj1,...,jd

are unique and for some constants C1 and C2 and
large p we have∣∣Aj1,...,jd

(p)
∣∣ � C1|p|C2 max

0� j≺N

∣∣G(
p1e2j1π i, . . . , pde2jdπ i)∣∣. (62)

In particular, in Sd
1 we have, for some constants C3 and C4,

C3 max
0�j≺N

sup
|p|∈Sd

1

∣∣G(
p1e2j1π i, . . . , pde2jdπ i)∣∣ � sup

|p|∈Sd
1

∣∣Aj1,...,jd
(p)

∣∣
� 2C4 max

0�j≺N
sup

|p|∈Sd
1

∣∣G(
p1e2j1π i, . . . , pde2jdπ i)∣∣. (63)

Remark 40. We note that in (62) the order of analytic continuations is immaterial.

Proof. The proof is by induction on d . We take d � 1, assume (39) with Aj analytic and write p = (p1,p⊥). We have

G(p) =
∑

0�j1<N1

p
j1/N1
1

( ∑
{jm<Nm;m=2,...,d}

p
j2/N2
2 · · ·pjd/Nd

d Aj1,...,jd
(p)

)
=:

∑
0�j1<N1

p
j1/N1
1 Gj1

(
p1,p⊥)

(64)

(with the convention that Gj1 = Aj1 if d = 1). We write the system

G
(
p1e2kπ i,p⊥) =

∑
0�j1<N1

e2kj1π i/N1p
j1/N1
1 Gj1

(
p1,p⊥); k = 0,1, . . . ,N1 − 1 (65)

which has nonzero Vandermonde determinant, from which Gj1(p1,p⊥) are uniquely determined, which in turn, by
the induction hypothesis determine Aj1,...,jd

, with the required estimates. �
Lemma 41. Under Assumption 1 and Condition 1, the solution in Lemma 36 can be decomposed as follows:

F(p, t) =
∑

0�j≺N

p
j1/N1
1 · · ·pjd/Nd

d Aj(p, t) (66)

where Aj(p, t) ∈ B(ν, n,S) are analytic at p = 0. Furthermore, in analyzing the continuations in restricted sectors
pe2π ij ∈ Sφ we have for some ν, in the norm defined in (27) (cf. also Remark 40)

max
{∥∥F

(·e2π ij, ·)∥∥
ν
,
{∥∥Aj(·, ·)

∥∥
ν

};0 � j ≺ N
} = K < ∞. (67)

Proof. We consider Eq. (25) on B(ν, n,S)Ñ where Ñ counts the Aj(·, t) via the decomposition (66). Noting that

pα ∗ pβ = 
(α + 1)
(β + 1)


(α + β + 2)
pα+β+1 (68)

it is straightforward to show that the space of functions of the form (61) is stable under convolution. Since R(p, t)

and therefore F0(p, t) are of the form (66) it follows that N leaves the space of F of the form (66) invariant. Using
the estimates (63) we see that N is well defined in a small ball of radius ε2 in B(ν, n,S) and that it is a contraction
there. Therefore the solution to (25) is of the form (66). For pe2π ij ∈ Sφ , ‖F(pe2π ij)‖ν are well defined. Using again
Lemma 39 the first statement follows. To show finiteness of ‖Aj(·, t)‖ν it suffices to prove finiteness of ‖F(pe2π ij)‖ν .
To this end, we note that all these continuations satisfy equations of the type (2) with coefficients satisfying the
requirements in Section 3 and thus the result follows from Lemma 36. �
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Lemma 42. Assume G is an entire function of exponential order n, more precisely satisfying the inequality |G(p)| �
Ceν|p|n for some constants C,ν and that in a sector Sφ = {p: |p| > 0, maxi | arg(pi)| < φ}, it grows at most expo-
nentially, |G(p)| � Ceν1|p|. Then there exists a function G1 increasing at most exponentially |G1(p)| � Ceν2|p| in any
proper subsector of Sφ1 where φ1 = π

2(n−1)
+ nφ

n−1 and such that G(zn) is analytic at z = 0, such that

g(x) :=
∞∫

0

e−p·xG(p)dp =
∞∫

0

e−p·xn/(n−1)

G1(p)dp. (69)

Proof. We start with the case when G, x and p are scalar, the general case following in a quite straightforward way
as outlined at the end.

The assumptions on G ensure that the first integral in (69) exists and g(x) has an asymptotic power series in powers
of x−1 in a sector of opening π + 2φ centered on R

+. The function g1(x) = g(x(n−1)/n) has a (noninteger) power
series asymptotics in a sector of opening n

n−1 (π + 2φ) and by the general theory of Laplace transforms, G1 := L−1g1

is analytic in a sector of opening n
n−1 (π +2φ)−π centered on R

+, Laplace transformable, with Laplace transform g1.
It follows that

G1(p) = 1

2π i

c+i∞∫
c−i∞

epu

∞∫
0

e−qu(n−1)/n

G(q)dq du =:
∞∫

0

Kn−1
n

(p, q)G(q)dq. (70)

We show that G1 has a convergent expansion in powers of p1/n at zero. The function

Kn−1
n

(p, q) =
(

q

p

)n

Cn−1
n

(
qn

pn−1

)
. (71)

is Écalle’s acceleration kernel [1,11]. For α ∈ (0,1), with β = 1 − α, c = βαα/β , the function Cα is an entire function
and has the following asymptotic behavior [1,11]:

Cα(x) ∼ α1/(2β)

√
2πβ

x1/2 e−cx; |x| → ∞, | argx| < π

2
. (72)

Using (71) we see that
∞∫

0

Kn−1
n

(p, q)qk dq = p(nk−k−1)/n

∞∫
0

sk+nCn−1
n

(
sn

)
ds. (73)

We expand the entire function G in series about the origin, G(q) = ∑N−1
k=1 gkq

k + RN(q) and note that∣∣RN(q)
∣∣ �

∞∑
k=N

∣∣G(k)(0)
∣∣ |q|k

k! �
∞∑

k=0

∣∣G(k)(0)
∣∣ |q|k

k! � Ceν5|q|n = E(q) (74)

uniformly in C. By (72) and (74) E(q)Cα(qn/pn−1) is, for small enough p, in L1[0,∞] in q . By dominated conver-
gence, we have

∞∫
0

Kn−1
n

(p, q)G(q)dq = lim
N→∞

∞∫
0

Kn−1
n

(p, q)

N−1∑
k=1

gkq
k dq

and, using (73) it follows that for small p, G1 is the sum of a convergent series in powers of p1/n, as stated.3

The argument for d variables and vectorial G is nearly the same: a vectorial G is treated componentwise, while the
assumptions ensure that the multidimensional integrals involved can be taken iteratively, the estimates being preserved
in the process. �

3 To estimate the radius of convergence of this series it is convenient to start from the duality (69) and apply Watson’s lemma, using Cauchy’s
formula on a circle of radius k1/n/(nν)1/n to bound |G(k)(0)|.
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Collecting the results of Lemmas 41 and 42 applied to each of the Aj, the proof of Theorem 2 follows.

Note 43. In the example ∂tu + (−∂x)
nu = 0 we have φ = π

2n
. Formal exponential solutions have the behavior, to

leading order, exp(cn(−x)n/(n−1)t−1/n) with cn = (n − 1)/4/nn/(n−1) (for all determinations of (−x)n/(n−1)). This
also points to xn/(n−1) as natural variable and indicates that the sector of summability cannot be improved since it is
bordered by (anti)stokes lines.

6. Short time existence and asymptotics in special cases

In some cases, the Borel summation approach can be adapted to study short time existence of sectorial solutions
and study small time asymptotics. One important application is in the analysis of singularity formation in PDEs [9].
For simplicity, and since some assumptions are less general than in the rest of the paper, we restrict to d = 1 (scalar
case) in this section.

We motivate the assumptions made by looking at a particular example arising in Hele–Shaw flow with surface
tension

Ht = −H 3

2
+ H 3Hzzz, H(z,0) = z−1/2 (75)

the modified Harry–Dym equation (see [15]), where it arises with ξ = z + t (as a local approximation near an initial
zero of the derivative of a conformal mapping).

6.1. Formal series, preparation of normal form

Note. To simplify notation, in the following we let p stand for generic polynomials, p+ for polynomials with
nonnegative coefficients, and p(n) for polynomials of degree n. Similar conventions are followed for h which represents
homogeneous polynomials.

Substituting in (75) a power-series of the form
∑∞

n=0 tnHn(z) where H0 = z−1/2 yields the recurrence

(n + 1)Hn = −1

2

∑
nj �0,

∑3
j=1 nj =n

Hn1Hn2Hn3 +
∑

nj �0,
∑4

j=1 nj =n

Hn1Hn2Hn3H
′′′
n4

(76)

which inductively shows that Hn = z−1/2h(n)(z
−9/2, z−1). We let

gN(x, t) :=
N∑

k=0

tnHn(z) = x−1/3
N∑

n=0

h(n)

(
tx−3, tx−2/3); where x = 2

3
z3/2. (77)

In terms of x, (75) becomes,

N (H) := Ht + 1

2
H 3 − 3x

2
H 3Hxxx − 3

2
H 3Hxx + 1

6x
H 3Hx = 0. (78)

It is straightforwardly shown that

NgN(x, t) = t−1x−1/3p(4N+1)

(
tx−3, tx−2/3) (79)

where for small x1, x2 we have moreover

p(4N+1)(x1, x2) = h(N+1)(x1, x2)
[
1 + O(x1, x2)

]
. (80)

It is then natural to substitute:

H
(
z(x), t

) = gN(x, t) + x−2f (x, t) (81)

into (75); we choose without loss of generality N � 3.
It will follow from the analysis that |f (x, t)| = o(x5/3h(N)(tx

−3, tx−2/3)) for small t1/3x−1 with argx ∈ (−π
2 −

φ, π + φ) and φ ∈ (0, π ), thus H ∼ ∑∞
tnHn(z) for small t1/3x−1 (see Corollary 44).
2 6 n=0
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Substitution shows that f (x, t) satisfies an equation of the form (5), with n = 3 (third order, m = 1 (scalar case)),
with (cf. also (10), and (114) below)

r(x, t) = t−1x5/3p(4N+1)

(
tx−3, tx−2/3); bq,k = x−βk

Jq∑
j=1

x−αq,kpq,k;j
(
tx−3, tx−2/3). (82)

Note. By (80), r(x, t) is small for small t or large x, in spite of the prefactor t−1x5/3.

6.2. More general setting

Setting 1. We take ρ0 = 0, suitable for algebraic initial conditions in the domain, and consider the domain Dφ,0,x ,
with φ < π

2n
small enough to ensure (9). Taking f(x, t) − fI (x) as the unknown function we may assume

fI (x) = 0

(see Note 3 after Theorem 3 below) and require that

∣∣r(x, t)
∣∣ � t−1

Jr∑
j=1

|x|ωj h
+
(n′

j )

(
tγ1 |x|−β1 , . . . , tγK |x|−βK

)
(83)

where the degrees n′
j satisfy

n′
j βl − ωj � 1, for 1 � l � K, 1 � j � Jr (84)

(as before, (84) implies that r(x, t) is small for large x or small t ). The positive constants ω1,ω2, . . . ,ωJr ,
β1, β2, . . . , βK and γ1, γ2, . . . , γK , are restricted by the condition

n̂ := β1

γ1
� n. (85)

The labeling is chosen so that

n̂ = β1

γ1
� β2

γ2
� · · · � βK

γK

. (86)

Also, if for some 1 � j � K − 1,
βj

γj
= βj+1

γj+1
, we arrange βj > βj+1. The ωj are arranged increasingly:

ω1 < ω2 < · · · < ωJr . (87)

Furthermore, for any x ∈Dφ,0,x , we require

∣∣bq,k(x, t)
∣∣ � |x|−β|k|

Jq∑
j=1

|x|−αq,j p
+
q,k,j

(
tγ1 |x|−β1 , . . . , tγK |x|−βK

)
, (88)

β > 0, αq,1 > αq,2 > · · · > αq,Jq; bq,k �= 0 ⇒ αq,j + β|k| � 0. (89)

If only finitely many bq,k are nonzero we allow

β � 0. (90)

We also require that for all q, k for which bq,k �= 0 we have

mq,k := n̂ + ω1
(|q| − 1

) − αq,1 + (ω1 − β)|k| − n̂

n

∑
j,l

jql,j � 0. (91)

Note. Assumption (91) is satisfied by modified Harry–Dym and by certain classes of nonlinear PDEs and initial
conditions – for instance, the thin-film equation ht + (h3hxxx)x = 0, with singular initial condition h(x,0) = x−α for
α > 0, but is generally quite restrictive. Weakening it requires more substantial modifications of the framework and
will not be discussed here.



814 O. Costin, S. Tanveer / Ann. I. H. Poincaré – AN 24 (2007) 795–823
Setting 2. Better properties are obtained under the assumptions described below.

n̂ = n,

P(−s) = sn,

r(x, t) = 1

t

Jr∑
j=1

xωj aj

(
tγ1x−β1 , . . . , tγK x−βK

)
,

bq,k(x, t) = x−β|k|
Jq∑

j=1

x−αq,j aq,k,j

(
tγ1x−β1 , . . . , tγK x−βK

)
(92)

where aj , aq,k,j are analytic near the origin and for small |z| we require, with the same restriction (84) on n′
j ,∣∣aj (z)

∣∣ � h
+
(n′

j )

(|z1|, . . . , |zn|
)
. (93)

The restrictions on the numbers β1, β2, . . . , βK , γ1, γ2, . . . , γK , αq,j , etc. are as in Setting 1. Furthermore, we assume
that there is an ω ∈ R

+ so that the nonnegative numbers

mq,k,ω2 − ω1, . . . ,ωJr − ω1, αq,1 − αq,2, . . . , αq,1 − αq,Jq , nγ2 − β2, . . . , nγK − βK (94)

are integer multiples of nω. This condition, satisfied for the problem (75), comes out naturally in a number of examples
and ensures the existence of a ramified variable in which the solutions are analytic. We choose ω > 0 to be the largest
with the property above. Define

ζ = yt−1/n, f̂(ζ, t) = f
(
t1/nζ, t

)
(95)

and

D̂φ,ρ = {
ζ : |ζ | > ρ; | arg ζ | < φ

}
. (96)

Theorem 3.

(i) In Setting 1, under Assumption 1, there exists for large enough ρ a unique solution f̂(xt−1/n̂, t) to (5), for
ζ = xt−1/n̂ ∈ D̂φ,ρ and, with n′

j as in (84),

∣∣f̂(ζ, t)
∣∣ �

Jr∑
j=1

|ζ |ωj tωj /n̂h(n′
j )

(|ζ |−β1 , tγ2−β2/n̂|ζ |−β2 , . . . , tγK−βK/n̂|ζ |−βK
)
. (97)

(ii) In Setting 2, under Assumption 1, for any T > 0 there is a ρ = ρ(T ) > 0 so that the mapping

(ζ, θ) → θ− ω1
nω f̂

(
ζ, θ1/ω

)
is analytic in D̂φ,ρ × {θ : |θ | < T }.

Notes.

1. The function ρ will, generally, increase with T .
2. The restriction d = 1 is not essential, but made for the sake of simplicity.
3. In these settings, there is a duality between large x and small t in the asymptotics: ζ can be large either due to

largeness of x or smallness of t . For t in a fixed interval, there exists some ρ so that the asymptotic bounds are
satisfied for ζ ∈ D̂φ,ρ .

4. The following example shows that the requirement n̂ � n is natural. In the equation gt + (−∂x)
ng = 0 with

g(x,0) = x−α , substituting the expansion g(x, t) = x−α + ∑
n∈N

tngn(x), we get gn(x) = O(x−α−n). Thus one
of the scales that emerge in the formal expansion is t/xn. On the other hand, in view of (83) and (88) the most
singular term as x → 0 is of the order t/xn̂ since n̂ = β1/γ1. Combining with the above discussion we see that
n̂ � n.
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5. The leading order term in the Taylor expansion of θ− ω1
nω f̂, f̂0, satisfies an easily obtained ODE. The convergence

of the series in part (ii) implies that singularities of f̂0 can be related to actual singularities of the PDE for small
time and this is the subject of another paper [9].

Corollary 44. For the initial value problem (75), for any T > 0 there is a ρ = ρ(T ) such that

H(z, t) =
∞∑

k=0

t
7k+1

9 Gk

(
zt−2/9) (98)

where the series converges in the region {(z, t): |t | < T, |z| > ρ, | arg z| < 4
9π} and Gk(ζ ) are analytic in the sector

{ζ : |ζ | > ρ, | arg ζ | < 4
9π}.

6.3. Proof of Theorem 3(i)

It is convenient to make rescalings of variables in Borel space as well. We note that

f̂(ζ, t) = t−1/n̂

∞∫
0

e−sζ F̂(s,1; t)ds (99)

where

s = pt1/n̂, F̂(s, λ; t) = F
(
t−1/n̂s, tλ

)
. (100)

We use similar rescaling to define R̂(s, λ; t), B̂q,k(s, λ; t) and F̂0(s, λ; t) where now

F̂0(s, λ; t) = tλ

1∫
0

e−tλP(−st−1/n̂)(1−τ)R̂(s, λτ ; t)dτ. (101)

We let

μq,k = 1 − n̂−1

(
|q| + |k| +

n∑
j=1

m∑
l=1

jql,j

)
.

Using (25), straightforward calculations show that

F̂(s, λ; t) = N̂ (̂F)(s, λ; t) ≡ F̂0(s, λ; t) +
∑
q�0

′ ∑
k�0

λtμq,k

×
1∫

0

e−tλP(−st−1/n̂)(1−τ)

{
B̂q,k ∗ F̂∗k ∗ ∗∏m

l=1
∗∏n

j=1

(
(−s)j F̂l

)∗ql,j

}
(s, λτ, t)dτ. (102)

With slight abuse of notation we drop the hats from the newly defined functions. Let now

Sφ ≡
{
s: arg s ∈ (−φ,φ), 0 < |s| < ∞, 0 < φ <

π

2n

}
(103)

and consider the Banach space Aφ of analytic functions in Sφ , continuous in Sφ in the norm∥∥F(·, ·; t)∥∥
ν
= sup

0�λ�1,s∈Sφ

(
1 + |s|2)e−ν|s|∣∣F(s, λ; t)∣∣. (104)

Lemma 45. With r(x, t) satisfying (83) we have∥∥F0(·, ·; t)
∥∥

ν
� eat

Jr∑
j=1

νωj +1t (ωj +1)/n̂h
+
n′

j

(
ν−β1 , tγ2−β2/n̂ν−β2 , . . . , tγK−βK/n̂ν−βK

)
for ν large (independent of t for small t ), where −a is the lower bound of 	P(p).
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Proof. From (83), (84) and applying Lemma 4 (with ρ = 0; see Remark 5) we have

∣∣R(s, λ; t)∣∣ � 1

tλ

Jr∑
j=1

|s|−ωj −1t (ωj +1)/n̂h
+
n′

j

(
λγ1 |s|β1 , λγ2 tγ2−β2/n̂|s|β2 , . . . , λγK tγK−βK/n̂|s|βK

)
.

For λ ∈ (0,1) we have |e−tP(−st−1/n̂)λ(1−τ)| � eat and thus (cf. (101))

∣∣F0(s, λ; t)∣∣ � eat

Jr∑
j=1

|s|−ωj −1t (ωj +1)/n̂h
+
n′

j

(
λγ1 |s|β1 , λγ2 tγ2−β2/n̂|s|β2 , . . . , λγK tγK−βK/n̂|s|βK

)
. (105)

Bounding each term of the polynomial h
+
n′

j

in ‖ · ‖ν we obtain

∥∥F̂0(·, ·; t)
∥∥

ν
� eat

Jr∑
j=1

νωj +1t (1+ωj )/n̂h
+
n′

j

(
ν−β1 , tγ2−β2/n̂ν−β2 , . . . , tγK−βK/n̂ν−βK

)
.

The proof now follows, choosing ν sufficiently large and using (84) and (86), (87). �
Lemma 46. For large ν, we have

‖Bq,k ∗ F‖ν � cq,k(ν, t)‖F‖ν, where

c0,0 = 0; cq,k(ν, t) = ν−β|k|t (1−β|k|)/n̂
Jq∑

j=1

Kjν
−αq,j t−αq,j /n̂

(
(q,k) �= 0

)
(106)

with Kj constants independent of q, k, ν and t .

Proof. Note first that b0,0 = 0 hence c0,0 = 0. From (88) and Lemma 4 (with ρ = 0),

∣∣Bq,k(p, t)
∣∣ � |p|β|k|−1

Jq∑
j=1

|p|αq,j p
+
q,k,j

(
tγ1 |p|β1, tγ2 |p|β2, . . . , tγK |p|βK

)
.

Switching from (p, t) to (s, λ; t),
∣∣Bq,k(s, λ; t)∣∣ � t (1−β|k|)/n̂|s|β|k|−1

Jq∑
j=1

|s|αq,j t−αq,j /n̂p
+
q,k,j

(
λγ1 |s|β1 , λγ2 tγ2−β2/n̂|s|β2 , . . . , λγK tγK−βK/n̂|s|βK

)
.

For large ν, using Lemma 16 (with ρ = 0) to bound in norm the terms of p
+
q,k,j

‖Bq,k ∗ F| � ‖F‖ν t (1−β|k|)/n̂|ν|−β|k|

×
Jq∑

j=1

|ν|−αq,j t−αq,j /n̂p
+
q,k,j

(
λγ1ν−β1 , λγ2 tγ2−β2/n̂ν−β2 , . . . , λγK tγK−βK/n̂ν−βK

)
. (107)

Clearly, for large ν, p
+
q,k can be replaced in (107) by a constant Kj . Using (86) and (89) the conclusion follows. �

Let now

C(φ,T ) = max

{
sup

p∈Sφ, |p|>R, 0�l′�n, γ>0

( |p|n
	P(−p)

)l′/n 1 − e−γ

γ 1−l′/n
, sup
p∈Sφ, |p|�R, 0�l′�n

t l
′/n|p|l′e−t	P(−p)

}
where R is the same as in the proof of Lemma 10.

Lemma 47. For ν large enough, N is contractive, and thus there exists unique solution F of (102).
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Proof. For ν large enough, (91), Lemmas 45 and 46 imply

C(φ,T )
∑
q�0

′ ∑
k�0

tμq,kcq,k(ν, t)‖2F0‖|k|+|q| � ‖F0‖ν (108)

and

C(φ,T )
∑
q�0

′ ∑
k�0

tμq,kcq,k(ν, t)
(|q| + |k|)‖6F0‖|k|+|q|−1 � 1. (109)

Now, Lemma 24 (with ρ0 = 0, d = 1 and s replacing p), and Lemma 46 imply∣∣∣∣∣
{

Bq,k ∗ F∗k ∗ ∗∏m

l=1
∗∏n

j=1

(
sjFl

)∗ql,j

}
(s, λτ ; t)

∣∣∣∣∣ � eν|s||s|
∑

jql,j

M0(1 + |s|2)cq,k(ν, t)‖F‖|q|+|k|
ν .

Also, note that if l′ � 0, s ∈ Sφ with |st−1/n̂| > R∣∣∣∣∣
1∫

0

sl′λe−tP(−st−1/n̂)λ(1−τ) dτ

∣∣∣∣∣ � λ

{
1 − e−tλ	P(−st−1/n̂)

tλ	P(−st−1/n̂)

}
sl′ � C(φ,T )t l

′/n̂−l′/n. (110)

The definition of C(φ,T ) implies that for l′ � 0, s ∈ Sφ with |st−1/n̂| � R we have∣∣∣∣∣
1∫

0

sl′λe−tP(−st−1/n̂)λ(1−τ) dτ

∣∣∣∣∣ � C(φ,T )t l
′/n̂−l′/n. (111)

Setting l′ = ∑
jql,j , using (110) and (111), we find after time integration∥∥∥∥∥

1∫
0

λe−tP(−st−1/n̂)λ(1−τ)Bq,k ∗ F∗k ∗ ∗∏m

l=1
∗∏n

j=1

(
sjFl

)∗ql,j (s, λτ ; t)dτ

∥∥∥∥∥
ν

� t l
′/n̂−l′/nC(φ,T )cq,k(ν, t)‖F‖|q|+|k|

ν . (112)

Using (91), (102), (108) and (112) , it follows that N maps a ball of radius 2‖F0‖0 into itself. Using Lemma 31, (110)
and (111), we obtain∥∥∥∥∥

1∫
0

λBq,k ∗
{

(F + h)∗k ∗ ∗∏m

l=1
∗∏n

j=1

(
sj [Fl + hl]

)∗ql,j

− F∗k ∗ ∗∏m

l=1
∗∏n

j=1

(
sjFl

)∗ql,j

}
(s, λτ ; t)e−tP(−st1/n̂)λ(1−τ) dτ

∥∥∥∥∥
ν

� t l
′/n̂−l′/nC(φ,T )

(|q| + |k|)cq,k(ν, t)
(‖h‖ν + ‖F‖ν

)|q|+|k|−1‖h‖ν

where l′ = ∑
jql,j from which the conclusion using (106) and (91). �

Behavior of sF near s = 0.
In the following proposition, we denote by sF the solution F of Lemma 47.

Proposition 48. For small s we have

∣∣sF
∣∣ �

Jr∑
j=1

|s|−ωj −1t (1+ωj )/n̂h
+
n′

j

(|s|β1 , tγ2−β2/n̂|s|β2 , . . . , tγK−βK/n̂|s|βK
)
.
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Proof. The proof is similar to that of Proposition 37, using (105), (83) and (84). sF to (102) solves a linear equation
sF = G

(sF
) + F0 or sF = (1 − G)−1F0 (113)

with G very similar to that given in Section 4. �
End of proof of Theorem 3(i). The proof is a direct application of Lemma 47 and Proposition 48. Using (99) and

properties of Laplace transform, (97) follows for large |ζ |, in the sector arg ζ ∈ (−π
2 − φ, π

2 + φ).

6.4. Proof of Theorem 3(ii)

An important difference is that infinite sums appear in some estimates. Analyticity of the functions a and the
estimate∥∥L−1y−α

∥∥
ν
=

∥∥∥∥pα−1


(α)

∥∥∥∥
ν

� C
(
1 + α2)ν−α+1,

for ν > 1 with C is independent of α and ν, show convergence of the corresponding series. Also, the proof of
Lemma 47 holds if the following norm was used instead:

‖F‖u
ν = sup

0�λ�1, |t |�T , s∈Sφ

(
1 + |s|2)e−ν|s|∣∣F(s,λ; t)∣∣

since for n̂ = n, 	tP(−st−1/n) = 	sn, is independent of t in the exponent in (102). To show analyticity, we let
Ĝ(s, λ; θ) = θ−(1+ω1)/(nω)F̂ (s, λ; θ1/ω); then Ĝ satisfies an equation of the form

Ĝ =N1(Ĝ)

where the conditions in Setting 2 and the choice of ω are such that N1, as it is seen after straightforward algebra,
manifestly preserves analyticity in θ . Using (99), analyticity of t−ω1/nf (ζ, t) in tω follows provided |ζ | is large
enough (depending on T ).

6.5. Proof of Corollary 44

Substitution gives for f (x, t), defined by (81), an equation of the form (5), with m = 1, d = 1. Then in (10), k is
scalar. The vector q is 3-dimensional, indexed by (l, j), l = 1, j = 1,2,3. The nonlinearity is quartic and the equation
is linear in the derivatives of f , thus the only nonzero values of bq,k are when q is 0 (and k = 1, . . . ,4) or a unit vector
êi ∈ R3 (and k = 0, . . . ,3). Further, it is found that

Jr = 1, K = 2, ω1 = 5

3
= β, γ1 = γ2 = 1, β1 = 3, β2 = 2

3
, n̂ = 3

and in (82) we have

α0,1 = 4

3
, α0,2 = −1, αê1,1 = 2, αê2,1 = 1, αê3,1 = 0. (114)

This is sufficient to check that Theorem 3 applies.
Since |z|t−2/9 large corresponds to |ζ | = |x|t−1/3 large, and arg z ∈ (− 4

9π, 4
9π) corresponds to arg ζ ∈ (− 2

3π, 2
3π),

Theorem 3 implies that for any φ ∈ (0, π
6 ) for large x ∈ Dφ and large ζ = x/t1/3 we have∣∣f (x, t)

∣∣ = O
(|x|5/3h(N+1)

(
t |x|−3, t |x|−2/3)) = O

(|x|5/3tN+1h(N+1)

(|x|−3, |x|−2/3)).
Changing variables, this implies

x(z)−2f
(
x(z, t), t

) = O
(
tN+1|z|−1/2h(N+1)

(|z|−9/2, |z|−1)) = o
(
tN |z|−1/2h(N)

(|z|−9/2, |z|−1))
as needed for asymptoticity. The convergence in the series representation in t7/9 follows from Theorem 3(ii). It is seen
from (94) that all the exponents of t are integer multiples of 7

9 . �
Note 49. Large ζ includes part of the region where Theorems 1 and 2 imply Borel summability of the expansion in
inverse powers of z. Together, the results provide uniform control of the solution.
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Appendix A

A.1. Asymptotic behavior: further comments

In the assumptions of Theorem 2, by the remark following it, formal series solutions to the initial value problem
are asymptotic to the actual unique solution. The discussion below addresses the issue of deriving this series, or, when
less regularity is provided and only the first few terms of the expansion exist, how to show their asymptoticity.

Heuristic calculation. Assuming algebraic behavior of f in our assumptions on the nonlinearity, it is seen that the
most important terms for large x (giving the “dominant balance”) are ft , P0f, coming from the constant part of P , and
r(x, t). This suggests that, to leading order,

f(x, t) ∼ fI (x) +
t∫

0

e−P0(t−τ)r(x, τ )dτ.

If we substitute

f(x, t) = A1(t)x−αr 1 + f̃ (115)

into (5), f̃ will generally satisfy an equation of the form (5), for an increased value of αr ; if the process can be iterated,
as is the case in the examples in [7], it generates a formal series solution.

To obtain rigorous estimates, one writes the equation for f̃ defined in (115) and applies Theorem 1 to show
f̃ = o(x−αr 1). If the coefficients of the equation allow it, this procedure can be repeated to obtain more asymptotic
terms for f. This is the case for instance in the assumptions of Theorem 2, where a complete series is obtained, which
is furthermore Borel summable to f.

The discussion also shows that the assumption αr � 1 can be often be circumvented by subtracting the higher
powers of x from f.

A.2. Simple examples of Borel regularization

In this section we discuss informally and using rather trivial examples, the regularizing features of Borel summa-
tion. An excellent account of Écalle’s modern theory of generalized summability is found in [10]; see [8] as well.
Many interesting results, using more classical tools can be found in [1].

Singular perturbations give rise to nonanalytic behavior and divergent series. Infinity is an irregular singular point
of the ODE f ′ − f = 1/x, and the formal power series solution f̃ = ∑∞

k=0(−1)kk!x−k−1 diverges. In the context
of PDEs, the solution h of the heat equation ht − hxx = 0 with h(0, x) real-analytic but not entire, has a factorially
divergent expansion in small t , the recurrence relation for the terms of which is kHk = H ′′

k−1.
The Borel transform of a series, is by definition its term-wise inverse Laplace transform, which improves conver-

gence since L−1x−k−1 = pk/k!. If the Borel transformed of a series converges to a function which can be continued
analytically along R

+ and is exponentially bounded, then its Laplace transform is by definition the Borel sum of the
series. Since on a formal level Borel summation is LL−1, the identity, it can be shown to be an extended isomorphism
between series and functions; in particular, the Borel sum of f̃ above, L(1 + p)−1 is an actual solution of the equa-
tion. Another way to view this situation is that Borel transform maps singular problems into more regular ones. The
Borel transform of the ODE discussed is (p + 1)L−1f + 1 = 0. The inverse Laplace transform of ht = hxx in 1/t is
ĥxx − pĥpp − 3

2 ĥp = 0 which becomes regular, uxx − uzz = 0 by taking ĥ(p, x) = p−1/2u(2p1/2, x), z = 2p1/2.
It is in its latter role, of a regularizing tool, that we use Borel summation in PDEs.
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A.3. Derivation of Eq. (5) from (4)

We define an m-dimensional vector f by ordering the set {∂ j
xu: 0 � |j| < n}. It is convenient to introduce ĝ2(x, t, f)

so that∑
|J|=n

g2,J
(
x, t,

{
∂

j
xu

}
|j|�n−1

)
∂J

x u = −
∑

i

ĝ2,i (x, t, f)∂xi
f.

So, for showing that (4) implies (5) it is enough to show that for 1 � n′ � n, for |J′| = n′ − 1,

∂J′
x

[
g1(x, t, f) +

∑
i

ĝ2,i (x, t, f)∂xi
f
]

is of the form on the right-hand side of (5). We do so in three steps.

Lemma 50. Consider for k � 1,

E(x, t) =
∑
q�0

‡
bq(x, t, f)

∏
{m;k}

(
∂

j
xfl

)ql,j (116)

where {m; k} denotes the set {(l, j): 1 � l � m; 1 � |j| � k}, and ‡ means summation over q with the restriction∑
{m;k}

|j|ql,j � k. (117)

Then, for i = 1,2, . . . , d , ∂xi
E(x, t) has the same form as (116) with restriction (117), provided k is replaced by k + 1.

Proof. The proof is straightforward, keeping track of the number of derivatives and the powers involved: note that

∂xi
E(x, t, f) =

∑
q�0

(
m∑

l=1

∂

∂fl

bq(x, t, f)∂xi
fl + ∂xi

bq(x, t, f)

) ∏
{m;k}

(
∂

j
xfl

)ql,j

+
∑
q�0

bq(x, t, f)
m∑

l′=1

k∑
|j′|=1

ql′,j′
(
∂

j′
x fl′

)ql′,j′−1
∂xi

(
∂

j′
x fl′

) ∏†

{m;k}

(
∂

j
x fl

)ql,j

where
∏† indicates that the term l = l′, j = j′ is missing from the product. Manifestly, this is of the form (116) with a

suitable redefinition of bq and with the product of the number of derivatives times the power totaling at most

|j′| + 1 + |j′|(ql′,j′ − 1) +
∑
{m;k}

†|j|ql,j = 1 +
∑
{m;k}

|j|ql,j � k + 1.

Hence restriction (117) holds, now with k + 1 instead of k. �
Lemma 51. For any n′ � 1, and any J′ with |J′| = n′ − 1,

∂J′
x g1

(
y, t, f(y, t)

) =
∑
q�0

‡
bq(x, t, f)

∏
{m;n′−1}

(
∂

j
xfl

)ql,j (118)

for some bq, depending on n′, g1, and its first n′ − 1 derivatives, and where
∑‡ means the sum over q with the further

restriction∑
{m;n′−1}

|j|ql,j � n′ − 1.

Proof. The proof is by induction. We have, with obvious notation,

∂xi
g1

(
x, t, f(x, t)

) = g1,xi
+ g1,f · ∂xi

f
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which is of the form (118). Assume (118) holds for n′ = k � 1, i.e. for all J′ satisfying |J′| = k − 1,

∂J′
x g1(x, t, f) =

∑
q�0

‡
bq(x, t, f)

∏
{m;k−1}

(
∂

j
xfl

)ql,j .

Taking a xi derivative, and applying Lemma 50, ∂J
x g1(y, t, f) for |J| = k will have the form above, with k − 1 replaced

by k and with restriction∑
{m;k}

|j|ql,j � k.

Thus, (118) holds for n′ = k + 1, with a different b. The induction step is proved. �
Lemma 52. For n′ = 1,2, . . . , n, and any J with |J| = n′ − 1 we have

∂J
x
[
ĝ2,i′(x, t, f)∂xi′ f

] =
∑
q�0

‡
bq(x, t, f)

∏
{m;n′}

(
∂

j
xfl

)ql,j (119)

for some bq, depending on n′, g2 and its first n′ − 1 derivatives, where
∑‡

q�0 denotes summation with the restriction∑
{m;n′}

|j|ql,j � n′. (120)

Proof. Clearly (119) with restriction (120) holds for n′ = 1. Suppose it holds for n′ = k. Then we note that if |J| =
k + 1, then there exists some index 1 � i � d and some J′, with |J′| = k so that ∂J

x = ∂xi
[∂J′

x ]; hence applying
Lemma 50, we obtain (119) and (120) for n′ = (k + 1). �
A.4. Some useful inequalities

(1) We start with a simple inequality for α > 1 and μ > 0:

(
1 + μα

) 1∫
0

sα−1e−μs ds � 2
(α). (121)

This is clear for μ � 1, while for μ > 1 we write (1 + μα) � 2μα and note that
∫ ∞

0 sα−1e−μs ds = μ−α
(α).
(2) For α > 0, μ > 0, σ = 0,1, ν > 2 and m ∈ N,

μανα

1∫
0

e−νμ[1−(1−s)m]

[1 + μ2(1 − s)2]σ sα−1 ds � 8
(
2α + 1

)

(α)

[
1 + μ2]−σ (122)

where C(m) is independent of μ, α and ν. Indeed, the integral is bounded by( 1/2∫
0

du +
1∫

1/2

du

)
e−μνssα−1 ds

[1 + μ2(1 − s)2]σ � 1

(1 + μ2/4)σ

1∫
0

e−μνssα−1 ds + max
s∈[1/2,1]

e−μνs

[1 + μ2(1 − s)2]σ
1∫

0

sα−1 ds

� 2
(α)(μν)−α

(1 + μ2/4)σ
+ e−μν/2

α(1 + μ2/4)σ

� 2
(α)(μν)−α

(1 + μ2/4)σ
+ 2α+1
(α)(μν)−α

(1 + μ2/4)σ
sup

α∈R+
sup

μν∈R+

(μν)αe−μν/2

2α+1α
(α)

� 2
(α)(μν)−α

2 σ
+ 2α+1
(α)(μν)−α

2 σ
.

(1 + μ /4) (1 + μ /4)
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(3) For n > 1 the function

(1 + μ)e−μ

1∫
0

eμ[un+(1−u)n] du

is bounded in R
+, as it can be checked applying Watson’s lemma for large μ and noting its continuity on [0,∞).

Thus, for some constant C and ν > 1 we have

|p|∫
0

eν|s|n+ν|p−s|n ds � C|p|
1 + |p|n eν|p|n . (123)

(4) We have |pk| � maxi�d |p||k|
i �

∑
i�d |pi ||k| and thus for some constant C and all j � m we have∣∣Pj (−p)

∣∣ � C
∑

i

(
1 + |pi |n

)
. (124)

Also, for some C2 > 0, |Pj (−p)| � C2
∑

i (1 + |pi | + |pn
i |) =: C2(d + q) and thus, for ν > C2 + 1 we have, for

0 � l′ � n,

|p|l′
t∫

0

e|Pj (−p)|(t−τ)eν(τ+1)q dτ � |p|l′eqν+C2td

t∫
0

e(ν−C2)qτ dτ

� T 1−l′/neνq(t+1)+C2td
|p|l′

[(ν − C2)q]l′/n
sup
γ>0

1 − e−γ

γ 1−l′/n

� C3(T )

(ν − C2)l
′/n

eνq(t+1)+C2td . (125)

A.5. Modified estimates for Lemma 38

From (123) it follows that for a constant C independent of Ψ ,Φ we have

|Ψ ∗ Φ| � Ceν(t+1)
∑

i (|pl |+|pl |n)‖Ψ ‖νn‖Φ‖νn. (126)

In particular B(ν, n,S) is a Banach algebra. For the equivalent of Lemma 16, we use the following bounds.

I =
|p1|∫
0

sα−1e−ν(t+1)[|p1|n−(|p1|−s)n]e−ν(t+1)s ds �
|p1|∫
0

sα−1e−ν(t+1)s ds � ν−α


(α)(t + 1)α
(127)

and

I � |p1|α
1∫

0

sα−1e−ν(t+1)|p1|n[1−(1−s)n] ds � C
2α
(α)|p1|α

[ν(t + 1)|p1|n]α

where we used (122) for σ = 0. From (127) it is clear that

‖H ∗ Fj‖νn �
∥∥|H| ∗ |Fj |

∥∥
νn

� C
[

(α)

]d
cα

(
ν(t + 1)

)−dα‖F‖νn. (128)

In Lemma 22, we get instead∣∣|F| ∗ |G|∣∣ � eν(t+1)
∑

i (|pi |+|pi |n)‖F‖νn‖G‖νn.

Very similar changes are made in Lemma 24, Corollary 25, and in Lemma 26 where in the proof we use (125) instead
of (45). Definition 27, Lemma 28 and Definition 29 do not change. Lemmas 30 and 31 change in the same way as
above. In Lemma 32 we use again (125) instead of (45) to make corresponding changes. Finally, in Lemma 33, ν/4
changes to ν/4/c.
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