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Abstract

We show that any continuous path of finite p-variation can be lifted to a geometric q-rough path, where q > p.

Résumé

Nous montrons que tout chemin continu de p-variation finie peut être relevé en un « geometric q-rough path », pour q > p.
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1. Introduction

Let

x : [0,1] → R
n,

t → (
x1(t), . . . , xn(t)

)
be a continuous function of bounded variation, and V1, . . . , Vn some smooth functions from Rd into itself. Then there
exists a (unique) solution to the control differential equation{

dy(t) = ∑n
i=1 Vi(y(t))dxi(t),

y(0) = y0.
(1)

But without the smoothness assumption on x (which is for example almost surely not satisfied by Brownian motion),
classical theory fails to give a meaning to the above equation. Rough paths theory [12,13,11] gives a meaning to
Eq. (1), whenever x is a continuous path of finite p-variation lifted to a “geometric p-rough path”.

To understand what a geometric p-rough path is, consider a smooth path x : [0,1] → Rn, and define

S(x)0,t = 1 +
∫

0<s1<t

dxs1 +
∫

s<si1<···<si[p]<t

dxsi1
⊗ · · · ⊗ dxsi[p] .
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t → S(x)0,t takes its values in G[p](Rn), the free nilpotent group of step [p] over Rn, thought of a manifold immersed
in the tensor algebra

⊕[p]
k=0(R

n)⊗k [12,14]. For a given p � 1, the set of geometric rough paths is the closure under
a given p-variation metric of the set {S(x), x smooth} (see definition (12)). A weak geometric p-rough path is a
G[p](Rn)-valued path of finite p-variation, where the p-variation is computed using a homogeneous metric associated
to the group. The distinction between these two spaces was glossed over in the paper [12] by the first name author. It
is obvious that a geometric p-rough path is a weak geometric p-rough path and that a weak geometric p-rough path is
a geometric q-rough path for any q > p. There are examples of weak geometric p-rough paths that are not geometric
p-rough paths [6]. The difference between weak geometric rough paths and geometric rough paths is a bit like the
difference between Lipschitz functions and C1 functions.

If x is a (weak) geometric p-rough path, x projects onto a path x with values in Rn. The solution to Eq. (1) is
uniquely defined for any x, and the solution is also a (weak) geometric p rough path y. Moreover, the map x → y
is continuous in an appropriate topology. In the classical setting where x is smooth, p = 1. There is a functional
relationship between x and the solution of the differential equation (1). For p � 2, there will be infinitely many
choices for x projecting onto x. The corresponding solution y and its projection y will in general depend on this
choice.

There is often a “canonical” choice for the lift x of x (for example, if x is smooth, S(x) is a canonical lift of x

to a geometric p-rough path, for any p � 1). “Canonical” lifts have been constructed for Brownian motion [13,10],
fractional Brownian motion with Hurst parameter greater than 1/4 [3,13], free Brownian motion [2,18], and a large
class of random paths on fractals [1,8].

1.1. Our goal

Consider the following natural question: can every continuous path of finite p-variation in V (a Banach space)
be lifted to a weak geometric p-rough path (a G[p](V )-valued path of finite p-variation)? We will see, that provided
that p is not an integer number greater than or equal to 2, the answer is affirmative. This is optimal, as a counter
example for p = 2 was provided in [18]. In particular, any path of finite p-variation in V can be lifted to a geometric
q-rough path, for any q > p. The theorem we prove is actually stronger.

Theorem 1. We fix p ∈ [1,+∞). Let V be a Banach space and K a closed normal subgroup of G([p])(V ). If x is a
(G([p])(V )/K,‖ · ‖G([p])(V )/K) continuous path of finite p-variation, with p /∈ N\{0,1}, then one can lift x to a weak
geometric p-rough path.

Consider a path x of finite p-variation with values in (G([p])(V )/K,‖ · ‖G([p])(V )/K), where K is as above. x

projects to a Rn-valued path, and so one can consider again the differential equation (1). This one only makes sense
once we lift x to a geometric q-rough path x, for q > p. The solution depends in general on the choice of the lift x.
We will identify conditions on the Lie algebra generated by the vector fields (Vi)1�i�n in (1) so that the projection y

of the rough path solution y of Eq. (1) does not depend on the lift of x. In general, y and y will depend on the lift x
of x.

To help the comprehension of the paper, we start by presenting the main theorem for p ∈ (2,3) and V = R2, where
no algebra is necessary and result are quite intuitive.

2. A simple case

We start with a non-surprising technical lemma, whose proof is inspired from the Kolmogorov–Centsov criteria [9].

Lemma 2. Let y be a map from
⋃

n�0
⋃2n

k=0{k2−n} into (E,d), a metric space, such that for all n, k ∈ {0, . . . ,2n},
d(y k

2n
, y k+1

2n
) � C2−n/p. (2)

Then, there exists a unique continuous path ỹ : [0,1] → (E,d) which coincides with y on
⋃

n�0
⋃2n

k=0{k2−n}. More-
over, ỹ is 1/p-Hölder.
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Proof. We fix r ∈ N, and show by induction on m that for all s, t ∈ Dm such that 0 < t − s < 2−r ,

d(ys, yt ) � 2C

m∑
k=r+1

2−k/p. (3)

When m = r + 1, necessarily, (s, t) is of the form ( k
2m , k+1

2m ), k ∈ {0, . . . ,2m − 1}, and so (3) is exactly formula (2).
Suppose now that formula (3) is valid for m = r + 1, . . . ,M − 1. Take s, t ∈ DM such that 0 < t − s < 2−r , and
consider t1 = max{u ∈ DM−1;u � t} and s1 = max{u ∈ DM−1;u � s}. Notice that d(ys, ys1) and d(yt1, yt ) are both
bounded by C2−M/p , and, by the induction assumption, that

d(ys1, yt1) � 2C

M−1∑
k=r+1

2−k/p.

Therefore,

d(ys, yt ) � 2C2−M/p + 2C

M−1∑
k=r+1

2−k/p

= 2C

M∑
k=r+1

2−k/p,

which concludes the induction.
Now let us consider (s, t) ∈ ⋃

m�0 Dm, and let r be the natural number such that 2−(r+1) < t − s < 2−r . From the
induction, we obtain

d(ys, yt ) � 2C

∞∑
k=r+1

2−k/p � C̃p2−(r+1)/p

� C̃p|t − s|1/p. (4)

We finally define ỹt for 0 � t � 1 by

ỹt = lim
r→∞y [2r t]

2r
.

From (4), the limit exists and ỹ satisfies d(ỹs, ỹt ) � C̃|t − s|z1/p . �
Let x be a R2-valued path, which is 1/p-Hölder with p ∈ (2,3). We want to prove that we can lift x to a 1/p-

Hölder path with values in the Heisenberg group H 1 equipped with its Carnot–Caratheodory metric. Let us first recall
a few fact about this group and its metric. The Heisenberg group H 1 is equal to R3 equipped with the product

(x1, y1, z1) × (x2, y2, z2) =
(

x1 + x2, y1 + y2, z1 + z2 + 1

2
(y1x2 − y2x1)

)
.

The Carnot–Caratheodory distance will be introduced later, the only property we need for this preliminary chapter is
that there exists positive constants c,C such that

c max

{
|x1 − x2|, |y1 − y2|,

∣∣∣∣z1 − z2 + 1

2
(y1z2 − y2z1)

∣∣∣∣1/2}
� d

(
(x1, y1, z1), (x2, y2, z2)

)
,

and

d
(
(x1, y1, z1), (x2, y2, z2)

)
� C max

{
|x1 − x2|, |y1 − y2|,

∣∣∣∣z1 − z2 + 1

2
(y1z2 − y2z1)

∣∣∣∣1/2}
.

It is easy to see that to lift x to a 1/p-Hölder H 1-valued path, we need to construct the Levy area of x, i.e. a map
A : {0 � s < t � 1} → R such that
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• for all s < t < u ∈ [0,1],
As,u = As,t + At,u + 1

2

(
x1
s,t x

2
t,u − x2

s,t x
1
t,u

); (5)

• for some constant C, for all s, t ∈ [0,1],
|As,t | � C|t − s|2/p. (6)

Of course, if x is of bounded variation, As,t = 1
2

�
s<v1<v2<t

(dx1
v1 dx2

v2
− dx1

v2 dx2
v1

) satisfies the above condition.
As we do not assume x smooth, we cannot use this area.

Proposition 3. Let x be a R2-valued path, which is 1/p-Hölder with p �= 2. Then, one can lift x to a 1/p-Hölder path
with values in the Heisenberg group H 1 equipped with its Carnot–Caratheodory metric.

In rough paths language, using the fact that path of finite p-variation are 1/p-Hölder after a time change, this
means that we can lift any R2-valued path of finite p-variation to a geometric p-rough path, whenever p ∈ (2,3).

Proof. If p < 2, the result is just a easy consequence of Theorem 1 in [12], or just properties of Young integrals. We
therefore assume p > 2.

Let Cx be the Hölder constant of x. We construct inductively the area of x between dyadic times, A k
2n , k+1

2n
for

k = 0, . . . ,2n. We also define inductively

an = 22n/p max
0�k�2n

|A k
2n , k+1

2n
|.

First, we set A0,1 = 0, and therefore we have a0 = 0. Assume then, for a fixed n, that we have constructed A k
2n , k+1

2n

for k = 0, . . . ,2n. We define A 2k

2n+1 , 2k+1
2n+1

and A 2k+1
2n+1 , 2k+2

2n+1
so that they are both equal. Eq. (5) therefore forces them to

be equal to

1

2
A k

2n , k+1
2n

− 1

4

(
x1

k
2n , 2k+1

2n+1
x2

2k+1
2n+1 , k+1

2n
− x2

k
2n , 2k+1

2n+1
x1

2k+1
2n+1 , k+1

2n

)
.

In particular

an+12−2(n+1)/p � 2−2n/p an

2
+ C2

x

2
2−2(n+1)/p,

i.e.

an+1 � 22/p−1an + 1

2
C2

x .

It is easy to see by induction that, if p > 2, the sequence an is bounded. Transferring this information in terms of
the path x = (x,A), we see that we have constructed elements xk2−n of the metric space (H 1, d) such that for all
n, k ∈ {0, . . . ,2n},

d(x k
2n

,x k+1
2n

) � Mp2−n/p. (7)

We conclude the proof with Lemma 2. �
The above construction and idea will be the main argument of the proof of the main theorem. To be able to explain

it, we need to introduce a few algebraic and geometric notions.

3. Algebraic preliminaries

3.1. Carnot groups

If G is a simply connected nilpotent Lie group with Lie algebra G, then the Lie group exponential map exp :G →G

is a diffeomorphism [15,17]. In this case we let ln :G → G denote the inverse of the exponential function. We start
with a couple definitions.
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Definition 4. A Carnot group1 is a connected nilpotent Lie group G, such that its Lie algebra G can be written as

G =W1 ⊕ · · · ⊕ Wn,

where for all i, Wi+1 = [W1,Wi]. For an element g = exp(w1 + · · · + wn) ∈ G , with wi ∈ Wi , we let, for t ∈ R,

δtg = exp
(
tw1 + · · · + tnwn

)
.

δ is called the dilation operator.

Definition 5. A (symmetric sub-additive) homogeneous norm [5] on a Carnot group G is a function ‖ · ‖G :G → R+
such that

(i) ‖g‖G = 0 if and only if g is the neutral element of the group, 1 = exp(0),
(ii) ‖δtg‖G = |t |‖g‖G,

(iii) for all g,h ∈ G, ‖g ⊗ h‖G � ‖g‖G + ‖h‖G,

(iv) for all g, ‖g‖G = ‖g−1‖G.

Such a norm define a left invariant distance on the group by dG(g,h) = ‖h−1 ⊗ g‖G. We will say that (G,‖ · ‖G) is a
normed Carnot group.

If G is a fixed Carnot group with finite dimensional Lie algebra, all homogeneous norms on G are equivalent. The
Carnot–Caratheodory norm is an example of a homogeneous norm on a Carnot group [7]. Any homogeneous norms
‖ · ‖G on G leads to a left invariant distance dG(x, y) = ‖y−1x‖ (in particular, the Carnot–Caratheodory norm leads to
the Carnot–Caratheodory distance). Let G be a normed Carnot group with Lie algebra G, K a Lie subgroup of G, with
Lie algebra K. If K is a closed normal Lie subgroup of G, or equivalently if K is closed ideal of G, then G/K is then
a Carnot group with Lie algebra G/K [15]. If G is equipped with a homogeneous norm ‖ · ‖G, then we equip G/K

with the quotient homogeneous norm on G/K

‖ · ‖G/K :G/K → R,

gK → inf
k∈K

‖g ⊗ k‖G.

We will denote by πG,G/K the canonical homomorphism from G onto G/K . Sometimes, it will be more convenient
to write gK for πG,G/K(g).

Proposition 6. Let (G,‖ · ‖G) be a normed Carnot group, K a closed normal Lie subgroup of G. There exists an
injection iG/K,G :G/K → G such that

(i) πG,G/K ◦ iG/K,G is the identity map of G/K ,
(ii) for all t ∈ R+, gK ∈ G/K , δt (iG/K,G(gK)) = iG/K,G(δt (gK)),

(iii) for all gK ∈ G/K , ‖gK‖G/K � ‖iG/K,G(gK)‖G � 2‖gK‖G/K .

Proof. By definition of the homogeneous norm on G/K , for all g ∈ G such that ‖gK‖G/K = 1, the set

Mg = {
g ⊗ k such that k ∈ K and 1 � ‖g ⊗ k‖G � 2

}
is non-empty. We define iG/K,G on the set of elements{

gK, such that ‖gK‖G/K = 1
}

to be any function which at gK associates an element of
⋃

m∈π−1
G,G/K(gK)

Mm; such function exists by the axiom of

choice. We then extend iG/K,G to G/K with the help of the formula iG/K,G(δtgK) = δt iG/K,G(gK). �
1 In most definitions of a Carnot group, G is assumed to be finite dimensional. We do not make such an assumption here.
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3.2. Free nilpotent groups

We know introduce a fundamental example of a Carnot group.
We fix (for the rest of the paper) a normed vector space (V ,‖ · ‖1). We let T (V ) = ⊕∞

n=0 V ⊗n be the tensor algebra
over V . T (V ) equipped with standard addition +, tensor multiplication ⊗ and scalar product is an associative algebra.
T (n)(V ), the quotient algebra of T (V ) by the ideal

⊕∞
m=n+1 V ⊗m, inherits this algebraic structure. One can define

on T (n)(V ) a Lie bracket by the formula

[a, b] = a ⊗ b − b ⊗ a,

which makes T (n)(V ) into a Lie algebra. We let G(n)(V ) be the Lie subalgebra of T (n)(V ) generated by elements
in V . Note that

G(n)(V ) �
n⊕

i=1

Vi,

where

V1 = V and Vi+1 = [V,Vi]. (8)

G(n)(V ) is the free nilpotent Lie algebra of step n [12–14]. The exponential, logarithm and inverse function are defined
on T (n)(V ) by mean of their power series. We denote by G(n)(V ) = exp(G(n)(V )). By the Baker–Campbell–Hausdorff
formula, (G(n)(V ),⊗) is a connected nilpotent Lie group, called the free nilpotent Lie group of step n over V . By
construction, (G(n)(V ),⊗) is a Carnot group, with Lie algebra G(n)(V ).

We are now going to equip G(n)(V ) with a homogeneous norm. We first let ‖ · ‖i be some norms on V ⊗i such that
for all (ai, aj ) ∈ V ⊗i × V ⊗j , ‖ai ⊗ aj‖i+j � ‖ai‖i + ‖aj‖j . To simplify notations, we will write ‖ · ‖ for all these
norms. Now define

‖g‖G(n)(V ) = max
i=1,...,n

(
i!‖gi‖

)1/i + max
(
i!∥∥(

g−1)
i

∥∥)1/i
,

where g = 1+g1 +· · ·+gn, gi ∈ V ⊗i is an element of the group G(n)(V ), and g−1 is its inverse. The binomial equality
quickly shows that g → maxi=1,...,n(i!‖gi‖)1/i is a sub-additive homogeneous norm (but a priori not symmetric). That
implies that ‖ · ‖G(n)(V ) defines a homogeneous norm on G(n)(V ). We also let

dG(n)(V )(g,h) = ∥∥h−1 ⊗ g
∥∥

G(n)(V )
.

Proposition 7. Let g = exp(l1 + · · · + ln), with li ∈ Vi . Then,

cn max
i=1,...,n

‖li‖1/i � ‖g‖G(n)(V ) � Cn max
i=1,...,n

‖li‖1/i ,

for some constants cn and Cn which depends only on n.

Proof. Let us fix i ∈ {1, . . . , n} and write g = 1 + g1 + · · · + gn, with gi ∈ V ⊗i . By definition of the exponential
function,

gk =
k∑

i=1

1

i!
∑

j1,...,ji
j1+···+ji=k

lj1

⊗· · · ⊗ lji
.

Hence,

(
k!‖gk‖k

)1/k �
(

k∑
i=1

k!
i!

∑
j1,...,ji

j1+···+ji=k

‖lj1‖ · · · ‖lji
‖
)1/k

�
(
k!(expk − 1)

)1/k max ‖li‖1/i .

i=1,...,n



T. Lyons, N. Victoir / Ann. I. H. Poincaré – AN 24 (2007) 835–847 841
Applying this to g−1, we obtain(
k!∥∥(

g−1)
k

∥∥
k

)1/k �
(
k!(exp k − 1)

)1/k max
i=1,...,n

‖ − li‖1/i = (
k!(expk − 1)

)1/k max
i=1,...,n

‖ − li‖1/i .

That gives us the upper bound. For the lower bound, observe that by definition of the logarithm function,

lk =
k∑

i=1

(−1)i

i

∑
j1,...,ji

j1+···+ji=k

gj1 ⊗ · · · ⊗ gji
,

which, when applied to both g and its inverse, gives that for all 1 � k � n,

‖lk‖1/k � c−1
n ‖g‖G(n)(V )

for a constant cn > 0. �
Corollary 8. Let K = exp(K) be a closed normal subgroup of G(n)(V ). Then, if g = exp(l1 + · · · + ln) with li ∈ Vi ,

cn �
‖gK‖G(n)(V )/K

maxi=1,...,n(infki∈K∩Vi
‖li + ki‖)1/i

� Cn.

Corollary 9. Let C(G(n)(V )) be the centre of G(n)(V ) and θ the canonical isomorphism between G(n−1)(V ) and
G(n)(V )/C(G(n)(V )). Then the homogeneous norm ‖ · ‖G(n−1)(V ) and ‖θ(·)‖G(n)(V )/C(G(n)(V )) are equivalent. We will
therefore not distinguish between them.

4. Rough paths

In this paper, by E-valued path, we mean a function from [0,1] into E.

4.1. On p-variation

Definition 10. Let (E,d) be a metric space. A (E,d)-valued path x is said to have finite p-variation if

sup
D

#D−1∑
i=1

d(xti , xti+1)
p < ∞,

where the supremum runs over all subdivisions D = (0 � t1 � · · · � t#D � 1) of the interval [0,1].

Note that x is continuous and of finite regular p-variation if and only if for all s � t , d(xs, xt ) � ω(s, t), where

(i) ω : {(s, t),0 � s � t � 1} → R
+ is continuous.

(ii) ω is super-additive, i.e. ∀ s < t < u, ω(s, t) + ω(t, u) � ω(t, u). (9)
(iii) ω(t, t) = 0 for all t ∈ [0,1].

We will say in such case that x has finite p-variation controlled by ω.
We are going to show that a continuous (E,d)-valued path of finite p-variation is, up to reparametrisation of time,

1/p-Hölder continuous. If ω satisfies (9), then

(s, t) → ω(0,1)

(
ω(0, t)

ω(0,1)
− ω(0, s)

ω(0,1)

)
is a continuous additive map, equal to zero on the diagonal, and ω(0, t) − ω(0, s) � ω(s, t) (by the super-additivity
of ω). Therefore, a path is of finite p-variation if and only if there exists an non-decreasing and continuous surjection
γ from [0,1] onto [0,1] and a positive constant C such that

for all s � t, d(xs, xt )
p � C

∣∣γ (t) − γ (s)
∣∣.
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For such a γ , we define

γ −1 : [0,1] → [0,1],
t → inf

{
u,γ (u) = t

}
.

The following is straightforward to check.

Lemma 11. Let x be a continuous (E,d)-valued path of finite p-variation controlled by (s, t) → C|γ (t) − γ (s)|,
where γ is a continuous increasing surjection from [0,1] onto [0,1]. Define

y : [0,1] → E,

t → xγ −1(t).

Then, y is a 1/p-Hölder (E,d)-valued path.
Reciprocally, if y is a 1/p-Hölder (E,d)-valued path then, it is a continuous path of finite p-variation controlled

by (s, t) → C|t − s|.

4.2. Geometric p-rough paths

Definition 12. A weak geometric p-rough path is a (G([p])(V ),‖·‖G([p])(V ))-valued path which has finite p-variation.2

When x is a path with values in a group (G,⊗), we will write xs,t = x−1
s ⊗ xt .

5. The extension theorem

We first need an important lemma.

Lemma 13. Let (G,‖ · ‖G) be a normed Carnot group with graded Lie algebra

G =W1 ⊕ W2 ⊕ · · · ⊕ Wn.

Define K to be a closed subgroup of exp(Wn), which gives us a normed Carnot group (G/K,‖ · ‖G/K). Let x be a
1/p-Hölder (G/K,‖ · ‖G/K)-valued path. Then, if p > n, there exists a 1/p-Hölder (G,‖ · ‖G)-valued path x̃ such
that πG,G/K(x̃) = x.

Proof. As exp(Wn) is in the center of G, K is a subgroup of the center of G. In particular, K is a closed normal
subgroup of G.

To construct our path x̃, we are first going to construct its increments x̃s,t when s, t ∈ Dm = { k
2m , k ∈ {0, . . . ,2m−1}}

with t − s = 2−m, doing this for all m. x̃s,t will be constructed in such a way that ‖x̃s,t‖G � C|t − s|1/p for a given
C < ∞. Multiplying the increments, we will then have defined x on all dyadics, and the proof will be finished thanks
to Lemma 2.

So we define recursively on m some elements y k
2m , k+1

2m
∈ K , k ∈ {0, . . . ,2m − 1}, m ∈ N, in the aim of defining the

elements x̃ k
2m , k+1

2m
with the formula

x̃ k
2m , k+1

2m
= iG/K,G(x k

2m , k+1
2m

) ⊗ y k
2m , k+1

2m

where iG/K,G is the injection of Proposition 6. This will ensure that πG,G/K(x̃) = x. First, we let, y0,1 = exp(0).
Then, we assume that y k

2m , k+1
2m

(and hence x̃ k
2m , k+1

2m
) has been constructed for all 0 � k � 2m − 1 and a fixed m, and we

define the two elements y 2k

2m+1 , 2k+1
2m+1

and y 2k+1
2m+1 , 2k+2

2m+1
to be both equal, and equal to the inverse of

δ2−1/n

(
iG/K,G(x 2k

2m+1 , 2k+1
2m+1

) ⊗ iG/K,G(x 2k+1
2m+1 , 2k+2

2m+1
) ⊗ x̃−1

k
2m , k+1

2m

)
.

2 The definition of a geometric p-rough path is presented quite differently in [12], as the notion of a homogeneous norm was not mentioned there.
Nonetheless, the difference is easily seen to be only notational.
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We easily check that πG,G/K(y 2k

2m+1 , 2k+1
2m+1

) = exp(0), i.e. that y 2k

2m+1 , 2k+1
2m+1

= y 2k+1
2m+1 , 2k+2

2m+1
∈ K . As elements of K

commute with elements of G, and with the help of the formula δ21/n(y) = y⊗2 for y ∈ K , we check that this choice
for y 2k

2m+1 , 2k+1
2m+1

and y 2k+1
2m+1 , 2k+2

2m+1
gives

x̃ k
2m , k+1

2m
= x̃ 2k

2m+1 , 2k+1
2m+1

⊗ x̃ 2k+1
2m+1 , 2k+2

2m+1
.

We then define am = 2m/p supk∈{0,...,2m−1} ‖y k
2m , k+1

2m
‖G. By the assumption that x is 1/p-Hölder and by the defini-

tion of iG/K,G,∥∥iG/K,G(x k
2m , k+1

2m
)
∥∥

G
� 2‖x k

2m , k+1
2m

‖G/K � 2C2−m/p.

Hence, from the previous inequality, we obtain that

21/n2−(m+1)/pam+1 � am2−m/p + 2−(m+1)/p22+1/pC,

i.e.

am+1 � 21/p−1/nam + 22+1/p−1/nC.

As n < p, we have 21/p−1/n < 1 which forces the sequence am to be bounded. So we have constructed for every
m � 0, k ∈ {0, . . . ,2m − 1} some elements x̃ k

2m , k+1
2m

= iG/K,G(x k
2m , k+1

2m
) ⊗ y k

2m , k+1
2m

∈ G, such that

‖x̃ k
2m , k+1

2m
‖G � 2‖x k

2m , k+1
2m

‖G/K + ‖y k
2m , k+1

2m
‖G

�
(

2C + sup
m

am

)
2−m/p = Cp,n2−m/p.

Remember also that for all dyadic k
2m ,

x̃ k
2m , k+1

2m
= x̃ 2k

2m+1 , 2k+1
2m+1

⊗ x̃ 2k+1
2m+1 , 2k+2

2m+1
.

That allows us to define

x̃ k
2m , l

2m
=

l−1⊗
j=k

x̃ j

2m ,
j+1
2m

.

We have proved that for all n, k ∈ {0, . . . ,2n},
‖x̃ k

2m , k+1
2m

‖G � C′2−m/p. (10)

The proof is therefore finished using Lemma 2. �
We are now ready for our main theorem.

Theorem 14. We fix p ∈ [1,+∞). Let K be a closed normal subgroup of G([p])(V ). If x is a (G([p])(V )/K,

‖ · ‖G([p])(V )/K) continuous path of finite p-variation, with p /∈ N\{0,1}, then there exists a continuous (G([p])(V ),

‖ · ‖G([p])(V ))-valued path x̃ of finite p-variation such that

πG([p])(V ),G([p])(V )/K(x̃) = x.

Proof. As noticed in Section 4.1, we assume without loss of generalities that x is 1/p-Hölder. We denote by K1 ⊕
· · · ⊕K[p] the Lie algebra of K , with Ki ⊂ Vi . We define for k = 1, . . . , n,

H(k) = G(k)(V )/ exp(Kk)

and

M(k) = G(k)(V )/ exp(K1 ⊕ · · · ⊕Kk)

� H(k)/ exp(K1 ⊕ · · · ⊕Kk−1).
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We are going to construct recursively some H(k)-valued paths y(k) and G(k)(V )-valued paths x(k) which are
1/p-Hölder and such that the projections of x, x(k), and y(k) onto M(k) are equal, i.e. such that

πH(k),M(k)

(
y(k)

) = πM([p]),M(k) (x), (11)

πG(k)(V ),M(k)

(
x(k)

) = πM([p]),M(k) (x). (12)

Using Lemma 13, x(k) is easily constructed from y(k), so we only need to construct the paths y(k). Constructing those
paths are not very difficult intuitively, as to construct y(k), we just need to “paste” together x(k−1) and x.

For k = 1 y(1) = πM([p]),M(1) (x) is a H(1) = G(1)(V )/ exp(K1) valued path, which is 1/p-Hölder.
We now assume that we have a G(k)(V )-valued path x(k) which is 1/p-Hölder and which satisfies equality (12),

and we aim to construct a 1/p-Hölder H(k+1)-valued path y(k+1).
The set Z(k+1) defined by{

(g,m) ∈ G(k)(V ) × M(k+1) such that πG(k)(V ),M(k) (g) = πM(k+1),M(k) (m)
}

equipped with the product

(g1,m1) ⊗ (g2,m2) = (g1 ⊗ g2,m1 ⊗ m2)

is a group, and the application Ψ :Z(k+1) → H(k+1) defined by the formula: if �k ∈ V1 ⊕ · · · ⊕ Vk and lk+1 ∈ Vk+1,

Ψ
(
exp(�k), exp

(
�k + lk+1) exp

(
K1 ⊕ · · · ⊕Kk+1

)) = exp(�k) exp
(
lk+1) exp(Kk+1),

is easy seen to be an isomorphism by Baker–Campbell–Hausdorff formula.
Using Proposition 7 and Corollary 8, we see that there exists a constant Ck+1 such that for all (g,m) ∈ Z(k+1),∥∥Ψ (g,m)

∥∥
H(k+1) � Ck+1

(‖g‖G(k)(V ) + ‖m‖M(k+1)

)
.

For all t ∈ [0,1], (x
(k)
t , πM([p]),M(k+1) (xt )) ∈ Z(k+1), hence we can define

y
(k+1)
t = Ψ

(
x

(k)
t , πM([p]),M(k+1) (xt )

)
.

Note first that y(k+1) satisfies the equality (11). Because Ψ is an isomorphism, y
(k+1)
s,t = Ψ (x

(k)
s,t , πM([p]),M(k+1) (xs,t ))

and hence∥∥y
(k+1)
s,t

∥∥
H(k+1) � Ck+1

(∥∥x
(k)
s,t

∥∥
G(k)(V )

+ ∥∥πM([p]),M(k+1) (xs,t )
∥∥

M(k+1)

)
� Ck+1

(∥∥x
(k)
s,t

∥∥
G(k)(V )

+ ‖xs,t‖M([p])
)
.

By hypothesis and induction hypothesis,∥∥x
(k)
s,t

∥∥
G(k)(V )

+ ‖xs,t‖M([p]) � (C + C′
k)|t − s|1/p,

hence ‖y(k+1)
s,t ‖H(k+1) � C′

k+1|t − s|1/p .
Using the induction step until we reach the level [p], we obtain a G([p])(V )-valued path x([p]) which is 1/p-Hölder

and such that

πG([p])(V ),M([p])
(
x([p])) = πM([p]),M([p]) (x) = x. �

We ought to make a couple comments on our main theorem.

Remark 15. Note that we could have considered a continuous path of finite p-variation with values in a quotient space
of G(n)(V ), with n > [p]. If K(n) is a closed normal subgroup of G(n)(V ) and x is a 1/p-Hölder path with values in
(G(n)(V )/K(n),‖ · ‖G(n)(V )/K(n) ), with p /∈ N\{0,1}, then there exists a 1/p-Hölder G(n)(V )-valued path x̃ such that

πG(n)(V ),G(n)(V )/K(n)(x̃) = x.

To prove this, first let K([p]) = πG(n),G([p]) (K(n)). The canonical projection of x into G[p](V )/K([p]) is a 1/p-Hölder
path. Hence, by the previous theorem, there exists a 1/p-Hölder G[p](V )-valued path x([p]) such that

πG([p])(V ),G[p](V )/K([p])
(
x([p])) = πG(n)(V )/K(n),G[p](V )/K([p]) (x).
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Then, by Theorem 1 in [12], x([p]) can be (uniquely) extended to a 1/p-Hölder (G(n)(V ),‖·‖G(n)(V ))-valued path x(n).
By the uniqueness statement, x(n) must satisfy

πG(n)(V ),G(n)(V )/K(n)

(
x(n)

) = x.

Remark 16. As already pointed out in [12,13], if p � 2 and if there exists one (G([p])(V ),‖ · ‖G([p])(V ))-valued path x̃

of finite p variation such that

πG([p])(V ),G([p])(V )/K(x̃) = x,

then there exists infinitely many such paths.

Remark 17. The condition p /∈ N\{0,1} is necessary. In [18], it was proven that, for a particular choice of tensor
norm, there does not exist a 2-rough path lying above the free Brownian motion (which is a path of finite 2-variation).

Remark 18. If p is a natural number greater than or equal to 2, keeping the notation of the previous theorem, we can
find, for any fixed ε > 0, a continuous G([p])(V )-valued path x̃ of finite p + ε variation such that

πG(p)(V ),G(p)(V )/K(x̃) = x.

This is obtained just by noticing that a path of finite p-variation has finite (p + ε)-variation.

We end up with a corollary, which was the original motivation of this paper.

Corollary 19. If p ∈ [1,∞)\{2,3, . . .}, a continuous V -valued path of finite p-variation can be lifted to a geometric
p-rough path. For any p, a continuous path of finite p-variation can be lifted to a geometric (p + ε)-rough path.

Proof. Apply Theorem 14 to K = exp(
⊕[p]

i=2 Vi) and use the previous remark. �
That means, in particular, that one can always define a notion of solution to differential equations controlled by a

continuous path of finite p-variation, whatever the p is.

6. Rough differential equations for which the extension does not matter

We fix a real p � 1. X k+ε(Rd) denotes the class of k-times differentiable vector fields with the kth-derivatives
being ε-Hölder and with all the first k-derivatives being bounded. We consider A1, . . . ,Am some elements of X γ (Rd),

with γ > p. We fix a basis e1, . . . , em of Rm, and extend the linear application

R
m →X γ

(
R

d
)
,

ei → Ai

to an algebra homomorphism �A[p] from T [p](Rm) into the space of continuous differential operators, in other words,
for a smooth function g, we have

�
A[p]

(∑
αi1,...,inei1 ⊗ · · · ⊗ ein

)
g =

∑
αi1,...,inAi1 · · ·Aing.

Note that �A[p] restricted to the free Lie algebra G([p])(Rm), i.e. (�A[p])|G([p])(Rn) is a Lie homomorphism into X 0(Rd).
Recall that if x is a p-geometric rough path, a solution of the differential equation

dyt = A(yt )dxt ,

y0 = a

is an extension of x to z ∈GΩ(Rm+d) that projects onto (x,y), (x0, y0) = (0, a), and such that

zs,t =
t∫
h(zu)dzu,
s
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with

h : Rd ⊕ R
m → Hom

(
R

d ⊕ R
m,R

d ⊕ R
m
)
,

(x, y) → (
(dX,dY) → (dX,V (y)dX)

)
.

The map x → z is called the Itô map, denoted IV :GΩ(Rn) → GΩ(Rn+d).

Theorem 20. Let x be a 1/p-Hölder path in G([p])(Rm)/K , where K is a normal subgroup of G([p])(Rm) with
Lie algebra K and x̃ an extension of x to a 1/p-Hölder path in G([p])(Rm) (1/(p + ε) if p is an integer). Assume
that the kernel of the Lie algebra homomorphism (�A[p])|G([p])(Rm) contains K. Then IA(x̃) is a 1/p-Hölder path in

G([p])(Rm+d) which, in general depends on the extension of x to x. Nevertheless, the projection of IA(x) onto Rd

depends only on x.

Proof. To see that IA(x) depends on general of the extension of x to x, just consider the Itô map which is the identity.
Now let y be the projection of IA(x) onto Rd . From [12], we know that∣∣yt − �

A[p](xs,t )(ys)
∣∣ � C|t − s|θ , (13)

where θ > 1 and C � 0. Define the path yn by the inductive formula

yn
0 = a,

yn
k+1
2n

= �
A[p](x k

2n , k+1
2n

)
(
yn

k+1
2n

)
, k = 0, . . . ,2n − 1,

yn
t = (

k + 1 − 2nt
)
yn

k
2n

+ (
2nt − k

)
yn

k+1
2n

, t ∈
[

k

2n
,
k + 1

2n

]
.

By Eq. (13) and an argument similar to Euler construction of a solution to an ordinary differential equation, we see
that yn converges to y in uniform topology. Due to our assumption on the vector fields A1, . . . ,Am, �A[p](xs,t )(y)

only depends on xs,t (and not on the choice of the lift). In particular, yn does not depend on the choice of the lift.
Letting n tends to infinity, we obtain our theorem. �

A simple case of the above is the following:

Example 21. Let A1, . . . ,Ad be d vector fields which commute, i.e. such that [Ai,Aj ] = 0 for all i, j . Let x : [0,1] →
Rd be a continuous path of finite p-variation, lifted to a geometric (p + ε)-rough path x. Then, the projection of IA(x)

into Rd depends only on x, and not on the choice of the lift. This could be seen more directly from Doss–Sussman’s
theorem [4,16]

The following less trivial example should illustrate a bit more the interest of Theorem 20.

Example 22. Let A1,A2,A3 be 3 vector fields, such that [A1,A2] = [A1,A3] = 0, but we do not assume that [A2,A3]
is equal to 0. Let x = (x1, x2, x3) : [0,1] → R3 be a 1/p-Hölder path (p > 2), equipped with a Levy area A2,3 between
x2 and x3, such that |A2,3

s,t | � C|t − s|2/p . We lift (x,A) to a geometric (p + ε)-rough path x. Then, the projection of
IA(x) into Rd depends only on x and A2,3, and not on the choice of the lift.
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