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Recently, Simon Brendle (whom I would like to thank) pointed out to me that the assertion ut = tu1 + (1 − t)u0 ∈
S(D,D∗) made in [1, p. 449, 14 lines from top] is incorrect (unless u1 −u0 is constant). So we must fix the uniqueness
proof in which it enters. Since uniqueness has been asserted without proof in several subsequent articles where the
same nonlinear boundary condition is considered (see e.g. [3–7]), we will provide a fairly general proof valid for all.

We require a lemma, nowhere stated in that generality although its proof (given here for completeness) has become
standard [6, pp. 870–871], [7, p. 65]:

Lemma 1 (strict obliqueness). Let D (resp. D∗) be a bounded domain of R
n (resp. of (Rn)∗) with C2 (resp. C1)

boundary. The boundary condition du(D) = D∗, considered on real functions u ∈ C2(D̄) which are strictly convex
(meaning they have a positive definite Hessian matrix at each point) on D̄, this condition, is strictly oblique.

Proof. Fix u ∈ C2(D̄) strictly convex and x0 ∈ ∂D. Set p0 = du(x0) ∈ ∂D∗ and h∗ for a C1 real function defined in
(Rn)∗ near p0 and satisfying on ∂D∗: h∗ = 0 and dh∗ �= 0. Consider the vector field: x ∈ ∂D → ξu(x) := dh∗[du(x)]
near x0. Finally, denote by a dot (resp. by ∇) the standard euclidean scalar product (resp. the canonical flat connection)
of R

n, by N , the outward unit normal field to ∂D and set Hu := h∗ ◦ du.
The asserted strict obliqueness means: ξu · N(x0) �= 0. To establish it, note that dHu(x) = (∇du)(ξu, ·) does not

vanish, while Hu(x) = 0 on ∂D near x0: so there, the 1-form ±dHu/|dHu| (setting | · | for the standard euclidean norm)
is equal to the euclidean scalar product with N . In other words, at x0, we have: ξu · N = ±(1/|dHu|)(∇du)(ξu, ξu)

which indeed does not vanish. �
Proposition 1 (uniqueness). Assume for D∗ the existence of a global convex function h∗ ∈ C1(D∗) such that: h∗ = 0
and dh∗ �= 0 on ∂D∗. Let u �→ F(u) be a second order (possibly nonlinear) differential operator on D satisfying at
each strictly convex u ∈ C2(D̄) the following conditions:

(i) F(u) is well-defined on D̄;
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(ii) dF(u) is (linear) elliptic with positive-definite symbol in D̄;
(iii) dF(u)(1) � 0.

Then there exists at most one strictly convex solution u ∈ C2(D̄) of the problem:

F(u) = 0 in D, du(D) = D∗, (1)

unless dF(u)(1) ≡ 0, in which case the solution is defined up to an additive constant.

Proof. If u0 and u1 are two strictly convex solutions of (1) in C2(D̄), for t ∈ [0,1], set ut = u0 + tv with v = u1 −u0.
Under the assumption made on F and since ut is strictly convex, we may write as usual: F(u1)−F(u0) = L(v), where
L := ∫ 1

0 dF(ut ) dt is a second order linear elliptic operator with positive definite symbol and L(1) � 0, throughout D̄;
moreover, v satisfies Lv = 0 in D. To exploit the boundary condition, we fix x ∈ ∂D, set for short pt = dut (x) and
observe that, by the convexity of h∗, we have:

dh∗(p0)(p1 − p0) � h∗(p1) − h∗(p0) � dh∗(p1)(p1 − p0),

hence:

dv(x)
[
ξ0(x)

]
� 0 � dv(x)

[
ξ1(x)

]
, (2)

where ξi := ξui
for i ∈ {0,1} (with the notation ξu introduced in the proof of Lemma 1). The left (resp. right) inequality

of (2), used at the point x = xmax (resp. x = xmin) where the function v assumes its maximum (resp. minimum) on ∂D,
and combined with the strict obliqueness of the ξi ’s (Lemma 1), implies:

∂v

∂N
(xmax) � 0,

∂v

∂N
(xmin) � 0.

Now the proposition readily follows from Hopf’s lemma combined with his strong maximum principle [2]. �
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