

Available online at www.sciencedirect.com

Ann. I. H. Poincaré - AN 24 (2007) 849-850

www.elsevier.com/locate/anihpc

Erratum

Erratum to: "Classical solvability in dimension two of the second boundary value problem associated with the Monge–Ampère operator"

[Ann. Inst. H. Poincaré Analyse Non Linéaire 8 (5) (1991) 443–457]

Ph. Delanoë¹

Univ. Nice-Sophia Antipolis, Laboratoire Dieudonné, Parc Valrose, 06108 Nice Cedex 2, France Received 1 February 2007; accepted 7 March 2007

Available online 6 June 2007

Recently, Simon Brendle (whom I would like to thank) pointed out to me that the assertion $u_t = tu_1 + (1 - t)u_0 \in S(D, D^*)$ made in [1, p. 449, 14 lines from top] is incorrect (unless $u_1 - u_0$ is constant). So we must fix the uniqueness proof in which it enters. Since uniqueness has been asserted without proof in several subsequent articles where the same nonlinear boundary condition is considered (see e.g. [3–7]), we will provide a fairly general proof valid for all.

We require a lemma, nowhere stated in that generality although its proof (given here for completeness) has become standard [6, pp. 870–871], [7, p. 65]:

Lemma 1 (strict obliqueness). Let D (resp. D^{*}) be a bounded domain of \mathbb{R}^n (resp. of $(\mathbb{R}^n)^*$) with C^2 (resp. C^1) boundary. The boundary condition $du(D) = D^*$, considered on real functions $u \in C^2(\overline{D})$ which are strictly convex (meaning they have a positive definite Hessian matrix at each point) on \overline{D} , this condition, is strictly oblique.

Proof. Fix $u \in C^2(\overline{D})$ strictly convex and $x_0 \in \partial D$. Set $p_0 = du(x_0) \in \partial D^*$ and h^* for a C^1 real function defined in $(\mathbb{R}^n)^*$ near p_0 and satisfying on ∂D^* : $h^* = 0$ and $dh^* \neq 0$. Consider the vector field: $x \in \partial D \to \xi_u(x) := dh^*[du(x)]$ near x_0 . Finally, denote by a dot (resp. by ∇) the standard euclidean scalar product (resp. the canonical flat connection) of \mathbb{R}^n , by N, the outward unit normal field to ∂D and set $H_u := h^* \circ du$.

The asserted strict obliqueness means: $\xi_u \cdot N(x_0) \neq 0$. To establish it, note that $dH_u(x) = (\nabla du)(\xi_u, \cdot)$ does not vanish, while $H_u(x) = 0$ on ∂D near x_0 : so there, the 1-form $\pm dH_u/|dH_u|$ (setting $|\cdot|$ for the standard euclidean norm) is equal to the euclidean scalar product with N. In other words, at x_0 , we have: $\xi_u \cdot N = \pm (1/|dH_u|)(\nabla du)(\xi_u, \xi_u)$ which indeed does not vanish. \Box

Proposition 1 (uniqueness). Assume for D^* the existence of a global convex function $h^* \in C^1(\overline{D^*})$ such that: $h^* = 0$ and $dh^* \neq 0$ on ∂D^* . Let $u \mapsto F(u)$ be a second order (possibly nonlinear) differential operator on D satisfying at each strictly convex $u \in C^2(\overline{D})$ the following conditions:

(i) F(u) is well-defined on \overline{D} ;

E-mail address: Philippe.DELANOE@unice.fr.

¹ Supported by the CNRS (UMR 6621).

^{0294-1449/\$ –} see front matter © 2007 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.anihpc.2007.03.001

(ii) dF(u) is (linear) elliptic with positive-definite symbol in \overline{D} ;

(iii) $dF(u)(1) \leq 0$.

Then there exists at most one strictly convex solution $u \in C^2(\overline{D})$ of the problem:

$$F(u) = 0$$
 in D, $du(D) = D^*$, (1)

unless $dF(u)(1) \equiv 0$, in which case the solution is defined up to an additive constant.

Proof. If u_0 and u_1 are two strictly convex solutions of (1) in $C^2(\overline{D})$, for $t \in [0, 1]$, set $u_t = u_0 + tv$ with $v = u_1 - u_0$. Under the assumption made on F and since u_t is strictly convex, we may write as usual: $F(u_1) - F(u_0) = L(v)$, where $L := \int_0^1 dF(u_t) dt$ is a second order linear elliptic operator with positive definite symbol and $L(1) \leq 0$, throughout \overline{D} ; moreover, v satisfies Lv = 0 in D. To exploit the boundary condition, we fix $x \in \partial D$, set for short $p_t = du_t(x)$ and observe that, by the convexity of h^* , we have:

$$dh^*(p_0)(p_1-p_0) \leqslant h^*(p_1) - h^*(p_0) \leqslant dh^*(p_1)(p_1-p_0),$$

hence:

$$dv(x)[\xi_0(x)] \leqslant 0 \leqslant dv(x)[\xi_1(x)], \tag{2}$$

where $\xi_i := \xi_{u_i}$ for $i \in \{0, 1\}$ (with the notation ξ_u introduced in the proof of Lemma 1). The left (resp. right) inequality of (2), used at the point $x = x_{max}$ (resp. $x = x_{min}$) where the function v assumes its maximum (resp. minimum) on ∂D , and combined with the strict obliqueness of the ξ_i 's (Lemma 1), implies:

$$\frac{\partial v}{\partial N}(x_{\max}) \leqslant 0, \qquad \frac{\partial v}{\partial N}(x_{\min}) \ge 0$$

Now the proposition readily follows from Hopf's lemma combined with his strong maximum principle [2]. \Box

References

- Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge–Ampère operator, Ann. Inst. H. Poincaré Analyse Non Linéaire 8 (1991) 443–457.
- [2] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed., Springer-Verlag, Berlin, Heidelberg, 1983.
- [3] J. Urbas, Nonlinear oblique boundary value problems for Hessian equations in two dimensions, Ann. Inst. H. Poincaré Analyse Non Linéaire 12 (1995) 507–575.
- [4] J. Urbas, Nonlinear oblique boundary value problems for two-dimensional curvature equations, Adv. Differential Equations 1 (1996) 301-336.
- [5] J. Urbas, On the second boundary value problem for equations of Monge–Ampère type, J. Reine Angew. Math. 487 (1997) 115–124.
- [6] J. Urbas, The second boundary value problem for a class of Hessian equations, Comm. Partial Differential Equations 26 (2001) 859-882.
- [7] J. Urbas, Weingarten hypersurfaces with prescribed gradient image, Math. Z. 240 (2002) 53-82.