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Abstract

By using Fourier’s transform and Fefferman–Stein’s theorem, we investigate the Lp-maximal regularity of nonlocal parabolic
and elliptic equations with singular and non-symmetric Lévy operators, and obtain the unique strong solvability of the correspond-
ing nonlocal parabolic and elliptic equations, where the probabilistic representation plays an important role. As a consequence,
a characterization for the domain of pseudo-differential operators of Lévy type with singular kernels is given in terms of the Bessel
potential spaces. As a byproduct, we also show that a large class of non-symmetric Lévy operators generates an analytic semigroup
in Lp-spaces. Moreover, as applications, we prove Krylov’s estimate for stochastic differential equations driven by Cauchy pro-
cesses (i.e. critical diffusion processes), and also obtain the global well-posedness for a class of quasi-linear first order parabolic
systems with critical diffusions. In particular, critical Hamilton–Jacobi equations and multidimensional critical Burger’s equations
are uniquely solvable and the smooth solutions are obtained.

Keywords: Lp-regularity; Lévy process; Krylov’s estimate; Sharp function; Critical Burger’s equation

1. Introduction

Consider the following Cauchy problem of fractional Laplacian heat equation in the domain [0,∞) × Rd with
α ∈ (0,2) and λ � 0:

∂tu+ (−�)
α
2 u+ b · ∇u+ λu = f, u(0) = ϕ, (1.1)

where b : [0,∞)×Rd → Rd is a measurable vector field, f : [0,∞)×Rd → R and ϕ : Rd →R are two measurable
functions, and (−�)

α
2 is the fractional Laplacian (also called Lévy operator) defined by

(−�)
α
2 u =F−1(| · |αF(u)

)
, u ∈ S

(
Rd

)
, (1.2)

where F (resp. F−1) denotes the Fourier (resp. inverse) transform, S(Rd) is the Schwartz class of smooth real or
complex-valued rapidly decreasing functions.
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Let (Lt )t�0 be a symmetric and rotationally invariant α-stable process. Let b,f ∈ C∞
b ([0,∞) ×Rd) and Xt,s(x)

solve the following stochastic differential equation (SDE):

Xt,s(x) = x +
s∫

t

b
(−r,Xt,r (x)

)
dr +

s∫
t

dLr, t � s � 0, x ∈Rd .

It is well known that for ϕ ∈ C∞
b (Rd), the unique solution of Eq. (1.1) can be represented by the Feyman–Kac formula

as (see Theorem 5.2 below):

u(t, x) = Eϕ
(
X−t,0(x)

) +E

( 0∫
−t

e−λ(s+t)f
(−s,X−t,s(x)

)
ds

)
, t � 0. (1.3)

In connection with this representation, the first order term b · ∇u is also called the drift term, and the fractional
Laplacian term (−�)

α
2 u is also called the diffusion term.

Let now u(t, x) satisfy (1.1). For r > 0 and (t, x) ∈ [0,∞)×Rd , define

ur(t, x) := r−αu
(
rαt, rx

)
, br (t, x) := b

(
rαt, rx

)
, f r (t, x) := f

(
rαt, rx

)
,

then it is easy to see that ur satisfies

∂tu
r + (−�)

α
2 ur + rα−1(br · ∇ur

) + λrαur = f r . (1.4)

If one lets r → 0, this scaling property leads to the following classification:

• (Subcritical case: α ∈ (1,2).) The drift term is controlled by the diffusion term at small scales.
• (Critical case: α = 1.) The fractional Laplacian has the same order as the first order term.
• (Supercritical case: α ∈ (0,1).) The effect of the drift term is stronger than the diffusion term at small scales.

In recent years there is great interest to study the above nonlocal equation, since it has appeared in numerous
disciplines, such as quasi-geostrophic fluid dynamics (cf. [10,9]), stochastic control problems (cf. [34]), non-linear
filtering with jump (cf. [28]), mathematical finance (cf. [5]), anomalous diffusion in semiconductor growth (cf. [38]),
etc. In [12], Droniou and Imbert studied the first order Hamilton–Jacobi equation with the fractional diffusion (−�)

α
2

basing upon a “reverse maximal principle”. Therein, when α ∈ (1,2), the classical solution was obtained; when
α ∈ (0,2), the existence and uniqueness of viscosity solutions in the class of Lipschitz functions was also established.
In [9], Caffarelli and Vasseur established the global well-posedness of critical dissipative quasi-geostrophic equations
(see also [21] for a simple proof in the periodic and two-dimensional case). On the other hand, Hölder regularity
theory for the viscosity solutions of fully non-linear and nonlocal elliptic equations was also developed by Caffarelli
and Silvestre [8], and Barles, Chasseigne and Imbert [4] (see also [3] and the series of works of Silverstre [30,31,
33,32], etc.). We emphasize that the arguments in [8] and [4] are different: the former is based on the Alexandorff–
Backelman–Pucci’s (ABP) estimate, and the latter is based on the Ishii–Lions’ simple method. Moreover, in the
subcritical case, Kurenok [25] established Krylov’s type estimate for one-dimensional stable processes with drifts
(see [39] for multidimensional extension).

The purpose of this paper is to develop an Lp-regularity theory for nonlocal equations with general Lévy operators.
We describe it as follows. Let ν be a Lévy measure in Rd , i.e., a σ -finite measure satisfying ν({0}) = 0 and∫

Rd

min
(
1, |y|2)ν(dy) < +∞.

For α ∈ (0,2), we write

y(α) := 1α∈(1,2)y + 1α=1y1|y|�1.

In this article we are mainly concerned with the following pseudo-differential operator of Lévy type:

Lνf (x) :=
∫
d

[
f (x + y)− f (x)− y(α) · ∇f (x)

]
ν(dy), f ∈ S

(
Rd

)
, (1.5)
R
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where ν satisfies

ν
(α)
1 (B) � ν(B) � ν

(α)
2 (B), B ∈ B

(
Rd

)
, (1.6)

and

1α=1

∫
r�|y|�R

yν(dy) = 0, 0 < r < R < +∞. (1.7)

Here, ν(α)i , i = 1,2 are the Lévy measures of two α-stable processes taking the form

ν
(α)
i (B) :=

∫
Sd−1

( ∞∫
0

1B(rθ)dr

r1+α

)
Σi(dθ), (1.8)

where Sd−1 = {θ ∈Rd : |θ | = 1} is the unit sphere in Rd , and Σi called the spherical part of ν(α)i is a finite measure on
Sd−1. We remark that condition (1.7) is a common assumption in the critical case (see [27,11]), and is clearly satisfied
when ν is symmetric. Moreover, in the case of α ∈ (1,2), for the convenience of proof, we use y rather than y1|y|�1
in (1.5). This is not essential since one can always minus a first order term (

∫
|y|>1 yν(dy)) · ∇f (x) in (1.5).

One of the aims of the present paper is to determine Dp(Lν), the domain of the Lévy operator Lν in Lp-space. We
shall prove that under (1.6) and (1.7), if ν(α)1 is nondegenerate (see Definition 2.6 below), then for any p ∈ (1,∞),

Dp
(
Lν

) =Hα,p,

where Hα,p is the α-order Bessel potential space. When ν(dy) = a(y)dy/|y|d+α with c1 � |a(y)| � c2, this charac-
terization was obtained recently by Dong and Kim [11]. It is remarked that the technique in [4] was used by Dong
and Kim to derive some local Hölder estimate for nonlocal elliptic equation in order to prove their characterization.
However, the following sum of nonlocal operators is not covered by [11]:

Lf (x) =
d∑

i=1

∫
R

f (x1, . . . , xi−1, xi + yi, xi+1, . . . xd)− f (x)− y
(α)
i · ∂if (x)

|yi |1+α
dyi,

since in this case, the Lévy measure (or the Lévy symbol) is very singular (or non-smooth) (see Remark 2.7). Notice
that if the Lévy symbol is smooth and its derivatives satisfy suitable conditions, the above characterization falls into
the classical multiplier theorems about pseudo-differential operators (cf. [36,17]). We also mention that Farkas, Jacob
and Schilling [13, Theorem 2.1.15] gave another characterization for Dp(Lν) in terms of the so called ψ -Bessel
potential space, where ψ is the symbol of Lν .

The strategy for proving the above characterization is to prove the following Littlewood–Paley type inequality: for
any p ∈ (1,∞), there exists a C > 0 such that for any λ � 0, f ∈ Lp(R+ ×Rd),

∞∫
0

∥∥∥∥∥Lν2

t∫
0

e−λ(t−s)Pν1
t−sf (s, ·)ds

∥∥∥∥∥
p

p

dt � C

∞∫
0

∥∥f (t, ·)∥∥p

p
dt,

where ν1, ν2 are two Lévy measures satisfying (1.6) and (1.7), and (Pν1
t )t�0 is the semigroup associated with Lν1 .

Indeed, this estimate is the key ingredient in Lp-theory of PDE (see [26,24]), and corresponds to the optimal regu-
larity of nonlocal parabolic equation. Likewise [11], when ν(dy) = a(y)dy/|y|d+α with smooth and 0-homogeneous
a(y) and c1 � |a(y)| � c2, Mikulevicius and Pragarauskas [27] proved this type of estimate by showing some weak
(1,1)-type estimate. In a different way, the proof given here is based on Fourier’s transform and Fefferman–Stein’s
theorem about sharp functions (cf. [22,24]). We stress that probabilistic representation (1.3) will play an impor-
tant role in reducing the general non-homogeneous operator to homogeneous operator (see Step 1 in the proof of
Theorem 4.2).

Another aim of this paper is to solve the linear and quasi-linear first order nonlocal parabolic equation with critical
diffusions in the Lp-sense rather than the viscosity sense [12]. The critical case is specially interesting not only
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because it appears naturally in quasi-geostrophic flows, but also it is an attractive object in mathematics. In particular,
we care about the following multidimensional critical Burger’s equation:

∂tu+ (−�)
1
2 u+ u · ∇u = 0, u(0) = ϕ. (1.9)

In one-dimensional case, this equation has a natural variational formulation and admits a unique global smooth so-
lution (see [7,20]) under some regularity assumption on ϕ. In multidimensional case, the local well-posedness of
Burger’s equation is relatively easy (cf. [18,40]). However, the global well-posedness of Eq. (1.9) seems to be un-
known. The reason lies in two aspects: on one hand, there is no energy inequality and thus, the variational method
seems not to be applicable; on the other hand, the first order term has the same order as the diffusion term. In fact,
Kiselev, Nazarov and Schterenberg [20] have showed the existence of blow up solutions for 1-D supercritical Burger’s
equation. The idea here is to establish some a priori Hölder estimate for Eq. (1.1) and then use the classical method
of freezing coefficients. In [32], Silvestre proved an a priori Hölder estimate for Eq. (1.1) with only bounded measur-
able b. This is the key point for us. However, the assumption of scale invariance on Lévy operators seems to be crucial
in [32] since the proof is by the iteration of the diminish of oscillation at all scales. As above, we shall use probabilistic
representation (1.3) like a perturbation argument to extend Silvestre’s estimate to the more general non-homogeneous
Lévy operator (see Corollary 6.2).

This paper is organized as follows. In Section 2, we prepare some lemmas and recall some facts for later use. In
Section 3, the basic maximum principles for nonlocal parabolic and elliptic equation are proved. In Section 4, we prove
the main Theorem 4.2, and give a comparison result between two Lévy operators. In particular, we show that (Pν

t )t�0
forms an analytic semigroup in Lp-space. In Section 5, we prove the existence of a unique strong solution for the first
order nonlocal parabolic equation with critical diffusion and variable coefficients. Here we assume that the first order
coefficient is uniformly continuous with respect to the spatial variable since we are working in the critical case, and the
non-homogeneous term is in some Lp-space. As an application, we also prove Krylov’s estimate for critical diffusion
processes. We mention that in the subcritical case, Krylov’s estimate was proved in [25] and [39]. In Section 6, we
investigate the quasi-linear first order nonlocal parabolic system, and get the existence of smooth solutions and strong
solutions. In particular, the global solvability of Eq. (1.9) is obtained. In this section, the coefficients are assumed to be
locally Lipschitz continuous, the zero order term is also required to be linear growth, and the initial value is in some
fractional Sobolev spaces. In the whole proofs, basing upon the a priori estimates, we use the mollifying technique in
many places.

Notations. We collect some frequently used notations below for the reader’s convenience.

• R+ := (0,∞), R+
0 := [0,∞). For a complex number z, Re(z) (Im(z)): real (image) part of z.

• S(Rd): the Schwartz class of smooth real or complex-valued rapidly decreasing functions. C∞
b (Rd) (resp.

Ck
b(R

d), C∞
0 (Rd)): the space of all bounded smooth functions with bounded derivatives of all orders (resp. up to

k-order, with compact support).
• F and F−1: Fourier’s transform and Fourier’s inverse transform.
• ν: Lévy measure; ν(α): the Lévy measure of α-stable process; Σ : a finite measure on Sd−1, called the spherical

part of ν(α).
• Lν

t : the Lévy process associated with Lévy measure ν; Pμ
t : the semigroup associated with L

μ
t . Lν : the generator

of Lμ
t , Lν∗: the adjoint operator of Lν ; pν

t : the heat kernel of Lν∗.
• Br(x0) := {x :∈Rd : |x − x0| � r}, Br := Br(0), Bc

r : the complement of Br .
• Hα,p : Bessel potential space; Wα,p : Sobolev–Slobodeckij space; W∞ := ⋂

k,pW
k,p .

• ωb: the continuous modulus function of b, i.e., ωb(s) := sup|x−y|�s |b(x)− b(y)|.
• Hβ : the space of Hölder continuous functions with the norm

∑[β]
k=0 ‖∇kf ‖∞ + ‖∇[β]f ‖Hβ , where [β] denotes

the integer part of β , and ‖∇[β]f ‖Hβ := sup|x−y|�1 |∇[β]f (x)− ∇[β]f (y)|/|x − y|β .
• (ρε)ε∈(0,1): a family of mollifiers in Rd with ρε(x) = ε−dρ(ε−1x), where ρ is a nonnegative smooth function

with support in B1 and satisfies
∫
Rd ρ(x)dx = 1.

Convention. The letter C with or without subscripts will denote an unimportant constant. The inner product in Eu-
clidean space is denoted by “·”.
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2. Preliminaries

For α ∈ (0,2), let ν be a Lévy measure in Rd and satisfy (1.6) and (1.7). Let (Lν
t )t�0 be the d-dimensional

Lévy process, a stationary and independent increment process defined on some probability space (Ω,F ,P ), with
characteristic function

Eeiξ ·Lν
t = e−tψν(ξ), ξ ∈ Rd, (2.1)

where ψv is the Lévy exponent with the following form by Lévy–Khintchine’s formula (cf. [2,29]),

ψν(ξ) :=
∫
Rd

(
1 + iξ · y(α) − eiξ ·y)ν(dy). (2.2)

Let ν(α) take the form (1.8) and satisfy (1.7). It is well known that (Lν(α)

t )t�0 is a d-dimensional α-stable process and
has the following self-similarity (cf. [29, Proposition 13.5 and Theorem 14.7]):(

Lν(α)

rt

)
t�0

(d)= (
r1/αLν(α)

t

)
t�0, ∀r > 0, (2.3)

where
(d)= means that the two processes have the same laws. Moreover, from expression (1.8), it is easy to see that for

any β ∈ (0, α),∫
Rd

min
(|y|β, |y|2)ν(α)(dy) < +∞, (2.4)

and

Re
(
ψν(α)(ξ)

) =
( ∞∫

0

(1 − cos r)dr

r1+α

) ∫
Sd−1

|ξ · θ |αΣ(dθ). (2.5)

The Feller semigroup associated with (Lν
t )t�0 is defined by

Pν
t f (x) := Ef

(
Lν
t + x

)
, f ∈ S

(
Rd

)
.

The generator of (Pν
t )t�0 is then given by (cf. [2, Theorem 3.3.3])

Lνf (x) =
∫
Rd

[
f (x + y)− f (x)− y(α) · ∇f (x)

]
ν(dy), (2.6)

i.e.,

∂tPν
t f (x) = LνPν

t f (x) =Pν
t Lνf (x), t > 0. (2.7)

Moreover,

F
(
Lνf

)
(ξ) = −ψν(ξ) ·F(f )(ξ),

and ψν is also called the Lévy symbol of the operator Lν . From (2.5), one sees that if the spherical part Σ of ν(α)

is the uniform distribution (equivalently, rotationally invariant) on Sd−1, then ψν(α)(ξ) = cd,α|ξ |α for some constant
cd,α > 0, and thus, by (1.2),

−Lν(α)f (x) = cd,α(−�)
α
2 f (x). (2.8)

On the other hand, from expression (2.6) and assumption (1.7), it is easy to see that Lν has the following invariance:

• For z ∈ Rd , define fz(x) := f (z + x), then

Lνfz(x) = Lνfx(z),
∥∥Lνfz

∥∥
p

= ∥∥Lνf
∥∥
p
, (2.9)

where p � 1 and ‖ · ‖p denotes the usual Lp-norm in Rd .
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• For r > 0, define fr(x) := f (rx), then

Lνf (rx) = Lν(r·)fr (x) = r−αLrαν(r·)fr (x). (2.10)

We remark that rαν(α)(r·) = ν(α) by (1.8).
• Lν(C∞

b (Rd)) ⊂ C∞
b (Rd), and for any k � 2, Lν : Ck

b(R
d) → Ck−2

b (Rd) is a continuous linear operator, where
C∞
b (Rd) (resp. Ck

b(R
d)) is the space of all bounded smooth functions with bounded derivatives of all orders (resp.

up to k-order).

The adjoint operator of Lν is given by

Lν∗f (x) =
∫
Rd

[
f (x − y)− f (x)+ y(α) · ∇f (x)

]
ν(dy), (2.11)

i.e., ∫
Rd

Lνf (x) · g(x)dx =
∫
Rd

f (x) ·Lν∗g(x)dx, f, g ∈ S
(
Rd

)
.

Clearly, Lν∗ = Lν(−), where ν(−) denotes the Lévy measure ν(−dy).

Definition 2.1. Let ν1 and ν2 be two Borel measures. We say that ν1 is less than ν2 if

ν1(B) � ν2(B), B ∈ B
(
Rd

)
,

and we simply write ν1 � ν2 in this case.

Lemma 2.2. Let ν be a Lévy measure less than ν(α) for some α ∈ (0,2), where ν(α) takes the form (1.8). We also
assume (1.7) for ν. Then for some κ0 > 0,∣∣ψν(ξ)

∣∣ � κ0|ξ |α, ξ ∈ Rd . (2.12)

Proof. Write ξ̂ := ξ/|ξ |. For α ∈ (1,2), by the definitions of ψν and ν(α), we have∣∣Im(
ψν(ξ)

)∣∣ (2.2)
�

∫
Rd

∣∣ξ · y − sin(ξ · y)∣∣ν(dy) �
∫
Rd

∣∣ξ · y − sin(ξ · y)∣∣ν(α)(dy)
(1.8)=

∫
Sd−1

∞∫
0

|ξ · (rθ)− sin(ξ · rθ)|
r1+α

drΣ(dθ)

= |ξ |α
∫

Sd−1

∞∫
0

|ξ̂ · rθ − sin(ξ̂ · rθ)|
r1+α

drΣ(dθ) � C|ξ |α.

For α = 1, by (1.7), we have∣∣Im(
ψν(ξ)

)∣∣ =
∣∣∣∣ ∫
Rd

(
ξ · y1|y|�|ξ |−1 − sin(ξ · y))ν(dy)∣∣∣∣ �

∫
Rd

∣∣ξ · y1|y|�|ξ |−1 − sin(ξ · y)∣∣ν(1)(dy)
=

∫
Sd−1

∞∫
0

|ξ · (rθ)1r�|ξ |−1 − sin(ξ · rθ)|
r2

drΣ(dθ)

= |ξ |
∫
d−1

∞∫ |ξ̂ · rθ1r�1 − sin(ξ̂ · rθ)|
r2

drΣ(dθ) � C|ξ |.

S 0
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For α ∈ (0,1), we have∣∣Im(
ψν(ξ)

)∣∣ �
∫
Rd

∣∣sin(ξ · y)∣∣ν(dy) �
∫
Rd

∣∣sin(ξ · y)∣∣ν(α)(dy)
= |ξ |α

∫
Sd−1

∞∫
0

| sin(ξ̂ · rθ)|
r1+α

drΣ(dθ) � C|ξ |α.

Thus, combining with (2.5), we obtain (2.12). �
For k ∈N and p ∈ [1,∞], let Wk,p be the usual Sobolev space with the norm

‖f ‖k,p :=
k∑

j=0

∥∥∇j f
∥∥
p
,

where ∇j denotes the j -order gradient.
We need the following simple interpolation result.

Lemma 2.3. Let p ∈ [1,∞] and β ∈ [0,1]. For any f ∈ W1,p and y ∈ Rd , we have∥∥f (· + y)− f (·)∥∥
p

�
(
2‖f ‖p

)1−β(‖∇f ‖p|y|)β. (2.13)

Proof. Observing that for f ∈ S(Rd),

∣∣f (x + y)− f (x)
∣∣ � |y|

1∫
0

|∇f |(x + sy)ds,

by a density argument, we have for any f ∈W1,p ,∥∥f (· + y)− f (·)∥∥
p

� ‖∇f ‖p|y|.
Thus, for any β ∈ [0,1],∥∥f (· + y)− f (·)∥∥

p
�

(
2‖f ‖p

) ∧ (‖∇f ‖p|y|) �
(
2‖f ‖p

)1−β(‖∇f ‖p|y|)β.
The result follows. �

The following lemma will be used to derive some asymptotic estimate of large time for the heat kernel of Lévy
operator (see Corollary 2.9 below).

Lemma 2.4. Assume that Lévy measure ν is less than ν(α) for some α ∈ (0,2), where ν(α) takes the form (1.8). Then
for any p ∈ [1,∞] and f ∈W2,p , we have

∥∥Lνf
∥∥
p

� C

⎧⎪⎪⎨⎪⎪⎩
‖∇f ‖1−γ

p ‖∇2f ‖γp + ‖∇f ‖1−β
p ‖∇2f ‖βp, α ∈ (1,2), γ ∈ (α − 1,1], β ∈ [0, α − 1),

‖∇f ‖1−γ
p ‖∇2f ‖γp + ‖f ‖1−β

p ‖∇f ‖βp, α = 1, γ ∈ (0,1], β ∈ [0,1),

‖f ‖1−γ
p ‖∇f ‖γp + ‖f ‖1−β

p ‖∇f ‖βp, α ∈ (0,1), γ ∈ (α,1], β ∈ [0, α),
where the constant C depends only on α,β, γ and the Lévy measure ν(α).

Proof. Let us first look at the case of α ∈ (1,2). In this case, we have

Lνf (x) =
∫
d

y ·
( 1∫ [∇f (x + sy)− ∇f (x)

]
ds

)
ν(dy).
R 0
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Since ν is bounded by ν(α), by Minkowski’s inequality and Lemma 2.3, we have for γ ∈ (α− 1,1] and β ∈ [0, α− 1),∥∥Lνf
∥∥
p

�
(
2‖∇f ‖p

)1−γ ∥∥∇2f
∥∥γ

p

∫
|y|�1

|y|1+γ ν(α)(dy)+ (
2‖∇f ‖p

)1−β∥∥∇2f
∥∥β

p

∫
|y|>1

|y|1+βν(α)(dy).

In the case of α = 1, we similarly have for γ ∈ (0,1] and β ∈ [0,1),∥∥Lνf
∥∥
p

�
(
2‖∇f ‖p

)1−γ ∥∥∇2f
∥∥γ

p

∫
|y|�1

|y|1+γ ν(1)(dy)+ (
2‖f ‖p

)1−β‖∇f ‖βp
∫

|y|>1

|y|βν(1)(dy).

In the case of α ∈ (0,1), we have for γ ∈ (α,1] and β ∈ [0, α),∥∥Lνf
∥∥
p

�
(
2‖f ‖p

)1−γ ‖∇f ‖γp
∫

|y|�1

|y|γ ν(α)(dy)+ (
2‖f ‖p

)1−β‖∇f ‖βp
∫

|y|>1

|y|βν(α)(dy).

The proof is complete by (2.4). �
We also need the following estimate, which will be used frequently in localizing the nonlocal equation.

Lemma 2.5. Assume that Lévy measure ν is less than ν(α) for some α ∈ (0,2), where ν(α) takes the form (1.8). Let
ζ ∈ S(Rd) and set ζz(x) := ζ(x − z) for z ∈Rd .

1. For any β ∈ (0 ∨ (α − 1),1) and p ∈ [1,∞), there exists a constant C = C(ν(α), β,p, d) > 0 such that for all
f ∈W1,p ,(∫

Rd

∥∥Lν(f ζz)− (
Lνf

)
ζz

∥∥p

p
dz

)1/p

� C‖ζ‖2,p‖f ‖1−β
p ‖f ‖β1,p. (2.14)

2. For any β ∈ (0 ∨ (α − 1),1) and γ ∈ [0, α), there exists a constant C = C(ν(α), β, γ, d) > 0 such that for any
p ∈ [1,∞] and f ∈Hβ ,∥∥Lν(f ζ )− (

Lνf
)
ζ
∥∥
p

� C
((∥∥Lνζ

∥∥
p

+ ‖ζ‖1−γ
p ‖∇ζ‖γp

)‖f ‖∞ + ‖∇ζ‖p‖f ‖Hβ

)
, (2.15)

where ‖f ‖Hβ := supx �=y,|x−y|�1 |f (x)− f (y)|/|x − y|β , and for any p ∈ [1,∞] and f ∈ W1,p ,∥∥Lν(f ζ )− (
Lνf

)
ζ
∥∥
p

� C
((∥∥Lνζ

∥∥∞ + ‖ζ‖1−γ∞ ‖∇ζ‖γ∞
)‖f ‖p + ‖∇ζ‖∞‖f ‖1−β

p ‖∇f ‖βp
)
. (2.16)

Proof. (i) By formula (2.6), we have

Lν(f ζz)(x)−Lνf (x) · ζz(x)− f (x) ·Lνζz(x)

=
∫
Rd

[
f (x + y)− f (x)

][
ζz(x + y)− ζz(x)

]
ν(dy)

=
∫

|y|�1

[
f (x + y)− f (x)

][
ζz(x + y)− ζz(x)

]
ν(dy)+

∫
|y|>1

[
f (x + y)− f (x)

][
ζz(x + y)− ζz(x)

]
ν(dy)

=: I (1)z (x)+ I (2)z (x). (2.17)

For I (1)z (x), by Fubini’s theorem, Minkowski’s inequality and Lemma 2.3, we have

∫
d

∥∥I (1)z

∥∥p

p
dz �

∫
d

∥∥∥∥∥
∫ ∣∣f (· + y)− f (·)∣∣( 1∫

|∇ζz|(· + sy)ds

)
|y|ν(dy)

∥∥∥∥∥
p

p

dz
R R |y|�1 0
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� ‖∇ζ‖pp
∫
Rd

( ∫
|y|�1

∣∣f (x + y)− f (x)
∣∣ · |y|ν(dy)

)p

dx

� ‖∇ζ‖pp
( ∫

|y|�1

∥∥f (· + y)− f (·)∥∥
p

· |y|ν(dy)
)p

� ‖∇ζ‖pp
(
2‖f ‖p

)p(1−β)‖∇f ‖pβp
( ∫

|y|�1

|y|1+βν(α)(dy)

)p

.

For I (2)z (x), we similarly have∫
Rd

∥∥I (2)z

∥∥p

p
dz � 4p

(
ν(α)

(
Bc

1

))p‖ζ‖pp‖f ‖pp.

Moreover, by (2.9) and Lemma 2.4, we also have∫
Rd

∥∥fLνζz
∥∥p

p
dz = ∥∥Lνζ

∥∥p

p
‖f ‖pp � C‖ζ‖p2,p‖f ‖pp.

Combining the above calculations, we obtain (2.14).
(ii) We have∥∥I (1)0

∥∥
p

� ‖f ‖Hβ‖∇ζ‖p
∫

|y|�1

|y|1+βν(dy) � ‖f ‖Hβ‖∇ζ‖p
∫

|y|�1

|y|1+βν(α)(dy),

and by Lemma 2.3,∥∥I (2)0

∥∥
p

� ‖f ‖∞
(
2‖ζ‖p

)1−γ ‖∇ζ‖γp
∫

|y|>1

|y|γ ν(dy) � ‖f ‖∞
(
2‖ζ‖p

)1−γ ‖∇ζ‖γp
∫

|y|>1

|y|γ ν(α)(dy).

Estimate (2.15) follows by (2.17) and ‖fLνζ‖p � ‖f ‖∞‖Lνζ‖p . As for (2.16), it is similar. �
We introduce the following notion about the nondegeneracy of ν(α).

Definition 2.6. Let ν(α) be a Lévy measure with the form (1.8). We say that ν(α) is nondegenerate if the spherical part
Σ of ν(α) satisfies∫

Sd−1

|θ0 · θ |αΣ(dθ) �= 0, ∀θ0 ∈ Sd−1. (2.18)

By the compactness of Sd−1 and (2.5), the above condition is equivalent to saying that for some constant κ1 > 0,

Re
(
ψν(α)(ξ)

)
� κ1|ξ |α, ξ ∈Rd . (2.19)

Remark 2.7. Let L1
t , . . . ,L

n
t be n-independent copies of Lévy process Lν

t . Write

Lt = (
L1
t , . . . ,L

n
t

)
.

Then Lt is an nd-dimensional Lévy process and the characteristic function of L1 is given by ψ(
ξ) = ψν(ξ
1)+ · · · +

ψν(ξ
n), where 
ξ = (ξ1, . . . , ξn) ∈ Rnd with ξ i ∈Rd . Clearly, if

Re
(
ψν(ξ)

)
� κ1|ξ |α, ξ ∈Rd,

then

Re
(
ψ(
ξ)) � κ1|
ξ |α, 
ξ ∈Rnd .
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It should be noticed that the Lévy measure ν of Lt is very singular and has the expression

ν(d
x) = ν
(
dx1)ε0

(
dx2, . . . , dxn

) + · · · + ε0
(

dx1, . . . , dxn−1)ν(dxn
)
,

where 
x = (x1, . . . , xn) ∈Rnd with xi ∈Rd , ε0 denotes the Dirac measure in R(n−1)d , and the generator of Lt is given
by

Lf (
x) =
n∑

i=1

∫
Rd

[
f

(
x1, . . . , xi + y, . . . , xn

) − f (
x)− y(α) · ∇xi f (
x)]ν(dy). (2.20)

We need the following simple result about the smoothness of the distribution density of Lévy process (see [16,
Lemma 3.1] for the symmetric case).

Proposition 2.8. Let ψν be defined by (2.2) and satisfy

Re
(
ψν(ξ)

)
� κ1|ξ |α, ξ ∈ Rd . (2.21)

Then for each t > 0, the law of Lν
t in Rd has a C∞-density pν

t with respect to the Lebesgue measure, and pν
t ∈⋂

k∈NWk,1. In particular, by (2.7),

∂tp
ν
t (x) = Lν∗pν

t (x), (t, x) ∈ R+ ×Rd , (2.22)

where Lν∗ is defined by (2.11), and pν
t (x) is also called the heat kernel of Lν∗.

Proof. By (2.21) and [29, p. 190, Proposition 28.1], Lν
t has a smooth density pν

t . Let us now prove that for each
n ∈N, ∇npν

t ∈ L1(Rd). By Fourier’s transform (2.1), one sees that

pν
t (x) = 1

(2π)d

∫
Rd

e−iξ ·xe−tψν(ξ) dξ.

Set

φ(ξ) :=
∫

|y|�1

(
1 + iξ · y − eiξ ·y)ν(dy).

It is easy to see that φ is a smooth complex-valued function, and by (2.21), for any n ∈ N and j1, . . . , jn ∈ {1, . . . , d},
ξ → ξj1 · · · ξjne−tφ(ξ) ∈ S

(
Rd

)
,

where ξ = (ξ1, . . . , ξd). Since Fourier’s transform F is a bijective and continuous linear operator from S(Rd) onto
itself, there is a function f ∈ S(Rd) such that

f̂ (ξ) := F(f )(ξ) = ξj1 · · · ξjne−tφ(ξ).

On the other hand, by Lévy–Khintchine’s representation theorem (cf. [2, Theorem 1.2.14]), there is a probability
measure μ on Rd such that

μ̂(ξ) :=
∫
Rd

eiξ ·yμ(dy) = e−t (ψν−φ)(ξ).

Thus, by the property of Fourier’s transform, we have

∂xj1
· · · ∂xjn pν

t (x) = (−i)n

(2π)d

∫
Rd

e−iξ ·x(ξj1 · · · ξjne−tφ(ξ)
)
e−t (ψν−φ)(ξ) dξ

= (−i)n

(2π)d

∫
Rd

e−iξ ·xf̂ (ξ)μ̂(ξ)dξ = (−i)n
∫
Rd

f (x − y)μ(dy).

From this, we immediately deduce that ∇npν
t ∈ L1(Rd). �
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Using Proposition 2.8 and Lemma 2.4, we have the following useful estimates about the heat kernel.

Corollary 2.9. Let ν(α)i , i = 1,2 be two Lévy measures with the form (1.8), where ν
(α)
1 is nondegenerate. Let ν be

another Lévy measure less than ν
(α)
2 . Then, there are two indexes δ1, δ2 > 1 (depending only on α) and constants

C1,C2 > 0 (depending only on d,α, ν(α)i and not on ν) such that for all t � 1,

∥∥∇Lνp
ν
(α)
1

t

∥∥
1 � C1t

−δ1, (2.23)∥∥∂tLνp
ν
(α)
1

t

∥∥
1 � C2t

−δ2 . (2.24)

Proof. First of all, by the scaling property (2.3) and Proposition 2.8, we have

p
ν
(α)
1

t (x) = t−d/αp
ν
(α)
1

1

(
t−1/αx

)
,

and for each n ∈N,∫
Rd

∣∣∇np
ν
(α)
1

t

∣∣(x)dx = t−n/α

∫
Rd

∣∣∇np
ν
(α)
1

1

∣∣(x)dx � Ct−n/α. (2.25)

Estimate (2.23) follows from Lemma 2.4 by suitable choices of β and γ . Notice that by (2.22),

∂tLνp
ν
(α)
1

t (x) = LνLν
(α)
1 ∗pν

(α)
1

t (x).

Estimate (2.24) follows by using Lemma 2.4 twice. �
Now we turn to recall the classical Fefferman–Stein’s theorem. Fix α ∈ (0,2). Let Q(α) be the collection of all

parabolic cylinders

Qr := (
t0, t0 + rα

) × {
x ∈Rd : |x − x0| � r

}
.

For f ∈ L1
loc(R

d+1), define the Hardy–Littlewood maximal function by

Mf (t, x) := sup
Q∈Q(α),(t,x)∈Q

−
∫
Q

∣∣f (s, y)
∣∣dy ds,

and the sharp function by

f �(t, x) := sup
Q∈Q(α),(t,x)∈Q

−
∫
Q

∣∣f (s, y)− fQ
∣∣dy ds,

where fQ := −∫
Q
f (s, y)dy ds = 1

|Q|
∫
Q
f (s, y)dy ds and |Q| is the Lebesgue measure of Q. One says that f ∈

BMO(Rd+1) if f � ∈ L∞(Rd+1). Clearly, f ∈ BMO(Rd+1) if and only if there exists a constant C > 0 such that for
any Q ∈ Q(α), and for some aQ ∈R,

−
∫
Q

∣∣f (s, y)− aQ
∣∣dy ds � C.

The following theorem is taken from [24, Chapter 3] (see also [36, p. 148, Theorem 2]).

Theorem 2.10 (Fefferman–Stein’s theorem). For p ∈ (1,∞), there exists a constant C = C(p,d,α) such that for all
f ∈ Lp(Rd+1),

‖f ‖p � C
∥∥f �

∥∥
p
. (2.26)
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Using this theorem, we have

Theorem 2.11. For q ∈ (1,∞), let T be a bounded linear operator from Lq(Rd+1) to Lq(Rd+1) and also from
L∞(Rd+1) to BMO(Rd+1). Then for any p ∈ [q,∞) and f ∈ Lp(Rd+1),

‖T f ‖p � C‖f ‖p,
where the constant C depends only on d,p,q,α and the norms ‖T ‖Lq→Lq and ‖T ‖L∞→BMO.

Proof. Since by [35, p. 13, Theorem 1],∥∥(T f )�
∥∥
q

� 2‖MT f ‖q � C‖T f ‖q � C‖T ‖Lq→Lq‖f ‖q
and ∥∥(T f )�

∥∥∞ � ‖T ‖L∞→BMO‖f ‖∞,

by the classical Marcinkiewicz’s interpolation theorem (cf. [35]), we have

‖T f ‖p
(2.26)
� C

∥∥(T f )�
∥∥
p

� C‖f ‖p,
where p ∈ [q,∞). �
3. A maximum principle of nonlocal parabolic equation

In this section we fix a Lévy measure ν less than ν(α) for some α ∈ (0,2), where ν(α) takes the form (1.8), and
prove basic maximum principles for nonlocal parabolic and elliptic equations for later use.

Lemma 3.1 (Maximum principle). For T > −∞, let b(t, x) be a bounded measurable vector field on [T ,∞) × Rd

and u ∈ C([T ,∞);C2
b(R

d)). Assume that for all (t, x) ∈ [T ,∞)×Rd , u satisfies

u(t, x) = u(T , x)+
t∫

T

Lνu(s, x)ds +
t∫

T

(b · ∇u)(s, x)ds +
t∫

T

f (s, x)ds. (3.1)

If f � 0, then

sup
t�T

sup
x∈Rd

u(t, x) � sup
x∈Rd

u(T , x).

In particular, the above equation admits at most one solution u ∈ C([T ,∞);C2
b(R

d)).

Proof. Let χ(x) ∈ [0,1] be a nonnegative smooth function with χ(x) = 1 for |x| � 1, and χ(x) = 0 for |x| � 2. Set
for R > 0,

χR(x) := χ
(
R−1x

)
,

and for δ > 0,

wδ
R(t, x) := χR(x)u(t, x)− δ(t − T ).

By (3.1), one sees that for all (t, x) ∈ [T ,∞)×Rd ,

wδ
R(t, x) = wδ

R(T , x)+
t∫

T

Lνwδ
R(s, x)ds +

t∫
T

(
b · ∇wδ

R

)
(s, x)ds +

t∫
T

gR(s, x)ds − δ(t − T ),

where

gR := χRLνu−LνwR − ub · ∇χR + f χR. (3.2)
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For fixed S > T and δ > 0, we want to show that for large R,

sup
t∈[T ,S]

sup
x∈Rd

wδ
R(t, x) � sup

x∈Rd

wδ
R(T , x) � sup

x∈Rd

u(T , x). (3.3)

If this is proven, then the result follows by first letting R → ∞ and then δ → 0.
Below, for simplicity of notation, we drop the indexes R and δ. Suppose that (3.3) does not hold, then there exists

a time t0 ∈ (T ,S] and x0 ∈Rd such that w achieves its maximum at point (t0, x0). Thus,

∇w(t0, x0) = 0, (3.4)

and

0 � lim
h↓0

1

h

(
w(t0, x0)−w(t0 − h,x0)

)
� lim

h↓0

1

h

t0∫
t0−h

Lνw(s, x0)ds + lim
h↓0

1

h

t0∫
t0−h

(b · ∇w)(s, x0)ds + lim
h↓0

1

h

t0∫
t0−h

g(s, x0)ds − δ

=: I1 + I2 + I3 − δ. (3.5)

Since for all y ∈ Rd ,

w(t0, x0 + y) � w(t0, x0),

in view of w ∈ C([T ,S];C2
b(R

d)) and by (3.4), we have

I1 = lim
h↓0

1

h

t0∫
t0−h

[
Lνw(s, x0)−Lνw(t0, x0)

]
ds +Lνw(t0, x0) � 0.

Similarly, for I2, we have

I2 = lim
h↓0

1

h

t0∫
t0−h

b(s, x0) · (∇w(s, x0)− ∇w(t0, x0)
)

ds = 0.

For I3, recalling (3.2) and f � 0, by (ii) of Lemma 2.5 and Lemma 2.4, we have for some γ ∈ (0,1),

I3 �
∥∥χRLνu−Lν(χRu)

∥∥∞ + ‖u‖∞‖b‖∞‖∇χ‖∞
R

� C(‖u‖∞ + ‖∇u‖∞)

Rγ
+ ‖u‖∞‖b‖∞‖∇χ‖∞

R
,

where C is independent of R. Choosing R to be sufficiently large, we obtain

I1 + I2 + I3 − δ < 0,

a contradiction with (3.5). Thus, we conclude the proof of (3.3). �
Similarly, we also have the following maximum principle.

Lemma 3.2 (Maximum principle). Assume λ > 0 and b is a bounded measurable vector field. Let u ∈ C2
b(R

d+1) (resp.
u ∈ C2

b(R
d)) satisfy

L ν
b,λu := ∂tu−Lνu+ (b · ∇)u+ λu � 0

(
resp.

(
λ−Lν

)
u � 0

)
.

Then u � 0. In particular, L ν
b,λu = 0 (resp. (λ−Lν)u = 0) admits at most one solution in C2

b(R
d+1) (resp. C2

b(R
d)).

Corollary 3.3. Let ϑ ∈Rd and λ > 0. Then for any p > 1, (∂t −Lν +ϑ ·∇+λ)(C∞
0 (Rd+1)) (resp. (λ−Lν)(C∞

0 (Rd)))
is dense in Lp(Rd+1) (resp. Lp(Rd)).
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Proof. Let g ∈ Lp/(p−1)(Rd+1). By Hahn–Banach’s theorem, it is enough to prove that if for all u ∈ C∞
0 (Rd+1),∫

Rd+1

g(t, x) · (∂t −Lν + ϑ · ∇ + λ
)
u(t, x)dx dt = 0,

then g = 0. Since for any (s, y) ∈ Rd+1, the mapping (t, x) �→ u(s + t, y + x) belongs to C∞
0 (Rd+1). Thus, we have(

∂t −Lν + ϑ · ∇ + λ
)
(g � u) = 0,

where g � u stands for (s, y) �→ ∫
Rd+1 g(t, x)u(s + t, y + x)dy dt . By Lemma 3.2, g � u = 0 for all u ∈ C∞

0 (Rd+1),
which yields that g = 0. �
4. Lq(R;Lp(Rd))-maximal regularity for nonlocal parabolic equation

Let ϑ ∈ C∞
b (R;Rd) be a time dependent vector field. For s < t , set

Θt,s :=
t∫

s

ϑ(r)dr.

Let ν be a Lévy measure and satisfy (2.21). For f ∈ S(Rd), define

T ν
t,sf (x) := Ef

(
x −Θt,s +Lν

t−s

) =Pν
t−sf (x −Θt,s) =

∫
Rd

f (y)pν
t−s(y − x +Θt,s)dy. (4.1)

By (2.22), one has

∂tT ν
t,sf (x) =

∫
Rd

f (y)∂tp
ν
t−s(y − x +Θt,s)dy +

∫
Rd

f (y)
(
ϑt · ∇pν

t−s

)
(y − x +Θt,s)dy

=
∫
Rd

f (y)
(
Lν∗pν

t−s

)
(y − x +Θt,s)dy − ϑt · ∇

∫
Rd

f (y)pν
t−s(y − x +Θt,s)dy

= LνT ν
t,sf (x)− ϑt · ∇T ν

t,sf (x). (4.2)

For λ � 0 and f ∈ S(Rd+1), define

u(t, x) :=
t∫

−∞
e−λ(t−s)T ν

t,sf (s, x)ds,

then it is easy to check by (4.2) that u ∈ C∞
b (Rd+1) and uniquely solves

∂tu−Lνu+ ϑ · ∇u+ λu = f. (4.3)

Remark 4.1. Let ν1 and ν2 be two Lévy measures. Let (Lν1
t )t∈R and (L

ν2
t )t∈R be two independent Lévy processes

associated with ν1 and ν2 respectively. Then it is clear that(
L
ν1+ν2
t

)
t∈R

(d)= (
L
ν1
t +L

ν2
t

)
t∈R.

Thus, we have

T ν1+ν2
t,s f (x) =Pν1

t−sP
ν2
t,sf (x −Θt,s) = E

(
Pν2
t,sf

(
x + (

L
ν1
t −Θt,0

) − (
Lν1
s −Θs,0

)))
. (4.4)

The main aim of this section is to prove the following Lq(R;Lp(Rd))-regularity estimate to the above u when
f ∈ Lq(R;Lp(Rd)).
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Theorem 4.2. For α ∈ (0,2), let ν(α)i , i = 1,2 be two Lévy measures with the form (1.8), where ν
(α)
1 is nondegenerate

in the sense of Definition 2.6. Let ν1 and ν2 be two Lévy measures and satisfy that

ν1 � ν
(α)
1 , ν2 � ν

(α)
2 ,

and for all 0 < r < R < +∞,

1α=1

∫
r�|y|�R

yν2(dy) = 0.

Let ϑ : R → Rd be a locally integrable function, and T ν1
t,s be defined by (4.1). Then for any p,q ∈ (1,∞), there

exists a constant C = C(ν
(α)
1 , ν

(α)
2 , α,p, q, d) > 0 such that for any −∞ � T < S � ∞, f ∈ Lq((T ,S);Lp(Rd)) and

λ � 0,

S∫
T

∥∥∥∥∥Lν2

t∫
T

e−λ(t−s)T ν1
t,s f (s, ·)ds

∥∥∥∥∥
q

p

dt � C

S∫
T

∥∥f (t, ·)∥∥q

p
dt. (4.5)

Proof. By replacing f (t, x) by f (t, x)1(T ,S)(t), it is enough to prove that

∞∫
−∞

∥∥∥∥∥Lν2

t∫
−∞

e−λ(t−s)T ν1
t,s f (s, ·)ds

∥∥∥∥∥
q

p

dt � C

∞∫
−∞

∥∥f (t, ·)∥∥q

p
dt. (4.6)

We divide the proof into seven steps.

Step 1. Let (L
ν1−ν

(α)
1

t )t∈R be a d-dimensional Lévy process associated with the Lévy measure ν1 − ν
(α)
1 . By (4.4), we

have
t∫

−∞
e−λ(t−s)T ν1

t,s f (s, x)ds =
t∫

−∞
e−λ(t−s)Pν1−ν

(α)
1

t−s T ν
(α)
1

t,s f (s, x)ds = Eu
(
t, x +L

ν1−ν
(α)
1

t −Θt,0
)
,

where

u(t, x) :=
t∫

−∞
e−λ(t−s)Pν

(α)
1

t−s f
(
s, x −L

ν1−ν
(α)
1

s +Θs,0
)

ds.

Suppose that (4.6) has been proven for ν1 = ν
(α)
1 and ϑ = 0. By Fubini’s theorem and Minkowski’s inequality, we

have for f ∈ S(Rd+1),

∞∫
−∞

∥∥∥∥∥Lν2

t∫
−∞

e−λ(t−s)T ν1
t,s f (s, ·)ds

∥∥∥∥∥
q

p

dt =
∞∫

−∞

∥∥ELν2u
(
t, · +L

ν1−ν
(α)
1

t −Θt,0
)∥∥q

p
dt

�
∞∫

−∞
E

∥∥Lν2u
(
t, · +L

ν1−ν
(α)
1

t −Θt,0
)∥∥q

p
dt

(2.9)= E

∞∫
−∞

∥∥Lν2u(t, ·)∥∥q

p
dt

� CE

∞∫
−∞

∥∥f (
s, · −L

ν1−ν
(α)
1

s +Θs,0
)∥∥q

p
ds = C

∞∫
−∞

∥∥f (s, ·)∥∥q

p
ds.

Hence, we need only to prove (4.6) for ν1 = ν
(α)
1 and ϑ = 0. Below, for simplicity of notation, we write

L := Lν2, L := Lν
(α)
1 , Pt := Pν

(α)
1

t , ψ1 = ψ (α) , ψ2 = ψν2 .
ν1
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Step 2. Let us first prove (4.6) for p = q = 2. For f ∈ S(Rd+1), let f̂ (s, ·) =Ff (s, ·). By (2.1), the Fourier transform
of Pt f is clearly given by

P̂t f (ξ) = e−ψ1(ξ)t f̂ (ξ).

By Parseval’s identity and Minkowski’s inequality, we have

∞∫
−∞

∥∥∥∥∥L

t∫
−∞

e−λ(t−s)Pt−sf (s, ·)ds

∥∥∥∥∥
2

2

dt

=
∞∫

−∞

∫
Rd

∣∣∣∣∣ψ2(ξ)

t∫
−∞

e−λ(t−s)−ψ1(ξ)(t−s)f̂ (s, ξ)ds

∣∣∣∣∣
2

dξ dt

(2.12)
� κ2

0

∞∫
−∞

∫
Rd

(
|ξ |α

t∫
−∞

e−Re(ψ1(ξ))(t−s)
∣∣f̂ (s, ξ)

∣∣ds

)2

dξ dt

(2.19)
� κ2

0

∞∫
−∞

∫
Rd

(
|ξ |α

t∫
−∞

e−κ1|ξ |α(t−s)
∣∣f̂ (s, ξ)

∣∣ds

)2

dξ dt

= κ2
0

∞∫
−∞

∫
Rd

( ∞∫
0

|ξ |αe−κ1|ξ |αs∣∣f̂ (t − s, ξ)
∣∣ds

)2

dξ dt

� κ2
0

∫
Rd

( ∞∫
0

|ξ |αe−κ1|ξ |αs
( ∞∫

−∞

∣∣f̂ (t − s, ξ)
∣∣2 dt

)1/2

ds

)2

dξ

= κ2
0

κ2
1

∫
Rd

∞∫
−∞

∣∣f̂ (t, ξ)
∣∣2 dt dξ = κ2

0

κ2
1

∞∫
−∞

∥∥f (t)
∥∥2

2 dt.

Since S(Rd+1) is dense in L2(Rd+1), (4.6) follows for p = q = 2.

Step 3. For f ∈ L∞(Rd+1), define

T f (t, x) :=
(

L

t∫
−∞

e−λ(t−s)Pt−sf (s, ·)ds

)
(x).

We want to show that

T : L∞(
Rd+1) → BMO

(
Rd+1) is a bounded linear operator. (4.7)

More precisely, we want to prove that there is a constant C > 0 independent of λ such that for any f ∈ L∞(Rd+1)

with ‖f ‖∞ � 1, and any parabolic cylinder Q = (t0, t0 + rα)×Br(x0),

1

|Q|
∫
Q

∣∣T f (t, x)− aQ
∣∣2 dx dt � C, (4.8)

where aQ is a constant depending on Q.
By shifting the origin, we may assume t0 = 0, x0 = 0. On the other hand, by the scaling properties (1.4) and (2.10),

if one makes the following change in (4.8):

ν2(B) → rαν2(rB), f (t, x) → f
(
rαt, rx

)
, λ → λrα,
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then we may further assume r = 1. Thus, it suffices to prove that for any f ∈ L∞(Rd+1) with ‖f ‖∞ � 1,∫
Q1

∣∣T f (t, x)− aQ1

∣∣2
dx dt � C,

where Q1 = (0,1)×B1 and C = C(ν
(α)
1 , ν

(α)
2 , α, d) is independent of ν2 and λ.

Following Krylov [22], we now split T f into two parts:

T f (t, x) = T1f (t, x)+ T2f (t, x),

where for (t, x) ∈ (0,1)×B1,

T1f (t, x) := L

( t∫
−1

e−λ(t−s)Pt−sf (s, ·)ds

)
(x),

T2f (t, x) := L

( −1∫
−∞

e−λ(t−s)Pt−sf (s, ·)ds

)
(x).

Step 4. In this step, we treat T1f . Let fε(t, x) := f ∗ ρε(t, x) be the mollifying approximation of f , where ρε is the
usual mollifier in Rd+1. Define

uε(t, x) :=
t∫

−1

e−λ(t−s)Pt−sfε(s, x)ds,

u(t, x) :=
t∫

−1

e−λ(t−s)Pt−sf (s, x)ds.

By definition (4.1) and ‖f ‖∞ � 1, we have∣∣uε(t, x)∣∣ � 2, ∀(t, x) ∈ [−1,1] ×Rd , (4.9)

and by the dominated convergence theorem,

lim
ε→0

1∫
0

∫
B1

∣∣uε(t, x)− u(t, x)
∣∣2 dx dt = 0. (4.10)

On the other hand, by Lemma 2.3, for any β ∈ [0, α ∧ 1), we have for all t ∈ [−1,1], x, x ′ ∈ Rd ,

∣∣uε(t, x)− uε
(
t, x′)∣∣ �

t∫
−1

∫
Rd

∣∣pt−s(y − x)− pt−s

(
y − x′)∣∣dy ds

(2.13)
� 21−β

t∫
−1

(∣∣x − x′∣∣ ∫
Rd

∣∣∇pt−s(y)
∣∣dy

)β

ds

(2.25)
� C

∣∣x − x′∣∣β t∫
−1

(t − s)−β/α ds � C
∣∣x − x′∣∣β. (4.11)

Moreover, as in the beginning of this section, since fε ∈ C∞
b (Rd+1), by (4.2) and Lemma 3.1, one sees that uε ∈

C∞
b ([−1,∞)×Rd+1) uniquely solves

∂tuε −Luε + λuε = fε, uε(−1, x) = 0.
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Let χ be a nonnegative smooth function with χ(x) = 1 for |x| � 1 and χ(x) = 0 for |x| � 2. Multiplying the above
equation by χ , we obtain

∂t (uεχ) = (Luε)χ − λuεχ + fεχ = L(uεχ)− λ(uεχ)+ gχε ,

where

gχε := χLuε −L(uεχ)+ fεχ.

Since χ has compact support, we have for each t ∈ [0,1],
gχε (t, ·) ∈ C∞

b

(
Rd

)
.

Thus, by Lemma 3.1 again, one has the representation

(uεχ)(t, x) =
t∫

−1

e−λ(t−s)Pt−sg
χ
ε (s, x)ds.

Moreover, by (4.9), (4.11) and (ii) of Lemma 2.5,

1∫
−1

∥∥gχε (t, ·)∥∥2
2 dt � C

( 1∫
−1

∥∥χLuε(t)−L
(
uε(t)χ

)∥∥2
2 dt + ‖χ‖2

2

)
� C.

Here and below, the constant C is independent of ε and λ.
As in Step 2, by Fourier’s transform again, we have

1∫
0

∫
Rd

∣∣L (uεχ)(t, x)
∣∣2 dx dt � κ2

0

1∫
0

∫
Rd

∣∣∣∣∣
t+1∫
0

|ξ |αe−κ1|ξ |αs∣∣ĝχε (t − s, ξ)
∣∣ds

∣∣∣∣∣
2

dξ dt

� κ2
0

∫
Rd

( 1∫
0

|ξ |αe−κ1|ξ |αs
( 1∫

s−1

∣∣ĝχε (t − s, ξ)
∣∣2 dt

)1/2

ds

)2

dξ

� κ2
0

∫
Rd

( 1∫
0

|ξ |αe−κ1|ξ |αs
( 1∫

−1

∣∣ĝχε (t, ξ)∣∣2 dt

)1/2

ds

)2

dξ

� C

∫
Rd

1∫
−1

∣∣ĝχε (t, ξ)∣∣2 dt dξ = C

1∫
−1

∥∥gχε (t, ·)∥∥2
2 dt � C.

Thus, by (4.9), (4.10), (4.11) and (ii) of Lemma 2.5 again, we arrive at

∫
Q1

∣∣T1f (t, x)
∣∣2 dx dt =

∫
Q1

∣∣L u(t, x)
∣∣2 dx dt � sup

ε∈(0,1)

1∫
0

∫
B1

∣∣L uε(t, x)
∣∣2 dx dt

� sup
ε∈(0,1)

1∫
0

∫
Rd

∣∣L uε(t, x) · χ(x)∣∣2 dx dt � C.

Step 5. In this step, we treat T2f and prove that for some aQ1 ∈R and some constant C > 0 independent of λ,∫ ∣∣T2f (t, x)− aQ1

∣∣2
dx dt � C. (4.12)
Q1
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Note that by (4.1),

eλtT2f (t, x) =
−1∫

−∞
eλs

∫
Rd

f (s, y)L ∗pt−s(y − x)dy ds =: T3f (t, x).

In view of λ � 0 and ‖f ‖∞ � 1, by (2.23), we have for some δ1 > 1 and any (t, x) ∈ [0,1] ×Rd ,

∣∣∇T3f (t, x)
∣∣ �

−1∫
−∞

∫
Rd

∣∣∇L ∗pt−s(y)
∣∣dy ds � C

−1∫
−∞

(t − s)−δ1 ds � C,

and by (2.24), for some δ2 > 1 and any t ∈ [0,1],
∣∣T3f (t,0)− T3f (0,0)

∣∣ �
−1∫

−∞

∫
Rd

∣∣L ∗pt−s(y)− L ∗p−s(y)
∣∣dy ds

�
−1∫

−∞

∫
Rd

t∫
0

∣∣∂rL ∗pr−s(y)
∣∣dr dy ds

� C

−1∫
−∞

t∫
0

(r − s)−δ2 dr ds � C.

Hence,∣∣T3f (t, x)− T3f (0,0)
∣∣ � C, ∀(t, x) ∈ [0,1] ×B1,

and ∫
Q1

∣∣T2f (t, x)− e−λtT3f (0,0)
∣∣2 dx dt � C.

If λ = 0, we immediately have (4.12). Now let us assume λ > 0. In this case, by Lemma 2.4 and (2.25), we have

∣∣T3f (0,0)
∣∣ �

−1∫
−∞

eλs
( ∫
Rd

∣∣L ∗p−s(y)
∣∣dy

)
ds � C

−1∫
−∞

eλs ds = Ce−λ/λ,

where C is independent of λ and f . So,∫
Q1

∣∣(1 − e−λt
)
T3f (0,0)

∣∣2 dx dt � C

λ2

1∫
0

(
1 − e−λt

)2 dt � C

3
,

where we have used that 1 − e−s � s for all s � 0. Thus, we obtain (4.12) with aQ1 = T3f (0,0).

Step 6. Combining the above Steps 3–5, we have proven (4.7). By Step 2 and Theorem 2.11, we get (4.6) for p =
q ∈ [2,∞). As for p = q ∈ (1,2), it follows by the following duality: Let g ∈ C∞

0 (Rd+1). By the integration by parts
formula and the change of variables, we have

∞∫
−∞

∫
Rd

(
L

t∫
−∞

e−λ(t−s)Pt−sf (s, ·)ds

)
(x) · g(t, x)dx dt

=
∞∫

−∞

∫
Rd

f (t, x)

(
L ∗

t∫
−∞

e−λ(t−s)P∗
t−sg(s, ·)ds

)
(x)dx dt,

where L ∗ is the adjoint operator of L and P∗
t g(s, x) := Eg(s, x −L

ν
(α)
1

t ).
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Step 7. For q �= p ∈ (1,∞), we use a trick due to Krylov [23]. Clearly, it suffices to prove that for any T > −∞ and
f ∈ C∞

0 ([T ,∞)×Rd),

∞∫
T

∥∥∥∥∥L

t∫
T

e−λ(t−s)Pt−sf (s, ·)ds

∥∥∥∥∥
q

p

dt � C

∞∫
T

∥∥f (t, ·)∥∥q

p
dt, (4.13)

where C is independent of T .
Set

u(t, x) :=
t∫

T

e−λ(t−s)Pt−sf (s, x)ds, w(t, x) := L u(t, x).

By (4.2), one can verify that w ∈ C([T ,∞);C∞
b (Rd)) and uniquely solves

∂tw −Lw + λw = L f, w(T , x) = 0.

For 
x = (x1, . . . , xn) ∈Rnd with xi = (xi1, . . . , x
i
d) ∈Rd , define

U(t, 
x) := w
(
t, x1) · · ·w(

t, xn
)
.

Then

∂tU −LU + nλU = F, U(T , 
x) = 0,

where L is defined by (2.20) and

F(t, 
x) =
n∑

i=1

LxiG
i(t, 
x), Gi(t, 
x) = f

(
t, xi

)∏
k �=i

w
(
t, xk

)
.

Here Lxi means that L acts on the component xi of 
x. By the maximum principle, the unique solution U can be
represented by

U(t, 
x) =
t∫

T

e−nλ(t−s)P t−sF (s, 
x)ds =
n∑

i=1

Lxi

t∫
T

e−nλ(t−s)P t−sG
i(s, 
x)ds,

where (P t )t�0 is the semigroup associated with L.
Thus, by Step 6 and Minkowski’s inequality, we have

∞∫
T

∥∥L u(t)
∥∥np

p
dt =

∞∫
T

∥∥w(t)
∥∥np

p
dt =

∞∫
T

∫
Rnd

∣∣U(t, 
x)∣∣p d
x dt

�
(

n∑
i=1

( ∞∫
T

∫
Rnd

∣∣∣∣∣Lxi

t∫
T

e−nλ(t−s)P t−sG
i(s, 
x)ds

∣∣∣∣∣
p

d
x dt

) 1
p
)p

� C

(
n∑

i=1

( ∞∫
T

∫
Rnd

∣∣Gi(t, 
x)∣∣p d
x dt

) 1
p
)p

= Cn

∞∫
T

∥∥f (t)
∥∥p

p

∥∥L u(t)
∥∥(n−1)p
p

dt

� Cn

( ∞∫ ∥∥f (t)
∥∥np

p
dt

) 1
n
( ∞∫ ∥∥L u(t)

∥∥np

p
dt

)1− 1
n

.

T T
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From this, we get that for any n ∈ N and p > 1,
∞∫
T

∥∥L u(t)
∥∥np

p
dt � (Cn)n

∞∫
T

∥∥f (t)
∥∥np

p
dt.

Thus, by Marcinkiewicz’s interpolation theorem (cf. [35]), we get (4.13) for any q � p. The case q � p follows by
duality as in Step 6. The whole proof is complete. �

We have the following important comparison result between two different Lévy operators.

Theorem 4.3. Keep the same assumptions as in Theorem 4.2. For any p ∈ (1,∞), there exists a constant C > 0 such
that for all u ∈ S(Rd) and λ1, λ2 > 0,∥∥(

Lν2 − λ2
)
u
∥∥
p

� C

(
1 + λ2

λ1

)∥∥(
Lν1 − λ1

)
u
∥∥
p
. (4.14)

In particular,∥∥Lν2u
∥∥
p

� C
∥∥Lν1u

∥∥
p
. (4.15)

Proof. For u ∈ S(Rd), set

f := (
Lν1 − λ1

)
u.

By Fourier’s transform, it is easy to see that

u(x) =
∞∫

0

e−λ1tPν1
t f (x)dt.

Define

uT (x) := 1

T

T∫
0

t∫
0

e−λ1(t−s)Pν1
t−sf (x)ds dt =

T∫
0

T − t

T
e−λ1tPν1

t f (x)dt.

Then

u(x)− uT (x) =
∞∫
T

e−λ1tPν1
t f (x)dt + 1

T

T∫
0

te−λ1tPν1
t f (x)dt.

In view of ‖Pν1
t f ‖p � ‖f ‖p , we have

‖u− uT ‖p � ‖f ‖p
( ∞∫

T

e−λ1t dt + 1

T

∞∫
0

te−λ1t dt

)
= ‖f ‖p

(
λ−1

1 e−λ1T + λ−2
1 T −1). (4.16)

On the other hand, by (4.5) we have

∥∥(
Lν2 − λ2

)
uT

∥∥p

p
� 1

T

T∫
0

∥∥∥∥∥(
Lν2 − λ2

) t∫
0

e−λ1(t−s)Pν1
t−sf (·)ds

∥∥∥∥∥
p

p

dt

� C‖f ‖pp + 2p−1

T

T∫
0

(
λ2

t∫
0

e−λ1(t−s)‖f ‖p ds

)p

dt

� C

(
1 + λ

p

2

λ
p

1

)
‖f ‖pp = C

(
1 + λ

p

2

λ
p

1

)∥∥(
Lν1 − λ1

)
u
∥∥p

p
,

which together with (4.16) yields (4.14). As for (4.15), it follows by firstly letting λ2 ↓ 0 and then λ1 ↓ 0. �
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In the remaining part of this paper, we make the following assumption:

(H(α)
ν ) Let ν(α)i , i = 1,2 be two Lévy measures with the form (1.8), where ν

(α)
1 is nondegenerate in the sense of

Definition 2.6. Let ν be a Lévy measure satisfying (1.7) and

ν
(α)
1 � ν � ν

(α)
2 .

Let Dp(Lν) be the domain of Lν in Lp-space, i.e.,

Dp
(
Lν

) := {
u ∈ Lp

(
Rd

)
:

∥∥Lνu
∥∥
p
< +∞}

.

For α � 0 and p � 1, the Bessel potential space Hα,p is defined as the completion of S(Rd) with respect to the norm:

‖f ‖∼
α,p := ∥∥(I −�)

α
2 u

∥∥
p

� ‖u‖p + ∥∥(−�)
α
2 u

∥∥
p
.

Notice that for k ∈N and p > 1, Hk,p =Wk,p (see [35, p. 135, Theorem 3]).

Corollary 4.4. Assume (H(α)
ν ) with α ∈ (0,2). For any p > 1, f ∈ Lp(Rd) and λ > 0, the equation (Lν − λ)u = f

admits a unique strong solution u ∈ Hα,p . In particular, for any p > 1, Dp(Lν) =Hα,p and∥∥Lνu
∥∥
p

� ∥∥(−�)
α
2 u

∥∥
p
, (4.17)

and if α = 1, then∥∥Lνu
∥∥
p

� ‖∇u‖p. (4.18)

Proof. Let ν(α)0 be the Lévy measure associated with (−�)
α
2 (see (2.8)). In Theorem 4.3, let us take ν1 = ν

(α)
0 , ν2 = ν

and ν1 = ν, ν2 = ν
(α)
0 respectively, then there exist C1,C2 > 0 such that for any u ∈ S(Rd) and λ1, λ2 > 0,∥∥(

(−�)
α
2 + λ2

)
u
∥∥
p

� C1

(
1 + λ2

λ1

)∥∥(
Lν − λ1

)
u
∥∥
p
, (4.19)

∥∥(
Lν − λ1

)
u
∥∥
p

� C2

(
1 + λ1

λ2

)∥∥(
(−�)

α
2 + λ2

)
u
∥∥
p
. (4.20)

For λ > 0 and f ∈ Lp(Rd), by Corollary 3.3, there exists a sequence un ∈ C∞
0 (Rd) such that(

Lν − λ
)
un

Lp−→ f.

By (4.19), un is a Cauchy sequence in Hα,p . Let u ∈Hα,p be the limit point. By (4.20), one finds that (Lν − λ)u = f .
As for (4.17), it follows by (4.15), and (4.18) follows by the boundedness of Riesz transform in Lp-space (cf. [35,
Chapter III]). �
Corollary 4.5. Assume (H(α)

ν ) with α ∈ (0,2). Then for any p > 1, (Pν
t )t�0 forms an analytic semigroup in Lp-space.

Proof. By [15, Theorem 5.2], it suffices to prove that∥∥LνPν
t f

∥∥
p

� Ct−1‖f ‖p, t > 0, f ∈ Lp
(
Rd

)
.

By (4.4), we have for any f ∈ S(Rd),

Pν
t f =Pν

(α)
1

t Pν−ν
(α)
1

t f.

Thus, by (2.25), we have∥∥�Pν
t f

∥∥ � Ct−
2
α

∥∥Pν−ν
(α)
1

t f
∥∥ � Ct−

2
α ‖f ‖p.
p p
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Since S(Rd) is dense in Lp(Rd), we further have for any f ∈ Lp(Rd),∥∥�Pν
t f

∥∥
p

� Ct−
2
α ‖f ‖p.

Now, by (4.18) and the Gagliardo–Nirenberg’s inequality (cf. [6, p. 168]), we have∥∥LνPν
t f

∥∥
p

� C
∥∥(−�)

α
2 Pν

t f
∥∥
p

� C
∥∥Pν

t f
∥∥1− α

2
p

∥∥�Pν
t f

∥∥ α
2
p

� Ct−1‖f ‖p,
where C is independent of t and f . �
5. Critical nonlocal parabolic equation with variable coefficients

In this section we assume (H(1)
ν ) with critical index α = 1. For simplicity of notation, we write

L = Lν.

Consider the following Cauchy problem of the first order critical parabolic system:

∂tu = Lu+ b · ∇u+ f, u(0) = ϕ, (5.1)

where u = (u1, . . . , um), f : R+ × Rd → Rm, ϕ : Rd → Rm are measurable functions, and b : R+ × Rd → Rd is a
bounded measurable vector field and satisfies∣∣b(t, x)− b(t, y)

∣∣ � ωb

(|x − y|), (5.2)

where ωb :R+ → R+ is an increasing function with lims↓0 ωb(s) = 0.
For obtaining the optimal regularity about the initial value, we need the following real interpolation space: for

p > 1 and β ∈ (0,1), let Wβ,p be the real interpolation space (called Sobolev–Slobodeckij space) between Lp and
W1,p . By [37, p. 190, (15)], an equivalent norm in Wβ,p is given by

‖f ‖β,p := ‖f ‖p +
(∫
Rd

∫
Rd

|f (x)− f (y)|p
|x − y|d+βp

dx dy

)1/p

. (5.3)

We remark that for p � 2, Hβ,p ⊂ Wβ,p , and for p � 2, Wβ,p ⊂ Hβ,p (cf. [35, p. 155, Theorem 5(A) and (C)]).
Moreover, by Sobolev’s embedding theorem (see [37, p. 203, (5)]), if βp > d and β − d

p
is not an integer, then

Wβ,p ↪→Hβ− d
p , (5.4)

where for γ > 0, Hγ is the usual Hölder space.
Let us first prove the following important a priori estimate by using the classical method of freezing coefficients

(cf. [24]).

Lemma 5.1. For given p ∈ (1,∞), let f ∈ L
p

loc(R
+;Lp(Rd ;Rm)) and

u ∈ C
(
R+

0 ;W1− 1
p
,p(

Rd;Rm
)) ∩L

p

loc

(
R+

0 ;W1,p(
Rd;Rm

))
.

Assume that (H(1)
ν ) and (5.2) hold, and u satisfies

∂tu(t, x) = Lu(t, x)+ b(t, x) · ∇u(t, x)+ f (t, x), a.e. (t, x) ∈ R+ ×Rd . (5.5)

Then for any T > 0,

sup
t∈[0,T ]

∥∥u(t)∥∥p

1− 1
p
,p

+
T∫

0

∥∥∇u(t)
∥∥p

p
dt � C

(
1 + T p

)
eCT p−1

(∥∥u(0)∥∥p

1− 1
p
,p

+
T∫

0

∥∥f (t)
∥∥p

p
dt

)
, (5.6)

where the constant C depends only on p,d , ‖b‖∞, the modulus function ωb and the Lévy measures ν
(1)
i , i = 1,2.

Moreover, u also satisfies the following integral equation: for all t � 0 and Lebesgue-almost all x ∈ Rd ,
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u(t, x) =Pt u(0, x)+
t∫

0

Pt−s

(
b(s) · ∇u(s)

)
(x)ds +

t∫
0

Pt−sf (s, x)ds, (5.7)

where Pt is the heat semigroup associated with L.

Proof. Let (ρε)ε∈(0,1) be a family of mollifiers in Rd . Define

uε(t) := u(t) ∗ ρε, bε(t) := b(t) ∗ ρε, fε(t) := f (t) ∗ ρε.

Taking convolutions for both sides of (5.5), we obtain

∂tuε(t, x) = Luε(t, x)+ bε(t, x) · ∇uε(t, x)+ Fε(t, x), (5.8)

where

Fε(t, x) := [(
b(t) · ∇u(t)

) ∗ ρε
]
(x)− bε(t, x) · ∇uε(t, x)+ fε(t, x).

Moreover, by Duhamel’s formula, one sees that

uε(t, x) =Pt uε(0, x)+
t∫

0

Pt−s

(
bε(s) · ∇uε(s)

)
(x)ds +

t∫
0

Pt−sFε(s, x)ds. (5.9)

By the assumptions, it is easy to see that for all ε ∈ (0,1),∣∣bε(t, x)− bε(t, y)
∣∣ � ωb

(|x − y|), ∣∣bε(t, x)− b(t, x)
∣∣ � ωb(ε),

and

lim
ε→0

T∫
0

∥∥Fε(t)− f (t)
∥∥p

p
dt = 0.

Taking limits for both sides of (5.9), one finds that (5.7) holds. Below, we use the method of freezing the coefficients
to prove

sup
t∈[0,T ]

∥∥uε(t)∥∥p

p
+

T∫
0

∥∥∇uε(t)
∥∥p

p
dt � C

(
1 + T p

)
eCT p−1

(∥∥uε(0)∥∥p

1− 1
p
,p

+C

T∫
0

∥∥Fε(t)
∥∥p

p
dt

)
, (5.10)

where the constant C is independent of ε and T .
For simplicity of notation, we drop the subscript ε below. Fix δ > 0 being small enough, whose value will be

determined below. Let ζ be a smooth function with support in Bδ and ‖ζ‖p = 1. For z ∈Rd , set

ζz(x) := ζ(x − z).

Multiplying both sides of (5.8) by ζz, we obtain

∂t (uζz) = (Lu)ζz + (b · ∇u)ζz + Fζz = L(uζz)+ ϑb
z · ∇(uζz)+ gζz ,

where ϑb
z (t) := b(t, z) and

gζz := (
b − ϑb

z

) · ∇(uζz)− ub · ∇ζz + (Lu)ζz −L(uζz)+ Fζz.

By Lemma 3.1, uζz can be uniquely written as

uζz(t, x) = T ϑb
z

t,0

(
u(0)ζz

)
(x)+

t∫
0

T ϑb
z

t,s g
ζ
z (s, x)ds,

where T ϑb
z

t,s is defined by (4.1) through ϑb
z . Thus, we have
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T∫
0

∥∥∇(uζz)(t, ·)
∥∥p

p
dt � 2p−1

T∫
0

∥∥∇T ϑb
z

t,0

(
u(0)ζz

)∥∥p

p
dt + 2p−1

T∫
0

∥∥∥∥∥∇
t∫

0

T ϑb
z

t,s g
ζ
z (s, ·)ds

∥∥∥∥∥
p

p

dt

=: I1(T , z)+ I2(T , z).

For I1(T , z), by Corollary 4.5 and [37, p. 96, Theorem 1.14.5], we have

T∫
0

∥∥∇T ϑb
z

t,0

(
u(0)ζz

)∥∥p

p
dt

(4.1)=
T∫

0

∥∥∥∥∥∇Pt

(
u(0)ζz

)(· −
t∫

0

ϑb
z (s)ds

)∥∥∥∥∥
p

p

dt =
T∫

0

∥∥∇Pt

(
u(0)ζz

)∥∥p

p
dt

(4.18)
� C

T∫
0

∥∥LPt

(
u(0)ζz

)∥∥p

p
dt � C

∥∥u(0)ζz∥∥p

1− 1
p
,p
. (5.11)

Here and below, C is independent of T . Thus, by definition (5.3), it is easy to see that∫
Rd

I1(T , z)dz � C

∫
Rd

∥∥u(0)ζz∥∥p

1− 1
p
,p

dz � C
(∥∥u(0)∥∥p

1− 1
p
,p

‖ζ‖pp + ∥∥u(0)∥∥p

p
‖ζ‖p

1− 1
p
,p

)
.

For I2(T , z), by (4.18) and Theorem 4.2, we have

I2(T , z) � C

T∫
0

∥∥gζz (s, ·)∥∥p

p
ds

� C

T∫
0

∥∥((
b − ϑb

z

) · ∇(uζz)
)
(s, ·)∥∥p

p
ds +C

T∫
0

∥∥(ub · ∇ζz)(s, ·)
∥∥p

p
ds +C

T∫
0

∥∥Fζz(s, ·)
∥∥p

p
ds

+C

T∫
0

∥∥(
(Lu)ζz −L(uζz)

)
(s, ·)∥∥p

p
ds

=: I21(T , z)+ I22(T , z)+ I23(T , z)+ I24(T , z).

For I21(T , z), by (5.2) and ‖ζ‖p = 1, we have∫
Rd

I21(T , z)dz
(5.2)
� Cω

p
b (δ)

T∫
0

∫
Rd

∥∥∇(uζz)(s, ·)
∥∥p

p
dzds

� Cω
p
b (δ)

T∫
0

∥∥∇u(s)
∥∥p

p
ds +Cω

p
b (δ)‖∇ζ‖pp

T∫
0

∥∥u(s)∥∥p

p
ds.

For I24(T , z), by (i) of Lemma 2.5, we have∫
Rd

I24(T , z)dz � C

T∫
0

∥∥u(s)∥∥p

p
ds +C

T∫
0

∥∥u(s)∥∥p/2
p

∥∥∇u(s)
∥∥p/2
p

ds.

Moreover, it is easy to see that∫
Rd

I22(T , z)dz � C‖b‖p∞‖∇ζ‖pp
T∫

0

∥∥u(s)∥∥p

p
ds,

∫
d

I23(T , z)dz � C

T∫ ∥∥F(s)
∥∥p

p
ds.
R 0
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Combining the above calculations, we get

T∫
0

∥∥∇u(s)
∥∥p

p
ds =

T∫
0

∫
Rd

∥∥∇u(s) · ζz
∥∥p

p
dzds

� 2p−1

T∫
0

∫
Rd

∥∥∇(uζz)(s)
∥∥p

p
dzds + 2p−1‖∇ζ‖pp

T∫
0

∥∥u(s)∥∥p

p
ds

� C
∥∥u(0)∥∥p

1− 1
p
,p

+Cω
p
b (δ)

T∫
0

∥∥∇u(s)
∥∥p

p
ds +C

T∫
0

∥∥u(s)∥∥p

p
ds

+C

T∫
0

∥∥u(s)∥∥p/2
p

∥∥∇u(s)
∥∥p/2
p

ds +C

T∫
0

∥∥F(s)
∥∥p

p
ds.

Using Young’s inequality and letting δ be small enough so that Cω
p
b (δ) � 1

4 , we arrive at

T∫
0

∥∥∇u(s)
∥∥p

p
ds � C

∥∥u(0)∥∥p

1− 1
p
,p

+C

T∫
0

∥∥u(s)∥∥p

p
ds +C

T∫
0

∥∥F(s)
∥∥p

p
ds. (5.12)

On the other hand, by (5.9), it is easy to see that

∥∥u(t)∥∥p

p
� C

∥∥u(0)∥∥p

p
+Ctp−1‖b‖p∞

t∫
0

∥∥∇u(s)
∥∥p

p
ds +Ctp−1

t∫
0

∥∥F(s)
∥∥p

p
ds,

which together with (5.12) and Gronwall’s inequality yields that for any T > 0,

sup
t∈[0,T ]

∥∥u(t)∥∥p

p
+

T∫
0

∥∥∇u(s)
∥∥p

p
ds � C

(
1 + T p

)
eCT p−1

(∥∥u(0)∥∥p

1− 1
p
,p

+
T∫

0

∥∥F(s)
∥∥p

p
ds

)
.

Thus, we conclude the proof of (5.10), and therefore,

T∫
0

∥∥∇u(s)
∥∥p

p
ds � C

(
1 + T p

)
eCT p−1

(∥∥u(0)∥∥p

1− 1
p
,p

+
T∫

0

∥∥f (s)
∥∥p

p
ds

)
. (5.13)

Lastly, we show (5.6). From Eq. (5.5) and using estimate (5.13), we have

T∫
0

∥∥∂tu(t)∥∥p

p
dt � C

( T∫
0

∥∥Lu(t)∥∥p

p
dt + ‖b‖p∞

T∫
0

∥∥∇u(t)
∥∥p

p
dt +

T∫
0

∥∥f (t)
∥∥p

p
dt

)

(4.18)
� C

((
1 + ‖b‖p∞

) T∫
0

∥∥∇u(t)
∥∥p

p
dt +

T∫
0

∥∥f (t)
∥∥p

p
dt

)

� C
(
1 + T p

)
eCT p−1

(∥∥u(0)∥∥p

1− 1
p
,p

+
T∫

0

∥∥f (s)
∥∥p

p
ds

)
.

Noticing the following embedding relation (cf. [1, p. 180, Theorem III, 4.10.2])

Lp
([0, T ],W1,p) ∩W1,p([0, T ],Lp

)
↪→ C

([0, T ];W1− 1
p
,p)

,
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we have

sup
t∈[0,T ]

∥∥u(t)∥∥p

1− 1
p
,p

� C

( T∫
0

∥∥∂tu(t)∥∥p

p
dt +

T∫
0

∥∥u(t)∥∥p

1,p dt

)

� C
(
1 + T p

)
eCT p−1

(∥∥u(0)∥∥p

1− 1
p
,p

+
T∫

0

∥∥f (s)
∥∥p

p
ds

)
,

which together with (5.13) yields (5.6). �
Before proving the existence of strong solutions to Eq. (5.1), we recall a well-known fact (cf. [14,40]).

Theorem 5.2 (Feyman–Kac formula). Let ν be a Lévy measure and b ∈ L∞
loc(R

+;C∞
b (Rd;Rd)), f ∈ L1

loc(R
+;

W∞(Rd ;Rm)). For any ϕ ∈ W∞(Rd ;Rm), there exists a unique u ∈ C(R+
0 ;W∞(Rd ;Rm)) satisfying

u(t, x) = ϕ(x)+
t∫

0

Lνu(s, x)ds +
t∫

0

(b · ∇u)(s, x)ds +
t∫

0

f (s, x)ds.

Moreover, u(t, x) can be represented by

u(t, x) := Eϕ
(
X−t,0(x)

) +E

( 0∫
−t

f
(−s,X−t,s (x)

)
ds

)
, t � 0, (5.14)

where {Xt,s(x), t � s � 0, x ∈Rd} is defined by the following SDE:

Xt,s(x) = x +
s∫

t

b
(−r,Xt,r (x)

)
dr +

s∫
t

dLν
r , t � s � 0.

We are now in a position to prove

Theorem 5.3. Assume (H(1)
ν ) and (5.2). Let p ∈ (1,∞) and

ϕ ∈ W
1− 1

p
,p(

Rd ;Rm
)
, f ∈ L

p

loc

(
R+

0 ;Lp
(
Rd;Rm

))
.

Then there exists a unique u ∈ C(R+
0 ;W1− 1

p
,p
(Rd ;Rm))∩L

p

loc(R
+
0 ;W1,p(Rd;Rm)) satisfying Eq. (5.5).

Proof. Let bε, fε and ϕε be the mollifying approximations of b, f and ϕ:

bε(t, x) := b(t) ∗ ρε(x), fε(t, x) := f (t) ∗ ρε(x), ϕε(x) := ϕ ∗ ρε(x).

By Theorem 5.2, there exists a unique uε ∈ C(R+
0 ;W∞(Rd;Rm)) satisfying the following equation:

uε(t, x) = ϕε(x)+
t∫

0

Luε(s, x)ds +
t∫

0

bε(s, x) · ∇uε(s, x)ds +
t∫

0

fε(s, x)ds. (5.15)

First of all, by Lemma 5.1, we have the following uniform estimate: for any T > 0,

sup
t∈[0,T ]

∥∥uε(t)∥∥p

1− 1
p
,p

+
T∫

0

∥∥∇uε(t)
∥∥p

p
dt � C

(
‖ϕ‖p

1− 1
p
,p

+
T∫

0

∥∥f (t)
∥∥p

p
dt

)
,

where C is independent of ε.
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Noticing that wε,ε′ := uε − uε′ satisfies

∂twε,ε′ = Lwε,ε′ + bε · ∇wε,ε′ + (bε − bε′) · ∇uε′ + fε − fε′, wε,ε′(0) = ϕε − ϕε′,

by Lemma 5.1 again, we also have

sup
t∈[0,T ]

∥∥wε,ε′(t)
∥∥p

1− 1
p
,p

+
T∫

0

∥∥∇wε,ε′(s)
∥∥p

p
ds

� C‖ϕε − ϕε′ ‖p
1− 1

p
,p

+C

T∫
0

∥∥fε(s)− fε′(s)
∥∥p

p
ds +C sup

s∈[0,T ]

∥∥bε(s)− bε′(s)
∥∥p

∞

T∫
0

∥∥∇uε′(s)
∥∥p

p
ds.

On the other hand, by (5.2), it is easy to see that

sup
s�0

∥∥bε(s)− bε′(s)
∥∥∞ � ωb(ε)+ωb

(
ε′).

So, for any T > 0,

lim
ε,ε′→0

(
sup

t∈[0,T ]

∥∥wε,ε′(t)
∥∥p

1− 1
p
,p

+
T∫

0

∥∥∇wε,ε′(s)
∥∥p

p
ds

)
= 0,

and there exists a u ∈ C(R+
0 ;W1− 1

p
,p
(Rd;Rm))∩L

p

loc(R
+
0 ;W1,p(Rd ;Rm)) such that for any T > 0,

lim
ε→0

(
sup

t∈[0,T ]

∥∥uε(t)− u(t)
∥∥p

1− 1
p
,p

+
T∫

0

∥∥∇uε(s)− ∇u(s)
∥∥p

p
ds

)
= 0.

By taking limits in Lp-space for (5.15), one finds that for all t � 0 and almost all x ∈Rd ,

u(t, x) = ϕ(x)+
t∫

0

Lu(s, x)ds +
t∫

0

b(s, x) · ∇u(s, x)ds +
t∫

0

f (s, x)ds.

The existence follows. As for the uniqueness, it follows from Lemma 5.1. �
Now we present an application by proving Krylov’s estimate for critical diffusion process:

Xt = X0 +
t∫

0

b(s,Xs)ds +Lt . (5.16)

Theorem 5.4. Assume (H(1)
ν ) and (5.2). Then there exists a solution to SDE (5.16) such that for fixed T0 > 0 and any

p > d + 1, stopping time τ , 0 � T � S � T0 and f ∈ Lp([T ,S] ×Rd),

E

( S∧τ∫
T∧τ

f (s,Xs)ds
∣∣∣FT∧τ

)
� C‖f ‖Lp([T ,S]×Rd ), (5.17)

where C is independent of f and τ . Here, a solution to Eq. (5.16) means that there exists a probability space
(Ω,F ,P ) and two càdlàg stochastic processes Xt and Lt defined on it such that (5.16) is satisfied, and Lt is a
Lévy process with respect to the completed filtration Ft := σP {Xs,Ls, s � t}, and whose Lévy measure is given by ν.

Proof. Let bε(t, x) := b(t) ∗ ρε(x) be the mollifying approximation of b and let Xε
t solve the following SDE:

Xε
t = X0 +

t∫
bε

(
s,Xε

s

)
ds +Lt . (5.18)
0
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It is by now standard to prove that the laws of {(Xε
t ,Lt )t�0, ε ∈ (0,1)} are tight in the space of all càdlàg functions

(for example, see [39]). Thus, by Skorohod’s representation theorem (cf. [19, Theorem 3.30]), there exist a probability
space still denoted by (Ω,F ,P ) and càdlàg stochastic processes (Xε

t ,L
ε
t )t�0 and (Xt ,Lt )t�0 such that (Xε

t ,L
ε
t )

almost surely converges to (Xt ,Lt ) for each t � 0, and

Xε
t = Xε

0 +
t∫

0

bε
(
s,Xε

s

)
ds +Lε

t .

By taking limits for Eq. (5.18), it is easy to see that (Xt ,Lt ) is a solution of SDE (5.16).
Fix f ∈ C∞

0 (R+ ×Rd) and T0 > 0. Let uε(t, x) ∈ C(R+
0 ;C∞

b (Rd)) solve the following PDE

∂tuε −Luε − bε(T0 − ·, ·) · ∇uε = −f (T0 − ·, ·), uε(0) = 0.

Set

wε(t, x) = uε(T0 − t, x).

Then

∂twε +Lwε + b · ∇wε = f, w(T0, x) = 0.

Let τ be any stopping time. By Ito’s formula (cf. [2, Theorem 4.4.7]), we have

wε

(
t,Xε

t

) = w
(
T ∧ τ,Xε

T∧τ

) +
t∫

T∧τ

(
∂swε(s)+Lwε(s)+ bε(s) · ∇wε(s)

)(
Xε

s

)
ds + a martingale

= w
(
T ∧ τ,Xε

T∧τ

) +
t∫

T∧τ

f
(
s,Xε

s

)
ds + a martingale.

Taking the conditional expectations with respect to FT∧τ and by the optional theorem (cf. [19, Theorem 6.12]), we
obtain

E

( S∧τ∫
T∧τ

f
(
s,Xε

s

)
ds

∣∣∣FT∧τ

)
= E

(
w

(
S ∧ τ,Xε

S∧τ

)∣∣FT∧τ

) −w
(
T ∧ τ ,Xε

T∧τ

)
.

On the other hand, since∣∣bε(t, x)− bε(t, y)
∣∣ � ωb

(|x − y|),
by (5.4) and (5.6), we have

sup
t∈[T ,S]

‖uε‖∞ � C sup
t∈[T ,S]

∥∥uε(t)∥∥1− 1
p
,p

� C‖f ‖Lp([T ,S]×Rd ),

where the constant C is independent of ε. Hence,

E

( S∧τ∫
T∧τ

f
(
s,Xε

s

)
ds

∣∣∣FT∧τ

)
� C‖f ‖Lp([T ,S]×Rd ).

Since f ∈ C∞
0 (R+ × Rd), estimate (5.17) now follows by taking limit ε → 0. For general f ∈ Lp([T ,S] × Rd), it

follows by a standard density argument. �
6. Quasi-linear first order parabolic system with critical diffusion

In this section we study the solvability of quasi-linear first order parabolic system with critical diffusions. Let us
firstly recall and extend a result of Silvestre [32] about the Hölder estimate of advection fractional diffusion equations.
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Theorem 6.1. (See Silvestre [32].) Assume that b ∈ L∞([0,1];C∞
b (Rd ;Rd)) and f ∈ L∞([0,1];C∞

b (Rd)). For
given a > 0, let u ∈ C([0,1];C∞

b (Rd)) satisfy that for all (t, x) ∈ [0,1] ×Rd ,

u(t, x) = u(0, x)− a

t∫
0

(−�)
1
2 u(s, x)ds +

t∫
0

b(s, x) · ∇u(s, x)ds +
t∫

0

f (s, x)ds. (6.1)

Then for any γ ∈ (0,1), there exist β ∈ (0,1) and C depending only on d, a, γ and ‖b‖∞ such that

sup
t∈[0,1]

∥∥u(t)∥∥Hβ � C
(‖u‖∞ + ‖f ‖∞ + ∥∥u(0)∥∥Hγ

)
, (6.2)

where ‖u‖Hβ := sup|x−y|�1 |u(x)− u(y)|/|x − y|β .

Proof. By [32, Theorem 1.1], there exist β0 ∈ (0,1) and C > 0 depending only on d, a and ‖b‖∞ such that∥∥u(t)∥∥Hβ0 � Ct−β0
(‖u‖∞ + ‖f ‖∞

)
, t ∈ (0,1]. (6.3)

Recall the following probabilistic representation of u(t, x) (see Theorem 5.2):

u(t, x) = Eu
(
0,X−t,0(x)

) +E

( 0∫
−t

f
(−s,X−t,s(x)

)
ds

)
, t ∈ [0,1], (6.4)

where {Xt,s(x),−1 � t � s � 0, x ∈ Rd} is defined by the following SDE:

Xt,s(x) = x +
s∫

t

b
(−r,Xt,r (x)

)
dr +

s∫
t

dLr, −1 � t � s � 0, (6.5)

where (Lt )t�0 is the Lévy process associated with (−�)
1
2 .

By (6.4) and (6.5), we have∣∣u(t, x)− u(0, x)
∣∣ �

∥∥u(0)∥∥Hγ E
∥∥X−t,0(x)− x

∥∥γ + t‖f ‖∞
�

∥∥u(0)∥∥Hγ

(
tγ ‖b‖∞ +E‖L−t‖γ

) + t‖f ‖∞
(2.3)= ∥∥u(0)∥∥Hγ

(
tγ ‖b‖∞ + tγE‖L−1‖γ

) + t‖f ‖∞
� tγ

(∥∥u(0)∥∥Hγ

(‖b‖∞ +E‖L−1‖γ
) + ‖f ‖∞

)
. (6.6)

For given x, y ∈ Rd and t ∈ (0,1], if t > |x − y| 1
2 , then by (6.3) we have∣∣u(t, x)− u(t, y)

∣∣ � C|x − y|β0/2(‖u‖∞ + ‖f ‖∞
);

if t � |x − y| 1
2 , then by (6.6) we have∣∣u(t, x)− u(t, y)

∣∣ �
∣∣u(t, x)− u(0, x)

∣∣ + ∣∣u(t, y)− u(0, y)
∣∣ + ∣∣u(0, x)− u(0, y)

∣∣
� 2|x − y|γ /2(∥∥u(0)∥∥Hγ

(‖b‖∞ +E‖L−1‖γ
) + ‖f ‖∞

) + |x − y|γ ∥∥u(0)∥∥Hγ .

Estimate (6.2) now follows by taking β = min(γ,β0)/2. �
Notice that the proof of Silvestre [32] seems strongly depend on the scale invariance of (−�)

1
2 . Below, we use

probabilistic representation (6.4) again to extend Silvestre’s Hölder estimate to the more general Lévy operator (not
necessarily homogeneous and symmetric). Consider the following Lévy measure

ν(dy) = a(y)

|y|d+1
dy,

where a(y) is a measurable function on Rd . Let Lν be the Lévy operator associated to ν. We have
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Corollary 6.2. Assume that b ∈ L∞([0,1];C∞
b (Rd ;Rd)) and f ∈ L∞([0,1];C∞

b (Rd)). For given ϕ ∈ C∞
b (Rd), let

u ∈ C([0,1];C∞
b (Rd)) satisfy that for all (t, x) ∈ [0,1] ×Rd ,

u(t, x) = ϕ(x)+
t∫

0

Lνu(s, x)ds +
t∫

0

b(s, x) · ∇u(s, x)ds +
t∫

0

f (s, x)ds. (6.7)

If a(y) is bounded from below by c1 > 0, then for any γ ∈ (0,1), there exist β ∈ (0,1) and C depending only on
d, c1, γ and ‖b‖∞ such that

sup
t∈[0,1]

∥∥u(t)∥∥Hβ � C
(‖f ‖∞ + ‖ϕ‖∞ + ‖ϕ‖Hγ

)
. (6.8)

Proof. Define

ν0(dy) := c1 dy/|y|d+1, ν1(dy) := ν(dy)− ν0(dy) = (
a(y)− c1

)
dy/|y|d+1.

Let (Lν0
t )t�0 and (L

ν1
t )t�0 be two independent d-dimensional Lévy processes with the Lévy measures ν0 and ν1.

Then we have(
Lν
t

)
t�0

(d)= (
L
ν0
t +L

ν1
t

)
t�0.

Recall the probabilistic representation (6.4) of u(t, x), where {Xt,s(x),−1 � t � s � 0, x ∈ Rd} is defined by the
following SDE:

Xt,s(x) = x +
s∫

t

b
(−r,Xt,r (x)

)
dr +

s∫
t

dLν0
r +

s∫
t

dLν1
r , −1 � t � s � 0.

Let D([−1,0]) be the space of all càdlàg functions  : [−1,0] → Rd . Below, we fix t0 ∈ [0,1] and a path
 ∈D([−1,0]). Let Yt,s(x,  ·) solve the following SDE:

Yt,s(x,  ·) = x +
s∫

t

b
(−r, Yt,r (x,  ·)+  r −  −t0

)
dr +

s∫
t

dLν0
r , −1 � t � s � 0.

By the uniqueness of solutions to SDEs, it is easy to see that

X−t0,s(x) = Y−t0,s

(
x,Lν1·

) +Lν1
s −L

ν1−t0
, −t0 � s � 0.

Substituting this into (6.4), we get

u(t0, x) = Eϕ
(
Y−t0,0

(
x,Lν1·

) +L
ν1
0 −L

ν1−t0

) +E

( 0∫
−t0

f
(−s, Y−t0,s

(
x,Lν1·

) +Lν1
s −L

ν1−t0

)
ds

)
. (6.9)

Now let us define

w(t, x,  ·) := Eϕ
(
Y−t,0(x,  ·)+  0 −  −t0

) +E

( 0∫
−t

f
(−s, Y−t,s (x,  ·)+  s −  −t0

)
ds

)
. (6.10)

Using Theorem 5.2 again, one sees that w(t, x,  ·) satisfies

w(t, x,  ·) = ϕ(x +  0 −  −t0)+
t∫

0

Lν0w(s, x,  ·)ds +
t∫

0

b(s, x +  −s −  −t0) · ∇w(s, x,  ·)ds

+
t∫
f (s, x +  −s −  −t0)ds,
0
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where for some a > 0, Lν0 = −a(−�)
1
2 is the Lévy operator associated with ν0 (see (2.8)). Thus, by Theorem 6.1,

there exist β ∈ (0,1) and C depending only on d, a, γ and ‖b‖∞ such that

sup
t∈[0,1]

∥∥w(t, ·,  ·)
∥∥
Hβ � C

(‖w‖∞ + ‖f ‖∞ + ‖ϕ‖Hγ

)
(6.10)
� C

(‖f ‖∞ + ‖ϕ‖∞ + ‖ϕ‖Hγ

)
. (6.11)

On the other hand, since (L
ν0
t )t�0 and (L

ν1
t )t�0 are independent, by (6.9) and (6.10), we have

u(t0, x) = Ew
(
t0, x,L

ν1·
)
.

Estimate (6.8) now follows by (6.11). �
Below, we assume that a satisfies that

c1 � a(y) � c2,

and for all 0 < r < R < +∞,∫
r�|y|�R

ya(y)

|y|d+1
dy = 0.

For the sake of simplicity, we write

L = Lν.

Consider the following Cauchy problem of semilinear first order parabolic system:

∂tu = Lu+ b(u) · ∇u+ f (u), u(0) = ϕ, (6.12)

where u(t, x) = (u1(t, x), . . . , um(t, x)), and ϕ(x) : Rd → Rm,

b(t, x,u) : [0,1] ×Rd ×Rm →Rd ,

f (t, x,u) : [0,1] ×Rd ×Rm →Rm

are Borel measurable functions.
We introduce the following notion about the strong solution for Eq. (6.12).

Definition 6.3. Let p > 1 and ϕ ∈ W
1− 1

p
,p
(Rd;Rm). A function

u ∈ C
([0,1];W1− 1

p
,p(

Rd ;Rm
)) ∩Lp

([0,1];W1,p(
Rd;Rm

))
is called a strong solution of Eq. (6.12) if for all t ∈ [0,1] and almost all x ∈Rd ,

u(t, x) = ϕ(x)+
t∫

0

Lu(s, x)ds +
t∫

0

b
(
s, x,u(s, x)

) · ∇u(s, x)ds +
t∫

0

f
(
s, x,u(s, x)

)
ds.

We firstly prove the following uniqueness of strong solutions to Eq. (6.12).

Lemma 6.4. Suppose that for any R > 0, there are two constants Cf,R,Cb,R > 0 such that for all t ∈ [0,1], x, y ∈Rd

and u,u′ ∈ Rm with |u|, |u′| � R,∣∣f (t, x,u)− f
(
t, x, u′)∣∣ � Cf,R

∣∣u− u′∣∣,∣∣b(t, x,u)− b
(
t, y, u′)∣∣ � ωb,R

(|x − y|) +Cb,R

∣∣u− u′∣∣,
where ωb,R : R+ → R+ is an increasing function with lims↓0 ωb,R(s) = 0. Then there exists at most one strong
solution in the sense of Definition 6.3 provided p > d + 1.
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Proof. Let ϕ ∈W
1− 1

p
,p
(Rd ;Rm) and

u, ũ ∈ C
([0,1];W1− 1

p
,p(

Rd;Rm
)) ∩Lp

([0,1];W1,p(
Rd;Rm

))
be two strong solutions of Eq. (6.12) with the same initial value ϕ. Let

w(t, x) := u(t, x)− ũ(t, x).

Then for all t ∈ [0,1] and almost all x ∈Rd ,

w(t, x) =
t∫

0

Lw(s, x)ds +
t∫

0

b
(
s, x,u(s, x)

) · ∇w(s, x)ds +
t∫

0

g(s, x)ds,

where

g(t, x) := (
b
(
t, x, u(t, x)

) − b
(
t, x, ũ(t, x)

)) · ∇ũ(t, x)+ f
(
t, x, u(t, x)

) − f
(
t, x, ũ(t, x)

)
.

Since u, ũ ∈ C([0,1];W1− 1
p
,p
(Rd ;Rm)), by Sobolev’s embedding (5.4), for some C > 0,

sup
t∈[0,1]

∥∥u(t)∥∥∞ � C sup
t∈[0,1]

∥∥u(t)∥∥1− 1
p
,p
, sup

t∈[0,1]
∥∥ũ(t)∥∥∞ � C sup

t∈[0,1]
∥∥ũ(t)∥∥1− 1

p
,p
.

Let

R := C sup
t∈[0,1]

∥∥u(t)∥∥1− 1
p
,p

+C sup
t∈[0,1]

∥∥ũ(t)∥∥1− 1
p
,p
,

then by the assumptions, we have for all t ∈ [0,1] and x, y ∈Rd ,∣∣b(t, x, u(t, x)) − b
(
t, y, u(t, y)

)∣∣ � ωb,R

(|x − y|) +Cb,R

∣∣u(t, x)− u(t, y)
∣∣

(5.4)
� ωb,R

(|x − y|) +C sup
t∈[0,1]

∥∥u(t)∥∥1− 1
p
,p

|x − y|1− d+1
p .

Thus, by Lemma 5.1 and the assumptions, for all t ∈ [0,1], we have

∥∥w(t)
∥∥p

1− 1
p
,p

� C

t∫
0

∥∥g(s)∥∥p

p
ds

� C

t∫
0

(
C

p
b,R

∥∥∇ũ(s)
∥∥p

p

∥∥w(s)
∥∥p

∞ +C
p
f,R

∥∥w(s)
∥∥p

p

)
ds

� C

t∫
0

(∥∥∇ũ(s)
∥∥p

p
+ 1

)∥∥w(s)
∥∥p

1− 1
p
,p

ds. (6.13)

The uniqueness follows by Gronwall’s inequality. �
We have the following existence and uniqueness of smooth solutions for Eq. (6.12).

Theorem 6.5. Suppose that for all R > 0 and j, k = 0,1,2, . . . , there exist Cb,j,k,R,Cf,j,k,R > 0 such that for all
(t, x) ∈ [0,1] ×Rd and u ∈Rm with |u| � R,∣∣∇j

x∇k
ub(t, x,u)

∣∣ � Cb,j,k,R,
∣∣∇j

x∇k
uf (t, x,u)

∣∣ � Cf,j,k,R, (6.14)

and there exist γj ∈N, Cf,j > 0 and hj ∈ (L1 ∩L∞)(Rd) such that for all (t, x,u) ∈ [0,1] ×Rd ×Rm,∣∣∇j
x f (t, x,u)

∣∣ � Cf,j |u|γj + hj (x), (6.15)
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where γ0 = 1. Then for any ϕ ∈W∞(Rd;Rm), there exists a unique solution

u ∈ C
([0,1];W∞(

Rd;Rm
))

to Eq. (6.12) with initial value ϕ. Moreover,

sup
t∈[0,1]

∥∥u(t)∥∥∞ � eCf,0
(‖ϕ‖∞ + ‖h0‖∞

)
, (6.16)

and for any p > d + 1,

sup
t∈[0,1]

∥∥u(t)∥∥p

1− 1
p
,p

+
1∫

0

∥∥∇u(t)
∥∥p

p
dt � Kp, (6.17)

where the constant Kp depends only on p,d, ν and ‖ϕ‖1− 1
p
,p

, Cf,0, ‖h0‖∞, ‖h0‖p , Cb,0,0,R , Cb,0,1,R and the function

ωb,R(s) := sup
|x−y|�s

sup
t∈[0,1]

sup
|u|�R

∣∣b(t, x,u)− b(t, y,u)
∣∣, s > 0. (6.18)

Proof. We construct Picard’s approximation for Eq. (6.12) as follows. Set u0(t, x) ≡ 0. Since for any u ∈
C([0,1];W∞(Rd ;Rm)), by (6.14), (6.15) and the chain rules,

(t, x) �→ b
(
t, x, u(t, x)

) ∈ L∞([0,1];C∞
b

(
Rd;Rm

))
,

(t, x) �→ f
(
t, x, u(t, x)

) ∈ L∞([0,1];W∞(
Rd ;Rm

))
,

by Theorem 5.2, for each n ∈ N, there exists a unique un ∈ C([0,1];W∞(Rd;Rm)) solving the following linear
equation:

∂tun = Lun + b(un−1) · ∇un + f (un−1), un(0) = ϕ. (6.19)

Set

ũn(t, x) := un(t, x)−
t∫

0

∥∥f (
s, ·, un−1(s, ·)

)∥∥∞ ds,

then for each j = 1,2, . . . ,m,

∂t ũ
j
n −Lũjn − b(un−1) · ∇ũ

j
n = f j (un−1)− ∥∥fn(un−1)

∥∥∞ � 0.

By Lemma 3.1 and (6.15), in view of γ0 = 1, we have

∥∥un(t)∥∥∞ �
∥∥ũn(t)∥∥∞ +

t∫
0

∥∥f (
s, ·, un−1(s, ·)

)∥∥∞ ds

�
∥∥ũn(0)∥∥∞ +

t∫
0

(
Cf,0

∥∥un−1(s)
∥∥∞ + ‖h0‖∞

)
ds

� ‖ϕ‖∞ + ‖h0‖∞ +Cf,0

t∫
0

∥∥un−1(s)
∥∥∞ ds,

which yields by Gronwall’s inequality that

sup
t∈[0,1]

∥∥un(t)∥∥∞ � eCf,0
(‖ϕ‖∞ + ‖h0‖∞

) =: K0. (6.20)

We mention that this L∞-estimate can be also derived by representation formula (5.14).
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Since∣∣b(t, x, un−1(t, x)
)∣∣ � Cb,0,0,K0 =: K1,

by Corollary 6.2, there exist β ∈ (0,1) and C depending only on d, ν,p and K1 such that

sup
t∈[0,1]

∥∥un(t)∥∥Hβ � C
(∥∥f (un−1)

∥∥∞ + ‖ϕ‖∞ + ‖ϕ‖
H1− d+1

p

)
(6.15),(6.20),(5.4)

� C
(
Cf,0K0 + ‖h0‖∞ + ‖ϕ‖∞ + ‖ϕ‖1− 1

p
,p

) =: K2. (6.21)

Thus, letting ωb,K0 be defined by (6.18) with R = K0 and using (6.14), (6.20), we have∣∣b(t, x, un−1(t, x)
) − b

(
t, y, un−1(t, y)

)∣∣ � ωb,K0

(|x − y|) +Cb,0,1,K0K2|x − y|β. (6.22)

Hence, we can use Lemma 5.1 to derive that for any p > 1,

∥∥un(t)∥∥p

1− 1
p
,p

+
t∫

0

∥∥∇un(s)
∥∥p

p
ds � C

(
‖ϕ‖p

1− 1
p
,p

+
t∫

0

∥∥f (
s, un−1(s)

)∥∥p

p
ds

)

� C1

(
‖ϕ‖p

1− 1
p
,p

+
t∫

0

(
C

p

f,0

∥∥un−1(s)
∥∥p

p
+ ‖h0‖pp

)
ds

)
, (6.23)

where C1 � 1 depends only on p,d, ν, K1, K2, ωb,K0 and Cb,0,1,K0 . In particular, for any t ∈ [0,1],
∥∥un(t)∥∥p

p
� C1

(‖ϕ‖p
1− 1

p
,p

+ ‖h0‖pp
) +C1C

p

f,0

t∫
0

∥∥un−1(s)
∥∥p

p
ds,

and by Gronwall’s inequality,

sup
t∈[0,1]

∥∥un(t)∥∥p

p
� C1

(‖ϕ‖p
1− 1

p
,p

+ ‖h0‖pp
)
e
C1C

p
f,0 .

Substituting this into (6.23), we obtain

sup
t∈[0,1]

∥∥un(t)∥∥p

1− 1
p
,p

+
1∫

0

∥∥∇un(t)
∥∥p

p
dt � C1

(
‖ϕ‖p

1− 1
p
,p

+
1∫

0

∥∥f (
s, un−1(s)

)∥∥p

p
ds

)
� K3, (6.24)

where K3 depends only on p, C1, ‖ϕ‖1− 1
p
,p

, Cf,0, ‖h0‖p .

Let us now estimate the higher order derivatives of un. For given k ∈N, set

w(k)
n (t, x) := ∇kun(t, x).

By Eq. (6.19) and the chain rules, one sees that

∂tw
(k)
n = Lw(k)

n + b(un−1) · ∇w(k)
n + g(k)n ,

where

g(k)n (t, x) := ∇k
(
f

(
t, ·, un−1(t, ·)

))
(x)+

k∑
j=1

k!
(k − j)!j !∇

j
(
b
(
t, ·, un−1(t, ·)

))
(x) · ∇k−j∇un(t, x).

By (6.22) and Lemma 5.1, for any p > 1, we have

sup
t∈[0,1]

∥∥w(k)
n (t)

∥∥p

1− 1
p
,p

+
1∫ ∥∥∇w(k)

n (s)
∥∥p

p
ds � C

(∥∥∇kϕ
∥∥p

1− 1
p
,p

+
1∫ ∥∥g(k)n (s)

∥∥p

p
ds

)
.

0 0
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Since g
(k)
n (s) contains at most k-order derivatives of un(s) and the powers of lower order derivatives of un(s), by

induction method, it is easy to see that for any k ∈ N and p > 1,

sup
t∈[0,1]

∥∥w(k)
n (t)

∥∥p

1− 1
p
,p

+
1∫

0

∥∥∇w(k)
n (s)

∥∥p

p
ds � Kp,k, (6.25)

where Kp,k is independent of n.
Define

wn,m(t, x) := un(t, x)− um(t, x).

Then

∂twn,m = Lwn,m + b(un−1) · ∇wn,m + (G1,n,m +G2,n,m)wn−1,m−1,

subject to wn,m(0) = 0, where

Gki
1,n,m(t, x) :=

∑
j

1∫
0

∂ui b
j
(
t, x, un−1(t, x)+ r(un−1 − um−1)(t, x)

)
dr · ∂jukm(t, x),

Gki
2,n,m(t, x) :=

1∫
0

∂ui f
k
(
t, x, un−1(t, x)+ r(un−1 − um−1)(t, x)

)
dr.

By (6.22) and Lemma 5.1 again, we have

∥∥wn,m(t)
∥∥p

1− 1
p
,p

� C

t∫
0

∥∥(
G1,n,m(s)+G2,n,m(s)

)
wn−1,m−1(s)

∥∥p

p
ds.

By (6.14) and as in estimating (6.13), we further have

∥∥wn,m(t)
∥∥p

1− 1
p
,p

� C

t∫
0

(∥∥∇um(s)
∥∥p

p
+ 1

)∥∥wn−1,m−1(s)
∥∥p

1− 1
p
,p

ds

(6.25)
� C(Kp,1 + 1)

t∫
0

∥∥wn−1,m−1(s)
∥∥p

1− 1
p
,p

ds.

Taking super-limit for both sides and by Fatou’s lemma, we obtain

lim
n,m→∞ sup

s∈[0,t]

∥∥wn,m(s)
∥∥p

1− 1
p
,p

� C(Kp,1 + 1)

t∫
0

lim
n,m→∞ sup

s∈[0,r]

∥∥wn−1,m−1(s)
∥∥p

1− 1
p
,p

dr.

Thus, by Gronwall’s inequality, we get

lim
n,m→∞ sup

t∈[0,1]

∥∥wn,m(t)
∥∥p

1− 1
p
,p

= 0,

which together with (6.25) and the interpolation inequality yields that for any k ∈ N,

lim
n,m→∞ sup

t∈[0,1]

∥∥un(t)− um(t)
∥∥p

k,p
= 0.

Hence, there exists a u ∈ C([0,1];W∞(Rd ;Rm)) such that for any k ∈N,

lim
n→∞ sup

t∈[0,1]

∥∥un(t)− u(t)
∥∥p

k,p
= 0.

The proof is finished by taking limits for Eq. (6.19). �
Next we show the well-posedness of Eq. (6.12) under less regularity conditions on b, f .
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Theorem 6.6. Let p > d + 1. Suppose that there exist Cf > 0 and h ∈ (Lp ∩ L∞)(Rd) such that for all (t, x,u) ∈
[0,1] ×Rd ×Rm,∣∣f (t, x,u)

∣∣ � Cf |u| + h(x); (6.26)

and for any R > 0, there are three constants Cf,R,Cb,0,R,Cb,1,R > 0 such that for all t ∈ [0,1], x, y ∈ Rd and
u,u′ ∈ Rm with |u|, |u′| � R,{∣∣f (t, x,u)− f

(
t, x, u′)∣∣ � Cf,R

∣∣u− u′∣∣, ∣∣b(t, x,u)∣∣ � Cb,0,R,∣∣b(t, x,u)− b
(
t, y, u′)∣∣ � ωb,R

(|x − y|) +Cb,1,R
∣∣u− u′∣∣, (6.27)

where ωb,R : R+ → R+ is an increasing function with lims↓0 ωb,R(s) = 0. Then for any ϕ ∈ W
1− 1

p
,p
(Rd ;Rm), there

exists a unique strong solution u in the sense of Definition 6.3. Moreover,

sup
t∈[0,1]

∥∥u(t)∥∥∞ � eCf
(‖ϕ‖∞ + ‖h‖∞

)
. (6.28)

Proof. We divide the proof into three steps.

Step 1. Let χ(x) ∈ [0,1] be a nonnegative smooth function with χ(x) = 1 for |x| � 1 and χ(x) = 0 for |x| > 2. Let
(ρx

ε )ε∈(0,1) and (ρu
ε )ε∈(0,1) be the mollifiers in Rd and Rm. Define

bε(t, x,u) := b(t, ·, ·) ∗ (
ρx
ε ρ

u
ε

)
(x,u), ϕε(x) := ϕ ∗ ρx

ε (x),

and

fε(t, x,u) := f (t, ·, ·) ∗ (
ρx
ε ρ

u
ε

)
(x,u)χ(εx).

By (6.26) and (6.27), one sees that (6.14) and (6.15) are satisfied for bε and fε , and∣∣fε(t, x,u)∣∣ �
(
Cf

(|u| + ε
) + h ∗ ρx

ε (x)
)
χ(εx)

� Cf |u| +Cf εχ(εx)+ h ∗ ρx
ε (x), (6.29)

and for any R > 0 and all t ∈ [0,1], x, y ∈Rd and u,u′ ∈ Rm with |u|, |u′| � R,{∣∣fε(t, x,u)− fε
(
t, x, u′)∣∣ � Cf,R+1

∣∣u− u′∣∣, ∣∣bε(t, x,u)∣∣ � Cb,R+1,∣∣bε(t, x,u)− bε
(
t, y, u′)∣∣ � ωb,R+1

(|x − y|) +Cb,R+1
∣∣u− u′∣∣. (6.30)

Moreover, by definition (5.3),

‖ϕε‖1− 1
p
,p

� ‖ϕ‖1− 1
p
,p
. (6.31)

By Theorem 6.5, let uε ∈ C([0,1];W∞(Rd ;Rm)) solve the following equation

∂tuε = Luε + bε(uε) · ∇uε + fε(uε), uε(0) = ϕε. (6.32)

By (6.16) and (6.29), we have

sup
t∈[0,1]

∥∥uε(t)∥∥∞ � eCf
(‖ϕ‖∞ +Cf ε + ‖h‖∞

)
, (6.33)

and by (6.29), (6.30), (6.31) and (6.17),

sup
ε∈(0,1)

(
sup

t∈[0,1]
∥∥uε(t)∥∥p

1− 1
p
,p

+
1∫

0

∥∥∇uε(t)
∥∥p

p
dt

)
� K, (6.34)

where we have particularly used that for p > d + 1,

‖Cf εχ(ε·)+ h ∗ ρx
ε ‖p � Cf ε

1−d/p‖χ‖p + ‖h‖p � Cf ‖χ‖p + ‖h‖p.
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Step 2. In this step we want to show that

lim
N→∞ sup

ε∈(0,1)
sup

t∈[0,1]

∫
|x|�N

∣∣uε(t, x)∣∣p dx = 0. (6.35)

Let ζN(x) := 1 − χ(N−1x). Multiplying both sides of Eq. (6.32) by ζN(x), we have

∂t (uεζN) = L(uεζN)+ bε(uε) · ∇(uεζN)+ gN,ε,

where

gN,ε := ζNLuε −L(uεζN)− uεbε(uε) · ∇ζN + fε(uε)ζN .

Let

R := eCf
(‖ϕ‖∞ +Cf + ‖h‖∞

)
.

Since ∣∣bε(t, x, uε(t, x)) − bε
(
t, y, uε(t, y)

)∣∣ (6.30)
� ωb,R+1

(|x − y|) +Cb,R+1
∣∣uε(t, x)− uε(t, y)

∣∣
(5.4)
� ωb,R+1

(|x − y|) +C sup
t∈[0,1]

∥∥uε(t)∥∥1− 1
p
,p

|x − y|1− d+1
p

(6.34)
� ωb,R+1

(|x − y|) +CK
1
p |x − y|1− d+1

p , (6.36)

here and below, the constant C is independent of N and ε, by Lemma 5.1, we have

∥∥uε(t)ζN∥∥p

1− 1
p
,p

� C‖ϕεζN‖p
1− 1

p
,p

+C

t∫
0

∥∥gN,ε(s)
∥∥p

p
ds. (6.37)

Clearly,

‖ϕεζN‖p
1− 1

p
,p

� C‖ϕεζN‖p1,p � C‖ϕζN‖pp +C‖∇ϕζN‖pp +C‖ϕ∇ζN‖pp → 0, N → ∞.

By (2.16) and (6.29), we have

‖gN,ε‖p �
∥∥ζNLuε −L(uεζN)

∥∥
p

+ ∥∥uεbε(uε) · ∇ζN
∥∥
p

+ ∥∥fε(uε)ζN∥∥
p

� C
((‖LζN‖∞ + ‖ζN‖

1
2∞‖∇ζN‖

1
2∞

)‖uε‖p + ‖∇ζN‖∞‖uε‖
1
2
p‖∇uε‖

1
2
p

)
+ ‖uε‖p

∥∥bε(uε)∥∥∞‖∇ζN‖∞ +Cf ‖uεζN‖p +Cf ε
∥∥χ(ε·)ζN∥∥

p
+ ∥∥(

h ∗ ρx
ε

)
ζN

∥∥
p
.

Noticing that

εp
∥∥χ(ε·)ζN∥∥p

p
= εp−d

∫
Rd

∣∣χ(x)(1 − χ
(
N−1ε−1x

))∣∣p dx �
(

2

N

)p−d ∫
Rd

∣∣χ(x)∣∣p dx

and ∥∥(
h ∗ ρx

ε

)
ζN

∥∥p

p
�

∫
Bc
N−1

∣∣h(x)∣∣p dx,

by Lemma 2.4 and (6.34), we have

t∫
0

∥∥gN,ε(s)
∥∥p

p
ds � C

N
p
2

+C

t∫
0

∥∥uε(s)ζN∥∥p

p
ds + C

Np−d

∫
Rd

∣∣χ(x)∣∣p dx +C

∫
Bc

∣∣h(x)∣∣p dx.
N−1
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Substituting this into (6.37) and using Gronwall’s inequality, we obtain

lim
N→∞ sup

ε∈(0,1)
sup

t∈[0,1]

∥∥uε(t)ζN∥∥p

p
= 0.

This clearly implies (6.35).

Step 3. For fixed ε, ε′ ∈ (0,1), let us define

wε,ε′(t, x) := uε(t, x)− uε′(t, x).

Then

∂twε,ε′ = Lwε,ε′ + bε(uε) · ∇wε,ε′ + (G1,ε,ε′ +G2,ε,ε′)wε,ε′ + F1,ε,ε′ + F2,ε,ε′ ,

subject to wε,ε′(0) = ϕε − ϕε′ , where

Gki
1,ε,ε′(t, x) :=

∑
j

1∫
0

∂ui b
j
ε

(
t, x, uε(t, x)+ r(uε − uε′)(t, x)

)
dr · ∂jukε′(t, x),

Gki
2,ε,ε′(t, x) :=

1∫
0

∂ui f
k
ε

(
t, x, uε(t, x)+ r(uε − uε′)(t, x)

)
dr,

F1,ε,ε′(t, x) := (
bε

(
t, x, uε′(t, x)

) − bε′
(
t, x, uε′(t, x)

)) · ∇uε′(t, x),

F2,ε,ε′(t, x) := fε
(
t, x, uε′(t, x)

) − fε′
(
t, x, uε′(t, x)

)
.

By (6.36) and Lemma 5.1 again, we have

∥∥wε,ε′(t)
∥∥p

1− 1
p
,p

+
t∫

0

∥∥∇wε,ε′(s)
∥∥p

p
ds � hε,ε′ +C

t∫
0

∥∥(
G1,ε,ε′(s)+G2,ε,ε′(s)

)
wε,ε′(s)

∥∥p

p
ds,

where

hε,ε′ := C
∥∥wε,ε′(0)

∥∥p

1− 1
p
,p

+C

1∫
0

∥∥F1,ε,ε′(s)+ F2,ε,ε′(s)
∥∥p

p
ds.

By (6.30) and as in estimating (6.13), we further have

∥∥wε,ε′(t)
∥∥p

1− 1
p
,p

+
t∫

0

∥∥∇wε,ε′(s)
∥∥p

p
ds � hε,ε′ +C

t∫
0

(∥∥∇uε′(s)
∥∥p

p
+ 1

)∥∥wε,ε′(s)
∥∥p

1− 1
p
,p

ds.

By Gronwall’s inequality and (6.34), one sees that

sup
s∈[0,1]

∥∥wε,ε′(s)
∥∥p

1− 1
p
,p

+
1∫

0

∥∥∇wε,ε′(s)
∥∥p

p
ds � Chε,ε′ . (6.38)

Now it is standard to show that

lim
ε,ε′→0

∥∥wε,ε′(0)
∥∥p

1− 1
p
,p

� C lim
ε,ε′→0

∥∥wε,ε′(0)
∥∥p

1,p = 0,

and by (6.27) and (6.34),

lim
ε,ε′→0

1∫ ∥∥F1,ε,ε′(s)
∥∥p

p
ds � K lim

ε,ε′→0

(
ωb,R+1(ε)+Cb,1,R+1ε +ωb,R+1

(
ε′) +Cb,1,R+1ε

′)p = 0.
0
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We now look at F2,ε,ε′ . For any N > 0, we write

1∫
0

∫
Rd

∣∣F1,ε,ε′(s, x)
∣∣p
p

dx ds =
1∫

0

∫
Bc
N

∣∣F1,ε,ε′(s, x)
∣∣p
p

dx ds +
1∫

0

∫
BN

∣∣F1,ε,ε′(s, x)
∣∣p
p

dx ds =: I1 + I2.

For I1, by (6.29) we have

I1 �
1∫

0

∫
Bc
N

(
2Cf

∣∣uε′(s, x)
∣∣ + εχ(εx)+ h ∗ ρε(x)+ ε′χ

(
ε′x

) + h ∗ ρε′(x)
)p dx ds

� C sup
s∈[0,1]

∫
Bc
N

∣∣uε′(s, x)
∣∣p dx + C

Np−d

∫
Rd

∣∣χ(x)∣∣p dx +C

∫
Bc
N−1

∣∣h(x)∣∣p dx,

which converges to zero uniformly in ε′ ∈ (0,1) by (6.35) as N → ∞.
For I2 and for fixed N > 0, by the dominated convergence theorem, (6.30) and the approximation of the identity

(cf. [36, p. 23, (16)]), we have

I2 �
1∫

0

∫
BN

sup
u∈BR

∣∣fε(t, x,u)− fε′(t, x,u)
∣∣p dx dt → 0, ε, ε′ → 0.

Combining the above calculations and letting ε, ε′ ↓ 0 for (6.38), we obtain

lim
ε,ε′↓0

sup
s∈[0,1]

∥∥wε,ε′(s)
∥∥p

1− 1
p
,p

= 0, lim
ε,ε′↓0

1∫
0

∥∥∇wε,ε′(s)
∥∥p

p
ds = 0.

Hence, there exists a u ∈ C([0,1];W1− 1
p
,p
(Rd ;Rm))∩Lp([0,1];W1,p(Rd ;Rm)) such that

lim
ε↓0

sup
s∈[0,1]

∥∥uε(s)− u(s)
∥∥p

1− 1
p
,p

= 0, lim
ε↓0

1∫
0

∥∥∇uε(s)− ∇u(s)
∥∥p

p
ds = 0.

Taking limits in Lp-space for Eq. (6.32), it is easy to see that u solves Eq. (6.12). �
Remark 6.7. In this remark, we explain how to use the above results to the critical Hamilton–Jacobi equation (cf.
[12,31]). Let

H(t, x,u, q) : [0,1] ×Rd ×Rm ×Mm×d → Rm

be a measurable and smooth function in x,u, q , where Mm×d denotes the set of all real valued m × d-matrices.
Consider the following Hamilton–Jacobi equation

∂tu = Lu+H(t, x,u,∇u), u(0) = ϕ. (6.39)

Formally, taking the gradient we obtain

∂t∇u = L∇u+ ∇xH(t, x,u,∇u)+ ∇uH(t, x,u,∇u) · ∇u+ ∇qH(t, x,u,∇u) · ∇∇u.

If we let

w(t, x) := (
u(t, x),∇u(t, x)

)t
,

then

∂tw = Lw + b(w) · ∇w + f (w), w(0) = (ϕ,∇ϕ)t,
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where for w = (u, q),

b(t, x,w) := (
0,∇qH(t, x,u, q)

)
and

f (t, x,w) := (
H(t, x,u, q),∇xH(t, x,u, q)+ ∇uH(t, x,u, q) · q)t

.

Thus, we can use Theorems 6.5 and 6.6 to uniquely solve Eq. (6.39) under some assumptions on H and ϕ.
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