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Abstract

By using Fourier’s transform and Fefferman—Stein’s theorem, we investigate the L”-maximal regularity of nonlocal parabolic
and elliptic equations with singular and non-symmetric Lévy operators, and obtain the unique strong solvability of the correspond-
ing nonlocal parabolic and elliptic equations, where the probabilistic representation plays an important role. As a consequence,
a characterization for the domain of pseudo-differential operators of Lévy type with singular kernels is given in terms of the Bessel
potential spaces. As a byproduct, we also show that a large class of non-symmetric Lévy operators generates an analytic semigroup
in LP-spaces. Moreover, as applications, we prove Krylov’s estimate for stochastic differential equations driven by Cauchy pro-
cesses (i.e. critical diffusion processes), and also obtain the global well-posedness for a class of quasi-linear first order parabolic
systems with critical diffusions. In particular, critical Hamilton—Jacobi equations and multidimensional critical Burger’s equations
are uniquely solvable and the smooth solutions are obtained.
© 2012 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Consider the following Cauchy problem of fractional Laplacian heat equation in the domain [0, c0) x R? with
o €(0,2)and A > 0:

du+ (—AN)Iu+b-Vu+iu=f,  u0) =g, (1.1)

where b : [0, 00) x R? — R? is a measurable vector field, f : [0, 00) x R — R and ¢ : R? — R are two measurable
functions, and (—A)? is the fractional Laplacian (also called Lévy operator) defined by

(A 2u=F (|- *"Fw), ueSRY), (12)
where F (resp. F~!) denotes the Fourier (resp. inverse) transform, S (R?) is the Schwartz class of smooth real or

complex-valued rapidly decreasing functions.
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Let (L;);<o be a symmetric and rotationally invariant a-stable process. Let b, f € Cp°([0, 00) x RY) and X; (x)
solve the following stochastic differential equation (SDE):

s N

X,,S(x)=x+/b(—r,x,,r(x))dr+/dL,, 1<s<0, xeR?

t t

Itis well known that for ¢ € C}° (R?), the unique solution of Eq. (1.1) can be represented by the Feyman—Kac formula
as (see Theorem 5.2 below):

0

u(t,x) =Ep(X_; 0(x)) +E</e‘m+’)f(—s, X_5(x)) ds), t>0. (1.3)
—t
In connection with tl}xis representation, the first order term b - Vu is also called the drift term, and the fractional
Laplacian term (—A)Zu is also called the diffusion term.
Let now u(¢, x) satisfy (1.1). For r > 0 and (z, x) € [0, 00) X R, define

u'(t,x):= rfo‘u(r“t, rx), b (t,x):= b(r“t, rx), @, x):= f(ro‘t, rx),
then it is easy to see that u” satisfies
"+ (—A) 2u” + (B V") 4 AT = T (1.4)

If one lets r — 0, this scaling property leads to the following classification:

e (Subcritical case: « € (1, 2).) The drift term is controlled by the diffusion term at small scales.
e (Critical case: o = 1.) The fractional Laplacian has the same order as the first order term.
e (Supercritical case: @ € (0, 1).) The effect of the drift term is stronger than the diffusion term at small scales.

In recent years there is great interest to study the above nonlocal equation, since it has appeared in numerous
disciplines, such as quasi-geostrophic fluid dynamics (cf. [10,9]), stochastic control problems (cf. [34]), non-linear
filtering with jump (cf. [28]), mathematical finance (cf. [5]), anomalous diffusion in semiconductor growth (cf. [38]),
etc. In [12], Droniou and Imbert studied the first order Hamilton—Jacobi equation with the fractional diffusion (—A)%
basing upon a “reverse maximal principle”. Therein, when « € (1, 2), the classical solution was obtained; when
a € (0, 2), the existence and uniqueness of viscosity solutions in the class of Lipschitz functions was also established.
In [9], Caffarelli and Vasseur established the global well-posedness of critical dissipative quasi-geostrophic equations
(see also [21] for a simple proof in the periodic and two-dimensional case). On the other hand, Holder regularity
theory for the viscosity solutions of fully non-linear and nonlocal elliptic equations was also developed by Caffarelli
and Silvestre [8], and Barles, Chasseigne and Imbert [4] (see also [3] and the series of works of Silverstre [30,31,
33,32], etc.). We emphasize that the arguments in [8] and [4] are different: the former is based on the Alexandorff—
Backelman—Pucci’s (ABP) estimate, and the latter is based on the Ishii-Lions’ simple method. Moreover, in the
subcritical case, Kurenok [25] established Krylov’s type estimate for one-dimensional stable processes with drifts
(see [39] for multidimensional extension).

The purpose of this paper is to develop an L?-regularity theory for nonlocal equations with general Lévy operators.
We describe it as follows. Let v be a Lévy measure in R?, i.e., a o-finite measure satisfying v({0}) = 0 and

/min(l, |y|2)v(dy) < +00.
R4
For a € (0, 2), we write
Y@ = 1lae, 2y + lazi Y yi<i-

In this article we are mainly concerned with the following pseudo-differential operator of Lévy type:

£V f () = / [t — f) =y @ Viw]vdy).  feSRY). (1.5)

R4
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where v satisfies

v (B) <v(B) < v (B), Be%B(RY), (1.6)
and

lo=1 / yv(dy) =0, O<r <R <+4o0. (1.7)

r<|yl<R
Here, vi(a), i =1, 2 are the Lévy measures of two «-stable processes taking the form
oo1 ro)d
B\r r
v (B) = / (/ W) X (de), (1.8)
sd-1 Y0

where SY~1 = {6 € R¢: |0| = 1} is the unit sphere in R?, and X; called the spherical part of v,.(a) is a finite measure on

S9!, We remark that condition (1.7) is a common assumption in the critical case (see [27,11]), and is clearly satisfied
when v is symmetric. Moreover, in the case of o € (1, 2), for the convenience of proof, we use y rather than y1,y <1
in (1.5). This is not essential since one can always minus a first order term (f|y‘>1 yv(dy)) - Vf(x)in (1.5).

One of the aims of the present paper is to determine Z” (L"), the domain of the Lévy operator £V in L”-space. We
shall prove that under (1.6) and (1.7), if v{a) is nondegenerate (see Definition 2.6 below), then for any p € (1, 00),

2P (L) =H*"7,

where H*? is the a-order Bessel potential space. When v(dy) = a(y)dy/|y|?T® with ¢; < |a(y)| < 2, this charac-
terization was obtained recently by Dong and Kim [11]. It is remarked that the technique in [4] was used by Dong
and Kim to derive some local Holder estimate for nonlocal elliptic equation in order to prove their characterization.
However, the following sum of nonlocal operators is not covered by [11]:

£ — i/ SO it b it ) = S 00 A
P Lyi [+
R

since in this case, the Lévy measure (or the Lévy symbol) is very singular (or non-smooth) (see Remark 2.7). Notice
that if the Lévy symbol is smooth and its derivatives satisfy suitable conditions, the above characterization falls into
the classical multiplier theorems about pseudo-differential operators (cf. [36,17]). We also mention that Farkas, Jacob
and Schilling [13, Theorem 2.1.15] gave another characterization for 27 (L") in terms of the so called y/-Bessel
potential space, where i is the symbol of L.

The strategy for proving the above characterization is to prove the following Littlewood—Paley type inequality: for
any p € (1, 00), there exists a C > 0 such that forany A > 0, f € LP(Rt x Rd),

[e¢] t

P o0
/ ‘Cvz/efk(tfs)Ptvlsf(s’ yds|| dr < C/“f(” ')Hidt’
0 0 p 0

where vy, vy are two Lévy measures satisfying (1.6) and (1.7), and (P," ):>0 is the semigroup associated with £
Indeed, this estimate is the key ingredient in L”-theory of PDE (see [26,24]), and corresponds to the optimal regu-
larity of nonlocal parabolic equation. Likewise [11], when v(dy) = a(y)dy/| y|9* with smooth and 0-homogeneous
a(y) and ¢ < |a(y)] < ¢, Mikulevicius and Pragarauskas [27] proved this type of estimate by showing some weak
(1, 1)-type estimate. In a different way, the proof given here is based on Fourier’s transform and Fefferman—Stein’s
theorem about sharp functions (cf. [22,24]). We stress that probabilistic representation (1.3) will play an impor-
tant role in reducing the general non-homogeneous operator to homogeneous operator (see Step 1 in the proof of
Theorem 4.2).

Another aim of this paper is to solve the linear and quasi-linear first order nonlocal parabolic equation with critical
diffusions in the L”-sense rather than the viscosity sense [12]. The critical case is specially interesting not only
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because it appears naturally in quasi-geostrophic flows, but also it is an attractive object in mathematics. In particular,
we care about the following multidimensional critical Burger’s equation:

i+ (—A)Zu+u-Vu=0, u0)=og. (1.9)

In one-dimensional case, this equation has a natural variational formulation and admits a unique global smooth so-
lution (see [7,20]) under some regularity assumption on ¢. In multidimensional case, the local well-posedness of
Burger’s equation is relatively easy (cf. [18,40]). However, the global well-posedness of Eq. (1.9) seems to be un-
known. The reason lies in two aspects: on one hand, there is no energy inequality and thus, the variational method
seems not to be applicable; on the other hand, the first order term has the same order as the diffusion term. In fact,
Kiselev, Nazarov and Schterenberg [20] have showed the existence of blow up solutions for 1-D supercritical Burger’s
equation. The idea here is to establish some a priori Holder estimate for Eq. (1.1) and then use the classical method
of freezing coefficients. In [32], Silvestre proved an a priori Holder estimate for Eq. (1.1) with only bounded measur-
able b. This is the key point for us. However, the assumption of scale invariance on Lévy operators seems to be crucial
in [32] since the proof is by the iteration of the diminish of oscillation at all scales. As above, we shall use probabilistic
representation (1.3) like a perturbation argument to extend Silvestre’s estimate to the more general non-homogeneous
Lévy operator (see Corollary 6.2).

This paper is organized as follows. In Section 2, we prepare some lemmas and recall some facts for later use. In
Section 3, the basic maximum principles for nonlocal parabolic and elliptic equation are proved. In Section 4, we prove
the main Theorem 4.2, and give a comparison result between two Lévy operators. In particular, we show that (P"); >0
forms an analytic semigroup in L”-space. In Section 5, we prove the existence of a unique strong solution for the first
order nonlocal parabolic equation with critical diffusion and variable coefficients. Here we assume that the first order
coefficient is uniformly continuous with respect to the spatial variable since we are working in the critical case, and the
non-homogeneous term is in some L”-space. As an application, we also prove Krylov’s estimate for critical diffusion
processes. We mention that in the subcritical case, Krylov’s estimate was proved in [25] and [39]. In Section 6, we
investigate the quasi-linear first order nonlocal parabolic system, and get the existence of smooth solutions and strong
solutions. In particular, the global solvability of Eq. (1.9) is obtained. In this section, the coefficients are assumed to be
locally Lipschitz continuous, the zero order term is also required to be linear growth, and the initial value is in some
fractional Sobolev spaces. In the whole proofs, basing upon the a priori estimates, we use the mollifying technique in
many places.

Notations. We collect some frequently used notations below for the reader’s convenience.

e R":=(0, 00), R(‘)" := [0, 00). For a complex number z, Re(z) (Im(z)): real (image) part of z.

o S(RY): the Schwartz class of smooth real or complex-valued rapidly decreasing functions. C ,‘jo(Rd ) (resp.
C}’j (RY), Cgo(]Rd )): the space of all bounded smooth functions with bounded derivatives of all orders (resp. up to
k-order, with compact support).

e F and F~!: Fourier’s transform and Fourier’s inverse transform.

e v: Lévy measure; v@: the Lévy measure of a-stable process; X: a finite measure on S¢~!, called the spherical
part of v(®,

e L): the Lévy process associated with Lévy measure v; P!*: the semigroup associated with L}. £": the generator
of L;‘ , L£V*: the adjoint operator of L"; p}: the heat kernel of £"*.

e B,.(x0):={x:€R% |x —xo| <r}, B, := B,(0), By : the complement of B,.

o H*7: Bessel potential space; W*?: Sobolev—Slobodeckij space; W™ := (7, » Wkop,

e wjp: the continuous modulus function of b, i.e., wp(s) := SUP |y y|<s [b(x) — b(y)|.

o 1P: the space of Holder continuous functions with the norm Z,[EO VK Flloo + IV F I8, where [B] denotes
the integer part of £, and ||V fllyys := sup;, _yy < [V £ (x) = VI £ (1)1 — yIP.

® (pe)ec(o,1): a family of mollifiers in R? with ps(x) = e 4 p(e~x), where p is a nonnegative smooth function
with support in By and satisfies fRd px)dx =1.

Convention. The letter C with or without subscripts will denote an unimportant constant. The inner product in Eu-

9

clidean space is denoted by ““-”".
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2. Preliminaries

For @ € (0,2), let v be a Lévy measure in RY and satisfy (1.6) and (1.7). Let (L;);>0 be the d-dimensional
Lévy process, a stationary and independent increment process defined on some probability space (£2,.%, P), with
characteristic function

Eefli =@ g R, 2.1
where 1, is the Lévy exponent with the following form by Lévy—Khintchine’s formula (cf. [2,29]),
W)= [(1iE 5@ = )iy, 22)
R4

Let v® take the form (1.8) and satisfy (1.7). It is well known that (L,”m)@o is a d-dimensional «-stable process and
has the following self-similarity (cf. [29, Proposition 13.5 and Theorem 14.7]):

(L3 0 2 (e

>0 = Vr >0, (2.3)

>0’

d . ..
where 2 means that the two processes have the same laws. Moreover, from expression (1.8), it is easy to see that for
any B € (0, ),

fmin(|y|ﬁ, IV1*)v@ (dy) < +o0, (2.4)
Rd
and
- d
Re(I//vm)(E)):( f %%”) / & 61 £(d6). 2.5)
0 sd-1

The Feller semigroup associated with (L});>¢ is defined by
Pl fx):=Ef(L} +x), feSRY).
The generator of (P;);>0 is then given by (cf. [2, Theorem 3.3.3])

LY f(x)= /[f(x +y) = fx) —y@. Vf)]vdy), (2.6)
R4
1.€.,
WP fx)=LP fx)=P/L f(x), 1>0. 2.7)
Moreover,

F(L£) &) = =4 (&) - F(F)E),

and v, is also called the Lévy symbol of the operator £V. From (2.5), one sees that if the spherical part X of v
is the uniform distribution (equivalently, rotationally invariant) on S9! then Y@ (&) = cq,«|E]* for some constant
¢d.o > 0, and thus, by (1.2),

£ f @) = caa(-0)F f (). 2.8)

On the other hand, from expression (2.6) and assumption (1.7), it is easy to see that £ has the following invariance:

e For z € RY, define f.(x) := f(z + x), then
Lf0)=L"fe@. £ f], =L f]

where p > 1 and || - ||, denotes the usual L”-norm in R4,

b (2.9)
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e For r > 0, define f,(x) := f(rx), then
LY frx) =L fr(x) =r=oL0) £ (x). (2.10)

We remark that 7%v@ (r-) = v©@ by (1.8).

° C”(C,SO(R")) - C,;X’(Rd), and for any k > 2, LV : C’b‘(Rd) — C£_2(Rd) is a continuous linear operator, where
Cyr (R%) (resp. C’,j (R%)) is the space of all bounded smooth functions with bounded derivatives of all orders (resp.
up to k-order).

The adjoint operator of L” is given by

£ f(x) = / (£ — ) — FG) + ¥ @ -V £ ]o(dy). @.11)
Rd

ie.,

//vwf(x)'g(x)dx=/f(x)'£”*g(x)dx, f,geS(]Rd).
d d

Clearly, £"* = £"), where v(—) denotes the Lévy measure v(—dy).

Definition 2.1. Let v and v, be two Borel measures. We say that vy is less than vy if
vi(B) <n(B), BeB(RY),

and we simply write v; < v; in this case.

Lemma 2.2. Let v be a Lévy measure less than v'® for some « € (0,2), where v® takes the form (1.8). We also
assume (1.7) for v. Then for some ko > 0,

[ (©)] <wol€]”, & eRY (2.12)

Proof. Write é :=&/|£|. For a € (1, 2), by the definitions of ¥, and v®, we have

[tm (v (©)))| / £ -y —sin(& - y)|v(dy) < / £ -y — sin(& - y) v (dy)

(L8) |§ - (r0) —sin(§ - r0)|
/f mEw dr X (d9)
sd-1 0
= jg° f /|E'r9_1sfl(g'r9)|drz(d9)<c|él°‘.
r
sd-1 0

For « =1, by (1.7), we have

’Im(l/fv(f))‘ = '/(5 Y1y <le-r —sinGE '}’))V(dy)’ < /|5‘y1|y|<|g|71 —sin(§ - }’)’V(l)(d)’)
R4 R4

_ / f's'(r9)1r<|s;—Sin(é-ré’)ldrz(de)
r

sd-1 0

=gl [ [ B g s ) < el

Sd-1 0
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For o € (0, 1), we have

m(v, ()] < / Isin(& - )|v(dy) < / Isin(& - )@ (dy)

R4 R4

e / /Md 2(d6) < CIE .

sd-1 0
Thus, combining with (2.5), we obtain (2.12). O

For k e Nand p €[1, o0], let Wk be the usual Sobolev space with the norm

k
1 lep:=>_]
j=0

where V/ denotes the j-order gradient.
We need the following simple interpolation result.

Lemma 2.3. Let p € [1,00] and B € [0, 1]. For any f € WP and y € R?, we have

[ £+ = O, <@IF) UV AL, (2.13)

Proof. Observing that for f € S(R?),
|fx+y) = F@| <yl / IV fl(x +sy)ds,
0

by a density argument, we have for any f € Wi,

1+ — f()|| IV £lplyl
Thus, for any g € [0, 1],

[FC+2 = O], <@IFIR) AUVl < QIFI ) UV,

The result follows. O

The following lemma will be used to derive some asymptotic estimate of large time for the heat kernel of Lévy
operator (see Corollary 2.9 below).

Lemma 2.4. Assume that Lévy measure v is less than v® for some o € (0, 2), where v\® takes the form (1.8). Then
forany p €[1,00] and f € W>P, we have

IV LI VIV, + IV £ PIVEFLS, ae1,2), ye@—1,11, Bel0,a—1),
1271, <CRUVAI IV LI, + 1A PIV G, a=1, y (0,11, B[O, ),
LA VUV £, + 1 PV 1, ae(0,1), ye(all, Bel0,a),

where the constant C depends only on «, B, y and the Lévy measure v(®.

Proof. Let us first look at the case of « € (1, 2). In this case, we have

1
E”f(x)=fy~ (/[Vf(x+sy) —Vf(x)]ds)v(dy).
0

R4
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Since v is bounded by v®, by Minkowski’s inequality and Lemma 2.3, we have for y € (@ — 1, 1] and 8 € [0, o — 1),

I £, < @IV FI) IV L / @y + IV £1,) VR / Iy dy).
IyI<1 lyl>1

In the case of o = 1, we similarly have for y € (0, 1] and 8 € [0, 1),

I rl, < @Ivr) v sl / IOy + @17 1,) IV I / Py dy).

lyIs1 Iy[>1

In the case of « € (0, 1), we have for y € (o, 1] and 8 € [0, ),

I rl, < @Irip) IV i f vy + QI71,) I i / y1Pv @ @dy).
N [yI>1

The proof is complete by (2.4). O
We also need the following estimate, which will be used frequently in localizing the nonlocal equation.

Lemma 2.5. Assume that Lévy measure v is less than v®) for some a € (0, 2), where v\®) takes the form (1.8). Let
¢ € S(RY) and set ¢, (x) := ¢ (x — ) for z € R,

1. Forany B € OV (¢ — 1), 1) and p € [1,00), there exists a constant C = C(v("‘), B, p,d) > 0 such that for all
f GW],[?’

1/p
|27 (e = (€7 f)e||Pdz ) < Clclaplf IS PIAIT - (2.14)
p p
Rd

2. Forany Be (0V (o« — 1), 1) and y € [0, &), there exists a constant C = C(v¥, B, y,d) > 0 such that for any
pell, ool and f € HP,

lercro = (e el <c((level, + 0y IVE I F lloo + 1VE 11 £ ll205), (2.15)
where || fll35 :=Sup,s, | y1<1 |F () = FOI/Ix — y|P, and for any p € [1,00] and f € W'?,
l2cro = (2 )ell, <127 | oo + 1o IVENEN LF 1 + IV E ool £ 12UV £15). (2.16)
Proof. (i) By formula (2.6), we have
LO(fE) @) — L7 f(x) - L (x) — f(x) - L7E(x)
= f [f(x+y) = FO][&x +y) = &) ]vdy)

]Rd

= / [fx+y) = FO][e x4+ y) — & (0)]vdy) + / [fx+y) = FO][E x4+ y) — &(0)]v(dy)
lyl<1 [yl>1

=1V x) + 1P (x). (2.17)

For Iél)(x), by Fubini’s theorem, Minkowski’s inequality and Lemma 2.3, we have

Jiopas< |
R4

R4

p
dz

p

1
/ |f(-+y)—f(-)|</|V§Z|(-+sy)ds>|y|v(dy)
0

[yI<1
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P
<|IVCIIZf< f |f(x+y)—f(x)|~|y|v(dy)) dx

R4 |yI<1
)4
<||vz||,€< / Hf(-+y)—f(-)||,,-Iylv(dy))
lyI<1
p
<||V<:||Z(2||f||,,)”““”||Vf||§'3( / |y|1+f‘v<°‘><dy)>.

lyI<1
For IZ(2) (x), we similarly have
f||1§2) |7 dz <42 (v (BY) IS 151/ 1.

R4

Moreover, by (2.9) and Lemma 2.4, we also have

”fEVQ ”pdZ = ”£U§”p||f”§ < C”f”é7 ||f||§
p p p
R4

Combining the above calculations, we obtain (2.14).
(ii) We have

1
17671, < 1 f g 1€ 1 f 91" Pu@y) < I a1 Ve f Iy @ @dy),
lyIs1 lyI<1

and by Lemma 2.3,

1121, < F oo 2081,) 7 1V E I f vy < 1 flles 1E1,) 7 1VEN / Iy v (dy).
[yl>1 [y|>1

Estimate (2.15) follows by (2.17) and || fL ¢ |l < I fllooIL£VC | p. As for (2.16), it is similar. O
We introduce the following notion about the nondegeneracy of v(®).

Definition 2.6. Let v(® be a Lévy measure with the form (1.8). We say that v®) is nondegenerate if the spherical part
¥ of v(® satisfies

/|90~9|"‘E(d9);£0, Vo e S41. (2.18)
Sd—l

By the compactness of SY~! and (2.5), the above condition is equivalent to saying that for some constant k1 > 0,

Re(V, (§)) > k11E]%, & eR. (2.19)

Remark 2.7. Let L,1 , ..., L} be n-independent copies of Lévy process L; . Write
L=(L!,....L}).

Then L, is an nd-dimensional Lévy process and the characteristic function of L; is given by VE =Y, EH+-+
Yo (E7), where € = (&1, ..., &") e R" with &' € R?. Clearly, if

Re(y(§)) > «1l61%, & eRY,
then

Re(¥(§)) > ki |E|*, EecR™.
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It should be noticed that the Lévy measure v of L, is very singular and has the expression

p(dX) = v(dxl)eo(dxz, e dx") A +60(dx1,..., dx"il)v(dx"),

where X = (xl, XY e R with x e RY, € denotes the Dirac measure in R@=Dd_and the generator of L, is given
by
n
LfFE) = Z/[f(xl, Xy LX) = fE) =y @V £ E)]vdy). (2.20)
i=lpg

We need the following simple result about the smoothness of the distribution density of Lévy process (see [16,
Lemma 3.1] for the symmetric case).

Proposition 2.8. Let yr, be defined by (2.2) and satisfy
Re(V,(§)) = k116]%, & eR™ 2.21)

Then for each t > 0, the law of L} in R? has a C®-density p; with respect to the Lebesgue measure, and p; €
Niexy WEL In particular, by (2.7),

dip) (¥) = L"p(x), (1,x) eRY xRY, (2.22)
where LV* is defined by (2.11), and p} (x) is also called the heat kernel of L'*.

Proof. By (2.21) and [29, p. 190, Proposition 28.1], L} has a smooth density p;. Let us now prove that for each
neN,V'p)e L' (RY). By Fourier’s transform (2.1), one sees that

Ve — —i&x ,— 19 () 4g
P =15 / e e 3
Rd

Set

()= / (1+i& -y —e57)v(dy).

lyI<1

It is easy to see that ¢ is a smooth complex-valued function, and by (2.21), for any n € N and jy, ..., j, € {1,...,d},

§ &)y Ej,e T e S(RY),
where & = (&1, ...,&y). Since Fourier’s transform F is a bijective and continuous linear operator from S (R?) onto

itself, there is a function f € S(R?) such that

F@E) =F()E) =) - &,e 0.

On the other hand, by Lévy—Khintchine’s representation theorem (cf. [2, Theorem 1.2.14]), there is a probability
measure x on R such that

)= / &Y p(dy) = e~ =DE),
Rd
Thus, by the property of Fourier’s transform, we have
)" [ e o
dy;, - By, pi(x) = /e i& x(§j1 o Eje t¢(5§))e =9)E) gg

Q2m)d
R4

S / e T8 f(E)aE) dE = (—i)" f fx = y)u(dy).
]Rd

~ @n)
]Rd

From this, we immediately deduce that V" p; L'®RY. O
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Using Proposition 2.8 and Lemma 2.4, we have the following useful estimates about the heat kernel.

(@)

i

(o)
1

Corollary 2.9. Let v;"’, i = 1,2 be two Lévy measures with the form (1.8), where v; ' is nondegenerate. Let v be

another Lévy measure less than véa). Then, there are two indexes 81,68y > 1 (depending only on «) and constants
C1,Cy > 0 (depending only on d, «, vi(a) and not on v) such that for all t > 1,
@ s
Iveypt |, < cue™, (2.23)
()
|a:.L¥p," ||, < Cat ™2 (2.24)

Proof. First of all, by the scaling property (2.3) and Proposition 2.8, we have

(@ _ (@ B
ptl (.Xf):l d/otpll (l l/otx)’

and for eachn € N,
@ L@
/|V”p,1 ‘(x)dx:t_”/“/w"pl' ’(x)dxéCt_"/“. (2.25)
R4 R4
Estimate (2.23) follows from Lemma 2.4 by suitable choices of § and y. Notice that by (2.22),
(@) (@) ()
WL pt (x)=LLY *pt (x).

Estimate (2.24) follows by using Lemma 2.4 twice. O

Now we turn to recall the classical Fefferman—Stein’s theorem. Fix « € (0, 2). Let Q@ be the collection of all
parabolic cylinders

0, = (to, 10 +r%) x {x e R%: |x —xo| <r}.

For f € L} (R4*!), define the Hardy-Littlewood maximal function by

Mf(t,x):= sup f|f(s,y)|dyds,
0eQ®,(1,x)eQ 0

and the sharp function by

Flx=  sup ][|f(s,y>—fg|dyds,
0eQ@,(1,x)eQ 0

where fp = fQ f(s,y)dyds = |_an f(s,y)dyds and |Q] is the Lebesgue measure of Q. One says that f €

BMO®R*Yy if £ e LR, Clearly, f € BMO(R?T!) if and only if there exists a constant C > 0 such that for
any Q € Q@ and for some ag € R,

f|f(ssy)_aQ|dde <C.
0

The following theorem is taken from [24, Chapter 3] (see also [36, p. 148, Theorem 2]).

Theorem 2.10 (Fefferman—Stein’s theorem). For p € (1, 00), there exists a constant C = C(p, d, o) such that for all
feLP®RI,

11, <Cl ], (2.26)
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Using this theorem, we have
Theorem 2.11. For g € (1,00), let . be a bounded linear operator from L9 (R4 10 L9(R4HYY and also from
L®RI*YY 10 BUORITY. Then for any p € [q, 00) and f € LP (RI*1),
17 fllp <Clflps

where the constant C depends only on d, p, q,a and the norms |7 ||pa— 4 and | T || L~ mo-

Proof. Since by [35, p. 13, Theorem 1],
||(=7f)ﬁHq L2UMIT fllg CINT fllg <CNIT lLa—srall flig
and

17 O . < NT Nl puoll £ oo

by the classical Marcinkiewicz’s interpolation theorem (cf. [35]), we have

(2.26)
1T fllp < CT ], <CUfllp,

where p € [q,00). O
3. A maximum principle of nonlocal parabolic equation

In this section we fix a Lévy measure v less than v@ for some « € (0, 2), where v® takes the form (1.8), and
prove basic maximum principles for nonlocal parabolic and elliptic equations for later use.

Lemma 3.1 (Maximum principle). For T > —oo, let b(t, x) be a bounded measurable vector field on [T, 00) X R4
and u € C([T, 00); Cz(RY)). Assume that for all (t, x) € [T, 00) x RY, u satisfies

t

t t

u(t,x)=u(T,x)—i—/ﬁ”u(s,x)ds+/(b-Vu)(s,x)ds—i—/f(s,x)ds. 3.1
T T T

If f <0, then

sup sup u(t,x) < sup u(7T,x).
t>T xeRd xeR4

In particular, the above equation admits at most one solution u € C ([T, 00); Cl% (Rd)).

Proof. Let x(x) € [0, 1] be a nonnegative smooth function with y (x) =1 for |x| < 1, and x (x) = 0 for |x| > 2. Set
for R > 0,

xr () := x(R™'x),
and for 6 > 0,
wh(t, x) = xr(X)u(t,x) — 8t —T).
By (3.1), one sees that for all (¢, x) € [T, 00) X RY,

1 t

t
w‘SR(t,x)=w‘]se(T,x)+/£”w‘,§g(s,x)ds~|—/(b-Vw‘;)(s,x)ds+/g1e(s,x)ds—S(I—T),
T T T

where

gr = xrL'u — L wgr —ub - Vg + fx&. (3.2)
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For fixed S > T and § > 0, we want to show that for large R,
sup sup w‘,se(t,x) < sup w‘,sg(T,x) < sup u(T, x). 3.3)
te[T,S] xeRd xeR4 xeRd
If this is proven, then the result follows by first letting R — oo and then § — 0.
Below, for simplicity of notation, we drop the indexes R and §. Suppose that (3.3) does not hold, then there exists
atime tg € (T, S] and xq € R? such that w achieves its maximum at point (%9, x9). Thus,
Vuw(to, x0) =0, (3.4)
and
1
0 < lim — (w(to, x0) — w(to — h, x0))
nyo h
to t fo
—1 —1 —1
< lim — / L'w(s, x0)ds + lim — / (b-Vw)(s, xp)ds + lim — / g(s,xp)ds — 6
hi0 h hl0 h

nlo h
to—h to—h to—h

=L+ hL+1-6. 3.5
Since for all y € R,
w (o, xo + y) < w(fo, xo),
in view of w € C([T, S1; C?(R9)) and by (3.4), we have

1o
— 1
I = kii% E / [ﬁ”w(s, x0) — L w1, xo)] ds + L%w(1y, x0) < 0.
to—h

Similarly, for I, we have

fo
— 1
L= }}fé - / b(s, x0) - (Vw(s, x0) — Vw(to, x0)) ds =0.
to—h
For I3, recalling (3.2) and f <0, by (ii) of Lemma 2.5 and Lemma 2.4, we have for some y € (0, 1),

lulloollPlloo I VX I
< xRl = £ Gri)| o + =

< Cllulloo + [IVfloo) n l[tlloo 181l 0o IV X ll oo
= RY R
where C is independent of R. Choosing R to be sufficiently large, we obtain

El

L+L+13-6<0,

a contradiction with (3.5). Thus, we conclude the proof of (3.3). O
Similarly, we also have the following maximum principle.

Lemma 3.2 (Maximum principle). Assume A > 0 and b is a bounded measurable vector field. Let u € C}% (R‘“‘l) (resp.
u € CH(RY)) satisfy

.fb”’)»u =u—Lu+ B -Vu+iu<0 (resp. (A — E")u < O).
Then u < 0. In particular, fb‘fku =0 (resp. (A — LY)u = 0) admits at most one solution in Cg(Rd"’]) (resp. CZ (R9Y).

Corollary 3.3. Let ¥ € R? and o > 0. Then for any p > 1, (3, — L +9 - V+ 1) (CSC(RIT)) (resp. (A — L")(CFC (R?)))
is dense in LP (R4t (resp. LP (R?)).
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Proof. Let g € Lp/ (=D (Rd+1y, By Hahn—Banach’s theorem, it is enough to prove that if for all u € Cgo (RA+1y,

g(t,x)~(8, —£v+z§‘~V+k)u(t,x)dxdt=O,

Rd+!1
then g = 0. Since for any (s, y) € R*1 the mapping (¢, x) — u(s + ¢, y + x) belongs to CSO(R"“). Thus, we have
(3 —L"+9 - V+A)(gxu)=0,
where g % u stands for (s, y) > [pas1 (¢, X)u(s +1,y + x)dyds. By Lemma 3.2, g % u =0 for all u € C°(RIH1),
which yields that g =0. O

4. L?(R; L?(R?))-maximal regularity for nonlocal parabolic equation

Let 9 e C;"(R; R9) be a time dependent vector field. For s < ¢, set

t

O s :=/z9(r)dr.

N

Let v be a Lévy measure and satisfy (2.21). For f € S (R?), define

72}3]0()‘:) = Ef(x - @t,s + L;}—s) :Ptv—sf(x - @t,s) = / f(y)pzv_s(y —Xx+ @t,s)dy~ (41)
R4

By (2.22), one has

T f(x) = / FDMop,_(y—x+ 6 5)dy + / FO® - Vpl_ )y —x+6;,)dy
R4 R4

= f FONLpi_g)y —x 4+ Op)dy — 0, V / fO)p/ (v —x+ 60 5)dy
Rd Rd

=LY f(x) =0 - VT f(x). 4.2)
For A >0 and f € S(R?*!), define

t

u(t,x):= / e_)‘(t_“)’ﬁt’sf(s,x)ds,

—00
then it is easy to check by (4.2) that u € C}° (RY*1) and uniquely solves

Ou—Lu+19-Vu+u=f. (4.3)

Remark 4.1. Let v and v, be two Lévy measures. Let (L;”),E]R and (L;Q),E]R be two independent Lévy processes
associated with vy and v; respectively. Then it is clear that

d
(L;)l-‘rvz)teR (=) (L;jl + L;Q)teR'

Thus, we have

7;f;+ ) =PLPAf(x— O =E(PAf(x+ (L) — Or0) — (L)' — O5,0)))- (4.4)

The main aim of this section is to prove the following L7 (R; L”(R?))-regularity estimate to the above u when
f € LI(R; LP(R)).
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Theorem 4.2. For o € (0, 2), let vl.(“), i =1, 2 be two Lévy measures with the form (1.8), where U{a)

in the sense of Definition 2.6. Let vi and v2 be two Lévy measures and satisfy that

is nondegenerate

’

v =0, vy < i
and for all 0 <r < R < 4009,
lo=1 / yv2(dy) =0.
r<|yI<R

Let ¥ : R — R? be a locally integrable function, and 7;”; be defined by (4.1). Then for any p,q € (1,00), there
exists a constant C = C(vl(a), véa), o, p,q,d) > 0such that forany —oo < T < S< oo, f € L1(T,S); LP(Rd)) and

A =0,
/S
T

Proof. By replacing f(z, x) by f (¢, x)1(7,5)(¢), it is enough to prove that

t

£ [T ps s

T

q S
dtgc/||f(t,-)||‘;dt. (4.5)
p T

oo 13 q o0
/ c”Z/e—W—”ﬁﬁgf(s, ) ds dt<C/Hf(t, 9 de. (4.6)
—0 —00 p —00

We divide the proof into seven steps.

@
Step 1. Let (L;)l " )teRr be a d-dimensional Lévy process associated with the Lévy measure v — vfa). By (4.4), we
have

1 t

—A(—s) V1 _ —a(t—s) 1=V v _ v—v®
/ e Tis f(s,x)ds = / e P_g ' Tis f(s,x)ds —Eu(t,x +L, — (H),,o),
—c0 —00
where
t
(@) @
u(t,x) = / ef)‘(tﬂ‘)PtvlS f(s,x — L;l Ty @s,o) ds.

—00

Suppose that (4.6) has been proven for v; = vfa) and ¢ = 0. By Fubini’s theorem and Minkowski’s inequality, we

have for f € S(R4H!),

o t q (o8] @
/ ﬁ”Z/e—A<’—S>7;f;f(s, ) ds dt=/“E£“2u(r,-+L,”‘*”' —O0) |4 dt
—00 —00 p —00
o0 o0
< / Elcu(e -+ 17 o)1 e DR / £, |7 ar
—0Q

vl—vfa

—00
(0.¢] ) (0.¢]
<CE f 17 (s, — Lg +0y0)|}ds=C / | £ (s, ds.
—00 —00
Hence, we need only to prove (4.6) for v; = vfa) and ¥ = 0. Below, for simplicity of notation, we write

(@) vl(a)

ZL=L0 L=LY Y Pe=Pl L iY@ 2=
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Step 2. Let us first prove (4.6) for p =g = 2. For f € S(R4t1), let f(s, )= F f(s,-). By (2.1), the Fourier transform
of P; f is clearly given by

Pf(E)=e 1@ f(e).

By Parseval’s identity and Minkowski’s inequality, we have

o) t 2
/ f/eik(’fs)P,_sf(s,-)ds dr
N s 2
/ / V() / =)= f( g) ds dsdt
—00 Rd
(2.12 2
g [/(E'a/ _Re(w'(é))(t_s)‘f(s,E)|ds> dé dr
—00 Rd
(2.19) R 2
< K / / <|s|‘* / e“f”f”lf(s,s)lds) dé dr
—00 Rd
00 2
//(/w e Vlf(t—s,é)\ds) dé dr
—0coRd 0

x® oo 1/2 2
<K§/</|5|a€_'ﬂlg%<f|f(l‘—s,€)|2dt> ds) dg
——fflf(z &) drd&— f”f(t)”zdt

leOO

Since S(R?*1) is dense in L2(R4H1), (4.6) follows for p =g = 2.

Step 3. For f € L®(R4*!), define

t

T f(t,x) = (f f e MmP_ f (s, -)ds)(x).

—00

We want to show that
T LOO(R”I“) — BMO(Rd+1) is a bounded linear operator. 4.7)

More precisely, we want to prove that there is a constant C > 0 independent of A such that for any f € L>®(R?*!)
with || f||ec < 1, and any parabolic cylinder Q = (g, fo + r*) X By (x9),

ﬁf!ﬂf(t,x)—aQdedth, (4.8)
0

where ag is a constant depending on Q.
By shifting the origin, we may assume 7y = 0, xo = 0. On the other hand, by the scaling properties (1.4) and (2.10),
if one makes the following change in (4.8):

1 (B) = r*v(rB), f(t,x)— f(r“t,rx), A — Ar%,
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then we may further assume r = 1. Thus, it suffices to prove that for any f € L% (R *!) with || flle < 1,

/|yf(t,x)—aQ,|2dxdt <C,
01

where Q1 =(0,1) x By and C = C(v(“) &, d) is independent of v, and A.
Following Krylov [22], we now split .7 f into two parts:

T, x)=Af@x)+Af(E x),

where for (¢, x) € (0,1) x By,

t

Tif(t,x) = f( / e M f(s, ) ds><x>,

-1
-1

D f(t,x) :zz( / e M=IP_f(s, -)ds)(x).

—00

Step 4. In this step, we treat 7] f. Let f:(f, x) := f * p:(f, x) be the mollifying approximation of f, where p; is the
usual mollifier in R?*!. Define

t

ue(t, x) = / e MIP_ fo(s, x)ds,
—1
t

u(t,x) :=/e7w*s)73,_sf(s,x) ds.
-1
By definition (4.1) and || f|lcc < 1, we have
lue(t,x)| <2, V@, x) e[-1, 11 xRY, (4.9)

and by the dominated convergence theorem,

llm//|ug(t x) —ul(t, x)| dx dr = (4.10)

0 B

On the other hand, by Lemma 2.3, for any 8 € [0, @ A 1), we have for all t € [—1, 1], x,x" € R4,

|ue(t, %) —ue (2, x") //!pz s(v—=x) = pi—s(y —x)| dyds

—1 R4
(2 13) B
2! ﬁ/(|x—x [ [19p-clay) as
—1 Rd
(2.25)
<j C|x—x’|ﬂ/(t—s)_ﬂ/°‘ds<C|x—x’|ﬂ. 4.11)

-1

Moreover, as in the beginning of this section, since f; € C;O(Rd“), by (4.2) and Lemma 3.1, one sees that u, €
C°([—1, 00) x RYT1) uniquely solves

8[u8—£us +)\.Mg:f89 ug(_l,x):().
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Let x be a nonnegative smooth function with y (x) =1 for |x| < 1 and x (x) =0 for |x| > 2. Multiplying the above
equation by y, we obtain

O (e x) = (Lug)x — Mg X + fox = Luex) —Auex) + 87,
where

g = xLug — L(uegx) + fox-
Since x has compact support, we have for each ¢ € [0, 1],

gk, e C5°(RY).
Thus, by Lemma 3.1 again, one has the representation

t

(et = [P gl 5.0 ds.
—1
Moreover, by (4.9), (4.11) and (ii) of Lemma 2.5,

1 1
/||g§ (1,5 dr < c( f”xﬁug(t) — L(ue)x)|2dr + ||x||%) <C.
-1 -1

Here and below, the constant C is independent of ¢ and A.
As in Step 2, by Fourier’s transform again, we have

! 1t )
//|,$(u8x)(z,x)|2dxdr<K§// /|g|°‘e*K1'5'”S|§g(r—s,g)|ds dé dr
0 R4 0RO
1 1 12 \2
<K§/</lé|"e”"5'“S(/|§§(t—s,é)|2dt> ds) d&
R4 0 s—1
L 1 12 \2
<K02/</I%‘I"e_“gas<ﬂ§§(t,é)|2dt) ds) d&
R4 0 —1
1 1
SC/f éﬁ‘(né)!zdtdS:C/Hg?(t, adr<c.
R4 —1 -1

Thus, by (4.9), (4.10), (4.11) and (ii) of Lemma 2.5 again, we arrive at

1

/|?1f(t,x)|2dxdt:/|$u(l,x)}2dxdt< sup //|$u8(t,x)}2dxdt
O o 86(0,1)0 B

1
< sup //].Zug(t,x)~)((x)]2dxdt<C.
e€(0,1)

0 Rd

Step 5. In this step, we treat 75 f and prove that for some ag, € R and some constant C > 0 independent of A,

/|%f(t,x)—an|2dxdt<C. (4.12)
g
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Note that by (4.1),
-1
M P f(t,x) = f o f F(5. )L prs(y — ) dyds = T f (1, x).
—00 Rd

Inview of A > 0 and || f|lcc < 1, by (2.23), we have for some §; > 1 and any (¢, x) € [0, 1] x R4,

—1 -1
vareol< [ [Ivepamlas<c [e-oa<e,
—00 Rd —00
and by (2.24), for some §; > 1 and any ¢ € [0, 1],
-1

|5 £(1.0) — T f(0.0)] < / / L Py () — L7 p—s ()| dy ds

_OO]Rd
—1 t
<[ [ [l pcolarayas
—ocoRd 0
—1 1t
<C//(r—s)_82drds<C.
—00 0

Hence,
|\ ZBf(t.x) = A f0,0)<C, ¥(,x)€[0,1]x By,

and
/|%f(t,x) — e M BF0,0)] dedr < C.

01
If . =0, we immediately have (4.12). Now let us assume A > 0. In this case, by Lemma 2.4 and (2.25), we have

| Z3£(0,0)] < / e“(/|$*p_s(y)|dy>ds<C/e“ds:Ce_)‘/)»,
—0oQ R4 —00

where C is independent of A and f. So,

1
/\(1 — M) £(0,0)]" dxdr < 5—2/(1 —ePar< &,
0

3
0
where we have used that 1 — e~ < s for all s > 0. Thus, we obtain (4.12) with ag, = Z1(0,0).

Step 6. Combining the above Steps 3-5, we have proven (4.7). By Step 2 and Theorem 2.11, we get (4.6) for p =
q €[2,00). As for p=gq € (1,2), it follows by the following duality: Let g € C§° (R4+1). By the integration by parts
formula and the change of variables, we have

o0 t
/ /(3 / e M=IP_F (s, ) ds) (x)-g(t,x)dxdr

—O00 R4 —0o0
oo t
= / /f(t,x)<.$*/e‘“’—”P;"_Sg(s, -)ds)(x)dxdt,
*OORJ —00

(@)
where .£* is the adjoint operator of .# and P, g(s, x) :==Eg(s, x — L,v1 ).
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Step 7. For g # p € (1, 00), we use a trick due to Krylov [23]. Clearly, it suffices to prove that for any 7 > —oo and
feCq(T, 00) x RY),

e ¢]

/

T

1 q (e ¢]
,,%/e—“’—”n,sf(s, ds| dr < Cfo(t,')Hf,dt, (4.13)
T P T

where C is independent of T'.
Set
1

u(t,x) = / e M=IP,_ f(s,x)ds, w(t, x) = Zu(t,x).
T
By (4.2), one can verify that w € C([T, 00); C;° (R?)) and uniquely solves
ow— Lw+iw=2F, w(T,x)=0.
ForX = (x!,...,x") e R™ with x' = (x{, ..., x/) € R?, define
U(t,x):= w(t,xl) e w(t,x").
Then
0,U — LU +nAiU =F, U(T,x)=0,
where L is defined by (2.20) and
F(t,%) =i§f;iGi(¢,z), G (t.%)=f(t.x") [ Jw(r.x5).
i=1 ki

Here .%,; means that .# acts on the component x’ of X. By the maximum principle, the unique solution U can be
represented by

t n t
U, %)= / eI P F(s,X)ds = foi f eTMI=IP Gi(s, X)ds,
T =L 7
where (P;);>0 is the semigroup associated with L.
Thus, by Step 6 and Minkowski’s inequality, we have

o]

/”Xu(l)HZpdt=/||w(l)||’;pdt=//|U(t,f)|pdfdt
T T

(50

i=1 \7 pnd

n o0 % p
gc(Z(f/\Gf(t,z)\”didz) )

i=1\7 g

Z,

X

P P\ P
didt) >

t
i/e—nk(t—s)zpt_sGi(s’;)ds
T

:Cn/||f(t)||[f;||zu(t>||§j—”f’dt
T

00 ll S 1
<Cn</||f(z)||';l’ dt) (/Hfu(r)”*;ﬁ dt)
T T

1
n
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From this, we get that forany n e Nand p > 1,
o0 o
/ | Zu@|” ar < Cny" f L] a.
T T

Thus, by Marcinkiewicz’s interpolation theorem (cf. [35]), we get (4.13) for any ¢ > p. The case g < p follows by
duality as in Step 6. The whole proof is complete. O

We have the following important comparison result between two different Lévy operators.

Theorem 4.3. Keep the same assumptions as in Theorem 4.2. For any p € (1, 00), there exists a constant C > 0 such
that for all u € S(R?) and A1, 12 > 0,

A
[ (£ —xz)u||pgc<1+f)||(£”1 —Al)u”p. (4.14)
In particular,
ul , <l Luf,. (4.15)

Proof. For u € S(R?), set

f= (£V1 - )»1)14.
By Fourier’s transform, it is easy to see that
o0
u(x) :fe_’“t'l)tvlf(x) dr.
0
Define
T t T
1 (t—s)pV T—1 —At PV
ur(x) :=T M Pl f(x)dsdr = Te P f(x)dr.
00 0
Then
00 ! T
u(x)—ur(x)=/e—*1f79,”1f(x)dz+T/re—klfp,”f(x)dt.
T 0
In view of [P £, < I £l », we have
o0 1 o
lu—url, < ||f||p(fe—klfdt+7/zﬂ"dz> = flp(a; e + 2277, (4.16)
T 0

On the other hand, by (4.5) we have

P
dr

p

Evz / -\ (t— S)rPVl f()dS

1
(e = naur ] < 7 /
t

0
T p
2p ' —)»|([—S)
<CIflp + T A2 I fllpds) dt
0
)L_z P ﬁ v _
sel\t+5 )/ =C Hx” (€™ = aa)ul]
1 1

which together with (4.16) yields (4.14). As for (4.15), it follows by firstly letting A | O and then A1 | 0. O
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In the remaining part of this paper, we make the following assumption:

(Hf,a)) Let vi(a), i = 1,2 be two Lévy measures with the form (1.8), where v](a)

Definition 2.6. Let v be a Lévy measure satisfying (1.7) and

<v<v§a).

is nondegenerate in the sense of
)@
Let 27 (L") be the domain of L in L?-space, i.e.,
27(L") := {u e LP(R?): ||£“u||p < 4o0}.
For a > 0 and p > 1, the Bessel potential space H%” is defined as the completion of S(R¢) with respect to the norm:
1fllgp =10 = 3w, =l + | (=2)Fuf] -

Notice that for k € N and p > 1, H*? = Wk? (see [35, p. 135, Theorem 3]).

Corollary 4.4. Assume (Hf,a)) with @ € (0,2). Forany p> 1, f € LP(RY) and A > 0, the equation (LY — Mu = f
admits a unique strong solution u € H*?. In particular, for any p > 1, 2P (L") = H*? and

lcvu]l, = | (=2)3u],, 4.17)
and if @ =1, then
||£”u||p ~ || Vul . (4.18)

Proof. Let v(()a) be the Lévy measure associated with (—A)% (see (2.8)). In Theorem 4.3, let us take v| = v(()a), V=V

and vy =v, v, = v(()“) respectively, then there exist C, C > 0 such that for any u € S (Rd) and A1, Ax > 0,

. A
[(=2)% +ro)u] , < C1 (1 + TT) [(£" =an)ul . (4.19)

A o
[(e" =)l < Cz(l + 7;) (=& + )], (4.20)

For A > 0 and f € L?(R?), by Corollary 3.3, there exists a sequence u, € Ccse (R?) such that

(£ = Ny 2N f

By (4.19), uy is a Cauchy sequence in H*?. Let u € H*? be the limit point. By (4.20), one finds that (L" — M)u = f.
As for (4.17), it follows by (4.15), and (4.18) follows by the boundedness of Riesz transform in LP-space (cf. [35,
Chapter III]). O

Corollary 4.5. Assume (Hf,a)) with o € (0, 2). Then for any p > 1, (P} )s>0 forms an analytic semigroup in L?-space.
Proof. By [15, Theorem 5.2], it suffices to prove that
[Py fll, <CeMIfllp >0, feLlP(RY).

By (4.4), we have for any f € S(R?),

() (o)

Ptvf = PtU1 Ptv_vl f
Thus, by (2.25), we have

_ (@
[ap ], <co [P £, < CrEif,.
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Since S(R?) is dense in LP (R¥), we further have for any f € L?(R),
_2
AP £, <Ctmalflp-
Now, by (4.18) and the Gagliardo—Nirenberg’s inequality (cf. [6, p. 168]), we have
o -2 [ _
[P fl, <clazpisl, <clmifl, 2 [ari £l <c sl
where C is independentof f and f. O
5. Critical nonlocal parabolic equation with variable coefficients
In this section we assume (H,(,l)) with critical index o = 1. For simplicity of notation, we write
L=L0.

Consider the following Cauchy problem of the first order critical parabolic system:

ou=Lu~+b-Vu+ f, u(0) =g, (5.1)
where u = (u], oou™), fiRY x RY — R™, Q: R4 — R™ are measurable functions, and » : RT x R? — R is a
bounded measurable vector field and satisfies

b, x) = b(t, y)| < wp(lx — yl), (5.2)

where wp, : RT — R™ is an increasing function with limg owp(s) =0.

For obtaining the optimal regularity about the initial value, we need the following real interpolation space: for
p>1and B € (0,1), let WA-? be the real interpolation space (called Sobolev—Slobodeckij space) between L” and
WP By [37, p. 190, (15)], an equivalent norm in W#? is given by

_ P 1/p
||f||,s,p:=||f||p+</ dedy) . (53)

|x — y|d+Pp
R4 R4

We remark that for p > 2, HA-P c WP-P, and for p <2, Wh-P c HA-P (cf. [35, p. 155, Theorem 5(A) and (C)]).
Moreover, by Sobolev’s embedding theorem (see [37, p. 203, (5)]), if Bp > d and B — % is not an integer, then
d
WhP s 1P, (5.4)

where for y > 0, H? is the usual Holder space.
Let us first prove the following important a priori estimate by using the classical method of freezing coefficients
(cf. [24]).

Lemma 5.1. For given p € (1,00), let f € LY (RT; LP(RY; R™)) and

ue C(RY: W'~ 57 (R R") N L

. 1, d.
loc(Rg’W p(R ’Rm))
Assume that (HSI) ) and (5.2) hold, and u satisfies
ou(t,x)=Lu(t,x)+b(t,x) - Vu(t,x)+ f(t,x), a.e. (t,x) eRT xRY, (5.5)

Then for any T > 0,
T T
sup Ju|? \ + / [Vu)|2dr < €(1477)eC " (||u<0)|| - / ||f<t>||§dr>, 56
t€[0,T] P’ 0 7’ J

where the constant C depends only on p,d, ||bllco, the modulus function wp and the Lévy measures vl.(l) ,i=1,2.

Moreover, u also satisfies the following integral equation: for all t > 0 and Lebesgue-almost all x € R?,



596 X. Zhang / Ann. 1. H. Poincaré — AN 30 (2013) 573-614

t t
u(t,X)ZPzM(O,X)+/7’z—s(b(S)~VM(S))(X)dS+/7’z—sf(s,X)ds, (5.7)
0 0

where P; is the heat semigroup associated with L.

Proof. Let (pg)¢c(0,1) be a family of mollifiers in R?. Define
ug(t) :=u(t) * pe, be (1) :=b(1) * pe, Je@) == f(1) * pe.

Taking convolutions for both sides of (5.5), we obtain
Qpue(t,x) = Lug(t,x) + be(t, x) - Vue(t, x) + Fe(t, x), (5.8)
where

Fo(t,x):= [(b(t) . Vu(t)) * ps](x) —be(t,x) - Vug(t,x) + fe(t,x).

Moreover, by Duhamel’s formula, one sees that

t t
ue(t, x) =P,ug(0,x)+/’P;_s(bg(s)-Vug(s))(x)ds—i—/P,_ng(s,x)ds. (5.9)
0 0

By the assumptions, it is easy to see that for all ¢ € (0, 1),
|be(, x) = be (2, )| < wp(lx = yl), |be (2, x) — b(t,x)| < wp(e),

and
T
812%/”&(;) — f(t)||§dz=o.
0

Taking limits for both sides of (5.9), one finds that (5.7) holds. Below, we use the method of freezing the coefficients
to prove

T T
sup ||u8(t)||§+/||Vug(t)||§dt <C(1 JrTl’)eCT”’l (HME(O)Hlp_l +cf||F8(t)||§dr>, (5.10)
te[0,T] 0 4 )

where the constant C is independent of ¢ and T'.
For simplicity of notation, we drop the subscript ¢ below. Fix § > 0 being small enough, whose value will be
determined below. Let ¢ be a smooth function with supportin B and ||¢||, = 1. For z € R, set

L (x) :=2C(x —2).
Multiplying both sides of (5.8) by ¢,, we obtain

0 (ug:) = (Lu)g: + (b~ Vu)g: + F& = Lugz) + 97 - V(ug:) + g2,
where ﬁé’(t) :=b(t, z) and

g i=(b—00) V(ug) —ub- Vi, + (L), — LL,) + FE,.

By Lemma 3.1, u¢; can be uniquely written as

HP t v
ul(t,5) =T, (u(0)¢:) (x) + [ T gl (s, x) ds,
0

b
where 7;71 is defined by (4.1) through 15‘2{7 . Thus, we have
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t

wb
/ 7;,; gg(ss ) ds
0

p
dt

T
/”V(u{z)(t b dr < 207! /|| v7;0 w(0)¢) |5 dr +27~ /
0 p
=: 11 (T, Z) + I (T, z2).
For I1(T, z), by Corollary 4.5 and [37, p. 96, Theorem 1.14.5], we have
T

T
b
[ 1975 wor) e [

0 0

t

P
VP,(u(O){Z)(- - / ﬂf(s)ds)

0 P

T
dr = / | VP (u(0)) | de
0

T
@.18)
< c/||£7>,(u(0);z)||§dz<c||u(0);Z (1 b (5.11)
L

Here and below, C is independent of T. Thus, by definition (5.3), it is easy to see that

[naoa<c [losl],,d<cuol] 115+ o2, ).
R4 R4
For I>(T, z), by (4.18) and Theorem 4.2, we have
T

B2 < C [ e )as
0
T T T
< C/H((b—z‘}f)~V(u{z))(s,-)Hst—i—C/H(ubVg“z)(s, -)Hﬁds+Cf”F;Z(s,-)]|1'jds
0 0 0

+€ [(ewe. - Luco)s. o ) as
0

=:11(T,2) + Ia(T,2) + I3(T, 2) + 124(T, 2).
For I>(T, z), by (5.2) and ||¢||, = 1, we have

2 p T P
/121(T,z)dz < Coy) (8)/[||V(u§z)(s, )|, dzds

R4 0 R4
< Cal®) / | Vu()||? ds + Cof @)IVE I / Jut)]},ds.

For I54(T, z), by (i) of Lemma 2.5, we have

T T
[ msrnaz<c [luwlhas+c [Juw)?|vuw|) 6.
0 0

Rd
Moreover, it is easy to see that

T
f@(ﬂz)dz<C||b||é’o||vz||£/||u(s>||§ds,
0

R4

T
/123(T,z)dz<c/||F(s)Hst-
0

R4
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Combining the above calculations, we get

T T
/”Vu(s)”ﬁds:ff”Vu(s)-Cz”Zdst
0

0 R4

T T
< zﬂ—1//|\v<u;z)(s>!|2dzds +2P—1||V¢II£/|W<S)”§““
0

R4 0

1
lp,

T T
<Cllu|? p+Cw,§’(a)/||W(s)H§ds+cf||u(s)||§ds
0 0

T T
+C/Hu(s)||§/2“Vu(s)||£/2ds+C/||F(s)|}§ds.
0 0

Using Young’s inequality and letting § be small enough so that C a){; ) < %, we arrive at

T T T
/||w<s)u§ds <clu@]? , + c/Hu(s)Hgds 4 c/Hns)”gds. (5.12)
0 0

-1
0
On the other hand, by (5.9), it is easy to see that
t t
Ju][) < Clu@|? + P~ b1 / [ Vu)|? ds +ce?~! / [ F)|? ds,
0 0
which together with (5.12) and Gronwall’s inequality yields that for any 7 > 0,
T T
sup ]+ [ [V fas <1+ 17)e™ (o7, + [IFo]fas ).
1€(0,T1 b p =3P p
0 0

Thus, we conclude the proof of (5.10), and therefore,

T T
[1vuigas<ci e <||u(0) I, ,+ ||f<s)||§ds). (513
»
0 0

Lastly, we show (5.6). From Eq. (5.5) and using estimate (5.13), we have

T T T T
/Hatu(t)”idt < C(/||£u(t)||§dt+ ||b||{’.o/||vu(t)||§dr+/||f(t)||§dz>
0 0 0 0

T T
(4.18) » » »
< C((1+||b||oo)/||Vu(t)||pdt+/||f(t)||pdt)
0 0

T
< C(1+Tp)ecrp1(”u(O)Hf_l’p+/Hf(s)”§ds>.
0

Noticing the following embedding relation (cf. [1, p. 180, Theorem III, 4.10.2])

LP([0, T, W"P) AW"2 ([0, T], L?) = C([0, T}; W'~ 5°P),
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we have

sup ||u(t)||1__ C(/”atu(t)”pdt+/||u(z)||1’ dt)

T
<C(1+TP)eCT" <||u<0>l|f1,p+f||f<s>llﬁds>a
0

which together with (5.13) yields (5.6). O
Before proving the existence of strong solutions to Eq. (5.1), we recall a well-known fact (cf. [14,40]).

Theorem 5.2 (Feyman—Kac formula). Let v be a Lévy measure and b € Lloc(R+ Cgo(Rd R?Y), f e L}
W (R4, R™)). For any ¢ € W®(R?; R™), there exists a unique u € C(RT; W (R?; R™)) satisfying

R*;

loc

t t t
u(t,x)=g0(x)—i—/ﬁ”u(s,x)ds—l—/(b-Vu)(s,x)ds—i—/f(s,x)ds.
0 0 0

Moreover, u(t, x) can be represented by

0
u(t, x) :=E<p(x_,,0(x))+]E<ff(—s,x_,,s(x))ds), 1>0, (5.14)
—t

where {X;s(x),t <5 <0,x € Rd} is defined by the following SDE:

s S

X s(x)=x +/b(—r, X r(x))dr +/ dL?, t<s<0.

We are now in a position to prove

Theorem 5.3. Assume (H\") and (5.2). Let p € (1, 00) and

e e W' FP([RIRM),  feLl (RELP(RYR™)).

loc

Then there exists a unique u € C(R}; W I_F PRER™)YN LY (RE: WHP (R, R™)) satisfying Eq. (5.5).

loc

Proof. Let b,, f. and ¢, be the mollifying approximations of b, f and ¢:
be(t, x) :=Db(1) * pe(x), Je(t,x) := (1) * pe(x), P (x) 1= @ * pe (X).
By Theorem 5.2, there exists a unique u, € C(R7; W (R?; R™)) satisfying the following equation:

t

t t
ug(t,x) = @e(x) —{-/Lug(s,x) ds +/bg(s,x) -Vug(s,x)ds —i—/fe(s,x) ds. (5.15)
0 0 0

First of all, by Lemma 5.1, we have the following uniform estimate: for any 7 > 0,

T
sup )], |+ [V ar < (lel” f ||f<r>||Pdr>
t€[0,T] P’ o

where C is independent of ¢.
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Noticing that w, o 1= u, — u, satisfies
atws,s’ = »Cwa,s’ + b - sz,e’ + (be — ber) - Vug + fo — for, We ¢’ 0) = @s — @y,
by Lemma 5.1 again, we also have
T

sup o ]? )+ / [V )] ds
t€[0,T] P’ 0

T T
<Clige—gell”_, +C/||fs(S)—faf(S)||pds+C sup |}bs<s)—bgf<s)||§o/||Vusf(s>||”ds.
pP , P 5€[0,T] J P

On the other hand, by (5.2), it is easy to see that

sup|[ bz (s) — ber (5) || o, < @p(e) + wp(e).
s=>0

So, forany T > 0,

T
tim (sup Jueo®]”, + / [Vu.e ()2 s | o,
&80\ re[0,T] p?
0
: +. pyl= 3P d. om P . yyl d.m
and there existsau € C(R;; W »"" (R R™)) N Ly (Ry; WP (R; R™)) such that for any 7' > 0,
T
lim( sup ||u8(t)—u(t)“f . —i—/HVug(s)—Vu(s)”Pds =0.
e=>0\ref0,7] A J P

By taking limits in LP-space for (5.15), one finds that for all > 0 and almost all x € R¢,

t 1 t

u(t,x)=px)+ / Lu(s,x)ds + / b(s,x)-Vu(s,x)ds + / f(s,x)ds.
0 0 0
The existence follows. As for the uniqueness, it follows from Lemma 5.1. O

Now we present an application by proving Krylov’s estimate for critical diffusion process:

t
X,:Xo+/‘b(s,XS)ds+L,. (5.16)
0

Theorem 5.4. Assume (Hfjl)) and (5.2). Then there exists a solution to SDE (5.16) such that for fixed Ty > 0 and any
p>d+1, stopping time T, 0 < T < S < Tyand f € LP([T, S] x RY),

SAT

E( f f(s, Xg)ds

TNt

ﬁTAr) S CISfllLrr,s1xRAY (5.17)

where C is independent of f and t. Here, a solution to Eq. (5.16) means that there exists a probability space
(22, %, P) and two cadlag stochastic processes X, and L, defined on it such that (5.10) is satisfied, and L, is a
Lévy process with respect to the completed filtration %, := o ¥ {X;, Ly, s < t}, and whose Lévy measure is given by v.

Proof. Let b.(t, x) := b(t) * p.(x) be the mollifying approximation of b and let X} solve the following SDE:

t
Xf=X0+fbg(s,Xf)ds+L,. (5.18)
0
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It is by now standard to prove that the laws of {(X;, L;);>0,¢ € (0, 1)} are tight in the space of all cadlag functions
(for example, see [39]). Thus, by Skorohod’s representation theorem (cf. [ 19, Theorem 3.30]), there exist a probability
space still denoted by (£2,.%, P) and cadlag stochastic processes (X7, L7);>o0 and (X;, L;);>0 such that (X7, L?)
almost surely converges to (X,, L) for each r > 0, and

t
X¢ :Xg—i—/bg(s,Xf,)ds—I—Lf.
0

By taking limits for Eq. (5.18), it is easy to see that (X;, L) is a solution of SDE (5.16).
Fix f € CP(RT x RY) and Ty > 0. Let u, (¢, x) € C(Ry; Cp°(R?)) solve the following PDE

s — Lug — be(To — 1) - Vug = —f(To — -, ), ug(0) =0.
Set
we(t,x) =us(To — 1, x).
Then
owe + Lwg, +b-Vw, = f, w(Ty, x) =0.
Let t be any stopping time. By Ito’s formula (cf. [2, Theorem 4.4.7]), we have
1

we(r, X;)=w(T AT, X5 ,,) + / (B5we (5) + Lwe(s) + by (s) - Vwe(s)) (X5) ds 4 a martingale

TAT
t

=w(T AT, X5,,) + / f(s. X§) ds 4 a martingale.
Trt

Taking the conditional expectations with respect to . %7 ., and by the optional theorem (cf. [19, Theorem 6.12]), we
obtain

SAT
]E( / f(s, Xﬁ)ds)ﬁrﬂ) =E(w(S AT, ngm)’ﬁr/\r) — w(T AT, X?Ar).
TNt

On the other hand, since
|be(t, x) — be(t, y)| < wp(I1x — yl),
by (5.4) and (5.6), we have

sup luglloo < C sup ”uf(t)”l_l_p S CUSfllLrqr,s1xRAY
te[T,S] te(T,S] P

where the constant C is independent of €. Hence,
SAT
E( / f(s, Xﬁ)dS)ﬁrm) S CISf LT, s1xRA) -
TAT

Since f € Cgo(R+ x R9), estimate (5.17) now follows by taking limit ¢ — 0. For general f € LP([T, S] x RY), it
follows by a standard density argument. O

6. Quasi-linear first order parabolic system with critical diffusion

In this section we study the solvability of quasi-linear first order parabolic system with critical diffusions. Let us
firstly recall and extend a result of Silvestre [32] about the Holder estimate of advection fractional diffusion equations.
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Theorem 6.1. (See Silvestre [32].) Assume that b € L>([0, 1]; C3°(RY; RY)) and f e L*°([0, 1]; C;°(RY)). For
givena > 0, letu € C([0, 1]; C,‘;"(Rd)) satisfy that for all (¢, x) € [0, 1] x R,
t t t
u(t,x)=u(,x)— a/(—A)%u(s,x) ds +/b(s,x) -Vu(s,x)ds + f f(s,x)ds. (6.1)
0 0 0
Then for any y € (0, 1), there exist B € (0, 1) and C depending only on d, a,y and ||b| s such that

sup [[u(®)] 56 < Cllulloo + 1 oo + [u(0)] 5, ) (6.2)
te[0,1]

where |[ulyys = sup|,_y <1 [u(x) —u(y)|/|x — ylP.
Proof. By [32, Theorem 1.1], there exist g € (0, 1) and C > 0 depending only on d, a and ||b]|» such that

|u@] 30 < Ct7P(llulloo + 1 fllco), 1 €(0,11. (6.3)

Recall the following probabilistic representation of u(z, x) (see Theorem 5.2):

0
u(t, x) = Eu(0, X_t,o(x))+E</f(—s,x_,,s(x))ds>, t o, 1], (6.4)
—t

where {X; s(x), -1 <t <s<0,x € Rd} is defined by the following SDE:
N s

Xist) =xt [ b(-r Xy )ar+ [l —1<r<s<o, 6.5)

t

where (L;),<o is the Lévy process associated with (—A)%.
By (6.4) and (6.5), we have

ut, x) —u©0,0)] < [u© |, B[ X—r0@) —x|” + 11 flloo

< a3 (7 1Blloo +ENL- 1) + 211 f 100
w5y (7 15lloo + EIL_1 1) + 11 f 1o
< 17 (Ju®] 4 (15lloo + EIL_117) + 11 flloc)- (6.6)

For given x, y € R and 1 € (0,1],if t > |x — y|%, then by (6.3) we have
(e, ) = ue, )| < Cla =y (lulloo + 11 flloc):
ift <|x— y|%, then by (6.6) we have
|u(t,x) —u(t, y)| < |u(t,x) — u(O,x)| + |u(t, y) —u(0, y)| + |u(0,x) —u(0, y)|
<20x =y (0] 5, (1blloo + EIL 1 117) + [ Flloo) + 1x = yI (0] 4, -
Estimate (6.2) now follows by taking 8 = min(y, B9)/2. O
Notice that the proof of Silvestre [32] seems strongly depend on the scale invariance of (—A)%. Below, we use

probabilistic representation (6.4) again to extend Silvestre’s Holder estimate to the more general Lévy operator (not
necessarily homogeneous and symmetric). Consider the following Lévy measure

a(y)
v(dy) = |)’|T+l dy,

where a(y) is a measurable function on R?. Let £ be the Lévy operator associated to v. We have
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Corollary 6.2. Assume that b € L ([0, 1]; C;°(R?; RY)) and f € L*®([0, 1]; C3°(R?)). For given ¢ € C°(RY), let
u € C([0, 11; C°(RY)) satisfy that for all (¢, x) € [0, 1] x RY,

t t t
u(t,x)=¢x)+ / L'u(s, x)ds + / b(s,x)-Vu(s,x)ds + / f(s,x)ds. (6.7)
0 0 0

If a(y) is bounded from below by c| > 0, then for any y € (0, 1), there exist B € (0, 1) and C depending only on
d,c1,y and ||\b||so such that

sup [1(t) ] 5 < C(I flloo + I@lloo + l@ll2er)- (6.8)
t€l0,1]

Proof. Define
vo(dy) :=c1dy/Iy[“Th, vidy) :=v(dy) — vo(dy) = (a(y) — 1) dy/ly[4 T

Let (Lfo),go and (Lf "i<o be two independent d-dimensional Lévy processes with the Lévy measures vg and vy.
Then we have

(LY)<o < (L + L"), <o

Recall the probabilistic representation (6.4) of u(z, x), where {X;  (x), -1 <t <s<0,x € Rd} is defined by the
following SDE:

N s s
X,)S(x)=x+/b(—r,X,,r(x))dr+/.deO—G—/dL;”, —-1<r<s<0.
t t t

Let D([—1,0]) be the space of all cadlag functions £ : [—1,0] — R4, Below, we fix fo € [0,1] and a path
£ eD([—1,0]). Let Y; s(x, £.) solve the following SDE:

N N

Y s(x,€.) =x+/b(—r, Yir(x, L)+, —E,,O) dr +/ dL)’, —-1<r<s<0.
t t

By the uniqueness of solutions to SDEks, it is easy to see that
X—t(),s(x) = Y—t(),S ()C, Lvl) + L‘SI - L‘illoﬂ —HH <S5 < 0.
Substituting this into (6.4), we get

0

u(tg, x) =IE<p(Y,,O,0(x, Lf’l) + L(‘;l — Lv—lto) —HE( f f(—s, Y,,O,S(x, L}’l) + L' — Lv_lm)ds>. (6.9)
“to
Now let us define
0
w(t,x, 0.) :=Ep(Y_10(x, )+ Lo — l—y) —HE( / (=8 Yo s(x, 0) + €5 — Z_to)ds>. (6.10)
—t

Using Theorem 5.2 again, one sees that w (¢, x, £.) satisfies
' !
wt,x,0)=¢x +Lo—L_y) + / LYw(s, x,£)ds + / b(s,x +Ll_s—Ll_y) - Vw(s,x,£.)ds
0 0

t
+/f(s,x + 0y —€_4)ds,
0
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where for some a > 0, LY = —a(—A)% is the Lévy operator associated with vy (see (2.8)). Thus, by Theorem 6.1,
there exist 8 € (0, 1) and C depending only on d, a, y and |||/ such that

sup Jut &)l < C(Iwlls 1 f s + )
t

(6.10)
< C(||f||oo+||<P||oo+||<P||HV)- (6.11)

On the other hand, since (L;O)l<0 and (L;)l )¢<o are independent, by (6.9) and (6.10), we have
u(ty, x) = ]Ew(to, X, Lf").

Estimate (6.8) now follows by (6.11). O

Below, we assume that a satisfies that

cr<a(y) <o,

and forall0 <r < R < 400,

ya(y)
f |y[d+1 =

r<IyISR

For the sake of simplicity, we write
L=L".
Consider the following Cauchy problem of semilinear first order parabolic system:
ou=Lu+b(u) - Vu+ f(u), u(0) =, (6.12)
where u(f, x) = (u'(t,x),...,u™(t,x)), and p(x) : RY — R™,
b(t,x,u):[0,1] x RY x R™ — RY,
f@t,x,u):[0,1] x RY x R" — R"

are Borel measurable functions.
We introduce the following notion about the strong solution for Eq. (6.12).

1
Definition 6.3. Let p > 1 and ¢ € wW!'TsP (R4; R™). A function
1
w e C([0, 11; W' 7P (R R™)) N LP([0, 1; WP (RY; R™))

is called a strong solution of Eq. (6.12) if for all ¢ € [0, 1] and almost all x € R4 R

t

' !
u(t,x)=g0(x)+/£u(s,x)ds—I—/b(s,x,u(s,x))-Vu(s,x)ds+/f(s,x,u(s,x))ds
0 0

0

We firstly prove the following uniqueness of strong solutions to Eq. (6.12).

Lemma 6.4. Suppose that for any R > 0, there are two constants Cy,g, Cp g > 0 such that for allt € [0, 1], x, y € R4
and u,u’ € R™ with |u|, |u'| < R,

|ft.x,u)— ftox,u)| < Crprlu—ul,

|b(t, %, 1) = b1, y, u')| < wp,r(1x = yI) + Cp.r|u —u’

where wp R : R* — RY is an increasing function with lim 10wp, R(s) = 0. Then there exists at most one strong
solution in the sense of Definition 6.3 provided p > d + 1.

’
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Proof. Let ¢ € W' ™77 (R?; R™) and
u.ii € C(10, 11; W' ™97 (R R™)) 0 LP ([0, 11; WP (RY; R™))
be two strong solutions of Eq. (6.12) with the same initial value ¢. Let
w(t,x) :=ut,x)—ut,x).

Then for all 7 € [0, 1] and almost all x € RY,

t t

'
w(t,x):/[,w(s,x)ds+/b(s,x,u(s,x))~Vw(s,x)ds+[g(s,x)ds,
0 0 0

where
g(t,x):= (b(t,x, u(t,x)) — b(t,x, ﬁ(t,x))) -Va(t, x) + f(t,x, u(t,x)) — f(t, X, ﬁ(t,x)).
Since u,u € C([0, 1]; Wl_%’p(Rd; R™)), by Sobolev’s embedding (5.4), for some C > 0,

t <C t s i (t <C i (t .
b Ju] o <€ sup fu],_y . sup i) <€ swp fi0],_y,

Let

R:=C sup ”u(t)”lilyp—l-C sup ||L7(t)|}17l,P,
1€[0,1] P 1€[0,1] P

then by the assumptions, we have for all t € [0, 1] and x, y € R4,

|b(tsx7u(tv-x)) —b(t, y’u(t7 y))| < wb,R('-x _y|) +Cb,R|u(tﬂx) _u(tvy)|

.4 j—dtl
< opr(lx =y1)+C sup Ju@ 1 lx—yI "7
t€[0,1] ’

v

Thus, by Lemma 5.1 and the assumptions, for all ¢ € [0, 1], we have

t
lwl]y , < [ewlpas
0
t

< C[(Cé’,;eIIW(S)Ilﬁ||w<s>||f§o +Cglw]}) ds

0
t

<c [(vael,+ wel?, o 613
0

The uniqueness follows by Gronwall’s inequality. O
We have the following existence and uniqueness of smooth solutions for Eq. (6.12).

Theorem 6.5. Suppose that for all R > 0 and j, k=0,1,2,..., there exist Cp j 1 R, Cy, jk,r > 0 such that for all
(t,x) €0, 1] x R? and u € R™ with |u| < R,

[VIVED(t X, w)| < Cojar.  |VEVES(x.0)| < Cpjnr. (6.14)
and there exist y; €N, Cyj >0and hj € (L' N L®)RY) such that for all (t,x,u) € [0,1] x R x R™,

VL F (. x,0)] < Cpjlul? +hy(), (6.15)
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where yo = 1. Then for any ¢ € W®(R?; R™), there exists a unique solution
u € C([0, 11; W (RY; R™))

to Eq. (6.12) with initial value ¢. Moreover,
sup [u(®)],, < e (lllloo + I0llo). (6.16)
1€[0,1]
and for any p > d + 1,

1
sup [lu)|[_, + / [Vu®||7dr <K, (6.17)
t€[0,1] r’ 0

where the constant K ,, depends only on p,d, v and ||g0||1_%’p, C.0, 1holloos 1hollps Cp,0,0,r> Cb,0,1,r and the function

wp,R(S):= sup sup sup \b(t,x,u) —b(t,y,u)|, s=>0. (6.18)

|x—yI<s t€[0,1] u|<R

Proof. We construct Picard’s approximation for Eq. (6.12) as follows. Set ug(¢,x) = 0. Since for any u €
C([0, 1]; Wee (Rd; R™)), by (6.14), (6.15) and the chain rules,

(t,x) > b(t, x,u(t, x)) € L>([0, 1]; C;°(RY; R™)),
(t,x) > f(t,x,u(t,x)) € L*([0, 1]; W*(RY; R™)),

by Theorem 5.2, for each n € N, there exists a unique u, € C([0, 1]; WOO(Rd; R™)) solving the following linear
equation:

Oty = Lup +bup—1) - Vu, + fun—1), u, (0) = ¢. (6.19)
Set

t
i (t,X) =1 (t,x) — /”f(s, 1 (s,0) | o ds,
0

then foreach j =1,2,...,m,
dyity, — Lity — bun—1) - Vith = £ (un1) = | fulun—1| , <O0.

By Lemma 3.1 and (6.15), in view of yp = 1, we have

t
Jitn 0] < Jin® |+ [ 1555 0015.9) | o 8
0

t

<O, + [ (Crollin-s(s)] . + hollc) s

0
t

<l + holo +Co [ =169, s
0
which yields by Gronwall’s inequality that

sup ]Hun(o | < e (l@lloo + llholloc) =: Ko. (6.20)
<lV,

We mention that this L°°-estimate can be also derived by representation formula (5.14).
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Since
|b(t’-xv un—l(ts x))| < Cb,O,O,K() = Kl’

by Corollary 6.2, there exist 8 € (0, 1) and C depending only on d, v, p and K such that

sup e @) 2,5 < C(| fun-1] o, + el + @l ey
t

(6.15),(6.20),(5.4)
< C(CroKo+l1holloo + lI@lloo + |I¢|I17%’p) =: K>. (6.21)
Thus, letting wp, g, be defined by (6.18) with R = K and using (6.14), (6.20), we have

|b(t. %, un—1 (2. %)) = b(t, ¥, un—1(t, 1)) | < 0p, ko (Ix = Y1) + Cp.0,1, 5, K21x — . (6.22)

Hence, we can use Lemma 5.1 to derive that for any p > 1,

t
IR [T (T / o)1)
0

t
C (ncpnf_%,p + [ (CGollunr6) 1 + Wholl) ds), (6.23)

0
where C1 > 1 depends only on p,d, v, K1, K2, wp, g, and Cp, 0,1, k,- In particular, for any 7 € [0, 1],

t
Jun )7 < € (||<p||f_%’p + lhollh) + Ci Cji,O/Hun_](s)Hst,

and by Gronwall’s inequality,

swp Jun) 7 < Culllell)_y |, + lollp)e €10
tel0,1] P
Substituting this into (6.23), we obtain
1 1
e Uunmu” +/Hwn(z>H§dr <Ci (||<p||f_%,p +f!|f(s,un1(s>)!|§ds> <K, (6.24)
0 0

where K3 depends only on p, Ci, ll¢ll,_1 . Cro. llhollp-
&
Let us now estimate the higher order derivatives of u,,. For given k € N, set

w® (1, x) 1= VEu, (1, x).
By Eq. (6.19) and the chain rules, one sees that
yw® = Lw® +buy—1) - Vol + g0

where
k
k! ; .
e, x) = VE(f (1, un1 1, 9))) (x) +va1 (b(1, - un—1(t,))) @) - VS Vuy (1, x).
= 1!

By (6.22) and Lemma 5.1, for any p > 1, we have

1
ap 0L, + [1oatolazc(19, of ||g<k><s>||"ds)
t€[0,1] P’ 0
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Since g, )(s) contains at most k-order derivatives of u, (s) and the powers of lower order derivatives of u, (s), by
induction method, it is easy to see that for any k € N and p > 1,

sup Hw(k)(t) ||1__ +/||Vw,§">(s)||§ds < Kpi (6.25)
te
0

where K i is independent of n.
Define

Wo,m (£, %) 1= un(t, X) =t (, X).
Then
az‘wn,m = cwn,m +b(up—1) - an,m + (Gl,n,m + G2,n,m)wn—l,m—17

subject to wy,,, (0) =0, where

lnm(t x) —Z/(’)M,b/ X, Up—1(t, x) +rUp—1 — um—1)(t, x))dr 9; uk (%),
J
1

G5y (1) :=/auifk(r,x,un_1(r,x) 7 (U1 — tp—1)(t,x)) dr
0
By (6.22) and Lemma 5.1 again, we have

t
Jwnm®]]_, ,<C / [ (G () + Gonm () wn—1m—1(5)] ; ds.
L
0

By (6.14) and as in estimating (6.13), we further have

t

lunndl < / (1914 D) i O], s

0

(6.25) f »
< cp 41 [formi 0]

Taking super-limit for both sides and by Fatou’s lemma, we obtain

lim sup ||wnm(s)n C(Kpl—i-l)f lim sup ||w,, Lim— 1(s)|| pdr.

n,m—0oo E[O n, m—)OO

Thus, by Gronwall’s inequality, we get
T p
lim sup”H Wy m (1) || 1_%’1) =0,

n,m—00 ;1o
which together with (6.25) and the interpolation inequality yields that for any k € N,
lim  sup ||un(t) —um @]y, =0.

n m—)oot [0

Hence, there exists a u € C([0, 1]; W (Rd; R™)) such that for any k € N,
lim sup “un(t) u(t) ||]f’p =0.

n—>oo [0

The proof is ﬁnlshed by taking limits for Eq. (6.19). O

Next we show the well-posedness of Eq. (6.12) under less regularity conditions on b, f.
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Theorem 6.6. Let p > d + 1. Suppose that there exist Cy > 0 and h € (L N L®)(RYY such that for all (t,x,u) €
[0,1] x RY x R™,

|/t x,w)] < Cplul +h(x); (6.26)

and for any R > 0O, there are three constants Cyr,Cpor,Cp,1,r > 0 such that for all t € [0,1], x,y € R and
u,u’ € R™ with |u|, |u'| <R,

|f(t,x,u)— f(t,x,u')| <
|b(t, x,u) —b(t,y,u)| <wpr(lx —yl)

|b(t, x,u)| < Cho,r,

6.27)

_1
where wp R : R* — R is an increasing function with limg o wp, g (s) = 0. Then for any ¢ € w! P’p(Rd; R™), there
exists a unique strong solution u in the sense of Definition 6.3. Moreover,

sup [[u®], < e (Illlos + Illoo)- (6.28)
t€l0,1]

Proof. We divide the proof into three steps.
Step 1. Let x (x) € [0, 1] be a nonnegative smooth function with x (x) =1 for |x| < 1 and x(x) =0 for |x| > 2. Let
(05)ec(0.1) and (p*)ec(0.1y be the mollifiers in RY and R™. Define

be(t,x,u) :=b(t, -, ) % (02 pl) (o), @e(x) i= @ % p (),
and

fet, x,u) = f(t,-,) % (g o) (e, u) x (ex).
By (6.26) and (6.27), one sees that (6.14) and (6.15) are satisfied for b, and f,, and

| fet,x, )| < (Cr(lul + &) + h* pf(x))x (ex)

S Crlul+ Crex(ex) +h*p}(x), (6.29)

and forany R > O and all r € [0, 1], x, y € R? and u, u’ € R™ with |u|, |u'| <R,

| fet.x 1) — fo(r.x, )| <

|be (1, x,u)| < Cp,r41.

(6.30)
|be(t, x,u) — be(t, y,u')| < wp,r41(1x — ¥)
Moreover, by definition (5.3),
< . 6.31
el , <lleli_1, (631)
By Theorem 6.5, let u, € C([0, 1]; W (R4; R™)) solve the following equation
Oiug = Lug +be(ug) - Vue + Seue), ug(0)=q;. (6.32)
By (6.16) and (6.29), we have
sup [lue ()| o, < e (Iplloo + Cre + llhlloo). (6.33)
ref0,1]
and by (6.29), (6.30), (6.31) and (6.17),
1
sup ( sup ||ue(t)”p /HVug(t)”ﬁdt) <K, (6.34)
e€(0,1) \r€[0,1]

0
where we have particularly used that for p > d + 1,

ICrex(e)+h*plll, <Cre'=Plixll, + Ikl , < Crlixlly + IRl .
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Step 2. In this step we want to show that

lim sup sup /|u£(t,x)|pdx:0.
N—00¢e(0,1) 1€[0,1]
Ix|=N

Letey(x):=1— x(N’lx). Multiplying both sides of Eq. (6.32) by ¢y (x), we have
0 (uetn) = L(ugln) + be(ue) - V(ugln) + 8N.,e>»
where

8N, ‘= NLug — LUelN) —uehe(ue) - Vin + fe(ue)in.

Let
R:= ecf(||<ﬂ||oo +Cr+ o).
Since
(6.30)
[be (6, e (t,.0)) = be (s v, us ()| < 0p k1 (18 = 31) + Cp, gt [ue (1,0) — s (1, 7))
(5.4) 1

< oprp1 (X = y)+C sup Jue®] 1 lx—yI'"7
te[0,1] P

(6.34) 1 | d+l
< wpre1(lx —y) +CK7|x —y] ,

d+1
P
here and below, the constant C is independent of N and &, by Lemma 5.1, we have

t
ey, , < Cloent? ) +C [lanal)as
0

Clearly,

||<P8§N||f_l p S Clgeenlly , < Cllgtnllp + ClIVeenll, + CllVenly =0, N — oo.

P

By (2.16) and (6.29), we have
llgn.ellp < ” ¢nLug — L(uglnN) ”p + ||”£b£(”s) -Vin ”p + || Je(ue)ln ”p

1 1 1 1
< C((ILenlloo + NEN 13V EN130) el p + IV EN lloollute Il 5 11 Vit | )
+ llutellp || be o) | (MVEN oo + Crlluetnllp + Crelx@)in |, + || (h* o) x| -

Noticing that

2\
el xeyen|) =8”_d/|x(x)(l —x(N"le7lx))|"dxe < (ﬁ) /|x(x>|”dx
R4 R4

and

I epenl < [ el as,

c
BN*I

by Lemma 2.4 and (6.34), we have

C
Npr—d

C
D
2

t t
/||gN,g<s)|;§ds <5 —I—Cf||ug(s)§N”§ds+
0 0

/!x(x)lpderC / |h(x)|” dx.
R4

c
BN*I

(6.35)

(6.36)

(6.37)
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Substituting this into (6.37) and using Gronwall’s inequality, we obtain

lim sup sup Hug(t)fN”p_O
N—00,¢(0,1) 1€[0,1]

This clearly implies (6.35).

Step 3. For fixed ¢, &’ € (0, 1), let us define

ws,a’(tax) =ug(t,x) —ug(t,x).

atws,e/ = Ewe,e/ + be(ug) - sz,s’ + (Gl,s,e/ + GZ,s,e/)ws,e/ + Fl,e,e/ + F2,e,g’s

subject to w; o/ (0) = @z — @/, where

Gy (%) —Zfa bl (1, x, us(t, %) + 1 (e — ue)(t, %)) dr - 3;ub, (2, x),
1
Gy, (. x) :=/Buifsk(t,x,ug(t,x)+r(ug —ug)(t, X)) dr

0
Fiep(t,x) = (bg(t,x, ug/(t,x)) — bg/(t, X, us/(t,x))) -Vug(t, x),

Frep(t,x) = fg(t,x, ug/(t,x)) - fg/(t,x, ug/(t,x)).

By (6.36) and Lemma 5.1 again, we have

Jwee O[], + / [ Ve, ()]} ds <heer +C / [(Greer(5) + G o () we.e ()] 1 ds,
L
0 0

where

hee = Clwe o O], +C f | Frie.er(s) + Freer9)] ds.
L
0

By (6.30) and as in estimating (6.13), we further have

t

e[}, / Vi @[ ds <he € [ (V@] +1) ]!, ds.
"

0

By Gronwall’s inequality and (6.34), one sees that

sup fJwe o ()|{_; + / [ Vawe,er(s) [} ds < Cheer. (6.38)
s€[0,1] p’ 0

Now it is standard to show that

8,1220““’”’ (0) ||f_%,p < CE,EIEo” w07, =0,

and by (6.27) and (6.34),

1
lim /||F1,8,s/(8)||pds <K lm (wpr41(8) + Ch 1, r+16 + 0p ry1(e") + Cp1 gy18")" =0.
g,e'—=0 p g,e'—=0
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We now look at F, . .. For any N > 0, we write

1 1 1
//|F1,g,€/(s,x)|2dxds=[/|F1,g,g/(s,x)|§dxds+//|F1,6‘8/(s,x)|£dxds =11+ b.

0 Rd 0 B 0 By

For 17, by (6.29) we have

1
Il <//(2Cf}usr(s,x)} +ex(ex) 4+ hx pe(x) + & x('x) + h* per(x))” dx ds
0 B,

< C sup /|u£/(s x)|pdx+
s€(0, 1]

/\X(x)|”dx+c f |n(x)|” dx,

N 1

Np—d

which converges to zero uniformly in &’ € (0, 1) by (6.35) as N — oo.
For I, and for fixed N > 0, by the dominated convergence theorem, (6.30) and the approximation of the identity
(cf. [36, p. 23, (16)]), we have

1
12<// sup |fg(t,x,u)—fg/(t,x,u)|pdxdt—>0, g, & — 0.

ueBp

Combining the above calculations and letting ¢, &’ |, 0 for (6.38), we obtain

T s el =0 / [ V()] ds = 0.
0

Hence, there exists a u € C([0, 1]; Wi PR R™)) N LP ([0, 1]; WP (R?; R™)) such that
li — P =0, li v -V Pds =0.
61&}3:&)%”%@) M(S)Hl_;]_:’p 81%/” ug(s) u(s)”p s

Taking limits in L?-space for Eq. (6.32), it is easy to see that u solves Eq. (6.12). O
Remark 6.7. In this remark, we explain how to use the above results to the critical Hamilton—Jacobi equation (cf.
[12,31]). Let

H(t,x,u,q):[0,1] x RY x R™ x M,,xq — R™

be a measurable and smooth function in x, u, g, where M,, s denotes the set of all real valued m x d-matrices.
Consider the following Hamilton—Jacobi equation

oru=Lu~+ H(t,x,u,Vu), u(0) = g. (6.39)
Formally, taking the gradient we obtain

O Vu=LVu+V H(t,x,u,Vu)+V, H({, x,u,Vu) - Vu+V,H(t,x,u, Vu) - VVu.
If we let

w(t,x) = (u(t, x), Vu(t, x))t,
then

dw=Lw+bw) Vw4 f(w),  w®) =(p, Vo),
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where for w = (u, q),
b(t,x,w) = (O, VyH(t,x,u, q))
and
ft, x,w):= (H(t, x,u,q),VyH(t, x,u,q) +V,H(t,x,u,q) - q)t.

Thus, we can use Theorems 6.5 and 6.6 to uniquely solve Eq. (6.39) under some assumptions on H and ¢.
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