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Abstract

The subject of this paper is the rigorous derivation of a quasistatic evolution model for a linearly elastic–perfectly plastic thin
plate. As the thickness of the plate tends to zero, we prove via Γ -convergence techniques that solutions to the three-dimensional
quasistatic evolution problem of Prandtl–Reuss elastoplasticity converge to a quasistatic evolution of a suitable reduced model.
In this limiting model the admissible displacements are of Kirchhoff–Love type and the stretching and bending components of
the stress are coupled through a plastic flow rule. Some equivalent formulations of the limiting problem in rate form are derived,
together with some two-dimensional characterizations for suitable choices of the data.
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1. Introduction

The rigorous derivation of lower dimensional models for thin structures is a question of great interest in mechanics
and its applications. In the early 90’s a rigorous approach to dimension reduction has emerged in the stationary
framework and in the context of nonlinear elasticity [3,23]. This approach is based on Γ -convergence and, starting
from the seminal paper [19], has led to establish a hierarchy of limit models for plates [19,20], rods [31,32,34,35],
and shells [18,24,25]. More recently, the Γ -convergence approach to dimension reduction has gained attention also
in the evolutionary framework: in nonlinear elasticity [1,2], crack propagation [7,17], elastoplasticity with hardening
[26,27], and delamination problems [30].

In this paper we focus on the rigorous justification of a quasistatic evolution model for a thin plate in perfect
plasticity. More precisely, we shall consider a three-dimensional plate of small thickness, whose elastic behaviour is
linear and isotropic and whose plastic response is governed by the Prandtl–Reuss flow rule (without hardening), and
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derive via Γ -convergence techniques a reduced quasistatic evolution model, by sending the thickness parameter to
zero.

Let ω be a domain in R
2 with a C2 boundary and let ε > 0. For a plate of reference configuration

Ωε := ω ×
(

−ε

2
,
ε

2

)
the quasistatic evolution problem in perfect plasticity can be formulated as follows. Let uε(t) denote the displacement
field at time t and let Euε(t) denote the infinitesimal strain tensor at t , that is, the symmetric part of Duε(t). Let
σε(t) be the stress tensor at t and let eε(t) and pε(t) (a deviatoric symmetric matrix) be the elastic and plastic strain
tensors at t . Assume that the plate is subjected to a time-dependent boundary condition wε(t) prescribed on a subset
Γε := γd × (− ε

2 , ε
2 ) of the lateral boundary of Ωε and that for simplicity there are no applied loads. The classical

formulation of the quasistatic evolution problem on a time interval [0, T ] consists in finding uε(t), eε(t), pε(t), and
σε(t) such that the following conditions are satisfied for every t ∈ [0, T ]:

(cf1) kinematic admissibility: Euε(t) = eε(t) + pε(t) in Ωε and uε(t) = wε(t) on Γε;
(cf2) constitutive law: σε(t) =Ceε(t) in Ωε , where C is the elasticity tensor;
(cf3) equilibrium: divσε(t) = 0 in Ωε and σε(t)ν∂Ωε = 0 on ∂Ωε \ Γε , where ν∂Ωε is the outer unit normal to ∂Ωε;
(cf4) stress constraint: σε

D(t) ∈ K , where σε
D is the deviatoric part of σε and K is a given convex and compact subset

of deviatoric 3 × 3 matrices, representing the set of admissible stresses;
(cf5) flow rule: ṗε(t) = 0 if σε

D(t) ∈ intK , while ṗε(t) belongs to the normal cone to K at σε
D(t) if σε

D(t) ∈ ∂K .

Condition (cf5) can also be written in the equivalent form:

(cf5′) maximum dissipation principle: H(ṗε(t)) = σε
D(t) : ṗε(t), where H is the support function of K , i.e., H(p) :=

sup{σ : p: σ ∈ K}.

The first existence result of a quasistatic evolution in perfect plasticity has been proved in [36] by means of vis-
coplastic approximations. More recently, in [10] the problem has been reformulated within the framework of the
variational theory for rate-independent processes, developed in [28]. The variational formulation reads as follows: to
find a triple (uε(t), eε(t),pε(t)) such that for every t ∈ [0, T ] we have

(qs1) global stability: (uε(t), eε(t),pε(t)) satisfies Euε(t) = eε(t) + pε(t) in Ωε , uε(t) = wε(t) on Γε , and mini-
mizes

1

2

∫
Ωε

Cf : f dx +
∫
Ωε

H
(
q − pε(t)

)
dx

among all kinematically admissible triples (v, f, q);
(qs2) energy balance:

1

2

∫
Ωε

Ceε(t) : eε(t) dx +
t∫

0

∫
Ωε

H
(
ṗε(s)

)
dx ds = 1

2

∫
Ωε

Ceε(0) : eε(0) dx +
t∫

0

∫
Ωε

Ceε(s) : Eẇε(s) dx ds.

The existence of a quasistatic evolution according to the previous formulation and the extent to which this is equivalent
to the original formulation is the main focus of [10].

The main purpose of this paper is to characterize the limiting behaviour of a sequence of solutions
(uε(t), eε(t),pε(t)), as ε → 0. We observe that the abstract theory of evolutionary Γ -convergence for rate-
independent systems developed in [29] cannot be directly applied here. Indeed, it consists in studying separately
the Γ -limit of the stored-energy functionals and that of the dissipation distances and in coupling them through the
construction of a joint recovery sequence. This technique has been applied, e.g., in [26,27], where the presence of
hardening gives rise to a stored-energy functional that is coercive in the L2 norm both with respect to e and p. This
approach is not suited to our case, since the elastic energy is coercive only with respect to the elastic strain e, while
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the plastic strain p can be controlled only through the dissipation. For this reason, to identify the correct limiting
energy we first study the Γ -convergence of the total energy functional, given by the sum of the stored energy with
the dissipation distance. More precisely, we focus on the static case, that is, we consider a boundary displacement wε

independent of time, we introduce the functional

Eε(u, e,p) := 1

2

∫
Ωε

Ce : e dx +
∫
Ωε

H(p)dx

defined on the class A(Ωε,w
ε) of all triples (u, e,p) satisfying Eu = e + p in Ωε and u = wε on Γε , and we study

its limit, as ε → 0, in the sense of Γ -convergence.
As pointed out in [10], because of the linear growth of H , the functional Eε is not coercive in any Sobolev norm.

The natural setting for a weak formulation is the space BD(Ωε) of functions with bounded deformation in Ωε for the
displacement u and the space Mb(Ωε ∪Γε;M3×3

D ) of M3×3
D -valued bounded Borel measures on Ωε ∪Γε for the plastic

strain p. This is also natural from a mechanical point of view, because it is well known that in absence of hardening
displacements may develop jump discontinuities along so-called slip surfaces, on which plastic strain concentrates.

Since p ∈ Mb(Ωε ∪ Γε;M3×3
D ), the functional∫

Ωε

H(p)dx

has to be interpreted according to the theory of convex functions of measures, developed in [21,37] (see also Section 2),
as ∫

Ωε∪Γε

H

(
dp

d|p|
)

d|p|,

where dp/d|p| is the Radon–Nicodym derivative of p with respect to its total variation |p|. Moreover, the boundary
condition is relaxed by requiring that

p = (
wε − u

)� ν∂ΩεH2 on Γε, (1.1)

where � denotes the symmetric tensor product. The mechanical interpretation of (1.1) is that u may not attain the
boundary condition: in this case a plastic slip is developed along Γε , whose amount is proportional to the difference
between the prescribed boundary value and the actual value.

The Γ -convergence of Eε (rescaled to the domain Ω := ω × (− 1
2 , 1

2 ) independent of ε) is the subject of Section 5.
For simplicity we assume that the prescribed boundary datum wε is a displacement of Kirchhoff–Love type of Sobolev
regularity (see (3.5) below).

Setting Γd := γd × (− 1
2 , 1

2 ), we show that the Γ -limit of Eε is finite only on the class AKL(w) of triples (u, e,p)

such that u ∈ BD(Ω), e ∈ L2(Ω;M3×3
sym ), p ∈ Mb(Ω ∪ Γd ;M3×3

sym ), and

Eu = e + p in Ω, p = (w − u) � ν∂ΩH2 on Γd, (1.2)

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1,2,3, (1.3)

where w is a suitable limit boundary datum and ν∂Ω is the outer unit normal to ∂Ω . Note that, owing to (1.3), we can
identify e with a function in L2(Ω;M2×2

sym ) and p with a measure in Mb(Ω ∪ Γd ;M2×2
sym ). On this class the Γ -limit is

given by the functional

J (u, e,p) := 1

2

∫
Ω

Cre : e dx +Hr (p) (1.4)

where

Hr (p) :=
∫

Ω∪Γd

Hr

(
dp

d|p|
)

d|p|, (1.5)

and the tensor Cr and the function Hr are defined through pointwise minimization formulas (see (3.11), (3.15),
and (3.17)).
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Conditions (1.2)–(1.3) imply that u is a Kirchhoff–Love displacement in BD(Ω), that is, u3 belongs to the space
BH(ω) of functions with bounded Hessian in ω and there exists ū ∈ BD(ω) such that

u(x) = (
ū1

(
x′)− x3∂1u3

(
x′), ū2

(
x′)− x3∂2u3

(
x′), u3

(
x′)) for a.e. x = (

x′, x3
) ∈ Ω.

Moreover,

(Eu)αβ = (Eū)αβ − x3∂
2
αβu3 for α,β = 1,2.

We note that the averaged tangential displacement ū may exhibit jump discontinuities, while, because of the embed-
ding of BH(ω) into C(ω), the normal displacement u3 is continuous, but its gradient may have jump discontinuities.
Moreover, the second equality in (1.2), together with the second condition in (1.3), implies that u3 satisfies the bound-
ary condition u3 = w3 on γd . Since the dependence of u on x3 is affine, we can conclude that in the limit model slip
surfaces are vertical surfaces whose projection on ω is the union of the jump set of ū and the jump set of ∇u3.

Conditions (1.2)–(1.3) do not imply, in general, that e and p are affine with respect to x3. However, one can prove
(Proposition 4.3) that e and p admit the following decomposition:

e = ē + x3ê + e⊥, p = p̄ ⊗L1 + p̂ ⊗ x3L1 − e⊥,

where ē, ê ∈ L2(ω;M2×2
sym ), e⊥ ∈ L2(Ω;M2×2

sym ), and p̄, p̂ ∈ Mb(ω ∪ γd;M2×2
sym ). Moreover, the zeroth order moments

ē and p̄ satisfy

Eū = ē + p̄ in ω, p̄ = (w̄ − ū) � ν∂ωH1 on γd,

while the first order moments ê and p̂ are such that

D2u3 = −(ê + p̂) in ω, p̂ = (∇u3 − ∇w3) � ν∂ωH1 on γd,

where ν∂ω is the outer unit normal to ∂ω. Since it may be energetically convenient to have e⊥ �= 0, we cannot in
general express the limit functional J in terms of two-dimensional quantities only. This is in contrast with the case of
linearized elasticity [6,8].

The main technical ingredient in the Γ -convergence result is Theorem 4.7, which ensures the density of smooth
enough triples in the class AKL(w) and is the key argument in the construction of a recovery sequence (Theo-
rem 5.4). A first difficulty in the proof of Theorem 4.7 is due to the fact that one has to preserve the Kirchhoff–Love
structure. This can be done by mollifying separately the Kirchhoff–Love components ū and u3 of u and the ze-
roth and first order moments of e and p. A more delicate issue comes from the fact that the boundary conditions
are imposed on a portion of the lateral boundary of Ω and not on the whole ∂ω × (− 1

2 , 1
2 ). In particular, to have

that mollifications satisfy the boundary datum, we need first to approximate u3 in such a way that the equality
u3 = w3 holds on an open subset of ∂ω strictly containing γd . To do that we use in a crucial way that the bound-
ary of ω is of class C2, as well as the additional assumption that the relative boundary of γd in ∂ω is made of
two points. A similar approximation has to be applied to ū and to the moments of e and p to guarantee the strict
convergence of the full plastic strains in the sense of measures, which is needed to ensure convergence of the ener-
gies.

A related dimension reduction problem for perfectly plastic plates in the stationary case has been studied in [33]. In
that paper the elastic strain e is assumed a priori to coincide with trEu = divu and the plastic strain with the deviatoric
part of Eu. Moreover, the set K is supposed to be symmetric with respect to the origin. This last assumption allows
one, via minimization arguments, to express the Γ -limit in terms of the normal displacement u3 and the first order
moments ê and p̂, only, so that the limit model turns out to be two-dimensional. Another crucial difference is that in
[33] the boundary conditions are prescribed on the whole lateral boundary of Ωε and, as explained above, this makes
the approximation arguments much easier.

In Section 6 we introduce time and study the convergence of quasistatic evolutions. We prescribe on Γε a
boundary datum wε(t) of Kirchhoff–Love type and we consider a sequence of initial data (uε

0, e
ε
0,p

ε
0), that is

compact in a suitable sense. In Theorem 6.4 we show that, if for every ε > 0 the triple (uε(t), eε(t),pε(t)) is a
quasistatic evolution in the sense of (qs1)–(qs2) for the boundary datum wε(t) and the initial datum (uε

0, e
ε
0,p

ε
0),

then, up to a suitable scaling, (uε(t), eε(t),pε(t)) converges, as ε → 0, to a limit triple (u(t), e(t),p(t)) that satis-
fies:
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(qs1)r global stability: for every t ∈ [0, T ] (u(t), e(t),p(t)) ∈AKL(w(t)) and minimizes

1

2

∫
Ω

Crf : f dx +Hr

(
q − p(t)

)

among all triples (v, f, q) in AKL(w(t));
(qs2)r energy balance: for every t ∈ [0, T ]

1

2

∫
Ω

Cre(t) : e(t) dx +
t∫

0

Hr

(
ṗ(s)

)
ds = 1

2

∫
Ω

Cre(0) : e(0) dx +
t∫

0

∫
Ω

Cre(s) : Eẇ(s) dx ds.

We call a triple satisfying (qs1)r–(qs2)r a reduced quasistatic evolution.
The proof of Theorem 6.4 mainly relies on the Γ -convergence result of Section 5. Even if the abstract theory of

[29] cannot be directly applied, we follow the general scheme proposed in that paper. In particular, the role of the
so-called joint recovery sequence is played in our case by the recovery sequence provided by Theorem 5.4.

In the last part of the paper we show some equivalent formulations in rate form for the reduced quasistatic evolution
problem (qs1)r–(qs2)r . In the smooth case, a formulation in rate form of (qs1)r–(qs2)r reads as follows: to find u(t),
e(t), p(t), and σ(t) such that for every t ∈ [0, T ] we have

(cf1)r reduced kinematic admissibility: u(t) is a Kirchhoff–Love displacement, that is,

u(t, x) = (
ū1

(
t, x′)− x3∂1u3

(
t, x′), ū2

(
t, x′)− x3∂2u3

(
t, x′), u3

(
t, x′))

for every x = (x′, x3) ∈ Ω , satisfying the boundary conditions

ū(t, x) = w̄(t, x), u3(t, x) = w3(t, x), ∇u3(t, x) = ∇w3(t, x) on γd,

while e(t) and p(t) satisfy

e(t, x) = ē
(
t, x′)+ x3ê

(
t, x′)+ e⊥(t, x),

p(t, x) = p̄
(
t, x′)+ x3p̂

(
t, x′)− e⊥(t, x),

ēi3
(
t, x′) = êi3

(
t, x′) = (e⊥)i3(t, x) = 0, i = 1,2,3,

p̄i3
(
t, x′) = p̂i3

(
t, x′) = 0, i = 1,2,3

for every x = (x′, x3) ∈ Ω ; moreover, the following additive decompositions hold:

Eū
(
t, x′) = ē

(
t, x′)+ p̄

(
t, x′),

D2u3
(
t, x′) = −(

ê
(
t, x′)+ p̂

(
t, x′))

for every x′ ∈ ω;
(cf2)r reduced constitutive law: the stress decomposes as

σ(t, x) = σ̄
(
t, x′)+ x3σ̂

(
t, x′)+ σ⊥(t, x)

with

σ̄
(
t, x′) =Cr ē

(
t, x′), σ̂

(
t, x′) =Cr ê

(
t, x′), σ⊥(t, x) =Cre⊥(t, x)

for every x = (x′, x3) ∈ Ω ;
(cf3)r reduced equilibrium: divx′ σ̄ (t, x′) = 0 in ω and divx′ divx′ σ̂ (t, x′) = 0 in ω, together with corresponding

Neumann boundary conditions on ∂ω \ γd ;
(cf4)r reduced stress constraint: σ(t, x) ∈ Kr for every x ∈ Ω , where Kr := ∂Hr(0) is the subdifferential of Hr at 0;
(cf5)r reduced maximum dissipation principle:∫

Ω

Hr

(
ṗ(t)

)
dx =

∫
ω

σ̄
(
t, x′) : ˙̄p(t, x′)dx′ + 1

12

∫
ω

σ̂
(
t, x′) : ˙̂p(t, x′)dx′ −

∫
Ω

σ⊥(t, x) : ė⊥(t, x) dx.
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In the conditions stated above w̄ and w3 are the Kirchhoff–Love components of w, while Cr and Hr are the tensor
and the function introduced in (1.4)–(1.5). Owing to (cf1)r , the moments of e(t) and p(t) have been identified with
functions taking values in the set M2×2

sym .
To express conditions (cf1)r–(cf5)r in the nonsmooth case, we need in particular to give a meaning to the scalar

products in (cf5)r when the stress σ(t) is a function in L2(Ω;M2×2
sym ) and the plastic strain p(t) is only a measure in

Mb(Ω ∪ Γd ;M2×2
sym ). To this purpose, we introduce a suitable notion of duality between stresses and plastic strains

in the footsteps of [22] and [11]. The construction of this notion of duality and its main properties are detailed in
Section 7.1.

We note that the stretching component σ̄ (t) and the bending component σ̂ (t) of σ(t) decouple only in the equilib-
rium condition (cf3)r , while in the stress constraint (cf4)r and in the maximum dissipation principle (cf5)r the whole
stress σ(t) is involved. Thus, as in the static case, also in the evolutionary setting the limit problem has in general
a genuinely three-dimensional nature, unless specific data are prescribed. This last issue is discussed in the last sub-
section of the paper: we exhibit two sets of data, for which the corresponding reduced quasistatic evolutions can be
characterized in terms of two-dimensional quantities. In particular, in Proposition 7.17 we show that, if the set K is
symmetric with respect to the origin and the boundary datum and the initial data are properly chosen, our notion of
reduced quasistatic evolution coincides with the classical theory of perfectly plastic plates studied in [9,13,14].

The paper is organized as follows: in Section 2 we recall some preliminary results. In Section 3 we describe the
formulation of the three-dimensional problem and of the limit problem. In Section 4 we discuss the properties of
Kirchhoff–Love admissible triples and prove some approximation results. Section 5 is devoted to the Γ -convergence
result in the stationary case, while Section 6 concerns the convergence of quasistatic evolutions. Finally, in Section 7
we show some equivalent formulations of the reduced quasistatic evolution problem and discuss some examples.

2. Mathematical preliminaries

In this section we recall some notions from measure theory that we will use throughout the article.

Measures. Given a Borel set B ⊂ R
N and a finite dimensional Hilbert space X, Mb(B;X) denotes the space of all

bounded Borel measures on B with values in X, endowed with the norm ‖μ‖Mb
:= |μ|(B), where |μ| ∈ Mb(B;R)

is the variation of the measure μ. For every μ ∈ Mb(B;X) we consider the Lebesgue decomposition μ = μa + μs ,
where μa is absolutely continuous with respect to the Lebesgue measure LN and μs is singular with respect to LN .
If μs = 0, we always identify μ with its density with respect to LN , which is a function in L1(B;X).

If the relative topology of B is locally compact, by Riesz representation Theorem the space Mb(B;X) can be
identified with the dual of C0(B;X), which is the space of all continuous functions ϕ :B → X such that the set
{|ϕ|� δ} is compact for every δ > 0. The weak* topology on Mb(B;X) is defined using this duality.

Convex functions of measures. For every μ ∈ Mb(B;X) let dμ/d|μ| be the Radon–Nicodym derivative of μ with
respect to its variation |μ|. Let H0 :X → [0,+∞) be a convex and positively one-homogeneous function such that

r0|ξ | � H0(ξ)� R0|ξ | for every ξ ∈ X,

where r0 and R0 are two constants, with 0 < r0 � R0. According to the theory of convex functions of measures,
developed in [21], we introduce the nonnegative Radon measure H0(μ) ∈ Mb(B) defined by

H0(μ)(A) :=
∫
A

H0

(
dμ

d|μ|
)

d|μ|

for every Borel set A ⊂ B . We also consider the functional H0 :Mb(B;X) → [0,+∞) defined by

H0(μ) := H0(μ)(B) =
∫

H0

(
dμ

d|μ|
)

d|μ|

B
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for every μ ∈ Mb(B;X). One can prove that H0(μ) coincides with the measure studied in [37, Chapter II, Section 4].
Hence,

H0(μ) = sup

{∫
B

ϕ : dμ: ϕ ∈ C0(B;X), ϕ(x) ∈ K0 for every x ∈ B

}
, (2.1)

where K0 := ∂H0(0) is the subdifferential of H0 at 0. Moreover, H0 is lower semicontinuous on Mb(B;X) with
respect to weak* convergence.

Functions with bounded deformation. Let U be an open set of RN . The space BD(U) of functions with bounded
deformation is the space of all functions u ∈ L1(U ;RN) whose symmetric gradient Eu := symDu (in the sense of
distributions) belongs to Mb(U ;MN×N

sym ). It is easy to see that BD(U) is a Banach space endowed with the norm

‖u‖L1 + ‖Eu‖Mb
.

We say that a sequence (uk) converges to u weakly* in BD(U) if uk ⇀ u weakly in L1(U ;RN) and Euk ⇀ Eu

weakly* in Mb(U ;MN×N
sym ). Every bounded sequence in BD(U) has a weakly* converging subsequence. If U is

bounded and has a Lipschitz boundary, BD(U) can be embedded into LN/(N−1)(U ;RN) and every function u ∈
BD(U) has a trace, still denoted by u, which belongs to L1(∂U ;RN). Moreover, if Γ is a nonempty open subset of
∂U , there exists a constant C > 0, depending on U and Γ , such that

‖u‖L1(Ω) � C‖u‖L1(Γ ) + C‖Eu‖Mb
(2.2)

(see [37, Chapter II, Proposition 2.4 and Remark 2.5]). For the general properties of the space BD(U) we refer to [37].

Functions with bounded Hessian. The space BH(U) of functions with bounded Hessian is the space of all functions
u ∈ W 1,1(U) whose Hessian D2u (in the sense of distributions) belongs to Mb(U ;MN×N

sym ). It is easy to see that
BH(U) is a Banach space endowed with the norm

‖u‖L1 + ‖∇u‖L1 + ∥∥D2u
∥∥

Mb
.

If U has the cone property, then BH(U) coincides with the space of functions in L1(U) whose Hessian belongs to
Mb(U ;MN×N

sym ). If U is bounded and has a Lipschitz boundary, BH(U) can be embedded into W 1,N/(N−1)(U). If U

is bounded and has a C2 boundary, then for every function u ∈ BH(U) one can define the traces of u and of ∇u, still
denoted by u and ∇u; they satisfy u ∈ W 1,1(∂U), ∇u ∈ L1(∂U ;RN), and ∂u

∂τ
= ∇u · τ in L1(∂U), where τ is any

tangent vector to ∂U . If, in addition, N = 2, then BH(U) embeds into C(U), which is the space of all continuous
functions on U . For the general properties of the space BH(U) we refer to [12].

3. Setting of the problem

Throughout the paper ω is a bounded and connected open set of R
2 with a C2 boundary. We suppose that the

boundary ∂ω is partitioned into two disjoint open subsets γd , γn and their common boundary ∂�∂ωγd = ∂�∂ωγn

(topological notions refer here to the relative topology of ∂ω). We assume that γd �= ∅ and that ∂�∂ωγd = {P1,P2},
where P1, P2 are two points in ∂ω.

The reference configuration of the plate is given by the set

Ωε := ω ×
(

−ε

2
,
ε

2

)
,

where ε > 0. We denote by Γε the Dirichlet part of the boundary, given by Γε := γd × (− ε
2 , ε

2 ), and by ν∂Ωε the outer
unit normal to ∂Ωε .

The elasticity tensor. Let C be the elasticity tensor, considered as a symmetric positive definite linear operator
C :M3×3

sym → M
3×3
sym and let Q :M3×3

sym → [0,+∞) be the quadratic form associated with C, given by

Q(ξ) := 1
Cξ : ξ for every ξ ∈M

3×3
sym .
2
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It follows that there exist two constants rC and RC, with 0 < rC �RC, such that

rC|ξ |2 � Q(ξ) � RC|ξ |2 for every ξ ∈ M
3×3
sym . (3.1)

These inequalities imply

|Cξ |� 2RC|ξ | for every ξ ∈ M
3×3
sym . (3.2)

The dissipation potential. Let M3×3
D be the space of all matrices in M

3×3
sym with zero trace. Let K be a closed convex

set of M3×3
D such that there exist two constants rK and RK , with 0 < rK � RK , such that{

ξ ∈ M
3×3
D : |ξ |� rK

} ⊂ K ⊂ {
ξ ∈M

3×3
D : |ξ | � RK

}
.

The boundary of K is interpreted as the yield surface. The plastic dissipation potential is given by the support function
H :M3×3

D → [0,+∞) of K , defined as

H(ξ) := sup
σ∈K

σ : ξ.

It follows that H is a convex and positively one-homogeneous function such that

rK |ξ |� H(ξ) � RK |ξ | for every ξ ∈ M
3×3
D . (3.3)

In particular, H satisfies the triangle inequality

H(ξ + ζ ) �H(ξ) + H(ζ) for every ξ, ζ ∈M
3×3
D . (3.4)

Admissible triples and energy. On Γε we prescribe a boundary datum wε ∈ W 1,2(Ωε;R3) of the following form:

wε(z) :=
(

w̄1
(
z′)− z3

ε
∂1w3

(
z′), w̄2

(
z′)− z3

ε
∂2w3

(
z′), 1

ε
w3

(
z′)) for a.e. z = (

z′, z3
) ∈ Ωε, (3.5)

where w̄α ∈ W 1,2(ω), α = 1,2, and w3 ∈ W 2,2(ω). The set of admissible displacements and strains for the boundary
datum wε is denoted by A(Ωε,w

ε) and is defined as the class of all triples (v, f, q) ∈ BD(Ωε) × L2(Ωε;M3×3
sym ) ×

Mb(Ωε;M3×3
D ) satisfying

Ev = f + q in Ωε,

q = (
wε − v

)� ν∂ΩεH2 on Γε,

where � stands for the symmetrized tensor product and H2 is the two-dimensional Hausdorff measure. The function
v represents the displacement of the plate, while f and q are called the elastic and plastic strain, respectively.

For every admissible triple (v, f, q) ∈A(Ωε,w
ε) we define the associated energy as

Eε(v, f, q) :=
∫
Ωε

Q
(
f (z)

)
dz +

∫
Ωε∪Γε

H

(
dq

d|q|
)

d|q|. (3.6)

The first term represents the elastic energy, while the second term accounts for plastic dissipation.

3.1. The rescaled problem

As usual in dimension reduction problems, it is convenient to perform a change of variable in such a way to rewrite
the system on a fixed domain independent of ε. To this purpose, we set

Ω := ω ×
(

−1

2
,

1

2

)
, Γd := γd ×

(
−1

2
,

1

2

)
, Γn := γn ×

(
−1

2
,

1

2

)
,

and we denote by ν∂Ω the outer unit normal to ∂Ω . We consider the change of variable ψε :Ω → Ωε given by

ψε(x) := (
x′, εx3

)
for every x = (

x′, x3
) ∈ Ω
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and the linear operator Λε : M3×3
sym →M

3×3
sym given by

Λεξ :=
⎛
⎜⎝

ξ11 ξ12
1
ε
ξ13

ξ21 ξ22
1
ε
ξ23

1
ε
ξ31

1
ε
ξ32

1
ε2 ξ33

⎞
⎟⎠ for every ξ ∈M

3×3
sym .

To any triple (v, f, q) ∈ A(Ωε,w
ε) we associate a triple (u, e,p) ∈ BD(Ω) × L2(Ω;M3×3

sym ) × Mb(Ω ∪ Γd ;M3×3
sym )

defined as follows:

u := (v1 ◦ ψε, v2 ◦ ψε, εv3 ◦ ψε), e := Λ−1
ε f ◦ ψε, p := 1

ε
Λ−1

ε ψ#
ε (q).

Here the measure ψ#
ε (q) ∈ Mb(Ω ∪ Γd;M3×3

D ) is the pull-back measure of q , satisfying∫
Ω∪Γd

ϕ : dψ#
ε (q) =

∫
Ωε∪Γε

ϕ ◦ ψ−1
ε : dq for every ϕ ∈ C0

(
Ω ∪ Γd ;M3×3

D

)
.

According to this change of variable we have

Eε(v, f, q) = εQ(Λεe) + εH(Λεp),

where

Q(Λεe) :=
∫
Ω

Q
(
Λεe(x)

)
dx, H(Λεp) :=

∫
Ω∪Γd

H

(
dΛεp

d|Λεp|
)

d|Λεp|.

We also introduce the scaled Dirichlet boundary datum w ∈ W 1,2(Ω;R3), given by

w(x) := (
w̄1

(
x′)− x3∂1w3

(
x′), w̄2

(
x′)− x3∂2w3

(
x′),w3

(
x′)) for a.e. x ∈ Ω.

From the definition of the class A(Ωε,w
ε) it immediately follows that the scaled triple (u, e,p) satisfies the equalities

Eu = e + p in Ω, (3.7)

p = (w − u) � ν∂ΩH2 on Γd, (3.8)

p11 + p22 + 1

ε2
p33 = 0 in Ω ∪ Γd. (3.9)

We are thus led to introduce the class Aε(w) of all triples (u, e,p) ∈ BD(Ω) × L2(Ω;M3×3
sym ) × Mb(Ω ∪ Γd ;M3×3

sym )

satisfying (3.7)–(3.9), and to define the functional

Jε(u, e,p) := Q(Λεe) +H(Λεp) (3.10)

for every (u, e,p) ∈ Aε(w). In the following we shall study the asymptotic behaviour of the minimizers of Jε and of
the quasistatic evolution associated with Jε , as ε → 0.

3.2. The limit problem

In this subsection we introduce the limit functional, that describes the asymptotic behaviour of the rescaled ener-
gies Jε , as ε → 0.

The reduced elasticity tensor. Let M :M2×2
sym → M

3×3
sym be the operator given by

Mξ :=
(

ξ11 ξ12 λ1(ξ)

ξ12 ξ22 λ2(ξ)

λ1(ξ) λ2(ξ) λ3(ξ)

)
for every ξ ∈ M

2×2
sym , (3.11)

where for every ξ ∈M
2×2
sym the triple (λ1(ξ), λ2(ξ), λ3(ξ)) is the unique solution to the minimum problem

min
λi∈R

Q

(
ξ11 ξ12 λ1
ξ12 ξ22 λ2

)
.

λ1 λ2 λ3
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We observe that the triple (λ1(ξ), λ2(ξ), λ3(ξ)) can be characterized as the unique solution of the linear system

CMξ :
( 0 0 ζ1

0 0 ζ2
ζ1 ζ2 ζ3

)
= 0 (3.12)

for every ζ1, ζ2, ζ3 ∈R. This implies that M is a linear map.
Let Qr :M2×2

sym → [0,+∞) be the quadratic form given by

Qr(ξ) := Q(Mξ) for every ξ ∈M
2×2
sym . (3.13)

By (3.1) it satisfies the estimates

rC|ξ |2 � Qr(ξ) � RC|ξ |2 for every ξ ∈ M
2×2
sym . (3.14)

We also consider the linear operator Cr :M2×2
sym → M

3×3
sym defined as

Cr ξ := CMξ for every ξ ∈M
2×2
sym . (3.15)

By (3.12) we have

Cr ξ : ζ =CMξ : ζ =CMξ : Mζ ′′ for every ξ ∈M
2×2
sym , ζ ∈M

3×3
sym , (3.16)

where ζ ′′ ∈M
2×2
sym satisfies ζ ′′

αβ = ζαβ for α,β = 1,2. This implies that

Qr(ξ) = 1

2
Cr ξ :

(
ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

)
for every ξ ∈ M

2×2
sym .

We introduce the functional Qr :L2(Ω;M2×2
sym ) → [0,+∞), defined as

Qr (f ) :=
∫
Ω

Qr

(
f (z)

)
dz for every f ∈ L2(Ω;M2×2

sym

)
.

It describes the limiting elastic energy of a configuration of the plate whose elastic strain is given by f .

The reduced dissipation potential. We define Hr :M2×2
sym → [0,+∞) as

Hr(ξ) := min
λ1,λ2∈R

H

(
ξ11 ξ12 λ1
ξ12 ξ22 λ2
λ1 λ2 −(ξ11 + ξ22)

)
for every ξ ∈ M

2×2
sym . (3.17)

It turns out that Hr is convex, positively one-homogeneous, and satisfies

rK |ξ |� Hr(ξ) �
√

3RK |ξ | for every ξ ∈ M
2×2
sym . (3.18)

For every μ ∈ Mb(Ω ∪ Γd;M2×2
sym ) we define

Hr (μ) :=
∫

Ω∪Γd

Hr

(
dμ

d|μ|
)

d|μ|. (3.19)

It describes the limiting plastic dissipation rate of a plate configuration whose plastic strain is given by μ. The set
Kr := ∂Hr(0) ⊂M

2×2
sym represents the set of admissible stresses in the limit problem. In particular, one can prove that

ξ ∈ Kr ⇔
(

ξ11 ξ12 0
ξ12 ξ22 0
0 0 0

)
− 1

3
(tr ξ)I3×3 ∈ K,

where I3×3 is the identity matrix in M
3×3
sym .
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Kirchhoff–Love admissible triples and limit energy. We consider the set of Kirchhoff–Love displacements, defined
as

KL(Ω) := {
u ∈ BD(Ω): (Eu)i3 = 0 for i = 1,2,3

}
. (3.20)

We note that u ∈ KL(Ω) if and only if u3 ∈ BH(ω) and there exists ū ∈ BD(ω) such that

uα = ūα − x3∂αu3, α = 1,2. (3.21)

In particular, if u ∈ KL(Ω), then (Eu)αβ = (Eū)αβ − x3∂
2
αβu3 for α,β = 1,2. If, in addition, u ∈ W 1,p(Ω;R3), then

ū ∈ W 1,p(ω;R2) and u3 ∈ W 2,p(ω). We call ū, u3 the Kirchhoff–Love components of u.
For every w ∈ W 1,2(Ω;R3) ∩ KL(Ω) we define the class AKL(w) of Kirchhoff–Love admissible triples for the

boundary datum w as the set of all triples (u, e,p) ∈ KL(Ω) × L2(Ω;M3×3
sym ) × Mb(Ω ∪ Γd ;M3×3

sym ) satisfying

Eu = e + p in Ω, p = (w − u) � ν∂ΩH2 on Γd, (3.22)

ei3 = 0 in Ω, pi3 = 0 in Ω ∪ Γd, i = 1,2,3. (3.23)

Note that the space{
ξ ∈ M

3×3
sym : ξi3 = 0 for i = 1,2,3

}
is canonically isomorphic to M

2×2
sym . Therefore, in the following, given a triple (u, e,p) ∈ AKL(w) we will usually

identify e with a function in L2(Ω;M2×2
sym ) and p with a measure in Mb(Ω ∪ Γd;M2×2

sym ). Note also that the class
AKL(w) is always nonempty as it contains the triple (w,Ew,0).

With the previous notation, we introduce the functional J :AKL(w) → [0,+∞), defined as

J (u, e,p) := Qr (e) +Hr (p) (3.24)

for every (u, e,p) ∈ AKL(w). In Sections 5 and 6 we shall investigate the relation between the functionals Jε and J .

4. The class of Kirchhoff–Love admissible triples

In this section we study the class of Kirchhoff–Love admissible triples, introduced in (3.22)–(3.23).
Let (u, e,p) ∈AKL(w). By definition u is a Kirchhoff–Love displacement, hence u3 ∈ BH(ω) and uα , α = 1,2, is

affine in the x3 variable (see (3.21)). In general, one cannot conclude that e and p are affine in x3, too. However, some
conditions on the structure of e and p can be deduced. To this purpose, we introduce the following definitions.

Definition 4.1. Let f ∈ L2(Ω;M3×3
sym ). We denote by f̄ , f̂ ∈ L2(ω;M3×3

sym ) and by f⊥ ∈ L2(Ω;M3×3
sym ) the following

orthogonal components (in the sense of L2(Ω;M3×3
sym )) of f :

f̄
(
x′) :=

1
2∫

− 1
2

f
(
x′, x3

)
dx3, f̂

(
x′) := 12

1
2∫

− 1
2

x3f
(
x′, x3

)
dx3

for a.e. x′ ∈ ω, and

f⊥(x) := f (x) − f̄
(
x′)− x3f̂

(
x′)

for a.e. x ∈ Ω . The component f̄ is called the zeroth order moment of f , while f̂ is called the first order moment
of f .

Definition 4.2. Let q ∈ Mb(Ω ∪ Γd ;M3×3
sym ). The zeroth order moment of q is the measure q̄ ∈ Mb(ω ∪ γd ;M3×3

sym )

defined by∫
ω∪γ

ϕ : dq̄ :=
∫

ϕ : dq
d Ω∪Γd
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for every ϕ ∈ C0(ω ∪ γd;M3×3
sym ), while the first order moment of q is the measure q̂ ∈ Mb(ω ∪ γd;M3×3

sym ) defined by∫
ω∪γd

ϕ : dq̂ := 12
∫

Ω∪Γd

x3ϕ : dq

for every ϕ ∈ C0(ω ∪ γd;M3×3
sym ). We also define q⊥ ∈ Mb(Ω ∪ Γd ;M3×3

sym ) as the measure given by

q⊥ := q − q̄ ⊗L1 − q̂ ⊗ x3L1,

where the symbol ⊗ denotes the usual product of measures.

With these definitions at hand one can easily prove the following characterization of the class AKL(w).

Proposition 4.3. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and (u, e,p) ∈ KL(Ω) × L2(Ω;M3×3
sym ) × Mb(Ω ∪ Γd ;M3×3

sym ) with

ei3 = 0 in Ω and pi3 = 0 in Ω ∪Γd for i = 1,2,3. Let ū ∈ BD(ω), u3 ∈ BH(ω), and w̄ ∈ W 1,2(ω;R2), w3 ∈ W 2,2(ω)

be the Kirchhoff–Love components of u and w, respectively. Finally, let ē, ê ∈ L2(ω;M3×3
sym ), e⊥ ∈ L2(Ω;M3×3

sym ),

p̄, p̂ ∈ Mb(ω ∪ γd;M3×3
sym ), and p⊥ ∈ Mb(Ω ∪ Γd ;M3×3

sym ) be the moments of e and p, according to Definitions 4.1
and 4.2. Then (u, e,p) ∈ AKL(w) if and only if the following three conditions are satisfied:

(i) Eū = ē + p̄ in ω and p̄ = (w̄ − ū) � ν∂ωH1 on γd ;
(ii) D2u3 = −(ê + p̂) in ω, u3 = w3 on γd , and p̂ = (∇u3 − ∇w3) � ν∂ωH1 on γd ;

(iii) p⊥ = −e⊥ in Ω and p⊥ = 0 on Γd ,

where we have identified ē, ê with functions in L2(ω;M2×2
sym ) and p̄, p̂ with measures in Mb(ω ∪ γd;M2×2

sym ). Here ν∂ω

denotes the outer unit normal to ∂ω and H1 is the one-dimensional Hausdorff measure.

We now prove some approximation results for Kirchhoff–Love admissible triples. We first need a technical lemma.

Lemma 4.4. Let μ ∈ Mb(ω × (− 1
2 , 1

2 );M2×2
sym ) be such that

μ = μ̄ ⊗L1 + μ̂ ⊗ x3L1 + μ⊥,

where μ̄, μ̂ ∈ Mb(ω;M2×2
sym ) with |μ̄|(∂ω) = |μ̂|(∂ω) = 0 and μ⊥ ∈ L2(Ω;M2×2

sym ). Let (ρδ) ⊂ C∞
c (R2) be a sequence

of mollifiers with suppρδ ⊂ Bδ(0) for every δ > 0. Then

lim
δ→0+

1
2∫

− 1
2

(∫
ω

|ρδ ∗ μx3 |dx′
)

dx3 = |μ|(Ω),

where we have set μx3 := μ̄ + x3μ̂ + μ⊥(·, x3) ∈ Mb(ω;M2×2
sym ) for L1-a.e. x3 ∈ (− 1

2 , 1
2 ).

Proof. We first observe that, from the assumption μ⊥ ∈ L2(Ω;M2×2
sym ) it follows that

μa = μ̄a + x3μ̂
a + μ⊥,

μs = μ̄s ⊗L1 + μ̂s ⊗ x3L1.

Since x3 �→ μ̄s + x3μ̂
s belongs to L∞((− 1

2 , 1
2 );Mb(ω;M2×2

sym )), by [5, Corollary 2.29] we have

∣∣μs
∣∣ = ∣∣μ̄s + x3μ̂

s
∣∣ gen.⊗ L1,

where
gen.⊗ denotes the generalized product of measures (see, e.g., [5, Definition 2.27]). The equalities above imply

that
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|μ|(Ω) =
∫
Ω

∣∣μa(x)
∣∣dx + ∣∣μs

∣∣(Ω)

=
1
2∫

− 1
2

∫
ω

∣∣μ̄a
(
x′)+ x3μ̂

a
(
x′)+ μ⊥(x)

∣∣dx′ dx3 +
1
2∫

− 1
2

∣∣μ̄s + x3μ̂
s
∣∣(ω)dx3

=
1
2∫

− 1
2

|μx3 |(ω)dx3.

We now extend μx3 to 0 outside ω, so that the convolutions ρδ ∗μx3 are well defined on R
2. By the Fubini–Tonelli

Theorem and the assumption |μ̄|(∂ω) = |μ̂|(∂ω) = 0 we obtain∫
ω

|ρδ ∗ μx3 |dx′ =
∫
ω

∣∣∣∣
∫
R2

ρδ

(
x′ − y′)dμx3

(
y′)∣∣∣∣dx′

�
∫
ω

∫
R2

ρδ

(
x′ − y′)d|μx3 |

(
y′)dx′ � |μx3 |(ω)

for L1-a.e. x3 ∈ (− 1
2 , 1

2 ). By integrating with respect to x3 we deduce

1
2∫

− 1
2

(∫
ω

|ρδ ∗ μx3 |dx′
)

dx3 �

1
2∫

− 1
2

|μx3 |(ω)dx3 = |μ|(Ω).

On the other hand, we have that ρδ ∗ μx3 ⇀ μx3 weakly* in Mb(ω;M2×2
sym ) for L1-a.e. x3 ∈ (− 1

2 , 1
2 ). Hence, by

lower semicontinuity

|μx3 |(ω) � lim inf
δ→0+

∫
ω

|ρδ ∗ μx3 |dx′

for L1-a.e. x3 ∈ (− 1
2 , 1

2 ). Integration with respect to x3 and Fatou’s Lemma yield the thesis. �
The next lemma is an approximation result for Kirchhoff–Love admissible triples by means of triples (uk, ek,pk) ∈

AKL(w) with uk smooth. The proof is based on an adaptation of [12, Proposition 1.4].

Lemma 4.5. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (u, e,p) ∈ AKL(w). Then, there exists a sequence of triples
(uk, ek,pk) ∈ AKL(w) such that

uk ∈ C∞(
Ω;R3)∩ W 1,1(Ω;R3)

and the following properties hold:

uk ⇀ u weakly* in BD(Ω), (4.1)

ek → e strongly in L2(Ω;M3×3
sym

)
, (4.2)

pk ⇀ p weakly* in Mb

(
Ω ∪ Γd;M3×3

sym

)
, (4.3)∥∥pk

∥∥
Mb

→ ‖p‖Mb
, (4.4)

as k → ∞.
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Proof. Step 1. We first show that any triple (u, e,p) ∈ AKL(w) can be approximated in the sense of (4.1)–(4.4) by a
sequence of triples (uk, ek,pk) ∈ AKL(w) with uk ∈ C∞(Ω;R3) ∩ BD(Ω).

Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (u, e,p) ∈ AKL(w). By Proposition 4.3 the Kirchhoff–Love components
ū ∈ BD(ω) and u3 ∈ BH(ω) of u satisfy

Eū = ē + p̄ in ω, p̄ = (w̄ − ū) � ν∂ωH1 on γd,

D2u3 = −(ê + p̂) in ω, u3 = w3 on γd, p̂ = (∇u3 − ∇w3) � ν∂ωH1 on γd,

where ē, ê have been identified with functions in L2(ω;M2×2
sym ) and p̄, p̂ with measures in Mb(ω ∪ γd ;M2×2

sym ). More-
over,

p⊥ = −e⊥ in Ω, p⊥ = 0 on Γd.

Fix k ∈ N. Let r > 0 be such that the set

ω0 := {
x′ ∈ ω: dist

(
x′, ∂ω

)
> r−1}

is not empty. We set

ωj := {
x′ ∈ ω: dist

(
x′, ∂ω

)
> (j + r)−1} for every j ∈ N,

Aj := ωj+1 \ ωj−1 for j � 2, A1 := ω2.

Let {ϕj } be a C∞ partition of unity for ω subordinate to the covering {Aj }, that is, ϕj ∈ C∞
c (Aj ), 0 � ϕj � 1 for

every j ∈N, and
∞∑

j=1

ϕj = 1 in ω. (4.5)

Let (ρδ) be a sequence of convolution kernels with ρδ ∈ C∞
0 (Bδ(0)) for every δ > 0. For every j ∈ N we choose δj

such that{
x′ ∈ ω: dist

(
x′, suppϕj

)
< δj

}
� Aj , (4.6)∥∥(ϕju3) ∗ ρδj

− ϕju3
∥∥

W 1,2 + ∥∥(ϕj ū) ∗ ρδj
− ϕj ū

∥∥
L2 � k−12−j , (4.7)∥∥(ϕj ē) ∗ ρδj

− ϕj ē
∥∥

L2 + ∥∥(ϕj ê) ∗ ρδj
− ϕj ê

∥∥
L2 � k−12−j , (4.8)∥∥(u3D

2ϕj

) ∗ ρδj
− u3D

2ϕj

∥∥
L2 + ∥∥(∇u3 � ∇ϕj ) ∗ ρδj

− ∇u3 � ∇ϕj

∥∥
L2 � k−12−j , (4.9)∥∥(ū � ∇ϕj ) ∗ ρδj

− ū � ∇ϕj

∥∥
L2 � k−12−j . (4.10)

Moreover, we extend the function ϕj e⊥ to 0 outside Aj × (− 1
2 , 1

2 ) and consider the convolution

(ϕj e⊥) ∗ ρδj
(x) :=

∫
R2

ρδj

(
x′ − y′)ϕj

(
y′)e⊥

(
y′, x3

)
dy′

defined for every x ∈ Ω . Since ϕjp = ϕj p̄ ⊗ L1 + ϕj p̂ ⊗ x3L1 − ϕj e⊥, by Lemma 4.4 we can assume δj to be so
small that∥∥(ϕj e⊥) ∗ ρδj

− ϕj e⊥
∥∥

L2(Ω)
� k−12−j , (4.11)∣∣∣∣

∫
Ω

∣∣(ϕj p̄) ∗ ρδj
+ x3(ϕj p̂) ∗ ρδj

− (ϕj e⊥) ∗ ρδj

∣∣dx − |ϕjp|(Ω)

∣∣∣∣� k−12−j . (4.12)

Finally, we define

ūk :=
∞∑

j=1

(ϕj ū) ∗ ρδj
, uk

3 :=
∞∑

j=1

(ϕju3) ∗ ρδj
, uk

α := ūk
α − x3∂αuk

3 (α = 1,2),

ek := ēk + x3ê
k + ek⊥,
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where

ēk :=
∞∑

j=1

[
(ϕj ē) ∗ ρδj

+ (ū � ∇ϕj ) ∗ ρδj

]
,

êk :=
∞∑

j=1

[
(ϕj ê) ∗ ρδj

− (
u3D

2ϕj

) ∗ ρδj
− 2(∇u3 � ∇ϕj ) ∗ ρδj

]
, ek⊥ :=

∞∑
j=1

(ϕj e⊥) ∗ ρδj
,

and

pk :=
{∑∞

j=1[(ϕj p̄) ∗ ρδj
+ x3(ϕj p̂) ∗ ρδj

− (ϕj e⊥) ∗ ρδj
] in Ω,

(w − u) � ν∂ΩH2 on Γd.

It is easy to see that ūk ∈ C∞(ω;R2)∩BD(ω), uk
3 ∈ C∞(ω)∩W 2,1(ω), hence uk ∈ C∞(Ω;R3)∩BD(Ω). Moreover,

Eūk = ēk + p̄k and D2uk
3 = −(

êk + p̂k
)

in Ω (4.13)

for every k ∈N. Arguing as in [12, Proof of Proposition 1.4], one can also show that uk
3 = u3, ∇uk

3 = ∇u3, and ūk = ū

on ∂ω. By Proposition 4.3 this implies that (uk, ek,pk) ∈AKL(w).
By (4.5) and (4.7) we deduce that

uk → u strongly in L2(Ω;R3), (4.14)

while by (4.8)–(4.11) we obtain (4.2). By (4.5) and (4.12) we have∥∥pk
∥∥

Mb
= ∣∣pk

∣∣(Ω) + |p|(Γd)

�
∞∑

j=1

∫
Ω

∣∣(ϕj p̄) ∗ ρδj
+ x3(ϕj p̂) ∗ ρδj

− (ϕj e⊥) ∗ ρδj

∣∣dx + |p|(Γd)

�
∞∑

j=1

|ϕjp|(Ω) + |p|(Γd) + 1

k

=
∞∑

j=1

∫
Ω

ϕj

(
x′)d|p|(x) + |p|(Γd) + 1

k
= ‖p‖Mb

+ 1

k
. (4.15)

This implies that (pk) is weakly* converging in Mb(Ω ∪ Γd ;M3×3
sym ) to some limit, that must coincide with p owing

to (4.2), (4.13), and (4.14). This proves (4.1) and (4.3). Since by lower semicontinuity we have

‖p‖Mb
� lim inf

k→∞
∥∥pk

∥∥
Mb

,

convergence (4.4) follows now from (4.15).

Step 2. To conclude the proof of the lemma we shall prove that any triple (u, e,p) ∈AKL(w) with u ∈ C∞(Ω;R3) ∩
BD(Ω) can be approximated in the sense of (4.1)–(4.4) by a sequence of triples (uk, ek,pk) ∈ AKL(w) with uk ∈
C∞(Ω;R3) ∩ W 1,1(Ω;R3).

Let (u, e,p) ∈ AKL(w) with u ∈ C∞(Ω;R3) ∩ BD(Ω). The Kirchhoff–Love components of u satisfy ū ∈
C∞(ω;R2)∩ BD(ω) and u3 ∈ C∞(ω)∩W 2,1(ω). By [37, Chapter I, Proposition 1.3] and the regularity of ∂ω we can
construct a sequence (ūk) ⊂ C∞(ω;R2) such that

ūk → ū strongly in L1(ω;R2) and Eūk → Eū strongly in L1(ω;M2×2
sym

)
. (4.16)

This implies, in particular, that ūk → ū strongly in L1(γd ;R2). The sequence of triples (uk, ek,pk) defined by

uk
α := ūk

α − x3∂αu3 (α = 1,2), uk
3 := u3, ek := e,

and

pk :=
{

Eūk − e − x3D
2u3 in Ω,

(w − uk) � ν∂ΩH2 on Γd,

satisfies all the required properties. �
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Remark 4.6. We observe that by (4.14) and (4.16) and the continuous embedding of BD(ω) into L2(ω;R2) the
approximating sequence (uk, ek,pk) in Lemma 4.5 satisfies also

ūk → ū strongly in L2(ω;R2). (4.17)

Moreover, the construction of (uk, ek,pk) can be modified in such a way to satisfy also the following convergence
properties:∥∥Eūk

∥∥
L1 → ‖Eū‖Mb

, (4.18)∥∥D2uk
3

∥∥
L1 → ∥∥D2u3

∥∥
Mb

, (4.19)

uk
3 → u3 in C(ω), (4.20)

as k → ∞. Indeed, let us denote by p̄a , p̂a and p̄s , p̂s the absolutely continuous parts and the singular parts of p̄

and p̂, respectively. In Step 1 we can choose δj in such a way to satisfy also the following estimates:∥∥(ϕj p̄
a
) ∗ ρδj

− ϕj p̄
a
∥∥

L1 + ∥∥(ϕj p̂
a
) ∗ ρδj

− ϕj p̂
a
∥∥

L1 � k−12−j , (4.21)∣∣∥∥(ϕj p̄
s
) ∗ ρδj

∥∥
L1 − ∥∥ϕj p̄

s
∥∥

Mb

∣∣+ ∣∣∥∥(ϕj p̂
s
) ∗ ρδj

∥∥
L1 − ∥∥ϕj p̂

s
∥∥

Mb

∣∣� k−12−j , (4.22)∥∥(ϕju3) ∗ ρδj
− ϕju3

∥∥
L∞ � k−12−j , (4.23)

where we used the continuous embedding of BH(ω) into C(ω). By (4.23) we immediately deduce (4.20). By (4.21)
we have that

∞∑
j=1

(
ϕj p̄

a
) ∗ ρδj

→ p̄a strongly in L1(ω;M2×2
sym

)
,

while by (4.22) we obtain that∥∥∥∥∥
∞∑

j=1

(
ϕj p̄

s
) ∗ ρδj

∥∥∥∥∥
L1

�
∞∑

j=1

∥∥ϕj p̄
s
∥∥

Mb
+ 1

k
=

∞∑
j=1

∫
ω

ϕj d
∣∣p̄s

∣∣+ 1

k
= ∣∣p̄s

∣∣(ω) + 1

k
.

These two facts, together with (4.2), yield

lim sup
k→∞

∥∥Eūk
∥∥

L1 �
∥∥ē + p̄a

∥∥
L1 + ∣∣p̄s

∣∣(ω) = ‖Eū‖Mb
.

The opposite inequality follows from (4.1) by lower semicontinuity. A similar argument applies to (4.19). Finally, it is
easy to see that (4.18)–(4.20) are preserved by the construction of Step 2, since the approximation result for ū entails
strong convergence of (Eūk) in L1(ω;M2×2

sym ).

We now prove an approximation result for Kirchhoff–Love admissible triples in terms of smooth triples. We denote
by C∞

c (ω ∪ γn;M2×2
sym ) the set of smooth maps whose support is a compact subset of ω ∪ γn. Moreover, we introduce

the set L2∞,c(Ω;M2×2
sym ) of all p ∈ L2(Ω;M2×2

sym ) satisfying the following two conditions:

(i) ∂i
α∂

j
βp ∈ L2(Ω;M2×2

sym ) for every i, j ∈ N∪ {0}, α,β = 1,2;

(ii) there exists U � ω ∪ γn such that p = 0 a.e. on (ω \ U) × (− 1
2 , 1

2 ).

Note that functions in L2∞,c(Ω;M2×2
sym ) have a smooth dependence on the variable x′: indeed, if p ∈ L2∞,c(Ω;M2×2

sym ),

then p(·, x3) ∈ C∞
c (ω ∪ γn;M2×2

sym ) for a.e. x3 ∈ (− 1
2 , 1

2 ).

Theorem 4.7. Let w ∈ W 1,2(Ω,R3) ∩ KL(Ω) and let (u, e,p) ∈AKL(w). Then, there exists a sequence of triples(
uk, ek,pk

) ∈ (
W 1,2(Ω;R3)× L2(Ω;M3×3

sym

)× L2∞,c

(
Ω;M3×3

sym

))∩AKL(w)

such that
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uk ⇀ u weakly* in BD(Ω), (4.24)

ek → e strongly in L2(Ω;M3×3
sym

)
, (4.25)

pk ⇀ p weakly* in Mb

(
Ω ∪ Γd;M3×3

sym

)
, (4.26)∥∥pk

∥∥
L1 → ‖p‖Mb

, (4.27)

as k → ∞.

Proof. Up to translating u by w, it is enough to prove the theorem for w ≡ 0. Moreover, by Lemma 4.5 and by the
metrizability of the weak* topology on bounded subsets of Mb(Ω ∪ Γd ;M3×3

sym ) we can reduce to the case where

u ∈ W 1,1(Ω;R3) ∩ KL(Ω) and there exists q ∈ L1(Ω;M3×3
sym ) such that

p = q in Ω, p = −u � ν∂ΩH2 on Γd. (4.28)

As usual, we identify e and p with a function in L2(Ω;M2×2
sym ) and a measure in Mb(Ω ∪ Γd ;M2×2

sym ), respectively,

and we perform the decomposition of Proposition 4.3. Since u ∈ W 1,1(Ω;R3), we have that ū ∈ W 1,1(ω;R2) and
u3 ∈ W 2,1(ω), while by (4.28) there exist q̄ , q̂ ∈ L1(ω;M2×2

sym ) such that

p̄ = q̄ in ω, p̄ = −ū � ν∂ωH1 on γd, (4.29)

and

p̂ = q̂ in ω, p̂ = ∇u3 � ν∂ωH1 on γd. (4.30)

Note also that u3 = 0 on γd .
The proof is subdivided into two steps.

Step 1. We claim that we can always reduce to the case where there exists an open set J ⊂ ∂ω such that γd is
compactly contained in J and u3 = 0 on J (topological notions refer here to the relative topology of ∂ω).

To prove the claim, it is enough to show that the triple (u, e,p) can be approximated in the sense of (4.24)–(4.27)
by a sequence of triples (uδ, eδ,pδ) in AKL(w) satisfying the following property: for every δ > 0 there exists an open
set J δ ⊂ ∂ω such that γd is compactly contained in J δ and uδ

3 = 0 on J δ .
We recall that by assumption ∂�∂ωγd = {P1,P2}. For α = 1,2 let Uα be an open neighbourhood of Pα such that,

up to a C2 change of coordinates, ∂ω ∩ Uα is the graph of a C2 map and ω ∩ Uα is the related subgraph. We also
require U1 ∩ U2 = ∅. The approximating sequence will be constructed by modifying u only in the sets U1 and U2.
More precisely, using the C2 regularity, we shall straighten the boundary of ω in U1 and U2, and shift the function u

along the tangential direction in such a way to have the boundary condition satisfied on a set larger than γd .
We first consider the set U1. By our choice of the covering there exist a map φ ∈ C2(U1;R2) and a rectangle

R1 := (−a, a) × (−b, b) such that φ(U1) = R1, φ−1 ∈ C2(R1;U1), and

φ(U1 ∩ ∂ω) = {
(s,0): s ∈ (−a, a)

}
, φ(U1 ∩ ω) := {

(s, t) ∈ R1: t < 0
}
.

We can also assume that

φ(U1 ∩ γd) = {
(s,0): s ∈ (0, a)

}
.

Let ϕ1 ∈ C∞
c (U1) be a cut-off function with ϕ1 = 1 on a neighbourhood of P1 and let V1 be an open set in R

2 such
that suppϕ1 ⊂ V1 � U1. For δ small enough we define ψδ :φ(V1) → R1 as

ψδ(s, t) = (s + δ, t)

and φδ :V1 → U1 as

φδ := φ−1 ◦ ψδ ◦ φ.

It is easy to see that for δ small enough

φδ(V1 ∩ ω) ⊂ U1 ∩ ω, φδ(V1 \ ω) ⊂ U1 \ ω,
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and

φδ(V1 ∩ ∂ω) ⊂ U1 ∩ ∂ω.

Moreover, setting K1 := suppϕ1, we have that∥∥φδ − id
∥∥

C2(K1)
→ 0,

∥∥(φδ
)−1 − id

∥∥
C2(K1)

→ 0, (4.31)

as δ → 0.
We consider the functions ūδ,1 := ϕ1(ū ◦ φδ) and u

δ,1
3 := ϕ1(u3 ◦ φδ), which are well defined on V1 ∩ ω and are

extended to zero on ω \ V1. By construction ūδ,1 ∈ W 1,1(ω;R2), u
δ,1
3 ∈ W 2,1(ω), and

u
δ,1
3 = 0 on J δ,1, (4.32)

where J δ,1 := (U1 ∩ γd) ∪ (φδ)−1(U1 ∩ γd). Moreover, by (4.31) we obtain

ūδ,1 → ϕ1ū strongly in W 1,1(ω;R2), (4.33)

u
δ,1
3 → ϕ1u3 strongly in W 2,1(ω). (4.34)

Straightforward computations yield the equalities

Eūδ,1 = (
ū ◦ φδ

)� ∇ϕ1 + ϕ1 sym
((

Dū ◦ φδ
)
Dφδ

)
, (4.35)

D2u
δ,1
3 = (

u3 ◦ φδ
)
D2ϕ1 + 2∇ϕ1 � ((

Dφδ
)T (∇u3 ◦ φδ

))
+ ϕ1

∑
α=1,2

(
∂αu3 ◦ φδ

)
D2φδ

α + ϕ1
(
Dφδ

)T (
D2u3 ◦ φδ

)
Dφδ. (4.36)

It is therefore natural to introduce the functions ēδ,1, êδ,1 ∈ L2(ω;M2×2
sym ), defined as

ēδ,1 := (
ū ◦ φδ

)� ∇ϕ1 + ϕ1 sym
((

ē ◦ φδ
)
Dφδ

)
,

êδ,1 := −(
u3 ◦ φδ

)
D2ϕ1 − 2∇ϕ1 � ((

Dφδ
)T (∇u3 ◦ φδ

))
− ϕ1

∑
α=1,2

(
∂αu3 ◦ φδ

)
D2φδ

α + ϕ1
(
Dφδ

)T (
ê ◦ φδ

)
Dφδ

and the functions q̄δ,1, q̂δ,1 ∈ L1(ω;M2×2
sym ), defined as

q̄δ,1 := ϕ1 sym
((

q̄ ◦ φδ
)
Dφδ

)+ ϕ1 sym
([

(Dū − Eū) ◦ φδ
]
Dφδ

)
,

q̂δ,1 := ϕ1
(
Dφδ

)T (
q̂ ◦ φδ

)
Dφδ.

By (4.35) and (4.36) there hold

Eūδ,1 = ēδ,1 + q̄δ,1 in ω, D2u
δ,1
3 = −(

êδ,1 + q̂δ,1) in ω. (4.37)

By (4.31) we deduce the following convergence properties:

ēδ,1 → ū � ∇ϕ1 + ϕ1ē strongly in L2(ω;M2×2
sym

)
, (4.38)

êδ,1 → −u3D
2ϕ1 − 2∇ϕ1 � ∇u3 + ϕ1ê strongly in L2(ω;M2×2

sym

)
, (4.39)

q̄δ,1 → ϕ1q̄ strongly in L1(ω;M2×2
sym

)
, (4.40)

q̂δ,1 → ϕ1q̂ strongly in L1(ω;M2×2
sym

)
. (4.41)

An analogous construction in the set U2 provides us with two triples(
ūδ,2, ēδ,2, q̄δ,2) ∈ W 1,1(ω;R2)× L2(ω;M2×2

sym

)× L1(ω;M2×2
sym

)
,(

u
δ,2

, êδ,2, q̂δ,2) ∈ W 2,1(ω) × L2(ω;M2×2
sym

)× L1(ω;M2×2
sym

)
,
3
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such that

Eūδ,2 = ēδ,2 + q̄δ,2 in ω, D2u
δ,2
3 = −(

êδ,2 + q̂δ,2) in ω, (4.42)

and the following convergence properties hold:

ūδ,2 → ϕ2ū strongly in W 1,1(ω;R2), (4.43)

u
δ,2
3 → ϕ2u3 strongly in W 2,1(ω), (4.44)

ēδ,2 → ū � ∇ϕ2 + ϕ2ē strongly in L2(ω;M2×2
sym

)
, (4.45)

êδ,2 → −u3D
2ϕ2 − 2∇ϕ2 � ∇u3 + ϕ2ê strongly in L2(ω;M2×2

sym

)
, (4.46)

q̄δ,2 → ϕ2q̄ strongly in L1(ω;M2×2
sym

)
, (4.47)

q̂δ,2 → ϕ2q̂ strongly in L1(ω;M2×2
sym

)
, (4.48)

where ϕ2 ∈ C∞
c (U1) is a cut-off function with ϕ2 = 1 on a neighbourhood of P2. Moreover, the following boundary

condition is satisfied:

u
δ,2
3 = 0 on J δ,2, (4.49)

where J δ,2 is an open subset of ∂ω strictly containing U2 ∩ γd .
To complete the construction of the approximating sequence we set

ūδ := ū − (ϕ1 + ϕ2)ū + ūδ,1 + ūδ,2, uδ
3 := u3 − (ϕ1 + ϕ2)u3 + u

δ,1
3 + u

δ,2
3 ,

and

uδ
α := ūδ

α − x3∂αuδ
3 (α = 1,2).

Since uδ satisfies (3.21), it is immediate to see that uδ ∈ W 1,1(Ω;R3) ∩ KL(Ω); moreover, by (4.32) and (4.49) we
have

uδ
3 = 0 on J δ,

where J δ := J δ,1 ∪ J δ,2 ∪ γd is an open subset of ∂ω and satisfies γd � J δ . By (4.33), (4.34), (4.43), and (4.44) we
also have

uδ → u strongly in W 1,1(Ω;R3). (4.50)

By the continuity of the trace operator the previous convergence entails

uδ → u strongly in L1(∂Ω;R3). (4.51)

Finally, we introduce the functions eδ ∈ L2(Ω;M2×2
sym ) and qδ ∈ L1(Ω;M2×2

sym ), defined as

eδ := e − (ϕ1 + ϕ2)(ē + x3ê) + ēδ,1 + x3ê
δ,1 + ēδ,2 + x3ê

δ,2

−
2∑

α=1

(
ū � ∇ϕα − x3u3D

2ϕα − 2x3∇ϕα � ∇u3
)
,

qδ := q − (ϕ1 + ϕ2)(q̄ + x3q̂) + q̄δ,1 + x3q̂
δ,1 + q̄δ,2 + x3q̂

δ,2,

and the measure pδ ∈ Mb(Ω ∪ Γd ;M2×2
sym ), defined as

pδ := qδ in Ω, pδ := −uδ � ν∂ΩH2 on Γd.

Clearly, (uδ, eδ,pδ) ∈ AKL(w). Moreover, by (4.38)–(4.41) and (4.45)–(4.48) we obtain

eδ → e strongly in L2(Ω;M2×2
sym

)
, (4.52)

qδ → q strongly in L1(Ω;M2×2
sym

)
. (4.53)
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From (4.51) and (4.53) it follows immediately that

pδ ⇀ p weakly* in Mb

(
Ω ∪ Γd;M2×2

sym

)
and ∥∥pδ

∥∥
Mb

→ ‖p‖Mb
.

Step 2. By Step 1 we can assume that there exists an open set J ⊂ ∂ω such that γd is compactly contained in J and
u3 = 0 on J .

Let us consider a finite covering {Qi}i=1,...,m of ∂ω made of open squares centred at points on ∂ω, with a face
orthogonal to some vector ni ∈ S

1 and such that, for every i = 1, . . . ,m, the set Qi ∩ ω is a C2 subgraph in the
direction ni . We also require that for some m0 ∈ {1, . . . ,m}

γd �
m0⋃
i=1

Qi ∩ ∂ω � J

and

dist(Qi, γd) > 0 for every i = m0 + 1, . . . ,m.

Let Q0 be an open set compactly contained in ω such that the family of open sets {Qi}i=0,...,m is a finite covering
of ω. We consider a subordinate partition of unity {ϕi}i=0,...,m, with 0 � ϕi � 1, ϕi ∈ C∞

c (Qi) for every i = 0, . . . ,m,
and

∑m
i=0 ϕi = 1 on ω.

Denoting by Ω̃ the set

Ω̃ := Ω ∪
m0⋃
i=1

(
Qi ×

(
−1

2
,

1

2

))
,

we extend the triple (u, e,p) to Ω̃ by setting

u := 0 in Ω̃ \ Ω, e := 0 in Ω̃ \ Ω, p :=
{−u � ν∂ΩH2 on Ω̃ ∩ ∂Ω,

0 in Ω̃ \ Ω.

The extended maps satisfy

u ∈ BD(Ω̃) ∩ KL(Ω̃), e ∈ L2(Ω̃;M3×3
sym

)
, p ∈ Mb

(
Ω̃;M3×3

sym

)
and

Eu = e + p in Ω̃.

Note, in particular, that since u3 = 0 and ν∂Ω = (ν∂ω,0) on Ω̃ ∩ ∂Ω , we have that pi3 = 0 in Ω̃ for i = 1,2,3. Thus,
we can as usual identify e with a function in L2(Ω̃;M2×2

sym ) and p with a measure in Mb(Ω̃;M2×2
sym ).

For every i = 1, . . . ,m0 we introduce the outward translations

τi,k

(
x′) := x′ + akni for x′ ∈ R

2,

while for i = m0 + 1, . . . ,m we consider the inward translations

τi,k

(
x′) := x′ − akni for x′ ∈ R

2,

where (ak) is a sequence converging to 0+, as k → ∞. We define

ūk :=
m∑

i=1

(ϕi ū) ◦ τi,k + ϕ0ū, (4.54)

ēk :=
m∑

i=1

(ϕi ē) ◦ τi,k + ϕ0ē +
m∑

i=1

(∇ϕi � ū) ◦ τi,k + ∇ϕ0 � ū, (4.55)

p̄k :=
m∑

τ #
i,k(ϕip̄) + ϕ0p̄, (4.56)
i=1
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where τ #
i,k(ϕip̄) denotes the pull-back measure of ϕip̄. Note that (ūk, ēk, p̄k) is well defined in an open neighbourhood

ωk of ω, that is, ūk ∈ BD(ωk), ēk ∈ L2(ωk;M2×2
sym ), p̄k ∈ Mb(ωk;M2×2

sym ), and

Eūk = ēk + p̄k in ωk.

Moreover, by construction there exists an open set Uk ⊂ R
2 such that γd � Uk and uk = 0, ek = 0, and pk = 0 in Uk .

Finally, we can choose ak → 0 in such a way that

τ #
i,k(ϕip̄)(∂ω ∩ Qi) = 0 for i = m0 + 1, . . . ,m,

so that∣∣p̄k
∣∣(∂ω) = 0 for every k. (4.57)

Let now (ρδ) ⊂ C∞
c (R2) be a sequence of convolution kernels. For δ < ak we consider the functions

ūk,δ := ūk ∗ ρδ, ēk,δ := ēk ∗ ρδ, p̄k,δ := p̄k ∗ ρδ.

Clearly, we have ūk,δ ∈ C∞(ω;R2) and ēk,δ, p̄k,δ ∈ C∞(ω;M2×2
sym ), and

Eūk,δ = ēk,δ + p̄k,δ in ω.

Moreover, for δ small enough there hold

ūk,δ = 0 on γd and ēk,δ, p̄k,δ ∈ C∞
c

(
ω ∪ γn;M2×2

sym

)
. (4.58)

We apply a similar construction to the normal component of u and to the first moments of e and p. We first
introduce

uk
3 :=

m∑
i=1

(ϕiu3) ◦ τi,k + ϕ0u3,

êk :=
m∑

i=1

(ϕi ê) ◦ τi,k + ϕ0ê − 2
m∑

i=1

(∇ϕi � ∇u3) ◦ τi,k − 2∇ϕ0 � ∇u3 −
m∑

i=1

(
D2ϕiu3

) ◦ τi,k − D2ϕ0u3,

p̂k :=
m∑

i=1

τ #
i,k(ϕip̂) + ϕ0p̂,

and we then define for δ < ak

u
k,δ
3 := uk

3 ∗ ρδ, êk,δ := êk ∗ ρδ, p̂k,δ := p̂k ∗ ρδ.

As before, we can modify the choice of ak → 0 in such a way that∣∣p̂k
∣∣(∂ω) = 0. (4.59)

Moreover, for δ small enough we have that u
k,δ
3 ∈ C∞(ω), êk,δ, p̂k,δ ∈ C∞

c (ω ∪ γn;M2×2
sym ), and u

k,δ
3 = 0 on γd ,

∇u
k,δ
3 = 0 on γd . Finally, there holds

D2u
k,δ
3 = −(

êk,δ + p̂k,δ
)

in ω.

Analogously, we define

ek⊥ :=
m∑

i=1

(ϕie⊥) ◦ τi,k + ϕ0e⊥, e
k,δ
⊥ := ek⊥ ∗ ρδ,

where, with an abuse of notation, the composition (ϕie⊥) ◦ τi,k stands for the function

(ϕie⊥) ◦ τi,k(x) = ϕi

(
τi,k

(
x′))e⊥

(
τi,k

(
x′), x3

)
for a.e. x ∈ Ω,

and the convolution is intended with respect to the variable x′ ∈R
2. It is immediate to see that e

k,δ
⊥ ∈ L2∞,c(Ω;M2×2

sym ).
We now set
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uk,δ
α := ūk,δ

α − x3∂αu
k,δ
3 (α = 1,2),

ek,δ := ēk,δ + x3ê
k,δ + e

k,δ
⊥ ,

pk,δ := p̄k,δ + x3p̂
k,δ − e

k,δ
⊥ .

By construction we have(
uk,δ, ek,δ,pk,δ

) ∈ (
W 1,2(Ω;R3)× L2∞,c

(
Ω;M2×2

sym

)× L2∞,c

(
Ω;M2×2

sym

))∩AKL(w).

It is convenient to introduce also the measure pk ∈ Mb(Ω ∪ Γd;M2×2
sym ), defined as

pk := p̄k ⊗L1 + p̂k ⊗ x3L1 − ek⊥.

Lemma 4.4, together with equalities (4.57) and (4.59), guarantees that we can choose δ = δk small enough, so that∥∥ūk,δk − ūk
∥∥

L2 < k−1,
∥∥u

k,δk

3 − uk
3

∥∥
W 1,2 < k−1,∥∥ēk,δk − ēk

∥∥
L2 < k−1,

∥∥êk,δk − êk
∥∥

L2 < k−1,
∥∥e

k,δk⊥ − ek⊥
∥∥

L2(Ω)
< k−1,∣∣∥∥pk,δk

∥∥
L1(Ω)

− ∣∣pk
∣∣(Ω)

∣∣ < k−1. (4.60)

From the convergence properties above we deduce (4.25) and that

uk,δk → u strongly in L2(Ω;R3).
To conclude the proof of the theorem it is enough to show that∥∥pk,δk

∥∥
L1(Ω)

� ‖p‖Mb
+ 1

k
(4.61)

for every k ∈N. By (4.60) we have∥∥pk,δk
∥∥

L1(Ω)
�

∣∣pk
∣∣(Ω) + 1

k
. (4.62)

On the other hand, since p has been extended to zero on the set
⋃m0

i=1(Qi \ω)× (− 1
2 , 1

2 ), while for i = m0 + 1, . . . ,m

the map τi,k is an inward translations, we have

∣∣pk
∣∣(Ω) � |ϕ0p|(Ω) +

m∑
i=1

1
2∫

− 1
2

∣∣τ #
i,k

(
ϕip̄ + x3ϕip̂ + ϕie⊥(·, x3)

)∣∣(ω)dx3

� |ϕ0p|(Ω) +
m∑

i=1

1
2∫

− 1
2

∣∣ϕi

(
p̄ + x3p̂ + e⊥(·, x3)

)∣∣(ω ∪ γd) dx3

=
m∑

i=0

|ϕip|(Ω ∪ Γd) =
m∑

i=0

∫
Ω∪Γd

ϕi d|p| = ‖p‖Mb
.

This, together with (4.62), completes the proof of (4.61) and of the theorem. �
Remark 4.8. Arguing as in Remark 4.6, one can modify the construction of the sequence (uk, ek,pk) in Theorem 4.7
in such a way that the convergence properties (4.17)–(4.20) are also satisfied. In particular, (4.20) is preserved, since
the approximation argument for u3 involves only local translations and convolutions.

Remark 4.9. We point out that the approximation result provided by Lemma 4.5 is crucial in Step 1 of the proof of
Theorem 4.7. Indeed, it is not in general true that, if v ∈ BD(ω) and Ψ : U → ω is a smooth bijection with smooth
inverse, the composition v ◦Ψ belongs to BD(U). Lemma 4.5 allows us to assume ū ∈ W 1,1(ω;R2) and this regularity
guarantees that ū ◦ φδ ∈ W 1,1(V1;R2), hence, in particular, ū ◦ φδ ∈ BD(V1).
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5. Γ -convergence of the static functionals

In this section we study the asymptotic behaviour of minimizers of the rescaled energies Jε , as ε → 0, and we
show that it can be characterized in terms of the functional J . More precisely, we have the following theorem.

Theorem 5.1. Let Jε and J be the functionals defined in (3.10) and (3.24). Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and for
every ε > 0 let (uε, eε,pε) ∈Aε(w) be a minimizer of Jε . Then there exist a subsequence (not relabelled) and a triple
(u, e,p) ∈ AKL(w) such that

uε ⇀ u weakly* in BD(Ω), (5.1)

eε → e strongly in L2(Ω;M3×3
sym

)
, (5.2)

Λεe
ε →Me strongly in L2(Ω;M3×3

sym

)
, (5.3)

pε ⇀ p weakly* in Mb

(
Ω ∪ Γd ;M3×3

sym

)
, (5.4)

H
(
Λεp

ε
) → Hr (p), (5.5)

where M is the tensor introduced in (3.11). Moreover, (u, e,p) is a minimizer of J and

lim
ε→0

Jε(uε, eε,pε) = J (u, e,p). (5.6)

Remark 5.2. The existence of a minimizer of Jε is guaranteed by [10, Theorem 3.3].

The proof of Theorem 5.1 is in the spirit of Γ -convergence. We first prove a compactness result and a lim inf
inequality for sequences of triples with equibounded energies.

Theorem 5.3. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (uε, eε,pε) ∈Aε(w) be such that

Jε(uε, eε,pε) � C for every ε > 0, (5.7)

where C is a constant independent of ε. Then, there exist ẽ ∈ L2(Ω;M3×3
sym ) and p̃ ∈ Mb(Ω ∪ Γd ;M3×3

D ) such that,
up to subsequences,

Λεeε ⇀ ẽ weakly in L2(Ω;M3×3
sym

)
, (5.8)

Λεpε ⇀ p̃ weakly* in Mb

(
Ω ∪ Γd ;M3×3

D

)
. (5.9)

Moreover, there exists (u, e,p) ∈ AKL(w), with eαβ = ẽαβ and pαβ = p̃αβ for α,β = 1,2, such that, up to subse-
quences,

uε ⇀ u weakly* in BD(Ω), (5.10)

eε ⇀ e weakly in L2(Ω;M3×3
sym

)
, (5.11)

pε ⇀ p weakly* in Mb

(
Ω ∪ Γd ;M3×3

sym

)
, (5.12)

and

J (u, e,p) � lim inf
ε→0

Jε(uε, eε,pε). (5.13)

Proof. By the energy estimate (5.7) and by (3.1) we deduce the bounds

‖eε‖L2 � ‖Λεeε‖L2 � C for every ε. (5.14)

Hence, there exist ẽ, e ∈ L2(Ω;M3×3
sym ) such that (5.8) and (5.11) hold up to subsequences, with eαβ = ẽαβ for α,β =

1,2 and ei3 = 0 for i = 1,2,3. By the lower semicontinuity of Q with respect to weak convergence in L2(Ω;M3×3
sym )

and by the definition (3.13) of Qr we also deduce

Qr (e) �Q(ẽ) � lim infQ(Λεeε). (5.15)

ε→0
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By (5.7) and (3.3) we obtain analogously

‖pε‖Mb
� ‖Λεpε‖Mb

� C. (5.16)

Therefore, there exist p̃ ∈ Mb(Ω ∪ Γd;M3×3
D ) and p ∈ Mb(Ω ∪ Γd;M3×3

sym ) such that (5.9) and (5.12) hold up to
subsequences, with pαβ = p̃αβ for α,β = 1,2 and pi3 = 0 for i = 1,2,3. By the lower semicontinuity of H with
respect to weak* convergence in Mb(Ω ∪ Γd ;M3×3

D ) and by the definition (3.17) of Hr , we have

Hr (p) �H(p̃)� lim inf
ε→0

H(Λεpε), (5.17)

which, together with (5.15), gives (5.13).
Since (uε, eε,pε) ∈Aε(w), for every ε there hold

Euε = eε + pε in Ω, (5.18)

and

pε = (w − uε) � ν∂ΩH2 on Γd. (5.19)

By (5.14), (5.16), and (5.18), the sequence (Euε) is bounded in Mb(Ω;M3×3
sym ). By (5.16) and (5.19), the traces of

(uε) are uniformly bounded in L1(Γd ;R3). Hence, by (2.2) the sequence (uε) is bounded in BD(Ω) and (5.10) holds
up to subsequences. Moreover, it is immediate to see that Eu = e + p in Ω , hence u ∈ KL(Ω).

To conclude the proof, it remains to check that p = (w − u) � ν∂ΩH2 on Γd . To this purpose we argue as in
[10, Lemma 2.1]. Since γd is an open subset of ∂ω, there exists an open set A ⊂ R

2 such that γd = A ∩ ∂ω. We set
U := (ω ∪ A) × (− 1

2 , 1
2 ) and we extend the triples (uε, eε,pε) to the set U in the following way:

vε :=
{

uε in Ω,

w in U \ Ω,
fε :=

{
eε in Ω,

Ew in U \ Ω,
qε :=

{
pε in Ω ∪ Γd,

0 otherwise.

The symmetric part of the gradient of vε satisfies

Evε =
{

Euε in Ω,

(w − uε) � ν∂ΩH2 on Γd,

Ew in U \ Ω.

Therefore, by (5.10), up to subsequences, vε ⇀ v weakly* in BD(U), where

v :=
{

u in Ω,

w in U \ Ω,
and Ev =

{
Eu in Ω,

(w − u) � ν∂ΩH2 on Γd,

Ew in U \ Ω.

(5.20)

Analogously, up to subsequences, fε ⇀ f weakly in L2(U ;M3×3
sym ) and, since the restrictions to Ω ∪ Γd of functions

in C0(U ;M3×3
sym ) belong to C0(Ω ∪ Γd;M3×3

sym ), there holds qε ⇀ q weakly* in Mb(U ;M3×3
sym ), where

f :=
{

e in Ω,

Ew in U \ Ω,
and q :=

{
p in Ω ∪ Γd,

0 otherwise.

Since Evε = fε + qε in U for every ε, we deduce that Ev = f + q in U . The thesis follows now from (5.20). �
In the next theorem we show that the lower bound established in Theorem 5.3 is optimal by exhibiting a recovery

sequence.

Theorem 5.4. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω) and let (u, e,p) ∈ AKL(w). Then, there exists a sequence of triples
(uε, eε,pε) ∈Aε(w) such that

uε ⇀ u weakly* in BD(Ω), (5.21)

eε → e strongly in L2(Ω;M3×3
sym

)
, (5.22)

pε ⇀ p weakly* in Mb

(
Ω ∪ Γd ;M3×3

sym

)
, (5.23)

Λεe
ε → Me strongly in L2(Ω;M3×3

sym

)
, (5.24)

H
(
Λεp

ε
) → Hr (p), (5.25)
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and

lim
ε→0

Jε

(
uε, eε,pε

) = J (u, e,p). (5.26)

Proof. Assume first that (u, e,p) ∈ (W 1,2(Ω;R3)×L2(Ω;M3×3
sym )×L2∞,c(Ω;M3×3

sym ))∩AKL(w). In particular, p = 0

on Γd and u = w H2-a.e. on Γd . Let φ1, φ2, φ3 ∈ L2(Ω) be such that

Me =
(

e11 e12 φ1
e12 e22 φ2
φ1 φ2 φ3

)
.

Since p ∈ L2(Ω;M3×3
sym ), by the measurable selection lemma (see, e.g., [15]) and by (3.3) and (3.18) there exist

η1, η2, η3 ∈ L2(Ω) such that

Hr (p) =H
(

p11 p12 η1
p12 p22 η2
η1 η2 −(p11 + p22)

)
. (5.27)

We argue as in [26, Proposition 4.1] and we approximate the maps φi and ηi by means of elliptic regularizations. For
every ε we define φε

i ∈ W
1,2
0 (Ω), i = 1,2,3, as the solution of the elliptic boundary value problem{−ε�φε

i + φε
i = φi in Ω,

φε
i = 0 on ∂Ω,

and ηε
α ∈ W

1,2
0 (Ω), α = 1,2, as the solution of{−ε�ηε

α + ηε
α = ηα in Ω,

ηε
α = 0 on ∂Ω.

The standard theory of elliptic equations gives

φε
i → φi strongly in L2(Ω), (5.28)

ηε
α → ηα strongly in L2(Ω), (5.29)

as ε → 0, and∥∥∇φε
i

∥∥
L2 � Cε− 1

2 ,
∥∥∇ηε

α

∥∥
L2 � Cε− 1

2 . (5.30)

We also introduce the function f ε ∈ L2(ω;M3×3
sym ), defined componentwise as

f ε
αα

(
x′) := 2ε

x3∫
0

(
∂αφε

α

(
x′, s

)+ ∂αηε
α

(
x′, s

))
ds (α = 1,2), f ε

33

(
x′) := 0,

f ε
12

(
x′) := ε

x3∫
0

(
∂2φ

ε
1

(
x′, s

)+ ∂2η
ε
1

(
x′, s

)+ ∂1φ
ε
2

(
x′, s

)+ ∂1η
ε
2

(
x′, s

))
ds,

f ε
α3

(
x′) := ε2

2

x3∫
0

(
∂αφε

3

(
x′, s

)− ∂αp11
(
x′, s

)− ∂αp22
(
x′, s

))
ds (α = 1,2)

for a.e. x′ ∈ ω.
We are now in a position to define the recovery sequence. Let

uε
α := uα + 2ε

x3∫
0

(
φε

α

(
x′, s

)+ ηε
α

(
x′, s

))
ds (α = 1,2),

uε
3 := u3 + ε2

x3∫ (
φε

3

(
x′, s

)− p11
(
x′, s

)− p22
(
x′, s

))
ds,
0
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and

eε := e +
⎛
⎝ 0 0 εφε

1
0 0 εφε

2
εφε

1 εφε
2 ε2φε

3

⎞
⎠+ f ε, pε := p +

⎛
⎝ 0 0 εηε

1
0 0 εηε

2
εηε

1 εηε
2 −ε2(p11 + p22)

⎞
⎠ .

Since u = w on Γd , p ∈ L2∞,c(Ω;M3×3
sym ), and φε

i , η
ε
α ∈ W

1,2
0 (Ω), we have that uε = w on Γd . It is also easy to check

that (uε, eε,pε) ∈Aε(w). From (5.28) and (5.29) it follows that uε → u strongly in L2(Ω;R3). By (5.28) and (5.30)
we deduce (5.22) and (5.24), while by (5.29) we obtain

pε → p strongly in L2(Ω;M3×3
sym

)
,

hence (5.23) and (5.21) follow. Finally, by (5.27) we have (5.25), which, together with (5.24), implies the convergence
of the energies.

Let now (u, e,p) ∈ AKL(w). By Theorem 4.7 there exists a sequence of triples (uk, ek,pk) in (W 1,2(Ω;R3) ×
L2(Ω;M3×3

sym )×L2∞,c(Ω;M3×3
sym ))∩AKL(w) converging to (u, e,p) in the sense of (4.24)–(4.27). These convergence

properties, together with the linearity of the map M and Reshetnyak Continuity Theorem (see, e.g., [5, Theorem 2.39]),
imply

Mek → Me strongly in L2(Ω;M3×3
sym

)
,

Hr

(
pk

) →Hr (p).

In particular, by the dominated convergence theorem we also have

lim
k→∞J

(
uk, ek,pk

) = J (u, e,p).

For every k ∈ N we can apply the previous argument to construct a recovery sequence for (uk, ek,pk). A diago-
nal argument and the metrizability of the weak* topology on bounded subsets of Mb(Ω ∪ Γd ;M3×3

sym ) allow us to
conclude. �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. Since (w,Ew,0) ∈ Aε(w) for every ε > 0, by minimality we have that

Jε

(
uε, eε,pε

)
� Jε(w,Ew,0)� RC‖Ew‖2

L2,

where the last inequality follows from the definition (3.10) of Jε , the inequality (3.1), and the fact that w ∈ KL(Ω).
By Theorem 5.3 we deduce that there exists (u, e,p) ∈AKL(w) such that, up to subsequences,

uε ⇀ u weakly* in BD(Ω),

eε ⇀ e weakly in L2(Ω;M3×3
sym

)
,

pε ⇀ p weakly* in Mb

(
Ω ∪ Γd;M3×3

sym

)
,

and

J (u, e,p) � lim inf
ε→0

Jε

(
uε, eε,pε

)
. (5.31)

Let now (v, f, q) ∈ AKL(w). By Theorem 5.4 there exists a sequence of triples (vε, f ε, qε) ∈Aε(w) such that

J (v, f, q) = lim
ε→0

Jε

(
vε, f ε, qε

)
� lim sup

ε→0
Jε

(
uε, eε,pε

)
, (5.32)

where the last inequality follows from the minimality of (uε, eε,pε). Combining (5.32) with (5.31), we deduce that
(u, e,p) is a minimizer of J and by choosing (v, f, q) = (u, e,p) in (5.32) we obtain (5.6).

It remains to prove (5.2), (5.3), and (5.5). By the lower semicontinuity of Q and H with respect to weak convergence
in L2(Ω;M3×3

sym ) and weak* convergence in Mb(Ω ∪ Γd ;M3×3
sym ), respectively, and by the definition of Qr and Hr we

have

Qr (e) � lim infQ
(
Λεe

ε
)
, Hr (p) � lim infH

(
Λεp

ε
)
. (5.33)
ε→0 ε→0
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Combining (5.6) and (5.33) yields

lim
ε→0

Q
(
Λεe

ε
) =Qr (e), lim

ε→0
H
(
Λεp

ε
) =Hr (p),

so that (5.5) is proved. On the other hand, we remark that by (3.16)

Q
(
Λεe

ε −Me
) =Q

(
Λεe

ε
)+Qr (e) −

∫
Ω

CMe : Λεe
ε dx

=Q
(
Λεe

ε
)+Qr (e) −

∫
Ω

CMe : eε dx. (5.34)

Therefore, passing to the limit in (5.34) and applying again (3.16), we obtain

lim
ε→0

Q
(
Λεe

ε −Me
) = 0,

so that (5.3) follows now from (3.1). Finally, convergence (5.2) is an immediate consequence of (5.3). �
6. Convergence of quasistatic evolutions

In this section we focus on the quasistatic evolution problems associated with the functionals Jε and J . For every
t ∈ [0, T ] we prescribe a boundary datum w(t) ∈ W 1,2(Ω;R3) ∩ KL(Ω) and we assume the map t �→ w(t) to be
absolutely continuous from [0, T ] into W 1,2(Ω;R3).

Let s1, s2 ∈ [0, T ], s1 � s2. For every function t �→ μ(t) of bounded variation from [0, T ] into Mb(Ω ∪Γd ;M3×3
D ),

we define the dissipation of t �→ μ(t) in [s1, s2] as

D(μ; s1, s2) := sup

{
n∑

j=1

H
(
μ(tj ) − μ(tj−1)

)
: s1 = t0 � t1 � · · ·� tn = s2, n ∈N

}
.

Analogously, for every function t �→ μ(t) of bounded variation from [0, T ] into Mb(Ω ∪ Γd ;M2×2
sym ) we define the

reduced dissipation of t → μ(t) in [s1, s2] as

Dr (μ; s1, s2) := sup

{
n∑

j=1

Hr

(
μ(tj ) − μ(tj−1)

)
: s1 = t0 � t1 � · · ·� tn = s2, n ∈N

}

for every s1, s2 ∈ [0, T ], s1 � s2.

Definition 6.1. Let ε > 0. An ε-quasistatic evolution for the boundary datum w(t) is a function t �→ (uε(t), eε(t),

pε(t)) from [0, T ] into BD(Ω) × L2(Ω;M3×3
sym ) × Mb(Ω ∪ Γd ;M3×3

sym ) that satisfies the following conditions:

(qs1) for every t ∈ [0, T ] we have (uε(t), eε(t),pε(t)) ∈ Aε(w(t)) and

Q
(
Λεe

ε(t)
)
�Q(Λεf ) +H

(
Λεq − Λεp

ε(t)
)

(6.1)

for every (v, f, q) ∈Aε(w(t));
(qs2) the function t �→ pε(t) from [0, T ] into Mb(Ω ∪ Γd ;M3×3

sym ) has bounded variation and for every t ∈ [0, T ]

Q
(
Λεe

ε(t)
)+D

(
Λεp

ε;0, t
) =Q

(
Λεe

ε(0)
)+

t∫
0

∫
Ω

CΛεe
ε(s) : Eẇ(s) dx ds. (6.2)

Definition 6.2. A reduced quasistatic evolution for the boundary datum w(t) is a function t �→ (u(t), e(t),p(t)) from
[0, T ] into BD(Ω) × L2(Ω;M3×3

sym ) × Mb(Ω ∪ Γd ;M3×3
sym ) that satisfies the following conditions:

(qs1)r for every t ∈ [0, T ] we have (u(t), e(t),p(t)) ∈ AKL(w(t)) and

Qr

(
e(t)

)
�Qr (f ) +Hr

(
q − p(t)

)
(6.3)

for every (v, f, q) ∈AKL(w(t));
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(qs2)r the function t �→ p(t) from [0, T ] into Mb(Ω ∪ Γd ;M3×3
sym ) has bounded variation and for every t ∈ [0, T ]

Qr

(
e(t)

)+Dr (p;0, t) =Qr

(
e(0)

)+
t∫

0

∫
Ω

Cre(s) : Eẇ(s) dx ds. (6.4)

Remark 6.3. Since the functions t �→ pε(t) and t �→ p(t) from [0, T ] into Mb(Ω∪Γd ;M3×3
sym ) have bounded variation,

they are bounded and the set of their discontinuity points (in the strong topology) is at most countable. By [10,
Theorem 3.8] and by Lemma 6.9 below the same properties hold for the functions t �→ eε(t) and t �→ e(t) from [0, T ]
into L2(Ω;M3×3

sym ), and for the functions t �→ uε(t) and t �→ u(t) from [0, T ] into BD(Ω). Therefore, t �→ eε(t)

and t �→ e(t) belong to L∞([0, T ];L2(Ω;M3×3
sym )), while t �→ uε(t) and t �→ u(t) belong to L∞([0, T ];BD(Ω)).

As t �→ Eẇ(t) belongs to L1([0, T ];L2(Ω;M3×3
sym )), the integrals on the right-hand side of (6.2) and (6.4) are well

defined.

We are now in a position to state the main result of the article.

Theorem 6.4. Let t �→ w(t) be absolutely continuous from [0, T ] into W 1,2(Ω;R3) ∩ KL(Ω). Assume there exists a
sequence of triples (uε

0, e
ε
0,p

ε
0) ∈Aε(w(0)) such that

Q
(
Λεe

ε
0

)
�Q(Λεf ) +H

(
Λεq − Λεp

ε
0

)
(6.5)

for every (v, f, q) ∈Aε(w(0)) and every ε > 0, and

Λεe
ε
0 → ẽ0 strongly in L2(Ω;M3×3

sym

)
, (6.6)∥∥Λεp

ε
0

∥∥
Mb

� C (6.7)

for some ẽ0 ∈ L2(Ω;M3×3
sym ) and some constant C > 0 independent of ε. For every ε > 0 let t �→ (uε(t), eε(t),pε(t))

be an ε-quasistatic evolution for the boundary datum w(t) such that uε(0) = uε
0, eε(0) = eε

0, and pε(0) = pε
0 . Then,

there exists a reduced quasistatic evolution t �→ (u(t), e(t),p(t)) for the boundary datum w(t) such that, up to sub-
sequences,

uε(t) ⇀ u(t) weakly* in BD(Ω), (6.8)

eε(t) → e(t) strongly in L2(Ω;M3×3
sym

)
, (6.9)

Λεe
ε(t) → Me(t) strongly in L2(Ω;M3×3

sym

)
, (6.10)

pε(t) ⇀ p(t) weakly* in Mb

(
Ω ∪ Γd ;M3×3

sym

)
(6.11)

for every t ∈ [0, T ], where M is the tensor introduced in (3.11). Moreover, the functions t �→ u(t), t �→ e(t), and
t �→ p(t) are absolutely continuous from [0, T ] into BD(Ω), L2(Ω;M3×3

sym ), and Mb(Ω ∪ Γd ;M3×3
sym ), respectively.

Remark 6.5. From [10, Theorem 4.5] it follows that for every triple (uε
0, e

ε
0,p

ε
0) ∈Aε(w(0)) satisfying (6.5) there ex-

ists an ε-quasistatic evolution t �→ (uε(t), eε(t),pε(t)) such that uε(0) = uε
0, eε(0) = eε

0, and pε(0) = pε
0. Moreover,

by [10, Theorem 5.2] the functions t �→ uε(t), t �→ eε(t), and t �→ pε(t) are absolutely continuous from [0, T ] into
BD(Ω), L2(Ω;M3×3

sym ), and Mb(Ω ∪ Γd ;M3×3
sym ), respectively, and for a.e. t ∈ [0, T ] we have

∥∥Λεė
ε(t)

∥∥
L2 � C1

∥∥Eẇ(t)
∥∥

L2, (6.12)∥∥Λεṗ
ε(t)

∥∥
Mb

� C2
∥∥Eẇ(t)

∥∥
L2 , (6.13)

where C1 and C2 are positive constants depending on RK , rC, RC, supt∈[0,T ] ‖Λεe
ε(t)‖L2 , and

supt∈[0,T ] ‖Λεp
ε(t)‖Mb

. We note that these results are proven in [10] under the assumption of a reference config-
uration of class C2, but, as observed in [16], Lipschitz regularity is enough in the absence of external loads.



E. Davoli, M.G. Mora / Ann. I. H. Poincaré – AN 30 (2013) 615–660 643
Remark 6.6. The set of admissible initial data for Theorem 6.4 is nonempty. Indeed, for every ε > 0 let (uε
0, e

ε
0,p

ε
0) ∈

Aε(w(0)) be a minimizer of the functional Jε on Aε(w(0)), that is,

Q
(
Λεe

ε
0

)+H
(
Λεp

ε
0

)
�Q(Λεf ) +H(Λεq)

for every (v, f, q) ∈Aε(w(0)). Since by (3.4)

H(Λεq)�H
(
Λεq − Λεp

ε
0

)+H
(
Λεp

ε
0

)
,

we deduce that (uε
0, e

ε
0,p

ε
0) satisfies (6.5) for every ε > 0. Moreover, by Theorem 5.1 we infer the existence of a triple

(u0, e0,p0) ∈AKL(w(0)) such that (6.6) is satisfied with ẽ0 =Me0 and

lim
ε→0

H
(
Λεp

ε
0

) =Hr (p0).

This last convergence implies (6.7) by (3.3).

Remark 6.7. Theorem 6.4 ensures, in particular, the existence of an absolutely continuous reduced quasistatic evolu-
tion for every initial datum (u0, e0,p0) ∈ AKL(w(0)) that is approximable in the sense of (6.8)–(6.11) by a sequence
of triples (uε

0, e
ε
0,p

ε
0) ∈Aε(w(0)) satisfying (6.5). Note that, again by Theorem 6.4 and by (qs1)r at time t = 0, every

such datum satisfies

Qr (e0) �Qr (f ) +Hr (q − p0) (6.14)

for every (v, f, q) ∈AKL(w(0)).
We mention here that the existence of a reduced quasistatic evolution can be actually proved for every initial datum

(u0, e0,p0) ∈AKL(w(0)) satisfying (6.14) by applying the abstract method for rate-independent processes developed
in [28], namely by discretizing time and by solving suitable incremental minimum problems. Moreover, arguing as
in [10, Theorem 5.2], one can show that every reduced quasistatic evolution is absolutely continuous from [0, T ] into
BD(Ω) × L2(Ω;M3×3

sym ) × Mb(Ω ∪ Γd;M3×3
sym ).

To prove Theorem 6.4 we need two technical lemmas concerning some consequences of the minimality condition
(qs1)r .

Lemma 6.8. Let w ∈ W 1,2(Ω;R3) ∩ KL(Ω). A triple (u, e,p) ∈ AKL(w) is a solution of the minimum problem

min
{
Qr (f ) +Hr (q − p): (v, f, q) ∈AKL(w)

}
(6.15)

if and only if

−Hr (q) �
∫
Ω

Cre : f dx (6.16)

for every (v, f, q) ∈ AKL(0).

Proof. Let (u, e,p) ∈ AKL(w) be a solution to (6.15) and let (v, f, q) ∈ AKL(0). For every η ∈ R the triple (u +
ηv, e + ηf,p + ηq) belongs to AKL(w), hence

Qr (e) �Qr (e + ηf ) +Hr (ηq).

Using the positive homogeneity of Hr , we obtain

0 � ±η

∫
Ω

Cre : f dx + η2Qr (f ) + ηHr (±q),

for every η > 0. Dividing by η and sending η to 0 yield (6.16).
The converse implication is true by convexity. �
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Lemma 6.9. Let w1,w2 ∈ W 1,2(Ω;R3) ∩ KL(Ω) and for α = 1,2 let (uα, eα,pα) ∈ AKL(wα) be a solution of the
minimum problem

min
{
Qr (f ) +Hr (q − pα): (v, f, q) ∈AKL(wα)

}
. (6.17)

Then there exists a positive constant C, depending only on RK , rC, RC, Ω , and Γd , such that

‖e2 − e1‖L2 � Cθ12, (6.18)

‖Eu1 − Eu2‖Mb
� Cθ12, (6.19)

‖u1 − u2‖L1 � C
(
θ12 + ‖w1 − w2‖L2

)
, (6.20)

where θ12 is given by

θ12 := ‖p1 − p2‖Mb
+ ‖p1 − p2‖

1
2
Mb

+ ‖Ew1 − Ew2‖L2 .

Proof. Since (u2 −u1 −w2 +w1, e2 − e1 −Ew2 +Ew1,p2 −p1) ∈AKL(0), we can choose v = u2 −u1 −w2 +w1,
f = e2 − e1 − Ew2 + Ew1, and q = p2 − p1 in (6.16); thus, by the minimality of (uα, eα,pα), with α = 1,2, and
Lemma 6.8 we have

−Hr (p2 − p1) �
∫
Ω

Cre1 : (e2 − e1 − Ew2 + Ew1) dx,

−Hr (p1 − p2) �
∫
Ω

Cre2 : (e1 − e2 − Ew1 + Ew2) dx.

Adding term by term, changing sign, and applying (3.18) yield∫
Ω

Cr (e2 − e1) : (e2 − e1) dx �
∫
Ω

Cr (e2 − e1) : (Ew2 − Ew1) dx + 2
√

3RK‖p2 − p1‖Mb
.

By (3.14) we deduce

rC‖e2 − e1‖2
L2 � RC‖e2 − e1‖L2‖Ew2 − Ew1‖L2 + 2

√
3RK‖p2 − p1‖Mb

,

which implies (6.18) by the Cauchy inequality. Since Eui = ei + pi in Ω , Hölder’s inequality gives

‖Eu2 − Eu1‖Mb
� L3(Ω)1/2‖e2 − e1‖L2 + ‖p2 − p1‖Mb

,

so that (6.19) follows from (6.18). Finally, since p2 − p1 = (w2 − w1 − u2 + u1) � ν∂ΩH2 on Γd , we have

‖u2 − u1‖L1(Γd ) � ‖w2 − w1‖L1(Γd ) + ‖p2 − p1‖Mb
� C‖w2 − w1‖W 1,2 + ‖p2 − p1‖Mb

where we used the continuity of the trace operator from W 1,2(Ω;R3) into L1(∂Ω;R3). Inequality (6.20) now follows
from (2.2) and (6.19). �

We are now in a position to prove Theorem 6.4.

Proof of Theorem 6.4. The proof is subdivided into four steps.

Step 1 (Compactness estimates). Let us prove that there exists a constant C, depending only on the data, such that

sup
t∈[0,T ]

∥∥Λεe
ε(t)

∥∥
L2 � C, sup

t∈[0,T ]
∥∥Λεp

ε(t)
∥∥

Mb
� C (6.21)

for every ε. As t �→ w(t) is absolutely continuous with values in W 1,2(Ω;R3), the function t �→ ‖Eẇ(t)‖2 is inte-
grable on [0, T ]. This fact, together with (3.1), (3.2), and (6.2), implies that

rC
∥∥Λεe

ε(t)
∥∥2

L2 � RC

∥∥Λεe
ε(0)

∥∥2
L2 + 2RC sup

t∈[0,T ]
∥∥Λεe

ε(t)
∥∥

L2

T∫ ∥∥Eẇ(s)
∥∥

L2 ds (6.22)
0
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for every t ∈ [0, T ]. The former inequality in (6.21) follows now from (6.6) and Cauchy inequality. As for the latter,
by (6.2), (6.22), and (6.6) we deduce that

D
(
Λεp

ε;0, T
)
� C.

By the definition of D and (3.3) we infer that

rK
∥∥Λεp

ε(t) − Λεp
ε
0

∥∥
Mb

�H
(
Λεp

ε(t) − Λεp
ε(0)

)
�D

(
Λεp

ε;0, t
)
� C

for every t ∈ [0, T ], which implies the second inequality in (6.21) by (6.7).
Combining (6.12), (6.13), and (6.21), we obtain

∥∥Λεe
ε(t1) − Λεe

ε(t2)
∥∥

L2 � C

t2∫
t1

∥∥Eẇ(s)
∥∥

L2 ds,

∥∥Λεp
ε(t1) − Λεp

ε(t2)
∥∥

Mb
� C

t2∫
t1

∥∥Eẇ(s)
∥∥

L2 ds

for every 0 � t1 � t2 � T , where C is a constant depending only on the data. Therefore, by the Ascoli–Arzelà Theorem
there exist two subsequences, still denoted Λεe

ε and Λεp
ε , and two absolutely continuous functions ẽ : [0, T ] →

L2(Ω;M3×3
sym ) and p̃ : [0, T ] → Mb(Ω ∪ Γd ;M3×3

D ) such that

Λεe
ε(t) ⇀ ẽ(t) weakly in L2(Ω;M3×3

sym

)
, (6.23)

Λεp
ε(t) ⇀ p̃(t) weakly* in Mb

(
Ω ∪ Γd ;M3×3

D

)
(6.24)

for every t ∈ [0, T ].
Let e : [0, T ] → L2(Ω;M3×3

sym ) be defined as

eαβ(t) = ẽαβ(t) (α,β = 1,2) and ei3(t) = 0 (i = 1,2,3)

for every t ∈ [0, T ] and let p : [0, T ] → Mb(Ω ∪ Γd;M3×3
sym ) be defined as

pαβ(t) = p̃αβ(t) (α,β = 1,2) and pi3(t) = 0 (i = 1,2,3) (6.25)

for every t ∈ [0, T ]. Then t �→ e(t) is absolutely continuous from [0, T ] into L2(Ω;M3×3
sym ), t �→ p(t) is absolutely

continuous from [0, T ] into Mb(Ω ∪ Γd ;M3×3
sym ), and by (6.23) and (6.24) we have

eε(t) ⇀ e(t) weakly in L2(Ω;M3×3
sym

)
, (6.26)

pε(t) ⇀ p(t) weakly* in Mb

(
Ω ∪ Γd ;M3×3

sym

)
(6.27)

for every t ∈ [0, T ]. Using (2.2) and the fact that (uε(t), eε(t),pε(t)) ∈Aε(w(t)) for every ε > 0, it is easy to see that
there exists an absolutely continuous function u : [0, T ] → BD(Ω) such that

uε(t) ⇀ u(t) weakly* in BD(Ω)

for every t ∈ [0, T ]. Moreover, arguing as in the proof of Theorem 5.3, one can show that (u(t), e(t),p(t)) ∈
AKL(w(t)).

Step 2 (Reduced stability). We now show that the triple (u(t), e(t),p(t)) is a solution to the minimum problem

min
{
Qr (f ) +Hr

(
q − p(t)

)
: (v, f, q) ∈AKL

(
w(t)

)}
(6.28)

for every t ∈ [0, T ].
Let us fix t ∈ [0, T ]. By Lemma 6.8 it is enough to prove condition (6.16). Let (v, f, q) ∈AKL(0). By Theorem 5.4

there exists a sequence of triples (vε, f ε, qε) ∈Aε(0) such that

Λεf
ε →Mf strongly in L2(Ω;M3×3

sym

)
(6.29)
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and

H
(
Λεq

ε
) → Hr (q). (6.30)

By [10, Theorem 3.6] the minimality condition (6.1) is equivalent to

−H(Λεq̌) �
∫
Ω

CΛεe
ε(t) : Λεf̌ dx (6.31)

for every (v̌, f̌ , q̌) ∈Aε(0). Therefore, we have that

−H
(
Λεq

ε
)
�

∫
Ω

CΛεe
ε(t) : Λεf

ε dx

for every ε > 0; hence, combining (6.23), (6.29), and (6.30), we obtain

−Hr (q) �
∫
Ω

Cẽ(t) :Mf dx.

Since Cẽ(t) :Mf =CMe(t) : Mf =Cre(t) : f a.e. in Ω by (3.16), the inequality above reduces to (6.16).

Step 3 (Identification of the limiting scaled elastic strain). We shall prove that the function ẽ(t) in (6.23) satisfies

ẽ(t) =Me(t) (6.32)

for every t ∈ [0, T ].
For every ψ ∈ W 1,2(Ω;R3) with ψ = 0 on Γd we can consider the triples (±ψ,±Eψ,0) as test functions in (6.31).

This leads to the condition∫
Ω

CΛεe
ε(t) : ΛεEψ dx = 0 (6.33)

for every ψ ∈ W 1,2(Ω;R3) with ψ = 0 on Γd and for every ε.
Let now U ⊂ ω, (a, b) ⊂ (− 1

2 , 1
2 ), and λi ∈ R, i = 1,2,3. Let us denote the characteristic functions of the sets U

and (a, b) by χU and χ(a,b), respectively. Finally, let (ϕk
i ) ⊂ C1

c (ω) and (ξk) ⊂ C1([− 1
2 , 1

2 ]) be such that ϕk
i → λiχU

strongly in L4(ω), i = 1,2,3, and (ξk)′ → χ(a,b) strongly in L4(− 1
2 , 1

2 ). For every ε and k ∈ N we consider the
function

ψε,k(x) :=
⎛
⎝2εξk(x3)ϕ

k
1(x′)

2εξk(x3)ϕ
k
2(x′)

ε2ξk(x3)ϕ
k
3(x′)

⎞
⎠

for every x ∈ Ω . Since ψε,k ∈ W 1,2(Ω;R3) and ψε,k = 0 on Γd , by (6.33) we have∫
Ω

CΛεe
ε(t) : ΛεEψε,k dx = 0

for every ε. Passing to the limit with respect to ε → 0 and then to k → ∞, we deduce∫
U×(a,b)

Cẽ(t) :
( 0 0 λ1

0 0 λ2
λ1 λ2 λ3

)
dx = 0.

Since U and (a, b) are arbitrary, we conclude that for every λi ∈R

Cẽ(t) :
( 0 0 λ1

0 0 λ2
λ1 λ2 λ3

)
= 0,

a.e. in Ω . This implies (6.32) by (3.12).
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Step 4 (Reduced energy balance). By (6.2) and lower semicontinuity we have

Qr

(
e(t)

)+D(p̃;0, t)� lim
ε→0

{
Q
(
Λεe

ε(0)
)+

t∫
0

∫
Ω

CΛεe
ε(s) : Eẇ(s) dx ds

}

=Qr (e0) +
t∫

0

∫
Ω

Cre(s) : Eẇ(s) dx ds,

where the last equality follows from (6.6), (6.21), (6.23), (6.32), and the dominated convergence theorem. Since by
(6.25) and the definition of Hr there holds

Dr (p;0, t)�D(p̃;0, t) (6.34)

for every t ∈ [0, T ], we conclude that

Qr

(
e(t)

)+Dr (p;0, t)�Qr (e0) +
t∫

0

∫
Ω

Cre(s) : Eẇ(s) dx ds. (6.35)

As it is standard in the variational theory for rate-independent processes, the converse energy inequality follows from
the minimality condition (qs1)r . We omit the proof as it follows closely those of [10, Theorem 4.7] and of [28,
Theorem 4.4].

Combining (qs2), (qs2)r , and the fact that the right-hand side of (qs2) converges to the right-hand side of (qs2)r ,
we deduce that

Q
(
Λεe

ε(t)
)+D

(
Λεp

ε;0, t
) →Qr

(
e(t)

)+Dr (p;0, t) (6.36)

for every t ∈ [0, T ]. On the other hand, by lower semicontinuity of Qr and of Dr we have

Qr

(
e(t)

)
� lim inf

ε→0
Q
(
Λεe

ε(t)
)

(6.37)

and

Dr (p;0, t)� lim inf
ε→0

D
(
Λεp

ε;0, t
)

(6.38)

for every t ∈ [0, T ]. From (6.36)–(6.38) it follows that

lim
ε→0

Q
(
Λεe

ε(t)
) = Qr

(
e(t)

) =Q
(
Me(t)

)
for every t ∈ [0, T ]. This, together with (6.23) and (6.32), implies strong convergence of the scaled strains Λεeε(t),
and consequently of the strains eε(t), for every t ∈ [0, T ]. This concludes the proof of the theorem. �
7. Characterization of reduced quasistatic evolutions

In the following we shall consider the space ΠΓd
(Ω) of admissible plastic strains, defined as the class of all

p ∈ Mb(Ω ∪ Γd ;M2×2
sym ) for which there exist u ∈ BD(Ω), e ∈ L2(Ω;M2×2

sym ), and w ∈ W 1,2(Ω;R3) ∩ KL(Ω) such
that (u, e,p) ∈AKL(w).

We shall also use the set

Σ(Ω) := {
σ ∈ L∞(

Ω;M2×2
sym

)
: divx′ σ̄ ∈ L2(ω;R2), divx′ divx′ σ̂ ∈ Mb(ω)

}
,

where σ̄ , σ̂ ∈ L∞(ω;M2×2
sym ) are the zeroth and first order moments of σ , defined according to Definition 4.1. In the

first subsection we shall introduce a duality pairing between stresses σ ∈ Σ(Ω) and plastic strains p ∈ ΠΓd
(Ω). In

the second subsection we shall use this duality pairing to deduce a weak formulation of the classical flow rule for a
reduced quasistatic evolution. In the last subsection we discuss some examples, where reduced quasistatic evolutions
can be characterized in terms of two-dimensional quantities.
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7.1. Stress–strain duality

We first introduce a notion of duality for the zeroth order moments of the stress and the plastic strain. We essentially
follow the theory developed in [22] and [10, Section 2.3].

For every σ ∈ Σ(Ω) we can define the trace [σ̄ ν∂ω] ∈ L∞(∂ω;R2) of its zeroth order moment σ̄ through the
formula∫

∂ω

[σ̄ ν∂ω] · ϕ dH1 :=
∫
ω

divx′ σ̄ · ϕ dx′ +
∫
ω

σ̄ : Eϕ dx′ (7.1)

for every ϕ ∈ W 1,1(ω;R2). This is well defined since W 1,1(ω;R2) is embedded into L2(ω;R2).
Let σ ∈ Σ(Ω) and ξ ∈ BD(ω). We define the distribution [σ̄ : Eξ ] on ω by〈[σ̄ : Eξ ], ϕ〉 := −

∫
ω

ϕ divx′ σ̄ · ξ dx′ −
∫
ω

σ̄ : (∇ϕ � ξ) dx′ (7.2)

for every ϕ ∈ C∞
c (ω). From [22, Theorem 3.2] it follows that [σ̄ : Eξ ] is a bounded measure on ω, whose variation

satisfies∣∣[σ̄ : Eξ ]∣∣� ‖σ̄‖L∞|Eξ | in ω. (7.3)

We can now define a duality between the zeroth order moments of elements in Σ(Ω) and ΠΓd
(Ω). Given σ ∈

Σ(Ω) and p ∈ ΠΓd
(Ω), we fix (u, e,w) ∈ BD(Ω) × L2(Ω;M2×2

sym ) × (W 1,2(Ω;R3) ∩ KL(Ω)) such that (u, e,p) ∈
AKL(w). Let ū ∈ BD(ω), u3 ∈ BH(ω) and w̄ ∈ W 1,2(ω;R2), w3 ∈ W 2,2(ω) be the Kirchhoff–Love components of u

and w, respectively. We then define the measure [σ̄ : p̄] ∈ Mb(ω ∪ γd) by setting

[σ̄ : p̄] :=
{ [σ̄ : Eū] − σ̄ : ē in ω,

[σ̄ ν∂ω] · (w̄ − ū)H1 on γd,

so that ∫
ω∪γd

ϕ d[σ̄ : p̄] =
∫
ω

ϕ d[σ̄ : Eū] −
∫
ω

ϕσ̄ : ē dx′ +
∫
γd

[σ̄ ν∂ω] · ϕ(w̄ − ū) dH1 (7.4)

for every ϕ ∈ C(ω).

Remark 7.1. Arguing as in [10], one can prove that the definition of [σ̄ : p̄] is independent of the choice of the triple
(u, e,w). Moreover, if σ̄ ∈ C1(ω;M2×2

sym ), then∫
ω∪γd

ϕ d[σ̄ : p̄] =
∫

ω∪γd

ϕσ̄ : dp̄

for every ϕ ∈ C1(ω). One can prove by approximation that the same equality is true for every σ̄ ∈ C(ω;M2×2
sym ) and

ϕ ∈ C(ω).

The following integration by parts formula can be proved.

Proposition 7.2. Let σ ∈ Σ(Ω), w ∈ W 1,2(ω;R3) ∩ KL(Ω), and (u, e,p) ∈ AKL(w). Let also ū ∈ BD(ω) and w̄ ∈
W 1,2(ω;R2) be the tangential Kirchhoff–Love components of u and w. Then∫

ω∪γd

ϕ d[σ̄ : p̄] +
∫
ω

ϕσ̄ : (ē − Ew̄)dx′ +
∫
ω

σ̄ : (∇ϕ � (ū − w̄)
)
dx′

= −
∫
ω

divx′ σ̄ · ϕ(ū − w̄) dx′ +
∫
γn

[σ̄ ν∂ω] · ϕ(ū − w̄) dH1 (7.5)

for every ϕ ∈ C1(ω).
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Proof. The result is a corollary of [10, Proposition 2.2]. �
We now introduce a notion of duality for the first order moments of the stress and of the plastic strain. We follow

the lines of [11, Section 3.2] and [13, Section 2.3].
We start with a proposition concerning the traces of the first order moment of a stress in Σ(Ω). To this purpose we

introduce the space

Σ̂(ω) := {
ϑ ∈ L∞(

ω;M2×2
sym

)
: divx′ divx′ ϑ ∈ Mb(ω)

}
,

endowed with the norm ‖ϑ‖L∞ +‖divx′ divx′ ϑ‖Mb
. We also denote by T∂ω : W 2,1(ω) → W 1,1(∂ω) the trace operator

on W 2,1(ω). We recall that T∂ω(W 2,1(ω)) �= W 1,1(∂ω), see [12, Théorème 2].

Proposition 7.3. There exists a surjective continuous linear operator

L : Σ̂(ω) → (
T∂ω

(
W 2,1(ω)

))′ × L∞(∂ω)

ϑ �→ (
b0(ϑ), b1(ϑ)

)
such that for every ϑ ∈ Σ̂(ω) and v ∈ W 2,1(ω) there holds∫

ω

ϑ : D2v dx′ −
∫
ω

v d(divx′ divx′ ϑ) = −〈
b0(ϑ), v

〉+ ∫
∂ω

b1(ϑ)
∂v

∂ν∂ω

dH1, (7.6)

where 〈·,·〉 denotes the duality pairing between (T∂ω(W 2,1(ω)))′ and T∂ω(W 2,1(ω)). Moreover, if ϑ ∈ C2(ω;M2×2
sym ),

then

b0(ϑ) = divx′ ϑ · ν∂ω + ∂

∂τ∂ω

(ϑν∂ω · τ∂ω), (7.7)

b1(ϑ) = ϑν∂ω · ν∂ω, (7.8)

where τ∂ω is the tangent vector to ∂ω.

Proof. See [11, Théorème 2.3]. �
Remark 7.4. The second integral on the left-hand side of (7.6) is well defined because of the embedding of W 2,1(ω)

into C(ω) (see [4, Theorem 4.12]).

Let σ ∈ Σ(Ω) and v ∈ BH(ω). We define the distribution [σ̂ : D2v] on ω by〈[
σ̂ : D2v

]
, ϕ

〉 := ∫
ω

ϕv d(divx′ divx′ σ̂ ) − 2
∫
ω

σ̂ : (∇ϕ � ∇v)dx′ −
∫
ω

vσ̂ : ∇2ϕ dx′

for every ϕ ∈ C∞
c (ω). From [13, Proposition 2.1] it follows that [σ̂ : D2v] is a bounded measure on ω, whose variation

satisfies∣∣[σ̂ : D2v
]∣∣� ‖σ̂‖L∞

∣∣D2v
∣∣ in ω.

We can now define a duality between the first order moments of elements in Σ(Ω) and ΠΓd
(Ω). Given σ ∈ Σ(Ω)

and p ∈ ΠΓd
(Ω), we fix (u, e,w) ∈ BD(Ω)×L2(Ω;M2×2

sym )× (W 1,2(Ω;R3)∩KL(Ω)) such that (u, e,p) ∈AKL(w).
We then define the measure [σ̂ : p̂] ∈ Mb(ω ∪ γd) by setting

[σ̂ : p̂] :=
{

−[σ̂ : D2u3] − σ̂ : ê in ω,

b1(σ̂ )
∂(u3−w3)

∂ν∂ω
H1 on γd,

so that ∫
ω∪γd

ϕ d[σ̂ : p̂] = −
∫
ω

ϕ d
[
σ̂ : D2u3

]−
∫
ω

ϕσ̂ : ê dx′ +
∫
γd

ϕb1(σ̂ )
∂(u3 − w3)

∂ν∂ω

dH1

for every ϕ ∈ C(ω).
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Remark 7.5. The definition of [σ̂ : p̂] does not depend on the choice of the triple (u, e,w). Moreover, if σ̂ ∈
C2(ω;M2×2

sym ) and p ∈ ΠΓd
(Ω), then∫

ω∪γd

ϕ d[σ̂ : p̂] =
∫

ω∪γd

ϕσ̂ : dp̂ (7.9)

for every ϕ ∈ C2(ω). This follows from the equality∫
γd

ϕb1(σ̂ )
∂(u3 − w3)

∂ν∂ω

dH1 =
∫
γd

ϕσ̂ : (∇(u3 − w3) � ν∂ω

)
dH1,

which, in turn, is a consequence of (7.8). By an approximation argument one can show that (7.9) holds true for every
σ̂ ∈ C(ω;M2×2

sym ) and ϕ ∈ C(ω).

As a corollary of [13, Proposition 2.1], we have the following integration by parts formula.

Proposition 7.6. Let σ ∈ Σ(Ω), w ∈ W 1,2(ω;R3) ∩ KL(Ω), and (u, e,p) ∈AKL(w). Then∫
ω∪γd

ϕ d[σ̂ : p̂] +
∫
ω

ϕσ̂ : (ê + D2w3
)
dx′

− 2
∫
ω

σ̂ : (∇ϕ � ∇(u3 − w3)
)
dx′ −

∫
ω

(u3 − w3)σ̂ : ∇2ϕ dx′

= −
∫
ω

ϕ(u3 − w3) d(divx′ divx′ σ̂ ) + 〈
b0(σ̂ ), ϕ(u3 − w3)

〉− ∫
γn

b1(σ̂ )
∂(ϕ(u3 − w3))

∂ν∂ω

dH1 (7.10)

for every ϕ ∈ C2(ω), where 〈·,·〉 denotes the duality pairing between (T∂ω(W 2,1(ω)))′ and T∂ω(W 2,1(ω)).

Remark 7.7. The duality product 〈b0(σ̂ ), ϕ(u3 −w3)〉 in (7.10) is well defined, since one can show that T∂ω(BH(ω)) =
T∂ω(W 2,1(ω)) (see, e.g., [12, Section 2]).

We are now in a position to introduce a duality pairing between Σ(Ω) and ΠΓd
(Ω). For every σ ∈ Σ(Ω) and

p ∈ ΠΓd
(Ω) we define the measure [σ : p] ∈ Mb(Ω ∪ Γd) as

[σ : p] := [σ̄ : p̄] ⊗L1 + 1

12
[σ̂ : p̂] ⊗L1 − σ⊥ : e⊥. (7.11)

By Remarks 7.1 and 7.5 we have that∫
Ω∪Γd

ϕ d[σ : p] =
∫
ω

ϕσ̄ : dp̄ + 1

12

∫
ω

ϕσ̂ : dp̂ −
∫
Ω

ϕσ⊥ : e⊥ dx (7.12)

for every σ ∈ Σ(Ω) with σ̄ , σ̂ ∈ C(ω;M2×2
sym ) and every ϕ ∈ C(ω). In particular, this implies that∫

Ω∪Γd

ϕ d[σ : p] =
∫
Ω

ϕσ : dp (7.13)

for every σ ∈ Σ(Ω) ∩ C(Ω;M2×2
sym ) and every ϕ ∈ C(ω).

Following [10], for every σ ∈ Σ(Ω) and p ∈ ΠΓd
(Ω) we consider the duality pairings

〈σ̄ , p̄〉 := [σ̄ : p̄](ω ∪ γd), 〈σ̂ , p̂〉 := [σ̂ : p̂](ω ∪ γd),

and

〈σ,p〉 := [σ : p](Ω ∪ Γd) = 〈σ̄ , p̄〉 + 1

12
〈σ̂ , p̂〉 −

∫
σ⊥ : e⊥ dx. (7.14)
Ω
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We shall now discuss the connection between the duality (7.14) and the functional Hr introduced in (3.19). To this
purpose, we consider the convex set

Kr := {
σ ∈ M

2×2
sym : σ : ξ � Hr(ξ) for every ξ ∈M

2×2
sym

}
,

which coincides with the subdifferential of Hr at the origin. We also set

Kr (Ω) := {
σ ∈ L∞(

Ω;M2×2
sym

)
: σ(x) ∈ Kr for a.e. x ∈ Ω

}
.

By (2.1) we have that for every μ ∈ Mb(Ω ∪ Γd ;M2×2
sym )

Hr (μ) = sup

{ ∫
Ω∪Γd

τ : dμ: τ ∈ C0
(
Ω ∪ Γd ;M2×2

sym

)∩Kr (Ω)

}
.

A variant of this equality can be proved using the duality defined in (7.14).

Proposition 7.8. Let p ∈ ΠΓd
(Ω). Then the following equalities hold:

Hr (p) = sup
{〈σ,p〉: σ ∈ Σ(Ω) ∩Kr (Ω)

}
(7.15)

= sup
{〈σ,p〉: σ ∈ Θ(Ω)

}
, (7.16)

where Θ(Ω) is the set of all σ ∈ Σ(Ω) ∩ Kr (Ω) such that [σ̄ ν∂ω] = 0 on γn, b1(σ̂ ) = 0 on γn, and 〈b0(σ̂ ), v〉 = 0
for every v ∈ W 2,1(ω) with v = 0 on γd .

Proof. Let us set Γ0 := Γn ∪ (ω × {± 1
2 }). By [37, Chapter II, Section 4] and (7.13) we have that

Hr (p) = sup

{ ∫
Ω∪Γd

σ : dp: σ ∈ C∞(
R

3;M2×2
sym

)∩Kr (Ω), suppσ ∩ Γ0 = ∅
}

� sup
{〈σ,p〉: σ ∈ Θ(Ω)

}
� sup

{〈σ,p〉: σ ∈ Σ(Ω) ∩Kr (Ω)
}
. (7.17)

To prove the converse inequality, let w ∈ W 1,2(Ω;R3) ∩ KL(Ω), u ∈ KL(Ω), and e ∈ L2(Ω;M2×2
sym ) be such that

(u, e,p) ∈ AKL(w). By Theorem 4.7 and the Reshetnyak Continuity Theorem (see, e.g., [5, Theorem 2.39]) we can
construct a sequence of triples (uk, ek,pk) ∈ (W 1,2(Ω;R3) × L2(Ω;M2×2

sym ) × L2∞,c(Ω;M2×2
sym )) ∩AKL(w) such that

uk ⇀ u weakly* in BD(Ω), (7.18)

ek → e strongly in L2(Ω;M2×2
sym

)
, (7.19)

Hr

(
pk

) → Hr (p). (7.20)

By Remark 4.8 we can also assume that

ūk → ū strongly in L2(ω;R2), ∥∥Eūk
∥∥

L1 → ‖Eū‖Mb
, (7.21)

uk
3 → u3 in C(ω),

∥∥D2uk
3

∥∥
L1 → ∥∥D2u3

∥∥
Mb

. (7.22)

Let now σ ∈Kr (Ω) ∩ Σ(Ω). It is clear that∫
Ω

σ : pk dx �Hr

(
pk

)
. (7.23)

We now claim that∫
Ω

σ : pk dx → 〈σ,p〉. (7.24)

If the claim is proved, then passing to the limit in (7.23) and using (7.20) yield

〈σ,p〉�Hr (p),

which, together with (7.17), implies the thesis.
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We now prove (7.24). Since ūk ∈ W 1,2(ω;R2) and Eūk = ēk + p̄k in ω, the following equalities hold:∫
ω

σ̄ : p̄k dx′ = −
∫
ω

σ̄ : (ēk − Ew̄
)
dx′ +

∫
ω

σ̄ : (Eūk − Ew̄
)
dx′

= −
∫
ω

σ̄ : (ēk − Ew̄
)
dx′ −

∫
ω

divx′ σ̄ · (ūk − w̄
)
dx′ +

∫
γn

[σ̄ ν∂ω] · (ūk − w̄
)
dH1,

where we have used (7.1) and the fact that ūk = w̄ on γd . From (7.21) it follows that ūk → ū strongly in L1(∂ω;R2)

(see, e.g., [37, Chapter II, Theorem 3.1]). By (7.19) and (7.21) we can therefore pass to the limit in the identity above
and by (7.5) we deduce that∫

ω

σ̄ : p̄k dx′ → 〈σ̄ , p̄〉. (7.25)

Similarly, since uk
3 ∈ W 2,2(ω) and D2uk

3 = −(êk + p̂k) in ω, we have∫
ω

σ̂ : p̂k dx′ = −
∫
ω

σ̂ : (êk + D2w3
)
dx′ −

∫
ω

σ̂ : (D2uk
3 − D2w3

)
dx′

= −
∫
ω

σ̂ : (êk + D2w3
)
dx′ −

∫
ω

(
uk

3 − w3
)
d(divx′ divx′ σ̂ )

+ 〈
b0(σ̂ ), uk

3 − w3
〉− ∫

γn

b1(σ̂ )
∂(uk

3 − w3)

∂ν∂ω

dH1,

where we have used (7.6) and the fact that ∇uk
3 = ∇w3 on γd . By (7.22) and [11, Theorem 3.4] we can pass to the

limit in the boundary terms. Therefore, by (7.19), (7.22), and (7.10), we conclude that∫
ω

σ̂ : p̂k dx′ → 〈σ̂ , p̂〉. (7.26)

Claim (7.24) follows now by combining the identity∫
Ω

σ : pk dx =
∫
ω

σ̄ : p̄k dx′ + 1

12

∫
ω

σ̂ : p̂k dx′ −
∫
Ω

σ⊥ : ek⊥ dx

with (7.14) and the convergence properties (7.19), (7.25), and (7.26). �
We are now in a position to show a further equivalent characterization of the minimality condition (qs1)r .

Proposition 7.9. Let σ ∈ L2(Ω;M2×2
sym ). The following conditions are equivalent:

(a) −Hr (q) �
∫
Ω

σ : f dx for every (v, f, q) ∈AKL(0),
(b) σ ∈ Θ(Ω), divx′ σ̄ = 0 in ω, and divx′ divx′ σ̂ = 0 in ω.

Proof. Assume (a). Let B ⊂ Ω be a Borel set and let χB denote its characteristic function. Let ξ ∈ M2×2
sym and let

f := χBξ . Since (0,−f,f ) ∈ AKL(0), by (a) we obtain

σ(x) : ξ � Hr(ξ) for a.e. x ∈ B.

Since B is arbitrary, we deduce that σ ∈Kr (Ω).
We observe that (±v,±Ev,0) ∈ AKL(0) for every v ∈ W 1,2(Ω;R3) ∩ KL(Ω) such that v = 0 on Γd . Hence, by

(a) we have that∫
σ : Ev dx = 0 (7.27)
Ω
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for every v ∈ W 1,2(Ω;R3)∩KL(Ω) with v = 0 on Γd . Let now v̄ ∈ W 1,2(ω;R2) with v̄ = 0 on γd . Choosing vα = v̄α

for α = 1,2 and v3 = 0, we deduce by (7.27) that∫
ω

σ̄ : Ev̄ dx′ = 0 (7.28)

for every v̄ ∈ W 1,2(ω;R2) with v̄ = 0 on γd . Since this is true, in particular, for v̄ ∈ C∞
c (ω;R2), we conclude that

divx′ σ̄ = 0 in ω. Moreover, by (7.1), (7.28), and the subsequent Lemma 7.10, we obtain that [σ̄ ν∂ω] = 0 on γn.
Let us now consider the function

v(x) =
(−x3∇v3(x

′)
v3(x

′)

)
for a.e. x ∈ Ω,

where v3 ∈ W 2,2(ω) is such that v3 = 0 and ∇v3 = 0 on γd . Eq. (7.27) yields∫
ω

σ̂ : D2v3 dx′ = 0 (7.29)

for every v3 ∈ W 2,2(ω) with v3 = 0 and ∇v3 = 0 on γd . Since (7.29) is satisfied, in particular, for every v3 ∈ C∞
c (ω),

we deduce that divx′ divx′ σ̂ = 0 in ω. Moreover, by (7.6), (7.29), and Lemma 7.10, we obtain that

−〈
b0(σ̂ ), v3

〉+ ∫
γn

b1(σ̂ )
∂v3

∂ν∂ω

dH1 = 0

for every v3 ∈ W 2,1(ω) such that v3 = 0 and ∇v3 = 0 on γd . By [12, Théorème 1] the trace operator from W 2,1(ω)

into T∂ω(W 2,1(ω)) × L1(∂ω) that associates to u the traces of u and of ∂u
∂ν∂ω

on ∂ω is surjective. We deduce that

b1(σ̂ ) = 0 on γn and 〈b0(σ̂ ), v3〉 = 0 for every v3 ∈ W 2,1(ω) with v3 = 0 on γd , hence σ ∈ Θ(Ω). This concludes the
proof of (b).

Assume now (b). Choosing ϕ ≡ 1 in (7.5) and (7.10) yields

〈σ̄ , q̄〉 = −
∫
ω

σ̄ : f̄ dx′, 〈σ̂ , q̂〉 = −
∫
ω

σ̂ : f̂ dx′

for every (v, f, q) ∈AKL(0). Therefore, by (7.14)

〈σ,q〉 = −
∫
Ω

σ : f dx.

Condition (a) follows now from Proposition 7.8. �
We conclude this subsection with an approximation lemma, that was needed in the proof of Proposition 7.9.

Lemma 7.10.

(i) Let v̄ ∈ W 1,1(ω;R2) with v̄ = 0 on γd . Then there exists a sequence (v̄ε) ⊂ W 1,2(ω;R2) such that v̄ε = 0 on γd

for every ε > 0 and v̄ε → v̄ strongly in W 1,1(ω;R2).
(ii) Let v ∈ W 2,1(ω) with v = 0 and ∇v = 0 on γd . Then there exists a sequence (vε) ⊂ W 2,2(ω) such that vε = 0

and ∇vε = 0 on γd , and vε → v strongly in W 2,1(ω).

Proof. We only sketch the proof of (i). Statement (ii) can be proved by similar arguments.
Arguing as in Step 1 of the proof of Theorem 4.7, we can reduce, without loss of generality, to the case where

there exists an open set J ⊂ ∂ω such that γd is compactly contained in J and v̄ = 0 on J . As in Step 2 of the proof
of Theorem 4.7 we consider the open covering {Qi}i=0,...,m of ω, a subordinate partition of unity {ϕi}i=0,...,m, and the
outward and inward translations τi,ε with aε = ε. We set

ω̃ := ω ∪
m0⋃

Qi
i=1
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and we extend v̄ to ω̃ by setting v̄ = 0 outside ω, so that v̄ ∈ W 1,1(ω̃;R2). We define

v̄ε :=
(

m∑
i=1

(ϕi v̄) ◦ τi,k + ϕ0v̄

)
∗ ρδ(ε),

where ρδ(ε) is a mollifier and δ(ε) < ε is chosen small enough in such a way that v̄ε = 0 on γd . It is now easy to check
that the sequence (v̄ε) has all the required properties. �
7.2. Equivalent formulations in rate form

From here to the end of the section we will assume t �→ w(t) to be absolutely continuous from [0, T ] into
W 1,2(Ω;R3) ∩ KL(Ω). This implies that the maps t �→ w̄(t) and t �→ w3(t) are absolutely continuous from [0, T ]
into W 1,2(ω;R2) and W 2,2(ω), respectively.

We first prove some preliminary results. An easy adaptation of [10, Lemma 5.5] provides us with the following
lemma.

Lemma 7.11. Let t �→ (u(t), e(t),p(t)) be an absolutely continuous function from [0, T ] into BD(Ω) ×
L2(Ω;M2×2

sym )×Mb(Ω ∪Γd ;M2×2
sym ) with (u(t), e(t),p(t)) ∈AKL(w(t)) for every t ∈ [0, T ]. Then (u̇(t), ė(t), ṗ(t)) ∈

AKL(ẇ(t)) for a.e. t ∈ [0, T ].

For absolutely continuous triples the energy balance can be equivalently written as a balance of powers, as shown
in the next proposition.

Proposition 7.12. Let t �→ (u(t), e(t),p(t)) be an absolutely continuous function from [0, T ] into BD(Ω) ×
L2(Ω;M2×2

sym ) × Mb(Ω ∪ Γd;M2×2
sym ) and let σ(t) := Cre(t). Then, the following conditions are equivalent:

(a) for every t ∈ [0, T ]

Qr

(
e(t)

)+Dr (p;0, t) =Qr

(
e(0)

)+
t∫

0

∫
Ω

σ(s) : Eẇ(s) dx ds;

(b) for a.e. t ∈ [0, T ]∫
Ω

σ(t) : ė(t) dx +Hr

(
ṗ(t)

) =
∫
Ω

σ(t) : Eẇ(t) dx.

Proof. Since t �→ p(t) is absolutely continuous, by [10, Theorem 7.1] we have

Dr (p;0, t) =
t∫

0

Hr

(
ṗ(s)

)
ds.

The equivalence of (a) and (b) follows now by differentiation of (a) and integration of (b). �
We are finally in a position to state the main result of this section.

Theorem 7.13. Let t �→ (u(t), e(t),p(t)) be a function from [0, T ] into BD(Ω)×L2(Ω;M2×2
sym )×Mb(Ω ∪Γd ;M2×2

sym )

and let σ(t) := Cre(t). Then the following conditions are equivalent:

(a) t �→ (u(t), e(t),p(t)) is a reduced quasistatic evolution for the boundary datum w(t);
(b) t �→ (u(t), e(t),p(t)) is absolutely continuous and

(b1) for every t ∈ [0, T ] we have (u(t), e(t),p(t)) ∈ AKL(w(t)), σ(t) ∈ Θ(Ω), divx′ σ̄ (t) = 0 in ω, and
divx′ divx′ σ̂ (t) = 0 in ω,
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(b2) for a.e. t ∈ [0, T ] there holds

Hr

(
ṗ(t)

) = 〈
σ(t), ṗ(t)

〉 = 〈
σ̄ (t), ˙̄p(t)

〉+ 1

12

〈
σ̂ (t), ˙̂p(t)

〉− ∫
Ω

σ⊥(t) : ė⊥(t);

(c) t �→ (u(t), e(t),p(t)) is absolutely continuous and
(c1) for every t ∈ [0, T ] we have (u(t), e(t),p(t)) ∈ AKL(w(t)), σ(t) ∈ Θ(Ω), divx′ σ̄ (t) = 0 in ω, and

divx′ divx′ σ̂ (t) = 0 in ω,
(c2) for a.e. t ∈ [0, T ] and for every τ ∈ Θ(Ω) there holds〈

σ(t) − τ, ṗ(t)
〉
� 0;

(d) t �→ (u(t), e(t)) is absolutely continuous and
(d1) for every t ∈ [0, T ] we have σ(t) ∈ Θ(Ω), divx′ σ̄ (t) = 0 in ω, and divx′ divx′ σ̂ (t) = 0 in ω,
(d2) for a.e. t ∈ [0, T ] and for every τ ∈ Θ(Ω) there holds∫

Ω

(
τ − σ(t)

) : ė(t) dx +
∫
ω

divx′ τ̄ · ˙̄u(t) dx′ + 1

12

∫
ω

u̇3(t) d(divx′ divx′ τ̂ )

�
∫
γd

[
(τ̄ − σ̄ )ν∂ω

] · ˙̄w(t) dH1 + 1

12

〈
b0

(
τ̂ − σ̂ (t)

)
, ẇ3(t)

〉− 1

12

∫
γd

b1
(
τ̂ − σ̂ (t)

)∂ẇ3(t)

∂ν∂ω

dH1,

(d3) for every t ∈ [0, T ], p(t) = Eu(t) − e(t) on Ω and p(t) = (w(t) − u(t)) � ν∂ΩH2 on Γd .

Remark 7.14. The duality products 〈σ(t), ṗ(t)〉 and 〈σ(t) − τ, ṗ(t)〉 in conditions (b) and (c) are well defined since
ṗ(t) ∈ ΠΓd

(Ω) by Lemma 7.11.

Remark 7.15. Condition (d2) is a variational inequality for the stress variable, that can be viewed as the analogue of
the formulation considered in [36] in the case of three-dimensional perfect plasticity.

Proof of Theorem 7.13. We first show that (a) is equivalent to (b). By Remark 6.7 every reduced quasistatic evolution
is absolutely continuous, while Proposition 7.9 and Lemma 6.8 yield the equivalence of (qs1)r and (b1). Hence, by
Proposition 7.12 it is enough to show that for every absolutely continuous function satisfying either (b1) or (qs1)r ,
(b2) is equivalent to the following condition: for a.e. t ∈ [0, T ]∫

Ω

σ(t) : ė(t) dx +Hr

(
ṗ(t)

) =
∫
Ω

σ(t) : Eẇ(t) dx.

This follows from Propositions 7.2 and 7.6, once we note that (u̇(t), ė(t), ṗ(t)) ∈ AKL(ẇ(t)) by Lemma 7.11.
To show that (b) and (c) are equivalent, it is enough to prove that, if (b1) holds, then (b2) is equivalent to (c2).

Indeed, condition (c2) is equivalent to〈
σ(t), ṗ(t)

〉
� sup

τ∈Θ(Ω)

〈
τ, ṗ(t)

〉
.

On the other hand, by (b1) there holds〈
σ(t), ṗ(t)

〉
� sup

τ∈Θ(Ω)

〈
τ, ṗ(t)

〉
.

By Proposition 7.8 we deduce the thesis.
To conclude the proof of the theorem, we show that (c) is equivalent to (d). We first remark that if t �→ (u(t), e(t))

is absolutely continuous and (d3) holds, then t �→ p(t) is absolutely continuous and (u(t), e(t),p(t)) ∈AKL(w(t)) for
every t ∈ [0, T ]. Hence, it remains only to prove that, if (c1) holds, then (c2) is equivalent to (d2). By Propositions 7.2
and 7.6 there holds
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〈
σ(t) − τ, ṗ(t)

〉 = ∫
Ω

(
τ − σ(t)

) : (ė(t) − Eẇ(t)
)
dx +

∫
ω

divx′ τ̄ · ( ˙̄u − ˙̄w)dx′

+ 1

12

∫
ω

(u̇3 − ẇ3) d(divx′ divx′ τ̂ ),

therefore (c2) is equivalent to∫
Ω

(
τ − σ(t)

) : (ė(t) − Eẇ(t)
)
dx +

∫
ω

divx′ τ̄ · ( ˙̄u − ˙̄w)dx′ + 1

12

∫
ω

(u̇3 − ẇ3) d(divx′ divx′ τ̂ )� 0 (7.30)

for a.e. t ∈ [0, T ] and every τ ∈ Θ(Ω). By (c1), (7.1), and (7.6) we deduce that∫
ω

(
τ̄ − σ̄ (t)

) : E ˙̄w(t) dx′ =
∫
γd

[(
τ̄ − σ̄ (t)

)
ν∂ω

] · ˙̄w(t) dH1 −
∫
ω

divx′ τ̄ · ˙̄w(t) dx ′,

and ∫
ω

(
τ̂ − σ̂ (t)

) : D2ẇ3(t) dx′

= −〈
b0

(
τ̂ − σ̂ (t)

)
, ẇ3(t)

〉+ ∫
γd

b1
(
τ̂ − σ̂ (t)

)∂ẇ3(t)

∂ν∂ω

dH1 +
∫
ω

ẇ3 d(divx′ divx′ τ̂ ).

Therefore, (7.30) is in turn equivalent to (d2) and the proof of the theorem is complete. �
7.3. Two-dimensional characterizations

In this subsection we show that, under some additional hypotheses on the boundary datum and the initial data, a
reduced quasistatic evolution can be written in terms of two-dimensional quantities only. The first proposition concerns
a quasistatic evolution (u(t), e(t),p(t)) with “in-plane” boundary datum and initial data. In this case, the triple given
by the tangential component of u(t) and the zeroth order moments of e(t) and p(t) is a two-dimensional quasistatic
evolution in ω in the sense of [10].

It is convenient to introduce the following notation: for every w̄ ∈ W 1,2(ω;R2) we denote by ĀKL(w̄) the class of
all triples (v, f, q) in BD(ω)×L2(ω;M2×2

sym )×Mb(ω∪γd ;M2×2
sym ) such that Ev = f +q in ω and q = (w̄−v)�ν∂ωH1

on γd . Moreover, we introduce the space

Σ̄(ω) := {
σ ∈ L∞(

ω;M2×2
sym

)
: divx′ σ ∈ L2(ω;M2×2

sym

)}
and the set

Kr (ω) := {
σ ∈ L∞(

ω;M2×2
sym

)
: σ

(
x′) ∈ Kr for a.e. x′ ∈ ω

}
.

Proposition 7.16. Let t �→ w̄(t) be absolutely continuous from [0, T ] into W 1,2(ω;R2) and let

w(t, x) :=
(

w̄(t, x′)
0

)
for every t ∈ [0, T ] and a.e. x ∈ Ω.

Let (ū0, ē0, p̄0) ∈ ĀKL(w̄(0)) and let

u0(x) :=
(

ū0(x
′)

0

)
, e0(x) := ē0

(
x′) for a.e. x ∈ Ω, p0 := p̄0 ⊗L1.

Finally, let t �→ (u(t), e(t),p(t)) be a reduced quasistatic evolution for the boundary value w(t) such that u(0) =
u0, e(0) = e0, and p(0) = p0, and let σ(t) := Cre(t). Then the map t �→ (ū(t), ē(t), p̄(t)) satisfies the following
conditions:
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(i) t �→ (ū(t), ē(t), p̄(t)) is absolutely continuous from [0, T ] into BD(ω)×L2(ω;M2×2
sym )×Mb(ω ∪ γd ;M2×2

sym ) and
ū(0) = ū0, ē(0) = ē0, and p̄(0) = p̄0;

(ii) for every t ∈ [0, T ] we have (ū(t), ē(t), p̄(t)) ∈ ĀKL(w̄(t)), σ̄ (t) ∈ Σ̄(ω) ∩ Kr (ω), divx′ σ̄ (t) = 0 in ω, and
[σ̄ ν∂ω] = 0 on γn;

(iii) for a.e. t ∈ [0, T ] there holds

Hr

( ˙̄p(t)
) = 〈

σ̄ (t), ˙̄p(t)
〉
. (7.31)

Moreover, σ̂ (t) = σ⊥(t) = 0 for every t ∈ [0, T ].

Proof. Condition (i) follows from Remark 6.7. By condition (b1) of Theorem 7.13 and the convexity of Kr we deduce
condition (ii).

By property (b2) of Theorem 7.13 and Proposition 7.8 we have

Hr

(
ṗ(t)

) = 〈
σ̄ (t), ˙̄p(t)

〉+ 1

12

〈
σ̂ (t), ˙̂p(t)

〉− ∫
Ω

σ⊥(t) : ė⊥(t) dx

�Hr

( ˙̄p(t)
)+ 1

12

〈
σ̂ (t), ˙̂p(t)

〉− ∫
Ω

σ⊥(t) : ė⊥(t) dx

=Hr

( ˙̄p(t)
)− 1

12

∫
ω

σ̂ (t) : ˙̂e(t) dx −
∫
Ω

σ⊥(t) : ė⊥(t) dx, (7.32)

where the last equality follows from (7.10) with ϕ ≡ 1 and from the fact that σ(t) ∈ Θ(Ω), divx′ divx′ σ̂ (t) = 0 in ω,
and w3(t) = 0 for every t ∈ [0, T ]. On the other hand, we have

Hr

(
ṗ(t)

) =Hr

(
ṗa(t)

)+Hr

(
ṗs(t)

)
. (7.33)

By the Fubini Theorem and Jensen’s inequality we deduce

Hr

(
ṗa(t)

) =
1
2∫

− 1
2

∫
ω∪γd

Hr

( ˙̄pa(t) + x3
˙̂pa(t) − ė⊥(t)

)
dx′ dx3

�
∫

ω∪γd

Hr

( 1
2∫

− 1
2

( ˙̄pa(t) + x3
˙̂pa(t) − ė⊥(t)

)
dx3

)
dx′

=
∫

ω∪γd

Hr

( ˙̄pa(t)
)
dx′ =Hr

( ˙̄pa(t)
)

(7.34)

for a.e. t ∈ [0, T ]. Setting

λ(t) := ∣∣ ˙̄ps(t)
∣∣+ ∣∣ ˙̂ps(t)

∣∣
for a.e. t ∈ [0, T ], we have that the measure ˙̄ps

(t) + x3
˙̂p(t) on ω ∪ γd is absolutely continuous with respect to λ(t)

for every x3 ∈ (− 1
2 , 1

2 ), so that we can write

ṗs(t) =
(

d ˙̄ps(t)

dλ(t)
+ x3

d ˙̂ps(t)

dλ(t)

)
λ(t)

gen.⊗ L1.

Therefore, by the Fubini Theorem and Jensen’s inequality we obtain

Hr

(
ṗs(t)

) =
1
2∫

− 1

∫
ω∪γd

Hr

(
d ˙̄ps(t)

dλ(t)
+ x3

d ˙̂ps(t)

dλ(t)

)
dλ(t) dx3
2
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�
∫

ω∪γd

Hr

( 1
2∫

− 1
2

(
d ˙̄ps(t)

dλ(t)
+ x3

d ˙̂ps(t)

dλ(t)

)
dx3

)
dλ(t)

=
∫

ω∪γd

Hr

(
d ˙̄ps(t)

dλ(t)

)
dλ(t) =Hr

( ˙̄ps(t)
)

(7.35)

for a.e. t ∈ [0, T ]. Combining (7.32)–(7.35), we deduce that

− d

dt

(
1

12
Qr

(
ê(t)

)+Qr

(
e⊥(t)

)) = − 1

12

∫
ω

σ̂ (t) : ˙̂e(t) dx −
∫
Ω

σ⊥(t) : ė⊥(t) dx � 0.

In particular, this implies that

1

12
Qr

(
ê(t)

)+Qr

(
e⊥(t)

)
� 1

12
Qr

(
ê(0)

)+Qr

(
e⊥(0)

) = 0,

hence ê(t) = 0 and e⊥(t) = 0 for every t ∈ [0, T ]. This, together with (7.32)–(7.35), yields (7.31). �
In this last proposition we consider a quasistatic evolution (u(t), e(t),p(t)) with “out-of-plane” boundary datum

and initial data and we prove that the triple given by the normal component of u(t) and the first order moments of e(t)

and p(t) is a two-dimensional quasistatic evolution in ω in the sense of [13, Definition 4.1]. To this purpose, for every
w3 ∈ W 2,2(ω) we define the class ÂKL(w3) as the set of all triples (v, f, q) ∈ BH(ω)×L2(ω;M2×2

sym )×Mb(ω;M2×2
sym )

such that D2v = −(f + q) in ω, v = w3 on γd , and q = (∇v − ∇w3) � ν∂ωH1 on γd .

Proposition 7.17. Assume the function H to be homogeneous of degree one, i.e.,

H(λξ) = |λ|H(ξ) for every λ ∈R, ξ ∈ M
3×3
sym . (7.36)

Let t �→ w3(t) be absolutely continuous from [0, T ] into W 2,2(ω) and let

w(t, x) :=
(−x3∇w3(t, x

′)
w3(t, x

′)

)
for every t ∈ [0, T ] and a.e. x ∈ Ω.

Let (v0, ê0, p̂0) ∈ ÂKL(w3(0)) and let

u0(x) :=
(−x3∇v0(x

′)
v0(x

′)

)
, e0(x) := x3ê0

(
x′) for a.e. x ∈ Ω, p0 := p̂0 ⊗ x3L1.

Finally, let t �→ (u(t), e(t),p(t)) be a reduced quasistatic evolution for the boundary value w(t) such that u(0) =
u0, e(0) = e0, and p(0) = p0, and let σ(t) := Cre(t). Then the map t �→ (u3(t), ê(t), p̂(t)) satisfies the following
conditions:

(i) t �→ (u3(t), ê(t), p̂(t)) is absolutely continuous from [0, T ] into BH(ω) × L2(ω;M2×2
sym ) × Mb(ω ∪ γd ;M2×2

sym )

and u3(0) = v0, ê(0) = ê0, and p̂(0) = p̂0;
(ii) for every t ∈ [0, T ] we have (u3(t), ê(t), p̂(t)) ∈ ÂKL(w3(t)), σ̂ (t) ∈ Σ̂(ω) ∩ Kr (ω), divx′ divx′ σ̂ (t) = 0 in ω,

b1(σ̂ (t)) = 0 on γn, and 〈b0(σ̂ (t)), v〉 = 0 for every v ∈ W 2,1(ω) with v = 0 on γd ;
(iii) for a.e. t ∈ [0, T ] there holds

Hr

( ˙̂p(t)
) = 〈

σ̂ (t), ˙̂p(t)
〉
. (7.37)

Moreover, σ̄ (t) = σ⊥(t) = 0 for every t ∈ [0, T ].

Proof. We first remark that (7.36) implies that the same property is fulfilled by Hr . This latter condition is in turn
equivalent to saying that the set Kr is symmetric with respect to the origin.

Condition (i) follows from Remark 6.7. By property (b1) of Theorem 7.13 we have that σ(t) ∈ Kr (Ω) for every
t ∈ [0, T ]. Since Kr is convex and symmetric with respect with the origin, this implies that σ̂ (t) ∈ Kr (ω) for every
t ∈ [0, T ]. All the other conditions in (ii) follow from Theorem 7.13.
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By property (b2) of Theorem 7.13 and Proposition 7.8 we have

Hr

(
ṗ(t)

) = 〈
σ̄ (t), ˙̄p(t)

〉+ 1

12

〈
σ̂ (t), ˙̂p(t)

〉− ∫
Ω

σ⊥(t) : ė⊥(t) dx

� 1

12
Hr

( ˙̂p(t)
)+ 〈

σ̄ (t), ˙̄p(t)
〉− ∫

Ω

σ⊥(t) : ė⊥(t) dx

= 1

12
Hr

( ˙̂p(t)
)−

∫
ω

σ̄ (t) : ˙̄e(t) dx −
∫
Ω

σ⊥(t) : ė⊥(t) dx, (7.38)

where the last equality follows from (7.5) with ϕ ≡ 1 and from the fact that σ(t) ∈ Θ(Ω), divx′ σ̄ (t) = 0 in ω, and
w̄(t) = 0 for every t ∈ [0, T ]. On the other hand, by (7.36), Fubini’s Theorem, and Jensen’s inequality we deduce

Hr

(
ṗa(t)

)
�

1
2∫

− 1
2

∫
ω∪γd

|x3|Hr

( ˙̄pa(t) + x3
˙̂pa(t) − ė⊥(t)

)
dx′ dx3

�
∫

ω∪γd

Hr

( 1
2∫

− 1
2

x3
( ˙̄pa(t) + x3

˙̂pa(t) − ė⊥(t)
)
dx3

)
dx′

= 1

12
Hr

( ˙̂pa(t)
)

(7.39)

for a.e. t ∈ [0, T ]. Setting

λ(t) := ∣∣ ˙̄ps(t)
∣∣+ ∣∣ ˙̂ps(t)

∣∣
for a.e. t ∈ [0, T ] and applying again (7.36), Fubini’s Theorem, and Jensen’s inequality, we obtain

Hr

(
ṗs(t)

)
�

1
2∫

− 1
2

∫
ω∪γd

|x3|Hr

(
d ˙̄ps(t)

dλ(t)
+ x3

d ˙̂ps(t)

dλ(t)

)
dλ(t) dx3

�
∫

ω∪γd

Hr

( 1
2∫

− 1
2

x3

(
d ˙̄ps(t)

dλ(t)
+ x3

d ˙̂ps(t)

dλ(t)

)
dx3

)
dλ(t)

= 1

12
Hr

( ˙̂ps(t)
)

(7.40)

for a.e. t ∈ [0, T ]. Combining (7.38)–(7.40), we deduce that

− d

dt

(
Qr

(
ē(t)

)+Qr

(
e⊥(t)

)) = −
∫
ω

σ̄ (t) : ˙̄e(t) dx −
∫
Ω

σ⊥(t) : ė⊥(t) dx � 0.

In particular, this implies that

Qr

(
ē(t)

)+Qr

(
e⊥(t)

)
�Qr

(
ē(0)

)+Qr

(
e⊥(0)

) = 0,

hence ē(t) = 0 and e⊥(t) = 0 for every t ∈ [0, T ]. This, together with (7.38)–(7.40), yields (7.37). �
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