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Abstract

We study a system of nonlinear Schrödinger equations with quadratic interaction in space dimension n � 6. The Cauchy
problem is studied in L2, in H 1, and in the weighted L2 space 〈x〉−1L2 = F(H 1) under mass resonance condition, where
〈x〉 = (1 + |x|2)1/2 and F is the Fourier transform. The existence of ground states is studied by variational methods. Blow-up
solutions are presented in an explicit form in terms of ground states under mass resonance condition, which ensures the invariance
of the system under pseudo-conformal transformations.

1. Introduction

We study the system of nonlinear Schrödinger equations:⎧⎪⎨
⎪⎩

i∂tu + 1

2m
�u = λvu,

i∂t v + 1

2M
�v = μu2,

(1)

where u and v are complex-valued functions of (t, x) ∈ R × R
n, � is the Laplacian in R

n, m and M are positive
constants, λ and μ are complex constants, and u is the complex conjugate of u. Here the interaction terms in the
system (1) are quadratic in (u, v). By the standard scaling arguments on (1), the critical function space is Hn/2−2,
where Hs = (1 − �)−s/2L2 is the usual Sobolev space of order s (see [3,13,19]). Particularly, L2 and H 1 are critical
spaces for n = 4 and n = 6, respectively, from the scaling point of view. Those spaces are also important from the
point of view of the invariance under group of motion. L2 is naturally associated with the conservation of charge,
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which follows from invariance under Gauge transform. H 1 is naturally associated with the conservation of energy,
which follows from invariance under time-translation.

The system (1) is regarded as a non-relativistic limit of the system of nonlinear Klein–Gordon equations⎧⎪⎪⎨
⎪⎪⎩

1

2c2m
∂2
t u − 1

2m
�u + mc2

2
u = −λvu,

1

2c2M
∂2
t v − 1

2M
�v + Mc2

2
v = −μu2,

(2)

under the mass resonance condition

M = 2m (3)

since the modulated wave functions (uc, vc) = (eitmc2
u, eitMc2

v) satisfy

⎧⎪⎨
⎪⎩

1

2c2m
∂2
t uc − i∂tuc − 1

2m
�uc = −eitc2(2m−M)λvcuc,

1

2c2M
∂2
t vc − i∂t vc − 1

2M
�vc = −eitc2(M−2m)μu2

c,

(4)

where the phase oscillations on the right hand sides vanish if and only if (3) holds, and under the mass resonance
condition (3) the system (4) formally yields (1) as the speed of light c tends to infinity.

The system (2) is closely related to systems studied in [1,7,9] for instance. As regards the non-relativistic limit for
the nonlinear Klein–Gordon equations, we refer the reader to [17,18] and references therein. For recent works related
to the mass resonance, see [12,24,25].

The Cauchy problem for (1) has been studied from the point of view of small data scattering [10,11]. The purpose
of this paper is to study the Cauchy problem for (1) with large data, namely, data which are not necessarily small
enough.

The argument in Section 3 is rather standard. We describe it for convenience of readers. Local Cauchy problem is
studied in L2 and in H 1 respectively in Sections 3.1 and 3.2 by a contraction argument based on the Strichartz esti-
mates. To extend local solutions we use a priori estimates, which follow from conservation laws of charge and energy.
We show that those conservation laws hold if and only if there exists c ∈ R \ {0} such that λ = cμ (Theorems 3.3 and
3.5 below). On the basis of those conservation laws, we prove the existence of unique global solutions in L2 and in H 1

regardless of the size of the Cauchy data respectively in Sections 3.3 and 3.4. Local Cauchy problem with the data at
t = 0 in the weighted L2 space 〈x〉−1L2 =FH 1 is discussed in Section 3.5 under the mass resonance condition, which
ensures the invariance of (1) under Galilei transformations. In Section 3.6 we prove the pseudo-conformal identity and
apply it to the proof of the existence of unique global solutions with data at t = 0 in FH 1. In Section 3.7, we derive the
virial identity from the energy and pseudo-conformal identities and apply it to the proof of the non-existence of global
solutions of negative energy with data in H 1 ∩ FH 1. Section 4 is devoted to the existence of ground states for (1),
which are defined as minimizers of action integrals for standing waves for (1) at frequency (ω,2ω) with ω > 0. The
method of proof depends on Strauss’ compact embedding of the space of radially symmetric H 1 functions into L3:
H 1

r ⊂ L3 for 2 � n� 5 and on the concentration-compactness argument for n = 1. In Section 5, we prove that the best
constant in a Gagliardo-–Nirenberg type inequality for n = 4 is formulated in a variational setting and characterized
by ground states at frequency (ω,2ω) = (1,2). In Section 6, we prove the existence of threshold on the size of charge
of the Cauchy data for which the corresponding solutions to (1) are global in time for n = 4. Moreover, the threshold
is calculated in terms of the ground states from Section 5. This result is regarded as an analogue to Weinstein’s theory
in the pseudo-conformal invariant case [26,27]. Under the mass resonance condition (3), we present an explicit repre-
sentation formula of blow-up solutions at the threshold by means of the ground states from Section 5. In Section 7, we
study the inverse condition of mass resonance, namely, m = 2M , which reduces the problem of the system (1) to the
corresponding problem of a single equation. We characterize the structure of ground states for a quadratic scalar field
equation, which could clarify how the inverse mass ratio affects the motion of semitrivial standing waves [4,5,14,15].
Existence of stationary solutions to (1) for n = 6 is also discussed in this setting. In Section 8, we study (1) for n = 1
in the framework of Lagrangian systems.
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2. Preliminaries

In this section we collect basic notation and lemmas which will be used subsequent sections. We refer the reader
to [2,22,23] for general information. For any p with 1 � p � ∞, Lp = Lp(Rn) denotes the Lebesgue space on R

n.

The usual scalar product on L2 or (L2)n is denoted by (·,·). For any p with 1 � p � ∞ and any non-negative
integer m, Wm

p , denotes the usual Sobolev space of order m built over Lp . If p = 2, Wm
2 is also written as Hm. For

any interval I ⊂ R and any Banach space X, we denote by C(I ;X) the space of strongly continuous functions from
I to X and by Lp(I ;X) the space of strongly measurable functions u from I to X such that ‖u(·);X‖ ∈ Lp(I). For
any p with 1 � p �∞, p′ is the dual exponent defined by 1/p + 1/p′ = 1. For any a, b ∈R, a ∨ b = max(a, b). The
Cauchy problem for (1) with data (u(t0), v(t0)) = (u0, v0) given at t = t0 will be treated in the form of the following
system of integral equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(t) = Um(t − t0)u0 − i

t∫
t0

Um

(
t − t ′

)
λv

(
t ′
)
u
(
t ′
)
dt ′,

v(t) = UM(t − t0)v0 − i

t∫
t0

UM

(
t − t ′

)
μu2(t ′)dt ′,

(5)

where Um(t) = exp(i t
2m

�) and UM(t) = exp(i t
2M

�) are free propagators with masses m and M , respectively. A pair
of indices (q, r) with 2 � q, r � ∞ is called admissible if 0 � 2/q = n/2 − n/r � 1 with the exception (n, q, r) =
(2,∞,2).

We use the following Strichartz estimates without particular comments.

Proposition 2.1. Let n� 1 and let (q, r) and (qj , rj ) be admissible for j = 1,2. Then the following estimates hold∥∥Um(·)φ;Lq
(
R;Lr

)∥∥� C
∥∥φ;L2

∥∥
and ∥∥Gt0f ;Lq2

(
I ;Lr2

)∥∥� C
∥∥f ;Lq ′

1
(
I ;Lr ′

1
)∥∥,

where t0 ∈R, I ⊂R is an interval with t0 ∈ I , Gt0 is the integral operator defined as

(Gt0f )(t) =
t∫

t0

Um

(
t − t ′

)
f

(
t ′
)
dt ′, t ∈ I,

and C is a constant independent of t0, I , and f.

We use Proposition 2.1 to obtain local solutions to (5) by a contraction argument. To be more specific, local
solutions to (5) are constructed as a pair of fixed point (u, v) of contraction mapping (u, v) �→ (Φ(u, v),Ψ (u, v)),
where⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Φ(u,v)

)
(t) = Um(t − t0)u0 − i

t∫
t0

Um

(
t − t ′

)
λv

(
t ′
)
u
(
t ′
)
dt ′,

(
Ψ (u,v)

)
(t) = UM(t − t0)v0 − i

t∫
t0

UM

(
t − t ′

)
μu2(t ′)dt ′,

(6)

on a suitable complete metric space of functions on I = [t0 − T , t0 + T ] for some T > 0.
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3. Existence of solutions and non-existence of global solutions

3.1. Local existence of H 1-solutions

In view of the scaling argument and available results on the Cauchy problem for a single nonlinear Schrödinger
equation with power nonlinearities, it is natural to treat (5) in L2 space for n� 4. For any u0, v0 ∈ L2 we solve (5) in
the spaces

X(I) = (
C ∩ L∞)(

I ;L2) ∩ L4(I ;L∞)
for n = 1,

X(I) = (
C ∩ L∞)(

I ;L2) ∩ Lq0
(
I ;Lr0

)
for n = 2,

where 0 < 2/q0 = 1 − 2/r0 < 1 with r0 sufficiently large,

X(I) = (
C ∩ L∞)(

I ;L2) ∩ L2(I ;L2n/(n−2)
)

for n� 3

on the time interval I = [t0 − T , t0 + T ] with T > 0. The associated norms are defined∥∥u;X(I)
∥∥ = ∥∥u;L∞(

L2)∥∥ ∨ ∥∥u;L4(L∞)∥∥ for n = 1,∥∥u;X(I)
∥∥ = ∥∥u;L∞(

L2)∥∥ ∨ ∥∥u;Lq0
(
Lr0

)∥∥ for n = 2,∥∥u;X(I)
∥∥ = ∥∥u;L∞(

L2)∥∥ ∨ ∥∥u;L2(L2n/(n−2)
)∥∥ for n� 3.

Theorem 3.1. If n� 3, then for any ρ > 0 there exists T (ρ) > 0 such that for any (u0, v0) ∈ L2 ×L2 with ‖u0;L2‖∨
‖v0;L2‖� ρ, (5) has a unique pair of solutions (u, v) ∈ X(I) × X(I) with I = [t0 − T (ρ), t0 + T (ρ)]. If n = 4, then
for any (u0, v0) ∈ L2 ×L2, there exists T (u0, v0) > 0 such that (5) has a unique pair of solutions (u, v) ∈ X(I)×X(I)

with I = [t0 − T (u0, v0), t0 + T (u0, v0)].

Proof. We first consider the case n = 1. We estimate Φ(u,v) and Ψ (u,v) as∥∥Φ(u,v);X(I)
∥∥ � C

∥∥u0;L2
∥∥ + C

∥∥uv;L1(L2)∥∥
� C

∥∥u0;L2
∥∥ + CT 3/4

∥∥v;L4(L∞)∥∥∥∥u;L∞(
L2)∥∥,∥∥Ψ (u,v);X(I)

∥∥ � C
∥∥v0;L2

∥∥ + CT 3/4
∥∥u;L4(L∞)∥∥∥∥u;L∞(

L2)∥∥.

Similarly,∥∥Φ(u,v) − Φ
(
u′, v′);X(I)

∥∥ � CT 3/4(∥∥u′;L4(L∞)∥∥ + ∥∥v;L4(L∞)∥∥)(∥∥u − u′;L∞(
L2)∥∥

+ ∥∥v − v′;L∞(
L2)∥∥)

,∥∥Ψ (u,v) − Ψ
(
u′, v′);X(I)

∥∥� CT 3/4(∥∥u′;L4(L∞)∥∥ + ∥∥u;L4(L∞)∥∥)∥∥u − u′;L∞(
L2)∥∥.

We next consider the case n = 2. We estimate Φ(u,v) and Ψ (u,v) as∥∥Φ(u,v);X(I)
∥∥ � C

∥∥u0;L2
∥∥ + C

∥∥uv;Lq ′
0
(
Lr ′

0
)∥∥

� C
∥∥u0;L2

∥∥ + CT r0/(r0+2)
∥∥v;Lr0

(
L2r0/(r0−2)

)∥∥∥∥u;L∞(
L2)∥∥,∥∥Ψ (u,v);X(I)

∥∥ � C
∥∥v0;L2

∥∥ + CT r0/(r0+2)
∥∥u;Lr0

(
L2r0/(r0−2)

)∥∥∥∥u;L∞(
L2)∥∥.

Similarly,∥∥Φ(u,v) − Φ
(
u′, v′);X(I)

∥∥ � CT r0/(r0+2)
(∥∥u′;Lr0

(
L2r0/(r0−2)

)∥∥ + ∥∥v;Lr0
(
L2r0/(r0−2)

)∥∥)
× (∥∥u − u′;L∞(

L2)∥∥ + ∥∥v − v′;L∞(
L2)∥∥)

,∥∥Ψ (u,v) − Ψ
(
u′, v′);X(I)

∥∥� CT r0/(r0+2)
(∥∥u′;Lr0

(
L2r0/(r0−2)

)∥∥
+ ∥∥u;Lr0

(
L2r0/(r0−2)

)∥∥)∥∥u − u′;L∞(
L2)∥∥.

Note that ‖u;Lr0(L2r0/(r0−2))‖ � ‖u;Lq0(Lr0)‖2/(r0−2)‖u;L∞(L2)‖(r0−4)/(r0−2). We now consider the case n = 3.

We estimate Φ(u,v) and Ψ (u,v) as
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∥∥Φ(u,v);X(I)
∥∥ � C

∥∥u0;L2
∥∥ + C

∥∥uv;L4/3(L3/2)∥∥
� C

∥∥u0;L2
∥∥ + CT 1/4

∥∥v;L2(L6)∥∥∥∥u;L∞(
L2)∥∥,∥∥Ψ (u,v);X(I)

∥∥ � C
∥∥v0;L2

∥∥ + CT 1/4
∥∥u;L2(L6)∥∥∥∥u;L∞(

L2)∥∥.

Similarly,∥∥Φ(u,v) − Φ
(
u′, v′);X(I)

∥∥ � CT 1/4(∥∥u′;L2(L6)∥∥ + ∥∥v;L2(L6)∥∥)(∥∥u − u′;L∞(
L2)∥∥

+ ∥∥v − v′;L∞(
L2)∥∥)

,∥∥Ψ (u,v) − Ψ
(
u′, v′);X(I)

∥∥� CT 1/4(∥∥u′;L2(L6)∥∥ + ∥∥u;L2(L6)∥∥)∥∥u − u′;L∞(
L2)∥∥.

Therefore for n� 3 we have obtained the following estimates:∥∥Φ(u,v);X(I)
∥∥ � C

∥∥u0;L2
∥∥ + CT 1−n/4

∥∥u;X(I)
∥∥∥∥v;X(I)

∥∥,∥∥Ψ (u,v);X(I)
∥∥ � C

∥∥v0;L2
∥∥ + CT 1−n/4

∥∥u;X(I)
∥∥2

,∥∥Φ(u,v) − Φ
(
u′, v′);X(I)

∥∥ � CT 1−n/4(∥∥u′;X(I)
∥∥ + ∥∥v;X(I)

∥∥)(∥∥u − u′;X(I)
∥∥ + ∥∥v − v′;X(I)

∥∥)
,∥∥Ψ (u,v) − Ψ

(
u′, v′);X(I)

∥∥� CT 1−n/4(∥∥u′;X(I)
∥∥ + ∥∥u;X(I)

∥∥)∥∥u − u′;X(I)
∥∥.

Then the standard contraction argument on (u, v) �→ (Φ(u, v),Ψ (u, v)) on a closed ball in X(I)×X(I) goes through
by taking T > 0 sufficiently small with respect to ρ > 0 via radius of the ball. This yields the existence and uniqueness
of local solutions on [t0 − T , t0 + T ] under the size restriction on the radius. The uniqueness of solutions without the
size restriction of the radius follows by a similar argument by taking the size of successive time interval sufficiently
small.

We finally consider the case n = 4. We estimate Φ(u,v) and Ψ (u,v) in L2(I ;L4) as∥∥Φ(u,v);L2(L4)∥∥� C
∥∥Um(·)u0;L2(L4)∥∥ + C

∥∥uv;L1(L2)∥∥
� C

∥∥Um(·)u0;L2(L4)∥∥ + C
∥∥v;L2(L4)∥∥∥∥u;L2(L4)∥∥,∥∥Ψ (u,v);L2(L4)∥∥� C

∥∥UM(·)v0;L2(L4)∥∥ + C
∥∥u;L2(L4)∥∥2

.

Similarly,∥∥Φ(u,v) − Φ
(
u′, v′);L2(L4)∥∥� C

(∥∥u′;L2(L4)∥∥ + ∥∥v;L2(L4)∥∥)(∥∥u − u′;L2(L4)∥∥ + ∥∥v − v′;L2(L4)∥∥)
,∥∥Ψ (u,v) − Ψ

(
u′, v′);L2(L4)∥∥� C

(∥∥u′;L2(L4)∥∥ + ∥∥u;L2(L4)∥∥)∥∥u − u′;L2(L4)∥∥.

For u0, v0 we know that Um(·)u0,UM(·)v0 ∈ L2(R;L4) and therefore the associated norms may be taken arbitrarily
small by taking T > 0 sufficiently small. Therefore the contraction argument works on a closed ball in L2(I ;L4) with
center at the origin and radius sufficiently small. Then the solution satisfies the integral equations (5) and then belongs
to X(I) by the Strichartz estimates. �
3.2. Local existence of H 1-solutions

In view of the scaling argument and available results on the Cauchy problem for a single nonlinear Schrödinger
equation with power nonlinearities, it is natural to treat (5) in H 1 space for n � 6. For any u0, v0 ∈ H 1 we solve (5)
in the spaces

Y(I) = (
C ∩ L∞)(

I ;H 1) ∩ L4(I ;W 1∞
)

for n = 1,

Y (I ) = (
C ∩ L∞)(

I ;H 1) ∩ Lq0
(
I ;W 1

r0

)
for n = 2,

where 0 < 2/q0 = 1 − 2/r0 < 1 with r0 sufficiently large,

Y(I) = (
C ∩ L∞)(

I ;H 1) ∩ L2(I ;W 1
2n/(n−2)

)
for n� 3

on the time interval I = [t0 − T , t0 + T ] with T > 0. The associated norms are defined by
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∥∥u;Y(I)
∥∥ = ∥∥u;L∞(

H 1)∥∥ ∨ ∥∥u;L4(W 1∞
)∥∥ for n = 1,∥∥u;Y(I)

∥∥ = ∥∥u;L∞(
H 1)∥∥ ∨ ∥∥u;Lq0

(
W 1

r0

)∥∥ for n = 2,∥∥u;Y(I)
∥∥ = ∥∥u;L∞(

H 1)∥∥ ∨ ∥∥u;L2(W 1
2n/(n−2)

)∥∥ for n� 3.

Theorem 3.2. If n� 5, then for any ρ > 0 there exists T (ρ) > 0 such that for any (u0, v0) ∈ H 1 ×H 1 with ‖u0;H 1‖∨
‖v0;H 1‖� ρ, (5) has a unique pair of solutions (u, v) ∈ Y(I) × Y(I) with I = [t0 − T (ρ), t0 + T (ρ)]. If n = 6, then
for any (u0, v0) ∈ H 1 ×H 1, there exists T (u0, v0) > 0 such that (5) has a unique pair of solutions (u, v) ∈ Y(I)×Y(I)

with I = [t0 − T (u0, v0), t0 + T (u0, v0)].

Proof. We first consider the case n � 3. The contraction argument in Y(I) works in the same way as in the proof of
Theorem 3.1 since necessary estimates are those of first derivatives of Φ(u,v) and Ψ (u,v), which depend on (u, v)

essentially in a bilinear way. To be specific, we obtain∥∥Φ(u,v);Y(I)
∥∥ � C

∥∥u0;H 1
∥∥ + CT 1−n/4

∥∥u;Y(I)
∥∥∥∥v;Y(I)

∥∥,∥∥Ψ (u,v);Y(I)
∥∥ � C

∥∥v0;H 1
∥∥ + CT 1−n/4

∥∥u;Y(I)
∥∥2

,∥∥Φ(u,v) − Φ
(
u′, v′);Y(I)

∥∥ � CT 1−n/4(∥∥u′;Y(I)
∥∥ + ∥∥v;Y(I)

∥∥)(∥∥u − u′;Y(I)
∥∥ + ∥∥v − v′;Y(I)

∥∥)
,∥∥Ψ (u,v) − Ψ

(
u′, v′);Y(I)

∥∥ � CT 1−n/4(∥∥u′;Y(I)
∥∥ + ∥∥u;Y(I)

∥∥)∥∥u − u′;Y(I)
∥∥,

from which the conclusion follows for n � 3. We next consider the case 4 � n � 6. In this case the pair
(4/(n − 4), n/2) is admissible and the corresponding dual is given by (4/(8 − n),n/(n − 2)). As for the estimates on
the Duhamel terms, the following bilinear estimate plays an essential role:∥∥uv;L4/(8−n)

(
I ;W 1

n/(n−2)

)∥∥� CT 3/2−n/4
∥∥u;L∞(

I ;H 1)∥∥∥∥v;L2(I ;W 1
2n/(n−2)

)∥∥.

Then the conclusion follows in the same way as in the proof of Theorem 3.1. �
3.3. Global existence of L2-solutions

Let n � 4 and let (u, v) ∈ X(I) × X(I) be the unique pair of local solutions of (5) given in Theorem 3.1. Then in
the same way as in [20], we have

∥∥u(t);L2
∥∥2 = ∥∥u0;L2

∥∥2 + 2 Im

t∫
t0

(
λv

(
t ′
)
, u2(t ′))dt ′,

∥∥v(t);L2
∥∥2 = ∥∥v0;L2

∥∥2 + 2 Im

t∫
t0

(
μu2(t ′), v(

t ′
))

dt ′

for all t ∈ I , where the last integrals of the right hand side are understood to be a duality between Lq(I ;Lr) and
Lq ′

(I ;Lr ′
). For the conservation law of total charge it is natural to consider the following condition:

There exists a constant c ∈ R\{0} such that λ = cμ. (7)

In fact, we have

Theorem 3.3. Let n � 4 and let λ and μ satisfy (7). Then the unique pair of local solutions (u, v) ∈ X(I) × X(I) of
(5) given by Theorem 3.1 satisfies the following conservation law for all t ∈ I∥∥u(t);L2

∥∥2 + c
∥∥v(t);L2

∥∥2 = ∥∥u0;L2
∥∥2 + c

∥∥v0;L2
∥∥2

.
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We now state the existence and uniqueness of global L2 solutions on the basis of the function space X(R):

X(R) = (
C ∩ L∞)(

R;L2) ∩ L4
loc

(
R;L∞)

for n = 1,

X(R) = (
C ∩ L∞)(

R;L2) ∩ L
q

loc

(
R;Lr

)
for n = 2,

where 0 < 2/q = 1 − 2/r < 1 with r sufficiently large,

X(R) = (
C ∩ L∞)(

R;L2) ∩ L2
loc

(
R;L6) for n = 3.

Theorem 3.4. Let n� 3 and let λ and μ satisfy (7) with c > 0. Then for any (u0, v0) ∈ L2 ×L2, (5) has a unique pair
of solutions (u, v) ∈ X(R) × X(R). Moreover,∥∥u(t);L2

∥∥2 + c
∥∥v(t);L2

∥∥2 = ∥∥u0;L2
∥∥2 + c

∥∥v0;L2
∥∥2

for all t ∈ R.

Proof. The theorem follows from Theorem 3.1 and Theorem 3.3 by the standard continuation argument of local
solutions. �
3.4. Global existence of H 1-solutions

Let n � 6 and let (u, v) ∈ Y(I) × Y(I) be the unique pair of local solutions of (5) given by Theorem 3.2. Then in
the same way as in [20], we have

∥∥∇u(t);L2
∥∥2 = ∥∥∇u0;L2

∥∥2 − 2mRe

t∫
t0

(
λv

(
t ′
)
, ∂t

(
u2)(t ′))dt ′,

∥∥∇v(t);L2
∥∥2 = ∥∥∇v0;L2

∥∥2 − 4M Re

t∫
t0

(
μu2(t ′), ∂t v

(
t ′
))

dt ′

for all t ∈ I. Therefore we have

Theorem 3.5. Let n � 6 and let λ and μ satisfy (7). Then the unique pair of local solutions (u, v) ∈ Y(I) × Y(I) of
(5) given by Theorem 3.2 satisfies the following conservation law for all t ∈ I

1

2m

∥∥∇u(t);L2
∥∥2 + c

4M

∥∥∇v(t);L2
∥∥2 + Re

(
λ
(
v(t), u2(t)

))
= 1

2m

∥∥∇u0;L2
∥∥2 + c

4M

∥∥∇v0;L2
∥∥2 + Re

(
λ
(
v0, u

2
0

))
.

We now state the existence and uniqueness of global H 1 solutions on the basis of the function space Y(R):

Y(R) = (
C ∩ L∞)(

R;H 1) ∩ L4
loc

(
R;W 1∞

)
for n = 1,

Y (R) = (
C ∩ L∞)(

R;H 1) ∩ L
q

loc

(
R;W 1

r

)
for n = 2,

where 0 < 2/q = 1 − 2/r < 1 with r sufficiently large,

Y(R) = (
C ∩ L∞)(

R;H 1) ∩ L2
loc

(
R;W 1

2n/(n−2)

)
for n� 3.

To obtain an a priori estimate of solutions in H 1 × H 1, it is convenient to introduce the following functionals

Q(φ,ψ) = ∥∥φ;L2
∥∥2 + c

∥∥ψ;L2
∥∥2

,

K(φ,ψ) = 1

2m

∥∥∇φ;L2
∥∥2 + c

4M

∥∥∇ψ;L2
∥∥2

,

P (φ,ψ) = Re
∫

φ2ψ dx
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and

α0 = inf
{
J0(φ,ψ); (φ,ψ) ∈ H 1 × H 1},

where

J0(φ,ψ) = K(φ,ψ)Q(φ,ψ)1/2/P
(|φ|, |ψ |).

Lemma 3.6. Let n = 4 and let m,M,c > 0. Then there exists a constant C0 > 0 such that

P
(|φ|, |ψ |) � C0K

(|φ|, |ψ |)Q(|φ|, |ψ |)1/2 � C0K(φ,ψ)Q(φ,ψ)1/2

for all (φ,ψ) ∈ H 1 × H 1.

Proof. By the Gagliardo–Nirenberg inequality:∥∥φ;L3
∥∥ � C

∥∥∇φ;L2
∥∥2/3∥∥φ;L2

∥∥1/3
,

we obtain

P
(|φ|, |ψ |) � C3

∥∥∇|φ|;L2
∥∥4/3∥∥|φ|;L2

∥∥2/3∥∥∇|ψ |;L2
∥∥2/3∥∥|ψ |;L2

∥∥1/3

� C3(2mK
(|φ|, |ψ |))2/3

Q(φ,ψ)1/3
(

4M

c
K

(|φ|, |ψ |))1/3(1

c
Q(φ,ψ)

)1/6

= C3(16m2M
)1/3

c−1/2K
(|φ|, |ψ |)Q(φ,ψ)1/2. �

Theorem 3.7. Let n � 4 and let λ and μ satisfy (7) with c > 0. If n � 3, then for any (u0, v0) ∈ H 1 × H 1, (5) has a
unique pair of solutions (u, v) ∈ Y(R) × Y(R). If n = 4, then for any (u0, v0) ∈ H 1 × H 1 with

|λ|Q(u0, v0)
1/2 < α0

(5) has a unique pair of solutions (u, v) ∈ Y(R) × Y(R).

Proof. By the standard continuation argument, it suffices to obtain a priori estimates on H 1 norms of u and v. By the
following Gagliardo–Nirenberg inequality∥∥φ;L3

∥∥ � C
∥∥∇φ;L2

∥∥n/6∥∥φ;L2
∥∥1−n/6

,

we estimate the interaction term in the energy as∣∣λ(
u2, v

)∣∣ � |λ|C3
∥∥∇u;L2

∥∥n/3∥∥u;L2
∥∥2−n/3∥∥∇v;L2

∥∥n/6∥∥v;L2
∥∥1−n/6

� |λ|C3(2mK)n/6Q1−n/6
(

4M

c
K

)n/12(1

c
Q

)1/2−n/12

= |λ|C3(16m2M
)n/12

c−1/2K(u,v)n/4Q(u,v)3/2−n/4

= |λ|C3(16m2M
)n/12

c−1/2Q(u0, v0)
3/2−n/4K(u,v)n/4,

where we have used the conservation of charge. If n � 3, then n/4 < 1 and the interaction term is dominated by an
arbitrarily small constant multiple of the kinetic term of the form

εK(u, v) + CεQ(u0, v0)
(6−n)/(4−n),

which implies the required a priori estimate. If n = 4, we estimate∣∣λ(
u2, v

)∣∣ � |λ|P (|u|, |v|) � (|λ|/α0
)
Q(u0, v0)

1/2K(u,v)

by Lemma 3.6 and the required a priori estimate follows if the coefficient to K(u,v) is less than 1. �
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3.5. Galilei invariance of local solutions under mass resonance

Throughout this section we assume that M = 2m and the mass in the second equation is denoted by 2m. For the
free propagator Um(t), we introduce the standard generator of Galilei transformations as

Jm = Jm(t) = Um(t)xUm(−t) = x + i
t

m
∇ = Mm(t)i

t

m
∇Mm(−t),

where Mm(t) = exp(i m
2t

|x|2), t �= 0. Then we have at least formally

Jm(vu) = Mm(t)i
t

m
∇(

M2m(−t)v · Mm(−t)u
)

=
(

M2m(t)i
t

m
∇M2m(−t)v

)
u − v

(
Mm(t)i

t

m
∇Mm(−t)u

)
= 2(J2mv)u − vJmu

and

J2m

(
u2) = M2m(t)i

t

2m
∇(

Mm(−t)u
)2 = uMm(t)i

t

m
∇Mm(−t)u = uJmu.

For any u0, v0 ∈ L2 with Jm(t0)u0, J2m(t0)v0 ∈ L2 we solve (5) in the space Zm(I) × Z2m(I), where

Zm(I) = {
u ∈ X(I); Jmu ∈ X(I)

}
, I = [t0 − T , t0 + T ], T > 0

with norm∥∥u;Zm(I)
∥∥ = ∥∥u;X(I)

∥∥ ∨ ∥∥Jmu;X(I)
∥∥.

Theorem 3.8. Let n � 6 and M = 2m. If n � 5, then for any ρ > 0 there exists T (ρ) > 0 such that for any (u0, v0) ∈
L2 × L2 with (Jm(t0)u0, J2m(t0)v0) ∈ L2 × L2 and∥∥u0;L2

∥∥ ∨ ∥∥Jm(t0)u0;L2
∥∥ ∨ ∥∥v0;L2

∥∥ ∨ ∥∥J2m(t0)v0;L2
∥∥ � ρ

(5) has a unique pair of solutions (u, v) ∈ Zm(I) × Z2m(I) with I = [t0 − T (ρ), t0 + T (ρ)]. If n = 6, then for any
(u0, v0) ∈ L2 with (Jm(t0)u0, J2m(t0)v0) ∈ L2 there exists T (u0, v0) > 0 such that (5) has a unique pair of solutions
(u, v) ∈ Zm(I) × Z2m(I) with I = [t0 − T (u0, v0), t0 + T (u0, v0)].

Remark 3.1. Theorem 3.8 ensures the existence of local solutions of (5) which leave the domain of Galilei generators
invariant. In the case t0 = 0, the theorem is regarded as a smoothing effect of solutions in terms of Galilei generators.

Proof of Theorem 3.8. Let (u, v) ∈ Zm(I) × Z2m(I) for I = [t0 − T , t0 + T ] with some T > 0. We apply Jm(t) and
J2m(t) to Φ(u,v) and Ψ (u,v), respectively and use

Jm(vu) = 2(J2mv)u − vJmu,J2m

(
u2) = uJmu.

Then by a similar argument to that of proof of Theorem 3.1, we prove Theorem 3.8. �
3.6. Galilei invariance of global solutions under mass resonance

As in Section 7, we assume that the mass resonance condition M = 2m. Let n� 6 and let (u, v) ∈ Zm(I)×Z2m(I)

be the unique pair of local solutions given by Theorem 3.8. Then in the same way as in [20], we have

∥∥Jm(t)u(t);L2
∥∥2 = ∥∥Jm(t0)u0;L2

∥∥2 + 2 Im

t∫
t0

(
λJm(s)(vu)(s), Jm(s)u(s)

)
ds,

∥∥J2m(t)v(t);L2
∥∥2 = ∥∥J2m(t0)v0;L2

∥∥2 + 2 Im

t∫
t0

(
μJ2m(s)

(
u2)(s), J2m(s)v(s)

)
ds

for all t ∈ I.
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Theorem 3.9. Let n� 6 and let M = 2m. Let λ and μ satisfy (7). Then the unique pair of solutions (u, v) ∈ Zm(I) ×
Z2m(I) of (5) given by Theorem 3.8 satisfies the following identity for all t ∈ I∥∥Jm(t)u(t);L2

∥∥2 + c
∥∥J2m(t)v(t);L2

∥∥2 + 2

m
t2 Re

(
λ
(
v(t), u2(t)

))

= ∥∥Jm(t0)u0;L2
∥∥2 + c

∥∥J2m(t0)v0;L2
∥∥2 + 2

m
t2
0 Re

(
λ
(
v0, u

2
0

)) + 4 − n

m

t∫
t0

s Re
(
λ
(
v(s), u2(s)

))
ds.

Proof. For simplicity, we give a formal calculation for the proof. Actual proof requires a regularization procedure,
see [2,8]. We compute by the condition (7)

Imλ
(
Jm(vu), Jmu

) + c Imμ
(
J2m

(
u2), J2mv

)
= 2 Imλ(J2mv,uJmu) − Imλ

(
v, (Jmu)2) − c Imμ(J2mv,uJmu)

= Imλ(J2mv,uJmu) − Imλ
(
v, (Jmu)2) = t

2m
I + t2

2m2
II,

where

I = Re
(−2λ(xv,u∇u) + λ

(∇v, xu2) + 4λ(v,ux · ∇u)
)
,

II = Im
(
λ(∇v,u∇u) + 2λ

(
v, (∇u)2)).

Then I is written as

I = Re
(
2λ(xv,u∇u) + λ

(∇v, xu2))
= Re

(
λ
(
xv,∇(

u2)) + λ
(
x · ∇v,u2)) = −nReλ

(
v,u2),

while II is written as

II = Im
(
λ(∇v,u∇u) − 2λ(∇v,u∇u) − 2λ(v,u�u)

)
= 1

2
Imλ

(
�v,u2) + 2 Imλ(�u,uv)

= −2mReλ
(
∂tv, u2) − 4mReλ(∂tu,uv) = −2m

d

dt
Reλ

(
v,u2).

Therefore, we obtain∥∥Jm(t)u(t);L2
∥∥2 + c

∥∥J2m(t)v(t);L2
∥∥2 − ∥∥Jm(t0)u0;L2

∥∥2 − c
∥∥J2m(t0)v0;L2

∥∥2

=
t∫

t0

(
s

m
I + s2

m2
II

)
ds

= 1

m

t∫
t0

(
− d

ds

(
2s2 Reλ

(
v,u2)) + (4 − n)s Reλ

(
v,u2))ds,

which is the required identity. �
We now introduce

Zm(R) = {
u ∈ X(R); Jmu ∈ X(R)

}
.

Theorem 3.10. Let n� 4 and let M = 2m. Let λ and μ satisfy (7) with c > 0. If n� 3, then for any (u0, v0) ∈ L2 ×L2

with (Jm(t0)u0, J2m(t0)v0) ∈ L2 × L2, (5) has a unique pair of solutions (u, v) ∈ Zm(R) × Z2m(R). If n = 4, then for
any (u0, v0) ∈ L2 × L2 with (Jm(t0)u0, J2m(t0)v0) ∈ L2 × L2 and
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|λ|Q(u0, v0)
1/2 < α0

(5) has a unique pair of solutions (u, v) ∈ Zm(R) × Z2m(R).

Proof. By the standard continuation argument, it suffices to obtain a priori estimates on ‖Jmu;L2‖ ∨ ‖J2mv;L2‖. If
we notice that∥∥Jmu;L2

∥∥2 + c
∥∥J2mv;L2

∥∥2 = t2

m2

(∥∥∇M−1
m u;L2

∥∥2 + c

4

∥∥∇M−1
2mv;L2

∥∥2
)

= 2t2

m
K

(
M−1

m u,M−1
2mv

)
,

(
v,u2) = (

M−1
2mv,

(
M−1

m u
)2)

,

then an analogous argument to that of Section 6 implies the theorem. �
3.7. Non-existence of global solutions with negative energy under mass resonance

In this section we assume mass resonance condition M = 2m. Let n � 6 and let (u, v) ∈ (Zm(I) × Z2m(I)) ∩
(Y (I ) × Y(I)) be the unique pair of local solutions given by Theorems 3.2 and 3.8 with data (u0, v0) ∈ H 1 × H 1

at t = t0 satisfying (Jm(t0)u0, J2m(t0)v0) ∈ L2 × L2, where I is the intersection of time intervals in Theorems 3.2
and 3.8. From now on, we take t0 = 0 for simplicity. The corresponding pair of local solutions (u, v) satisfies the
virial identity:

Theorem 3.11. Let n � 6 and let M = 2m. Let λ and μ satisfy (7). Let (u0, v0) ∈ H 1 × H 1 satisfy (xu0, xv0) ∈
L2 × L2 and let (u, v) ∈ (Zm(I) × Z2m(I)) ∩ (Y (I ) × Y(I)) the corresponding pair of local solutions given by
Theorems 3.2 and 3.8 with t0 = 0. Then∥∥xu(t);L2

∥∥2 + c
∥∥xv(t);L2

∥∥2 = ∥∥xu0;L2
∥∥2 + c

∥∥xv0;L2
∥∥2 + P0t + n

2m
E0t

2

+ 4 − n

m

t∫
0

(t − s)

(
1

2m

∥∥∇u(s);L2
∥∥2 + c

8m

∥∥∇v(s);L2
∥∥2

)
ds

for all t ∈ I , where

P0 = 2

m
Im(∇u0, xu0) + c

m
Im(∇v0, xv0),

E0 = 1

2m

∥∥∇u0;L2
∥∥2 + c

8m

∥∥∇v0;L2
∥∥2 + Reλ

(
v0, u

2
0

)
.

Proof. For simplicity, we give a formal calculation for the proof. Actual proof requires a regularization procedure,
see [2,8]. We compute

d

dt

(∥∥xu;L2
∥∥2 + c

∥∥xv;L2
∥∥2) = 2 Im

(
i∂tu, |x|2u) + 2c Im

(
i∂t v, |x|2v)

= 2

m
Im(∇u,xu) + c

m
Im(∇v, xv),

where the last two terms are rewritten as

2

m
Im(∇u,xu) = −1

t

(∥∥Jmu;L2
∥∥2 − ∥∥xu;L2

∥∥2) + t

m2

∥∥∇u;L2
∥∥2

,

c

m
Im(∇v, xv) = −c

t

(∥∥J2mv;L2
∥∥2 − ∥∥xv;L2

∥∥2) + ct

4m2

∥∥∇v;L2
∥∥2

.

Therefore we obtain by a direct calculation

d2

dt2

(∥∥xu;L2
∥∥2 + c

∥∥xv;L2
∥∥2) = n

m
E0 + 4 − n

m

(
1

2m

∥∥∇u;L2
∥∥2 + c

8m

∥∥∇v;L2
∥∥2

)
,

where we have used Theorems 3.5 and 3.9. This proves the theorem. �
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Theorem 3.12. Let 4 � n � 6. Let M,m,λ,μ satisfy M = 2m and (7) with c > 0. Let (u0, v0) and (u, v) be as in
Theorem 3.11. Then the maximal existence time for (u, v) is finite in the following cases:

E0 < 0, (8)

E0 = 0, P0 < 0, (9)

where E0 and P0 are as in Theorem 3.11.

Proof. The theorem follows from the virial identity in Theorem 3.11 in the standard way. �
4. Existence of ground states

In this section we always assume (7) with c > 0. The purpose in this and subsequent sections is to study the
existence of nontrivial standing wave solutions to (1) and related problems. It is therefore natural to exclude the trivial
case (λ,μ) = (0,0). From now on we always assume that λ = cμ with c > 0, λ �= 0, μ �= 0. Then it is convenient to
rescale (u, v) by introducing new functions (ũ, ṽ) defined by

ũ(t, x) =
√

c

2
|μ|u

(
t,

√
1

2m
x

)
, ṽ(t, x) = −λ

2
v

(
t,

√
1

2m
x

)
,

which satisfy{
i∂t ũ + �ũ = −2ṽũ,

i∂t ṽ + κ�ṽ = −ũ2,
(10)

where κ = m/M is the mass ratio. We look for standing waves for (10), which are periodic in time and well localized
in space. Comparing frequencies in monochromatic wave factors on both sides of (10) we expect that (10) has a pair
of solutions of the form{

ũ(t, x) = eiωtφω(x),

ṽ(t, x) = ei2ωtψω(x),
(11)

where ω > 0 and a pair of real-valued functions in R
n satisfy{−�φω + ωφω = 2ψωφω,

−κ�ψω + 2ωψω = φ2
ω.

(12)

We study the existence of solutions to (12) as ground states that minimize the associated functional Iω among all
non-zero solutions of (12) given by

Iω(φ,ψ) = 1

2

(∥∥∇φ;L2
∥∥2 + κ

∥∥∇ψ;L2
∥∥2) + ω

2

(∥∥φ;L2
∥∥2 + 2

∥∥ψ;L2
∥∥2) −

∫
φ2ψ dx.

To be more specific, we introduce:

Definition 4.1. A pair of real-valued functions (φ0,ψ0) ∈ H 1 × H 1 is called a ground state for (12) if

Iω(φ0,ψ0) = inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
,

Cω = {
(φ,ψ) ∈ H 1 × H 1; (φ,ψ) is a nontrivial critical point of Iω

}
.

The set of all ground states for (12) is denoted by Gω .

We also introduce the following functionals associated with (12):

Q(φ,ψ) = ∥∥φ;L2
∥∥2 + 2

∥∥ψ;L2
∥∥2

,

K(φ,ψ) = ∥∥∇φ;L2
∥∥2 + κ

∥∥∇ψ;L2
∥∥2

,

Kω(φ,ψ) = K(φ,ψ) + ωQ(φ,ψ),
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P(φ,ψ) =
∫

φ2ψ dx,

Rω(φ,ψ) = Kω(φ,ψ)/P (φ,ψ)2/3,

J (φ,ψ) = K(φ,ψ)Q(φ,ψ)1/2/P (φ,ψ).

Due to the scale change introduced in this section, the functionals for (12) differ from the corresponding functionals
in Section 6 up to constant factors. It causes no confusions as far as the above functionals are used for (12) and the
corresponding results for (5) are derived by means of the inverse of the scaling.

Definition 4.2. A pair of real-valued functions (φ,ψ) ∈ H 1 × H 1 is called a solution of (12) if∫
∇φ · ∇udx + ω

∫
φudx = 2

∫
φψudx,

κ

∫
∇ψ · ∇v dx + 2ω

∫
ψv dx =

∫
φ2v dx

for any u,v ∈ C∞
0 (Rn).

Remark 4.1. This is the definition of weak solutions in the sense that those functions satisfy (12) in the distribution
sense. By a density argument and the Gagliardo–Nirenberg inequality in Theorem 3.7, it is equivalent to take H 1

as a space of test functions instead of C∞
0 (Rn) if n � 6. Weak solutions (φ,ψ) satisfy I ′

ω(φ,ψ)(u, v) = 0 for any
(u, v) ∈ C∞

0 (Rn). By the standard elliptic regularity theory (see [2] for instance), weak solutions satisfy u,v ∈ Hm

for any m � 1 if ω > 0 and are regarded as strong solutions.

Theorem 4.1. Let (φ,ψ) be a solution of (12). Then

Kω(φ,ψ) = 3P(φ,ψ), (13)

P(φ,ψ) = 2Iω(φ,ψ), (14)

Rω(φ,ψ) = 21/33Iω(φ,ψ)1/3, (15)

K(φ,ψ) = nIω(φ,ψ), (16)

ωQ(φ,ψ) = (6 − n)Iω(φ,ψ). (17)

Proof. By the definition of Iω, we have

1

2
K(φ,ψ) + 1

2
ωQ(φ,ψ) − P(φ,ψ) = Iω(φ,ψ),

from which we obtain

K(φ,ψ) + ωQ(φ,ψ) − 3P(φ,ψ) = 0,

since I ′
ω(φ,ψ)(φ,ψ) = 0. The Pohozaev identity

d

dλ

∣∣∣∣
λ=1

Iω(δλφ, δλψ) = 0

with (δλf )(x) = f (x/λ) implies

n − 2

2
K(φ,ψ) + n

(
1

2
ωQ(φ,ψ) − P(φ,ψ)

)
= 0.

Then the identities of the theorem follow by combining those equalities. �
Corollary 4.2. Eq. (12) has no nontrivial solutions if (n − 6)ω � 0.

Proof. By (16), we have Iω(φ,ψ)� 0. By (17), we have Q(φ,ψ) � 0. �
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Remark 4.2. By (17) and the definition of ground states for (12), the charge Q(φ,ψ) of a ground state is independent
of choice of ground states. In particular, a solution of (12) with minimal charge is a ground state.

Proposition 4.3. Let (φ1,ψ1) be a ground state for (12) with ω = 1. Then (φω,ψω) with ω > 0 defined by(
φω(x),ψω(x)

) = (
ωφ1(

√
ωx),ωψ1(

√
ωx)

)
is a ground state for (12). Moreover,

Q(φω,ψω) = ω2−n/2Q(φ1,ψ1).

Proof. The proposition follows by a straightforward calculation. �
Remark 4.3. The charge of a ground state is independent of ω for n = 4.

We consider the following scaling transformations:

• Scaling of amplitude: (φ,ψ) �→ (aφ, aψ), a > 0.
• Dilation: (φ,ψ) �→ (δlφ, δlψ), (δlf )(x) = f (x/l), l > 0.
• Symmetric-decreasing rearrangement: (φ,ψ) �→ (φ∗,ψ∗).

The functionals introduced in this section satisfy the following properties under scaling transformations. For general
information on the symmetric-decreasing rearrangement, see [16] for instance:

Q(aφ,aψ) = a2Q(φ,ψ),

K(aφ,aψ) = a2K(φ,ψ),

Kω(aφ,aψ) = a2Kω(φ,ψ),

P (aφ,aψ) = a3P(φ,ψ); (18)

Q(δlφ, δlψ) = lnQ(φ,ψ),

K(δlφ, δlψ) = ln−2K(φ,ψ),

P (δlφ, δlψ) = lnP (φ,ψ); (19)

Q
(
φ∗,ψ∗) = Q(φ,ψ),

K
(
φ∗,ψ∗)� K(φ,ψ),

Kω

(
φ∗,ψ∗) �Kω(φ,ψ),

P
(
φ∗,ψ∗) � P(φ,ψ); (20)

Rω(aφ,aψ) = Rω(φ,ψ),

J (aφ, aψ) = J (φ,ψ); (21)

J (δlφ, δlψ) = ln/2−2J (φ,ψ); (22)

Rω

(
φ∗,ψ∗)� Rω(φ,ψ),

J
(
φ∗,ψ∗) � J (φ,ψ). (23)

Below we use the following characterizations of critical points of Rω and J :

• (φ,ψ) is a critical point of Rω:
if and only if (aφ, aψ) is a critical point of Rω for all a > 0,
if and only if (aφ, aψ) is a critical point of Rω for some a > 0.

• When n = 4, (φ,ψ) is a critical point of J :
if and only if (aδlφ, aδlψ) is a critical point of J for all a, l > 0,
if and only if (aδlφ, aδlψ) is a critical point of J for some a, l > 0.
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To prove the existence of ground states for (12), we prepare

Lemma 4.4.

Cω ⊂P where P = {
(φ,ψ) ∈ H 1 × H 1 \ {

(0,0)
}; P(φ,ψ) > 0

}
, (24)

βω ≡ inf
{
Rω(φ,ψ); (φ,ψ) ∈P

}
> 0 for n� 6, (25)

inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
� 1

2

(
1

3
βω

)3

. (26)

Proof. Proof of (24). Let (φ,ψ) ∈ Cω . Then I ′
ω(φ,ψ)(φ,ψ) = 0 is equivalent to Kω(φ,ψ) − 3P(φ,ψ) = 0 and

therefore P(φ,ψ) = (1/3)Kω(φ,ψ) > 0.

Proof of (25). By the following Gagliardo–Nirenberg inequality∥∥φ;L3
∥∥ � C

∥∥∇φ;L2
∥∥n/6∥∥φ;L2

∥∥1−n/6

for n� 6, we have

P(φ,ψ) � C3
∥∥∇φ;L2

∥∥n/3∥∥φ;L2
∥∥2−n/3∥∥∇ψ;L2

∥∥n/6∥∥ψ;L2
∥∥1−n/6

� C3Kω(φ,ψ)n/6(ω−1Kω(φ,ψ)
)1−n/6(

κ−1Kω(φ,ψ)
)n/12(

(2ω)−1Kω(φ,ψ)
)1/2−n/12

= C32n/12−1/2ω−3/2+5n/12κ−n/12Kω(φ,ψ)3/2

and therefore by Rω(φ,ψ) = Kω(φ,ψ)/P (φ,ψ)2/3

βω � C−22−n/18+1/3ω1−5n/18κn/18 > 0.

Proof of (26). Let (φ,ψ) ∈P . The function

(0,∞) � t �→ Iω(tφ, tψ) = 1

2
Kω(φ,ψ)t2 − P(φ,ψ)t3 ∈R

has a critical point

t0 = t0(φ,ψ) ≡ Kω(φ,ψ)

3P(φ,ψ)
> 0

with critical value

Iω(t0φ, t0ψ) = 1

2

(
1

3
Rω(φ,ψ)

)3

at (t0φ, t0ψ) ∈P , which is the only nontrivial critical point of Iω on {(tφ, tψ); t > 0} if it exists. This implies that

inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
� 1

2

(
1

3
inf

{
Rω(φ,ψ); (φ,ψ) ∈P

})3

. �
Remark 4.4. t0(φ,ψ) = 1 if (φ,ψ) ∈ Cω .

Theorem 4.5. Let n� 5 and ω > 0. Then:

(1) There exists a pair of non-negative radially symmetric functions (φ0,ψ0) ∈P such that

Rω(φ0,ψ0) = βω = inf
{
Rω(φ,ψ); (φ,ψ) ∈P

}
.

(2) Let (φ0,ψ0) be as in Part (1). There exists t0 > 0 such that (φ,ψ) ≡ (t0φ, t0ψ) is a positive solution of (12).
Moreover, (φ,ψ) is a ground state for (12).
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(3) The set of minimizers of Rω is characterized as{
(φ,ψ) ∈ H 1 × H 1; Rω(φ,ψ) = βω

} = {
(tφ, tψ) ∈ H 1 × H 1; t > 0, (φ,ψ) ∈ Gω

}
.

Proof. Proof of Theorem 4.5 for 2 � n � 5. Let {(φj ,ψj )} ⊂ P be a minimizing sequence for Rω. By (23) we may
assume that φj ,ψj are non-negative and radially symmetric functions in H 1. We define

φ̃j = (
Kω(φj ,ψj )

)−1/2
φj , ψ̃j = (

Kω(φj ,ψj )
)−1/2

ψj .

Then by (18) and (21),

Kω(φ̃j , ψ̃j ) = 1, Rω(φ̃j , ψ̃j ) = Rω(φj ,ψj ) → βω > 0.

In particular,

P(φ̃j , ψ̃j ) = Rω(φ̃j , ψ̃j )
−3/2 → β−3/2

ω .

Since {(φ̃j , ψ̃j )} is bounded in H 1 × H 1, there exists a subsequence still denoted by {(φ̃j , ψ̃j )} such that

φ̃j → φ0, ψ̃j → ψ0 weakly in H 1

for some (φ0,ψ0) ∈ H 1
r × H 1

r , where H 1
r denotes the space of radially symmetric H 1 functions. By Strauss’ com-

pactness embedding H 1
r ⊂ L3 for 2 � n� 5,

φ̃j → φ0, ψ̃j → ψ0 strongly in L3.

This yields

P(φ0,ψ0) = lim
j→∞P(φ̃j , ψ̃j ) = β−3/2

ω > 0,

while weak convergence of {(φ̃j , ψ̃j )} in H 1 × H 1 yields

Kω(φ0,ψ0)� lim
j→∞Kω(φ̃j , ψ̃j ) = 1.

Therefore

βω � Rω(φ0,ψ0) = Kω(φ0,ψ0)

P (φ0,ψ0)2/3
� βω.

We conclude that (φ0,ψ0) ∈P ∩ (H 1
r × H 1

r ) satisfies

Rω(φ0,ψ0) = βω, Kω(φ0,ψ0) = 1, P (φ0,ψ0) = β−2/3
ω ,

φ̃j → φ0, ψ̃j → ψ0 strongly in H 1.

This proves Part (1). Since (φ0,ψ0) is a minimizer of Rω, it is a critical point. For any (u, v) ∈ H 1 × H 1

d

ds

∣∣∣∣
s=0

Rω(φ0 + su,ψ0 + sv) = 0,

which means that

1

P(φ0,ψ0)2/3
K ′

ω(φ0,ψ0)(u, v) = 2Kω(φ0,ψ0)

3P(φ0,ψ0)5/3
P ′(φ0,ψ0)(u, v).

This yields

K ′
ω(φ0,ψ0)(u, v) = 2Kω(φ0,ψ0)

3P(φ0,ψ0)
P ′(φ0,ψ0)(u, v)

= 2
β2/3

ω P ′(φ0,ψ0)(u, v),

3
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which means that

2
∫ (∇φ0 · ∇u + κ∇ψ0 · ∇v + ω(φ0u + 2ψ0v)

)
dx = 2

3
β2/3

ω

∫ (
2φ0ψ0u + φ2

0v
)
dx.

We now define (φ,ψ) = (t0φ0, t0ψ0) with t0 = β
2/3
ω /3. Then (φ,ψ) is a solution of (12). Since (φ0,ψ0) is a critical

point of Rω, (φ,ψ) is also a critical point of Rω. By (15), (φ,ψ) is a ground state for (12). By the maximum principle,
(φ,ψ) is a positive solution of (12). This proves Part (2). Part (3) follows by the same argument as above. This proves
Theorem 4.5 for 2 � n� 5.

Proof of Theorem 4.5 for n = 1. The argument as above fails for n = 1 due to the breakdown of compactness on the
embedding H 1

r ⊂ L3. Instead, we employ a concentration-compactness argument on the functional

Iω = 1

2
Kω − P,

since Iω satisfies assumptions of the mountain pass theorem in the Hilbert space H 1 × H 1. We define the mountain
pass value b by

b = inf
γ∈Γ

max
t∈[0,1]

Iω

(
γ (t)

)
,

Γ = {
γ ∈ C

([0,1];H 1 × H 1); Iω

(
γ (1)

)
< 0 and γ (0) = 1

}
.

Then, we see that b > 0 and that Iω has a Palais–Smale sequence (PS)b by the Ekeland Principle [6]. Here we give

Definition 4.3. For c ∈ R a sequence {(φj ,ψj )} ⊂ H 1 × H 1 is called a (PS)c-sequence of Iω if

Iω(φj ,ψj ) → c,∥∥I ′
ω(φj ,ψj );H−1 × H−1

∥∥ → 0. �
A basic property of (PS)c sequences of Iω is given by the following lemma.

Lemma 4.6. Let c ∈R and let {(φj ,ψj )} ⊂ H 1 × H 1 be a (PS)c-sequence of Iω. Then

lim
j→∞Kω(φj ,ψj ) = 6c,

lim
j→∞P(φj ,ψj ) = 2c.

In particular, c � 0 and c = 0 if and only if φj → 0,ψj → 0 in H 1.

Proof. We first note that K
1/2
ω is an equivalent norm on H 1 × H 1:(

max(1, κ,2ω)
)−1/2

Kω(φ,ψ)1/2 �
(∥∥φ;H 1

∥∥2 + ∥∥ψ;H 1
∥∥2)1/2 �

(
min(1, κ,ω)

)−1/2
Kω(φ,ψ)1/2.

Let {(φj ,ψj )} be a (PS)c-sequence of Iω. Then

Iω(φj ,ψj ) → c,∣∣Kω(φj ,ψj ) − 3P(φj ,ψj )
∣∣ = ∣∣I ′

ω(φj ,ψj )(φj ,ψj )
∣∣

�
∥∥I ′

ω(φj ,ψj );H−1 × H−1
∥∥∥∥(φj ,ψj );H 1 × H 1

∥∥
� εjKω(φj ,ψj )

1/2,

where

εj ≡ (
min(1, κ,ω)

)−1/2∥∥I ′
ω(φj ,ψj );H−1 × H−1

∥∥.

We write Kω(φj ,ψj ) as
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Kω(φj ,ψj ) = 6
(
Iω(φj ,ψj ) − c

) − 2
(
Kω(φj ,ψj ) − 3P(φj ,ψj )

) + 6c

to estimate∣∣Kω(φj ,ψj )
∣∣ � 6

∣∣Iω(φj ,ψj ) − c
∣∣ + 2εjKω(φj ,ψj )

1/2 + 6|c|,
which leads to∣∣Kω(φj ,ψj )

∣∣ � 12
∣∣Iω(φj ,ψj ) − c

∣∣ + 4ε2
j + 12|c|.

This implies the boundedness of {Kω(φj ,ψj )} in R as well as that of {(φj ,ψj )} in H 1 × H 1. Therefore the lemma
follows from∣∣P(φj ,ψj ) − 2c

∣∣ = ∣∣(3P(φj ,ψj ) − Kω(φj ,ψj )
) + 2

(
Iω(φj ,ψj ) − c

)∣∣
� εjKω(φj ,ψj )

1/2 + 2
∣∣Iω(φj ,ψj ) − c

∣∣,∣∣Kω(φj ,ψj ) − 6c
∣∣ = ∣∣6(

Iω(φj ,ψj ) − c
) − 2

(
Kω(φj ,ψj ) − 3P(φj ,ψj )

)∣∣
� 6

∣∣Iω(φj ,ψj ) − c
∣∣ + 2εjKω(φj ,ψj )

1/2. �
On the basis of the argument given in the proof of Theorem 4.5 for 2 � n� 5, it suffices to prove

b = inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
for n = 1.

Proof of b � inf{Iω(φ,ψ); (φ,ψ) ∈ Cω}. Let (φ,ψ) ∈ P . Then γ(l,φ,ψ) defined by γ(l,φ,ψ)(t) = (t lφ, tlψ) ∈
H 1 × H 1 with t ∈ [0,1] belongs to Γ for l sufficiently large since

Iω

(
γ(l,φ,ψ)(t)

) = 1

2
Kω(φ,ψ)t2l2 − P(φ,ψ)t3l3.

As in the proof of Lemma 4.4, we have

max
t∈[0,1]

Iω

(
γ(l,φ,ψ)(t)

) = 1

2

(
1

3
Rω(φ,ψ)

)3

and therefore

b � inf
{

max
t∈[0,1]

Iω

(
γ(l,φ,ψ)(t)

); (φ,ψ) ∈ Cω

}

= inf

{
1

2

(
1

3
Rω(φ,ψ)

)3

; (φ,ψ) ∈ Cω

}
= inf

{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
,

as required.

Proof of b = inf{Iω(φ,ψ); (φ,ψ) ∈ Cω}. Let {(φj ,ψj )} be a (PS)b-sequence of Iω. The Sobolev embedding ensures
that H 1 ⊂ C∞, where

C∞ =
{
u ∈ C ∩ L∞; lim|x|→∞u(x) = 0

}
.

Therefore for any j � 1 there exists lj ∈ R such that∣∣φj (lj )
∣∣ + ∣∣ψj (lj )

∣∣ = ∥∥(φj ,ψj );L∞ × L∞∥∥,

where∥∥(u, v);L∞ × L∞∥∥ = ∥∥u;L∞∥∥ + ∥∥v;L∞∥∥.

Then (φ̃j , ψ̃j ) defined by
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φ̃j (x) = φj (x + lj ), ψ̃j (x) = ψj(x + lj )

forms a (PS)b-sequence to Iω. For simplicity we drop tilde and write (φj ,ψj ) for (φ̃j , ψ̃j ). In other words, from now
on we take a (PS)b-sequence (φj ,ψj ) of Iω with∣∣φj (0)

∣∣ + ∣∣ψj (0)
∣∣ = ∥∥(φj ,ψj );L∞ × L∞∥∥.

We estimate P(φj ,ψj ) as

P(φj ,ψj ) �
∥∥φj ;L3

∥∥2∥∥ψj ;L3
∥∥

�
∥∥φj ;L2

∥∥4/3∥∥φj ;L∞∥∥2/3∥∥ψj ;L2
∥∥2/3∥∥ψj ;L∞∥∥1/3

� 2−1/3Q(φj ,ψj )
∥∥(φj ,ψj );L∞ × L∞∥∥

� 2−1/3ω−1Kω(φj ,ψj )
(∣∣φj (0)

∣∣ + ∣∣ψj(0)
∣∣).

By Lemma 4.6, we have

2b � 2−1/3ω−1(6b) lim inf
j→∞

(∣∣φj (0)
∣∣ + ∣∣ψj (0)

∣∣),
which is equivalent to

21/3ω/3 � lim inf
j→∞

(∣∣φj (0)
∣∣ + ∣∣ψj (0)

∣∣).
By the boundedness of {(φj ,ψj )} in H 1 × H 1 we choose a subsequence still denoted by {(φj ,ψj )} and (φ0,ψ0) ∈
H 1 × H 1 ⊂ C∞ × C∞ such that

φj → φ0, ψj → ψ0 weakly in H 1.

Then, by Rellich’s compactness theorem we conclude that

φj → φ0, ψj → ψ0 locally uniformly in R.

In particular, (φ0,ψ0) �= (0,0) since∣∣φ0(0)
∣∣ + ∣∣ψ0(0)

∣∣ = lim
j→∞

(∣∣φj (0)
∣∣ + ∣∣ψj (0)

∣∣) � 21/3ω/3 > 0.

We now prove that (φ0,ψ0) is a critical point of Iω, which implies that (φ0,ψ0) ∈ Cω. By density, it is sufficient to
prove that

I ′
ω(φ0,ψ0)(u, v) = 0

for any u,v ∈ C∞
0 (R). By the weak convergence in H 1, we have

K ′
ω(φj ,ψj )(u, v) → K ′

ω(φ0,ψ0)(u, v),

while by the uniform convergence on suppu ∪ suppv, we have

P ′(φj ,ψj )(u, v) → P ′(φ0,ψ0)(u, v).

Therefore we obtain

I ′
ω(φ0,ψ0)(u, v) = lim

j→∞ I ′
ω(φj ,ψj )(u, v) = 0,

as required.
Let (φ̂j , ψ̂j ) = (φj − φ0,ψj − ψ0). We prove that (φ̂j , ψ̂j ) is a (PS)b−Iω(φ0,ψ0)-sequence of Iω. Since

I ′
ω(φ0,ψ0) = 0,

Iω(φ̂j + φ0, ψ̂j + ψ0) = Iω(φj ,ψj ) → b in R,

I ′
ω(φ̂j + φ0, ψ̂j + ψ0) = I ′

ω(φj ,ψj ) → 0 in H−1 × H−1,
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it suffices to prove that

Iω(φ̂j + φ0, ψ̂j + ψ0) − Iω(φ̂j , ψ̂j ) − Iω(φ0,ψ0) → 0 in R,

I ′
ω(φ̂j + φ0, ψ̂j + ψ0) − I ′

ω(φ̂j , ψ̂j ) − I ′
ω(φ0,ψ0) → 0 in H−1 × H−1.

We write

Iω(φ̂j + φ0, ψ̂j + ψ0) − Iω(φ̂j , ψ̂j ) − Iω(φ0,ψ0)

=
∫

∇φ̂j · ∇φ0 + ωφ̂jφ0 + κ∇ψ̂j · ∇ψ0 + 2ωψ̂jψ0 dx − 2
∫

φ̂j φ0ψ̂j dx −
∫

φ2
0ψ̂j dx

−
∫

φ̂2
j ψ0 dx − 2

∫
φ̂j φ0ψ0 dx

to see that the first term on the right hand side of the last equality tends to zero by the weak convergence of φ̂j , ψ̂j

in H 1 and that other terms tend to zero since a sequence {uj } ⊂ H 1 with uj → 0 weakly in H 1 satisfies ujv0 → 0
strongly in L2 for any v0 ∈ H 1. In fact, for any L > 0

∥∥ujv0;L2
∥∥2 �

L∫
−L

u2
j v

2
0 dx + sup

k

∥∥uk;L2
∥∥2 ·

(
sup

|x|�L

∣∣v0(x)
∣∣)2

,

where the first term on the right hand side of the last inequality tends to zero since uj → 0 uniformly on [−L,L] and
the last term tends to zero as L → ∞ since v0 ∈ C∞. In the same way we see that

sup
{∣∣(I ′

ω(φ̂j + φ0, ψ̂j + ψ0) − I ′
ω(φ̂j , ψ̂j ) − I ′

ω(φ0,ψ0)
)
(u, v)

∣∣;∥∥(u, v);H 1 × H 1
∥∥2 � 1

} → 0.

This proves that (φ̂j , ψ̂j ) is a (PS)b−Iω(φ0,ψ0)-sequence of Iω. By Lemma 4.6, b − Iω(φ0,ψ0) � 0. By the first part of
the proof of the required identity on b, we already know that

b � inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

}
� Iω(φ0,ψ0)

since (φ0,ψ0) ∈ Cω. We have therefore proved that

b = inf
{
Iω(φ,ψ); (φ,ψ) ∈ Cω

} = Iω(φ0,ψ0).

This completes the proof of Theorem 4.5 for n = 1.

Remark 4.5. By Lemma 4.6, φ̂j → 0, ψ̂j → 0 strongly in H 1 since b − Iω(φ0,ψ0) = 0. This implies that φj → φ0,
ψj → ψ0 strongly in H 1.

Remark 4.6. We can see for any (φ,ψ) ∈ Gω that φ has a constant sign and ψ is positive in R
n.

5. Best constant in an inequality of Gagliardo–Nirenberg type in four space dimensions

In this section we consider the best constant of the Gagliardo–Nirenberg type inequality in R
4

P(φ,ψ) � CK(φ,ψ)Q(φ,ψ)1/2.

For that purpose we define

α1 = inf
{
J (φ,ψ); (φ,ψ) ∈P

}
,

where

J (φ,ψ) = K(φ,ψ)Q(φ,ψ)1/2/P (φ,ψ),

P = {
(φ,ψ) ∈ (

H 1 × H 1)\{(0,0)
}; P(φ,ψ) > 0

}
as in Section 4. By Lemma 3.6, we already know that α1 > 0.
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Theorem 5.1. Let n = 4. Then:

(1) There exists a pair of non-negative, radially symmetric functions (φ0,ψ0) ∈P such that

J (φ0,ψ0) = α1 = inf
{
J (φ,ψ); (φ,ψ) ∈ P

}
.

(2) Let (φ0,ψ0) be as in Part (1). There exist t0 > 0 and l0 > 0 such that (φ,ψ) = (t0δl0φ0, t0δl0ψ0) is a positive
solution of (12) with ω = 1. Moreover, (φ,ψ) is a ground state for (12) with ω = 1.

(3) The set of minimizers of J is characterized as{
(φ,ψ) ∈ H 1 × H 1; J (φ,ψ) = α1

} = {
(tδlφ, tδlψ) ∈ H 1 × H 1; t, l > 0, (φ,ψ) ∈ G1

}
.

For any (φ,ψ) ∈ G1 the following identity holds

α1 = 2Q(φ,ψ)1/2.

Proof. Let {(φj ,ψj )} ⊂ P be a minimizing sequence for J . By (23) we may assume that φj , ψj are non-negative
and radially symmetric functions in H 1. We define

φ̃j = tj δlj φj , ψ̃j = tj δlj ψj ,

where

tj = Q(φj ,ψj )
1/2/K(φj ,ψj ), lj = K(φj ,ψj )

1/2/Q(φj ,ψj )
1/2,

so that

K(φ̃j , ψ̃j ) = Q(φ̃j , ψ̃j ) = 1

and

1/P (φ̃j , ψ̃j ) = J (φ̃j , ψ̃j ) → α1.

Since {(φ̃j , ψ̃j )} is bounded in H 1 × H 1, there exists a subsequence still denoted by {(φ̃j , ψ̃j )} such that

φ̃j → φ0, ψ̃j → ψ0 weakly in H 1(
R

4)
for some (φ0,ψ0) ∈ H 1

r × H 1
r . By Strauss’ compact embedding H 1

r (R4) ⊂ L3(R4),

φ̃j → φ0, ψ̃j → ψ0 strongly in L3(
R

4).
This yields

P(φ0,ψ0) = lim
j→∞P(φ̃j , ψ̃j ) = 1/α1 > 0,

while weak convergence of {(φ̃j , ψ̃j )} in H 1 × H 1 yields

K(φ0,ψ0) � lim
j→∞K(φ̃j , ψ̃j ) = 1,

Q(φ0,ψ0) � lim
j→∞Q(φ̃j , ψ̃j ) = 1.

Therefore

α1 � J (φ0,ψ0) = K(φ0,ψ0)Q(φ0,ψ0)
1/2

P(φ0,ψ0)
� lim

j→∞J (φ̃j , ψ̃j ) = α1.

We conclude that (φ0,ψ0) ∈P ∩ (H 1
r × H 1

r ) satisfies

J (φ0,ψ0) = α1, K(φ0,ψ0) = Q(φ0,ψ0) = 1, P (φ0,ψ0) = 1/α1,

φ̃j → φ0, ψ̃j → ψ0 strongly in H 1(
R

4).
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Since (φ0,ψ0) is a minimizer of J , it is a critical point. For any (u, v) ∈ H 1 × H 1

d

ds

∣∣∣∣
s=0

J (φ0 + su,ψ0 + sv) = 0,

which means that

Q(φ0,ψ0)
1/2

P(φ0,ψ0)

(
K ′(φ0,ψ0)(u, v) + K(φ0,ψ0)

2Q(φ0,ψ0)
Q′(φ0,ψ0)(u, v)

)

= K(φ0,ψ0)Q(φ0,ψ0)
1/2

P(φ0,ψ0)2
P ′(φ0,ψ0)(u, v).

This yields

K ′(φ0,ψ0)(u, v) + 1

2
Q′(φ0,ψ0)(u, v) = α1P

′(φ0,ψ0)(u, v),

which means that

2
∫

(∇φ0 · ∇u + κ∇ψ0 · ∇v)dx +
∫

(φ0u + 2ψ0v)dx = α1

∫ (
2φ0ψ0u + φ2

0v
)
dx.

We now define (φ,ψ) = (α1δ1/
√

2φ0, α1δ1/
√

2ψ0). Then (φ,ψ) is a solution of (12) with ω = 1. Since (φ0,ψ0) is a
critical point of J , (φ,ψ) is also a critical point of J. By Theorem 4.1, we obtain

K(φ,ψ) = 2P(φ,ψ)

and therefore

J (φ,ψ) = 2Q(φ,ψ)1/2.

By the maximum principle, (φ,ψ) is a positive solution of (12) with ω = 1. It follows from Theorem 4.1 that any
nontrivial solution (u, v) of (12) with ω = 1 satisfies

J (u, v) = 23/2I1(u, v)1/2.

This implies that any nontrivial solution (u, v) of (12) with ω = 1 that is a minimizer of J is a ground state of (12)
with ω = 1. By a similar argument to that of the proof of Theorem 4.5, all the statements of Theorem 5.1 follow. �
6. Global existence and blow-up in four space dimensions

In this section we study the global existence of H 1-solutions and blow-up solutions in four space dimensions on
the basis of results in Sections 4 and 5. As in Section 4, we consider the rescaled equations of the form{

i∂tu + �u = −2vu,

i∂tv + κ�v = −u2,
(27)

where u and v are complex-valued functions of (t, x) ∈ R × R
4. We have assumed that λ = cμ with c > 0, λ �= 0,

μ �= 0 in (1) and κ = m/M . As regards the global existence of H 1-solutions of (27), Theorem 3.7 is reformulated as:

Theorem 6.1. For any (u0, v0) ∈ H 1(R4) × H 1(R4) with

Q(u0, v0) < Q(φ0,ψ0),

where (φ0,ψ0) ∈ P is a ground state for (12) with ω = 1, the system of Eqs. (27) has a unique pair of solutions
(u, v) ∈ Y(R) × Y(R) with (u(0), v(0)) = (u0, v0).

Proof. The theorem follows by the same argument as in the proof of Theorem 3.7 under the condition

2α−1Q(u0, v0)
1/2 < 1,
1
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which is equivalent to

Q(u0, v0) < α2
1/4 = Q(φ0,ψ0). �

We now write down explicit blow-up solutions by means of the pseudo-conformal transformations. For

A =
[

a b

c d

]
∈ SL2(R),

we define CA(u, v) = (C1
Au,C2

Av) by

(
C1

Au
)
(t, x) = 1

(a + bt)2
exp

(
ib|x|2

4(a + bt)

)
u

(
c + dt

a + bt
,

x

a + bt

)
,

(
C2

Av
)
(t, x) = 1

(a + bt)2
exp

(
ib|x|2

4κ(a + bt)

)
v

(
c + dt

a + bt
,

x

a + bt

)
.

Then by a direct calculation we find:

Proposition 6.2. Let n = 4 and let κ = 1/2. Then the following statements are equivalent:

(i) (u, v) is a solution of (27).
(ii) CA(u, v) is a solution of (27) for some A ∈ SL2(R).

(iii) CA(u, v) is a solution of (27) for all A ∈ SL2(R).

Remark 6.1. The condition κ = 1/2 is exactly the mass resonance condition M = 2m.

It is also standard to verify the following theorem by a straightforward calculation.

Theorem 6.3. Let n = 4 and let κ = 1/2. Let (φ0,ψ0) be a ground state for (12) with ω = 1 given by Theorem 5.1.
For T > 0, let

u(t, x) = 1

(T − t)2
exp

(
−i

|x|2
4(T − t)

+ i
t

T (T − t)

)
φ0

(
x

T − t

)
,

v(t, x) = 1

(T − t)2
exp

(
−i

|x|2
2(T − t)

+ i
2t

T (T − t)

)
ψ0

(
x

T − t

)
,

which are written as (u, v) = CA(eitφ0, e
2itψ0), where

A =
[

T −1
0 1/T

]
.

Then (u, v) is a solution of (27) such that:

(i) u,v ∈ C∞((−∞, T );H∞(R4)), where H∞ = ⋂
m�1 Hm.

(ii) (u(0), v(0)) = ( 1
T 2 exp(−i

|x|2
4T

)φ0(
x
T

), 1
T 2 exp(−i

|x|2
2T

)ψ0(
x
T

)).

(iii) Q(u(0), v(0)) = Q(φ0,ψ0) = α2
1/4.

(iv) K(u(t), v(t)) = O((T − t)−2) as t ↑ T .

(v) ReP(u(t), v(t)) = Re
∫

u(t, x)2v(t, x) dx = O((T − t)−2) as t ↑ T .

(vi) |u(t)|2 + 2|v(t)|2 → Q(φ0,ψ0)δ weakly star in D′(R4) as t ↑ T , where δ is the Dirac delta at the origin.

Remark 6.2. The condition of Q(u(0), v(0)) in Theorem 6.1 is sharp for the global existence.
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7. Remarks on the ground states in semitrivial case

If m and M satisfy the inverse condition of mass resonance:

m = 2M,

or equivalently κ = 2, then (12) is written as{−�φω + ωφω = 2ψωφω,

−2�ψω + 2ωψω = φ2
ω,

(28)

where the linear part of the equations is governed by a single operator −�+ω. In this case (28) is essentially reduced
to the single equation

−�φω + ωφω = φ2
ω (29)

by setting ψω = φω/2. In fact, we have

Theorem 7.1. Let 1 � n � 5 and let κ = 2. Then ground states for (28) are unique up to translations. The unique
ground state is given by (ϕ,ϕ/2), where ϕ is a ground state of (29).

Proof. It is well known that ϕ is characterized as a minimizer of the functional

Rω(φ) = (∥∥∇φ;L2
∥∥2 + ω

∥∥φ;L2
∥∥2)

/
∥∥φ;L3

∥∥2

and is unique up to translations. We now recall that

Rω(φ,ψ) = ‖∇φ;L2‖2 + 2‖∇ψ;L2‖2 + ω(‖φ;L2‖2 + 2‖ψ;L2‖2)

(
∫

φ2ψ dx)2/3
.

This implies

Rω

(
φ,

1

2
φ

)
= 3

21/3

‖∇φ;L2‖2 + ω‖φ;L2‖2

‖φ;L3‖2
= 3

21/3
Rω(φ)

which in turn implies

βω ≡ inf
{
Rω(φ,ψ); (φ,ψ) ∈P

}
� 3

21/3
inf

{
Rω(φ); φ ∈ H 1\{0}}.

We apply the Young inequality

ab � 2

3
a3/2 + 1

3
b3

for a, b � 0 and the Hölder inequality respectively in the numerator and denominator of Rω(φ,ψ) to obtain

Rω(φ,ψ)� 3

21/3

(‖∇φ;L2‖2 + ω‖φ;L2‖2

‖φ;L3‖2

)2/3(‖∇ψ;L2‖2 + ω‖ψ;L2‖2

‖ψ;L3‖2

)1/3

� 3

21/3
inf

{
Rω(φ); φ ∈ H 1\{0}}.

Combining those inequalities, we obtain

βω = 3

21/3
inf

{
Rω(φ); φ ∈ H 1\{0}}.

By Theorem 4.5, βω has a minimizer (φ0,ψ0) ∈ P , which realizes the Young and Hölder inequalities as equalities.
Therefore φ0 = 2ψ0 and (φ0,ψ0) = c(ϕ,ϕ/2) for some c ∈R\{0}. This proves the theorem. �

All those results above fail for n = 6 as far as ω > 0 by Theorem 4.1. The only case that we could expect nontrivial
results is restricted to the case where ω = 0. Here we do not assume m = 2M . In this case (12) with ω = 0 is written
as



N. Hayashi et al. / Ann. I. H. Poincaré – AN 30 (2013) 661–690 685
{−�φ = 2ψφ,

−κ�ψ = φ2.
(30)

By changing φ by
√

κ/2φ, (30) is rewritten as{−�φ = 2ψφ,

−2�ψ = φ2,
(31)

which is understood to be a substitute of (28) with ω = 0 for n = 6. New system (31) is essentially reduced to the
single equation

−�φ = φ2, (32)

by setting ψ = φ/2, which is understood to be a substitute (29) with ω = 0 for n = 6. In fact, we have

Theorem 7.2. Let n = 6. Then ground states for (31) are unique up to translations and dilations. The unique ground
state is given by (ϕ,ϕ/2), where ϕ is a ground state of (32) in the space

Ḣ 1 ∩ L3 = {
u ∈ L3(

R
6); ∇u ∈ L2(

R
6)}.

Proof. It suffices to consider the problem in the space(
Ḣ 1 ∩ L3)

r

(
R

6) = {
u ∈ Ḣ 1 ∩ L3; u(x) = ũ

(|x|)},
where ũ is a radial function associated with radially symmetric function u ∈ Ḣ 1 ∩ L3. For u ∈ (Ḣ 1 ∩ L3)r (R

6) we
define T u by

(T u)(t) = e2t ũ
(
et

)
, t ∈R.

Then we obtain

(T �u)(t) = e2t
[
ũ′′(et

) + 5e−t ũ′(et
)]

,

(T u)′′(t) = 4(T u)(t) + e2t (T �u)(t).

This implies that all solutions (φ,ψ) of (31) in (Ḣ 1 ∩ L3)r satisfy

(T φ)′′(t) = 4(T φ)(t) + e2t
(
T (−2ψφ)

)
(t)

= 4(T φ)(t) − 2(T ψ)(t)(T φ)(t),

2(T ψ)′′(t) = 8(T ψ)(t) + e2t
(
T

(−φ2))(t)
= 8(T ψ)(t) − (

(T φ)(t)
)2

.

Namely,{−T φ′′ + 4T φ = 2T ψ · T φ,

−2T ψ ′′ + 8T ψ = (T φ)2,
(33)

which is regarded as (28) with ω = 4 for n = 1. Therefore, the theorem follows if we can show that the map
T : (Ḣ 1 ∩ L3)r (R

6) → H 1(R) gives a one-to-one correspondence between ground states of (31) and those of (33)
which follows in general dimensions n� 2 as

T : (Ḣ 1 ∩ L2n/(n−2)
)
r

(
R

n
) → H 1(R),

(T u)(t) = e
n−2

2 t ũ
(
et

)
,

∥∥∇u;L2(
R

n
)∥∥2 = σn−1

(∥∥(T u)′;L2(R)
∥∥2 +

(
n − 2

2

)2∥∥T u;L2(R)
∥∥2

)
,

where σn−1 is the surface area of the unit sphere in R
n. �
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8. Remarks on one-dimensional problem as a Lagrangian system

In this section we study (12) in one space dimension of the form{−u′′ + ωu = 2vu,

−κv′′ + 2ωv = u2
(34)

and regard (34) as a Lagrangian system by taking x as the time variable. We already know the existence of ground
states (u, v) for (34). Moreover, u and v are positive and even functions in H 2. Particularly, (u′(0), v′(0)) = (0,0)

and (
u(x), v(x)

)
,
(
u′(x), v′(x)

) → (0,0) as x → ±∞.

Moreover, (34) has the following conserved quantity

1

2

((
u′)2 + κ

(
v′)2) − ω

2

(
u2 + 2v2) + u2v

with respect to x, which is identically zero since it vanishes at infinity. Since (u′(0), v′(0)) = (0,0) we have

−ω

2

(
u2(0) + 2v2(0)

) + u2(0)v(0) = 0.

We prove that

−ω

2

(
u2(x) + 2v2(x)

) + u2(x)v(x) < 0

for all x �= 0, or equivalently, (u(x), v(x)) ∈ Ωω for all x �= 0, where

Ωω =
{
(s, t) ∈R

2; s, t > 0, −ω

2

(
s2 + 2t2) + s2t < 0

}
.

We also set

Γ ±
ω =

{
(s, t) ∈ R

2; ±s > 0, t > 0, −ω

2

(
s2 + 2t2) + s2t = 0

}

=
{
(s, t) ∈ R

2; t >
ω

2
, s = ±

√
2ω

2t − ω
t

}
.

If there exists x0 > 0 such that (u(x0), v(x0)) ∈ Γ +
ω , then (u′(x0), v

′(x0)) = (0,0) and

u′′(x0) = ωu(x0) − 2v(x0)u(x0) < 0,

since ωs − 2st = (ω − 2t)s < 0 for any (s, t) ∈ Γ +
ω . Two pairs of functions (u±, v±) defined by

u±(x) = u(±x + x0), v±(x) = v(±x + x0)

satisfy (34) and(
u±(0), v±(0)

) = (
u(x0), v(x0)

)
and

(
u′±(0), v′±(0)

) = (0,0).

By the uniqueness of solutions to the Cauchy problem of (34) with data at x = 0, we have u+ = u− = u, v+ = v− = v.

Therefore we conclude that (u, v) is a non-constant periodic solution of (34) connecting (0,0) and (u(x0), v(x0)),
which contradicts that (u(x), v(x)) → (0,0) as x → ±∞. We have proved that (u, v) ∈ Λω, where

Λω = {
(u, v) ∈ H 1

r × H 1
r ; (

u(0), v(0)
) ∈ Γ +

ω ,
(
u(x), v(x)

) ∈ Ωω for all x �= 0
}
.

We set

γω = inf
{
Iω(u, v); (u, v) ∈ Λω

}
.

Moreover we have
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Theorem 8.1. Let n = 1 and let κ,ω > 0. Then

Gω = {
(u, v) ∈ Λω; Iω(u, v) = γω

} ∪ {
(u, v); (−u,v) ∈ Λω, Iω(u, v) = γω

}
.

To show the above result, it suffices to show

γω = inf
{
Iω(u, v); (u, v) ∈ Cω

}
. (35)

By the above argument, we have γω � inf{Iω(u, v); (u, v) ∈ Cω}. To show the reverse inequality, we will show that
γω is attained by a solution of (34).

Before giving a proof of the existence of the minimizer, we remark that Iω(u, v) = ∫
( 1

2 ((u′)2 + κ(v′)2) −
V (u, v)) dx, V (x, t) = −ω

2 (s2 + 2t2) + s2t and the integrand is always non-negative for (u, v) ∈ Λω. Moreover
we have

Remark 8.1. For P ∈ Γ +
ω , we consider the following minimizing problem

γω,P = inf
{
Iω(u, v); (u, v) ∈ Λω,P

}
,

where

Λω,P = {
(u, v) ∈ H 1

r × H 1
r ; (

u(0), v(0)
) = P,

(
u(x), v(x)

) ∈ Ωω for all x �= 0
}
.

Then γω,P does not depend on P ∈ Γ +
ω . In fact, suppose P0,P1 ∈ Γ +

ω and let (u, v) ∈ Λω,P1 . For a curve (c1, c2) ∈
C1([0,1],Γ +

ω ) joining P0 and P1 and for n ∈ N, we set (ũn, ṽn) by

(
ũn(x), ṽn(x)

) =
{

(c1(|x|/n), c2(|x|/n)) for |x| ∈ [0, n],
(u(|x| − n), v(|x| − n)) for |x| ∈ (n,∞).

Then we have

Iω(ũn, ṽn) = 1

n

1∫
0

((
c′

1

)2 + κ
(
c′

2

)2)
dx + Iω(u, v) → Iω(u, v) as n → ∞.

Perturbing (ũn, ṽn), we find a (un, vn) such that (un(x), vn(x)) ∈ Ωω for all x �= 0, i.e., (un, vn) ∈ Λω,P0 , and
Iω(un, vn) → Iω(u, v) as n → ∞. Thus we have γω,P0 � I (u, v). Since (u, v) ∈ Λγ,P1 is arbitrary, we have
γω,P0 � γω,P1 . Replacing P0 and P1, we deduce that γω,P0 = γω,P1 . Thus, γω,P does not depend on P ∈ Γ +

ω .
In particular, we have γω = γω,P for all P ∈ Γ +

ω . We also note that Γ +
ω is unbounded and γω has an un-

bounded minimizing sequence. Indeed, for any sequence Pn ∈ Γ +
ω , we can find a sequence (un, vn) ∈ Λω such that

(un(0), vn(0)) = Pn and Iω(un, vn) → γω. Thus minimizing sequences for γω do not have convergent subsequence in
general.

To show the existence of a minimizer of γω, we use an idea from Rabinowitz and Tanaka [21]. We set

Ω̃ω =
{
(s, t) ∈ R

2; −ω

2

(
s2 + 2t2) + s2t < 0

}
.

We easily see that ∂Ω̃ω = {(0,0)} ∪ Γ +
ω ∪ Γ −

ω . We introduce the following auxiliary problem for λ ∈ [0,1]:

Vλ(s, t) = −ω + λ

2

(
s2 + 2t2) + s2t,

Jλ(u, v) =
∞∫

−∞

(
1

2

((
u′)2 + κ

(
v′)2) − Vλ(u, v)

)
dx,

cλ = inf
(u,v)∈Λ̃ω

Jλ(u, v),

where

Λ̃ω = {
(u, v) ∈ H 1

r × H 1
r ; (

u(0), v(0)
) ∈ Γ +

ω ∪ Γ −
ω and

(
u(x), v(x)

) ∈ Ω̃ω for all x > 0
}
.
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First we remark

Lemma 8.2. For λ ∈ [0,1], we have:

(i) cλ = inf(u,v)∈Λω Jλ(u, v). In particular, c0 = γω.
(ii) If cλ is attained in Λ̃ω, then there exists a minimizer (u, v) in Λω. Moreover it satisfies the following properties

in (0,∞)

−u′′ + (ω + λ)u = 2uv, (36)

−κv′′ + 2(ω + λ)v = u2, (37)
1

2

((
u′)2 + κ

(
v′)2) − ω + λ

2

(
u2 + 2v2) + u2v ≡ 0, (38)

u(x), v(x) > 0. (39)

(iii) When λ = 0, if c0 is attained, then there exists a minimizer (u, v) ∈ Λω and it satisfies (36)–(39) in R. That is,
(u, v) ∈ Cω .

Proof. (i) Since Λω ⊂ Λ̃ω, we have cλ � inf(u,v)∈Λω Jλ(u, v). On the other hand, for any (u, v) ∈ Λ̃ω, we have
(|u|, |v|) ∈ Λω and Jλ(|u|, |v|) � Jλ(u, v). Thus we have (i).

(ii) Let (u, v) ∈ Λ̃ω be a minimizer of Jλ in Λ̃ω. Since (|u|, |v|) is also a minimizer, we may assume u(x), v(x) � 0
for all x ∈ (0,∞). Next we show (u(x), v(x)) /∈ Γ +

ω for all x ∈ (0,∞). Indeed, if (u(x0), v(x0)) ∈ Γ +
ω for some

x0 ∈ (0,∞). Then (ũ, ṽ) ∈ Λ̃ω defined by (ũ(x), ṽ(x)) = (u(|x| + x0), v(|x| + x0)) satisfies Jλ(ũ, ṽ) < Jλ(u, v),
which is in a contradiction to the minimality of (u, v). Thus, (u(x), v(x)) ∈ Ω̃ω for all x ∈ (0,∞) and it implies
that J ′

λ(u, v)(h1, h2) = 0 for all (h1, h2) ∈ C∞
0 (R). Thus (u, v) satisfies (36)–(37). Since (u(x), v(x)) → (0,0) as

x → ∞, we also have (38). (39) can be deduced from the fact that u, v � 0 and (36)–(37). In particular, we have
(u, v) ∈ Λω.

(iii) When λ = 0, (u(0), v(0)) ∈ Γ +
ω implies (u′(0), v′(0)) = (0,0), from which we deduce that (u, v) satisfies

(36)–(39) in R. �
We also have

Corollary 8.3.

(i) γω � cλ � c1 for all λ ∈ (0,1].
(ii) limλ→0 cλ = γω.

Next we show that cλ is attained for λ ∈ (0,1].

Lemma 8.4. For λ ∈ (0,1], there exists (uλ, vλ) ∈ Λω such that Jλ(uλ, vλ) = cλ. Moreover (uλ, vλ) satisfies (36)–(39).

Proof. For λ ∈ (0,1], we have −Vλ(s, t) � λ
2 (s2 + 2t2) in Ω̃ω. Thus we have for (u, v) ∈ Λ̃ω

Jλ(uλ, vλ) �
1

2

(∥∥u′;L2
∥∥2 + κ

∥∥v′;L2
∥∥2) + λ

2

(∥∥u;L2
∥∥2 + 2

∥∥v;L2
∥∥2)

. (40)

Let {(un, vn)} be a minimizing sequence for cλ. It follows from (40) that {(un, vn)} is bounded in H 1 ×H 1. Extracting
a subsequence if necessary, we may assume that (un, vn) → (uλ, vλ) ∈ Λ̃ω weakly in H 1 × H 1. By Fatou lemma,
we conclude that Jλ(uλ, vλ) � lim infn→∞ Jλ(un, vn) = cλ. Thus (uλ, vλ) is a minimizer of Jλ. Applying (ii) of
Lemma 8.2, we have Lemma 8.4. �

Next we show that the existence of a uniform H 1 × H 1-bound for (uλ, vλ).

Lemma 8.5. Let (uλ, vλ) ∈ Λω be the minimizer given in Lemma 8.2. Then ‖(uλ, vλ);H 1 ×H 1‖ is bounded as λ → 0.
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Proof. Since (uλ, vλ) solves (36)–(37) in (0,∞), by integration by parts we have
∞∫

0

((
u′

λ

)2 + κ
(
v′
λ

)2 + (ω + λ)
(
u2

λ + 2v2
λ

) − 3u2
λvλ

)
dx = −uλ(0)u′

λ(0) − κvλ(0)v′
λ(0).

On the other hand, by (38) and (uλ(0), vλ(0)) ∈ Γ +
ω

1

2

((
u′

λ(0)
)2 + κ

(
v′
λ(0)

)2) = ω + λ

2

(
uλ(0)2 + 2vλ(0)2) − uλ(0)2vλ(0)

= λ

2

(
uλ(0)2 + 2vλ(0)2).

Thus, for some C > 0 independent of λ, we have∣∣∣∣∣
∞∫

0

((
u′

λ

)2 + κ
(
v′
λ

)2 + (ω + λ)
(
u2

λ + 2v2
λ

) − 3u2
λvλ

)
dx

∣∣∣∣∣� C
√

λ
(
uλ(0)2 + vλ(0)2). (41)

Since Jλ(uλ, vλ) = cλ � c1, we have
∞∫

0

(
1

2

((
u′

λ

)2 + κ
(
v′
λ

)2) + ω + λ

2

(
u2

λ + 2v2
λ

) − u2
λvλ

)
dx � c1

2
.

Thus, by (41),

1

6

∞∫
0

((
u′

λ

)2 + κ
(
v′
λ

)2 + ω
(
u2

λ + 2v2
λ

))
dx � c1

2
+ C

√
λ

3

(
uλ(0)2 + vλ(0)2). (42)

Since H 1(0,∞) ⊂ C([0,∞)), there exists C′ > 0 independent of λ

uλ(0)2 + vλ(0)2 � C′
∞∫

0

((
u′

λ

)2 + κ
(
v′
λ

)2 + ω
(
u2

λ + 2v2
λ

))
dx.

Together with (42), we see that (uλ, vλ) stays bounded in H 1 × H 1 as λ → 0. �
Extracting a subsequence – still denoted by λ – if necessary, we may assume (uλ, vλ) → (u0, v0) weakly in

H 1(0,∞) × H 1(0,∞). We can see that(
u0(x), v0(x)

) ∈ Ω̃ω ∩ [0,∞)2 for all x � 0,(
u0(0), v0(0)

) ∈ Γ +
ω .

We have

Lemma 8.6.

(i) J0(u0, v0) = γω.
(ii) (u0, v0) ∈ Λω and (u0, v0) satisfies (36)–(39) in R with λ = 0, that is, (u0, v0) ∈ Cω .

Proof. (i) We have

γω � J0(uλ, vλ) � Jλ(uλ, vλ) = cλ.

By Fatou’s lemma and Corollary 8.3, we have J0(u0, v0) � γω. Since (u0, v0) ∈ Λ̃ω, we see that J0(u0, v0) = γω and
(u0, v0) is a minimizer. (ii) follows from Lemma 8.2. �
End of the proof of Theorem 8.1. By Lemma 8.6, we have γω is attained and (35) holds.
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