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Abstract

We consider the hyperbolic—elliptic version of the Davey—Stewartson system with cubic nonlinearity posed on the two-
dimensional torus. A natural setting for studying blow-up solutions for this equation takes place in H®, 1/2 < s < 1. In this
paper, we prove a lower bound on the blow-up rate for these regularities.
© 2013 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

1. Introduction

We consider the Davey—Stewartson system defined on the two-dimensional torus 72 := R? /277>

i — 3Fu + Oju = —|ul*u + 2ud; ¢, 0
(92 +02)¢p = B Ju?,

where u : R x T?> — C and ¢ : R x T? — R are the unknowns. Rearranging the second equation, we may see this
system as a dispersive equation with a hyperbolic linear part and a nonlocal nonlinearity:

idu+ Pu=—ulPu— E(lul*)u, (t,x)eRxT?, )

where P = —32 + 8_5 and E is the nonlocal operator such that:

—_= 2m2 -~ 2
E(f)(m,n) = mf(m,n), (m,n) € Z*\ {(0,0)},

E(£)(0,0) =0.

The Cauchy problem and the blow-up theory for this equation have been studied essentially in the case where the
system is posed in R?. In this case, the system is locally well posed in the Sobolev spaces L2, H! (see [5]) and more
easily for higher regularities H*, s > 1. In [14], T. Ozawa proved that the equation posed on R? enjoys a pseudo-
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conformal type symmetry and as for NLS, this allows to construct a blow-up solution by applying this transformation
to an explicit stationary (periodic in time for NLS) solution:

1
LX,y)="—"—F5>.
SRRl g
This function is then transformed into
1 ib 2 9 ) 1
v(t, x,y) = ex —x“+ — 3)
M p<4(a+bt)( ) 1+ (G357 + ()?
with (a, b) € R2. Note that v(¢) is in H*(R?) (see [14]) for every s < 1 with ||v(¢)|| .2 = /7 but is not in HY(R?).
The solution v blows up at time 7 = —a/b in L? in the sense that the L? blow-up criteria (the L?o t]L4 norm goes to
infinity when ¢ goes to T') is satisfied:

C
vl 4o, L4 ®2) ~ m — 00 astgoestoT,

and accumulates all the mass in the origin:

lo@)|* = w800y ast— T inD'(R?).
The explosion also occurs in H*, s < 1 with the pseudo-conformal bound [14]:

O prp——
U()Hs m

Note that in R?, we have a scaling symmetry; if u solves (2) then for all A > 0, (¢, x, y) — Au(t, A2t Ax, Ay) also
solves (2). It is a classical fact that this symmetry automatically implies a lower bound on the blow-up rate: for all
blow-up solution # with maximal time 7 (1) < oo, we have

C

(T () —1)/% @

[u®] s =

By analogy with NLS in R?, we may ask the question of existence of ground states of the type u(z, x,y) =
exp(iot)Q(x, y) for (1) posed on R? with an exponentially decaying profile Q but the hyperbolicity of the operator
—83 + 8}2, forbids the existence of such solutions at least in the case where the nonlinearity is —|u|?u [6]. Moreover,
numerics [11] seems to show that the L2-norm of the solution « (or v) is the minimal mass for which we may have
singularities in finite time. Thus, the function u plays the role of a ground state but is only polynomially decaying and
this requires to work with low regularities H*, s < 1.

The aim of this paper is twofold: first give an H® framework for studying blow-up theory for (2) i.e. show the local
well-posedness of (2) for initial datain H*(T?), s < 1 and secondly show that the lower bound on the blow-up rate (4)
still holds even if a scaling symmetry does not strictly make sense on the torus. The proof relies on local existence
arguments on the dilated torus R? /27 LZ?, L — oo and more precisely on bilinear Strichartz estimates. The classical
method [2] giving well-posedness from bilinear Strichartz estimates does not work in our setting because of the
nonlocal term; we will have to refine the bilinear approach with more general localizations. An interesting question,
not solved here, is the localization of the solution v (3) i.e. construct from v a solution of (2). The nonexponential
decay of v is reflected in the estimate

1o O s e<ciegny S CT =017,

which make perturbation arguments around v difficult to apply even on a compact domain. In particular, for s > 1,
blow-up is not localized and this explains our choice to treat low regularities.

Remark 1. The system we study is called the hyperbolic—elliptic version of the generalized Davey—Stewartson system:
i0pu +e107u + 0ju = —|u*u + 2ud. ¢,

(5)
(£207 +97)¢p = O lul?,
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where ¢; € {—1, 4+1}. Depending on the values of ¢;, the local well-posedness holds [5,1,13,10,4] but blow-up theory
is really well understood only in the elliptic—elliptic case €] = e = 1 [12,17,15] where results are similar to those for
NLS.

2. Statement of the result and remarks
Let us now give our result.
Theorem 1. Let s > 1/2.

1) Eq. (2) is locally well posed in the space H*(T?) in the following sense. There exists b > 1/2 such that the fol-
lowing holds true: for all ug € H*(T?), there exist a time T > 0 and a unique u € XST’b(TZ) c C([0,T], H(T?)
satisfying u(0) = ug and (2). Here, X ST’b denotes the Bourgain space associated to (2) and defined in (17).

2) Let ug € H*(T?) and u be the corresponding solution. If T (o) denotes the maximal time of existence of u, then

we have the following possibilities: either T (ug) = +00 or T (ug) < 400 and in this case, there exists C > 0 such
that for all t € [0, T (up)):

Cc
> -
”u(t) ” H‘Y(TZ) = (T(M()) — t)s/2 . (6)
Before giving the proof of Theorem 1, let us give some comments. Consider the equation
idu+ Pu=—ul>u, t>0, (x,y)eT>. (7

Strichartz type estimates hold for the operator P (see [8,16]) and this with an analysis similar to [2] gives the local
well-posedness of (7) in H*(T?) for all s > 1/2. Following [8], it is easy to check that the function defined by

u(t,x,y) = e”'“"(”y)‘zuo(x +y) (8)

is a solution of (7) for all ug € C*°(R/27x7Z, R). If u is not a constant function and if s > 0, we can check that there
exists C > 0 such that for r > 1,

lu@)| s = Cr. (€

Thus, for s > 1/2, we obtain an explicit solution which blows up in infinite time; this contrasts with the usual
Schrodinger equation. Using a suitable rescaling of the explicit solution (8), one may also show the local ill-posedness
of (7) in H®, s < 1/2 (see the appendix of [3] for a similar discussion). It would be interesting to know if we may
construct solutions behaving like (8) for Eq. (2).

3. Proof of the result

Strategy of the proof. To prove Theorem 1, the idea is to rescale the torus 72 = R? /27 Z? by considering 77 =
R? /27 LZ? where L > 0 will tend to infinity. In a first step, we perform a Banach fixed point argument in the dilated
Bourgain space X %f’L to obtain a local well-posedness result in H ‘(TLZ) with the bound on the blow-up time:

T (uo) > F(|Iu0||H‘(TL2))’ (10)

for some function F' independent of L. This relies on a uniform bilinear Strichartz estimate. In our analysis, it is
of importance that dispersive estimates are local in space and time. In particular, if we take L = 1, this step will
give the first point of Theorem 1. In the step 2, we deduce the blow-up lower bound from a scaling argument. The
bound (6) which is the same as R? is in accordance with the fact that when L goes to infinity TL2 looks like R?
formally. Note that the machinery of the Bourgain spaces is natural to study such questions but we do not exclude
the possibility of working on other spaces by adapting harmonic analysis results to the case of TL2 to treat the opera-
tor E.
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Notations. We denote by e, ,(x,y) = (2n)_1exp(imx + iny) the usual orthonormal basis of Lz(le). When
working on T2, we will keep the same notation e, , for the rescaled basis: e, ,(x,y) = Qn L) exp(i(m/L)x +
i(n/L)y). For a function u defined on T2, we note

AQ(”)Z Z C(m»n)em,na
(m,n)eQ

where c¢(m, n) are the Fourier coefficients of u:

1 som n
cim,n)=—— [ u(x, y)e' T dx dy.
bis
T}

If 0 C 7% and R is a dyadic number, we set for a function u(¢, x) defined on R x TLZ:

Agru= Y ( f cm(r)e”””dr>em,n,

(m,n)eQ 22
R(t="5+15)<2R

where ¢, , (¢) are the Fourier coefficients of u(¢). When Q is the cube Q = {(m, n) € 72, N <Max(|m/L|, |n/L|) <
2N}, we will note Ay = AQ and ANR= AQ’R.

Step 1. We prove: forall s > 1/2, L > 1 and ug € H“(TLZ), there exists a solution u of

iatu+Pu=—|u|2u—E(|u|2)u, (x,y)eTLz, (11

and o > 0, C > 0 independent of L satisfying the lower bound on the blow-up time:

C
T(up) > ——. (12)
ol 72,

The point here is that the lower bound depends only on the size of the initial data and not on L. On T?, we denote
(without changing notations) by P and E the natural extensions of the operators P and E defined above on T'2. Hence,
symbols are respectively (—m? 4+ n?)/L? and 2m2/(m?* + n?).

High regularity. Before looking at low regularities and to convince the reader that (12) holds, let us focus on the
easier case of more regular datai.e. s € N\ {0, 1}. Let us prove (12) in this case. Let L > 1 and consider Eq. (11) and
its equivalent formulation

t
u(t) = e Puy +i/e"<f—f”’(|u(r)|2u(r) + E(ju(0)]*)u(r)) d. (13)
0

Letuge H ‘Y(Tf). Taking the H*-norm in (13) and using the triangle inequality, we get for a constant C > 0 indepen-
dent of L:

T

Ju®] s < llwollzs + C/(H”(f)zu(f)ﬂ o HE(u@ ], dr. (14)
0

Now we need a Sobolev type inequality with constants independent of the size of the torus.

Lemma 1. Let s be an integer with s > 2. There exists a constant C > 0 such that for all L > 0 and v, w € H*(Ty),

”vw”HJ(TE) < C”v”HS(TE) ”w”H"(TE)'
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Proof. We first prove that for all ¢ > 1 and v € H? (T), ||v||L~ < C||lv||go for a constant C > 0 depending only
on o. Indeed, expanding v in Fourier series, we first get

1
[v| < 2]T—L Z [Vm,nl-
(m,n)eZ?
We make appear the H? -norm of u and use Cauchy—Schwarz inequality to obtain

1 m2  n2\°/? m2  n2\"/2
e <5 3 wwal(1+ 5+ 55) (1t

(m,n)eZ?

1 m? 2\ "\!/?
< — o 1+ —=4+ — . 15
vl ( 3 ( +L2+L2) ) (15)

(m,n)eZ?

But we can easily compute the dependence in L of the last sum above by comparing with an integral as follows:

m2 nz —o mz —0/2 nz —0/2
Y (+hrn) <o T (%) ()

(m,n)e7? (m,n)e7?
([ %)
S\ a5y
< CL%

Thus, there is not more dependence on L in (15) and we obtain the claim. Now we can prove the lemma. Indeed, we
first write the Leibniz rule then use the previous claim and an interpolation argument to get

[(=Ay2w)| > < Cllvllasllwllas.

Here, the constant C contains binomial coefficients and therefore is independent of L. Moreover, again with the
embedding HS < L°°, we have

lowllz2 < lvlizellwllzz < Clivlias lwllas,

and the last two inequalities end the proof of the lemma. O

Therefore, coming back to (14), using the boundedness of E in H® and Lemma 1, we have

with C > 0 independent of the period. This last estimate allows us to perform a Banach fixed point argument (the
Lipschitz property is proved with similar arguments) in a ball of the space C([0, T'], H®) of radius M = 2|lug|| s and
with T = C/||uo||%p, and this proves (12).

Low regularity. This part is the more interesting since, as said above, the explicit blow-up solution v(¢) of the
introduction lives only in H* with s < 1. So let s > 1/2. We define the Bourgain spaces associated with Eq. (11) as
the completion of the space of smooth compactly supported functions on R x TL2 for the norm defined by

luelgss = G0 + PY (=202 u] 22y

where (&) = (1 4+a?)!/2. Note that there exist more convenient equivalent definitions of this space: we may also check
that the norm is equivalent to the following

2 m2 I’l2 $ m2 n2 2b 2
el = > <1+ﬁ+ﬁ> f<r—ﬁ+ﬁ> |G (D] d,
R

(m,n)eZ?
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where ¢y, , is the Fourier transform of ¢, . A last definition is possible linking the Bourgain norm with Sobolev norm
of the free dynamic:

lllygo = e u® o sy "

We will work on a finite time interval so that we have to define the localized version of the Bourgain spaces; for
u:[O,T]fo—)(C:
lull yso = inf{[|v]| s, v € xi*” such that v() = u(z) for all € [0, T']}. (17)
LT L

Let us recall the integral formulation (13):
t
u(t) = P uy +i/ei<f—f”’(|u(r)|2u(r) + E(ju(0)]*)u(r)) d.
0

First, the linear term is easily bounded: if 7 < 1 and ¥ (¢) denotes a smooth real cut-off function equal to 1 on [0, 1]
and with compact support, we get using the definition of the Bourgain spaces (16):

e uoll gz < [ v @uo]l s <[ Ouoll o s 2y < ol sz, (18)

where C = ||/ || g () 1s independent of the period L.

Lemma 2. There exists C > 0 such that for all L > 1, T < 1 and all pair (b, b’) satisfying 0 <b' < 1/2 < b,
b+b <1,

t

/ei(’_T)PF(r) dt

0

<SCT'" " PYFI oo
$,b LT
L,T

X

Proof. For afixed L > 0, this estimate is classical in the context of the Bourgain spaces. To see that we may choose C
independent of L, we remark (see [2]) that the proof of such an estimate for a fixed L relies on the one-dimensional
inequality (proved in [7]):

t
H¢<%) /g(r)dr
0

for a cut-off function ¢. Then we apply this estimate pointwise with g(t) = (F (7, x), €m.n)em.n, take the square,
integrate on 77, multiply by (—m? + n?)/L? and sum for (m, n) € Z?. We then obtain the desired estimate with the
same constant C as in (19) thus independent of L. O

b <CT"" gl @) (19)
H>(R)

To treat the nonlinearity in the fixed point argument, we will need the following proposition.

Proposition 1 (Trilinear estimate). There exist a pair (b, b') satisfying 0 <b' <1/2 <b, b+ b’ < 1 and a constant
C > 0 such that forevery L>1, T >0, uj,up,u3 € XZ”bT,

lunsais s < Cllarll g Tl s, sl

| E (uyuz)us|

kot < Cliatllgen lallgen sl

Proof. Let us start with a lemma.

Lemma 3 (Uniform periodic bilinear Strichartz estimate). There exists C > 0 such that for every N1, Ny > 1 dyadic
numbers, (ay, by), (az, by) € 72, L>1and Uy, up € L2(TL2) writing
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up = > cr(m,n)em n, uy = > c2(m, n)ep,n

Ny <Max (| F —a1 |, |1 —b1 1) <2N) Ny <Max(| 7 —azl, | —b2[) 2N

we have the bilinear estimate

e @)e™ @) 2o 11122y < Cmin(NE No) 2 lusll o) N ll 2 ) (20)

Proof. Note that for L = 1, linear Strichartz estimates have been proved recently in [16,8]. We first prove the property
in the case where u; =up and ay =by =ap =b, =0. Soletu =u; =up and N = N| = N,. We recall the semiclas-
sical Strichartz estimate on the torus of size 1 (see [8]): for all & € (0, 1), for all interval J of size & and for all ug
writing

Vo = Z c(m, n)em,n ,
h=1<Max(|m|,In]) <2k~
for some coefficient c(m, n), we have
¢ vo ) < Cllvoll 272 1)
LANLA(TY L(T{)"
Similarly to the case where P is the Laplace operator (see [9]), we apply a scaling argument on this estimate to derive

a linear Strichartz estimate on TL2 on the time interval [0, 1]. Let ug € LZ(TLZ) localized in frequency in [0, N] i.e.

uo = > c(m, n)em n, (22)

N<Max(I 21 ED<2N

and vo € L*(T}) defined by vo(x) = uo(Lx). Then computing the L*([0, 11)L*(T}) of exp(it P)uy in term of vy and
applying a change of variable, we get

e = Le"

itPu “ PU H
Oll 4o, 1nL4rh) Ol 4o, L2 L4(TD)"

Remark that vy writes
vo = > c(m,n)em n,
LN <Max(jm|,|n|)<2LN
so that we may apply (21) with 7 ~ LN. We need to consider two cases. If L > N, then [0, L2 [0,(LN)"']and
SO

||eitPuO”L4([0,1])L4 < L||eithO||L4([0,(LN)—1])L4 < CL|voll 2 < Clluoll 2

If L < N, we write [0, L™2] as a union of intervals [z, te1] with tgyq — g ~ (LN)~! and k ~ N/L. We apply (21)
on each [#, tx+1] and this gives

, N4 N\
H@”PMOUL4<[0,1]>L4SC(Z) LHUO||L2<C(Z> ol

If L > 1, we may in particular summarize the last two inequalities as

le <CNYHugll 2,

“ug ” L4([0, 1) L4

and this proves (20) if u1 = us and a; = b1 = ax = bp = 0. Now we treat the case u = u| = up but without the
assumption a; = by =ay =b, =0. Let (a, b) € 72 and write

2 _m2
u= Z 12 Ye(m, n)em n
N<Max(| ¢ —al,| F —bD<2N
P R I =i (p2—g2+2aLp—2bL
Zelaxelbyett(a b*) Z c(aL+p,bL+q)eL2 (r=—q P q)ep,q'

N<Max(| 21,1 $)<2N
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Then

; 4
=i 2 2y iq
C((lL + P, bL + q)e L2r (p™—q )efp(x—2at)efl(y+2bt)

4
||u||L4L4 =

2

N<Max(1£1,1 <2V

LAL4
Zitp2_g2y 1 i i
e Y D SR AT

4
dadBdt

— 21

i —2ar<a<2mL—2at NSMax(If|.I7D<2N

201 < B2 L+2bt
; 4
1 (q*=p?)
= Z eL? claL+p,bL+q)ep4(a, B)| dadBdt.
1 0<a<2nL N<Max(IZ[I1FD<2N
0<B<2nL

We apply the linear result proved above with (a, b) = (0, 0) and this gives

2
Il 4,0 < CN(Z|c(k, l)\z)
k,l

< CN|luoll}s.

This proves the result when u1 = u>. Note that if we assume another type of localization for u

u= Z C(man)em,m

Max(|% ~al.| 2 ~b) <N

the L*L* estimate still holds. It may be seen by remarking that estimate (21) also holds if u is spectrally localized in
{(m,n) € Z*, Max(|m|, |n]) < 2h~'} (see [8]) and using the same analysis as above. Now, we can prove the bilinear
estimate in the general case. We assume for instance N; < N and decompose the set A = {(m,n) € 72, Ny <
Max(lay —m/L|, |by —n/L|) < 2N>} in small disjoint cubes of the form Q, = Q,;) = {(m,n) € A, Max(lk—m/L]|,
|l —n/L|) < Ny} for a@ = (k,[) running over a set /. Then for different o's, the functions e/’? (ug)e’* (A g, vo) are
almost orthogonal since each function is localized in Fourier in the set Dg, := {(m, n) € Z?, Ni < Max(|jm/L — ay|,
[n/L —b1]) <2N1} + Qq and the sets D, are almost disjoint in the sense that each point of 72 belongs to a finite
number of sets Dy. Indeed, if (m, n) € Dy, N Dy,, then in particular we may write

(m,n)=c+d=e+ f,

withd € Qy,, f € OQu,,and c,e € {(m,n) € 7%, N; < Max(lm/L — ay|, |n/L — b1]) <2N1}. We deduce |c1 —e1| =
|fi —di| <4N|L.But each Q, is of size less than 4N L and there is a finite number of Q, whose distance to Q,
is less than 4N L. So if we fix «y, then o, runs in a finite number of indexes. Thus, this orthogonality property
implies

[ @ne™” w22 < € Y- (Ag,ua) 2,2

ael
<C ”eitP(ul) Hi“L“ Z”e”P(AQaMZ) ”i“L4
ael
<ON 1t N2 Y A g, uall},
ael

2 2
S CNtllurllp2 luallz.-

This proves the lemma. O
Remark 2. Note that if Q; denotes the set

)

0; = {(m,n) €Z? N; < Max(

m
— —gq
L

_bi

n
L

)SZNi},
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then (N;L)? < |Q;| and we may rewrite the Strichartz estimate (20) as

1
~ < min(|Q1], [Q2]) \ #
[a0i(e" u)A gy (" 0) | 22 < € (—L2 il 2wl - (23)
Once we have proved (23), from covering arguments, we may deduce the same estimate for other shapes of Q;
typically Q; = {(m,n) € 72, Max(|m/L|, |n/L|) < 2N;} or translated sets of the previous one. In the sequel, we will
use (23) for these kinds of Q;. More precisely, we have the following.

Lemma 4. For all b > 1/2, there exist C(b) > 0, B(b) € (0,1 — b) and £(b) > 0 such that for all dyadic square
Q1, 0> C 7% Ry, Ry dyadic number, L > 1 and ug, vo € L*(R, L2(TL2)),

Min(|Qil, Q) \ /4
T (R Rz)ﬁ(b)
X [[Agy riuollL2p2l1A @y Ry V0l 212, (24)

”AQ],RlMOAQz,sz()”LzL2 g C(b)<

where |Q;| denotes the number of points in Q;. Moreover, we may choose ¢(b) such that e(b) goes to 0 as b goes
to 1/2.

Proof. As for the proof of (20), we first assume u = ug = vg. Next, from (20), we get forall b > 1/2 and f € X g’b
localized in frequency in Q,

101\"*
||f||L4L4 < C(F) ”f”X(Z’b'
Again the constant C does not depend on L since the proof (see [2]) relies only on manipulations in time. In particular,
for all u,

14
2
for all b > 1/2. And this gives using properties of the Bourgain spaces

1/8
||AQ,RM||L4L4<C( ) ||AQ,RM||X(LJ.b, (25)

101\
lAg rullpap4 gc(F Rb”AQ,RM”LZLZ' (26)

The fact that b > 1/2 in the above estimate will not be enough to conclude so that we need to refine this L*L* estimate.
To do so, we compute the L°°L* norm of A ru. From the definition of the projection Ag g, we get using twice
Cauchy—Schwarz inequality

1 _
lAg rullLore < — Z f |G (D)] dT

(m,n)eQ 22
R<(r—"5425) 2R

R1/2 - 1/2
gT Z ( / |Cm,n(f)‘2df)

(m,n)eQ 22
Rg(r—”L’—ZJrZ—z)ng

172 1/2
(D)5, J wor

(m,n)eQ 2 2
R(—23 +17) <R

121\"? 1)
< <F) R Ag gull 22 (27)
By interpolation between the trivial inequality [|Ag grull;272 < [Ag rullz2;2 and (27), we have

10l

1/4
2 ) R Ag,rull 22 (28)

Ao rullp4r4 <<
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Let (b) > 0 such that §(b) := b(1 — 8¢(b)) + 88(19)% € (0,1 — b) and e(b) — 0 as b — 1/2. For instance choose
8(b) =3/2 — 2b. Next, by interpolation between (26) with weight 1 — 8¢(b) and (28) with weight 8¢(b), we get the
expected estimate:

Tz R® | Ag ruoll 22 (29)
To deduce (24) from (29), we proceed as in the proof of Strichartz estimate (20): if for instance |Q1]| < |Q2| then we
decompose Q7 in pieces of size | Q1] and next apply an almost orthogonality argument. We omit this argument and
the proof is over. O

1/8+¢(b)
lAg ruollpaps < C<|Q|>

To prove Lemma 1, it is enough to prove the trilinear estimate for the global space X SL’b i.e. T = 0o, then we recover

the local in time estimate by taking the infimum on all extensions of u1, up, u3 € X Z’bT. Moreover, we only prove the
second estimate; the first one is easier. By a duality argument, we have to show the quadrilinear estimate: there exists

C >Osuchthatforall L > 1, uy, ua, u3, us € XSL’b:

’ / E(uiuz)usuy

2
RxTf

< Clurl gl gy s gy

In the sequel, we will note Q; = {(m, n) € Z?, N; <Max(Im/L|, |n/L|) < 2N;}. Decomposing each u; as
up = Z AN; R; (ui),
Ni.R
we have that

G= / E(uiup)usuy
2
RXTL
becomes

G= / Z E (AN, R, 1) ANy, Ry (U2)) ANy, Ry (U3) ANy Ry (14).

Ni,N>,N3,N.
2 N1,N2,N3,N4
RXTL R1,R2.R3.Ry

In the summation above, we may restrict indexes to N4 < 2(N1 + N2 + N3). Indeed, the function

U =E(AN; R (1) ANy, R, 2)) ANy, ry (13)

is localized in Fourier in the set {(m, n) € ZZ, m=mi+my+m3, n=ny+nr+n3, (my,n1) € Q1, (my,nr) € 0>,
(m3,n3) € Q3}. Thus, if Ny > 2(N1 + N> + N3), the integral over TL2 of UAn, r,(u4) is zero. Therefore

G= Z a(N1, N2, N3, N4, Ry, Ry, R3, Ry), (30)

N4<2(N1+N2+N3)
R1,R2,R3,R4

where

(N1, N2, N3, N4, R1, Ry, R3, Ry) = / E(Any, Ry 1) AN, R, U2)) ANy Ry U3) AN, Ry (14).
]R><TL2

Contrary to the case of a typical cubic nonlinearity, « is not symmetric in Nj, N2, N3, N4 and we need to split the
analysis in several cases. The worst situation is when the two lowest frequencies appear in the nonlocal term. Let us
first treat this case.

Case N3 = max(Ny, N2, N3). Without loss of generality, we may assume N; < Ny < N3. In this situation, we
decompose the set Q3 in small pieces of size N> L. Hence, we may write Q3 as a disjoint union of sets of the form



N. Godet / Ann. 1. H. Poincaré — AN 30 (2013) 691-703 701

Qo = Q,p) =1{(m,n) € Q3, Max(la—m/L|,|b—n/L|) < N>} for some well-chosen set I of pairs @ = (a, b) € Q3
so that the union is disjoint. Using again an orthogonality argument, « is then

a(Ni, Ri) = / E(AN, R WD) AN, R, (42)) A g, Ry U3) A g g ()

RxTL2

where

Qo = {(m4,n4) € Q4, m=—my —my —m3, n=—ny —ny —n3, (mj,n;) € Qi i =1,2, (m3,n3) € Qa}.
From Cauchy—-Schwarz inequality in space and time and the boundedness of E on L2(Tz),

|0‘(Nl" R1)| < ” AN],R] (ul)ANz,Rz(MZ) ”L2L2 ” AQQ,R3 (u3)AQa’R4 (u4) ||L2L2~
Note that since | Q| < (N2L)%, we deduce by the triangle inequality that we also have |0l < C(LN>)? and thus we
can apply Lemma 4 to get

3+ed)  5+ed)
a(Ni, R) <CNE VNG (RiR RsR)P O | A, py (1) | 22
N Ansr @D 212 Y 180w R W] 122186, &, @) 22 (31)

ael

Next from Cauchy—Schwarz inequality, we may write

1 1
2 2
5800 32218, 1y 000 < (B0t ) (Ehag, @0l )

ael ael ael

First, since (Qy)q is a partition of 03, by orthogonality, we have for the first term on the right hand side above:

1/2
(Z 1A 0.k (u3) Hisz) = | A5 Ry W3) | 122

ael

For the second term, the Qa’s recover Q4 but since there are not disjoint, strict orthogonality is broken. However,
using the same argument of almost orthogonality as for the proof of Strichartz estimate (each point of Q4 belongs to
a finite number of Q,), we deduce

1/2
(Z1og,n@le:) < Cloounol e

ael
Thus,
3
a(Ni, R) < C(N\N)' /2O (R Ry RsR)PO T || Ay ks (i) | 22 (32)
i=0
We reorder terms to make appear Bourgain’s norms of u;. The quantity
H= Z a (N, R;)
N4<2(N1+N2+N3)
R1,Ry,R3,Ry
N3=Max(N{,N»,N3)
is bounded by

ey Beb)—
H < S0 N RIOTNSRY | Ay k)] 20
Ny, R
1 _
x 3 NF ORI NI RY | Ay ry )] 2,2
Ny, Ry

X Z ZRg(b)ib/Ri/Rf(b)ibRguAN4,R4(”4)”L2L2”AN3»R3(”3)HL2L2‘
N4<6N3 R4, R3
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For the first two sums above, we use Cauchy—Schwarz inequality to recover Bourgain’s norm of u;. For instance for
the first term, we have if s > 1/2 4 ¢(b), and since b > B(b),

1

Lie®)—s _Bb)—b ..« 1426(b)—25 p2(B(b)—b) \ 2
Z Ny R?( ) Nlel?”ANl’Rl(ul)”Lsz < ”’“sz” Z N, o SRl(ﬂ( Y
N1, Ry N1, Ry
<C||M1||X2b-

For the third sum, using again Cauchy—Schwarz inequality, and choosing b’ > B(b) (this condition is compatible with
1 —b—b" > 0since B(b) < 1 — b), we write

Z Rﬁ(b) b/R4, AN4 Ry (“4) “LZL2 (Z RZﬁ(b) 2b/> (Z R2b/

R4
<Cf AN @a) | gou-

1

2 2
AN4,R4 (M4) ” L2L2)

We treat the sum over Rj3 in the same way. Therefore,

[HL< s ez s > N4N | A, )| Obe3||AN3(u3)||Xoh
- N4<6N3

Now we need the following lemma (see [3], Lemma 4.5 for a proof) to conclude.

Lemma 5. For every s > 0, there exists a constant C > 0 such that for all sequence (ay,) NyeaNs (bnsy) NiyeaN, we
have \

= (B monec(pi) (£4)"

N4<6N3

To conclude in this case, we apply the lemma with

an, = Ny * | An, (ua) | L0 by = N3 | A, (u3) ngb,
L
and obtain
|H| < Cllu; ||X2.b ||M2||X2.b ||M3||X2,b ||M4||X—s,b’~ (33)

Case N3 <max(N1, N2, N3). In the summation (30), we assume for instance N; < N3 < N,. This case is easier
since we do not need to decompose high frequencies. With the definition of «(N;, R;) and from Cauchy—Schwarz
inequality:

|(Ni, R)| < | ANy Ry WD) Any Ry u2) || 22 | ANs.Rs 3) Any Ry ua) | 2, 2-

Coming back to Lemma 4, we have directly

4
a(Ni, Ri) < (N1N3)2 T (RyRy Ry R3)PO T T Ay, i) | 122
i=1

Once we have this estimate, the end of the proof in this case is the same as the previous one and we obtain

> (Nis Ri) < Cllutllygo o 3l oo gl o (34)

N3 <max(Ny,Np,N3)
Ri,R2,R3, Ry
N4<6max(Ny,N2,N3)

Estimates (33) and (34) provides Proposition 1. O
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Writing
13
D) =e"Puy+ i/ei(t_f)P(|u(t)‘2u(t) + E(|u(r)|2)u(r)) dt
0
and using (18), Lemma 2 and Proposition 1, we have easily

1_ _ /
| @@ ges < Cllugllms +CT = ull,, |
LT L, T
and

1—-b—b' 2 2
|26 = @)y < CT' P (luliys + 101 )= vl

Therefore, we may close the fixed point argument in the ball B(0, R) of XSL’f’T with R = 2C||ug||gs and T >

D/ ||uo||§1/fl_b_b/) with D > 0 independent of the period L > 1. This proves (12) for low regularities and also the

first point (take L = 1) in Theorem 1.

Step 2. Let us now finish the proof of the lower bound (6). Let u € H*(T?) solution to (2) and consider the family
fort €[0,T):

Vit x, y) = AMOu (A2 (D)t + 7, M(D)x, A(D)Y),

—1
where A(t) = IIM(T)HHsést)'

Moreover, it is easy to check that ||[v*(0)|| ;2 = [|u(0)|| ;2> and ||(—A)5/2(vf(0))||Lz < 1. If we denote by 77 the max-
imal time for v®, from (12), we deduce the uniform bound, 7; > C > 0. But Ty = (T — t)/Az(t) where T is the
maximal time for # and this with the uniform lower bound on 7; proves the lower bound (6).

For all 7, v* is a function on the torus T7,;(;) and satisfies Eq. (11) for L = 1/A(7).
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