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Abstract

We consider the hyperbolic–elliptic version of the Davey–Stewartson system with cubic nonlinearity posed on the two-
dimensional torus. A natural setting for studying blow-up solutions for this equation takes place in Hs , 1/2 < s < 1. In this
paper, we prove a lower bound on the blow-up rate for these regularities.

1. Introduction

We consider the Davey–Stewartson system defined on the two-dimensional torus T 2 := R2/2πZ2:{
i∂tu − ∂2

xu + ∂2
yu = −|u|2u + 2u∂xφ,(

∂2
x + ∂2

y

)
φ = ∂x |u|2, (1)

where u : R × T 2 → C and φ : R × T 2 → R are the unknowns. Rearranging the second equation, we may see this
system as a dispersive equation with a hyperbolic linear part and a nonlocal nonlinearity:

i∂tu + Pu = −|u|2u − E
(|u|2)u, (t, x) ∈R× T 2, (2)

where P = −∂2
x + ∂2

y and E is the nonlocal operator such that:

Ê(f )(m,n) = 2m2

m2 + n2
f̂ (m,n), (m,n) ∈ Z2 \ {

(0,0)
}
,

Ê(f )(0,0) = 0.

The Cauchy problem and the blow-up theory for this equation have been studied essentially in the case where the
system is posed in R2. In this case, the system is locally well posed in the Sobolev spaces L2, H 1 (see [5]) and more
easily for higher regularities Hs , s > 1. In [14], T. Ozawa proved that the equation posed on R2 enjoys a pseudo-
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conformal type symmetry and as for NLS, this allows to construct a blow-up solution by applying this transformation
to an explicit stationary (periodic in time for NLS) solution:

u(t, x, y) = 1

1 + x2 + y2
.

This function is then transformed into

v(t, x, y) = 1

a + bt
exp

(
ib

4(a + bt)

(−x2 + y2)) 1

1 + ( x
a+bt

)2 + (
y

a+bt
)2

, (3)

with (a, b) ∈ R2. Note that v(t) is in Hs(R2) (see [14]) for every s < 1 with ‖v(t)‖L2 = √
π but is not in H 1(R2).

The solution v blows up at time T = −a/b in L2 in the sense that the L2 blow-up criteria (the L4[0,t]L4 norm goes to
infinity when t goes to T ) is satisfied:

‖v‖L4([0,t])L4(R2) ∼ C

(T − t)1/4
→ ∞ as t goes to T ,

and accumulates all the mass in the origin:∣∣v(t)
∣∣2 → πδ(0,0) as t → T in D′(R2).

The explosion also occurs in Hs , s < 1 with the pseudo-conformal bound [14]:∥∥v(t)
∥∥

Hs ∼ C

(T − t)s
.

Note that in R2, we have a scaling symmetry; if u solves (2) then for all λ > 0, (t, x, y) 	→ λu(t, λ2t, λx,λy) also
solves (2). It is a classical fact that this symmetry automatically implies a lower bound on the blow-up rate: for all
blow-up solution u with maximal time T (u) < ∞, we have∥∥u(t)

∥∥
Hs �

C

(T (u) − t)s/2
. (4)

By analogy with NLS in R2, we may ask the question of existence of ground states of the type u(t, x, y) =
exp(iωt)Q(x, y) for (1) posed on R2 with an exponentially decaying profile Q but the hyperbolicity of the operator
−∂2

x + ∂2
y forbids the existence of such solutions at least in the case where the nonlinearity is −|u|2u [6]. Moreover,

numerics [11] seems to show that the L2-norm of the solution u (or v) is the minimal mass for which we may have
singularities in finite time. Thus, the function u plays the role of a ground state but is only polynomially decaying and
this requires to work with low regularities Hs , s < 1.

The aim of this paper is twofold: first give an Hs framework for studying blow-up theory for (2) i.e. show the local
well-posedness of (2) for initial data in Hs(T 2), s < 1 and secondly show that the lower bound on the blow-up rate (4)
still holds even if a scaling symmetry does not strictly make sense on the torus. The proof relies on local existence
arguments on the dilated torus R2/2πLZ2, L → ∞ and more precisely on bilinear Strichartz estimates. The classical
method [2] giving well-posedness from bilinear Strichartz estimates does not work in our setting because of the
nonlocal term; we will have to refine the bilinear approach with more general localizations. An interesting question,
not solved here, is the localization of the solution v (3) i.e. construct from v a solution of (2). The nonexponential
decay of v is reflected in the estimate∥∥v(t)

∥∥
Hs(ε�|(x,y)|�A)

� C(T − t)(1−s),

which make perturbation arguments around v difficult to apply even on a compact domain. In particular, for s > 1,
blow-up is not localized and this explains our choice to treat low regularities.

Remark 1. The system we study is called the hyperbolic–elliptic version of the generalized Davey–Stewartson system:{
i∂tu + ε1∂

2
xu + ∂2

yu = −|u|2u + 2u∂xφ,(
ε ∂2 + ∂2)φ = ∂ |u|2, (5)
2 x y x
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where εi ∈ {−1,+1}. Depending on the values of εi , the local well-posedness holds [5,1,13,10,4] but blow-up theory
is really well understood only in the elliptic–elliptic case ε1 = ε2 = 1 [12,17,15] where results are similar to those for
NLS.

2. Statement of the result and remarks

Let us now give our result.

Theorem 1. Let s > 1/2.

1) Eq. (2) is locally well posed in the space Hs(T 2) in the following sense. There exists b > 1/2 such that the fol-
lowing holds true: for all u0 ∈ Hs(T 2), there exist a time T > 0 and a unique u ∈ X

s,b
T (T 2) ⊂ C([0, T ],H s(T 2))

satisfying u(0) = u0 and (2). Here, X
s,b
T denotes the Bourgain space associated to (2) and defined in (17).

2) Let u0 ∈ Hs(T 2) and u be the corresponding solution. If T (u0) denotes the maximal time of existence of u, then
we have the following possibilities: either T (u0) = +∞ or T (u0) < +∞ and in this case, there exists C > 0 such
that for all t ∈ [0, T (u0)):∥∥u(t)

∥∥
Hs(T 2)

� C

(T (u0) − t)s/2
. (6)

Before giving the proof of Theorem 1, let us give some comments. Consider the equation

i∂tu + Pu = −|u|2u, t > 0, (x, y) ∈ T 2. (7)

Strichartz type estimates hold for the operator P (see [8,16]) and this with an analysis similar to [2] gives the local
well-posedness of (7) in Hs(T 2) for all s > 1/2. Following [8], it is easy to check that the function defined by

u(t, x, y) = eit |u0(x+y)|2u0(x + y) (8)

is a solution of (7) for all u0 ∈ C∞(R/2πZ,R). If u0 is not a constant function and if s � 0, we can check that there
exists C > 0 such that for t � 1,∥∥u(t)

∥∥
Hs � Cts. (9)

Thus, for s > 1/2, we obtain an explicit solution which blows up in infinite time; this contrasts with the usual
Schrödinger equation. Using a suitable rescaling of the explicit solution (8), one may also show the local ill-posedness
of (7) in Hs , s < 1/2 (see the appendix of [3] for a similar discussion). It would be interesting to know if we may
construct solutions behaving like (8) for Eq. (2).

3. Proof of the result

Strategy of the proof. To prove Theorem 1, the idea is to rescale the torus T 2 = R2/2πZ2 by considering T 2
L =

R2/2πLZ2 where L > 0 will tend to infinity. In a first step, we perform a Banach fixed point argument in the dilated
Bourgain space X

s,b
T ,L to obtain a local well-posedness result in Hs(T 2

L) with the bound on the blow-up time:

T (u0)� F
(‖u0‖Hs(T 2

L)

)
, (10)

for some function F independent of L. This relies on a uniform bilinear Strichartz estimate. In our analysis, it is
of importance that dispersive estimates are local in space and time. In particular, if we take L = 1, this step will
give the first point of Theorem 1. In the step 2, we deduce the blow-up lower bound from a scaling argument. The
bound (6) which is the same as R2 is in accordance with the fact that when L goes to infinity T 2

L looks like R2

formally. Note that the machinery of the Bourgain spaces is natural to study such questions but we do not exclude
the possibility of working on other spaces by adapting harmonic analysis results to the case of T 2

L to treat the opera-
tor E.
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Notations. We denote by em,n(x, y) = (2π)−1exp(imx + iny) the usual orthonormal basis of L2(T 2
1 ). When

working on T 2
L , we will keep the same notation em,n for the rescaled basis: em,n(x, y) = (2πL)−1exp(i(m/L)x +

i(n/L)y). For a function u defined on T 2
L , we note

	Q(u) =
∑

(m,n)∈Q

c(m,n)em,n,

where c(m,n) are the Fourier coefficients of u:

c(m,n) = 1

2πL

∫
T 2

L

u(x, y)ei( m
L

x+ n
L

y) dx dy.

If Q ⊂ Z2 and R is a dyadic number, we set for a function u(t, x) defined on R× T 2
L :

	Q,Ru =
∑

(m,n)∈Q

( ∫
R�〈τ− m2

L2 + n2

L2 〉�2R

ĉn,m(τ )e2iπtτ dτ

)
em,n,

where cm,n(t) are the Fourier coefficients of u(t). When Q is the cube Q = {(m,n) ∈ Z2, N � Max(|m/L|, |n/L|) �
2N}, we will note 	N = 	Q and 	N,R = 	Q,R .

Step 1. We prove: for all s > 1/2, L� 1 and u0 ∈ Hs(T 2
L), there exists a solution u of

i∂tu + Pu = −|u|2u − E
(|u|2)u, (x, y) ∈ T 2

L, (11)

and α > 0, C > 0 independent of L satisfying the lower bound on the blow-up time:

T (u0) �
C

‖u0‖α

Hs(T 2
L)

. (12)

The point here is that the lower bound depends only on the size of the initial data and not on L. On T 2
L , we denote

(without changing notations) by P and E the natural extensions of the operators P and E defined above on T 2. Hence,
symbols are respectively (−m2 + n2)/L2 and 2m2/(m2 + n2).

High regularity. Before looking at low regularities and to convince the reader that (12) holds, let us focus on the
easier case of more regular data i.e. s ∈ N \ {0,1}. Let us prove (12) in this case. Let L � 1 and consider Eq. (11) and
its equivalent formulation

u(t) = eitP u0 + i

t∫
0

ei(t−τ)P
(∣∣u(τ)

∣∣2
u(τ) + E

(∣∣u(τ)
∣∣2)

u(τ)
)
dτ. (13)

Let u0 ∈ Hs(T 2
L). Taking the Hs -norm in (13) and using the triangle inequality, we get for a constant C > 0 indepen-

dent of L:

∥∥u(t)
∥∥

Hs � ‖u0‖Hs + C

T∫
0

(∥∥u(τ)2u(τ)
∥∥

Hs + ∥∥E
(∣∣u(τ)

∣∣2)
u(τ)

∥∥
Hs

)
dτ. (14)

Now we need a Sobolev type inequality with constants independent of the size of the torus.

Lemma 1. Let s be an integer with s � 2. There exists a constant C > 0 such that for all L > 0 and v,w ∈ Hs(TL),

‖vw‖Hs(T 2
L) � C‖v‖Hs(T 2

L)‖w‖Hs(T 2
L).
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Proof. We first prove that for all σ > 1 and v ∈ Hσ (TL),‖v‖L∞ � C‖v‖Hσ for a constant C > 0 depending only
on σ . Indeed, expanding v in Fourier series, we first get

|v| � 1

2πL

∑
(m,n)∈Z2

|vm,n|.

We make appear the Hσ -norm of u and use Cauchy–Schwarz inequality to obtain

‖v‖L∞ � 1

2πL

∑
(m,n)∈Z2

|vm,n|
(

1 + m2

L2
+ n2

L2

)σ/2(
1 + m2

L2
+ n2

L2

)−σ/2

� 1

2πL
‖v‖Hσ

( ∑
(m,n)∈Z2

(
1 + m2

L2
+ n2

L2

)−σ )1/2

. (15)

But we can easily compute the dependence in L of the last sum above by comparing with an integral as follows:∑
(m,n)∈Z2

(
1 + m2

L2
+ n2

L2

)−σ

� C
∑

(m,n)∈Z2

(
1 + m2

L2

)−σ/2(
1 + n2

L2

)−σ/2

� C

(∫
dx

(1 + x2

L2 )σ/2

)2

� CL2.

Thus, there is not more dependence on L in (15) and we obtain the claim. Now we can prove the lemma. Indeed, we
first write the Leibniz rule then use the previous claim and an interpolation argument to get∥∥(−	)s/2(vw)

∥∥
L2 � C‖v‖Hs ‖w‖Hs .

Here, the constant C contains binomial coefficients and therefore is independent of L. Moreover, again with the
embedding Hs ↪→ L∞, we have

‖vw‖L2 � ‖v‖L∞‖w‖L2 � C‖v‖Hs ‖w‖Hs ,

and the last two inequalities end the proof of the lemma. �
Therefore, coming back to (14), using the boundedness of E in Hs and Lemma 1, we have∥∥u(t)

∥∥
Hs � ‖u0‖Hs + CT

∥∥u(t)
∥∥3

Hs ,

with C > 0 independent of the period. This last estimate allows us to perform a Banach fixed point argument (the
Lipschitz property is proved with similar arguments) in a ball of the space C([0, T ],H s) of radius M = 2‖u0‖Hs and
with T = C/‖u0‖2

Hs , and this proves (12).

Low regularity. This part is the more interesting since, as said above, the explicit blow-up solution v(t) of the
introduction lives only in Hs with s < 1. So let s > 1/2. We define the Bourgain spaces associated with Eq. (11) as
the completion of the space of smooth compactly supported functions on R× T 2

L for the norm defined by

‖u‖
X

s,b
L

= ∥∥〈i∂t + P 〉b〈(−	)
1
2
〉s
u
∥∥

L2(R×T 2
L)

,

where 〈α〉 = (1+α2)1/2. Note that there exist more convenient equivalent definitions of this space: we may also check
that the norm is equivalent to the following

‖u‖2
X

s,b
L

=
∑

(m,n)∈Z2

(
1 + m2

L2
+ n2

L2

)s ∫ 〈
τ − m2

L2
+ n2

L2

〉2b∣∣ĉm,n(τ )
∣∣2

dτ,
R
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where ĉm,n is the Fourier transform of cm,n. A last definition is possible linking the Bourgain norm with Sobolev norm
of the free dynamic:

‖u‖
X

s,b
L

= ∥∥e−itP u(t)
∥∥

Hb(R,H s(T 2
L))

. (16)

We will work on a finite time interval so that we have to define the localized version of the Bourgain spaces; for
u : [0, T ] × T 2

L → C:

‖u‖
X

s,b
L,T

= inf
{‖v‖

X
s,b
L

, v ∈ X
s,b
L such that v(t) = u(t) for all t ∈ [0, T ]}. (17)

Let us recall the integral formulation (13):

u(t) = eitP u0 + i

t∫
0

ei(t−τ)P
(∣∣u(τ)

∣∣2
u(τ) + E

(∣∣u(τ)
∣∣2)

u(τ)
)
dτ.

First, the linear term is easily bounded: if T � 1 and ψ(t) denotes a smooth real cut-off function equal to 1 on [0,1]
and with compact support, we get using the definition of the Bourgain spaces (16):∥∥eitP u0

∥∥
X

s,b
L,T

�
∥∥eitP ψ(t)u0

∥∥
X

s,b
L

�
∥∥ψ(t)u0

∥∥
Hb(R,H s(T 2

L))
� C‖u0‖Hs(T 2

L), (18)

where C = ‖ψ‖Hb(R) is independent of the period L.

Lemma 2. There exists C > 0 such that for all L � 1, T � 1 and all pair (b, b′) satisfying 0 < b′ < 1/2 < b,
b + b′ < 1,∥∥∥∥∥

t∫
0

ei(t−τ)P F (τ) dτ

∥∥∥∥∥
X

s,b
L,T

� CT 1−b−b′ ‖F‖
X

s,−b′
L,T

.

Proof. For a fixed L > 0, this estimate is classical in the context of the Bourgain spaces. To see that we may choose C

independent of L, we remark (see [2]) that the proof of such an estimate for a fixed L relies on the one-dimensional
inequality (proved in [7]):∥∥∥∥∥φ

(
t

T

) t∫
0

g(τ) dτ

∥∥∥∥∥
Hb(R)

� CT 1−b−b′ ‖g‖
H−b′

(R)
, (19)

for a cut-off function φ. Then we apply this estimate pointwise with g(τ) = (F (τ, x), em,n)em,n, take the square,
integrate on T 2

L , multiply by (−m2 + n2)/L2 and sum for (m,n) ∈ Z2. We then obtain the desired estimate with the
same constant C as in (19) thus independent of L. �

To treat the nonlinearity in the fixed point argument, we will need the following proposition.

Proposition 1 (Trilinear estimate). There exist a pair (b, b′) satisfying 0 < b′ < 1/2 < b, b + b′ < 1 and a constant
C > 0 such that for every L� 1, T > 0, u1, u2, u3 ∈ X

s,b
L,T ,

‖u1u2u3‖
X

s,−b′
L,T

� C‖u1‖X
s,b
L,T

‖u2‖X
s,b
L,T

‖u3‖X
s,b
L,T

,∥∥E(u1u2)u3
∥∥

X
s,−b′
L,T

� C‖u1‖X
s,b
L,T

‖u2‖X
s,b
L,T

‖u3‖X
s,b
L,T

.

Proof. Let us start with a lemma.

Lemma 3 (Uniform periodic bilinear Strichartz estimate). There exists C > 0 such that for every N1,N2 � 1 dyadic
numbers, (a1, b1), (a2, b2) ∈ Z2, L� 1 and u1, u2 ∈ L2(T 2) writing
L
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u1 =
∑

N1�Max(| m
L

−a1|,| n
L

−b1|)�2N1

c1(m,n)em,n, u2 =
∑

N2�Max(| m
L

−a2|,| n
L

−b2|)�2N2

c2(m,n)em,n

we have the bilinear estimate∥∥eitP (u1)e
itP (u2)

∥∥
L2([0,1])L2(T 2

L)
� Cmin(N1,N2)

1/2‖u1‖L2(T 2
L)‖u2‖L2(T 2

L). (20)

Proof. Note that for L = 1, linear Strichartz estimates have been proved recently in [16,8]. We first prove the property
in the case where u1 = u2 and a1 = b1 = a2 = b2 = 0. So let u = u1 = u2 and N = N1 = N2. We recall the semiclas-
sical Strichartz estimate on the torus of size 1 (see [8]): for all h ∈ (0,1), for all interval J of size h and for all u0
writing

v0 =
∑

h−1�Max(|m|,|n|)�2h−1

c(m,n)em,n,

for some coefficient c(m,n), we have∥∥eitP v0
∥∥

L4(J )L4(T 2
1 )

� C‖v0‖L2(T 2
1 ). (21)

Similarly to the case where P is the Laplace operator (see [9]), we apply a scaling argument on this estimate to derive
a linear Strichartz estimate on T 2

L on the time interval [0,1]. Let u0 ∈ L2(T 2
L) localized in frequency in [0,N ] i.e.

u0 =
∑

N�Max(| m
L

|,| n
L

|)�2N

c(m,n)em,n, (22)

and v0 ∈ L2(T 2
1 ) defined by v0(x) = u0(Lx). Then computing the L4([0,1])L4(T 2

L) of exp(itP )u0 in term of v0 and
applying a change of variable, we get∥∥eitP u0

∥∥
L4([0,1])L4(T 2

L)
= L

∥∥eitP v0
∥∥

L4([0,L−2])L4(T 2
1 )

.

Remark that v0 writes

v0 =
∑

LN�Max(|m|,|n|)�2LN

c(m,n)em,n,

so that we may apply (21) with h ∼ LN . We need to consider two cases. If L � N , then [0,L−2] ⊂ [0, (LN)−1] and
so ∥∥eitP u0

∥∥
L4([0,1])L4 � L

∥∥eitP v0
∥∥

L4([0,(LN)−1])L4 � CL‖v0‖L2 � C‖u0‖L2 .

If L < N , we write [0,L−2] as a union of intervals [tk, tk+1] with tk+1 − tk ∼ (LN)−1 and k ∼ N/L. We apply (21)
on each [tk, tk+1] and this gives

∥∥eitP u0
∥∥

L4([0,1])L4 � C

(
N

L

)1/4

L‖v0‖L2 � C

(
N

L

)1/4

‖u0‖L2 .

If L� 1, we may in particular summarize the last two inequalities as∥∥eitP u0
∥∥

L4([0,1])L4 � CN1/4‖u0‖L2,

and this proves (20) if u1 = u2 and a1 = b1 = a2 = b2 = 0. Now we treat the case u = u1 = u2 but without the
assumption a1 = b1 = a2 = b2 = 0. Let (a, b) ∈ Z2 and write

u =
∑

N�Max(| m
L

−a|,| n
L

−b|)�2N

e
it

L2 (n2−m2)
c(m,n)em,n

= eiaxeibyeit (a2−b2)
∑

N�Max(| p |,| q |)�2N

c(aL + p,bL + q)e
−it

L2 (p2−q2+2aLp−2bLq)
ep,q .
L L
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Then

‖u‖4
L4L4 =

∥∥∥∥ ∑
N�Max(| p

L
|,| q

L
|)�2N

1

2πL
c(aL + p,bL + q)e

−it

L2 (p2−q2)
e

ip
L

(x−2at)e
iq
L

(y+2bt)

∥∥∥∥4

L4L4

=
∫
t

∫
−2at�α�2πL−2at
2bt�β�2πL+2bt

∣∣∣∣ ∑
N�Max(| p

L
|,| q

L
|)�2N

e
−it

L2 (p2−q2) 1

2πL
c(aL + p,bL + q)e

i
L

pαe
i
L

qβ

∣∣∣∣4

dα dβ dt

=
∫
t

∫
0�α�2πL
0�β�2πL

∣∣∣∣ ∑
N�Max(| p

L
|,| q

L
|)�2N

e
it

L2 (q2−p2)
c(aL + p,bL + q)ep,q(α,β)

∣∣∣∣4

dα dβ dt.

We apply the linear result proved above with (a, b) = (0,0) and this gives

‖u‖4
L4L4 � CN

(∑
k,l

∣∣c(k, l)
∣∣2

)2

� CN‖u0‖4
L2 .

This proves the result when u1 = u2. Note that if we assume another type of localization for u

u =
∑

Max(| m
L

−a|,| n
L

−b|)�N

c(m,n)em,n,

the L4L4 estimate still holds. It may be seen by remarking that estimate (21) also holds if u0 is spectrally localized in
{(m,n) ∈ Z2, Max(|m|, |n|) � 2h−1} (see [8]) and using the same analysis as above. Now, we can prove the bilinear
estimate in the general case. We assume for instance N1 � N2 and decompose the set A = {(m,n) ∈ Z2, N2 �
Max(|a2 −m/L|, |b2 −n/L|) � 2N2} in small disjoint cubes of the form Qα = Q(k,l) = {(m,n) ∈ A, Max(|k−m/L|,
|l − n/L|) � N1} for α = (k, l) running over a set I . Then for different α′s, the functions eitP (u0)e

itP (	Qαv0) are
almost orthogonal since each function is localized in Fourier in the set Dα := {(m,n) ∈ Z2, N1 � Max(|m/L − a1|,
|n/L − b1|) � 2N1} + Qα and the sets Dα are almost disjoint in the sense that each point of Z2 belongs to a finite
number of sets Dα . Indeed, if (m,n) ∈ Dα1 ∩ Dα2 , then in particular we may write

(m,n) = c + d = e + f,

with d ∈ Qα1 , f ∈ Qα2 , and c, e ∈ {(m,n) ∈ Z2, N1 � Max(|m/L − a1|, |n/L − b1|) � 2N1}. We deduce |c1 − e1| =
|f1 − d1| � 4N1L. But each Qα is of size less than 4N1L and there is a finite number of Qα whose distance to Qα2

is less than 4N1L. So if we fix α1, then α2 runs in a finite number of indexes. Thus, this orthogonality property
implies∥∥eitP (u1)e

itP (u2)
∥∥2

L2L2 � C
∑
α∈I

∥∥eitP (u1)e
itP (	Qαu2)

∥∥2
L2L2

� C
∥∥eitP (u1)

∥∥2
L4L4

∑
α∈I

∥∥eitP (	Qαu2)
∥∥2

L4L4

� CN
1/2
1 ‖u1‖2

L2N
1/2
1

∑
α∈I

‖	Qαu2‖2
L2

� CN1‖u1‖2
L2‖u2‖2

L2 .

This proves the lemma. �
Remark 2. Note that if Qi denotes the set

Qi =
{
(m,n) ∈ Z2, Ni � Max

(∣∣∣∣m − ai

∣∣∣∣, ∣∣∣∣ n − bi

∣∣∣∣)� 2Ni

}
,

L L
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then (NiL)2 � |Qi | and we may rewrite the Strichartz estimate (20) as

∥∥	Q1

(
eitP u

)
	Q2

(
eitP v

)∥∥
L2L2 � C

(
min(|Q1|, |Q2|)

L2

) 1
4 ‖u‖L2‖v‖L2 . (23)

Once we have proved (23), from covering arguments, we may deduce the same estimate for other shapes of Qi

typically Qi = {(m,n) ∈ Z2, Max(|m/L|, |n/L|) � 2Ni} or translated sets of the previous one. In the sequel, we will
use (23) for these kinds of Qi . More precisely, we have the following.

Lemma 4. For all b > 1/2, there exist C(b) > 0, β(b) ∈ (0,1 − b) and ε(b) > 0 such that for all dyadic square
Q1,Q2 ⊂ Z2, R1, R2 dyadic number, L� 1 and u0, v0 ∈ L2(R,L2(T 2

L)),

‖	Q1,R1u0	Q2,R2v0‖L2L2 � C(b)

(
Min(|Q1|, |Q2|)

L2

)1/4+ε(b)

(R1R2)
β(b)

× ‖	Q1,R1u0‖L2L2‖	Q2,R2v0‖L2L2 , (24)

where |Qi | denotes the number of points in Qi . Moreover, we may choose ε(b) such that ε(b) goes to 0 as b goes
to 1/2.

Proof. As for the proof of (20), we first assume u = u0 = v0. Next, from (20), we get for all b > 1/2 and f ∈ X
0,b
L

localized in frequency in Q,

‖f ‖L4L4 � C

( |Q|
L2

)1/8

‖f ‖
X

0,b
L

.

Again the constant C does not depend on L since the proof (see [2]) relies only on manipulations in time. In particular,
for all u,

‖	Q,Ru‖L4L4 � C

( |Q|
L2

)1/8

‖	Q,Ru‖
X

0,b
L

, (25)

for all b > 1/2. And this gives using properties of the Bourgain spaces

‖	Q,Ru‖L4L4 � C

( |Q|
L2

)1/8

Rb‖	Q,Ru‖L2L2 . (26)

The fact that b > 1/2 in the above estimate will not be enough to conclude so that we need to refine this L4L4 estimate.
To do so, we compute the L∞L∞ norm of 	Q,Ru. From the definition of the projection 	Q,R , we get using twice
Cauchy–Schwarz inequality

‖	Q,Ru‖L∞L∞ � 1

L

∑
(m,n)∈Q

∫
R�〈τ− m2

L2 + n2

L2 〉�2R

∣∣ĉm,n(τ )
∣∣dτ

� R1/2

L

∑
(m,n)∈Q

( ∫
R�〈τ− m2

L2 + n2

L2 〉�2R

∣∣ĉm,n(τ )
∣∣2

dτ

)1/2

�R1/2
( |Q|

L2

)1/2( ∑
(m,n)∈Q

∫
R�〈τ− m2

L2 + n2

L2 〉�2R

∣∣ĉm,n(τ )
∣∣2

dτ

)1/2

�
( |Q|

L2

)1/2

R1/2‖	Q,Ru‖L2L2 . (27)

By interpolation between the trivial inequality ‖	Q,Ru‖L2L2 � ‖	Q,Ru‖L2L2 and (27), we have

‖	Q,Ru‖L4L4 �
( |Q|

2

)1/4

R1/4‖	Q,Ru‖L2L2 . (28)

L
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Let ε(b) > 0 such that δ(b) := b(1 − 8ε(b)) + 8ε(b) 1
4 ∈ (0,1 − b) and ε(b) → 0 as b → 1/2. For instance choose

δ(b) = 3/2 − 2b. Next, by interpolation between (26) with weight 1 − 8ε(b) and (28) with weight 8ε(b), we get the
expected estimate:

‖	Q,Ru0‖L4L4 � C

( |Q|
L2

)1/8+ε(b)

Rδ(b)‖	Q,Ru0‖L2L2 . (29)

To deduce (24) from (29), we proceed as in the proof of Strichartz estimate (20): if for instance |Q1| < |Q2| then we
decompose Q2 in pieces of size |Q1| and next apply an almost orthogonality argument. We omit this argument and
the proof is over. �

To prove Lemma 1, it is enough to prove the trilinear estimate for the global space X
s,b
L i.e. T = ∞, then we recover

the local in time estimate by taking the infimum on all extensions of u1, u2, u3 ∈ X
s,b
L,T . Moreover, we only prove the

second estimate; the first one is easier. By a duality argument, we have to show the quadrilinear estimate: there exists

C > 0 such that for all L� 1, u1, u2, u3, u4 ∈ X
s,b
L :∣∣∣∣ ∫

R×T 2
L

E(u1u2)u3u4

∣∣∣∣� C‖u1‖X
s,b
L

‖u2‖X
s,b
L

‖u3‖X
s,b
L

‖u4‖
X

−s,b′
L

.

In the sequel, we will note Qi = {(m,n) ∈ Z2, Ni � Max(|m/L|, |n/L|) < 2Ni}. Decomposing each ui as

ui =
∑
Ni,Ri

	Ni,Ri
(ui),

we have that

G =
∫

R×T 2
L

E(u1u2)u3u4

becomes

G =
∫

R×T 2
L

∑
N1,N2,N3,N4
R1,R2,R3,R4

E
(
	N1,R1(u1)	N2,R2(u2)

)
	N3,R3(u3)	N4,R4(u4).

In the summation above, we may restrict indexes to N4 � 2(N1 + N2 + N3). Indeed, the function

U = E
(
	N1,R1(u1)	N2,R2(u2)

)
	N3,R3(u3)

is localized in Fourier in the set {(m,n) ∈ Z2, m = m1 +m2 +m3, n = n1 +n2 +n3, (m1, n1) ∈ Q1, (m2, n2) ∈ Q2,

(m3, n3) ∈ Q3}. Thus, if N4 > 2(N1 + N2 + N3), the integral over T 2
L of U	N4,R4(u4) is zero. Therefore

G =
∑

N4�2(N1+N2+N3)
R1,R2,R3,R4

α(N1,N2,N3,N4,R1,R2,R3,R4), (30)

where

α(N1,N2,N3,N4,R1,R2,R3,R4) =
∫

R×T 2
L

E
(
	N1,R1(u1)	N2,R2(u2)

)
	N3,R3(u3)	N4,R4(u4).

Contrary to the case of a typical cubic nonlinearity, α is not symmetric in N1, N2, N3, N4 and we need to split the
analysis in several cases. The worst situation is when the two lowest frequencies appear in the nonlocal term. Let us
first treat this case.

Case N3 = max(N1,N2,N3). Without loss of generality, we may assume N1 � N2 � N3. In this situation, we
decompose the set Q3 in small pieces of size N2L. Hence, we may write Q3 as a disjoint union of sets of the form
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Qα = Q(a,b) = {(m,n) ∈ Q3, Max(|a −m/L|, |b −n/L|)� N2} for some well-chosen set I of pairs α = (a, b) ∈ Q3
so that the union is disjoint. Using again an orthogonality argument, α is then

α(Ni,Ri) =
∫

R×T 2
L

E
(
	N1,R1(u1)	N2,R2(u2)

)
	Qα,R3(u3)	Q̃α,R4

(u4)

where

Q̃α = {
(m4, n4) ∈ Q4, m = −m1 − m2 − m3, n = −n1 − n2 − n3, (mi, ni) ∈ Qi, i = 1,2, (m3, n3) ∈ Qα

}
.

From Cauchy–Schwarz inequality in space and time and the boundedness of E on L2(T 2
L),∣∣α(Ni,Ri)

∣∣ � ∥∥	N1,R1(u1)	N2,R2(u2)
∥∥

L2L2

∥∥	Qα,R3(u3)	Q̃α,R4
(u4)

∥∥
L2L2 .

Note that since |Qα| � (N2L)2, we deduce by the triangle inequality that we also have |Q̃α| � C(LN2)
2 and thus we

can apply Lemma 4 to get

α(Ni,Ri) � CN
1
2 +ε(b)

1 N
1
2 +ε(b)

2 (R1R2R3R4)
β(b)

∥∥	N1,R1(u1)
∥∥

L2L2

× ∥∥	N2,R2(u1)
∥∥

L2L2

∑
α∈I

∥∥	Qα,R3(u3)
∥∥

L2L2

∥∥	
Q̃α,R4

(u4)
∥∥

L2L2 . (31)

Next from Cauchy–Schwarz inequality, we may write∑
α∈I

∥∥	Qα,R3(u3)
∥∥

L2L2

∥∥	
Q̃α,R0

(u0)
∥∥

L2L2 �
(∑

α∈I

∥∥	Qα,R3(u3)
∥∥2

L2L2

) 1
2
(∑

α∈I

∥∥	
Q̃α,R4

(u4)
∥∥2

L2L2

) 1
2

.

First, since (Qα)α is a partition of Q3, by orthogonality, we have for the first term on the right hand side above:(∑
α∈I

∥∥	Qα,R3(u3)
∥∥2

L2L2

)1/2

= ∥∥	Q3,R3(u3)
∥∥

L2L2 .

For the second term, the Q̃α’s recover Q4 but since there are not disjoint, strict orthogonality is broken. However,
using the same argument of almost orthogonality as for the proof of Strichartz estimate (each point of Q4 belongs to
a finite number of Q̃α), we deduce(∑

α∈I

∥∥	
Q̃α,R4

(u4)
∥∥2

L2L2

)1/2

� C
∥∥	Q4,R4(u0)

∥∥
L2L2 .

Thus,

α(Ni,Ri) � C(N1N2)
1/2+ε(b)(R1R2R3R4)

β(b)

3∏
i=0

∥∥	Qi,Ri
(ui)

∥∥
L2L2 . (32)

We reorder terms to make appear Bourgain’s norms of ui . The quantity

H =
∑

N4�2(N1+N2+N3)
R1,R2,R3,R4

N3=Max(N1,N2,N3)

α(Ni,Ri)

is bounded by

|H | �
∑

N1,R1

N
1
2 +ε(b)−s

1 R
β(b)−b

1 Ns
1Rb

1

∥∥	N1,R1(u1)
∥∥

L2L2

×
∑

N2,R2

N
1
2 +ε(b)−s

2 R
β(b)−b

2 Ns
1Rb

1

∥∥	N2,R2(u2)
∥∥

L2L2

×
∑ ∑

R
β(b)−b′
0 Rb′

4 R
β(b)−b

3 Rb
3

∥∥	N4,R4(u4)
∥∥

L2L2

∥∥	N3,R3(u3)
∥∥

L2L2 .
N4�6N3 R4,R3
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For the first two sums above, we use Cauchy–Schwarz inequality to recover Bourgain’s norm of ui . For instance for
the first term, we have if s > 1/2 + ε(b), and since b > β(b),

∑
N1,R1

N
1
2 +ε(b)−s

1 R
β(b)−b

1 Ns
1Rb

1

∥∥	N1,R1(u1)
∥∥

L2L2 � ‖u1‖X
s,b
L

( ∑
N1,R1

N
1+2ε(b)−2s
1 R

2(β(b)−b)

1

) 1
2

� C‖u1‖X
s,b
L

.

For the third sum, using again Cauchy–Schwarz inequality, and choosing b′ > β(b) (this condition is compatible with
1 − b − b′ > 0 since β(b) < 1 − b), we write

∑
R4

R
β(b)−b′
4 Rb′

4

∥∥	N4,R4(u4)
∥∥

L2L2 �
(∑

R4

R
2β(b)−2b′
4

) 1
2
(∑

R4

R2b′
4

∥∥	N4,R4(u4)
∥∥2

L2L2

) 1
2

� C
∥∥	N4(u4)

∥∥
X

0,b′
L

.

We treat the sum over R3 in the same way. Therefore,

|H | � ‖u1‖X
s,b
L

‖u2‖X
s,b
L

∑
N4�6N3

Ns
4

Ns
3
N−s

4

∥∥	N4(u4)
∥∥

X
0,b′
L

Ns
3

∥∥	N3(u3)
∥∥

X
0,b
L

.

Now we need the following lemma (see [3], Lemma 4.5 for a proof) to conclude.

Lemma 5. For every s > 0, there exists a constant C > 0 such that for all sequence (aN4)N4∈2N , (bN3)N3∈2N , we
have ∑

N4�6N3

(
N4

N3

)s

|aN4bN3 |� C

(∑
N4

a2
N4

)1/2(∑
N3

a2
N3

)1/2

.

To conclude in this case, we apply the lemma with

aN4 = N−s
4

∥∥	N4(u4)
∥∥

X
0,b′
L

, bN3 = Ns
3

∥∥	N3(u3)
∥∥

X
0,b
L

,

and obtain

|H | � C‖u1‖X
s,b
L

‖u2‖X
s,b
L

‖u3‖X
s,b
L

‖u4‖
X

−s,b′
L

. (33)

Case N3 < max(N1,N2,N3). In the summation (30), we assume for instance N1 � N3 � N2. This case is easier
since we do not need to decompose high frequencies. With the definition of α(Ni,Ri) and from Cauchy–Schwarz
inequality:∣∣α(Ni,Ri)

∣∣ � ∥∥	N1,R1(u1)	N2,R2(u2)
∥∥

L2L2

∥∥	N3,R3(u3)	N4,R4(u4)
∥∥

L2L2 .

Coming back to Lemma 4, we have directly

α(Ni,Ri) � (N1N3)
1/2+ε(R4R1R2R3)

β(ε)

4∏
i=1

∥∥	Ni,Ri
(ui)

∥∥
L2L2 .

Once we have this estimate, the end of the proof in this case is the same as the previous one and we obtain∑
N3<max(N1,N2,N3)

R1,R2,R3,R4
N4�6max(N1,N2,N3)

α(Ni,Ri)� C‖u1‖X
s,b
L

‖u2‖X
s,b
L

‖u3‖X
s,b
L

‖u4‖
X

−s,b′
L

. (34)

Estimates (33) and (34) provides Proposition 1. �
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Writing

Φ(u) = eitP u0 + i

t∫
0

ei(t−τ)P
(∣∣u(τ)

∣∣2
u(τ) + E

(∣∣u(τ)
∣∣2)

u(τ)
)
dτ

and using (18), Lemma 2 and Proposition 1, we have easily∥∥Φ(u)
∥∥

X
s,b
L,T

� C‖u0‖Hs + CT 1−b−b′ ‖u‖3
X

s,b
L,T

,

and ∥∥Φ(u) − Φ(v)
∥∥

X
s,b
L,T

� CT 1−b−b′(‖u‖2
X

s,b
L,T

+ ‖v‖2
X

s,b
L,T

)‖u − v‖
X

s,b
L,T

.

Therefore, we may close the fixed point argument in the ball B(0,R) of X
s,b
L,T with R = 2C‖u0‖Hs and T �

D/‖u0‖2/(1−b−b′)
Hs with D > 0 independent of the period L � 1. This proves (12) for low regularities and also the

first point (take L = 1) in Theorem 1.

Step 2. Let us now finish the proof of the lower bound (6). Let u ∈ Hs(T 2) solution to (2) and consider the family
for τ ∈ [0, T ):

vτ (t, x, y) = λ(τ)u
(
λ2(τ )t + τ,λ(τ)x,λ(τ)y

)
,

where λ(τ) = ‖u(τ)‖−1/s

Hs(T 2)
. For all τ , vτ is a function on the torus T1/λ(τ) and satisfies Eq. (11) for L = 1/λ(τ).

Moreover, it is easy to check that ‖vτ (0)‖L2 = ‖u(0)‖L2 and ‖(−	)s/2(vτ (0))‖L2 � 1. If we denote by Tτ the max-
imal time for vτ , from (12), we deduce the uniform bound, Tτ � C > 0. But Tτ = (T − τ)/λ2(τ ) where T is the
maximal time for u and this with the uniform lower bound on Tτ proves the lower bound (6).
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