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Abstract

The paper is devoted to the study of a stabilization problem for the 2D incompressible Euler system in an infinite strip with
boundary controls. We show that for any stationary solution (c,0) of the Euler system there is a control which is supported in a
given bounded part of the boundary of the strip and stabilizes the system to (c,0).

1. Introduction

We consider the incompressible two-dimensional Euler system

u̇ + 〈u,∇〉u + ∇p = 0, divu = 0, (1.1)

where u = (u1, u2) and p are unknown velocity field and pressure of the fluid, and

〈u,∇〉v =
3∑

i=1

ui(t, x)
∂

∂xi

v.

The space variable x = (x1, x2) belongs to the strip D defined by

D := {
(x1, x2): x1 ∈ R, x2 ∈ (−1,1)

}
. (1.2)

Let us take two open intervals (a, b), (a + d, b + d) ⊂R and denote

Γ0 = (a, b) × {1} ∪ (a + d, b + d) × {−1}. (1.3)

The aim of this paper is the study of stabilization of (1.1) with boundary controls supported by Γ0. System (1.1) is
completed with the boundary and initial conditions

u · n = 0 on Γ \ Γ0, (1.4)

u(x,0) = u0(x), (1.5)

where Γ := ∂D and n is the outward unit normal vector on Γ . In particular, (1.4) is equivalent to u2 = 0 on Γ \ Γ0.
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For any integer s � 0 we denote by Hs(D) the space of vector functions u = (u1, u2) whose components belong
to the Sobolev space of order s and by ‖ · ‖s,D the corresponding norm. If there is no confusion, we drop the index D.
In the case s = 0, we write ‖ · ‖ := ‖ · ‖0. For any integer s > 0 we define Hs(D) as the space of distributions u in D

with ∇u ∈ Hs−1(D). We equip Hs(D) with the semi-norm

‖u‖Hs (D) := ‖∇u‖s−1.

We denote by Ḣ s(D) the quotient space Hs(D)/R. The following theorem is our main result.

Main result. Let s � 4 be an integer. Then for any constant c ∈ R and initial function u0 ∈ Hs(D) that decays fast at
infinity and satisfies the relations

divu0 = 0, u0 · n = 0 on Γ \ Γ0

there exists a solution (u,p) ∈ C(R+,C(D) ∩ Ḣ s(D)) × C(R+, Ḣ s(D)) of (1.1), (1.4) and (1.5) such that

lim
t→∞

(∥∥u(·, t) − (c,0)
∥∥

L∞ + ‖∇u‖s−1 + ‖∇p‖s−1
) = 0.

For the exact statement see Theorem 3.1. In this formulation the control is not given explicitly, but we can assume
that control acts on the system as a boundary condition on Γ0.

Before turning to the ideas of the proof, let us describe in a few words some previous results on the controllability
of Euler and Navier–Stokes systems. Coron [7] introduced the return method to study a stabilization problem for
ODE’s, then using this method he proved in [8] the exact boundary controllability of 2D incompressible Euler system
in a bounded domain. Glass [14] generalized this result for 3D Euler system. Chapouly [6] using return method
proved the global null controllability of the Navier–Stokes system in rectangle. Recently, Glass and Rosier [15] proved
the controllability of the motion of a rigid body, which is surrounded by an incompressible fluid. The asymptotic
stabilization of 2D Euler equation by stationary feedback boundary controls is studied by Coron [10] and Glass [16].

Controllability of Euler and Navier–Stokes systems with distributed controls is studied in [2,13,19,20]; see also the
book [11] for further references.

Notice that the above papers concern the problem of controllability of the fluid in a bounded domain. In this paper,
we develop Coron’s return method to get the controllability of velocity of 2D Euler system in an unbounded strip.
This method consists in reducing the controllability of nonlinear system to the linear one. To this end, one constructs
a particular solution (u,p) of Euler system and a sequence of balls {Bi} covering D, such that

(P ) Any ball Bi driven by the flow of u leaves D through Γ0 at some time.

Then the linearized system around u is controllable. In our case, since the domain D is unbounded, the number of balls
Bi is infinite, thus we cannot construct a bounded function u, whose flow moves all balls outside D in a finite time.
However, we can find a particular solution u such that property (P ) holds in infinite time. This proves the stabilization
of linearized system in infinite time.

To show that controllability of linearized system implies that of the nonlinear system, we need to prove that (P )

also holds for any ũ sufficiently close to u. This is obvious in the case of bounded domain. In our case, to prove this,
we need some additional properties for u. In particular, we need to construct a solution u, which decays at infinity
faster than 1/x2

1 . As our particular solution u is a combination of the Green functions of the Laplacian with Neumann
boundary condition, we need to prove that Green functions decay at infinity. This property is a consequence of elliptic
regularity and some explicit formulas for solutions of the Laplace equation in a strip.

The paper is organized as follows. In Section 2, we give preliminaries on Poisson and Euler equations in an
unbounded strip. The main results of the paper are presented in Section 3. In Section 4, we construct the particular
solution u. In Appendix A, we prove an auxiliary result used in Section 2.

Notation. Let JT := [0, T ). The space of continuous functions u :JT → X is denoted by C(JT ,X). For any integer
s � 0 or s = ∞, we denote

Cs
b(D) = {

u ∈ Cs(D): ‖u‖L∞(D) < ∞}
.
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We set Ḣ∞(D) := ⋂∞
s=0 Ḣ s(D). Define

S(D) := {
u ∈ L2(D): |x1|α∂βu(x1, x2) ∈ L2(D) for any α ∈R+, β ∈ Z

2+
}
.

For a vector field u = (u1, u2) we set

curlu = ∂1u2 − ∂2u1.

The interior of a set K is denoted by int(K). Let B(x0, r) be the closed ball in R
2 of radius r centred at x0. We denote

by C a universal constant whose value may change from line to line.

2. Preliminaries

In this section, we present some auxiliary results on Poisson and Euler equations in an unbounded strip. The
methods used in their proofs are well known and in many cases we confine ourselves to a brief description of the main
ideas.

2.1. Poisson equations in an unbounded strip

First, let us describe the spaces Ḣ s(D).

Proposition 2.1. For any integer s � 1 we have

(i) The space Ḣ s(D) is complete.
(ii) Hs(D) = {u ∈ Hs

loc(D): ∇u ∈ Hs−1}.
(iii) If s � 3, then for any u ∈Hs(D) there is a constant C depending on u such that∣∣u(x1, x2)

∣∣ � C|x1| + C

holds for all x ∈ D.

Proof. Let {un} ⊂ Ḣ s(D) be a Cauchy sequence. Then there is v ∈ Hs−1(D) such that ∇un → v in Hs−1(D) as
n → ∞, and for any ϕ ∈ C∞

0 (D) such that divϕ = 0, we have

0 = lim
n→∞(∇un,ϕ)L2 = (v,ϕ)L2 .

Hence, v = ∇z, where z ∈ Ḣ s(D). This proves that Ḣ s(D) is complete. Now let us prove assertion (ii). Clearly the
space in the right-hand side is contained in Ḣ s(D). Let us take a function u ∈ Ḣ s(D), a compact set K ⊂ D and
let us show that u ∈ Hs(K). Take two functions χ,χ1 ∈ C∞

0 (D) and a compact set K1 ⊂ D with int(K1) ⊃ K such
that χ = 1 in K1 and χ1 = 1 in K̃1 := suppχ . Then there exists r ∈ N such that χ1u ∈ H−r (D). This implies that
u ∈ H−r (K̃1), hence

�(χu) = 2∇χ∇u + χ�u + u�χ ∈ H min(−r;s−2)(K̃1).

The elliptic regularity implies χu ∈ Hmin(−r+2;s)(D), thus u ∈ Hmin(−r+2;s)(K1). Repeating this argument for a
compact set K2 ⊂ K1 with int(K2) ⊃ K we can show that u ∈ Hmin(−r+4;s)(K2). Iterating this, we get u ∈ Hs(K).
This completes the proof of assertion (ii).

It is easy to see that (ii) implies (iii). Indeed, from (ii) we get

u(x1, x2) =
x1∫

0

∂1u(y, x2)dy + u(0, x2).

The Sobolev inequality yields (iii). �
Now we summarize some facts about Poisson equation. Let us take a non-negative function γ ∈ C∞

0 (R) such that
suppγ = [a, b] and γ = 0 in (a, b) and define
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Fig. 1. Domain D̃.

D̃ := {
(x1, x2): x1 ∈ R, x2 ∈ (−1 − γ (x1 − d),1 + γ (x1)

)}
(2.1)

(see Fig. 1).
Let us take D′ = D or D′ = D̃ and consider the Dirichlet problem for the Poisson equation:

�u = f in D′, (2.2)

u = 0 on Γ ′, (2.3)

where Γ ′ = ∂D′ and f ∈ L2(D′). We say that u ∈ H 1
0 (D′) is a solution of (2.2), (2.3) if∫

D′
∇u∇θ dx = −

∫
D′

f θ dx

for any θ ∈ H 1
0 (D′). We have the following result for the well-posedness of this problem.

Proposition 2.2. For any integer s � 0 and for any f ∈ Hs(D′) problem (2.2), (2.3) has a unique solution u ∈
Hs+2(D′). Moreover,

‖u‖s+2 � C‖f ‖s , (2.4)

where C depends only on s.

Proof. The existence of the solution u ∈ H 1
0 (D′) is a consequence of the Riesz representation theorem. Clearly, we

have

‖∇u‖2 � C‖f ‖‖u‖. (2.5)

The Poincaré inequality applied to u(x1, ·) gives

‖u‖� C‖∂2u‖.
Combining this with (2.5), we obtain

‖u‖1 � C‖f ‖. (2.6)

To show the regularity of the solution and estimate (2.4), we need the following lemma.

Lemma 2.3. For any integer s � 1 we have

Hs
(
D′) = {

z ∈ L2(D′): curl z ∈ Hs−1(D′), div z ∈ Hs−1(D′), z · n ∈ Hs−1/2(Γ ′)},
where n is the outward unit normal vector on Γ ′. Moreover, any function z ∈ Hs(D′) satisfies the inequality

‖z‖s � C
(‖z‖ + ‖curl z‖s−1 + ‖div z‖s−1 + ‖z · n‖s−1/2

)
,

where C depends only on s.

The proof of this lemma is given in Appendix A. Let us denote z = ∇⊥u := (∂2u,−∂1u). Then curl z = −�u =
−f , div z = 0. Notice that (2.3) implies that z · n = 0. It follows from Lemma 2.3 and inequality (2.6) that z ∈
Hs+1(D′) and ‖z‖s+1 � C‖f ‖s . Thus, we obtain u ∈ Hs+2(D′) and (2.4). �

Let us take g ∈ H 1(D′) and consider the Neumann problem for the Poisson equation:
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�u = divg in D′, (2.7)
∂u

∂n
= g · n on Γ ′. (2.8)

We say that u ∈ Ḣ 1(D′) is a solution of (2.7), (2.8) if for any θ ∈ H 1(D′) we have∫
D′

∇u∇θ dx =
∫
D′

g∇θ dx.

Proposition 2.4. For any integer s � 1 and g ∈ Hs(D′) problem (2.7), (2.8) has a unique solution u ∈ Ḣ s+1(D′).
Moreover,

‖u‖Ḣ s+1 � C‖g‖s . (2.9)

Proof. The Riesz representation theorem implies the existence of the solution u ∈ Ḣ 1(D′). Lemma 2.3 applied to
z := ∇u gives (2.9). �

Now we consider the problem

�Ga = ∂1δa in D̃, (2.10)
∂Ga

∂n
= 0 on ∂D̃, (2.11)

where δa is the Dirac delta function concentrated at a = (a1, a2) ∈ D̃.

Proposition 2.5. Problem (2.10), (2.11) has a solution Ga ∈ C∞(D̃ \ {a}). Moreover, the following assertions hold:

(i) For any open neighbourhood Q of a and for any integer s � 1, the solution Ga is uniquely determined by the
additional condition that it belongs to Ḣ s(D̃ \ Q).

(ii) For any x ∈ D̃ \ {a}

∇Ga(x) = − 1

2π

( |x − a|2 − 2(x1 − a1)
2

|x − a|4 ,
−2(x1 − a1)(x2 − a2)

|x − a|4
)

+ ψa(x), (2.12)

where ψa ∈ H∞(D̃).
(iii) Let a ∈ D̃ \ D, then Ga ∈ Ḣ∞(D) and for any integers 1 � i, j � 2 we have

∂i∂jGa(x1, x2) ∈ S(D). (2.13)

(iv) For any fixed x ∈ D̃ the function Ga(x) is analytic in a ∈ D̃ \ {x}.

Proof. The existence of a solution Ga ∈ C∞(D̃ \ {a}) will be established when proving assertion (ii). To prove the
uniqueness of the solution, we assume that there are two solutions G1,a and G2,a . For G̃ = G1,a − G2,a we have

�G̃ = 0 in D̃,

∂G̃

∂n
= 0 on ∂D̃.

Let χ ∈ C∞
0 (D̃) with χ = 1 in Q. Then

�(χG̃) = h,

where h ∈ C∞
0 (D̃). The elliptic regularity for a bounded domain implies that χG̃ ∈ H∞(D̃). Since G̃ ∈ Ḣ s(D̃ \ Q),

we get G̃ ∈ Ḣ s(D̃). It follows from Proposition 2.4 that G̃ = 0.
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To prove (ii), we seek the solution in the form

Ga = ∂1(Faχ) + ua, (2.14)

where Fa(x) = − 1
2π

ln |x − a| is the fundamental solution of the Laplace operator in R
2, χ ∈ C∞

0 (D̃), χ is 1 in a
neighbourhood of a. Then ua must be the solution of the problem

�ua = −∂1(2∇Fa · ∇χ + Fa�χ) := ∂1f in D̃,

∂ua

∂n
= 0 on ∂D̃.

Since f ∈ C∞
0 (D̃), applying Proposition 2.4 for g = (f,0), we conclude that this problem has a solution ua ∈ H∞(D̃).

Property (2.12) follows from the construction of Ga .
Now let us show (2.13). We have that Ga satisfies the following problem in D:

�Ga = 0 in D, (2.15)
∂Ga

∂n
= ϕ on Γ, (2.16)

where ϕ ∈ C∞(Γ ) and suppϕ ⊂ Γ 0. To show that the second derivatives of the solution belong to S(D), let us apply
the Fourier transform in x1 to (2.15), (2.16). We obtain

d2

dx2
2

Ĝa − ξ2Ĝa = 0 in D,

dĜa

dx2
(ξ,−1) = ϕ̂1(ξ),

dĜa

dx2
(ξ,1) = ϕ̂2(ξ),

where Ĝa , ϕ̂1 and ϕ̂2 are Fourier transforms of Ga , ϕ(·,−1) and ϕ(·,1), respectively. The solution of this ODE is
given by

Ĝa(ξ, x2) = ϕ̂2 − ϕ̂1

2ξ sinh(ξ)
cosh(ξx2) + ϕ̂2 + ϕ̂1

2ξ cosh(ξ)
sinh(ξx2).

Since ϕ1 and ϕ2 are compactly supported, we have

F(∂i∂jGa) ∈ S(D), 1 � i, j � 2,

whence it follows that ∂i∂jGa ∈ S(D). This completes the proof of (iii).
Let Ω be any domain such that Ω ⊂ D̃ and Ω ∩ (D̃ \ D) = ∅. Then for any fixed x ∈ Ω the function Ga(x) is

analytic in a ∈ Ω \ {x}. Indeed, let χ in (2.14) be 1 in Ω . Then the analyticity of Ga(x) is consequence of the facts
that Fa is analytic in a and ua is a linear operator in Fa . Since Ga is the unique solution of (2.10), (2.11), we have the
analyticity of Ga(x) in D̃ \ {x}. �
2.2. Euler equations in an unbounded strip

We consider the incompressible Euler system:

u̇ + 〈u,∇〉u + ∇p = 0, divu = 0 in D, (2.17)

u · n = 0 on Γ, (2.18)

u(x,0) = u0(x). (2.19)

It is well known that if D is a bounded domain or if D = R
2, then problem (2.17)–(2.19) is well posed in various

function spaces (e.g., see [17,18,22]).
In this subsection, we study the well-posedness of Euler system in D defined by (1.2).
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Definition 2.6. For any integer s � 3 we say that (u,p) is a solution of Euler system if (u,p) ∈ C(JT ,Hs(D)) ×
C(JT , Ḣ s+1(D)) and (2.17) is satisfied in the sense of distributions.

Let us show that the Euler system is equivalent to the problem

ẇ + 〈u,∇〉w = 0, w(x,0) = curlu0(x), (2.20)

curlu = w, divu = 0, u · n|Γ = 0. (2.21)

Clearly, if (u,p) is a solution of the Euler system, then (2.20), (2.21) hold. Now let us show that to any solution

(u,w) ∈ C
(
JT ,Hs(D)

) ∩ C1(JT ,Hs−1(D)
) × C

(
JT ,Hs−1(D)

)
of (2.20), (2.21) there corresponds a unique solution (u,p) ∈ C(JT ,Hs(D)) × C(JT , Ḣ s+1(D)) of (2.17)–(2.19).
From (2.20) and (2.21) it follows that

curl
(
u̇ + 〈u,∇〉u) = 0.

Hence, there exists p ∈ C(JT , Ḣ s(D)) such that −∇p = u̇ + 〈u,∇〉u. It is easy to see that

−div∇p = div
(〈u,∇〉u) =

2∑
i,j=1

∂iuj ∂jui ∈ Hs−1, curl∇p = 0,

−∂p

∂n
= (〈u,∇〉u) · n = 〈u,∇〉(u · ñ) −

2∑
i,j=1

ujui∂j ñi

= −
2∑

i,j=1

ujui∂j ñi ∈ Hs−1/2,

where ñ is a regular extension of n. Thus, it follows from Lemma 2.3 that ∇p ∈ C(JT ,Hs(D)), whence we conclude
that p ∈ C(JT , Ḣ s+1(D)).

We have the following result on the local well-posedness of Euler system. The ideas used in the proof of existence
of a solution play an important role in the study of stabilization problem (see Section 3). Therefore we present a rather
complete proof, even though we do not really need this result.

Theorem 2.7. Let s � 4. For any u0 ∈ Hs(D) satisfying the conditions

divu0 = 0,

u0 · n = 0 on Γ,

there is T∗ = T∗(‖u0‖s) such that system (2.17)–(2.19) has a unique solution (u,p) ∈ C(JT ∗ ,H
s(D)) ×

C(JT ∗ , Ḣ
s+1(D)).

Proof. Uniqueness. To prove the uniqueness, we argue as in the case of bounded domain. We assume that there are
two solutions u1 and u2. Then for v = u1 − u2, we have

v̇ + 〈u1,∇〉v + 〈v,∇〉u2 + ∇p = 0,

divv = 0, v · n|Γ = 0, v(x,0) = 0. (2.22)

Multiplying (2.22) by v and integrating over D, we get

∂t

∥∥v(·, t)∥∥2 �−
∫
D

〈u1,∇〉v · v dx + C
∥∥v(·, t)∥∥2 −

∫
D

∇p · v dx, (2.23)

where C > 0 is a constant depending only on u2. Since u1 · n = 0, the first term on the right-hand side of (2.23) is
zero. Let us show that the last term is also zero. Let us denote
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Ω(R) := {
x ∈ D: |x1| < R

}
,

and let χ ∈ C∞(D) be such that

χ(x) =
{

0, if x /∈ Ω(2),
1, if x ∈ Ω(1).

Clearly, we have

lim
R→∞

∫
D

χ

(
x

R

)
∇p(x) · v(x)dx =

∫
D

∇p(x) · v(x)dx.

On the other hand, integrating by parts, we obtain∫
D

χ

(
x

R

)
∇p(x) · v(x)dx = −

∫
Ω(2R)\Ω(R)

∇χ

(
x

R

)
p(x)

R
· v(x)dx.

Since p ∈ Ḣ s+1, from assertion (iii) of Proposition 2.1 we have

sup
x∈Ω(2R)

∣∣∣∣p(x)

R

∣∣∣∣ < C,

where C does not depend on R. Thus, dominated convergence theorem yields∫
D

∇p(x) · v(x)dx = 0.

Applying the Gronwall inequality to (2.23), we obtain v = 0.
Existence. To prove the existence of the solution, we shall need the following result.

Lemma 2.8. Let ũ ∈ C(R+,H s), ũ · n|Γ ×R+ = 0, f ∈ C(R+,H s) and w0 ∈ Hs , s � 3. Then the problem

∂tw + 〈ũ,∇〉w = f, (2.24)

w(x,0) = w0, (2.25)

has a unique solution w ∈ C(R+,H s), which satisfies the inequality

∥∥w(·, t)∥∥
s
� ‖w0‖s +

t∫
0

(∥∥f (·, τ )
∥∥

s
+ C

∥∥w(·, τ )
∥∥

s

∥∥∇ũ(·, τ )
∥∥

s−1

)
dτ. (2.26)

Proof. Let us denote by φg : D̃ ×R+ → D̃ the flow associated to g, i.e., the solution of the problem

∂φg

∂t
= g

(
φg, t

)
,

φg(x,0) = x.

Since (2.24), (2.25) is an inhomogeneous transport equation, its solution is given by

w
(
φũ(x, t), t

) = w0(x) +
t∫

0

f
(
φũ(x, τ ), τ

)
dτ.

Let us derive formally inequality (2.26). Taking the ∂α := ∂α

∂xα , |α| � s derivative of (2.24) and multiplying the
resulting equation by ∂αw, we get
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1

2

d

dt

∥∥∂αw
∥∥2 =

∫
D

∂αf ∂αw dx −
∫
D

∂α(ũ · ∇)w · ∂αw dx

�
∣∣∣∣
∫
D

(ũ · ∇)∂αw · ∂αw dx

∣∣∣∣ + ‖f ‖s‖w‖s + C‖∇ũ‖s−1‖w‖2
s .

Integrating by parts, one verifies that the first integral in the right-hand side vanishes. Integrating in time, we ob-
tain (2.26). �
Lemma 2.9. Let w ∈ Hs, s � 0. Then the problem

curl z = w, (2.27)

div z = 0, (2.28)

z · n|Γ = 0 (2.29)

has a unique solution z ∈ Hs+1. Moreover, there is C > 0 depending only on s such that

‖z‖s+1 � C‖w‖s . (2.30)

Proof. Let us consider the following Dirichlet problem for the Poisson equation:

�v = w in D,

v = 0 on Γ.

By Proposition 2.2, v ∈ Hs+2 and ‖v‖s+2 � C‖w‖s . Then for z = −∇⊥v properties (2.27)–(2.30) are satisfied. �
We now return to the proof of the theorem. The proof is based on some ideas from [3] and [5].

Step 1. Let

E :Hk(D) → Hk
(
R

2), 0 � k � s + 1

be an extension operator. Let ρ ∈ S(R2) be the function such that

ρ̂(ξ) =
{

exp
(− |ξ |2

1−|ξ |2
)
, |ξ | < 1,

0, |ξ | � 1.

Define Jm : Hs(D) → Hs+1(D) by

Jm(v) := (
m2ρ(mx) ∗ E(v)

)∣∣
D

. (2.31)

For u0 ∈ Hs(D) we define um
0 := Jm(u0). Then

um
0 → u0 in Hs(D),

∥∥um
0

∥∥
s
� C‖u0‖s ,

∥∥um
0

∥∥
s+1 �mC‖u0‖s , (2.32)∥∥um

0 − uk
0

∥∥
s
= o(1) and

∥∥um
0 − uk

0

∥∥
1 = o

(
1

ms−1

)
as m → ∞, (2.33)

where (2.33) holds uniformly in k > m. Using Lemmas 2.8 and 2.9, we define the sequences um ∈ C(R+,H s+1) and
wm ∈ C(R+,H s) by

u0 = u0,

∂tw
m+1 + 〈

um,∇〉
wm+1 = 0, wm+1(0) = curlum+1

0 ,

curlum+1 = wm+1, divum+1 = 0, um+1 · n|Γ = 0.

Our strategy is to show that sequence um is convergent and the limit is the solution of Euler system. From (2.26) we
derive
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∥∥wm(·, t)∥∥
i
�

∥∥curlum
0

∥∥
i
+ C1

t∫
0

∥∥wm(·, τ )
∥∥

i

∥∥um−1(·, τ )
∥∥

i
dτ (2.34)

for i = s − 1, s.

Step 2. In this step, we show that there exists a time T∗ = T∗(‖u0‖s) such that for any t ∈ JT∗∥∥wm(·, t)∥∥
s−1 � C

∥∥um
0

∥∥
s
,

∥∥wm(·, t)∥∥
s
� C

∥∥um
0

∥∥
s+1 � mC‖u0‖s . (2.35)

By induction, let us prove for i = s − 1, s the inequality∥∥wm(·, t)∥∥
i
� ym(t), (2.36)

where C does not depend on m and ym(t) is the solution of

ẏm = C1y
2
m, ym(0) = ∥∥curlum

0

∥∥
i
. (2.37)

Clearly (2.36) holds for m = 0 for a sufficiently large C. Assume that it holds also for m − 1 and let us prove it for m.
From the construction of ρ̂ we have ‖um−1

0 ‖i � ‖um
0 ‖i , hence ym−1 � ym. Thus, from (2.34), (2.37) and induction

hypothesis, we have

∥∥wm(·, t)∥∥
i
− ym � C1

t∫
0

(∥∥wm(·, τ )
∥∥

i

∥∥um−1(·, τ )
∥∥

i
− y2

m

)
dτ

� C1

t∫
0

ym

(∥∥wm(·, τ )
∥∥

i
− ym

)
dτ.

Inequality (2.36) follows from the Gronwall inequality. It is easy to see that (2.36) yields (2.35).

Step 3. Now let us show that wm converges in C(JT ∗ ,H
s−1). In view of Lemma 2.9, sequence um converges in

C(JT ∗ ,H
s) and the limit u is the solution of Euler problem.

Notice that for m < k we have

∂t

(
wm − wk

) + 〈
uk−1,∇〉(

wm − wk
) = 〈

uk−1 − um−1,∇〉
wm. (2.38)

Denote Km,k(t) := ‖wm(·, t) − wk(·, t)‖s−1. Lemma 2.8 implies

Km,k(t) �
∥∥um

0 − uk
0

∥∥
s
+ C

t∫
0

(
Km,k(τ )

∥∥uk−1(·, τ )
∥∥

s−1

+ ∥∥um−1(·, τ ) − uk−1(·, τ )
∥∥

s−1

∥∥wm(·, τ )
∥∥

s

)
dτ. (2.39)

On the other hand,∥∥wm
∥∥

s
� Cm,

∥∥um−1 − uk−1
∥∥

s−1 �
∥∥um−1 − uk−1

∥∥ 1
s−1
1

∥∥um−1 − uk−1
∥∥ s−2

s−1
s

. (2.40)

Assume for a moment that

Um,k := ∥∥wm−1 − wk−1
∥∥ � o

(
1

ms−1

)
. (2.41)

Substituting (2.40) into (2.39) and using (2.33) and (2.41), we obtain

Km,k(t) � o(1) + C

t∫
0

(
Km,k(τ )

∥∥uk−1(·, τ )
∥∥

s−1

)
dτ.

Using the Gronwall inequality, we obtain the convergence of wm in C(JT ∗ ,H
s−1(D)).
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Step 4. To complete the proof of the theorem, it remains to show (2.41). Taking the scalar product of (2.38) with
wm − wk in L2, we get

Um,k(t) � C
∥∥um

0 − uk
0

∥∥
1 + C

t∫
0

Um−1,k−1(t1)dt1.

Iterating this inequality, one deduces

Um+p,k+p(t) � C
∥∥u

m+p

0 − u
k+p

0

∥∥
1 + C

t∫
0

Um+p−1,k+p−1(t1)dt1

� C
∥∥u

m+p

0 − u
k+p

0

∥∥
1 + C

t∫
0

(
C

∥∥u
m+p−1
0 − u

k+p−1
0

∥∥
1 + C

t1∫
0

Um+p−2,k+p−2(t2)

)
dt2 dt1

� C
∥∥u

m+p

0 − u
k+p

0

∥∥
1 + C

t∫
0

(
C

∥∥u
m+p−1
0 − u

k+p−1
0

∥∥
1 + · · ·

+ C

tp−1∫
0

(
C

∥∥um+1
0 − uk+1

0

∥∥
1 + C

tp∫
0

Um,k(tp)

))
dtp · · ·dt2 dt1.

Hence, for any t ∈ JT∗ we obtain

Um+p,k+p �
p∑

j=1

Cp−j+1T∗p−j

(p − j)!
∥∥u

m+j

0 − u
k+j

0

∥∥
1 + Cp+1T∗p

p! max
t∈[0,T∗]

Um,k. (2.42)

Since
∞∑

j=1

Cj+1T∗j

j ! < ∞,

inequalities (2.33) and (2.42) imply (2.41). �
Remark 2.10. We have the following assertions:

• Adapting the Beale–Kato–Majda criterion (see [4]) for an unbounded strip, one can prove that the solution of
(2.17)–(2.19) is global in time. However, we shall not need this result.

• Let us take any non-zero function g ∈ Hs−1/2(Γ ). If the homogeneous boundary condition (2.18) is replaced by
u · n|Γ = g, then, the result of Theorem 2.7 holds if we add the boundary condition

curlu = φ where u · n < 0.

See [23] for the case of a bounded domain.

3. Main result

Let D and Γ0 be defined by (1.2) and (1.3). Consider the Euler system:

u̇ + 〈u,∇〉u + ∇p = 0 in D × (0,∞), (3.1)

divu = 0, (3.2)

u · n = 0 on Γ \ Γ0 ×R+, (3.3)

u(x,0) = u0(x). (3.4)
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For any integer s we denote

X s(D) = C
(
R+,Cb(D) ∩ Ḣ s(D)

)
,

and 〈x1〉 := (1 + x2
1)1/2. The following theorem is our main result.

Theorem 3.1. For any constants α,β > 0, c ∈ R and integer s � 4, for any initial data u0 ∈ Hs(D) such that

divu0 = 0, (3.5)

u0 · n = 0 on Γ \ Γ0, (3.6)∥∥exp
(
α〈x1〉2+β

)
curlu0(x1, x2)

∥∥
s−1 < ∞ (3.7)

there is a solution (u,p) ∈ X s(D) × C(R+, Ḣ s(D)) of (3.1)–(3.4) with

lim
t→∞

(∥∥u(·, t) − (c,0)
∥∥

L∞(D)
+ ∥∥∇u(·, t)∥∥

s−1 + ∥∥∇p(·, t)∥∥
s−1

) = 0. (3.8)

As explained in the Introduction, in this formulation the control is not given explicitly, but we can assume that con-
trol acts on the system as a boundary condition on Γ0. So we show that there exists control η ∈ C∞(R+,H s−1/2(Γ0))

such that there is a solution of our system with u ·n|Γ0 = η verifying (3.8). Moreover, we show that η(x, t) = η1(x, t)+
μ(t)u0(x) · n(x), where η1 ∈ C∞(Γ0 ×R+) does not depend on u0, limt→∞ ‖η1(·, t)‖ = 0 and μ ∈ C∞

0 ([0,∞)) is a
non-negative function such that μ(0) = 1. As we mentioned in Remark 2.10, we are not able to show that this solution
is unique.

Using a standard scaling argument for Euler system, we can reduce this theorem to a small neighbourhood of the
origin.

Theorem 3.2. There exists ε > 0 such that for any u0 ∈ Hs(D) and c ∈R verifying (3.5)–(3.7) and

‖u0‖s < ε, |c| < ε

there is a solution (u,p) ∈ X s(D) × C(R+, Ḣ s(D)) of (3.1)–(3.4) satisfying (3.8).

Proof of Theorem 3.1. Let ε > 0 be the constant in Theorem 3.2. Take any u0 ∈ Hs(D) and c ∈ R verifying (3.5)–
(3.7). Let M > 0 be such that∥∥∥∥u0

M

∥∥∥∥
s

< ε,

∣∣∣∣ c

M

∣∣∣∣ < ε.

By Theorem 3.2, there exists a solution (uM,pM) of (3.1)–(3.3) with initial condition uM(0) = u0
M

, such that

lim
t→∞

(∥∥∥∥uM(·, t) −
(

c

M
,0

)∥∥∥∥
L∞(D)

+ ∥∥∇uM(·, t)∥∥
s−1 + ∥∥∇pM(·, t)∥∥

s−1

)
= 0.

Then (u,p) = (MuM(x,Mt),M2pM(x,Mt)) is a solution of our system with u(0) = u0 and it satisfies (3.8). �
Proof of Theorem 3.2. The proof of this theorem is based on generalization of the Coron return method to the case
of an unbounded strip. It consists in construction of a particular solution (u,p) of (3.1)–(3.3) such that the solution of
linearized system around (u,p) verifies property (3.8). Then, in the small neighbourhood of u, we construct a solution
u of Euler system satisfying (3.8).

Step 1. In this step, we construct a particular solution (u,p) of (3.1)–(3.3) such that any point of strip D, driven by
the flow of u, leaves D at some time. Let D̂ ⊂R

2 be the strip

D̂ := {
(x1, x2): x1 ∈ R, x2 ∈ (−2,2)

}
.

Let us admit the proposition below, which is proved in Section 4.1.
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Proposition 3.3. There are scalar functions θi ∈ C1(D̂ ×R+) with ∇θi ∈X s(D̂), open balls Bi , a sequence τi ⊂R+,
constants L, λ and an integer N ∈N such that the following properties are true.

1. Covering. For any integer k � 0, we have

[k, k + 1] × [−1,1] ⊂
N⋃

j=1

B2kN+j , (3.9)

[−k − 1,−k] × [−1,1] ⊂
N⋃

j=1

B(2k+1)N+j . (3.10)

In particular, the union of balls Bi covers D and any square [k, k + 1] × [−1,1] is covered by N balls.
2. Support.

supp θi ⊂ D̂ × (0, τi). (3.11)

3. Vector field. The time dependent vector field ∇θi is divergence-free in D and tangent to Γ \ Γ0 and ∂D̂:

�θi = 0 in D × [0, τi], (3.12)

∂θi

∂n
= 0 on (Γ \ Γ0) ∪ ∂D̂ × [0, τi]. (3.13)

4. Time decay. For any i � 1 we have

∥∥∇θi(·, t)∥∥X s (D̂)
� 1

i
for any t ∈ [0, τi], (3.14)

τi � Li. (3.15)

5. Flow. For any i � 1 and c ∈R with |c| < λ the flow associated with ∇θ i + (c,0) is such that

φ∇θi+(c,0)
(
Bi, τi

) ⊂ D̂ \ D. (3.16)

Moreover, there are two closed balls B̃1, B̃2 ⊂ D̂ \ D such that

∞⋃
i=1

φ∇θi+(c,0)
(
Bi, τi

) ⊂ B̃1 ∪ B̃2. (3.17)

Let us set t0 = 0,

ti = 2
i∑

j=1

τj , ti+1/2 = ti + ti+1

2
, i � 1. (3.18)

We define θ in the following way:

θ(x, t) = θi(x, t − ti−1) for t ∈ [ti−1, ti−1/2], (3.19)

θ(x, t) = −θi(x, ti − t) for t ∈ [ti−1/2, ti]. (3.20)

Notice that from the construction of ti we have ti − ti−1/2 = τi . Thus (3.11) shows that θ ∈ C1(D̂ × R+) and ∇θ ∈
X s(D̂). We define

u := ∇θ + (c,0),

p := −∂t θ − |∇θ |2
2

− c∂1θ.

Then (u,p) is a solution of (3.1)–(3.3). Indeed, by construction, (u,p) satisfies (3.1). Properties (3.12) and (3.13)
imply (3.2) and (3.3), respectively. Moreover, it follows from (3.14), (3.16) that for any i ∈N, we have
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φu
(
Bi, ti−1/2

) ⊂ D,

lim
t→∞

(∥∥u(·, t) − (c,0)
∥∥

L∞(D)
+ ∥∥∇u(·, t)∥∥

s−1

) = 0. (3.21)

We deduce from (3.19) and (3.20) that

φu(x, ti) = x (3.22)

for any i � 1 and x ∈ D̂. We shall need the following result, which is proved in Section 4.1.

Proposition 3.4. There is a constant ν > 0 such that the functions θ i in Proposition 3.3 can be chosen in a way that,
for any u ∈ X s(D̂) satisfying the inequality

∞∫
0

∥∥u(t) − u(t)
∥∥

s,D̂
dt � ν,

we have φu(Bi, ti−1/2) ⊂ D̂ \ D for any i � 1.

From now on, we assume that functions θ i verify this proposition.

Step 2. In this step, we construct an application Fu0 such that its fixed point is a solution of our stabilization problem.
First, for any constant ν > 0 let us introduce the set

Yν(u0) :=
{

u ∈X s(D): divu = 0,

∞∫
0

∥∥u(t) − u(t)
∥∥

s,D
dt � ν,

u(x, t) · n(x) = (
u0(x)μ(t) + u(x, t)

) · n(x) on Γ ×R+

}
,

where μ ∈ C∞
0 ([0,∞)) is a non-negative function such that

μ(0) = 1,

∞∫
0

μ(t)dt < 1.

Let D1 := R× (− 3
2 , 3

2 ) and π :Hs(D) → Hs(D̂) be any linear bounded extension operator such that suppπu ⊂ D1

for any u ∈ Hs(D). Let κi ∈ C∞
0 (D̂) be a partition of unity subordinate to Bi , i.e.,

suppκi ⊂ Bi,
∞∑
i=1

κi = 1 in D.

Take any u ∈ Yν(u0) and let wl ∈ C(R+,H s−1(D̂)) be the solution of the linear problem

ẇl + 〈ũ,∇〉wl = 0 in D̂ ×R+, (3.23)

wl(0) = κl curl(πu0), (3.24)

where

ũ = u + π(u − u). (3.25)

Take ν such that Proposition 3.4 holds. Since suppwl(0) ⊂ Bl , we obtain

wl(x, tl−1/2) = 0 for any x ∈ D. (3.26)

For any t ∈ R+ we define the function
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w(·, t) =
∞∑

l=i+1

wl(·, t), when t ∈ [ti−1/2, ti+1/2], (3.27)

where t−1/2 := 0 and i � 0. Let us show that for any t ∈ [ti−1/2, ti+1/2] the sum in the right-hand side of (3.27) exists
and belongs to C(R+,H s−1(D)). Applying Lemma 2.8 to (3.23), (3.24), we obtain

∥∥wl(t)
∥∥

s−1,D̂
� C

(∥∥κl curl(πu0)
∥∥

s−1,D̂
+

t∫
0

∥∥∇ũ(τ )
∥∥

s−1,D̂

∥∥wl(τ )
∥∥

s−1,D̂
dτ

)
.

It follows from the Gronwall inequality and relation (3.25) that

∥∥wl(t)
∥∥

s−1,D̂
� C

∥∥κl curl(πu0)
∥∥

s−1,D̂
exp

(
C

t∫
0

∥∥∇ũ(τ )
∥∥

s−1,D̂
dτ

)

� C
∥∥κl curl(πu0)

∥∥
s−1,D̂

exp

(
C

t∫
0

(∥∥∇u(τ)
∥∥

s−1,D̂
+ ∥∥u(τ) − ũ(τ )

∥∥
s,D̂

)
dτ

)
.

Using the fact that u ∈X s(D̂), we get∥∥wl(t)
∥∥

s−1,D̂
� C

∥∥κl curl(πu0)
∥∥

s−1,D̂
exp

(
C(ti+1/2 + ν)

)
for any t ∈ [ti−1/2, ti+1/2]. Thus

∞∑
l=i

∥∥wl(t)
∥∥

s−1,D̂
� C exp(Cti+1/2)

∞∑
l=i

∥∥κl curl(πu0)
∥∥

s−1,D̂
. (3.28)

Using (3.7) and assertion 1 of Proposition 3.3, we derive that the right-hand side of (3.28) is finite. Hence, w ∈
C([ti−1/2, ti+1/2],H s−1(D̂)) for any i � 0. Moreover, assertion (3.26) yields that w is continuous at ti−1/2, thus
w ∈ C(R+,H s−1(D)) (we emphasize that, in general, this is not true for D̂). Furthermore, we have

ẇ + 〈ũ,∇〉w = 0 in D̂ × [ti−1/2, ti+1/2],

w(0) =
∞∑
l=1

κl curlπu0 in D̂.

In Step 3, we prove that for this w there exists a v ∈ Yν(u0) such that

curlv = w. (3.29)

For any u ∈ Yν(u0), let Fu0(u) := v. In Step 4, we show that the mapping Fu0 :Yν(u0) → Yν(u0) has a fixed point.
We shall prove that this fixed point is a solution of our stabilization problem.

Step 3. In this step, we prove the existence of the solution v ∈ Yν(u0) of (3.29). By Lemma 2.9, there is a function
z ∈ C(R+,H s(D)) such that

curl z = w,

div z = 0,

z · n = 0,∥∥z(·, t)∥∥
s,D

� C
∥∥w(·, t)∥∥

s−1,D
. (3.30)

Let us take the solution of the following problem

�ϕ = 0 in D,

∂ϕ = (u0μ) · n on Γ.

∂n
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From Proposition 2.4 we have ϕ ∈ C(R+, Ḣ s+1(D)) and∥∥ϕ(·, t)∥∥
Ḣ s+1(D)

� C
∥∥u0μ(t)

∥∥
s,D

.

Denote v = z + ∇ϕ + u. Let us show that v ∈ Yν(u0) and (3.29) is verified. Clearly

curlv = curl z = w,

divv = div z + �ϕ = 0,

v · n = (
u0(x)μ + u

) · n on Γ ×R+.

Hence, to show v ∈ Yν(u0), it suffices to prove for sufficiently small u0 that

∞∫
0

∥∥v(t) − u(t)
∥∥

s,D
dt � ν. (3.31)

It follows from the construction of v that∥∥v(·, t) − u(t)
∥∥

s,D
�

∥∥ϕ(·, t)∥∥
Ḣ s+1(D)

+ ∥∥z(·, t)∥∥
s,D

.

Proposition 2.4 and (3.30) imply

∞∫
0

∥∥v(t) − u(t)
∥∥

s,D
dt � ‖u0‖s,D

∞∫
0

μ(t)dt + C

∞∫
0

∥∥w(·, t)∥∥
s−1,D

dt.

From (3.27) we have

∞∫
0

∥∥w(·, t)∥∥
s−1,D

dt =
∞∑
i=0

ti+1/2∫
ti−1/2

∥∥∥∥∥
∞∑

l=i+1

wl(·, t)
∥∥∥∥∥

s−1,D

dt.

Applying Lemma 2.8 to
∑∞

l=i+1 wl , we obtain

∥∥∥∥∥
∞∑

l=i+1

wl(x, t)

∥∥∥∥∥
s−1,D

� C exp

(
C

t∫
0

∥∥∇ũ(·, τ )
∥∥

s−1,D
dτ

)∥∥∥∥∥
∞∑

l=i+1

κl curlu0

∥∥∥∥∥
s−1,D

.

Thus

∞∫
0

∥∥w(·, t)∥∥
s−1,D

dt � C

∞∑
i=0

ti+1/2∫
ti−1/2

∥∥∥∥∥
∞∑

l=i+1

κl curlu0

∥∥∥∥∥
s−1,D

exp

(
C

t∫
0

∥∥∇ũ(·, τ )
∥∥

s−1,D
dτ

)
dt

� C1

∞∑
i=0

ti+1/2∫
ti−1/2

exp(Cti+1/2)‖curlu0‖s−1,D\⋃i
l=1 Bl

dt.

Combining (3.7), (3.15), (3.18) and assertion 1 of Proposition 3.3, we get

(ti+1/2 − ti−1/2) exp(Cti+1/2)‖curlu0‖s−1,D\⋃i
l=1 Bl

� C2
1

i2

for any i > 0, where C2 does not depend on i. Let K be a constant such that

C1C2

∞∑
i=K

1

i2
<

ν

2
.

Taking u0 sufficiently small such that
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‖u0‖s,D +
K∑

i=1

ti+1/2∫
ti−1/2

∞∑
l=i+1

∥∥κl curlu0
∥∥

s−1,D
exp

( t∫
0

∥∥∇ũ(·, τ )
∥∥

s−1,D
dτ

)
dt � ν

2
,

we get (3.31).

Step 4. In this step, we show that the mapping Fu0 :Yν(u0) → Yν(u0) admits a fixed point, which is the solution of
our stabilization problem. Let us take a sequence um

0 := Jm(u0), where Jm is the operator defined by (2.31). We have
that um

0 ∈ Hs+1(D) verifies (2.32), (2.33). Take u0(x, t) = μ(t)u0(x) + u(x, t). For sufficiently small u0 we have
u0 ∈ Yν(u0). Let u1 = Fu1

0
(u0) and let w1 be defined as in (3.27) with u = u0 and u0(x) = u1

0(x). In this way we

introduce the sequences um ∈X s and wm ∈ C(R+,H s(D)) by the relations{
um+1 = F

um+1
0

(
um

)
,

wm+1 defined as in (3.27) with u = um and u0 = um+1
0 .

Let us show the convergence of wm in C([0, t1/2],H s−1(D̂)). This will be proved by using the same arguments as in
the proof of Theorem 2.7. It is easy to see

∂t (wm − wk) + 〈
ũk−1,∇〉

(wm − wk) = 〈
ũk−1 − ũm−1,∇〉

wm.

Setting Km,k(t) := ‖wm(·, t) − wk(·, t)‖s−1,D̂
and using Lemmas 2.8 and 2.9, we obtain

Km,k(t) �
∥∥um

0 − uk
0

∥∥
s
+ C

t∫
0

(
Km,k(τ )

∥∥∇ũk−1(·, τ )
∥∥

s−1

+ ∥∥ũm−1(·, τ ) − ũk−1(·, τ )
∥∥

s−1

∥∥wm(·, τ )
∥∥

s

)
dτ. (3.32)

Let us show that for any m ∈N

sup
t∈[0,t1/2]

∥∥wm(·, t)∥∥
s−1,D̂

< C
∥∥um

0

∥∥
s,D̂

, (3.33)

where C depends only on ‖u(t)‖
L1((0,t1/2),Ḣ

s (D̂))
and does not depend on m. From the construction of wm, we have

ẇm + 〈
ũm−1,∇〉

wm = 0 in D̂ ×R+,

wm(0) =
∞∑
l=1

κl curlπum
0 in D̂.

Applying Lemma 2.8, we get

∥∥wm(t)
∥∥

s−1,D̂
� C

(∥∥um
0

∥∥
s,D̂

+
t∫

0

‖wm‖
s−1,D̂

∥∥∇ũm−1
∥∥

s−1,D̂
dt

)

� C

(∥∥um
0

∥∥
s,D̂

+
t∫

0

‖wm‖
s−1,D̂

(‖∇u‖
s−1,D̂

+ ∥∥u − ũm−1
∥∥

s,D̂

)
dt

)
.

Using the Gronwall inequality and the fact that ũm−1 ∈ Yν(u
m
0 ), we derive

∥∥wm(t)
∥∥

s−1,D̂
� C‖u0‖s exp

( t1/2∫ (‖∇u‖
s−1,D̂

+ ‖u − ũm−1‖s,D̂

)
dt

)
� C1,
0
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where C1 does not depend on m. Thus, we obtain (3.33). The construction of um implies boundedness of
supt∈[0,t1/2] ‖um‖

s,D̂
uniformly in m. In the same way we can show that

sup
t∈[0,t1/2]

∥∥wm(·, t)∥∥
s,D̂

� C
∥∥um

0

∥∥
s+1,D̂

.

Combining this with (2.32) and (2.33), we get∥∥ũm−1(·, τ ) − ũk−1(·, τ )
∥∥

s−1

∥∥wm(·, τ )
∥∥

s

�
∥∥ũm−1(·, τ ) − ũk−1(·, τ )

∥∥1/s∥∥ũm−1(·, τ ) − ũk−1(·, τ )
∥∥1−1/s

s

∥∥wm(·, τ )
∥∥

s
� am,k (3.34)

for any t ∈ Jt1/2 , where supk�m am,k → 0 as m → ∞ and am,k is decreasing sequence in m for any fixed k > m (this
properties we can obtain arguing in the same way as in Theorem 2.7). Using this with (3.32) and (3.33), for any
t ∈ Jt1/2 we get

Km,k(t) � C

t∫
0

(
Km−1,k−1(t1) + Km,k(t1)

)
dt1 + am,k.

By the Gronwall inequality, for any t ∈ [0, t1/2] we have

Km+p,k+p(t) � C

t∫
0

Km+p−1,k+p−1(σ1)e
Ct1 dσ1 + Cam+p,k+p

� C2

t∫
0

σ1∫
0

Km+p−2,k+p−2(σ2)e
Cσ1eCσ2 dσ2 dσ1 + CeCt1/2am+p−1,k+p−1 + Cam+p,k+p

� C3

t∫
0

σ1∫
0

σ2∫
0

Km+p−3,k+p−3(σ2)e
Cσ1eCσ2eCσ3 dσ3 dσ2 dσ1

+ C
e2Ct1/2

2
am+p−2,k+p−2 + CeCt1/2am+p−1,k+p−1 + Cam+p,k+p

� Cp

t∫
0

σ1∫
0

· · ·
σp−1∫
0

Km,k(σp)eCσ1+Cσ2+···+Cσp dσp · · · dσ2 dσ1 +
p−1∑
j=0

C
(eCt1/2)j

j ! am+p−j,k+p−j .

Thus, we derive

Km+p,k+p � CepC

p! max
t∈[0,T ]

Km,k + Cam,k.

Hence, wm is a convergent sequence in C([0, t1/2],H s−1(D̂)). In the same way we can get the convergence of wm

in C([ti−1/2, ti+1/2],H s−1(D̂)). Finally, the fact wm ∈ C(R+,H s−1(D)) implies that wm converges to some w∗ in
C(R+,H s−1(D)). The convergence of wm implies the convergence of um to some u∗ in X s(D). We have

curlu∗ = w∗, (3.35)

divu∗ = 0, (3.36)

u∗(x, t) · n(x) = (
u0(x)μ(t) + u(x, t)

)
n(x) on Γ ×R+. (3.37)

Let us show that

w∗(·, t) =
∞∑

w∗l
(·, t) for t ∈ [ti−1/2, ti+1/2], (3.38)
l=i+1
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where w∗l is the solution of

∂tw
∗l + 〈

ũ∗,∇〉
w∗l = 0 in D̂ ×R+, (3.39)

w∗l(0) = κl curl(πu0). (3.40)

To this end, recall that

wm(·, t) =
∞∑

l=i+1

wl
m(·, t), when t ∈ [ti−1/2, ti+1/2],

where wl
m is the solution of

ẇl
m + 〈ũm−1,∇〉wl

m = 0 in D̂ ×R+,

wl
m(0) = κl curl

(
πum+1

0

)
.

We have that wl
m → w∗l in C(R+,H s−1(D̂)) uniformly with respect to l as m → ∞ (this can be proved in the same

way as in the proof of the convergence of wm). Thus we have (3.38). Clearly (3.35)–(3.40) imply that u∗ is a solution
of the Euler system (3.1)–(3.3).

As in (3.28), using (3.35)–(3.40) for any t ∈ [ti−1/2, ti+1/2] and (3.7), we can show that

∞∑
l=i

∥∥w∗l(t)
∥∥

s−1,D̂
� C

∞∑
l=i

exp
(
Ci2)∥∥κl curl(πu0)

∥∥
s−1,D̂

� C

∞∑
l=i

exp
(
Ci2) exp

(−Ci2+β
)
.

Thus

lim
t→∞

∥∥u∗(t) − u(t)
∥∥

s,D
= 0. (3.41)

Combining this with (3.21), we see that the first two terms on the left-hand side of (3.8) go to zero as t → ∞. Recall
that

�p∗ = −div
(〈
u∗,∇〉

u∗),
∂p∗

∂n
= −(〈

u∗,∇〉
u∗) · n.

Thus, Proposition 2.4 implies limt→∞ ‖∇p∗(t)‖s−1 = 0. This completes the proof of Theorem 3.1. �
4. Construction of the particular solution

4.1. Proof of Proposition 3.3

We have the following simplified version of Proposition 3.3.

Lemma 4.1. For any x0 ∈ D there exist a function θ ∈ C∞([0,1], Ḣ s+1(D̂)) and a constant λ > 0 such that

�θ = 0 in D × [0,1], (4.1)
∂θ

∂n
= 0 on (Γ \ Γ0) × [0,1], (4.2)

supp θ ⊂ D̂ × (0,1), (4.3)

φ∇θ+(c,0)(x0,1) /∈ D for any |c| < λ. (4.4)
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This lemma is proved at the end of this subsection.

Proof of Proposition 3.3. It follows from Lemma 4.1 that there are functions θ̃ i ∈ C∞([0,1], Ḣ s+1(D̂)) and open
balls Bi = B(xi, ri) ⊂R

2, i = 1, . . . ,N covering the rectangle [0,1] × [−1,1] such that properties (3.11)–(3.13) and
(3.16) are verified for τi = 1. For i = 1, . . . ,N let us take

τi := i sup
t∈[0,1]

∥∥∇ θ̃ i (·, t)∥∥
s,D̂

, (4.5)

θi(x, t) := θ̃ i (x, t
τi

)

τi

. (4.6)

Then Bi, τi and θi verify (3.9)–(3.16) for i = 1, . . . ,N . Moreover, there are closed balls B̃1, B̃2 ⊂ D̂ \ D such that

N⋃
i=1

φ∇θi+(c,0)
(
Bi, τi

) ⊂ B̃1 ∪ B̃2.

We denote B2kN+j := B(xj , rj ) + (k,0) and B(2k+1)N+j := B(xj , rj ) − (k + 1,0), j = 1, . . . ,N . Then properties
(3.9) and (3.10) are satisfied. Let h ∈ C∞([0,1]) be such that

h(t) = 0 for any t ∈ [0,1/4],
h(t) = 1 for any t ∈ [3/4,1],∣∣h(t)

∣∣ � 1 for any t ∈ [0,1].
For any x = (x1, x2) ∈ D̂ and c ∈R define

θ̃2kN+j (x, t) =
{

(−k − c)x1h
′(t) for t ∈ [0,1],

θ̃ j (x, t − 1) for t ∈ [1,2]. (4.7)

It follows from the constructions of θ̃ j , j = 1, . . . ,N that (3.11)–(3.13) are verified for τi = 2. It is easy to see that
for any t ∈ [0,1] we have

φ∇ θ̃2kN+j +(c,0)(x, t) = (−k − c,0)h(t) + (c,0)t + x. (4.8)

Thus φ∇ θ̃2kN+j +(c,0)(B2kN+j ,2) = φ∇ θ̃ j +(c,0)(Bj ,1) ⊂ D, which implies (3.16) and (3.17). Notice that ∇ θ̃ i ∈
X s(D̂). In order to have also (3.14) and (3.15), we define τi by (4.5) and

θi(x, t) := 2θ̃ i (x, 2t
τi

)

τi

. (4.9)

This completes the proof. �
Proof of Lemma 4.1. The proof is based on the ideas of [9, Lemma A.1].

Step 1. We denote by A the vector space of functions ξ ∈ Ḣ s+1(D̂) with the following properties

�ξ = 0 in D,

∂ξ

∂n
= 0 on Γ \ Γ0,

supp ξ ⊂ D̂. (4.10)

First, let us show that for any x0 ∈ D ∪ Γ0 we have

R
2 = {∇ξ(x0): ξ ∈A

}
. (4.11)

Suppose that (4.11) does not hold. Then, there is a vector V ∈R
2, V = 0 such that

V · ∇ξ(x0) = 0
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for all ξ ∈A. Let D̃ be the domain defined in (2.1) and let D̃ ⊂ D1. Take any a ∈ D̃ \D, and let Ga be the solution of
(2.10), (2.11). Let B1,B2 ⊂ D̃ \ D be two open neighbourhoods of a such that B1 ⊂ B2 and let ρ ∈ C∞(D̃) be such
that

ρ(x) =
{

1, if x /∈ B2,
0, x ∈ B1.

Clearly π(ρGa) ∈A, thus V · ∇π(ρGa)(x0) = 0. Since x0 /∈ B2, we have

V · ∇Ga(x0) = 0 (4.12)

for all a ∈ D̃ \ D. On the other hand Ga is analytic in a ∈ D̃ \ {x0} (see Proposition 2.5(iii)). Thus, we have (4.12) for
all a ∈ D̃ \ {x0}. Using (2.12), one can find a sequence an → x0 such that V · ∇Gan(x0) → ∞ as n → ∞, which is a
contradiction to V = 0.

Step 2. Take any x0 ∈ D ∪ Γ0, x1 ∈ D̂ \ D and let F : [0,1] → D̂ be a continuous function such that

F(t) = x0 for any t ∈ [0,1/4],
F (t) = x1 for any t ∈ [3/4,1],
F (t) /∈ Γ \ Γ0 for any t ∈ [0,1].

Then for any ε > 0 we can find ξi ∈A, hi ∈ C∞([0,1]), i = 1, . . . , k with supphi ⊂ [1/4,3/4] such that for θ(x, t) :=∑k
i=1 ξi(x)hi(t) we have∣∣F(t) − φ∇θ (x0, t)

∣∣ < ε (4.13)

for any t ∈ [0,1]. It is easy to see that there is a constant λ > 0 such that for any |c| < λ∣∣φ∇θ (x0, t) − φ∇θ+(c,0)(x0, t)
∣∣ < ε. (4.14)

Since ξi ∈ A and supphi ⊂ [1/4,3/4], we have (4.1)–(4.3). The construction of F , inequalities (4.13) and (4.14)
imply φ∇θ+(c,0)(x0,1) /∈ D for sufficiently small ε > 0.

Step 3. It remains to study the case x0 ∈ Γ \ Γ0. Let y0 ∈ Γ0 and k ∈ R be such that x0 = y0 + (k,0). Then, the
function

θ(x, t) =
{

(−c − k)x1h
′(t) for t ∈ [0,1/2],

2θy0(x,2(t − 1/2)) for t ∈ [1/2,1]
satisfies (4.1)–(4.4), where h ∈ C∞([0,1/2]) is any function with h(0) = 0, h(1/2) = 1 and θy0 is the function
constructed in Step 2 for y0 ∈ Γ0. �
4.2. Proof of Proposition 3.4

For any m ∈ R+, let us denote

Dm− := (−∞,−m] × [−2,2] and Dm+ := [m,+∞) × [−2,2]. (4.15)

We shall need the following lemma.

Lemma 4.2. The functions θi constructed in the proof of Proposition 3.3 are such that there exist ϕi ∈ C(R+) with

sup
x∈D

∣∣φ∇θi+(c,0)(x, t) − x
∣∣� [

i

2N

]
+ M for any t ∈ [0, τi], (4.16)

∣∣∇θ i(x, t) − ∇θi(y, t)
∣∣� ϕi(t)

(m + 1)2
|x − y| for any x, y ∈ Dm+ or x, y ∈ Dm−, (4.17)

where
∫ τi ϕi(t)dt �M , N is the integer introduced in Proposition 3.3 and M ∈ R does not depend on i.
0
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Proof. It is easy to see that (4.7) and (4.9) imply

φ∇θi+(c,0)(x, t) =
{

(−k − c,0)h
( 2t

τi

) + (c,0) 2t
τi

+ x for t ∈ [0, τi/2],
φ∇ θ̃ j +(c,0)

(
x, 2t

τi
− 1

)
for t ∈ [τi/2, τi],

where k = [ i
2N

] and j = i − 2Nk. This yields (4.16) for a sufficiently large M . To prove (4.17), notice that in the
proof of Lemma 4.1, the functions θ can be chosen such that∥∥x2

1∂βθ
∥∥

s,D̂
< C,

where |β| = 2. Indeed, since Proposition 2.5 implies that the second order derivatives of Ga belong to S(D), one can
replace (4.11) by

R
2 = {∇ξ(x0): ξ ∈A and

∥∥x2
1∂βξ

∥∥
s,D̂

< ∞, |β| = 2
}
.

Hence, we can find a constant M1 such that

sup
i=1,...,N, |β|=2

1∫
0

∥∥x2
1∂β θ̃ i(t, ·)∥∥

L∞(D̂)
dt < M1.

Combining this with (4.7) and (4.9), we get (4.17). �
Now we return to the proof of Proposition 3.4. It suffices to show that for any ε > 0 there is ν > 0 such that the

inequality

sup
x∈Bi

∣∣φu(x, t) − φu(x, t)
∣∣ � ε (4.18)

holds for any i � 1 and t ∈ [0, ti−1/2]. Let us denote

X(t) = φu(x, t),

Y (t) = φu(x, t),

where x ∈ Bi . We shall prove (4.18) in the case when i is even. The proof when i is odd is similar. Let k := [ i
2N

], then

Bi ⊂ [k − 2, k + 3] × [−2,2]. (4.19)

Step 1. First let us show that to establish (4.18) it suffices to prove that∣∣X(t) − Y(t)
∣∣ < 1 for all t ∈ R+. (4.20)

It is easy to see that

∂t

(
X(t) − Y(t)

) = u
(
X(t), t

) − u
(
Y(t), t

)
= (

u
(
X(t), t

) − u
(
X(t), t

)) + (
u
(
X(t), t

) − u
(
Y(t), t

)) =: I1(t) + I2(t). (4.21)

We have that
∞∫

0

∣∣I1(t)
∣∣dt � ν. (4.22)

From (3.19), (3.20), (4.16) and (4.19) it follows that

Y(t) ∈
[
k − 2 −

[
j

2N

]
− M,k + 3 +

[
j

2N

]
+ M

]
× [−2,2]

for any t ∈ [0, tj−1/2]. Hence, (4.20) implies

X(t) ∈
[
k − 3 −

[
j

]
− M,k + 4 +

[
j

]
+ M

]
× [−2,2].
2N 2N
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We derive from (3.19), (3.20) and (4.17) that

ti−1/2∫
0

∣∣I2(t)
∣∣dt �

ti−1/2∫
0

Ψ (t)
∣∣X(t) − Y(t)

∣∣dt, (4.23)

where

Ψ (t) =

⎧⎪⎨
⎪⎩

ϕj (t−tj−1)

(k−2−[ j
2N

]−M)2
, t ∈ [tj−1, tj−1/2],

ϕj (tj −t)

(k−2−[ j
2N

]−M)2
, t ∈ [tj−1/2, tj ],

for j < 2N(k − 3 − M) (here we use (4.17) for m = k − 3 − [ j
2N

] − M) and

Ψ (t) =
{

ϕj (t), t ∈ [tj−1, tj−1/2],
ϕj (tj − t), t ∈ [tj−1/2, tj ],

for j � 2N(k − 3 − M) (in this case we use (4.17) for m = 0). Thus we have

ti−1/2∫
0

Ψ (t)dt =
t2N(k−3−M)−1∫

0

Ψ (t)dt +
ti−1/2∫

t2N(k−3−M)−1

Ψ (t)dt

�
2N(k−3−M)−1∑

j=1

2M

(k − 2 − [ j
2N

] − M)2
+ (

2N(M + 4) + 1
)
2M. (4.24)

Integrating (4.21), using (4.22)–(4.24) and the Gronwall inequality, we obtain

∣∣X(ti−1/2) − Y(ti−1/2)
∣∣ � ν exp

( 2N(k−3−M)−1∑
j=1

2M

(k − 2 − [ j
2N

] − M)2
+ (

2N(M + 4) + 1
)
2M

)

� ν exp

( ∞∑
j=1

8MN2

j2
+ (

2N(M + 4) + 1
)
2M

)
. (4.25)

Choosing ν such that the right-hand side of (4.25) is smaller than ε, we prove (4.18) for all i.

Step 2. To complete the proof, it remains to show (4.20). To this end, let us assume that (4.20) does not hold for some
t > 0. Denote by t̃0 the first time such that |X(t̃0) − Y(t̃0)| = 1. Hence, we have (4.20) for all t < t̃0. Step 1 implies

∣∣X(t̃0) − Y(t̃0)
∣∣ � ν exp

( ∞∑
j=1

8MN2

j2
+ (

2N(M + 4) + 1
)
2M

)
. (4.26)

Since the right-hand side of (4.26) does not depend on t̃0, choosing ν sufficiently small, we get (4.20).
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Appendix A. Proof of Lemma 2.3

Let us consider the space

H0
(
D′) = {

z ∈ L2(D′): curl z ∈ L2(D′), div z ∈ L2(D′), z · n|Γ ′ = 0
}
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endowed with the norm

‖z‖H0 = ‖z‖ + ‖curl z‖ + ‖div z‖.
Here D′ is a strip or is the domain D̃ defined in (2.1). Recall the following result (see [12, Chapter 7, Theorem 6.1]).

Theorem A.1. The following equality holds{
z ∈ H 1(D′): z · n|Γ ′ = 0

} = H0.

In the case of bounded domains it is shown in [21, Appendix 1, Proposition 1.4] that

Hs(Ω) = {
z ∈ L2(Ω): curl z ∈ Hs−1(Ω), div z ∈ Hs−1(Ω), z · n ∈ Hs−1/2(∂Ω)

}
. (A.1)

Let us generalize this result to the case of domain D′. We shall need the following lemma.

Lemma A.2. Let g ∈ H 1/2(Γ ′). Then the problem

�u − u = 0 in D′, (A.2)
∂u

∂n
= g on Γ ′ (A.3)

has a unique solution u ∈ H 2(D′), which satisfies

‖u‖2 � C‖g‖1/2. (A.4)

Proof. Problem (A.2), (A.3) is equivalent to∫
D′

∇u∇θ dx +
∫
D′

uθ dx =
∫
Γ

gθ dσ for any θ ∈ H 1(D′).
Since g ∈ H−1/2(Γ ′), the Riesz representation theorem implies the existence of a unique solution u ∈ H 1(D′).

Case 1. Assume D′ = D, and let us prove that u ∈ H 2(D). It is easy to see that v := ∂1u is the solution of the problem

�v − v = 0 in D,

∂v

∂n
= ∂1g on Γ.

Thus ∂1u ∈ H 1(D) and

‖∂1u‖1 � C‖g‖1/2.

Combining this with the fact that �u ∈ H 1(D), we obtain u ∈ H 2(D) and (A.4).

Case 2. Now consider the case D′ = D̃. Let

Ω1 := {
x ∈ D̃: |x1| < N

}
and Ω2 := {

x ∈ D̃: |x1| < N + 1
}
,

where N is so large that D̃ \ D ⊂ Ω1. Let us take some function χ ∈ C∞(D̃) such that

χ(x) =
{

0, if x /∈ Ω2,

1, if x ∈ Ω1.

Then w := χu is the solution of

�w − w = 2∇χ∇u + �χu =: f in Ω2, (A.5)
∂w =: g̃ on ∂Ω2. (A.6)

∂n



H. Nersisyan / Ann. I. H. Poincaré – AN 30 (2013) 737–762 761
It is easy to see that f ∈ L2(Ω2) and g̃ ∈ H 1/2(∂Ω2). This implies that w ∈ H 2(Ω2) (e.g., see [1]). Thus u ∈ H 2(Ω1).
On the other hand, from the fact Γ0 ⊂ Ω1 we derive ∂u

∂n
|Γ ∈ H 1/2(Γ ). Hence, using the result for D′ = D, we see that

u ∈ H 2(D). This completes the proof of Lemma A.2. �
Now let us prove (A.1) for Ω = D′. Clearly the space in the left-hand side is contained in the right-hand side of

(A.1). By induction, let us show the other inclusion. Assume s = 1. Let us take some function z from the right-hand
side of (A.1) and consider the problem:

�p − p = 0 in D,

∂p

∂n
= z · n on Γ.

By Lemma A.2, we have p ∈ H 2(D′) and ‖p‖2 � C‖z · n‖1/2. Let us take w = z − ∇p. Clearly w ∈ H0, thus
Theorem A.1 implies w ∈ H 1(D′). Hence, z ∈ H 1(D′) and

‖z‖1 � ‖w‖1 + ‖p‖2 � C
(‖z‖ + ‖curl z‖ + ‖div z‖ + ‖z · n‖1/2

)
. (A.7)

Now assume that (A.1) holds for s − 1 and let us prove it for s. Let ñ be a regular extension of n in D′ such that
|ñ(x)| = 1. Let us show that such an extension exists. To simplify the proof, let us assume that d = 0 in the definition
of D̃ (see (2.1)). We define

ñ1(x1, x2) = − γ ′(x1)√
1 + γ ′(x1)2

+ h(x1, x2),

ñ2(x1, x2) = x2

(1 + γ (x1))
√

1 + γ ′(x1)2
,

where h ∈ C∞
b (D̃), h|

∂D̃
= 0 and h(x1,0) = 1 + γ ′(x1)√

1+γ ′(x1)
2
. Then we have (ñ1, ñ2)|∂D̃

= n and |(ñ1, ñ2)| > δ for

sufficiently small δ > 0. Hence, ñ(x) = (ñ1,ñ2)|(ñ1,ñ2)| is an extension of n. Let us take v := ∇⊥(z · ñ). Then v ∈ L2,

divv = 0. Since v · ñ is the tangential derivative of z · ñ along Γ ′, we have v · ñ ∈ Hs−3/2(Γ ′). On the other hand

− curlv = �(z · ñ) = (�z1)ñ1 + (�z2)ñ2 + ṽ,

where ṽ ∈ Hs−2. It follows from the facts �z1 = ∂1 div z + ∂2 curl z and �z2 = ∂2 div z − ∂1 curl z that curlv ∈ Hs−2.
Thus the induction hypothesis yields ∇⊥(z · ñ) ∈ Hs−1. Hence,

(∂2z1)ñ1 + (∂2z2)ñ2 ∈ Hs−1,

(∂1z1)ñ1 + (∂1z2)ñ2 ∈ Hs−1.

Combining this with div z ∈ Hs−1 and curl z ∈ Hs−1, we obtain ñ · ∇⊥zi ∈ Hs−1 and ñ · ∇zi ∈ Hs−1 for i = 1,2.
Thus ∇zi ∈ Hs−1, which completes the proof.
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