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ABSTRACT. - This paper presents the thorough mathematical study of
a classical model in chemical engineering: the Langmuir isotherm. This
model has been studied by E. Canon for the distillation, and F. James for
the chromatography. It is a system of n non linear conservation laws

(n &#x3E;_ 1 ), which is shown to be strictly hyperbolic. The main property of
this system is that its rarefaction and shock curves coincide, and moreover
are straight lines. This implies a global existence result for the Riemann
problem, as well as the convergence of the Godunov scheme. One can
finally obtain the existence of an entropic weak solution for the Cauchy
problem with any bounded variation initial data.

Key words: Hyperbolic systems, Riemann problem, Cauchy problem, strong Riemann
invariants, Temple class, chemical engineering, Langmuir isotherm.

RESUME. - Cet article presente 1’etude mathematique complete d’un
modele d’equilibre diphasique classique en genie chimique : l’isotherme de
Langmuir. Ce modele, etudie par E. Canon pour la distillation et F. James
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220 E. CANON AND F. JAMES

pour la chromatographie, est fonde sur 1’ecriture d’un systeme de n equa-
tions de conservation non lineaires (n &#x3E;_ 1 ), dont on démontre la stricte

hyperbolicite. La propriete fondamentale du systeme considere est que ses
courbes de detente et de choc coincident, et sont des droites. On en deduit
un resultat d’existence globale du probleme de Riemann, ainsi que la

convergence du schema de Godunov. On obtient finalement l’existence
d’une solution faible entropique au probleme de Cauchy avec donnee
initiale a variation bornee.

1. INTRODUCTION

Two chemical engineering processes, distillation and chromatography,
involve matter exchange to separate or analyse mixtures. Under some
assumptions, see [V], [J], [C], one can model these processes by a system
of first order non linear partial differential equations. We give here these
systems, which are very close to each other. One can also mention the

system of electrophoresis, which we shall not study in this paper but still
have the same properties and for which our results remain true. Through-
out this paper, we shall consider a mixture of M + 1 chemical species,
denoted with underscripts from 0 to M. These species will be called either
"component" or "species"

In chromatography one of the species plays a particular part. One of
the phases, which will be denoted 1 is a mobile fluid phase, carried along
by a vector fluid. This vector fluid cannot change phase. It will be our

species 0. Its concentration in phase 1 is assumed to be constant and is

denoted by co. The second phase is stationary, fluid or solid. The fluid
vector velocity is denoted by u and is assumed to be a positive constant.
The time and space dependent function c{ is the concentration of compo-

, 

nent i in phase j. The material balance equations lead to

for i varying from 1 to M. In these equations, E is the fractional void

space of the chromatographic column. It is a constant strictly included
between 0 and 1. We have here M equations and M + 1 species. The last

. equation is simply given by
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221RESOLUTION OF A CLASS OF QLH SYSTEMS

In a distillation column, the M + 1 species can change phase. Moreover,
both phases are mobile, and moving counter-current to each other. We
have typically a vapor phase denoted 1, and a liquid phase, denoted 2.
The variables are here the molar fractions xji (component i in phase j)
defined by

for i = 0, ..., M and j =1, 2. We have the following conservation laws,
for i varying from 0 to M:

where F~ is the molar flow in phase j, and fJ the hold-up rate in phase j,
defined by

where Uj is the velocity in phase j. These quantities are positive constants.
The definition of molar fractions involves

so that the M + 1 equations in ( 1 . 1’) are not independent. From now we
shall consider the system ( 1 .1’) restricted to the M equations 
The bounds between ( 1. 1 ) and ( 1. 1’) are obvious: by setting F2 = 0 in
(1.1’), which only means that the phase 2 is stationary, we obtain again
the system ( 1 . 1 ). The boundary conditions are still strongly different and
rather more difficult in the case of distillation, see [C].
Now, we close our systems ( I . 1 ) and ( 1 . 1’) by relating c2 (resp. xf) to

the concentrations in mobile phase cl, i = l, ..., M (resp. to the molar
fractions in vapor phase 1 xl, i = l, ... , M) with a function h~, called
isotherm of component i. From a general point of view, isotherms are
obtained by thermodynamical considerations. Assuming both phases to
be at thermodynamical equilibrium, we get relations analogous to the
Gibbs relations (chemical potential equalities). These relations imply the
existence of the isotherms, and some properties on their derivatives (see
Kvaalen et al. [KNT], James [J]).

In this paper our purpose is to study one of these models of isotherm,
very classical in chemical engineering: the Langmuir isotherm ( 1916). We
go back to a study, originally due to Rhee, Aris and Amundson: see
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222 E. CANON AND F. JAMES

[RAAl] for chromatography, or [RAA2] for counter-current chromatogra-
phy. We propose a more formal proof of their results: hyperbolicity of
the system, resolution in the large of the Riemann problem. Finally, using
some results of Serre [Se], we get a global existence result for the Cauchy
problem associated to systems ( 1.1 ) and (1.1’).

2. ISOTHERM AND EQUILIBRIUM MATRIX

In terms of concentrations the Langmuir isotherm is given by:

where N is a positive normalization constant such that In this

formulation, the coefficients K~ are constants, which we shall call Langmuir
coefficients, and satisfy:

In terms of molar fractions the same isotherm becomes

where the coefficients J3i are non-dimensional constants, and are the inverse
of the relative volatilities. The bound between (2 .1 ) and (2 .1’) is obvious.
For example one can easily deduce (2.1’) from (2 . 1 ) by using the definition
of the molar fraction, and setting ~3I = C6 Ki. To simplify the calculus and
homogenize our notations, we now introduce non-dimensional variables
which we denote w~ for both systems:

With these notations, systems ( 1 . 1 ) and ( 1 .1’) may be respectively rewrit-
ten as

where 03C1=N1-~ E , and
E
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223RESOLUTION OF A CLASS OF QLH SYSTEMS

The function D (w) is given by

With the convention we introduce now the functions hi,
i = 1, ..., M, deduced from the isotherms, and defined by

. 

Let h be the vector valued function with components h~, i = 1, ..., M. We
set

so that systems (2.4) et (2.4’) can be rewritten as

DEFINITION 2 . 1. - The matrix J (w), defined by:

is called equilibrium matrix.

LEMMA 2. l. - If the equilibrium matrix is diagonalizable, then systems
(2.4) and (2 . 4)’ are hyperbolic.

Proof - Chromatography.
The Jacobian matrix of system (2. 4) is given by

where 1M is the identity matrix of IRM. The result is obvious, and we have,
if ~. (w) is an eigenvalue of L (w).

where ~. (w) is an eigenvalue of J (w).
Distillation.
For every regular solution, (2.4’) can be rewritten as
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where the matrix L (w) is defined by

The system (2 . 4’) is hyperbolic if L (w) is diagonalizable, so if J (w) is

diagonalizable. We have the formula, analogous to (2.9):

If ~, (w) is an eigenvalue of J (w), with corresponding eigenvector r (w),
then r (w) is an eigenvector of L (w), with corresponding eigenvalue ~, (w),
defined by (2. 9) for chromatography and by (2. 9’) for distillation. .

Now, we just have to study the equilibrium matrix J (w) given by:

It is clear that, if they exist, eigenvectors and eigenvalues of J (w) have
to satisfy:

for i =1, ..., M, where, if v is a vector of (~M,

The Langmuir coefficients Ki will play a particular part in this study. Let
us define ~M = ~ w E 0 for every i ~ .

PROPOSITION 2. 1. - For every w in the matrix J (w) has M strictly
positive eigenvalues (w), ..., (w), such that

Before proving this proposition we give two liminar results.

LEMMA 2 . 2. - Let r (w) be an eigenvector of L (w). Then s (r (w)) ~ 0.

Proof - Let us assume that s (r (w)) = 0. Then from (2. 11 ), we have
for all i

Since r (w) is an eigenvector, there exists i such that ri (w) ~ 0. But since
s(r(w))=O, there exists another j~ i such that Then equality
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225RESOLUTION OF A CLASS OF QLH SYSTEMS

(2.13) implies

which cannot be true because the coefficients Ki are distinct. .

LEMMA 2 . 3. - an eigenvalue for J (w) 

Proo. f : - Let us assume, for simplicity, that w 1= o. The matrix J (w) is
then -

and it is obvious that Kl is eigenvalue.
On the other hand, if Kz is an eigenvalue, the left part of equality

(2.11) is zero, so that 

Proof of Proposition 2 . 1. - From Lemma 2 . 3, in no Ki is eigen-
value. Hence one may divide by (w) in (2 . 11 ). Summing the M
relations obtained, and simplifying by s (r (w)), which, from Lemma 2 . 2,
is non zero, we get a characterization of the eigenvalues Jl (w) of J (w):

Let us now define the function B)/ from (I~ x (~M to R by:

To show Proposition 2. 1 we just have to establish that the equation

has M simple roots. Since we have

which is strictly positive for w e the function w) is as in

Figure 2.1, and the proof is complete. ~
Remark. - Because of Lemma 2. 2 one can normalize the eigenvectors

by

Then, by comparing (2 . 11 ) and (2.14), we get a characterization of the
eigenvectors of J (w). If r (w) is an eigenvector of J (w) with corresponding
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eigenvalue ~ (w), we have indeed

where p (w) is solution of (2 . 14).
We now give a result about the behavior of the characteristic fields of

our systems.

PROPOSITION 2 . 2. - For every point in EM the characteristic fields are
genuinely nonlinear.

Proof - Let w e and Jl be the associated solution of W w) = 0.
From (2.16), we have that ~~ (p, w) is strictly positive, so that the implicit
function theorem applies: we have the local existence of a function ~. (w),
with derivative given by
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Besides, we have, for every v E R,

which means, from (2. 14)

After simplifications we finally get

Let r (w) be the eigenvector with associated eigenvalue ~. (w). From relation
(2 .19) and using (2 . 11 ) one can immediately deduce

and thus

For the eigenvalues of Jacobian matrix L (w), we finally obtain
- for chromatography, from (2. 9)

which is non zero, since Jl(w»O and 
- for distillation, we use (2. 9’), and we get (omitting for simplicity the

dependences on w),

From (2. 20) and relation

we get after simplifications

All involved quantities being positive, the proof is complete..
From (2. 20), one can easily deduce the following result

COROLLARY 2 . 1. - Let ~.k (w) be a simple eigenvalue of J (w), and rk (w) .
the corresponding eigenvector. Then the function gk, defined by
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gk (w) = D (w) ~,k (w), is a k-Riemann invariant in the following sense:

In other words, D (w) (w) remains constant on the integral curve of
the vector rk (w).
We now come to study the rarefaction and shock curves. It will turn

out that these curves coincide. We shall call them wave curves.

3. WAVE CURVES

The following proposition gives the main property of our systems.

PROPOSITION 3 . 1. - The integral curves of the eigenvectors of L (w) are
straight lines.

Proof. - Once again we omit the dependence on w in the calculations.
On r is characterized by

Taking the derivative in the direction r, we get:

Replacing p.’. r by its value (2.20), it becomes

In view of (2 . 11 ), we have then

In matrix form, this result becomes:

in other words, the vector r’ . r is an eigenvector of J associated with the
eigenvalue p, and thus colinear to r. Finally on the whole integral curve
of vector r, we have

This differential equation can be integrated:
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/ ~ B
where c(T)=expj ). By definition of the integral curve of the

B~o /
vector Y, we finally have

and the proof is complete..

COROLLARY 3. l. - The rarefaction curves of systems (2.4) and (2.4’)
are straight lines.

Systems with rarefaction curves as in Corollary 3.1 have been studied
by Temple [T] and Serre [Se]. The notion of strict Riemann invariant (see
[Sm]), which we now recall, arises naturally in this study.

DEFINITION 3. 1. - We call strict Riemann invariant a function v from
f~M to D~, whose gradient is a left eigenvector of L (w) [equivalently J (w)]:

In the case of genuinely non linear characteristic fields, Temple has
shown the equivalence of the three following assertions:

1. The integral curves of eigenvectors are straight lines.
2. On a rarefaction curve the system reduces to a single scalar conserva-

tion law.
3. Shock and rarefaction curves coincide.
Assertion 2 implies that the systems become uncoupled in finite time

(see [Se]). According to Serre, we shall call an uncoupled system any
system verifying 1, 2 or 3. For the systems of chromatography and
distillation, we shall directly obtain assertions 2 and 3.

PROPOSITION 3 . 2. - Let be a simple eigenvalue of J (w). Then it is

a strict Riemann invariant for the corresponding characteristic field.

Proof - Using (2 . 18), we show that the i-th component of p’ (w) is

given by

Let us denote by J~ the i-th column vector of J (w): we have, for

where ~~m is the Kronecker symbol. Again from (2.18), we obtain
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But p (w) satisfies (2.14), so

By comparing (3.1) and (3 . 2), we have, component by component, Propo-
sition 3.2. ~
We want now to study the shock curves. Let us recall first that, given

two states w~ et w~ related by a discontinuous solution of the system (2. 4),
the velocity a of the discontinuity has to satisfy the Rankine-Hugoniot
jump condition

For the system of distillation, this condition becomes

PROPOSITION 3.3. - Assume that the two states wg and wd belong to a
rarefaction curve of the system. Let p be the corresponding eigenvalue. The
velocity a is given by
- chromatography

- distillation

where i is given by

Proof - Using (3 . 4) and (3 . 4’), the Rankine-Hugoniot condition can
be rewritten as

Component by component, this relation gives

Inserting wm D (w9) - wm in the numerator on the right handside of
this equation, we get
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This relation is to compare with (2. 11): it establishes that the vector
is an eigenvector of associated with the eigenvalue
Thus, we have p = i D (wd). For every state wd, the vector

(w9 - wd) is colinear to r (w9). Thus, the shock curve through w9 is a straight
line in direction r (wg). Moreover it coincides with the rarefaction curve
through w~. From Corollary 2 . 1, DJ.! remains constant along this straight
line. In particular D = D Jl (w9). We thus deduce (3 . 5):

Proposition 3 . 3 shows that the integral curve of vector ri (w~), which is a
straight line, contains both the i-rarefaction curve and the i-shock curve.
We shall call it the i-wave curve.
We now give a criterion selecting which part of the i-shock curve is

admissible. Let us recall the classical conditions for a shock to be admis-
sible (Lax [L]). If the system is strictly hyperbolic, a i-shock between w~
and wd, moving with velocity ai, is said to be admissible if and only if

PROPOSITION 3 . 4. - In a point ofstrict hyperbolicity a i-shock is admissi-
ble f and only if Jli (wg) &#x3E; ~,i 

Relations (2. 9) and (2. 9’) on the one hand, (3. 4) and (3 . 4’)
on the other, can be rewritten as

The function a is defined by

In both cases, the function a is strictly increasing. The first Lax condition
involves in particular

One can immediately deduce that ~i &#x3E; ~.i (wd).
On the other hand, if ~I (wa), we get trivially the first Lax

condition. To obtain the second shock condition, we notice that is a
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(i -1 )-strict Riemann invariant (Proposition 3.2). In particular, ~_~
remains constant along the i-wave curve, so that

Thus, if wd is a point of strict hyperbolicity, we have

The function a being strictly increasing, one can deduce

which means

which is nothing but the second Lax condition. We proceed on the same
way to get the right part of the Lax condition. *

In short, the i-wave curve through a point wg in E~ is a’ straight line; a
point w~ of this straight line is connected to wg by

a i-rarefaction if ~.i (w~) (wa));
a i-shock if a, (wg) (Wd).

With these results, we can now start to study the Riemann problem.

4. THE RIEMANN PROBLEM

We want to show first that the equation (2. 14) giving the eigenvalues
of J (w) defines in fact a global change of variable mapping the quadrant
M onto a rectangle parallelogram of [RM. Equation (2.14) is indeed

equivalent to the algebraic equation P (~) = 0, where P is nothing but the
characteristic polynom of J (w):

Notice here that (2.14) is only defined on the domain of strictly positive
quantities while, in view of Lemma 2 . 3, the algebraic equation P (p) = 0
is also defined on the boundary of the domain. Let us call ~f the function
from !EM into IRM, which to w associates the corresponding eigenvalues of
J (w) .

PROPOSITION 4 . 1. - The function ~ is an homeomorphism from f~~ onto
the set CM defined by
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and the inverse homeomorphism is given by the following explicit formula:

Proof - First, we prove (4. 3). One can notice that the roots of P (Jl) = 0
are precisely the inverses of the roots of the equation Q (v) = 0, where Q
is the polynom defined by:

Let us call yi the roots of P, we have

where aM is the coefficient of the term vM in Q, given by

Comparing the two above relations, we get

Setting v = the only term of the right handside which is non zero is
the term with subscript i. We get then by replacing aM by its value above

From this equality, one can now easily deduce (4.3). On this formula it
is obvious that ~f is one to one, and that :Ye-1 is continuous. The proof
is complete. ~
We state here the formulas given in [RAAI] or [RAA2]. Figures 4. 1 a

and 4 . 1 b show respectively the wave curves in the space of conservative
variables wi, and their images by the transformation ~f in the space of
strict Riemann invariants.

Figure 4. 2 shows the set C3. Notice the non strict hyperbolicity points
appearing on the boundary.
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The transformation J*f associates to each point w of E~ a point y of
CM such as

Let wg et w~ be two states on the i-wave curve. To these points correspond
y~ and yd, satisfying (4.4). In view of Proposition 2.2, we have that for
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is invariant on the i-wave curve. Hence, both points y~ and
yd satisfy:

In other words, we have

LEMMA 4. 1. - The image of the i-wave curve by the homeomorphism ~
is a straight line parallel to the i-th coordinate axis.
More precisely, the image of the part of the i-wave contained in I~M is

the segment

where Ko = 0.
We are now able to give the main result of this paper, the global explicit

resolution of the Riemann problem.

THEOREM 4. 1 (Resolution of the Riemann problem in ~M). - Let us

consider two states w9 and Wd in [EM. Then there exists an unique solution to
the Riemann problem associated to w9 and wd, consisting of at most M + 1
constant states connected by a shock or a rarefaction wave.

Proof - The uniqueness of that kind of solution is a general result
(see [Sm]). The existence comes from the fact that to w~ and w~ correspond
two vectors y~ and yd, belonging to the interior of the parallelogram CM.
Hence, there exists in CM a path consisting of segments parallel to the
coodinate axes and connecting y~ to yd. We thus define M + 1 points yi,
i = o, ... , M, with and yM=yd. To each yi corresponds a state

We construct a self-similar solution to the Riemann problem by
joining for every i wi -1 to wi by
a i-rarefaction i. e. if ~.~ (w~ -1)  ~.i (wi);
a i-shock if y~ -1 &#x3E; yi, i. e. if ~i &#x3E; ~,~ (w1).

From Proposition 3.4, the i-shock is admissible in the sense of Lax. .
Let us set §= t/z. Theorem 4 . 1 defines a self-similar solution to the

Riemann problem, denoted W (~), without any restrictive condition on the
initial data. This global existence result and the following stability theorem
will lead us to a global existence result for the Cauchy problem.

THEOREM 4. 2 (L°° and BV Stability). - The resolution of the Riemann
problem is stable in L °° and BV: we have for every i

Proof. - The function is constant excepted on the i-wave, where it
is a monotone fonction of §, taking values in the segment [w1, w~+ 1].
Monotonicity obviously involves (4.6). ~
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Remarks. - 1. The L °° stability theorem leads to a result of invariance
of the quadrant If M species are present at the time t = o, we cannot
"loose" one of these species by solving the Riemann problem. This prop-
erty is transmitted to the Cauchy problem.

2. By working in variables wi. we have lost of view the molar fractions.
One can do all the above calculus in terms of molar fractions and get the
same results. Still, the invariance of the quadrant IEM becomes then the
invariance of the molar fractions simplex defined by

For the details of calculus, see [C].
Theorem 4. 2 allows us to establish the L °° and BV stability of schemes

based on the resolution of the Riemann problem: Godunov scheme, Glimm
and Lax-Friedrichs schemes. To any couple (At, Az), where Az is a space
step and At a time step, these schemes associate a sequence of approximate
solutions w of systems (2. 4) and (2.4’), provided that they satisfy the so-
called Courant-Friedrichs-Lewy condition (CFL condition):

THEOREM 4. 3. - Let us assume the CFL condition to be satisfied. Then,
we have the two following properties:

1. L~° Stability: the Godunov scheme defines a sequence 
n which takes values in ~P-1 (~ {w° (t))).

2. Decrease of the strict Riemann invariants: the functions

for i = 1, ... ,M, are decreasing.
The proof of this result is rather technical, and we shall not give it

there. One can refer to [Se] for the case of two by two systems. In any
dimension the proof is strictly analogous to the one of Serre. For details,
see [C] and [J].

This theorem involves BV estimations on the first order derivatives of
the approximate solution w. We define a sequence of functions by
associating to every couple (At, satisfying the CFL condition, the

approximate solution computed by the Godunov scheme. We prove then
that from this sequence one can extract a subsequence which converges

in L°° weak star, and for almost every couple (t, z). We obtain
then the convergence of the Godunov scheme to an entropic solution w
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of the systems, satisfying

for any entropy U verifying:
- for chromatography, U is convex with respect to w;
- for distillation, U is convex with respect to ft (w).
Finally, we have

THEOREM 4.4. - Systems (2.4) and (2.4’), with a Cauchy condition
w (0, t) = w° (t), where w° is of bounded variation, have a weak solution in
]0, L[x for every L &#x3E; 0. Moreover this is an entropic solution.

The results stated above for the Godunov scheme are also avalaible for
Glimm and Lax-Friedrichs schemes. The complete explicit resolution of
the Riemann problem allows to construct an exact Riemann solver for
the system of distillation. For chromatography, the situation is still simpler,
since all eigenvalues are positive, so that the Godunov scheme reduces to
a simple upwind scheme. Once again, we refer to [C] and [J] for details
about schemes and calculus, and for numerical results.

5. CONCLUSION

Systems of conservation laws arising in chromatography and distillation
allow a thorough mathematical study. The main property is the fact that
rarefaction and shock curves coincide and are straight lines. We have then
a behavior similar to the scalar case, and can apply similar techniques.
Our systems are the only systems of more than two equations for which
an existence result for the Cauchy problem and the convergence of the
Godunov scheme have been obtained, without any assumption on the
initial data. The explicit resolution of the Riemann problem also appears
to be an excellent tool to valid numerical schemes. We finish by noticing
that these systems may seem like purely academic examples. Still, they
have a precise physical meaning, and the Langmuir isotherm is widely
used in chemical engineering.
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