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Abstract

We develop the concept and the calculus of anti-self-dual (ASD) Lagrangians and their derived vector fields which seem inher-
ent to many partial differential equations and evolutionary systems. They are natural extensions of gradients of convex functions –
hence of self-adjoint positive operators – which usually drive dissipative systems, but also provide representations for the superpo-
sition of such gradients with skew-symmetric operators which normally generate unitary flows. They yield variational formulations
and resolutions for large classes of non-potential boundary value problems and initial-value parabolic equations. Solutions are
minima of newly devised energy functionals, however, and just like the self (and anti-self) dual equations of quantum field theory
(e.g. Yang–Mills) the equations associated to such minima are not derived from the fact they are critical points of the functional I ,
but because they are also zeroes of suitably derived Lagrangians. The approach has many advantages: it solves variationally many
equations and systems that cannot be obtained as Euler–Lagrange equations of action functionals, since they can involve non-self-
adjoint or other non-potential operators; it also associates variational principles to variational inequalities, and to various dissipative
initial-value first order parabolic problems. These equations can therefore be analyzed with the full range of methods – compu-
tational or not – that are available for variational settings. Most remarkable are the permanence properties that ASD Lagrangians
possess making their calculus relatively manageable and their domain of applications quite broad.

Résumé

On introduit et développe la notion de Lagrangien anti-autodual qui apparait dans plusieurs problèmes de géométrie et de
physique théorique. Cette classe inclut les champs de gradient de fonctions convexes qui sont à la base de systèmes dissipatifs,
mais aussi la superposition de ces derniers avec les opérateurs anti-symétriques qui, par contre, engendrent des flots conserva-
tifs. Comme pour les équations autoduales de Yang–Mills, ces Lagrangiens permettent la résolution variationnelle de plusieurs
équations différentielles du premier ordre qui ne rentrent donc pas dans le cadre de la théorie de Euler–Lagrange. Les solutions
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proviennent de minima de certaines (nouvelles) fonctionelles d’énergie, mais les équations ne sont pas derivées du fait qu’elles
sont des points critiques, mais du fait qu’elles sont des racines de Lagrangiens positifs associés obtenus par une extension d’une
astuce de Bogomolnyi. Cette nouvelle approche variationelle a plusieurs avantages, surtout qu’elle est applicable dans plusieurs
situations, puisque la classe des Lagrangiens anti-autoadjoints est assez riche, étant stable – entre autres – par les opérations du
calcul fonctionnel de l’analyse convexe, ainsi que celui des opérateurs anti-symétriques.

MSC: 35F10; 35J65; 47N10; 58E30

Keywords: Selfdual Lagrangians; Variational principles; Legendre–Fenchel duality; Anti-selfdual Lagrangians; Skew symmetry; Variational
resolution

1. Introduction

Non-self-adjoint problems such as the transport equation:{−∑n
i=1 ai

∂u
∂xi

+ a0u = |u|p−1u + f on Ω ⊂ R
n,

u(x) = 0 on Σ−,
(1)

where a = (ai)i :Ω → R
n is a smooth vector field, p > 1, f ∈ L2(Ω), and Σ− = {x ∈ ∂Ω; a(x) · n(x) < 0}, n being

the outer normal on ∂Ω , are not of Euler–Lagrange type and their solutions are not normally obtained as critical
points of functionals of the form

∫
Ω

F(x,u(x),∇u(x))dx. Similarly, dissipative initial value problems such as the
heat equation or those describing porous media:⎧⎨

⎩
∂u
∂t

= �um + f on [0, T ] × Ω,

u(t, x) = 0 on [0, T ] × ∂Ω,

u(0, x) = u0(x) on Ω,

(2)

cannot be solved by the standard methods of the calculus of variations since they do not correspond to Euler–Lagrange
equations of action functionals of the form

∫ T

0 L(t, x(t), ẋ(t))dt .
However, physicists have managed to formulate – if not solve – variationally many of the basic first order equations

of quantum field theory by minimizing their associated action functionals. These are the celebrated self (anti-self) dual
equations of Yang–Mills, Seiberg–Witten and Ginzburg–Landau which are not derived from the fact they are critical
points (i.e., from the corresponding Euler–Lagrange equations) but from the fact that they are zeros of certain derived
Lagrangian obtained by Bogomolnyi’s trick of completing squares. But this is the case as long as the action functional
attains a natural and a priori known minimum (see for example [19]).

From a totally different perspective, Brezis and Ekeland [7,8] formulated about 30 years ago an intriguing mini-
mization principle which can be associated to the heat equation and other gradient flows of convex energy functionals.
Again the applicability of their principle was conditional on identifying the minimum value of the functional. Later,
Auchmuty [1,2] proposed a framework in which he formalizes and generalizes the Brezis–Ekeland procedure in or-
der to apply it to operator equations of non-potential type. However, the applicability of this variational principle
remained conditional on evaluating the minimum value and in most cases could not be used to establish existence and
uniqueness of solutions. In this paper, we develop a variational framework where the infimum can be automatically
identified, making such an approach applicable for the resolution of a wide array of partial differential equations, and
evolutionary systems not normally covered by the standard Euler–Lagrange theory.

The basic idea is simple and is an elaboration on our work in [16] where we gave complete variational proofs
of the existence and uniqueness of gradient flows of convex energy functionals, and the one in [9] where we give a
variational proof for the existence and uniqueness of solutions of certain non-linear transport equations. Starting with
an equation of the form

−Au ∈ ∂ϕ(u), (3)

it is well known that it can be formulated – and sometimes solved – variationally whenever A : X → X∗ is a self-
adjoint bounded linear operator and ϕ is a differentiable or convex functional on X. Indeed, in this case it can be
reduced to the equation 0 ∈ ∂ψ(u), where ψ is the functional ψ(u) = ϕ(u) + 1

2 〈Au,u〉. A solution can then be
obtained for example by minimization whenever ϕ is convex and A is positive.
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But this variational procedure fails when A is not self-adjoint, or when A is a non-potential operator (i.e., when
A is not a gradient vector field), and definitely when A is not linear. In this case, the Brezis–Ekeland procedure – as
formalized by Auchmuty – consists of simply minimizing the functional

I (u) = ϕ(u) + ϕ∗(−Au) + 〈u,Au〉, (4)

where ϕ∗ is the Fenchel–Legendre dual of ϕ defined on X∗ by ϕ∗(p) = sup{〈x,p〉 − ϕ(x); x ∈ X}. The basic
Legendre inequality yields that α := infu∈X I (u) � 0, and the following simple observation was made by several
authors: if the infimum α = 0 and if it is attained at ū ∈ X, then we are in the limiting case of the Fenchel–Legendre
duality, ϕ(ū) + ϕ∗(−Aū) = 〈ū,−Aū〉 and therefore −Aū ∈ ∂ϕ(ū).

Note that the procedure does not require any assumption on A, and very general coercivity assumptions on ϕ often
ensure the existence of a minimum. However, the difficulty here is different from standard minimization problems
in that besides the problem of existence of a minimum, one has to insure that the infimum is actually zero. This is
obviously not the case for general operators A, though one can always write (and many authors did) the variational
principle (4) for the operator equation (3).

In this paper, we tackle the real difficulty of when the infimum α is actually zero and we identify a class of vector
fields F for which the equation F(u) = 0 and the initial-value problem u̇(t) = F(u(t)) can be formulated and solved
variationally. Our method is based on the concept of anti-self-dual Lagrangians (ASD) which are simply lower semi-
continuous convex functions (in both variables) L on the state space X × X∗ that satisfy the following self-duality
property:

L∗(p, x) = L(−x,−p) for all (x,p) ∈ X × X∗. (5)

From such a Lagrangian, we derive an anti-self-dual vector field – denoted ∂̄L but not to be confused with the
subdifferential ∂L of the convex function L – in such a way that stationary equations and initial-value problems of the
form

Λu ∈ ∂L(u) and

{
u̇(t) + Λu(t) ∈ ∂̄L(u(t)),

u(0) = u0
(6)

will be solved variationally by simply minimizing functionals of the form:

I (u) = L(u,Λu) + 〈Λu,u〉 and I (u) =
T∫

0

{
L

(
u(t), u̇(t)

) + 〈
Λu(t), u(t)

〉}
dt + 
u0

(
u(0), u(T )

)
(7)

for an appropriate boundary Lagrangian 
u0 , the key point being that the infimum in both cases is actually zero. What
is remarkable here is that the notion of ASD vector fields covers quite a large class of boundary value problems and
evolution equations. A typical example is the vector field

F(u) = Bu + ∂ϕ(u) + f (8)

where B :X → X∗ is a skew-adjoint operator and f ∈ X∗. F is clearly not a potential field in the standard differential
sense, yet we shall be able to write

F(u) = ∂̄L(u), (9)

where L is the ASD Lagrangian L(x,p) = ϕ(x) + 〈f,x〉 + ϕ∗(−Bx − p − f ) and therefore resolve the equation
0 ∈ F(u) variationally. It is worth noting that ASD vector fields form a subset of the class of maximal monotone
operators for which there is already an extensive theory [3,6]. The interesting point here however, is the fact that this
subclass corresponds to what one might call “integrable maximal monotone operators”, i.e., those to which one can
associate a Lagrangian which allows for a variational resolution. The advantages of this class are numerous:

• It possesses remarkable permanence properties that maximal monotone operators either do not satisfy or do so via
substantially more elaborate methods. It contains in particular subdifferentials of convex lower semi-continuous
functions and their superposition with skew-adjoint operators, but more importantly, it enjoys all variational as-
pects of convex analysis, and is stable under similar type of operations making the calculus of ASD Lagrangians
as manageable, yet much more encompassing.
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• It is stable under the addition of appropriate boundary Lagrangians to an “interior” ASD Lagrangian allowing for
the resolution of problems with various linear and non-linear boundary constraints that are not amenable to the
standard variational theory.

• It allows for the lifting of ASD Lagrangians defined on state spaces to ASD Lagrangians on path spaces leading to
a unified approach for stationary and dynamic equations. More precisely, ASD flows of the form u̇(t) ∈ ∂̄L(u(t))

with a variety of time-boundary conditions can be reformulated and resolved as 0 ∈ ∂̄L(u) where L is a cor-
responding ASD Lagrangian on path space, a phenomenon that leads to natural and quite interesting iterations
(see [18]).

• The class of R-self-dual Lagrangians corresponding to a general automorphism R and their R-self-dual vector
fields go beyond the theory of maximal monotone operators, as they include extensions of Hamiltonian systems
and other twisted differential operators. The corresponding class of PDEs and their variational principles will be
studied in [11].

In this paper, we establish the algebraic properties of ASD Lagrangians, emphasizing issues on how to build and
identify complex ASD Lagrangians from the more basic ones. To keep the key ideas transparent, we chose to deal
with cases when operators are linear and mostly bounded, leaving the more analytically involved cases of unbounded
and non-linear operators to forthcoming papers. This case already has many interesting features and cover several
basic partial differential equations/systems and evolutions. The theory however is evolving in many directions which
are currently being developed in a series of papers:

• In [17], we give a thorough analysis of cases where the operators are not bounded, and more importantly, we
establish the existence of “ASD flows” u̇(t) ∈ ∂̄L(u(t)) under minimal hypothesis on L. This setting includes
all known results on gradient flows of convex functions but also more general parabolic equations involving first
order operators such as transport, as well as certain Schrödinger equations.

• The dual notion of anti-symetric Hamiltonians is developed in [10], where we also deal with the case when the
operator Λ – in (6) above – is non-linear providing applications to Navier–Stokes, and Choquard–Pekar equations
as well as complex Ginsburg–Landau evolutions.

• Self-dual variational principles provide a natural approach to problems about Lagrangian intersections for Hamil-
tonian systems [13,18], about periodic and anti-periodic orbits for such systems [14], as well as quasi-periodic
solutions of certain Schrödinger equations [15].

• The general theory of self-dual equations and their variational principles is developed in [11]. The full scope of
R-selfduality where R is any automorphism of the space is exploited to cover yet a larger set of equations with
old and new boundary conditions including Hamiltonian systems and non-linear Cauchy–Riemann equations.

In this introductory paper, we start by presenting – in Section 2 – the special variational properties of R-self-dual
Lagrangians. This should already give an idea of their relevance in the existence theory of certain PDEs, and will
hopefully motivate the study of their permanence properties. Beyond this first section, we shall only deal with the
anti-symmetric case, i.e., when R(x) = −x, in which case R-self-dual Lagrangians will be called anti-self-dual La-
grangians (ASD). This class of Lagrangians already covers a great deal of applications which warranted that this paper
as well as [10] and [17] be solely devoted to this case. In Section 3, we establish the basic permanence properties of
anti-self-dual Lagrangians and in Section 4 we present their first special variational features while focusing on ho-
mogeneous stationary equations and systems. In Section 5 we deal with boundary value problems where compatible
boundary Lagrangians are appropriately added to the “interior Lagrangian”, in order to solve problems with prescribed
boundary terms. In Section 6, we show how ASD Lagrangians “lift” to path spaces allowing us to solve with the same
variational approach several parabolic equations – including gradient flows. In Section 7, we associate to each ASD
vector field, a semi-group of contractions which emphasizes again how this class of vector filed is a natural extension
of the superposition of dissipative subgradients of convex functions with conservative skew-adjoint operators.

This paper was meant to be mostly an introduction to the basics of the theory of ASD Lagrangians, so we stuck
with the simplest of examples leaving more involved applications to forthcoming papers. At this stage, I would like to
express my gratitude to Yann Brenier, Ivar Ekeland, Eric Séré, Abbas Moameni and Leo Tzou for the many extremely
fruitful discussions and their extremely valuable input into this project.
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2. A variational principle for R-self-dual Lagrangians

We consider the class L(X) of convex Lagrangians L on a reflexive Banach space X: these are all functions
L :X×X∗ → R∪{+∞} which are convex and lower semi-continuous (in both variables) and which are not identically
+∞. The Legendre–Fenchel dual (in both variables) of L is defined at any (q, y) ∈ X∗ × X by

L∗(q, y) = sup
{〈q, x〉 + 〈y,p〉 − L(x,p); x ∈ X,p ∈ X∗}.

Definition 2.1. Given a bounded linear operator R :X → X, say that:

(1) L is a R-self-dual Lagrangian on X × X∗, if

L∗(p, x) = L(Rx,R∗p) for all (p, x) ∈ X∗ × X. (10)

(2) L is partially R-self dual, if

L∗(0, x) = L(Rx,0) for all x ∈ X. (11)

(3) L is anti-self dual on the graph of Λ, the latter being a map from D(Λ) ⊂ X into X∗, if

L∗(Λx,x) = L(Rx,R∗ ◦ Λx) for all x ∈ D(Λ). (12)

A typical example of an R−1-self-dual Lagrangian is L(x,p) = ϕ(Rx) + ϕ∗(p) and M(x,p) = ϕ(x) + ϕ∗(R∗p)

where ϕ is a convex lower semi-continuous function and R is an invertible operator on X. More generally, L(x,p) =
ϕ(Rx) + ϕ∗(S∗p) is an (S ◦ R)−1-self-dual Lagrangian. Moreover, if Λ :X → X∗ is such that Λ ◦ (S ◦ R)−1 is
skew-adjoint, then

L(x,p) = ϕ(Rx) + ϕ∗(Λx + S∗p)

is also an (S ◦ R)−1-self-dual Lagrangian.
Our basic premise in this paper is that many boundary value problems can be solved by minimizing functionals

of the form I (x) = L(x,Λx) where L is a R-self-dual Lagrangian and provided Λ ◦ R is a skew-adjoint operator.
However, their main relevance to our study stems from the fact that – generically – the infimum is actually equal
to 0. It is this latter property that allows for novel variational formulations and resolutions of several basic PDEs
and evolution equations, which – often because of lack of self-adjointness – do not normally fit the Euler–Lagrange
framework.

As mentioned above, if L is a R-self-dual Lagrangian and if Λ :X → X∗ is an operator such that Λ ◦ R is skew
adjoint, then the Lagrangian LΛ(x,p) = L(x,Λx + p) is again R-self-dual. In other words, Minimizing L(x,Λx)

amounts to minimizing LΛ(x,0) which is covered by the following very simple – yet far reaching – proposition.
Again, its relevance comes from the evaluation of the minimum and not from the – more standard – question about its
attainability.

We start by noticing that for a R-self-dual Lagrangian, we readily have:

L(Rx,R∗p) � 〈Rx,p〉 for every (x,p) ∈ X × X∗, (13)

and if L is partially anti-self-dual, then

I (x) = L(Rx,0) � 0 for every x ∈ X, (14)

So, we are looking into an interesting variational situation, where the minima can also be zeros of the functionals.
Here are some necessary conditions for the existence of such minima.

Proposition 2.1. Let L be a convex lower-semi continuous functional on a reflexive Banach space X × X∗. Assume
that L is a partially R-self-dual Lagrangian for some automorphism R of X, and that for some x0 ∈ X, the function
p → L(x0,p) is bounded above on a neighborhood of the origin in X∗. Then there exists x̄ ∈ X such that:{

L(Rx̄,0) = infx∈X L(x,0) = 0,

(0, x̄) ∈ ∂L(Rx̄,0).
(15)
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Proof. This follows from the basic duality theory in convex optimization. Indeed, if (Pp) is the primal minimization
problem h(p) = infx∈X L(x,p) in such a way that (P0) is the initial problem h(0) = infx∈X L(x,0), then the dual
problem (P∗) is supy∈X −L∗(0, y), and we have the weak duality formula

infP0 := inf
x∈X

L(x,0) � sup
y∈X

−L∗(0, y) := supP∗.

The “partial R-selfduality” of L gives that

inf
x∈X

L(x,0) � sup
y∈X

−L∗(0, y) = sup
y∈X

−L(Ry,0). (16)

Note that h is convex on X∗ and that its Legendre conjugate satisfies h∗(y) = L∗(0, y) = L(Ry,0) on X. If now h is
subdifferentiable at 0 (i.e., if the problem (P0) is stable), then for any x̄ ∈ ∂h(0), we have h(0) + h∗(x̄) = 0, which
means that

− inf
x∈X

L(x,0) = −h(0) = h∗(x̄) = L∗(0, x̄) = L(Rx̄,0) � inf
x∈X

L(x,0).

It follows that infx∈X L(x,0) = L(Rx̄,0) = 0 in view of (14), and that the infimum of (P) is attained at Rx̄, while the
supremum of (P∗) is attained at x̄. In this case we can write

L(Rx̄,0) + L∗(0, x̄) = 0

which yields in view of the limiting case of Legendre duality, that (0, x̄) ∈ ∂L(Rx̄,0).
If now for some x0 ∈ X, the function p → L(x0,p) is bounded above on a neighborhood of the origin in X∗, then

h(p) � infx∈X L(x,p) � L(x0,p) and therefore h is subdifferentiable at 0 and we are done. �
Remark 2.2.

(i) The above holds under the condition that x → L(Rx,0) is coercive in the following sense:

lim‖x‖→∞
L(Rx,0)

‖x‖ = +∞. (17)

Indeed since h∗(y) = L∗(0, y) = L(Ry,0) on X, we get that h∗ is coercive on X, which means that h is bounded
above on neighborhoods of zero in X∗.

(ii) The proof above requires only that L is a Lagrangian satisfying

L∗(0, x) � L(Rx,0) � 0 for all x ∈ X. (18)

Now we can deduce the following

Theorem 2.3. Let R :X → X be an automorphism on a reflexive Banach space X and let Λ :X → X∗ be an operator
such that Λ ◦ R is skew adjoint. Let L be a Lagrangian on X × X∗ that is R-self-dual on the graph of −Λ∗, and
assume that lim‖x‖→∞ L(Rx,ΛRx)

‖x‖ = +∞. Then there exists x̄ ∈ X, such that:{
L(Rx̄,ΛRx̄) = infx∈X L(x,Λx) = 0,

(−Λ∗x̄, x̄) ∈ ∂L(Rx̄,ΛRx̄).
(19)

Proof. We first prove that the Lagrangian defined as M(x,p) = L(x,Λx + p) is partially R-self-dual. Indeed fix
(q, y) ∈ X∗ × X, set r = Λx + p and write:

M∗(q, y) = sup
{〈q, x〉 + 〈y,p〉 − L(x,Λx + p); (x,p) ∈ X × X∗}

= sup
{〈q, x〉 + 〈y, r − Λx〉 − L(x, r); (x, r) ∈ X × X∗}

= sup
{〈q − Λ∗y, x〉 + 〈y, r〉 − L(x, r); (x, r) ∈ X × X∗}

= L∗(q − Λ∗y, y).
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If q = 0, then M∗(0, y) = L∗(−Λ∗y, y) = L(Ry,−R∗Λ∗y) = L(Ry,ΛRy) = M(Ry,0), and M is therefore par-
tially R-self-dual. It follows from the previous proposition applied to M , that there exists x̄ ∈ X such that:

L(Rx̄,ΛRx̄) = M(Rx̄,0) = inf
x∈X

M(x,0) = inf
x∈X

L(x,Λx) = 0.

Now note that

L(Rx̄,ΛRx̄) = L(Rx̄,−R∗Λ∗x̄) = L∗(−Λ∗x̄, x̄),

hence

L(Rx̄,ΛRx̄) + L∗(−Λ∗x̄, x̄) = 0 = 〈
(Rx̄,ΛRx̄), (−Λ∗x̄, x̄)

〉
.

It follows from the limiting case of Legendre duality that (−Λ∗x̄, x̄) ∈ ∂L(Rx̄,ΛRx̄). �
3. Basic properties of anti-self-dual Lagrangians

The concept of R-selfduality for a general automorphism R is relevant to many equations such as Hamiltonian
systems and Cauchy–Riemann systems, and will be pursued in full generality in a forthcoming paper [11]. We shall
however concentrate in the sequel on the class of anti-self-dual Lagrangians (ASD), meaning those R-self-dual La-
grangians corresponding to the inversion operator R(x) = −x. In other words,

(1) L is said to be an anti-self-dual Lagrangian on X × X∗, if

L∗(p, x) = L(−x,−p) for all (p, x) ∈ X∗ × X. (20)

(2) L is partially anti-self dual, if

L∗(0, x) = L(−x,0) for all x ∈ X. (21)

(3) L is anti-self dual on the graph of Λ, the latter being a map from D(Λ) ⊂ X into X∗, if

L∗(Λx,x) = L(−x,−Λx) for all x ∈ D(Λ). (22)

(4) More generally, if Y × Z is any subset of X × X∗, we shall say that L is anti-self dual on the elements of Y × Z

if L∗(p, x) = L(−x,−p) for all (p, x) ∈ Y × Z.

Denote by LAD(X) the class of anti-self-dual (ASD) Lagrangians on a given Banach space X. We shall see that this
is already a very interesting and natural class of Lagrangians as they appear in several basic PDEs and evolution
equations. The basic example of an anti-self-dual Lagrangian is given by a function L on X × X∗, of the form

L(x,p) = ϕ(x) + ϕ∗(−p) (23)

where ϕ is a convex and lower semi-continuous function on X and ϕ∗ is its Legendre conjugate on X∗. We shall call
them the Basic ASD-Lagrangians. A key element of this theory is that the family of ASD Lagrangians is much richer
and goes well beyond convex functions and their conjugates, since they are naturally compatible with skew-symmetric
operators. Indeed if Λ :X → X∗ is skew-symmetric (i.e., Λ∗ = −Λ), the Lagrangian

M(x,p) = ϕ(x) + ϕ∗(−Λx − p) (24)

is also anti-self dual, and if in addition Λ is invertible then the same holds true for

N(x,p) = ϕ
(
x + Λ−1p

) + ϕ∗(Λx). (25)

3.1. Permanence properties of ASD Lagrangians

The class LAD(X) enjoys a remarkable number of permanence properties. Indeed, we define on the class of La-
grangians L(X) the following operations:
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Scalar multiplication: If λ > 0 and L ∈ L(X), define the Lagrangian λ · L on X × X∗ by

(λ · L)(x,p) = λ2L

(
x

λ
,
p

λ

)
.

Addition: If L,M ∈L(X), define the sum L + M on X × X∗ by

(L ⊕ M)(x,p) = inf
{
L(x, r) + M(x,p − r); r ∈ X∗}.

Convolution: If L,M ∈ L(X), define the convolution L � M on X × X∗ by

(L � M)(x,p) = inf
{
L(z,p) + M(x − z,p); z ∈ X

}
.

Right operator shift: If L ∈ L(X) and Λ :X → X∗ is a bounded linear operator, define the Lagrangian LΛ on
X × X∗ by

LΛ(x,p) := L(x,Λx + p).

Left operator shift: If L ∈L(X) and if Λ : X → X∗ is an invertible operator, define the Lagrangian ΛL on X × X∗
by

ΛL(x,p) := L
(
x + Λ−1p,Λx

)
.

Free product: If {Li; i ∈ I } is a finite family of Lagrangians on reflexive Banach spaces {Xi; i ∈ I }, define the
Lagrangian L := ∑

i∈I Li on (
∏

i∈I Xi) × (
∏

i∈I X∗
i ) by

L
(
(xi)i , (pi)i

) =
∑
i∈I

Li(xi,pi).

Twisted product: If L ∈ L(X) and M ∈ L(Y ) where X and Y are two reflexive spaces, then for any bounded linear
operator A :X → Y ∗, define the Lagrangian L ⊕A M on (X × Y) × (X∗ × Y ∗) by

(L ⊕A M)
(
(x, y), (p.q)

) := L(x,A∗y + p) + M(y,−Ax + q).

Anti-dualisation: If ϕ is any convex function on X × Y and A is any bounded linear operator A :X → Y ∗, define
the Lagrangian L ⊕as A on (X × Y) × (X∗ × Y ∗) by

ϕ ⊕as A
(
(x, y), (p.q)

) = ϕ(x, y) + ϕ∗(−A∗y − p,Ax − q).

The above defined convolution operation should not be confused with the standard convolution for L and M as
convex functions in both variables. It is easy to see that in the case where L(x,p) = ϕ(x) + ϕ∗(−p) and M(x,p) =
ψ(x) + ψ∗(−p), addition corresponds to taking

(L ⊕ M)(x,p) = (ϕ + ψ)(x) + ϕ∗ � ψ∗(−p)

while convolution reduces to:

(L � M)(x,p) = (ϕ � ψ)(x) + (ϕ∗ + ψ∗)(−p),

which also means that they are dual operations. We do not know whether this is true in general, but for the sequel we
shall only need the following:

Lemma 3.1. Let X be a reflexive Banach space and consider two Lagrangians L and M in L(X). Then the following
hold:

(1) (L ⊕ M)∗ � L∗ � M∗ and (L � M)∗ � L∗ ⊕ M∗.
(2) If L or M is a basic ASD Lagrangian, then (L ⊕ M)∗ = L∗ � M∗ and (L � M)∗ = L∗ ⊕ M∗.
(3) If L and M are in LAD(X), then L∗ ⊕ M∗(q, y) = L � M(−y,−q) for every (y, q) ∈ X × X∗.

Proof. To prove (1) fix (q, y) ∈ X∗ × X and write:
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(L � M)∗(q, y)

= sup
{〈q, x〉 + 〈y,p〉 − L(z,p) − M(x − z,p); (z, x,p) ∈ X × X × X∗}

= sup
{〈q, v + z〉 + 〈y,p〉 − L(z,p) − M(v,p); (z, v,p) ∈ X × X × X∗}

= sup
{〈q, v + z〉 + sup

{〈y,p〉 − L(z,p) − M(v,p);p ∈ X∗}; (z, v) ∈ X × X
}

= sup
(z,v)∈X×X

{
〈q, v + z〉 + inf

w∈X

{
sup

p1∈X∗

(〈w,p1〉 − L(z,p1)
) + sup

p2∈X∗

(〈y − w,p2〉 − M(v,p2)
)}}

� inf
w∈X

{
sup

(z,p1)∈X×X∗

{〈q, z〉 + 〈w,p1〉 − L(z,p1)
} + sup

(v,p2)∈X×X∗

{〈q, v〉 + 〈y − w,p2〉 − M(v,p2)
}}

= inf
w∈X

{
L∗(q,w) + M∗(q, y − w)

}
= (L∗ ⊕ M∗)(q, y).

For (2) assume that M(x,p) = ϕ(x) + ϕ∗(−p) where ϕ is a convex lower semi-continuous function. Fix (q, y) ∈
X∗ × X and write:

(L � M)∗(q, y) = sup
{〈q, x〉 + 〈y,p〉 − L(z,p) − M(x − z,p); (z, x,p) ∈ X × X × X∗}

= sup
{〈q, v + z〉 + 〈y,p〉 − L(z,p) − M(v,p); (z, v,p) ∈ X × X × X∗}

= sup
p∈X∗

{
〈y,p〉 + sup

(z,v)∈X×X

{〈q, v + z〉 − L(z,p) − ϕ(v)
} − ϕ∗(−p)

}

= sup
p∈X∗

{
〈y,p〉 + sup

z∈X

{〈q, z〉 − L(z,p)
} + sup

v∈X

{〈q, v〉 − ϕ(v)
} − ϕ∗(−p)

}

= sup
p∈X∗

{
〈y,p〉 + sup

z∈X

{〈q, z〉 − L(z,p)
} + ϕ∗(q) − ϕ∗(−p)

}
= sup

p∈X∗
sup
z∈X

{〈y,p〉 + 〈q, z〉 − L(z,p) − ϕ∗(−p)
} + ϕ∗(q)

= (L + T )∗(q, y) + ϕ∗(q),

where T (z,p) := ϕ∗(−p) for all (z,p) ∈ X × X∗. Note now that

T ∗(q, y) = sup
z,p

{〈q, z〉 + 〈y,p〉 − ϕ∗(−p)
} =

{+∞ if q �= 0,

ϕ(−y) if q = 0

in such a way that by using the duality between sums and convolutions in both variables, we get

(L + T )∗(q, y) = conv(L∗, T ∗)(q, y)

= inf
r∈X∗, z∈X

{
L∗(r, z) + T ∗(−r + q,−z + y)

}
= inf

z∈X

{
L∗(q, z) + ϕ(z − y)

}
and finally

(L � M)∗(q, y) = (L + T )∗(q, y) + ϕ∗(q)

= inf
z∈X

{
L∗(q, z) + ϕ(z − y)

} + ϕ∗(q)

= inf
z∈X

{
L∗(q, z) + ϕ∗(q) + ϕ(z − y)

}
= (L∗ ⊕ M∗)(q, y).

The rest follows in the same way. For (3) write

(L∗ ⊕ M∗)(q, y) = inf
w∈X

{
L∗(q,w) + M∗(q, y − w)

}
= inf

w∈X

{
L(−w,−q) + M(w − y,−q)

}
= (L � M)(−y,−q). �



180 N. Ghoussoub / Ann. I. H. Poincaré – AN 24 (2007) 171–205
The following proposition summarizes some of the remarkable permanence properties of ASD Lagrangians.

Proposition 3.1. Let X be a reflexive Banach space, then the following holds:

(1) If L is in LAD(X), then L∗ ∈ LAD(X∗), and if λ > 0, then λ · L also belong to LAD(X).
(2) If L is in LAD(X), then for any y ∈ X and q ∈ X∗, the translated Lagrangians My and Np defined respectively

by My(x,p) = L(x + y,p) + 〈y,p〉 and Nq(x,p) = L(x,p + q) + 〈x, q〉 are also in LAD(X).
(3) If L and M are in LAD(X) and one of them is basic, then the Lagrangians L ⊕ M , and L � M also belong to

LAD(X).
(4) If Li ∈ LAD(Xi) where Xi is a reflexive Banach space for each i ∈ I , then

∑
i∈I Li is in LAD(

∏
i∈I Xi).

(5) If L ∈ LAD(X) and Λ :X → X∗ is a skew-adjoint bounded linear operator (i.e., Λ∗ = −Λ), then the Lagrangian
LΛ is also in LAD(X).

(6) If L ∈ LAD(X) and if Λ :X → X∗ is an invertible skew-adjoint operator, then the Lagrangian ΛL is also in
LAD(X).

(7) If L ∈ LAD(X) and M ∈ LAD(Y ), then for any bounded linear operator A :X → Y ∗, the Lagrangian L ⊕A M

belongs to LAD(X × Y).
(8) If ϕ is a proper convex lower semi-continuous function on X × Y and A is any bounded linear operator

A :X → Y ∗, then ϕ ⊕as A belongs to LAD(X × Y).
(9) If L is in LAD(X) and if U is a unitary operator (U−1 = U∗), then M(x,p) = L(Ux,Up) also belongs to

LAD(X).

Proof. (1) and (2) are straightforward, while (3) follows from the above lemma and (4) is obvious. (5) has been shown
in the proof of Theorem 2.3. For (6) let r = x − Λ−1p and s = Λx and write

ΛL∗(q, y) = sup
{〈q, x〉 + 〈y,p〉 − L

(
x − Λ−1p,Λx

); (x,p) ∈ X × X∗}
= sup

{〈
q,Λ−1s

〉 + 〈y, s − Λr〉 − L(r, s); (r, s) ∈ X × X∗}
= sup

{〈−Λ−1q + y, s
〉 + 〈Λy, r〉 − L(r, s); (r, s) ∈ X × X∗}

= L∗(Λy,−Λ−1q + y
) = L

(−y + Λ−1q,−Λy
)

= ΛL(−y,−q).

For (7), it is enough to notice that for (x̃, p̃) ∈ (X × Y) × (X∗ × Y ∗), we can write

L ⊕A M(x̃, p̃) = (L + M)(x̃, Ãx̃ + p̃),

where Ã :X × Y → X∗ × Y ∗ is the skew-adjoint operator defined by Ã(x̃) = Ã((x, y)) = (A∗y,−Ax). Assertion (8)
follows again from (5) since

ϕ ⊕as A
(
(x, y), (p, q)

) = ϕ(x, y) + ϕ∗(−A∗y − p,Ax − q) = L
Ã

(
(x, y), (p, q)

)
where L((x, y), (p.q)) := ϕ(x, y) + ϕ∗(−p,−q) is obviously in LAD(X × Y) and where Ã :X × Y → X∗ × Y ∗ is
again the skew-adjoint operator defined by Ã((x, y)) = (A∗y,−Ax). �
Remark 3.2.

(i) The proofs of (5) and (6) above clearly show that LΛ (resp., ΛL) is partially anti-self-dual if and only if L is
anti-self-dual on the graph of Λ.

(ii) An important use of the above proposition is when Mλ(x,p) = ‖x‖2/(2λ2) + λ2‖p‖2/2, then Lλ = L � Mλ is
a λ-regularization of the Lagrangian L, which is reminiscent of the Yosida theory for operators and for convex
functions. This will be most useful in [10] and [17].

3.2. Anti-self-dual vector fields

Definition 3.3. Let X be a reflexive Banach space and let L :X×X∗ → R∪{+∞} be a convex lower semi-continuous
function, that is not identically equal to +∞.
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(1) The partial domains of L are defined as

Dom1(L) = {
x ∈ X;L(x,p) < +∞ for some p ∈ X∗} and

Dom2(L) = {
p ∈ X∗;L(x,p) < +∞ for some x ∈ X

}
.

(2) The derived ASD vector fields of L at x ∈ X (resp., p ∈ X∗) are the – possibly empty – sets

∂̄L(x) := {
p ∈ X∗; L(x,p) + 〈x,p〉 = 0

}
resp., ∂̃L(p) := {

x ∈ X; L(x,p) + 〈x,p〉 = 0
}
.

(3) The domains of the ASD vector field ∂̄L are the sets

Dom(∂̄L) = {
x ∈ X; ∂̄L(x) �= ∅}

resp., Dom(∂̃L) = {
p ∈ X∗; ∂̃L(p) �= ∅}

.

The above defined potentials should not be confused with the subdifferential ∂L of L as a convex function on
X × X∗. It is easy to see that if L is an anti-self-dual Lagrangian, then we have

p ∈ ∂̄L(x) iff x ∈ ∂̃L(p) iff (−p,−x) ∈ ∂L(x,p) iff 0 ∈ ∂̄Lp(x̄),

where Lp(x, q) = L(x,p + q) + 〈x,p〉. For a basic ASD Lagrangian L(x,p) = ϕ(x) + ϕ∗(−p), it is clear that

∂̄L(x) = −∂ϕ(x) while ∂̃L(p) = ∂ϕ∗(−p).

Recalling that an ASD Lagrangian L satisfies L(x,p)+〈x,p〉 � 0 for every (x,p) ∈ X ×X∗, the problem of proving
that ∂̃L(p) is non-empty for a given p ∈ X∗ amounts to showing that the infimum of the functional Ip(x) = L(x,p)+
〈x,p〉 over x ∈ X is equal to zero and is attained. Proposition 2.1 applied to translated Lagrangians then give the
following simple but far-reaching proposition.

Proposition 3.2. Let L be an anti-self-dual Lagrangian L on a reflexive Banach space X × X∗. The following asser-
tions hold:

(1) If q �→ L(0, q) is bounded on a ball of X∗, then for each p ∈ X∗ the infimum of Ip(x) = L(x,p) + 〈x,p〉 over X

is equal to zero and is attained at some point x̄ ∈ X so that p ∈ ∂̄L(x̄).
(2) The ASD vector field x → −∂̄L(x) is monotone in the sense that 〈x − y,p − q〉 � 0 for p ∈ −∂̄L(x) and

q ∈ −∂̄L(y).
(3) If L is strictly convex in the second variable, then the ASD vector field x → ∂̄L(x) is single-valued.
(4) If L is uniformly convex in the second variable (i.e., if L(x,p) − ε‖p‖2/2 is convex in p for some ε > 0) then the

ASD vector field x → ∂̄L(x) is a Lipschitz maximal monotone map.

Corresponding dual statements about p → ∂̃L(p) also hold. The proof is straightforward provided one applies
Theorem 2.1 with the automorphism R(x) = −x and the translated Lagrangians Mx and Np which are also anti-self-
dual by Proposition 3.1. The details are left to the interested reader. For the theory of maximal monotone operators
see [5].

As noted above, non-trivial examples of anti-self-dual Lagrangians are of the form

L(x,p) = ϕ(x) + ϕ∗(−Λx − p), (26)

where ϕ is a convex and lower semi-continuous function on X, ϕ∗ is its Legendre conjugate on X∗ and where
Λ :X → X∗ is skew-symmetric. In this case, it is easy to see that

∂̄L(x) = −Λx − ∂ϕ(x) while ∂̃L(p) = (−Λ − ∂ϕ)−1(p).

This suggests that ASD vector fields are natural extensions of operators of the form A+∂ϕ, where A is positive and
ϕ is convex. This is an important subclass of maximal monotone operators which can now be resolved variationally.
Indeed, by considering the cone C(X) of bounded below, proper convex lower semi-continuous functions on X, and
A(X) the cone of positive bounded linear operators from X into X∗ (i.e., 〈Ax,x〉 � 0 for all x ∈ X).

Proposition 3.3. One can associate to any pair (ϕ,A) ∈ C(X) × A(X), a Lagrangian L := L(ϕ,A) ∈ LAD(X) such
that for p ∈ X∗, the following are equivalent:
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(1) The equation Ax + ∂ϕ(x) = −p has a solution x̄ ∈ X.
(2) The functional Ip(x) = L(x,p) + 〈x,p〉 attains its infimum at x̄ ∈ X.
(3) p ∈ ∂̄L(x̄).

Proof. Indeed, one can associate to each pair (ϕ,A) ∈ C(X) ×A(X), the anti-self-dual Lagrangian

L(ϕ,A)(x,p) = ψ(x) + ψ∗(−Aax − p
)

for any (x,p) ∈ X × X∗,

where ψ(x) = 1
2 〈Ax,x〉 + ϕ(x), Aa = 1

2 (A − A∗) is the anti-symmetric part of A, and As = 1
2 (A + A∗) is its sym-

metric part. The fact that the minimum of I (x) = ψ(x)+ψ∗(−Aax −p)+〈x,p〉 is equal to 0 and is attained at some
x̄ ∈ X means that ψ(x̄) + ψ∗(−Aax̄ − p) = 0 = −〈Aax̄ + p, x̄〉 which yields, in view of Legendre–Fenchel duality
that −Aax̄ − p ∈ ∂ψ(x̄) = Asx̄ + ∂ϕ(x̄), hence x̄ satisfies −Ax − p ∈ ∂ϕ(x). �
4. Self-dual variational principles for homogeneous boundary value problems

An immediate corollary of Theorem 2.4 in the special case of ASD Lagrangians is the following result which will
be used repeatedly in the sequel.

4.1. A non-linear Lax–Milgram theorem for homogeneous equations

Theorem 4.1. Let Λ :X → X∗ be a bounded linear skew-adjoint operator on a reflexive Banach space X, and let L

be an anti-self-dual Lagrangian on the graph of Λ. Assume one of the following hypothesis:

(A) lim‖x‖→∞ L(x,Λx)
‖x‖ = +∞, or

(B) The operator Λ is invertible and the map x → L(x,0) is bounded above on the ball of X.

Then there exists x̄ ∈ X, such that:{
L(x̄,Λx̄) = infx∈X L(x,Λx) = 0,

Λx̄ ∈ ∂̄L(x̄).
(27)

Proof. It suffices to apply Theorem 2.3 with R(x) = −x. In the case where Λ is also invertible, then we directly apply
Proposition 2.1 to the Lagrangian ΛL(x,p) = L(x + Λ−1p,Λx) which is partially anti-self-dual. �

Now we can a variational resolution to the following non-linear Lax–Milgram type result.

Corollary 4.2. Assume one of the following conditions on a pair (ϕ,A) ∈ C(X) ×A(X):

(A) lim‖x‖→∞ ‖x‖−1(ϕ(x) + 1
2 〈Ax,x〉) = +∞, or

(B) The operator Aa = 1
2 (A − A∗) :X → X∗ is onto and ϕ is bounded above on the ball of X.

Then, there exists for any f ∈ X∗, a solution x̄ ∈ X to the equation −Ax + f ∈ ∂ϕ(x) that can be obtained as a
minimizer of the problem:

inf
x∈X

{
ψ(x) + ψ∗(−Aax

)} = 0, (28)

where ψ is the convex functional ψ(x) = 1
2 〈Ax,x〉 + ϕ(x) − 〈f,x〉.

Note that all what is needed in the above proposition is that the function ψ(x) = 1
2 〈Ax,x〉 + ϕ(x) is convex and

lower semi-continuous.

Example 1 (A variational formulation for the Lax–Milgram theorem). Given a bilinear continuous functional a on a
Banach space X, and assuming that a is coercive: i.e., for some λ > 0, we have that a(v, v) � λ‖v‖2 for every v ∈ X.
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It is well known that if a is symmetric, then for any f ∈ X∗, we can use a variational approach to find u ∈ X, such
that for every v ∈ X, we have a(u, v) = 〈v,f 〉. The procedure amounts to minimizing on H the convex functional
ψ(u) = 1

2a(u,u) − 〈u,f 〉.

The theorem of Lax–Milgram deals with the case when a is not symmetric, for which the above variational ar-
gument does not work. Theorem 4.1 however yields the following variational formulation and proof of the original
Lax–Milgram theorem.

Corollary 4.3. Let a be a coercive continuous bilinear form on X × X. For any f ∈ X∗, consider the functional
I (v) = ψ(v) + ψ∗(−Λv) where ψ(v) = 1

2a(v, v) − 〈v,f 〉, ψ∗ its Legendre conjugate and where Λ :X → X∗ is the
skew-adjoint operator defined by 〈Λv,w〉 = 1

2 (a(v,w) − a(w,v)). Then there exists u ∈ X such that

I (u) = inf
v∈H

I (v) = 0 and a(u, v) = 〈v,f 〉 for every v ∈ X.

Proof. Consider the ASD Lagrangian L(x,p) = ψ(x) + ψ∗(−p) and apply Theorem 4.1 to I (u) = L(u,Λu). Note
that L(u,Λu) = 0 if and only if ψ(u) + ψ∗(−Λu) = 0 = −〈Λu,u〉 which means that −Λu ∈ ∂ψ(u). In other words,
we have for every v ∈ X

−1

2

(
a(u, v) − a(v,u)

) = 1

2

(
a(u, v) + a(v,u)

) − 〈v,f 〉,
which yields our claim. �
Example 2 (Inverting variationally a non-self-adjoint matrix). An immediate finite dimensional application of the
above corollary is the following variational solution for the linear equation Ax = y where A is an n × n-matrix and
y ∈ R

n. It then suffices to minimize

I (x) = 1

2
〈Ax,x〉 + 1

2

〈
A−1

s (y − Aax), y − Aax
〉 − 〈y, x〉,

on R
n, where Aa is the anti-symmetric part of A and A−1

s is the inverse of the symmetric part. If A is coercive, i.e.,
〈Ax,x〉 � c|x|2 for all x ∈ R

n, then there is a solution x̄ ∈ R
n to the equation obtained as I (x̄) = infx∈Rn I (x) = 0.

Example 3 (A variational principle for a non-symmetric Dirichlet problem). Let a :Ω → R
n be a smooth function

on a bounded domain Ω of R
n, and consider the first order linear operator Av = a · ∇v = ∑n

i=1 ai
∂v
∂xi

. Assume

that the vector field
∑n

i=1 ai
∂v
∂xi

is actually the restriction of a smooth vector field
∑n

i=1 āi
∂v
∂xi

defined on an open

neighborhood X of �Ω and that each āi is a C1,1 function on X (see [4]). Consider the Dirichlet problem:{
�u + a · ∇u = |u|p−2u + f on Ω,

u = 0 on ∂Ω.
(29)

If a = 0, then to find a solution, it is sufficient to minimize the functional

Φ(u) = 1

2

∫
Ω

|∇u|2 dx + 1

p

∫
Ω

|u|p dx +
∫
Ω

f udx

and get the solution as a critical point ∂Φ(u) = 0. However, if the non-self-adjoint term a is not zero, we can use the
above approach to get

Theorem 4.4. Assume div(a) � 0 on Ω , 1 < p � 2n
n−2 and consider on H 1

0 (Ω), the functional

I (u) = Ψ (u) + Ψ ∗
(

a · ∇u + 1

2
div(a), u

)
,

where Ψ (u) = 1
2

∫
Ω

|∇u|2 dx + 1
p

∫
Ω

|u|p dx +∫
Ω

f udx + 1
4

∫
Ω

div(a)|u|2 dx and Ψ ∗ is its Legendre transform. Then

there exists ū ∈ H 1(Ω) such that I (ū) = inf{I (u); u ∈ H 1(Ω)} = 0, and ū is a solution of (29).
0 0
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Proof. Indeed, Ψ is clearly convex and lower semi-continuous on H 1
0 (Ω) while the operator Λu = −a · ∇u −

1
2 div(a)u is skew-adjoint by Green’s formula. Again the functional I (u) = Ψ (u) + Ψ ∗(a · ∇u + 1

2 div(a)u) is of
the form L(u,Λu) where L(u, v) = Ψ (u) + Ψ ∗(−v) is an ASD Lagrangian on H 1

0 (Ω) × H−1(Ω). The existence
follows from Theorem 2.3, since Ψ is clearly coercive. Note that ū then satisfies

a · ∇ū + 1

2
div(a)ū = ∂Ψ (ū) = −�ū + ūp−1 + f + 1

2
div(a)ū

and therefore ū is a solution for (29). �
Example 4 (A variational solution for variational inequalities). Given again a bilinear continuous functional a on
X × X, and ϕ :X → R a convex l.s.c, then solving the corresponding variational inequality amounts to constructing
for any f ∈ X∗, a point y ∈ X such that for all z ∈ X,

a(y, y − z) + ϕ(y) − ϕ(z) � 〈y − z,f 〉. (30)

It is well known that this problem can be rewritten as

f ∈ Ay + ∂ϕ(y),

where A is the bounded linear operator from X into X∗ defined by a(u, v) = 〈Au,v〉. This means that the varia-
tional inequality (30) can be rewritten and solved using our self-dual variational principle. For example, we can solve
variationally the following “obstacle” problem.

Corollary 4.5. Let a be bilinear continuous functional a on a reflexive Banach space X × X so that a(v, v) � λ‖v‖2,
and let K be a convex closed subset of X. Then, for any f ∈ X∗, there is x̄ ∈ K such that

a(x̄, x̄ − z) � 〈x̄ − z,f 〉 for all z ∈ K. (31)

The point x̄ can be obtained as a minimizer of the following problem:

inf
x∈X

{
ϕ(x) + (ϕ + ψK)∗(−Λx)

} = 0,

where ϕ(u) = 1
2a(u,u) − 〈f,x〉, Λ :X → X∗ is the skew-adjoint operator defined by

〈Λu,v〉 = 1

2

(
a(u, v) − a(v,u)

)
and where ψK(x) = 0 on K and +∞ elsewhere.

4.2. ASD Lagrangians associated to differential systems

The next proposition shows that the theory of ASD-Lagrangians is well suited for “anti-Hamiltonian” systems of
the form

(−A∗y,Ax) ∈ ∂ϕ(x, y),

where A is any given bounded linear operator.

Proposition 4.1. Let ϕ be a proper and coercive convex lower semi-continuous function on X × Y with (0,0) ∈
dom(ϕ), and let A :X → Y ∗ be any bounded linear operator. Assume B1 :X → X∗ (resp., B2 :Y → Y ∗) to be skew-
adjoint operators, then there exists (x̄, ȳ) ∈ X × Y such that

(−A∗ȳ + B1x̄,Ax̄ + B2ȳ) ∈ ∂ϕ(x̄, ȳ). (32)

The solution is obtained as a minimizer on X × Y of the functional

I (x, y) = ϕ(x, y) + ϕ∗(−A∗y + B1x,Ax + B2y).
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Proof. It is enough to apply Theorem 4.1 to the ASD Lagrangian

L
(
(x, y), (p, q)

) = ϕ(x, y) + ϕ∗(−A∗y + B1x − p,Ax + B2y − q),

obtained by shifting to the right the ASD Lagrangian ϕ ⊕as A by the skew-adjoint operator (−B1,−B2). This yields
that I (x, y) = L((x, y), (0,0)) attains its minimum at some (x̄, ȳ) ∈ X × Y and that the minimum is actually 0. In
other words,

0 = I (x̄, ȳ) = ϕ(x̄, ȳ) + ϕ∗(−A∗ȳ + B1x̄,Ax̄ + B2ȳ)

= ϕ(x̄, ȳ) + ϕ∗(−A∗ȳ + B1x̄,Ax̄ + B2ȳ) − 〈
(x̄, ȳ), (−A∗ȳ + B1x̄,Ax̄ + B2ȳ)

〉
from which the equation follows. �
Corollary 4.6. Given positive operators B1 :X → X∗, B2 :Y → Y ∗ and convex functions ϕ1 in C(X) and ϕ2 in C(Y )

having 0 in their respective domains, we consider the convex functionals ψ1(x) = 1
2 〈B1x, x〉 + ϕ1(x) and ψ2(x) =

1
2 〈B2x, x〉 + ϕ2(x). Assume

lim‖x‖+‖y‖→∞
ψ1(x) + ψ2(y)

‖x‖ + ‖y‖ = +∞.

Then, for any (f, g) ∈ X∗ × Y ∗ and any c ∈ R, and any bounded linear operator A :X → Y ∗, there exists a solution
(x̄, ȳ) ∈ X × Y to the system of equations{−A∗y − B1x + f ∈ ∂ϕ1(x),

c2Ax − B2y + g ∈ ∂ϕ2(y).
(33)

It can be obtained as a minimizer of the problem:

inf
x,y∈X×Y

{
χ1(x) + χ∗

1

(−Ba
1 x − A∗y

) + χ2(y) + χ∗
2

(−Ba
2 y + c2Ax

)} = 0, (34)

where Ba
1 (resp., Ba

2 ) are the skew-symmetric parts of B1 and B2 and where χ1(x) = ψ1(x) − 〈f,x〉 and χ2(x) =
ψ2(x) − 〈g, x〉

Proof. This follows by applying the above proposition to the convex function ϕ(x, y) = χ1(x)+χ2(y) and the skew-
symmetric operators −Ba

1 and −Ba
2 . Note that the operator Ã :X×Y → X∗×Y ∗ defined by Ã(x, y) = (A∗y,−c2Ax)

is skew adjoint once we equip X × Y with the scalar product〈
(x, y), (p, q)

〉 = 〈x,p〉 + c−2〈y, q〉.
We then get{−A∗y − Ba

1 x + f ∈ ∂ϕ1(x) + Bs
1(x),

c2Ax − Ba
2 y + g ∈ ∂ϕ2(y) + Bs

2(y)
(35)

which gives the result. �
Example 5 (A variational principle for coupled equations). Let b1 :Ω → R

n and b2 :Ω → R
n be two smooth vector

fields on a neighborhood of a bounded domain Ω of R
n, verifying the conditions in Example 3. Consider the system:{

�(v + u) + b1 · ∇u = |u|p−2u + f on Ω,

�(v − c2u) + b2 · ∇v = |v|q−2v + g on Ω,

u = v = 0 on ∂Ω.

(36)

We can use the above to get the following result.

Theorem 4.7. Assume div(b1) � 0 and div(b2) � 0 on Ω , 1 < p,q � n+2
n−2 and consider on H 1

0 (Ω) × H 1
0 (Ω) the

functional

I (u, v) = Ψ (u) + Ψ ∗
(

b1 · ∇u + 1
div(b1)u + �v

)
+ Φ(v) + Φ∗

(
b2 · ∇v + 1

div(b2) v − c2�u

)
,

2 2
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where

Ψ (u) = 1

2

∫
Ω

|∇u|2 dx + 1

p

∫
Ω

|u|p dx +
∫
Ω

f udx + 1

4

∫
Ω

div(b1)|u|2 dx,

Φ(v) = 1

2

∫
Ω

|∇v|2 dx + 1

q

∫
Ω

|v|q dx +
∫
Ω

gv dx + 1

4

∫
Ω

div(b2)|v|2 dx

and Ψ ∗ and Φ∗ are their Legendre transforms. Then there exists (ū, v̄) ∈ H 1
0 (Ω) × H 1

0 (Ω) such that:

I (ū, v̄) = inf
{
I (u, v); (u, v) ∈ H 1

0 (Ω) × H 1
0 (Ω)

} = 0,

and (ū, v̄) is a solution of (36).

We can also reduce general minimization problems of functionals of the form I (x) = ϕ(x) + ψ(Ax) to the much
easier problem of minimizing ASD Lagrangians. Indeed we have

Proposition 4.2. Let ϕ (resp., ψ ) be a convex lower semi-continuous function on a reflexive Banach space X (resp. Y ∗)
and let A :X → Y ∗ be a bounded linear operator. To minimize the functional I (x) = ϕ(x)+ψ(Ax) on X, we consider
on X × Y the functional

I (x, y) = ϕ(x) + ψ∗(y) + ϕ∗(−A∗y) + ψ(Ax).

Assuming lim‖z‖→∞ I (z) = +∞, then the infimum of I is zero and is attained at a point (x̄, ȳ) which determines the
extremals of the min–max problem:

sup
{−ψ∗(y) − ϕ∗(−A∗y);y ∈ Y

} = inf
{
ϕ(x) + ψ(Ax);x ∈ X

}
.

The pair (x̄, ȳ) also satisfies the system:{−A∗y ∈ ∂ϕ(x),

Ax ∈ ∂ψ∗(y).
(37)

Proof. It is sufficient to note that I (x, y) = L((x, y), (0,0) where L is an anti-self-dual Lagrangian defined on X ×Y

by:

L
(
(x, y), (p, q)

) = ϕ(x) + ψ∗(y) + ϕ∗(−A∗y − p) + ψ(Ax − q). �
By considering more general twisted sum Lagrangians, we obtain the following application

Corollary 4.8. Let X and Y be two reflexive Banach spaces and let A :X → Y ∗ be any bounded linear operator.
Assume L ∈ LAD(X) and M ∈LAD(Y ) are such that

lim‖x‖+‖y‖→∞
L(x,A∗y) + M(y,−Ax)

‖x‖ + ‖y‖ = +∞.

Then there exists (x̄, ȳ) ∈ X × Y , such that:

L(x̄,A∗ȳ) + M(ȳ,−Ax̄) = inf
(x,y)∈(X×Y)

L(x,A∗y) + M(y,−Ax) = 0. (38)

Moreover, we have⎧⎪⎨
⎪⎩

L(x̄,A∗ȳ) + 〈x̄,A∗ȳ〉 = 0,

M(ȳ,−Ax̄) + 〈ȳ,−Ax〉 = 0,

(−A∗ȳ,−x̄) ∈ ∂L(x̄,A∗x̄),

(Ax̄,−ȳ) ∈ ∂M(ȳ,−Ax̄).

(39)

Proof. It is sufficient to apply Proposition 2.1 to the ASD Lagrangian L ⊕A M . �
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5. Self-dual variational principles with boundary constraints

For problems involving boundaries, we may start with an ASD Lagrangian L, but the operator Λ may be skew-
adjoint modulo a term involving a boundary operator B from X into some Hilbert space H . We can then try to recover
anti-selfduality by adding a correcting term via a boundary Lagrangian 
 on H , in such a way that a new Lagrangian

M(x,p) = L(x,Λx + p) + 
(Bx)

becomes anti-self-dual on X × X∗. As will be shown in [11], this procedure can be applied to a large number of
linear and non-linear boundary value problems. In this section, we shall only consider the case where the boundary
operator is of the form B := (b1, b2) from its domain in X into a product Hilbert space H := H1 × H2, and where the
anti-symmetry of Λ modulo B corresponds to the simplest “Green’s formula”:

〈Λx,y〉
(X,X∗)

+ 〈Λy,x〉(X,X∗) = 〈
b2(x), b2(y)

〉
H2

− 〈
b1(x), b1(y)

〉
H1

. (40)

5.1. Skew-symmetry and anti-self-dual Lagrangians

Definition 5.1. Let Λ be a linear map from its domain D(Λ) in a reflexive Banach space X into X∗ and consider
(b1, b2) to be a linear map from its domain D(b1, b2) in X into the product of two Hilbert spaces H1 × H2. Let
S := D(Λ) ∩ D(b1, b2) and associate the set

D∗(Λ,b1, b2) =
{
y ∈ X; sup

{
〈y,Λx〉 − 1

2

(∥∥b1(x)
∥∥2

H1
+ ∥∥b2(x)

∥∥2
H2

); x ∈ S,‖x‖X < 1

}
< ∞

}
.

• Say that Λ is skew-adjoint modulo the boundary operators (b1, b2) if the following properties are satisfied:

(1) The space X0 := Ker(b1, b2) ∩ D(Λ) is dense in X.
(2) The image of S by (b1, b2) is dense in H1 × H2.
(3) For every x, y ∈ S, we have 〈y,Λx〉 + 〈Λy,x〉 = 〈b2(x), b2(y)〉H2 − 〈b1(x), b1(y)〉H1 .

(4) D∗(Λ,b1, b2) = D(Λ) ∩ D(b1, b2).

Definition 5.2. We say that 
 :H1 × H2 → R ∪ {+∞} is a compatible boundary Lagrangian if


∗(−h1, h2) = 
(h1, h2) for all (h1, h2) ∈ H1 × H2. (41)

It is easy to see that such a boundary Lagrangian will always satisfy the inequality


(r, s) � 1

2

(‖s‖2 − ‖r‖2) for all (r, s) ∈ H1 × H2. (42)

The basic example of a compatible boundary Lagrangian is given by a function 
 on H1 × H2, of the form 
(x,p) =
ψ1(x) + ψ2(p), with ψ∗

1 (x) = ψ1(−x) and ψ∗
2 (p) = ψ2(p). Here the choices for ψ1 and ψ2 are rather limited and

the typical sample is:

ψ1(x) = 1

2
‖x‖2 − 2〈a, x〉 + ‖a‖2, and ψ2(p) = 1

2
‖p‖2,

where a is given in H1. Boundary operators and compatible boundary Lagrangians allow us to build new ASD La-
grangians.

Proposition 5.1. Let L :X × X∗ → R ∪ {+∞} be an ASD Lagrangian on a reflexive Banach space X and let

 :H1 × H2 → R be a compatible boundary Lagrangian on the product of two Hilbert spaces H1 × H2. Con-
sider Λ : D(Λ) ⊂ X → X∗ to be a skew-adjoint operator modulo a boundary operator (b1, b2) :D(b1, b2) ⊂ X →
H1 × H2. Assume the following conditions:

(i) For every p ∈ X∗, the function x → L(x,p) is continuous on X.
(ii) The function x → L(x,0) is bounded on a neighborhood of 0 in X.

(iii) For all (r, s) ∈ H1 × H2, 
(r, s) � C(1 + ‖r‖2 + ‖s‖2).
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Then the Lagrangian defined by

LΛ,
(x,p) =
{

L(x,Λx + p) + 
(b1(x), b2(x)) if x ∈ D(Λ) ∩ D(b1, b2),

+∞ if x /∈ D(Λ) ∩ D(b1, b2)

is anti-self-dual on X.

Proof. First take (q, y) ∈ X∗ × S, and write

L∗
Λ,
(q, y) = sup

{〈y,p〉 + 〈x, q〉 − L(x,Λx + p) − 

(
b1(x), b2(x)

);x ∈ S,p ∈ X∗}.
Setting r = Λx + p, and using that 〈y,Λx〉 = −〈x,Λy〉 − 〈b1(x), b1(y)〉 + 〈b2(x), b2(y)〉 for y ∈ S, we obtain

L∗
Λ,
(q, y) = sup

x∈S
r∈X∗

{〈y, r − Λx〉 + 〈x, q〉 − L(x, r) − 

(
b1(x), b2(x)

)}

= sup
x∈S
r∈X∗

{〈x,Λy〉 + 〈
b1(x), b1(y)

〉 − 〈
b2(x), b2(y)

〉 + 〈y, r〉 + 〈x, q〉 − L(x, r) − 

(
b1(x), b2(x)

)}

= sup
{〈x,Λy + q〉 + 〈

b1(x + x0), b1(y)
〉 − 〈

b2(x + x0), b2(y)
〉 + 〈y, r〉 − L(x, r)

− 

(
b1(x + x0), b2(x + x0)

);x ∈ S, r ∈ X∗, x0 ∈ Ker(b1, b2) ∩ D(Λ)
}
.

Since S is a linear space, we may set w = x + x0 and write

L∗
Λ,
(q, y) = sup

{〈w − x0,Λy + q〉 + 〈
b1(w), b1(y)

〉 − 〈
b2(w), b2(y)

〉 + 〈y, r〉 − L(w − x0, r)

− 

(
b1(w), b2(w)

); w ∈ S, r ∈ X∗, x0 ∈ Ker(b1, b2) ∩ D(Λ)
}
.

Now for each fixed w ∈ S and r ∈ X∗, the supremum over x0 ∈ Ker(b1, b2) ∩ D(Λ) can be taken as a supremum over
x0 ∈ X since Ker(b1, b2)∩D(Λ) is dense in X and all terms involving x0 are continuous in that variable. Furthermore,
for each fixed w ∈ S and r ∈ X∗, the supremum over x0 ∈ X of the terms w − x0 can be written as supremum over
v ∈ X where v = w − x0. So setting v = w − x0 we get

L∗
Λ,
(q, y) = sup

{〈v,Λy + q〉 + 〈
b1(w), b1(y)

〉 − 〈
b2(w), b2(y)

〉 + 〈y, r〉 − L(v, r)

− 

(
b1(w), b2(w)

);v ∈ X,r ∈ X∗,w ∈ S
}

= sup
v∈X

sup
r∈X∗

{〈v,Λy + q〉 + 〈y, r〉 − L(v, r)
}

+ sup
w∈S

{〈
b1(w), b1(y)

〉 + 〈
b2(w),−b2(y)

〉 − 

(
b1(w), b2(w)

)}
.

Since the range of (b1, b2) :S → H1 × H2 is dense in the H1 × H2 topology, the boundary term can be written as

sup
a∈H1

sup
b∈H2

{〈
a, b1(y)

〉 + 〈
b,−b2(y)

〉 − 
(a, b)
} = 
∗(b1(y),−b2(y)

) = 

(−b1(y),−b2(y)

)
while the main term is clearly equal to L∗(Λy + q, y) = L(−y,−Λy − q) in such a way that L∗

Λ,
(q, y) =
LΛ,
(−y,−q) if y ∈ D(Λ) ∩ D(b1, b2).

Now assume y /∈ S = D(Λ) ∩ D(b1, b2), then −y /∈ S and we may write

L∗
Λ,
(q, y) = sup

x∈S
r∈X∗

{
〈y, r − Λx〉 + 〈x, q〉 − L(x, r) − C

(‖b1(x)‖2
H1

2
+ ‖b2(x)‖2

H2

2

)}

� sup
x∈S‖x‖X<1

{
〈−y,Λx〉 + 〈x, q〉 − L(x,0) − C

(‖b1(x)‖2
H1

2
+ ‖b2(x)‖2

H2

2

)}
.

Since by assumption L(x,0) < K whenever ‖x‖X < 1, we finally obtain that

L∗
Λ,
(q, y) � sup

x∈S‖x‖X<1

{
〈−y,Λx〉 + 〈x, q〉 − K − C − C

(‖b(x)‖2
H2

2
+ ‖b2(x)‖2

H2

2

)}

= +∞ = LΛ,
(−y,−q)
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since −Cy /∈ S as soon as y /∈ S. Therefore L∗
Λ,
(q, y) = LΛ,
(−y,−q) for all (y, q) ∈ X × X∗ and LΛ,
 is an

anti-self-dual Lagrangian. �
5.2. A Lax–Milgram type result with boundary constraints

One can now deduce the following

Theorem 5.3. Let L :X × X∗ → R ∪ {+∞} be an ASD Lagrangian on a reflexive Banach space X and let

 :H1 × H2 → R be a compatible boundary Lagrangian on the product of two Hilbert spaces H1 × H2. Con-
sider Λ :D(Λ) ⊂ X → X∗ to be a skew-adjoint operator modulo a boundary operator (b1, b2) : D(b1, b2) ⊂ X →
H1 × H2. Assume the following hypothesis:

(i) For every p ∈ X∗, the function x → L(x,p) is continuous on X.
(ii) The function x → L(x,0) is bounded on a neighborhood of 0 in X.

(iii) The function p → L(0,p) is bounded on a neighborhood of 0 X∗.
(iv) For all (r, s) ∈ H1 × H2, 
(r, s) � C(1 + ‖r‖2 + ‖s‖2).

Then, there exists x̄ ∈ X such that:

L(x̄,Λx̄) + 
(b1x̄, b2x̄) = inf
x∈X

{
L(x,Λx) + 
(b1x, b2x)

} = 0. (43)

Moreover, we have⎧⎨
⎩

L(x̄,Λx̄) + 〈x̄,Λx̄〉 = 0,

(−Λx̄,−x̄) ∈ ∂L(x̄,Λx̄),


(b1(x̄), b2(x̄)) = 1
2 (‖b2x̄‖2 − ‖b1x̄‖2).

(44)

In particular, for any a ∈ H1 there exists x̄ ∈ X such that b1(x̄) = a while satisfying (44). It is obtained as a minimizer
on X of the functional

I (x) = L(x,Λx) + 1

2

∥∥b1(x)
∥∥2 − 2

〈
a, b1(x)

〉 + ‖a‖2 + 1

2

∥∥b2(x)
∥∥2

.

Proof. Conditions (i), (ii) and (iv) allow us to use Proposition 5.1 to get that the Lagrangian

M(x,p) = L(x,Λx + p) + 

(
b1(x), b2(x)

)
is anti-self-dual on X × X∗. Condition (iii) implies that p → M(0,p) is bounded above on the bounded sets of X∗,
which means that we can apply Theorem 2.1 to obtain x̄ ∈ X such that (43) is satisfied.

To establish (44), write

L(x,Λx) + 
(b1x, b2x) = L(x,Λx) + 〈x,Λx〉 − 〈x,Λx〉 + 
(b1x, b2x)

= L(x,Λx) + 〈x,Λx〉 − 1

2

(‖b2x‖2 − ‖b1x‖2) + 
(b1x, b2x).

Since L(x,p) � −〈x,p〉 and 
(r, s) � 1
2 (‖s‖2 − ‖r‖2), we immediately obtain (44).

For a ∈ H1 we consider the compatible boundary Lagrangian 
(r, s) = 1
2‖r‖2 − 2〈a, r〉 + ‖a‖2 + 1

2‖s‖2, to obtain

L(x,Λx) + 
(b1x, b2x) = L(x,Λx) + 〈x,Λx〉 − 1

2

(‖b2x‖2 − ‖b1x‖2) + 
(b1x, b2x)

= L(x,Λx) + 〈x,Λx〉 + ∥∥b1(x) − a
∥∥2

.

In other words, x̄ is a solution of infx∈X{L(x,Λx) + 〈x,Λx〉 + ‖b1(x) − a‖2} = 0, and since L(x,p) � −〈x,p〉, we
obtain:{

L(x̄,Λx̄) + 〈x̄,Λx̄〉 = 0,

b1(x̄) = a.
� (45)
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Theorem 5.4. Let ϕ :X → R ∪ {+∞} be proper convex and lower semi-continuous on a reflexive Banach space X

and let Λ1 :D(Λ1) ⊂ X → X∗ and Λ2 :D(Λ2) ⊂ X → X∗ be two linear operators such that:

(i) Λ1 is a positive operator and D(ϕ) ⊂ D(Λ1).
(ii) Λ2 is skew-adjoint operator modulo a boundary operator (b1, b2) :D(b1, b2) → H1 × H2 where H1, H2 are two

Hilbert spaces.

Suppose there exist C > 0, p1,p2 > 0 such that for every x ∈ X,

1

C

(‖x‖p1
X − 1

)
� ϕ(x) � C

(‖x‖p2
X + 1

)
. (46)

Then for any a ∈ H1 and any f ∈ X∗, the equation{
Λ1x + Λ2x ∈ −∂ϕ(x) + f,

b1(x) = a
(47)

has a solution x̄ ∈ X that is a minimizer of the functional

I (x) = ψ(x) + ψ∗(−Λa
1x − Λ2x) + 1

2

∥∥b1(x)
∥∥2 − 2

〈
a, b1(x)

〉 + ‖a‖2 + 1

2

∥∥b2(x)
∥∥2

,

where ψ(x) = ϕ(x) + 1
2 〈Λ1x, x〉 − 〈f,x〉 on D(ϕ) and +∞ elsewhere, and Λa

1 = 1
2 (Λ1 − Λ∗

1).

Proof. The Lagrangian M(x,p) :X × X∗ → R ∪ {+∞} defined by

M(x,p) = ψ(x) + ψ∗(−Λa
1x − Λ2x − p) + 1

2

∥∥b1(x)
∥∥2 − 2

〈
a, b1(x)

〉 + ‖a‖2 + 1

2

∥∥b2(x)
∥∥2

if x ∈ D(Λ) ∩ D(b1, b2)

and +∞ otherwise is anti-self-dual on X × X∗. Indeed, the ASD Lagrangian L(x,p) := ψ(x) + ψ∗(−p) and the
boundary Lagrangian 
(r, s) = 1

2‖r‖2 − 2〈a, r〉 + ‖a‖2 + 1
2‖s‖2 verify all the properties of Theorem 5.3.

Note that

I (x) = M(x,0) = ψ(x) + ψ∗(−Λa
1x − Λ2x) + 〈x,Λa

1x + Λ2x〉 + ∥∥b1(x) − a
∥∥2

.

The fact that the minimum is attained at some x̄ and is equal to 0, implies that b1(x̄) = a and that ψ(x̄)+ψ∗(−Λa
1 x̄ −

Λ2x̄) = 0 which means that

−Λa
1(x̄) − Λ2(x̄) ∈ ∂ψ(x̄) = ∂ϕ(x̄) + Λs

1(x̄) − f

and therefore x̄ satisfies (47). �
Example 6 (A variational principle for non-linear transport equations with no diffusion). Consider the equation{

a · ∇u − a0u − Bu = u|u|p−2 + f on Ω ⊂ R
n,

u = u0 on Σ+,
(48)

where p > 1, B :Lp(Ω) → Lq(Ω) is a bounded linear operator ( 1
p

+ 1
q

= 1), a is a smooth vector field defined on a
neighborhood of a C∞ bounded open set Ω in R

n, and Σ± = {x ∈ ∂Ω;±a(x) · n̂(x) � 0} are the entrance and exit
sets of the transport operator a · ∇ .

Let X = Lp(Ω) and consider the Hilbert spaces: H1 = L2(Σ+; |a · n̂|dσ),H2 = L2(Σ−; |a · n̂|dσ) as well as the
boundary operators (b1u,b2u) = (u|Σ+ , u|Σ−) whose domain is D(b1, b2) = {u ∈ Lp(Ω); (u|Σ+ , u|Σ−) ∈ H1 × H2}.

The operator Λu = a · ∇u + 1
2 div(a)u with domain D(Λ) = {u ∈ Lp(Ω); a · �∇u + 1

2 div(a)u ∈ Lq(Ω)} into
Lq(Ω) is then skew-adjoint modulo the boundary (b1, b2) on Lp(Ω). Indeed, observe that D(Λ) is a Banach space
– denoted H

1,p

0,A (Ω) under the norm ‖u‖D(Λ) = ‖u‖p + ‖a · ∇u‖q and that S := D(Λ) ∩ D(b1, b2) is also a Banach

space – denoted H
1,p

(Ω) – under the norm ‖u‖S = ‖u‖p + ‖a · ∇u‖q + ‖u|Σ+‖L2(Σ ;|a·n̂|dσ).
A +
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The space C∞( �Ω) is dense in both spaces (see [4]), as well as in X = Lp(Ω). Similarly C∞
0 (Ω) ⊂ Ker(b1, b2) ∩

D(Λ), in such a way that Ker(b1, b2) ∩ D(Λ) is dense in X. Moreover, by Green’s theorem we have∫
Ω

(a·∇u)v dx +
∫
Ω

(a · ∇v)udx +
∫
Ω

div(a)uv dx =
∫

∂Ω

uvn · a dσ

for all u,v ∈ C∞( �Ω) and the identity on S follows since C∞( �Ω) is dense in S for the norm ‖u‖S . Moreover, the
embedding of C∞

0 (Σ±) ⊂ L2(Σ±; |�a · n̂|dσ) is dense, and therefore the image of C∞( �Ω) under (b1, b2) is dense in
H1 × H2.

The following now follows immediately from Theorem 5.4

Theorem 5.5. Assume 2 � p < ∞, that a0 + 1
2 div(a) � 0 on Ω and that

∫
Ω

u(x) · Bu(x)dx � 0 for all u ∈ Lp(Ω).
For f ∈ Lq(Ω) where 1

p
+ 1

q
= 1, consider on Lp(Ω) the convex continuous functional:

ϕ(u) := 1

2

∫
Ω

(
1

2
div a + a0

)
|u|2 dx + 1

p

∫
Ω

|u|p dx +
∫
Ω

u(x) · Bu(x)dx +
∫
Ω

uf dx

and let ϕ∗ be its Legendre transform. For any u0 ∈ L2(Σ+; |a · n̂|dσ), let Ba = 1
2 (B −B∗) be the anti-symmetric part

of B , and consider the following functional on the space Lp(Ω)

I (u) = ϕ(u) + ϕ∗
(

a · ∇u + 1

2
div(a)u − Bau

)
+ 1

2

∫
Σ+

∣∣u(x)
∣∣2n(x) · a(x)dσ − 1

2

∫
Σ−

∣∣u(x)
∣∣2n(x) · a(x)dσ

− 2
∫

Σ+

u(x)u0(x)n(x) · a(x)dσ +
∫

Σ+

∣∣u0(x)
∣∣2n(x) · a(x)dσ

if u ∈ H
1,p
A (Ω) and +∞ elsewhere. Then I attains its minimum on Lp(Ω) at a point ū such that

I (ū) = inf
{
I (u) | u ∈ Lp(Ω)

} = 0,

which satisfies Eq. (48).

5.3. Self-dual coupled equations with prescribed boundaries

Assume L ∈ LAD(X) and M ∈ LAD(Y ) where X and Y are two reflexive Banach spaces and let A :D(A) ⊂
X → Y ∗ be any bounded linear operator. Let Λ1 :D(Λ1) ⊂ X → X∗ (resp., Λ2 :D(Λ2) ⊂ Y → Y ∗) be skew-adjoint
operators modulo a boundary operator (b1, b2) :X → H1 × H2 (resp., (c1, c2) :Y → K1 × K2), and let 
 (resp., m be
a self dual boundary Lagrangian on H1 × H2 (resp., K1 × K2), in such a way that the Lagrangians

LΛ1(x,p) = L(x,Λ1x + p) + 

(
b1(x), b2(x)

)
and MΛ2(y, q) = L(y,Λ2y + q) + 


(
c1(y), b2(y)

)
are ASD on X × X∗ and Y × Y ∗ respectively. Note also that the operator Ã(x, y) = (A∗y,−Ax) from D(A) ×
D(A∗) ⊂ X × Y to X∗ × Y ∗ is skew-symmetric (modulo zero-boundary operators!). It follows that the Lagrangian

LΛ1 ⊕A MΛ2

(
(x, y), (p, q)

) = L(x,A∗y + Λ1x + p) + M(y,−Ax + Λ2y + q) + 
(b1x, b2x) + m(c1y, c2y)

is also anti-self-dual. Consider the functional I (x, y) = LΛ ⊕A MΓ ((x, y), (0,0)), that is

I (x, y) := L(x,A∗y + Λ1x) + M(y,−Ax + Λ2y) + 
(b1x, b2x) + m(c1y, c2y).

Assuming the appropriate boundedness and coercivity conditions, we can deduce the existence of (x̄, ȳ) ∈ X×Y such
that

I (x̄, ȳ) = inf I (x, y) = 0. (49)

(x,y)∈X×Y



192 N. Ghoussoub / Ann. I. H. Poincaré – AN 24 (2007) 171–205
In particular, for any a ∈ H1 and b ∈ K1, there exists (x̄, ȳ) ∈ X × Y such that:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

L(x̄,A∗ȳ + Λ1x̄) + 〈x̄,A∗ȳ + Λ1x̄〉 = 0,

M(ȳ,−Ax̄ + Λ2ȳ) + 〈ȳ,−Ax̄ + Λ2ȳ〉 = 0,

(−A∗ȳ − Λ1x̄,−x̄) ∈ ∂L(x̄,A∗x̄ + Λ1x̄),

(Ax̄ − Λ2ȳ,−ȳ) ∈ ∂M(ȳ,−Ax̄ + Λ2ȳ),

b1(x̄) = a,

c1(ȳ) = b.

(50)

It is obtained as a minimizer on X × Y of the functional

I (x, y) = L(x,A∗y + Λ1x) + 1

2

∥∥b1(x)
∥∥2 − 2

〈
a, b1(x)

〉 + ‖a‖2 + 1

2

∥∥b2(x)
∥∥2

+ M(y,−Ax + Λ2y) + 1

2

∥∥c1(y)
∥∥2 − 2

〈
b, c1(y)

〉 + ‖b‖2 + 1

2

∥∥c2(y)
∥∥2

.

Note that we can rewrite

I (x, y) = L(x,A∗y + Λ1x) + 〈x,A∗y + Λ1x〉 + M(y,−Ax + Λ2y) + 〈y,−Ax + Λ2y〉
+ ∥∥b1(x) − a

∥∥2 + ∥∥c1(x) − b
∥∥2

in such a way that if I (x̄, ȳ) = 0, then the fact that the sum of each two consecutive terms constituting I above is
non-negative, prove our claim (50).

Corollary 5.6. Let Λ1 :D(Λ1) ⊂ X → X∗ (resp., Λ2 :D(Λ2) ⊂ Y → Y ∗) be skew-adjoint operators modulo a
boundary operator (b1, b2) :X → H1 × H2 (resp., (c1, c2) :Y → K1 × K2). Let ϕ1 (resp. ϕ2) be a convex lower
semi-continuous function on X (resp. on Y ) and let A :D(A) ⊂ X → Y ∗ be a linear operator. Assume that

1

C

(
1 + ‖x‖ + ‖y‖)p1 � ϕ1(x) + ϕ2(y) � C

(
1 + ‖x‖ + ‖y‖)p2 .

Then, for any (a, b) ∈ H1 × K1, any (f, g) ∈ X∗ × Y ∗ and any α ∈ R, there exists a solution (x̄, ȳ) ∈ X × Y to the
system of equations⎧⎪⎨

⎪⎩
−A∗y − Λ1x + f ∈ ∂ϕ1(x),

α2Ax − Λ2y + g ∈ ∂ϕ2(y),

b1(x̄) = a,

b2(ȳ) = b.

(51)

It is obtained as a minimizer on X × Y of the functional

I (x, y) = ψ1(x) + ψ∗
1 (−Λ1x − A∗y) + 1

2

(‖b1(x)‖2 + ‖b2(x)‖2) − 2
〈
a, b1(x)

〉 + ‖a‖2

+ ψ2(y) + ψ∗
2

(−Λ2y + α2Ax
) + 1

2

(‖c1(y)‖2 + ‖c2(y)‖2) − 2〈b, c1(y)〉 + ‖b‖2,

where ψ1(x) = ϕ1(x) − 〈f,x〉 and ϕ2(y) = ψ2(y) − 〈g, y〉.

Proof. Associate the following anti-self-dual Lagrangians on X × X∗ and Y × Y ∗ respectively,

L(x,p) = ψ1(x) + ψ∗
1 (−Λ1x − A∗y − p) + 1

2

(‖b1(x)‖2 + ‖b2(x)‖2) − 2
〈
a, b1(x)

〉 + ‖a‖2,

M(y, q) = ψ2(y) + ψ∗
2 (−Λ2y + α2Ax − q) + 1

2

(‖c1(y)‖2 + ‖c2(y)‖2) − 2
〈
b, c1(y)

〉 + ‖b‖2.

Now apply the preceding observation to these two ASD Lagrangians, to the operator Ã(x, y) = (−A∗y,α2Ax) and
to the product X × Y equipped with the scalar product 〈(x, y), (p, q)〉 = 〈x,p〉 + α−2〈y, q〉, to get the result. �
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Example 7 (A variational principle for a coupled system with prescribed boundary conditions). Let b1 : Ω → R
n and

b2 : Ω → R
n be two smooth vector fields on a neighborhood of a bounded domain Ω of R

n, verifying the conditions
in Example 6, and consider their corresponding first order linear operator B1u = b1 · ∇u and B2v = b2 · ∇v. Let

Σ1− = {
x ∈ ∂Ω;b1 · n(x) < 0

}
and Σ2− = {

x ∈ ∂Ω;b2 · n(x) < 0
}
.

For u0 ∈ L2
B1

(Σ1−) and v0 ∈ L2
B2

(Σ2−), consider the Dirichlet problem:⎧⎪⎪⎨
⎪⎪⎩

�v − b1 · ∇u − b1u = |u|p−2u + f on Ω,

−α2�u − b2 · ∇v − b2v = |v|q−2v + g on Ω,

u = u0 on Σ1−,

v = v0 on Σ2−.

(52)

We can use the above to get

Theorem 5.7. Assume b1(x) − 1
2 div b1(x) � α > 0 and b2(x) − 1

2 div b2(x) � α > 0 on Ω , 2 < p,q � 2n
n−2 . For any

f,g ∈ L2(Ω) and (u0, v0) ∈ L2
B1

(Σ1−) × L2
B2

(Σ2−), consider on Lp(Ω) × Lq(Ω) the functional

I (u, v) = Ψ (u) + Ψ ∗
(

−b1 · ∇u − 1

2
div(b1)u + �v

)

+ 1

2

∫
Σ1+

∣∣u(x)
∣∣2n(x) · b1(x)dσ − 1

2

∫
Σ1−

∣∣u(x)
∣∣2n(x) · b1(x)dσ

+ 2
∫

Σ1−

u(x)u0(x)n(x) · b1(x)dσ −
∫

Σ1−

∣∣u0(x)
∣∣2n(x) · b1(x)dσ

+ Φ(v) + Φ∗
(

−b2 · ∇v − 1

2
div(b2)v − α2�u

)

+ 1

2

∫
Σ2+

∣∣v(x)
∣∣2n(x) · b2(x)dσ − 1

2

∫
Σ2−

∣∣v(x)
∣∣2n(x) · b2(x)dσ

+ 2
∫

Σ2−

v(x)u0(x)n(x) · b2(x)dσ −
∫

Σ2−

∣∣v0(x)
∣∣2n(x) · b2(x)dσ, (53)

where

Ψ (u) = 1

p

∫
Ω

|u|p dx +
∫
Ω

f udx + 1

2

∫
Ω

(
b1 − 1

2
div(b1)

)
|u|2 dx,

Φ(v) = 1

q

∫
Ω

|v|q dx +
∫
Ω

gv dx + 1

2

∫
Ω

(
b2 − 1

2
div(b2)

)
|v|2 dx,

and Ψ ∗ and Φ∗ are their Legendre transforms. The infimum is zero and there exists a minimizer (ū, v̄) ∈ H 1
B1

(Ω) ×
H 1

B2
(Ω) that is a solution of (52).

The conditions on b1 and b2 insure that the first order linear operators B1u := b1 · ∇u + b1u (resp., B2v :=
b2 · ∇v + b2v) are positive modulo the boundary operators u → (u|

Σ1−
, u|

Σ1+
) ∈ L2

B1
(Σ1−) × L2

B1
(Σ1+) (resp., v →

(v| 2 , v| 2 ) ∈ L2
B2

(Σ2−) × L2
B2

(Σ2+)). Apply now the above with A = �.

Σ− Σ+
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6. Time dependent anti-self-dual Lagrangians

In the next two sections we develop further the variational theory for dissipative evolution equations via the theory
of ASD Lagrangians. The goal is to extend the variational theory of gradient flows [16] and [12] so as to include
evolutions of the form

−ẋ(t) ∈ ∂ϕ
(
x(t)

) + Ax(t) + ωx(t) for all t ∈ [0, T ], (54)

where A is a positive – possibly unbounded – operator on a Hilbert space H and ω is any real number. The framework
proposed above for the stationary case, leads to the formulation of (54) as

ẋ(t) ∈ ∂̄L
(
t, x(t)

)
for all t ∈ [0, T ], (55)

where the anti-self-dual Lagrangians L(t, ·, ·) on the state space are associated to the convex functional ϕ, the opera-
tor A, and the scalar ω in the following way:

L(t, x,p) = e2wt
{
ϕ
(
e−wtx

) + ϕ∗(−e−wt (Ax + p)
)}

. (56)

Consider now the path space A2
H = {u: [0, T ] → H ; u̇ ∈ L2

H } consisting of all absolutely continuous arcs

u : [0, T ] → H , equipped with the norm ‖u‖
A

2
H

= (‖u(0)‖2
H + ∫ T

0 ‖u̇‖2 dt)1/2.

The main step is based on the fact – established below – stating that under appropriate boundedness conditions,
a (time-dependent) anti-self dual Lagrangian L : [0, T ] × H × H → R on a Hilbert space H , “lifts” to a partially
anti-self-dual Lagrangian L on path space A2

H = {u : [0, T ] → H ; u̇ ∈ L2
H } via the formula

L(x,p) =
T∫

0

L
(
t, x(t) + p(t), ẋ(t)

)
dt + 


(
x(0) + a, x(T )

)
, (57)

where 
 is an appropriate time-boundary Lagrangian and where (p(t), a) ∈ L2
H ×H which happens to be a convenient

representation for the dual of A2
H . Eq. (54) can then be formulated as a stationary equation on path space of the form

0 ∈ ∂̄L(x) (58)

hence reducing the dynamic problem to the stationary case already considered above. We now formalize the following
concept.

Definition 6.1. Let L : [0, T ] × H × H → R ∪ {+∞} be measurable with respect to the σ -field generated by the
products of Lebesgue sets in [0, T ] and Borel sets in H × H . We say that L is an anti-self-dual Lagrangian (ASD) on
[0, T ] × H × H if for any t ∈ [0, T ], the map Lt : (x,p) → L(t, x,p) is in LAD(H): that is if

L∗(t,p, x) = L(t,−x,−p) for all (x,p) ∈ H × H,

where here L∗ is the Legendre transform in the last two variables.

The most basic time-dependent ASD Lagrangians are again of the form L(t, x,p) = ϕ(t, x) + ϕ∗(t,−p) where
for each t , the function x → ϕ(t, x) is convex and lower semi-continuous. We now show how this property naturally
“lifts” to path space.

6.1. ASD Lagrangians on path spaces

Proposition 6.1. Suppose that L is an anti-self-dual Lagrangian on [0, T ] × H × H , then for each ω ∈ R, the La-
grangian M(u,p) := ∫ T

0 e2wtL(t, e−wtu(t), e−wtp(t))dt is anti-self-dual on L2
H .

Proof. This follows from the following standard fact: for any Lagrangian L(t, x,p), we have:

T∫
0

L∗(t, p(t), s(t)
)

dt = sup

{ T∫
0

(〈
p(t), u(t)

〉 + 〈
s(t), v(t)

〉 − L
(
t, u(t), v(t)

))
dt; (u, v) ∈ L2

H × L2
H

}
. �



N. Ghoussoub / Ann. I. H. Poincaré – AN 24 (2007) 171–205 195
6.1.1. A representation of the space A2
H

One way to represent the space A2
H is to identify it with the product space H × L2

H , in such a way that its dual
(A2

H )∗ can also be identified with H × L2
H via the formula:

〈
u, (p1,p0)

〉
A2

H
,H×L2

H

= 〈
u(0),p1

〉
H

+
T∫

0

〈
u̇(t),p0(t)

〉
dt,

where u ∈ A2
H and (p1,p0) ∈ H × L2

H .

Proposition 6.2. Suppose L is an anti-self-dual Lagrangian on [0, T ] × H × H and that 
 is a compatible boundary
Lagrangian on H × H , then the Lagrangian defined on A2

H × (A2
H )∗ = A2

H × (H × L2
H ) by

N(u,p) =
T∫

0

L
(
t, u(t) + p0(t), u̇(t)

)
dt + 


(
u(0) + p1, u(T )

)

is anti-self-dual on A2
H × (L2

H × {0}).

Proof. For (v, q) ∈ A2
H × (A2

H )∗ with q represented by (q0(t),0) write:

N∗(q, v) = sup
p1∈H

sup
p0∈L2

H

sup
u∈A2

H

{〈
p1, v(0)

〉 +
T∫

0

[〈
p0(t), v̇(t)

〉 + 〈
q0(t), u̇(t)

〉 − L
(
t, u(t) + p0(t), u̇(t)

)]
dt

− 

(
u(0) + p1, u(T )

)}
.

Making a substitution u(0) + p1 = a ∈ H and u(t) + p0(t) = y(t) ∈ L2
H , we obtain

N∗(q, v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{〈
a − u(0), v(0)

〉 − 

(
a,u(T )

)

+
T∫

0

[〈
y(t) − u(t), v̇(t)

〉 + 〈
q0(t), u̇(t)

〉 − L
(
t, y(t), u̇(t)

)]}
dt.

Since u̇ and v̇ ∈ L2
H , we have

∫ T

0 〈u, v̇〉 = − ∫ T

0 〈u̇, v〉 + 〈v(T ),u(T )〉 − 〈v(0), u(0)〉, which implies

N∗(q, v) = sup
a∈H

sup
y∈L2

H

sup
u∈A2

H

{〈
a, v(0)

〉 − 〈
v(T ),u(T )

〉 − 

(
a,u(T )

)

+
T∫

0

[〈
y(t), v̇(t)

〉 + 〈
v(t) + q0(t), u̇(t)

〉 − L
(
t, y(t), u̇(t)

)]
dt

}
.

Identify now A2
H with H × L2

H via the correspondence:

(b, r) ∈ H × L2
H �→ b +

T∫
t

r(s)ds ∈ A2
H ,

u ∈ A2
H �→ (

u(T ),−u̇(t)
) ∈ H × L2

H .

We finally obtain
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N∗(q, v) = sup
a∈H

sup
b∈H

{〈
a, v(0)

〉 − 〈
v(T ), b

〉 − 
(a, b)

+ sup
y∈L2

H

sup
r∈L2

H

T∫
0

[〈
y(t), v̇(t)

〉 + 〈
v(t) + q0(t), r(t)

〉 − L
(
t, y(t), r(t)

)]
dt

}

=
T∫

0

L∗(t, v̇(t), v(t) + q0(t)
)

dt + 
∗(v(0),−v(T )
)

=
T∫

0

L
(
t,−v(t) − q0(t),−v̇(t)

)
dt + 


(−v(0),−v(T )
)

= N(−v,−q). �
6.2. ASD Lagrangians in the calculus of variations

Theorem 6.2. Suppose L is an anti-self-dual Lagrangian on [0, T ]×H ×H , 
 is a compatible boundary Lagrangian
on H × H , and consider the following functional

I
,L(u) =
T∫

0

L
(
t, u(t), u̇(t)

)
dt + 


(
u(0), u(T )

)
.

Suppose there exists C > 0 such that

T∫
0

L
(
t, x(t),0

)
dt � C

(
1 + ‖x‖2

L2
H

)
for all x ∈ L2

H . (59)

Then there exists v ∈ A2
H such that (v(t), v̇(t)) ∈ Dom(L) for almost all t ∈ [0, T ] and

I
,L(v) = inf
u∈A2

H

I
,L(u) = 0.

In particular, for every v0 ∈ H the following functional

I
,L(u) =
T∫

0

L
(
t, u(t), u̇(t)

)
dt + 1

2

∥∥u(0)
∥∥2 − 2

〈
v0, u(0)

〉 + ‖v0‖2 + 1

2

∥∥u(T )
∥∥2

has minimum equal to zero on A2
H . It is attained at a unique path v which then satisfies:

v(0) = v0 and
(
v(t), v̇(t)

) ∈ Dom(L) for almost all t ∈ [0, T ], (60)

d

dt
∂pL

(
t, v(t), v̇(t)

) = ∂xL
(
t, v(t), v̇(t)

)
, (61)(−v̇(t),−v(t)

) ∈ ∂L
(
t, v(t), v̇(t)

)
, (62)

∥∥v(t)
∥∥2

H
= ‖v0‖2 − 2

t∫
0

L
(
s, v(s), v̇(s)

)
ds for every t ∈ [0, T ]. (63)

If L is autonomous and v ∈ C1([0, T ],H), then we have:∥∥v̇(t)
∥∥ �

∥∥v̇(0)
∥∥ for all t ∈ [0, T ]. (64)
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Proof. Apply Proposition 6.2 to get that

N(u,p) =
T∫

0

L
(
t, u(t) + p0(t), u̇(t)

)
dt + 


(
u(0) + p1, u(T )

)

is partially anti-self-dual on A2
H . It now suffices to apply Theorem 2.1 since in this case

N(0,p) =
T∫

0

L
(
t, p0(t),0

)
dt + 
(p1,0) � C2

(
1 + ‖p0‖2

L2
H

) + ‖p1‖2
H ,

which means that N(0,p) is bounded on the bounded sets of (A2
H )∗.

Given v0 ∈ H , use the compatible boundary Lagrangian 
(r, s) = 1
2‖r‖2 − 2〈v0, r〉 + ‖v0‖2 + 1

2‖s‖2 to get that

I
,L(u) =
T∫

0

[
L

(
t, u(t), u̇(t)

) + 〈
u(t), u̇(t)

〉]
dt + ∥∥u(0) − v0

∥∥2
.

Since L(t, x,p) � −〈x,p〉 for all (t, x,p) ∈ [0, T ] × H × H , the fact that I
,L(v) = infu∈A2
H

I
,L(u) = 0, then yields
v(0) = v0 and that

L
(
s, v(s), v̇(s)

) + 〈
v(s), v̇(s)

〉 = 0 for almost all s ∈ [0, T ]. (65)

This clearly yields (63), since then d(|v(s)|2)/ds = −2L(s, v(s), v̇(s)). To prove now (62), use (65) and the fact that
L is anti-self-dual to write:

L
(
s, v(s), v̇(s)

) + L∗(s,−v̇(s),−v(s)
) + 〈(

v(s), v̇(s)
)
,
(
v̇(s), v(s)

)〉 = 0.

Now apply Legendre–Fenchel duality in the space H × H . The uniqueness and (64) follow from the following obser-
vation.

Lemma 6.3. Suppose L(t, ·, ·) is convex on H × H for each t ∈ [0, T ], and that x(t) and v(t) are two paths in
C1([0, T ],H) satisfying x(0) = x0, v(0) = v0, −(ẋ, x) ∈ ∂L(t, x, ẋ) and −(v̇, v) ∈ ∂L(t, v, v̇). Then ‖x(t)−v(t)‖ �
‖x(0) − v(0)‖ for each t ∈ [0, T ].

Proof. Estimate α(t) = d
dt

‖x(t)−v(t)‖2

2 as follows:

α(t) = 〈
v(t) − x(t), v̇(t) − ẋ(t)

〉
= 1

2

〈
v(t) − x(t), v̇(t) − ẋ(t)

〉 + 1

2

〈
v̇(t) − ẋ(t), v(t) − x(t)

〉
= 1

2

(〈(
v(t) − x(t), v̇(t) − ẋ(t)

)
,
(
v̇(t) − ẋ(t), v(t) − x(t)

)〉
H×H

)
= 1

2

(〈(
v(t) − x(t), v̇(t) − ẋ(t)

)
,
(
∂xL

(
t, x(t), ẋ(t)

)
− ∂xL

(
t, v(t), v̇(t)

)
, ∂pL

(
t, x(t), ẋ(t)

) − ∂pL
(
t, v(t), v̇(t)

)〉)
= 1

2

(〈(
v(t), v̇(t)

) − (
x(t), ẋ(t)

)
,
(
∂xL

(
t, x(t), ẋ(t)

)
, ∂pL

(
t, x(t), ẋ(t)

))
− (

∂xL
(
t, v(t), v̇(t)

)
, ∂pL

(
t, v(t), v̇(t)

))〉)
= 1

2

(〈(
v(t), v̇(t)

) − (
x(t), ẋ(t)

)
, ∂L

(
t, x(t), ẋ(t)

) − ∂L
(
t, v(t), v̇(t)

)〉)
� 0

in view of the convexity of L. �
It then follows that ‖x(t) − v(t)‖ � ‖x(0) − v(0)‖ for all t > 0. Now if L is autonomous, v(t) and x(t) = v(t + h)

are solutions for any h > 0, so that (64) follows from the above. �
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6.2.1. ASD Lagrangians associated to gradient flows
The most basic example of a self-dual Lagrangian already provides a variational formulation and proof of existence

for gradient flows. The following extends some of the results in [16].

Corollary 6.4. Let ϕ : [0, T ] × H → R ∪ {+∞} be a measurable function with respect to the σ -field in [0, T ] × H

generated by the products of Lebesgue sets in [0, T ] and Borel sets in H . Assume that for every t ∈ [0, T ], the function
ϕ(t, ·) is convex and lower semicontinuous on H , and At is a bounded linear positive operator on H such that for
some positive functions γ,β−1 ∈ L∞[0, T ], we have

β(t)‖x‖p � ϕ(t, x) + 1

2
〈Atx, x〉 � γ (t)‖x‖q . (66)

Then, for any u0 ∈ H , the functional

I (u) = 1

2

(∣∣u(0)
∣∣2 + ∣∣u(T )

∣∣2) − 2
〈
u(0), u0

〉 + |u0|2 +
T∫

0

[
ψ

(
t, u(t)

) + ψ∗(t,−Aa
t u(t) − u̇(t)

)]
dt, (67)

where ψ is the convex functional ψ(t, x) = ϕ(t, x) + 1
2 〈Atx, x〉 has a unique minimizer v in A2

H such that:

I (v) = inf
u∈A2

H

I (u) = 0. (68)

Among the paths in A2
H , v is the unique solution to{−Atu(t) − v̇(t) ∈ ∂ϕ(t, v(t)) a.e. on [0, T ],

v(0) = u0.
(69)

Proof. This follows directly from Theorem 6.2 applied to the anti-self-dual Lagrangian L(t, x,p) = ψ(t, x) +
ψ∗(t,−Aa

t x − p). Note that the conditions in (66) yield that
∫ T

0 L(t, x(t),0)dt = ∫ T

0 ψ(t, x(t)) + ψ∗(t,Aa
t x(t))dt

is bounded on the bounded sets of L2
H . �

6.2.2. Variational resolution for parabolic-elliptic variational inequalities
Consider for each time t , a bilinear continuous functional at on a Hilbert space H × H and a convex l.s.c function

ϕ(t, ·) :H → R ∪ {+∞}. Solving the corresponding parabolic variational inequality amounts to constructing for a
given f ∈ L2([0, T ];H) and x0 ∈ H , a path x(t) ∈ A2

H ([0, T ]) such that for all z ∈ H ,〈
ẋ(t), x(t) − z)

〉 + at

(
x(t), x(t) − z

) + ϕ
(
t, x(t)

) − ϕ(t, z) �
〈
x(t) − z,f (t)

〉
(70)

for almost all t ∈ [0, T ]. This problem can be rewritten as: f (t) ∈ ẏ(t) + Aty(t) + ∂ϕ(t, y), where At is the bounded
linear operator on H defined by at (u, v) = 〈Atu, v〉. This means that the variational inequality (70) can be rewritten
and solved using the variational principle in Theorem 6.5 For example, one can then solve variationally the following
“obstacle” problem.

Corollary 6.5. Let (at )t be bilinear continuous functionals on H × H satisfying:

• For some λ > 0, at (v, v) � λ‖v‖2 on H for every t ∈ [0, T ].
• The map u → ∫ T

0 at (u(t), u(t))dt is continuous on L2
H .

If K is a convex closed subset of H , then for any f ∈ L2([0, T ];H) and any x0 ∈ K , there exists a path x ∈ A2
H ([0, T ])

such that x(0) = x0, x(t) ∈ K for almost all t ∈ [0, T ] and〈
ẋ(t), x(t) − z

〉 + at

(
x(t), x(t) − z

)
�

〈
x(t) − z,f

〉
for all z ∈ K.

The path x(t) is obtained as a minimizer of the following functional on A2
H ([0, T ]):

I (y) =
T∫ {

ϕ
(
t, y(t)

) + (
ϕ(t, ·) + ψK

)∗(−ẏ(t) − Λty(t)
)}

dt + 1

2

(∣∣y(0)
∣∣2 + ∣∣y(T )

∣∣2) − 2
〈
y(0), x0

〉 + |x0|2.

0
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Here ϕ(t, y) = 1
2at (y, y)−〈f (t), y〉 and ψK(y) = 0 on K and +∞ elsewhere, while Λt :H → H is the skew-adjoint

operator defined by 〈Λtu, v〉 = 1
2 (at (u, v) − at (v,u)).

Theorem 6.2 is not directly applicable to this situation, since the Lagrangian is not bounded, however one can
replace ψK by its λ-regularization ψλ

K , apply the above variational principle to the function ϕλ(t, ·) = ϕ(t, ·) + ψλ
K ,

then let λ → 0 to conclude.

7. Semi-groups associated to autonomous anti-self-dual Lagrangians

Under appropriate boundedness conditions, Theorem 6.2 naturally associates to any time-dependent anti-self-dual
Lagrangian L(t, ·, ·) a family of maps Tt :H → H , where Ttx0 = x(t) which is the solution at time t of the equation

ẋ(t) ∈ ∂̄L
(
t, x(t)

)
for all t ∈ [0, T ] and x(0) = x0. (71)

When the Lagrangian L(x,p) is autonomous, the situation is much nicer since first (Tt )t becomes a semi-group,
and secondly one can then associate a flow without stringent boundedness or coercivity conditions on the La-
grangian L. Indeed, we can then use a Yosida-type regularization of ASD Lagrangian reminiscent of the standard
theory for operators and for convex functions. We then obtain the following result.

Theorem 7.1. Let L be an anti-self-dual Lagrangian on a Hilbert space H that is uniformly convex in the first variable.
Assuming Dom(∂̄L) is non-empty, then there exists a semi-group of 1-Lipschitz maps (Tt )t∈R+ on Dom(∂̄L) such that
T0 = Id and for any x0 ∈ Dom(∂̄L), the path x(t) = Ttx0 satisfies the following:

ẋ(t) ∈ ∂̄L
(
t, x(t)

)
for all t ∈ [0, T ] (72)

and

∥∥x(t)
∥∥2

H
= ‖x0‖2 − 2

t∫
0

L
(
x(s), ẋ(s)

)
ds for every t ∈ [0, T ]. (73)

The path (x(t))t = (Ttx)t is obtained as a minimizer on A2
H of the functional

I (u) =
T∫

0

L
(
u(t), u̇(t)

)
dt + 1

2

∥∥u(0)
∥∥2 − 2

〈
x0, u(0)

〉 + ‖x‖2 + 1

2

∥∥u(T )
∥∥2

,

whose infimum is equal to zero.

As mentioned above, we can associate to the Lagrangian L(x,p) its λ-regularization by considering Lλ = L � Tλ

where

Tλ(x,p) = ‖x‖2

2λ2
+ λ2‖p‖2

2
.

Then Lλ satisfies the hypothesis of Theorem 6.2, and we can then find for each initial point v ∈ H , a path vλ ∈ A2
H ,

with vλ(0) = v, which verify the above properties.
The uniform convexity of L in the first variable insures that the regularization Lλ is uniformly convex in both

variables which then yield C1-solutions. The 1-Lipschitz property follows from Lemma 6.3. The rest of the argument
amounts to analyzing what happens when λ → 0. The details will be given in [17] where the semi-convex case is also
considered. The λ-regularization procedure is however made more complicated by the presence of the linear term ωx

which prevents the Lagrangian from being autonomous. This factor will however allow – among other things – to
relax the convexity assumptions on ϕ. We then obtain the following result.

Theorem 7.2. Let L be an autonomous anti-self-dual Lagrangian on a Hilbert space H × H that is uniformly convex
in the first variable. Assuming Dom(∂̄L) is non-empty, then for any ω ∈ R there exists a semi-group of maps (Tt )t∈R+
defined on Dom(∂̄L) such that:
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(1) T0x = x and ‖Ttx − Tty‖ � e−ωt‖x − y‖ for any x, y ∈ Dom(∂̄L).
(2) The semi-group is defined for any x0 ∈ Dom(∂̄L) by Ttx0 = x(t) where x(t) is the unique path that minimizes on

A2
H the functional

I (u) =
T∫

0

e2ωtL
(
u(t),ωu(t) + u̇(t)

)
dt + 1

2

∥∥u(0)
∥∥2 − 2

〈
x0, u(0)

〉 + ‖x0‖2 + 1

2

∥∥eωT u(T )
∥∥2

in such a way that I (x) = infu∈A2
H

I (u) = 0.

(3) For any x0 ∈ Dom(∂̄L) the path x(t) = Ttx0 satisfies the following:

−(
ẋ(t) + ωx(t),−x(t)

) ∈ ∂L
(
x(t), ẋ(t) + ωx(t)

)
, (74)

x(0) = x0.

Proof. We associate to L, the anti-self-dual Lagrangian

Lω(t, x,p) := (
eωt · L)

(x,p) = e2ωtL
(
e−ωtx, e−ωtp

)
.

Note that if y(t) satisfies:(−ẏ(t),−y(t)
) ∈ ∂Lω

(
t, y(t), ẏ(t)

)
(75)

then x(t) = e−ωty(t) satisfies

−(
ẋ(t) + ωx(t), x(t)

) ∈ ∂L
(
x(t), ẋ(t) + ωx(t)

)
. (76)

However, we cannot apply Theorem 7.1 directly to the Lagrangian Lω because the latter is not autonomous. However,
we shall see in [17] that the Yosida regularization argument still works in this case. �

Now we can deduce the following which was established in [16] in the case of gradient flows of convex potentials
(i.e., when A = 0 and ω = 0), and in [12] in the case of gradient flows of semi-convex functions (i.e., when A = 0 and
ω > 0).

Theorem 7.3. Let ϕ be a bounded below, proper convex lower semi-continuous functional on H and let A be a positive
bounded linear operator on H . For any ω ∈ R and x0 ∈ Dom(∂ϕ), consider the following functional on A2

H :

I (u) =
T∫

0

e2ωt
{
ψ

(
u(t)

) + ψ∗(−Aau(t) − ωu(t) − u̇(t)
)}

dt + 1

2

∥∥u(0)
∥∥2

− 2
〈
x0, u(0)

〉 + ‖x0‖2 + 1

2

∥∥eωT u(T )
∥∥2

,

where Aa is the anti-symmetric part of A, and ψ(u) = ϕ(u)+ 1
2 〈Au,u〉. The minimum of I is then zero and is attained

at a path x(t) which is a solution of{−Ax(t) − ωx(t) − ẋ(t) ∈ ∂ϕ(x(t)) a.e. t ∈ [0, T ],
x(0) = x0.

(77)

7.1. Variational resolution for nonlinear initial-value problems

Example 8 (Quasi-linear parabolic equations). Let Ω be a smooth bounded domain in R
n. For p � n−2

n+2 , the Sobolev

space W
1,p+1
0 (Ω) ⊂ H := L2(Ω), and so we define on L2(Ω) the functional

ϕ(u) =
{

1
p+1

∫
Ω

|∇u|p+1 on W
1,p+1
0 (Ω), (78)
+∞ elsewhere
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and we let ϕ∗ be its Legendre conjugate. For any ω ∈ R, any u0 ∈ W
1,p+1
0 (Ω) and any f ∈ W

−1,
p+1
p (Ω), the infimum

of the functional

I (u) = 1

p + 1

T∫
0

e2ωt

∫
Ω

(∣∣∇u(t, x)
∣∣p+1 − (p + 1)f (x)u(x, t)

)
dx dt +

T∫
0

e2ωtϕ∗
(

f − ωu(t, ·) − ∂u

∂t
(t, ·)

)
dt

− 2
∫
Ω

u(0, x)u0(x)dx +
∫
Ω

∣∣u0(x)
∣∣2 dx + 1

2

∫
Ω

(∣∣u(0, x)
∣∣2 + e2T

∣∣u(T , x)
∣∣2)dx

on the space A2
H is equal to zero and is attained uniquely at an W

1,p+1
0 (Ω)-valued path u such that

∫ T

0 ‖u̇(t)‖2
2 dt <

+∞ and which is a solution of the equation:⎧⎨
⎩

∂u
∂t

= �pu + ωu + f on Ω × [0, T ],
u(0, x) = u0 on Ω,

u(t,0) = 0 on ∂Ω.

(79)

Similarly, we can deal with the equation⎧⎨
⎩

∂u
∂t

(t, x) = �pu − Au + ωu(t, x) + f on Ω × [0, T ],
u(0, x) = u0 on Ω,

u(t,0) = 0 on ∂Ω

(80)

whenever A is a positive operator on L2(Ω).

Example 9 (Porous media equations). Let H = H−1(Ω) equipped with the norm induced by the scalar product
〈u,v〉H−1(Ω) = ∫

Ω
u(−�)−1v dx. For m � n−2

n+2 , we have Lm+1(Ω) ⊂ H−1, and so we can consider the functional

ϕ(u) =
{

1
m+1

∫
Ω

|u|m+1 on Lm+1(Ω),

+∞ elsewhere
(81)

and its conjugate

ϕ∗(v) = m

m + 1

∫
Ω

∣∣�−1v
∣∣m+1

m dx. (82)

Then, for any ω ∈ R, u0 ∈ H−1(Ω) and f ∈ L2(Ω), the infimum of the functional

I (u) = 1

m + 1

T∫
0

e2ωt

∫
Ω

(∣∣u(t, x)
∣∣m+1

dx + m

∣∣∣∣(−�)−1
(

f (x) − ωu(t, x) − ∂u

∂t
(t, x)

)∣∣∣∣
m+1
m

)
dx dt

−
T∫

0

e2ωt

∫
Ω

u(x, t)(−�)−1f (x)dx dt

+
∫
Ω

∣∣∇(−�)−1u0(x)
∣∣2

dx − 2
∫
Ω

u0(x)(−�)−1u(0, x)dx + 1

2

(∥∥u(0)
∥∥2

H−1 + e2wT
∥∥u(T )

∥∥2
H−1

)

on the space A2
H is equal to zero and is attained uniquely at an Lm+1(Ω)-valued path u such that

∫ T

0 ‖u̇(t)‖2
H dt < +∞

and which is a solution of the equation:{
∂u
∂t

(t, x) = �um + ωu(t, x) + f on Ω × [0, T ],
u(0, x) = u0 on Ω.

(83)
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7.2. Variational resolution for coupled flows and wave-type equations

Again, ASD Lagrangians are suited to treat variationally coupled evolution equations.

Proposition 7.1. Let ϕ be a proper convex lower semi-continuous function on X × Y and let A : X → Y ∗ be any
bounded linear operator. Assume B1 :X → X (resp., B2 :Y → Y ) are positive operators, then for any (x0, y0) ∈
dom(∂ϕ) and any (f, g) ∈ X∗ × Y ∗, there exists a path (x(t), y(t)) ∈ A2

X × A2
Y such that

−ẋ(t) − A∗y(t) − B1x(t) + f ∈ ∂1ϕ
(
x(t), y(t)

)
,

−ẏ(t) + Ax(t) − B2y(t) + g ∈ ∂2ϕ
(
x(t), y(t)

)
,

x(0) = x0,

y(0) = y0.

The solution is obtained as a minimizer on A2
X × A2

Y of the following functional

I (x, y) =
T∫

0

{
ψ

(
x(t), y(t)

) + ψ∗(−A∗y(t) − Ba
1 x(t) − ẋ(t),Ax(t) − Ba

2 y(t) − ẏ(t)
)}

dt

+ 1

2

∥∥x(0)
∥∥2 − 2

〈
x0, x(0)

〉 + ‖x0‖2 + 1

2

∥∥x(T )
∥∥2 + 1

2

∥∥y(0)
∥∥2 − 2

〈
y0, y(0)

〉 + ‖y0‖2 + 1

2

∥∥y(T )
∥∥2

,

whose infimum is zero. Here Ba
1 (resp., Ba

2 ) are the skew-symmetric parts of B1 and B2 and

ψ(x, y) = ϕ(x, y) + 1

2
〈B1x, x〉 − 〈f,x〉 + 1

2
〈B2y, y〉 − 〈g, x〉.

Proof. It suffices to apply Theorem 7.1 to the ASD Lagrangian

L
(
(x, y), (p, q)

) = ψ(x, y) + ψ∗(−A∗y − Ba
1 x − p,Ax − Ba

2 y − q
)
.

If (x̄(t), ȳ(t)) is where the infimum is attained, then we get

0 = I (x̄, ȳ)

=
T∫

0

{
ψ

(
x̄(t), ȳ(t)

) + ψ∗(−A∗ȳ(t) − Ba
1 x̄(t) − ˙̄x(t),Ax̄(t) − Ba

2 ȳ(t) − ˙̄y(t)
)

− 〈(
x̄(t), ȳ(t)

)
,
(−A∗ȳ(t) − Ba

1 x̄(t) − ˙̄x(t),Ax̄(t) − Ba
2 ȳ(t) − ˙̄y(t)

)〉}
dt

+ ∥∥x(0) − x0
∥∥2 + ∥∥y(0) − y0

∥∥2
.

It follows that x̄(0) = x0, ȳ(0) = 0 and the integrand is zero for almost all t which yields

−ẋ(t) − A∗y(t) − Ba
1 x(t) ∈ ∂1ψ

(
x(t), y(t)

) = ∂1ϕ
(
x(t), y(t)

) + Bs
1x(t) − f,

−ẏ(t) + Ax(t) − Ba
2 y(t) ∈ ∂2ψ

(
x(t), y(t)

) = ∂2ϕ
(
x(t), y(t)

) + Bs
2y(t) − g,

x(0) = x0,

y(0) = y0. �
Consider now two convex lower semi-continuous ϕ1 and ϕ2 on Hilbert spaces X and Y respectively, as well as

two positive operators B1 on X and B2 on Y . For any (f, g) ∈ X × Y , consider the convex functionals ψ1(x) =
1
2 〈B1x, x〉 + ϕ1(x) and ψ2(x) = 1

2 〈B2x, x〉 + ϕ2(x), and the anti-self-dual Lagrangians

L(x,p) = ψ1(x) − 〈f,x〉 + ψ∗
1

(−Ba
1 x + f − p

)
, for (x,p) ∈ X × X,

M(y,q) = ψ2(y) − 〈g, y〉 + ψ∗(−Bay + g − q
)
, for (y, q) ∈ Y × Y.
2 2
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For w,w′ ∈ R, we associate the following time-dependent ASD Lagrangian:

Lω(t, x,p) := e−2wtL
(
ewtx, ewtp

)
and Mω′(t, y, q) = e−2w′tM

(
ew′t y, ew′t q

)
.

Let A :X → Y be any bounded linear operator and consider for any c ∈ R the following twisted ASD Lagrangian on
X × Y

(Lω ⊕c2A Mω′)
(
t, (x, y), (p.q)

) := Lω(t, x,A∗y + p) + Mω′
(
t, y,−c2Ax + q

)
,

where the duality in X × Y is given by 〈(x, y), (p, q)〉 = 〈x,p〉 + c−2〈y, q〉. Applying Theorem 7.2, we obtain

Proposition 7.2. Assume 0 ∈ Dom(∂ϕ1) and 0 ∈ Dom(∂ϕ2), and consider on A2
X × A2

Y the functional:

I (u, v) =
T∫

0

e−2ωt
{
ψ1

(
eωtu(t)

) + ψ∗
1

(
eωt

(−A∗v(t) − Ba
1 u(t) − u̇(t)

))}
dt

+
T∫

0

e−2ω′t{ψ2
(
eω′t v(t)

) + ψ∗
2

(
eω′t(c2Au(t) − Ba

2 v(t) − v̇(t)
))}

dt

+ 1

2

∥∥u(0)
∥∥2 − 2

〈
x0, u(0)

〉 + ‖x0‖2 + 1

2

∥∥u(T )
∥∥2 + 1

2

∥∥v(0)
∥∥2 − 2

〈
y0, v(0)

〉 + ‖y0‖2 + 1

2

∥∥v(T )
∥∥2

.

The minimum of I is then zero and is attained at a path (x̄(t), ȳ(t)), in such a way that x(t) = eωt x̄(t) and y(t) =
eω′t ȳ(t) form a solution of the system of equations⎧⎪⎨

⎪⎩
−ẋ(t) + ωx(t) − A∗y(t) − B1x(t) + f ∈ ∂ϕ1(x(t)),

−ẏ(t) + ω′y(t) + c2Ax(t) − B2y(t) + g ∈ ∂ϕ2(y(t)),

x(0) = x0,

y(0) = y0.

(84)

Example 10 (A variational principle for coupled equations). Let b1 :Ω → R
n and b2 :Ω → R

n be two smooth
vector fields on a neighborhood of a bounded domain Ω of R

n, verifying the conditions in Example 3, and consider
the system of evolution equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− ∂u
∂t

− �(v − u) + b1 · ∇u = |u|p−2u + f on (0, T ] × Ω,

− ∂v
∂t

+ �(v + c2u) + b2 · ∇v = |v|q−2v + g on (0, T ] × Ω,

u(t, x) = v(t, x) = 0 on (0, T ] × ∂Ω,

u(0, x) = u0(x) for x ∈ Ω,

v(0, x) = v0(x) for x ∈ Ω.

(85)

We then have the following result.

Theorem 7.4. Assume div(b1) � 0 and div(b2) � 0 on Ω , 1 < p,q � n+2
n−2 and consider on A2

H 1
0 (Ω))

× A2
H 1

0 (Ω)
the

functional

I (u, v) =
T∫

0

{
Ψ

(
u(t)

) + Ψ ∗
(

b1 · ∇u(t) + 1

2
div(b1)u(t) − �v(t) − u̇(t)

)}
dt

+
T∫

0

{
Φ

(
v(t)

) + Φ∗
(

b2 · ∇v(t) + 1

2
div(b2)v(t) + c2�u(t) − v̇(t)

)}
dt

+
∫
Ω

{
1

2

(∣∣u(0, x)
∣∣2 + ∣∣u(T , x)

∣∣2) − 2u(0, x)u0(x) + ∣∣u0(x)
∣∣2

}
dx

+
∫ {

1

2

(∣∣v(0, x)
∣∣2 + ∣∣v(T , x)

∣∣2) − 2v(0, x)v0(x) + ∣∣v0(x)
∣∣2

}
dx,
Ω
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where

Ψ (u) = 1

2

∫
Ω

|∇u|2 dx + 1

p

∫
Ω

|u|p dx +
∫
Ω

f udx + 1

4

∫
Ω

div(b1)|u|2 dx,

Φ(v) = 1

2

∫
Ω

|∇v|2 dx + 1

q

∫
Ω

|v|q dx +
∫
Ω

gv dx + 1

4

∫
Ω

div(b2)|v|2 dx

and Ψ ∗ and Φ∗ are their Legendre transforms. Then there exists (ū, v̄) ∈ A2
H 1

0 (Ω))
× A2

H 1
0 (Ω)

such that:

I (ū, v̄) = inf
{
I (u, v); (u, v) ∈ A2

H 1
0 (Ω))

× A2
H 1

0 (Ω)

} = 0,

and (ū, v̄) is a solution of (85).

Example 11 (Pressureless gaz of sticky particles). Motivated by the recent work of Brenier [5] we consider equations
of the form

∂ttX = c2∂yyX − ∂t ∂aμ, ∂aX � 0, μ � 0, (86)

where here X(t) := X(t, a, y) is a function on K = [0,1] × R/Z, and μ(t, a, y) is a non-negative measure that plays
the role of a Lagrange multiplier for the constraint ∂aX � 0. Following Brenier, we reformulate the problem with the
following system:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
−Ẋ(t) − ∂U

∂y
(t) ∈ ∂ϕ1(X(t)),

−U̇(t) + ∂X
∂y

(t) = 0,

X(0) = X0,

U(0) = U0,

(87)

where ϕ1 is the convex function defined on L2(K) by

ϕ1(X) =
{0 if ∂aX � 0,

+∞ elsewhere.
(88)

We can solve this system with the above method by first setting ϕ2(U) = 0 for every U ∈ L2(K) and by considering
the Hilbert spaces X = Y = H 2

per(K) to be the subspace of A2
K consisting of functions that are periodic in y. Define

on this space the operator AX = ∂X
∂y

in such a way that A∗ = −A. We consider now the functional

I (X,U) =
T∫

0

{
ϕ1

(
X(t)

) + ϕ∗
1

(
−∂U

∂y
(t) − Ẋ(t)

)}
dt +

T∫
0

{
ϕ∗

2

(
∂X

∂y
(t) − U̇ (t)

)}
dt

+ 1

2

∥∥X(0)
∥∥2 − 2

〈
X0,X(0)

〉 + ‖X0‖2 + 1

2

∥∥X(T )
∥∥2 + 1

2

∥∥U(0)
∥∥2 − 2

〈
Y0,U(0)

〉
+ ‖Y0‖2 + 1

2

∥∥U(T )
∥∥2

.

It follows from Theorem 7.1 that if (X0,U0) are such that ∂aX0 � 0, then the minimum of I is then zero and is
attained at a path (�X(t), �U(t) which solves the above system of equations.
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