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Global existence for a nonlinear Schroedinger–Chern–Simons
system on a surface

L’existence d’une solution globale régulière pour un système
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Abstract

Global existence of regular solutions for a nonlinear Schroedinger–Chern–Simons system of equations on a two-dimensional
compact Riemannian manifold is proved.

Résumé

L’existence d’une solution globale régulière est démontrée pour un système non-linéaire d’équations de Schroedinger–Chern–
Simons sur une variété Riemannienne compacte de deux dimensions.
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1. Introduction and statement of global existence

The Ginzburg–Landau energy functional on an oriented two-dimensional compact surface Σ without boundary
with a fixed Riemannian metric g is given by the integral

∫
Σ

Vλ(A,Φ)dμg
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where dμg is the associated area form and

Vλ(A,Φ) = 1

2

[
|B|2 + gij

〈
(∇A)iΦ, (∇A)jΦ

〉 + λ

4

(|Φ|2 − 1
)2

]
. (1)

Here ∇A is an S1 connection on a complex line bundle L → Σ of which Φ is a section and the 2-form B dμg is the
curvature associated to ∇A. If ∇a is a fixed connection with curvature b dμg then there exists a real 1-form A such
that ∇A = ∇a − iA and B dμg = b dμg + dA. Various time dependent models associated to this functional have been
considered:

(i) The gradient flow, which is essentially parabolic (once gauge invariance is properly handled). This was studied
in [6].
In addition to the gradient flow there are two associated conservative dynamical models:

(ii) the Abelian Higgs model which forms (modulo gauge invariance) a hyperbolic system of semi-linear wave equa-
tions. Vortex dynamics for this model were studied in [12,13];

(iii) the Schroedinger–Chern–Simons equations (SCS) introduced in [10], to be studied here (see also [7]). These
form (modulo gauge invariance) a system of coupled nonlinear Schroedinger equations for (A,Φ) together with
a constraint.

1.1. The (SCS) system and statement of the main result

In the time-dependent case L extends to a line bundle L = R × L over R × Σ . Explicitly the dependent variables
consist of a time-dependent 1-form A = (A0,A) ≡ (A0,A1,A2) on R × Σ where A = A1 dx1 + A2 dx2 is a 1-form
on Σ , A0(t, x) ∈ R and a time dependent section Φ of L. Thus at each time t we have a section Φ(t) of L and
a connection ∇A(t) on L as well as the real valued function A0(t). The equations are

2μ(∂tA − ∇A0) + ∇B = −ε〈iΦ,∇AΦ〉,
iγ (∂t − iA0)Φ = −1

2
�AΦ − λ

4

(
1 − |Φ|2)Φ (2)

together with a third constraint equation

2μB = γ
(
1 − |Φ|2).

Here ε :T ∗Σ → T ∗Σ is the complex structure (Hodge dual operation), 〈a, b〉 denotes a real inner product on L,
〈Φ,Φ〉 = |Φ|2 and γ,μ,λ are positive constants. Note that the constraint equation is preserved by the evolution (since
∂tB = 1

2μ
〈iΦ,�AΦ〉 = γ

2μ
∂t (1 − |Φ|2)), however, it is slightly more general to consider the following additional

equation for h ∈ H 2(Σ):

h(x) = B(t, x) − γ

2μ

(
1 − |Φ|2)(t, x) = B(0, x) − γ

2μ

(
1 − |Φ|2)(0, x). (3)

From A = (A0,A) we form the operator DA by

DAΦ = (∂t − iA0)Φ dt + ∇AΦ

which is a connection on L → R × Σ and, writing Ej = ∂tAj − ∂jA0, the 2-form −iEj dt ∧ dxj − iB dμg is the
associated curvature. Thus by the first equation in (2) above

2μE + ∇B = −ε〈iΦ,∇AΦ〉.
In conformal co-ordinates g = e2ρ((dx1)2 + (dx2)2) and the area form is then dμg = e2ρdx1 ∧ dx2. For the connec-
tion ∇A defined above we let �A = e2ρ∇A ·∇A. See the first appendix for further explanation of notational conventions
and interpretation.

For the case Σ = R
2 this system was proposed by Manton [10], who derived it as the Euler–Lagrange equations

from a Lagrangian extending the Ginzburg–Landau functional by a Chern–Simons term and the Schroedinger term
〈iΦ, (∂t − iA0)Φ〉. In [2] and [3] the authors prove local existence and blow-up in H 2 (and global existence under
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conditions on the initial data in H 1) on Σ = R
2 for a closely related system having negative energy density (an “attrac-

tive” nonlinearity, corresponding to λ < 0). In this paper we study the case of a positive energy density (a “repulsive”
nonlinearity, corresponding to λ > 0) with Σ a two-dimensional surface as described above. We prove a local exis-
tence theorem for (2), (3), and then global existence for Φ in H 2. In [5] the authors show a global existence for a
related system for Σ = R

2 in which Φ solves a wave equation. A study of vortex dynamics of (2), (3) is currently
undertaken along the lines of [12,13] for the Abelian Higgs model.

Two useful ways to think of (2), (3) are:

(i) In Coulomb gauge divA = 0 it is possible to reformulate this system as a nonlocal Schroedinger equation for Φ ,
as (3) and the divergence of the first equation in (2) then determine A0 and A in terms of Φ as nonlocal functionals
(by solving elliptic equations) in x at each time t . This is the approach adopted in [2]. Here we make a different
gauge choice, the parabolic gauge A0 = divA in which A0 and A (through the same equations) are determined
by Φ nonlocally in (t, x) (by solving a heat equation).

(ii) With appropriate choice of symplectic structure the equation is a constrained Hamiltonian system with Vλ as
Hamiltonian and (3) is a constraint (i.e. its time-derivative vanishes identically as a consequence of (2)). A useful
consequence of this second formulation is the conservation of Vλ which will be used later.

In view of interpretation (i) it is to be expected that control of Φ in a sufficiently strong norm for all time ensures
the existence of a global solution and this idea is used to prove the following in the parabolic gauge (the spaces used
are explained below):

Theorem 1.1 (Global existence). Consider the Cauchy problem for (2), (3) with initial data Φ(0) ∈ H 2(Σ) and
A(0) = (A0(0),A(0)) ∈ H 3(Σ) satisfying A0(0) = 0 = divA(0). In the parabolic gauge with A0 = divA, there exists
a unique global solution (A,Φ) ∈ C([0,∞);H 1(Σ) × H 2(Σ)) ∩ C1([0,∞);L2(Σ) × L2(Σ)) such that Φ satisfies
the estimate∣∣Φ(t)

∣∣
H 2(Σ)

� c eαeβt

(4)

for some positive constants c,α,β depending only on (Σ,g), the constants γ,μ,λ and the initial data.

Brezis and Gallouet in [4] prove an analogous result for the nonlinear Schroedinger equation

i∂tu − �u + |u|2u = 0.

The crucial point there was the use of the inequality (valid, e.g., for u ∈ H 2(R2))

|u|L∞ � C
[
1 + √

ln(1 + |u|H 2)
]

(5)

with C = C(|u|H 1), in conjunction with standard L2 estimates for the differentiated equation to provide control of
the H 2 norm of the solution at each time. For this to work the cubic structure of the nonlinearity and the square root
in (5) turn out to be important. The main point of the present article is that for (2) the same balancing of nonlinear
effects occurs even in the presence of the additional nonlinearity provided by the presence of A in the equation:
the constraint equations ensure that the overall strength of these can be estimated in the same manner as the cubic
nonlinearity. This is achieved by careful use of the constraint equations to estimate the various commutator terms
which appear on differentiation of the equation, together with a covariant form of the Brezis–Gallouet inequality (5).

Before stating the inequality we discuss the spaces in which we work (more details can be found in the appendix).
The space of Hk connections is the space of operators ∇A of the form ∇A = ∇a − iA with A ∈ Hk(Ω1(Σ)), which
usually will be written Hk or Hk(Σ) suppressing Ω1. For any given measurable connection 1-form A = (A1,A2)

with measurable k-order derivatives, we define the space of Hk
A sections Φ as

Hk
A(Σ) =

{
Φ: Σ → C:

∑
|α|�k

|∇α
AΦ| ∈ L2

}

with the usual norm. For x ∈ Σ , |Φ(x)|2 = 〈Φ,Φ〉h(x) and |∇AΦ|2 = |∇AΦ|2g×h = gij 〈∇Ai
Φ,∇Aj

Φ〉h where g

is the metric on Σ and h is the inner product on L (cf. Appendix A); we suppress h in notation. Also when the
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background connection a is implied we often write only ∇ in place of ∇a and the norm |Φ|Hk rather than |Φ|Hk
a

.

Certain Sobolev imbedding theorems are valid, see Lemma 1.2 and Appendix A. If A is time dependent then H 1
A(t) is

a time-dependent norm. Supposing (as will be the case below) that A(t, ·) varies continuously with t in H 1(Σ) then
the corresponding H 1

A(t) norms for Φ ∈ H 1(Σ) are equivalent and continuously varying in t , both of which can be
seen from

|∇A(t)Φ|L2 � |∇A(τ)Φ|L2 + ∣∣(A(t) − A(τ)
)
Φ

∣∣
L2

� |∇A(τ)Φ|L2 + c
∣∣A(t) − A(τ)

∣∣
H 1 |Φ|H 1

by the Kato and Sobolev inequalities (see below).
In the remainder of this section in Lemmas 1.2, 1.3 and 1.4 we show covariant versions of known inequalities.

These are derived for a complex section Φ of a line bundle L with connection A (the time variable is fixed and A,
Φ are time-independent) and obtained in two stages from their corresponding statements on Euclidean space: once
derived for the two-dimensional Riemannian manifold Σ , the covariant version on L is then derived from that. The
first stage is easily achieved in the usual way with a partition of unity, see Appendix A.

Lemma 1.2 (Covariant version of the Sobolev and Gagliardo–Nirenberg inequalities). For (Σ,g) as above and for
(A,Φ) ∈ (H 1 × H 2

A)(Σ) then ∇AΦ ∈ L4(Σ) and

|∇AΦ|L4 � c|∇AΦ|H 1
A

(6)

and also for all 1 � p < ∞, H 2
A ↪→ W

1,p
A ↪→ L∞ continuously on Σ . Also

|∇AΦ|L4 � c|∇AΦ|1/2
L2

(|∇AΦ|1/2
L2 + |∇A∇AΦ|1/2

L2

)
(7)

where c depends only on (Σ,g).

Proof. For real valued u ∈ H 1(Σ) we have the Sobolev and Gagliardo–Nirenberg inequalities, respectively,

|u|L4 � c|u|H 1 and |u|L4 � c|u|1/2
L2 |u|1/2

H 1 . (8)

(Both of these follow the corresponding standard forms of the Sobolev and Gagliardo–Nirenberg inequalities on R
2

by a partition of unity cf. Appendix A.) We recall the Kato inequality,∣∣∇|Φ|∣∣
Lp � |∇AΦ|Lp

and let u = |∇AΦ| ∈ H 1(Σ). By (8) we have

|∇AΦ|2
L4 � c|∇AΦ|L2

(|∇AΦ|L2 + ∣∣∇|∇AΦ|∣∣
L2

)
and by the Kato inequality

� c|∇AΦ|L2

(|∇AΦ|L2 + |∇A∇AΦ|L2

)
which proves (7). The Sobolev inequality and imbeddings follow in the same way. �
Lemma 1.3 (Covariant version of the Garding inequality). For Ψ = (A,Φ) such that the norms on Σ appearing
below are finite we have

|∇A∇AΦ|L2 � |�AΦ|L2 + c|B|1/2
L∞|∇AΦ|L2 + c|Φ|1/2

L∞|∇AΦ|1/2
L2 |∇B|1/2

L2 (9)

where c is a number depending only on (Σ,g).

Proof. Recall that 〈·, ·〉 is the inner product on L. Using a local co-ordinate system {xj }2
j=1 on Σ and using the

upper/lower index notation we can define two real 1-forms by

αj ≡ 〈
(∇A)jΦ,�AΦ

〉
, βk ≡ 〈

(∇A)jΦ, (∇A)k(∇A)jΦ
〉
.

Stokes theorem implies
∫ ∇jαj dμg = ∫ ∇kβk dμg = 0 since ∂Σ = ∅; but expanding out these divergences as
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∇jαj − ∇kβk = 〈�AΦ,�AΦ〉 − 〈
(∇A)j (∇A)kΦ, (∇A)k(∇A)jΦ

〉 + gjlgkm
〈
(∇A)mΦ,

[
(∇A)j , (∇A)k

]
(∇A)lΦ

〉
+ gjlgkm

〈
(∇A)jΦ, (∇A)k

([
(∇A)m, (∇A)l

]
Φ

)〉
and integrating then implies (9) by use of (A.5) and (A.6). �
Lemma 1.4 (Covariant version of the Brezis–Gallouet inequality). If A ∈ H 1(Σ) and Φ ∈ H 2

A(Σ) then

|Φ|L∞(Σ) � c
(

1 + |Φ|H 1
A

√
ln

(
1 + |Φ|H 2

A

))
(10)

where c depends only on (Σ,g).

Proof. The form of this inequality for real u ∈ H 2(Σ) is

|u|L∞(Σ) � c
(

1 + |u|H 1(Σ)

√
ln

(
1 + |u|H 2(Σ)

))
(11)

where, throughout in this proof, c is a generic constant independent of u depending only on (Σ,g). This follows
from the inequality for u ∈ H 2 ∩ H 1(R2) in [4] using a partition of unity (see Appendix A). Now apply (11) with
u(x) = |Φ(x)|2 for x ∈ Σ ; by the Kato inequality (and using the unitarity property of A, cf. Appendix A)

|∇u|L2 � c|Φ|L∞|∇AΦ|L2

and

|∇∇u|L2 � c
(|∇AΦ|2

L4 + |Φ|L∞|∇A∇AΦ|L2

)
� c

(|∇AΦ|2
H 1

A

+ |Φ|L∞|∇A∇AΦ|L2

)
� c|Φ|2

H 2
A

using Lemma 7. Altogether with (11) this leads to the inequality

|Φ|2L∞ � c
(

1 + |Φ|L∞|Φ|H 1
A

√
ln

(
1 + |Φ|H 2

A

))
.

Take c > 1 without loss of generality, then this leads to (10). �
2. Statement of local existence

The system comprising (2), (3) is gauge invariant: for smooth real valued functions g on R×Σ the triple (A0,A,Φ)

is a smooth solution if and only if

eig · (A0,A,Φ) ≡ (
A0 + ∂tg,A + dg, eigΦ

)
(12)

is also a smooth solution. (Clearly this action can be extended to more general weak solutions.) To circumvent this
degeneracy we consider the parabolic gauge in which

divA = A0.

This choice of gauge fixes the positive direction in time, so from now on we solve for t � 0. (The choice divA = −A0
fixes the opposite direction; the existence result obtained here is then similarly valid for t � 0.)

As mentioned in Section 1, we will prove local and global existence for the augmented system of equations,
coupling the equations of (2) with a constraint equation

B − γ

2μ

(
1 − |Φ|2) = h

for general h ∈ H 2(Σ) and determined by the initial data. (The existence for the original system follows as the special
case of h = 0.) Local existence is established by the following theorem which is proved in Section 4.

Theorem 2.1 (Local existence). For initial data Φ(0) ∈ H 2(Σ), A(0) ∈ H 3(Σ) together with A0(0) = divA(0) = 0,
there is a positive time Tloc which depends continuously on the above norms of the initial data, and there is a solution
(A0,A,Φ) of (2), (3) satisfying the gauge condition A0 = divA, and of regularity
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A ∈ C
([0, Tloc],H 1(Σ)

) ∩ C1([0, Tloc],L2(Σ)
)
,

Φ ∈ C
([0, Tloc],H 2(Σ)

) ∩ C1([0, Tloc],L2(Σ)
)
.

Furthermore, the solution is unique in these spaces and satisfies the conservation laws

Vλ

(
A(t),Φ(t)

) = Vλ

(
A(0),Φ(0)

)
, (13)∣∣Φ(t)

∣∣
L2 = ∣∣Φ(0)

∣∣
L2 . (14)

Remark. The regularity of Φ implies by the constraint equation (3) that

∗dA ∈ C
([0, Tloc],H 2(Σ)

) ∩ C1([0, Tloc],L2(Σ)
)

(however, divA is only proved (Lemma 4.1) to be continuous into L2 in this gauge, thus overall A is continuous
into H 1).

3. Proof of the global existence theorem

Assuming Theorem 2.1, we have a local solution (A,Φ) of (2)–(3) defined on an interval [0, Tloc]. In this section it
is shown that this solution can be extended (in the same spaces) to a solution for infinite time. From the construction
in the proof of Theorem 2.1 (in Section 4), the time Tloc depends continuously on the norms of the initial data, and
we have A(0) ∈ H 3 and Φ(0) ∈ H 2. By standard local existence theory there is a maximal time Tmax � Tloc such that
for t ∈ [0, Tmax) a solution (A,Φ) of the system exists in the same gauge and spaces of Theorem 2.1 and for the same
initial data. The bounds in the norm defined in Theorem 2.1 are not yet proved valid up to time Tmax; however, a priori
bounds derived below from the energy and the equations do hold and will be used to show Tmax = +∞.

Denote by c a generic constant which depends on (Σ,g), the Sobolev norms of the initial data, h, the constants
γ,μ,λ, and the energy. Unless stated otherwise the norms below are taken over Σ at fixed time t and the dependence
on t is omitted where no confusion is possible.

Differentiate in time equation (2) for Φ letting V = λ
4γ

(1 − |Φ|2)(
∂t − iA0 − i

2γ
�A

)
(∂t − iA0)Φ =

[
− i

2γ
�A,∂t − iA0

]
Φ + iV (∂t − iA0)Φ + i(∂tV )Φ

= 2
i

2γ
E · ∇AΦ + i

2γ
(divE)Φ + iV (∂t − iA0)Φ + i(∂tV )Φn (15)

(with E · ∇AΦ = gijEi∇Aj
Φ) and Lemma B.5 applies to give an estimate for |(∂t − iA0)Φ(t)|L2 as in (B.11).

Algebraically from (2) this implies an estimate for |�AΦ(t)|L2 and by the Garding inequality (9) this in turn gives an
estimate for |∇A∇AΦ(t)|L2 . Altogether we have for t ∈ [0, Tmax),

|∇A∇AΦ|L2 � c

(
1 + ∣∣�A(0)Φ(0)

∣∣
L2 + ∣∣V (0)Φ(0)

∣∣
L2 + |V Φ|L2 + |B|1/2

L∞|∇AΦ|L2 + |Φ|1/2
L∞|∇AΦ|1/2

L2 |∇B|1/2
L2

+
t∫

0

{|E · ∇AΦ|L2 + |divEΦ|L2 + ∣∣(∂tV )Φ
∣∣
L2

}
ds

)
. (16)

We recall from Theorem 2.1 that the local solutions have constant energy,

Vλ

(
A(t),Φ(t)

) = Vλ

(
A(0),Φ(0)

)
.

Observing that for arbitrary ε > 0

4

λ
V �

(
1 − |Φ|2)2 �

(
1 − 1

2ε

)
+ (1 − 2ε)|Φ|4

we infer that |Φ|L∞(L4) and |∇AΦ|L∞(L2) are bounded uniformly in t and hence

sup
(|Φ|H 1

A
(t) + |Φ|Lp(t)

)
� c = c

(
p,V(0),Σ,g,λ

)
(17)
t>0
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for all 1 � p < ∞. Now observe from Eqs. (2), (3) that E,∇E,∇B are “schematically” given by E = ∇B +
〈Φ,∇AΦ〉, ∇B = 〈Φ,∇AΦ〉, ∇E = 〈Φ,∇A∇AΦ〉 + |∇AΦ|2), so that the Sobolev (6) and Holder inequalities im-
ply bounds in terms of the H 2 and L∞ norms of Φ (where any choice made is with the view that (10) will be
eventually used on |Φ|L∞ )

|V Φ|L2 � c
(|Φ|L2 + |Φ|3

L6

)
� c

(|Φ|L2 + |Φ|3
H 1

A

)
,

|B|L∞ � c1
(
1 + |Φ|2L∞

)
,

|E|L2 � c
(
1 + |Φ|L∞|∇AΦ|L2

)
,

|∇E|L2 � c
(
1 + |Φ|L∞|∇A∇AΦ|L2 + |∇AΦ|L2 |∇AΦ|H 1

A

)
.

(18)

Based on these, and using the Sobolev (6) and the interpolation (7) inequalities (where the choice between the two is
essential to avoid superlinear terms in |∇A∇AΦ|L2 which would cause the following argument to fail), we obtain

|E · ∇AΦ|L2 � c|E|L4 |∇AΦ|L4,

(by (7)) � c|E|1/2
L2 |E|1/2

H 1
A

|∇AΦ|1/2
L2 |∇AΦ|1/2

H 1
A

,

(by (18)) � c
(
1 + |Φ|1/2

L∞|∇AΦ|1/2
L2

)(
1 + |Φ|1/2

L∞|∇AΦ|1/2
L2 + |Φ|1/2

L∞|∇A∇AΦ|1/2
L2

+ |∇AΦ|1/2
L2

(|∇AΦ|1/2
L2 + |∇A∇AΦ|L2

))|∇AΦ|1/2
L2

(|∇AΦ|1/2
L2 + |∇A∇AΦ|1/2

L2

)
which by (17) can be estimated as

� c
(
1 + |Φ|L∞|∇A∇AΦ|L2

)
. (19)

(Here all norms bounded by the energy are absorbed in the constant c.) Similarly,

|divEΦ|L2 � c|∇E|L2 |Φ|L∞

� c
(
1 + |Φ|2L∞|∇A∇AΦ|L2

)
. (20)

The final term under the integral is estimated using (15)∣∣(∂tV )Φ
∣∣
L2 � c

∣∣〈Φ, (∂t − iA0)Φ
〉
Φ

∣∣
L2

� c|Φ|2L∞|�AΦ|L2

� c|Φ|2L∞|∇A∇AΦ|L2 (21)

using that Vt = 2〈Φ, i�AΦ〉. Altogether we obtain from (16)–(21)

|∇A∇AΦ|L2 � c

(
1 + |Φ|L∞ +

t∫
0

(
1 + |Φ|L∞|∇A∇AΦ|L2 + |Φ|2L∞|∇A∇AΦ|L2

)
ds

)

� c

(
1 + |Φ|L∞ +

t∫
0

(
1 + |Φ|2L∞

)|∇A∇AΦ|L2 ds

)
. (22)

To this now apply the inequality (10):

∣∣Φ(t)
∣∣
H 2

A(t)
� c

(
1 +

√
ln

(
1 + ∣∣Φ(t)

∣∣
H 2

A(t)

) +
t∫

0

(
1 + ∣∣Φ(s)

∣∣
H 2

A
+ ∣∣Φ(s)

∣∣
H 2

A

√
ln

(
1 + ∣∣Φ(s)

∣∣
H 2

A

))
ds

)
.

Now since
√

ln(1 + x)/x → 0 as x → +∞ so there exists L(c) such that for |Φ(t)|H 2
A(t)

> L(c)

√
ln

(
1 + |Φ|H 2

)
� 1 |Φ|H 2
A 2c A
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and hence there exists (another) constant c such that

∣∣Φ(t)
∣∣
H 2

A(t)
� c

(
1 +

t∫
0

(
1 + ∣∣Φ(s)

∣∣
H 2

A
+ ∣∣Φ(s)

∣∣
H 2

A

√
ln

(
1 + ∣∣Φ(s)

∣∣
H 2

A

))
ds

)
≡ G(t).

As the functions in the integrand are increasing we have

G′(t) � c
(
1 + G(t)

)(
1 + ln

(
1 + G(t)

))
or ln(1 + ln(1 + G(t))) � ct + k (for k a constant). Hence |Φ(t)|H 2

A(t)
� G(t) � k′ekect

as claimed in (4) for all time

t < Tmax which by a standard continuation argument implies that the solution (A,Φ) exists on [0,∞), and this proves
the theorem. �
4. Proof of local existence

The proof of Theorem 2.1 follows a fixed point argument for an iteration as in the procedure layed out for conserva-
tion laws in [9]. Here the proof is based on the following two Lemmas 4.1, 4.2. The first lemma shows that a uniform
time exists in which all the iterates Ψ n = (An,Φn) are bounded in terms of the initial data only in the (high) norm
Ψ n ∈ C([0, Tloc],H 1 × H 2(Σ)). The second lemma shows that the iteration (24), (25) is a contraction in the (low)
norm C([0, Tloc],L2 × H 1(Σ)), to be precise, Ψ n is proved to be Cauchy in this space.

To start, we define and solve the iteration scheme.
Smoothing of the initial data: consider a smooth sequence Ψ n

0 = (An(0),Φn(0) which approximates the initial data
Ψ (0) = (A(0),Φ(0)) in the sense that:∣∣Ψ n

0 − Ψ (0)
∣∣
H 1×H 2(Σ)

� ε02−n (23)

(implying also that Ψ n
0 are bounded, uniformly in n, in the same norm in terms of the initial data). Smoothing of the

initial data ensures that the iterates below are smooth and well-defined.
Definition of the iteration scheme: given (An−1,Φn−1), let Ψ n = (An,Φn) be the solution of the approximating

system

∂tA
n − ∇ divAn =F

(
Φn−1,∇An−1Φ

n−1) ≡Fn−1, (24)(
∂t − iAn

0 − i

2γ
�An

)
Φn = λi

4γ

(
1 − ∣∣Φn−1

∣∣2)
Φn (25)

with initial data Ψ n
0 as above and where

Fn ≡ − 1

2μ
∇

(
h + γ

2μ

(
1 − ∣∣Φn

∣∣2)) − 1

2μ
ε
〈
iΦn,∇AnΦn

〉
(26)

where as above ε is the antisymmetric 2 × 2 tensor. Differentiating (24) and (26) will allow estimation of norms of
higher order derivatives: first, taking d of (24) (letting Bn = b+∗dAn) we have ∂t ∗dAn = 1

2μ
〈iΦn−1,�An−1Φn−1〉 =

γ
2μ

∂t (1 − |Φn−1|2) and hence

Bn = γ

2μ

(
1 − ∣∣Φn−1

∣∣2) + h(x). (27)

Taking divergence of (24) we obtain an inhomogeneous heat equation

∂t divAn − �divAn = ∇ ·F(
Φn−1,∇An−1Φ

n−1) = ∇ ·Fn−1 (28)

where the right-hand side depends on (Φn−1,∇An−1Φn−1,�An−1Φn−1,Bn−1).
Finally we will use the following equations obtained by differentiation of (25). Let En = ∂tA

n − ∇An
0 and V n =

λ (1 − |Φn|2). Differentiation in time gives
4γ
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(
∂t − iAn

0 − i

2γ
�An

)(
∂t − iAn

0

)
Φn

=
[
− i

2γ
�An, ∂t − iAn

0

]
Φn + iV n−1(∂t − iAn

0

)
Φn + i

(
∂tV

n−1)Φn

= 2
i

2γ
En · ∇AnΦn + i

2γ

(
divEn

)
Φn + iV n−1(∂t − iAn

0

)
Φn + i

(
∂tV

n−1)Φn. (29)

(Here En · ∇AnΦn = gijEi∇Anj
Φn.) Similarly differentiation in x gives(

∂t − iAn
0 − i

2γ
�An

)(∇AnΦn
) = [

∂t − iAn
0,∇An

]
Φn − i

2γ
[�An,∇An]Φn + i

(∇V n−1)Φn + iV n−1∇AnΦn

=
(

−iEn + i

2γ
[�An,∇An ] + i∇V n−1

)
Φn + iV n−1∇An

(
Φn − Φn−1). (30)

The unique solution of the iteration equations: we solve (28), (24), (25) with the understanding An
0 = divAn, with

smooth initial data (23) to obtain by standard linear theory smooth solutions

Ψ n = (
An,∇AnΦn

) ∈ C∞([0,∞) × Σ
)

for n = 1,2, . . . . (31)

To see this, first solve the heat equation (28) which yields a C∞([0,∞) × Σ) solution divAn (the regularity at t = 0
follows as ∂Σ = ∅); following the o.d.e. (24) implies An is C∞ as well on [0,∞) × Σ . To solve the remaining
equation (25) we apply Theorems 4.1 and 5.1 in [8] to the operator −i�An(t) − if (t, ·) :Hs(Σ) → L2(Σ) for smooth
real f and here f = i(An

0 + λ
4γ

V n−1)Φn; then the evolution operator at each time 0 � t < ∞ preserves Hs(Σ) in

L2(Σ) for each s � 2). This implies that the solution is a smooth section Φn ∈ C∞([0,∞) × Σ) (recall that a fixed
smooth background connection is implied for all derivatives of Φ). The solution for each of these equations is unique
and the regularity of the solutions justifies the manipulations in the following lemma.

Lemma 4.1 (Uniform bounds for the iterates). There exists a time T1 > 0 and a constant M > 0, both depending only
on the initial data and the function h (and Σ,g,γ,μ,λ), such that for each n the solution of (24), (25) given in (31)
Ψ n = (An,Φn), with smooth data Ψ n

0 defined in (23), satisfies

Yn ∈ C
([0, T1]

)
with

∣∣Yn
∣∣
C([0,T1]) � M (32)

where Yn(t) is the norm,

Yn(t) ≡ sup
s∈[0,t]

(∣∣An
∣∣
L2 + ∣∣divAn

∣∣
L2 + ∣∣∗dAn

∣∣
L∞ + ∣∣Φn

∣∣
L∞ + ∣∣∇AnΦn

∣∣
L2 + ∣∣∇An∇AnΦn

∣∣
L2

)
(s).

Proof. We assume inductively that T1 exists for which (32) is valid for n = 1, . . . ,N − 1; we denote by c a generic
constant depending only on Σ,g,h, γ,μ,λ and the initial values Yn(0) for n = 0, . . . ,N − 1 in (i)–(iv) below. We
show that for any 0 � t < T1, and

YN(t) � c + tp
(
YN(t),M

)
(33)

where p is a positive coefficient polynomial which depends (first argument) on the norm YN of the N th iterate Ψ N ,
and (second argument) on the same norm of the previous 1, . . . ,N − 1 iterates, inductively assumed to be less than M

for all time 0 � t � T1; p is taken as the sum of the polynomials in (i)–(iv) below. We also assume that M is chosen
so that M > c and set T1 = M−c

2p(M,M)
. If maxt∈[0,T1] YN(t) � M then by continuity of t �→ YN(t) there is a first time

0 < tN � T1 for which YN(tN) = M and hence

sup
t�tN

YN(t) � c + tNp(M,M) � c + T1p(M,M) < M (34)

which implies that tN can be taken to be T1 otherwise we contradict the choice of M,T1. Below we also write p(M)

in place of p(M,M).
We now show Eq. (33) is valid to complete the induction argument. For the rest of this proof, all norms shown are

implied to be spatially taken over Σ pointwise in time for t for t ∈ [0, T1] unless indicated by the notation, e.g. C(L2)
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indicating the norm for C([0, t],L2(Σ)). The following estimates (35)–(37) will be used in (i)–(iv) below (and applied
with n = N ). The right-hand side of (24) is given in (26) and is seen to satisfy∣∣Fn

∣∣
L2 � c

(∣∣∇h
∣∣
L2 + ∣∣Φn

∣∣
L∞

∣∣∇AnΦn
∣∣
L2

)
(35)

and similarly in Lp . Differentiating (26) once,∣∣∇Fn
∣∣
L2 � c

(∣∣∇2h
∣∣
L2 + ∣∣〈Φn,∇An∇AnΦn

〉∣∣
L2 + ∣∣∇AnΦn

∣∣2
L4

)
� c

(∣∣∇2h
∣∣
L2 + ∣∣Φn

∣∣
L∞

∣∣∇An∇AnΦn
∣∣
L2 + ∣∣Φn

∣∣2
H 2

An

)
(36)

using the unitarity of the connection and the Sobolev inequality (6) applied to the last term. (Note here that either (6)
or (7) can be used but for the corresponding calculation in the proof of global existence the quadratic rate for the H 2

norm is not suitable and therefore (7) must be used.)
In the parabolic gauge En ≡ ∂tA

n − ∇An
0 =Fn−1 from (24). Thus by (35) we can estimate (at each t )∣∣En

∣∣
L2 �

∣∣Fn−1
∣∣
L2 � c

(|∇h|L2 + ∣∣Φn−1
∣∣
L∞

∣∣∇AnΦn−1
∣∣
L2

)
(37)

and by (36) we have a similar bound for |∇En|L2 . Also by the Sobolev inequality∣∣En
∣∣
L4 �

∣∣Fn−1
∣∣
L4 � c

(|∇h|L4 + ∣∣〈Φn−1,∇AnΦn−1〉∣∣
L4

)
(38)

� c
(|∇h|L4 + ∣∣Φn−1

∣∣
L∞

∣∣Φn−1
∣∣
H 2

An−1

)
.

In Appendix B a priori estimates are shown for the heat, ordinary differential and Schroedinger equations which are
now applied in turn to (28), (24), (25) and (29)–(30) leading to the following four estimates:

(i) Estimate for divAN,AN . Apply the a priori estimate (B.1) for the heat equation in Appendix B to (28) for
2 � p < ∞ to obtain

sup
s�t

∣∣divAN
∣∣2
L2(s) +

t∫
0

∣∣∇ divAN
∣∣2
L2(s)ds

�
∣∣divAN(0)

∣∣2
L2 + ct

(|∇h|2
L2 + ∣∣ΦN−1

∣∣2
L∞(L∞)

∣∣∇AN−1Φ
N−1

∣∣2
L∞(L2)

)
(39)

and the right-hand side is of the form (33). Moreover, divAn ∈ H 1 and by (24) and (26) and with the o.d.e. esti-
mate (B.2),

sup
τ�t

∣∣AN
∣∣
L2(τ ) � c + tp

(∣∣YN
∣∣
C([0,t]),M

)
which is of the form (33). (Alternatively, note that by (39) and (27) we deduce from Lp estimates for the div–curl
system ((A.10)) that(∣∣AN

∣∣2
L2 + ∣∣∇AN

∣∣2
L2

)
(τ ) � c + tp

(
Ψ N,M

)
(40)

with c,p,M as defined above, which is again (33).)
(ii) Estimate for ∇AN ΦN . From (25), and the Schroedinger equation estimate (B.5) in Lemma B.4 with V N−1 =

λi
4γ

(1 − |ΦN−1|2), and by (37),

sup
s�t

∣∣∇AN ΦN
∣∣2
L2(s) �

∣∣∇AN ΦN
∣∣2
L2(0) + tp(M) sup

s�t

(∣∣ΦN(s)
∣∣
L∞

∣∣∇AN ΦN(s)
∣∣
L2

)
, (41)

which is of the general form of (33). Also note that as in (B.4) the L2 norm is conserved,∣∣ΦN
∣∣
L2(t) = ∣∣ΦN

∣∣
L2(0). (42)

(iii) Estimate for (∂t − iAN
0 )ΦN . We consider (29) (for n = N )(

∂t − iAN
0 − i�AN

)((
∂t − iAN

0

)
ΦN

) = 2iEN∇AN ΦN + i divENΦN + i
(
∂tV

N−1)ΦN + iV N−1(∂t − iAN
0

)
ΦN.

To this we apply the estimate (B.11) (the last term does not contribute) to obtain,
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∣∣(∂t − iAN
0

)
ΦN |2

L2(t) �
∣∣(∂t − iAN

0

)
ΦN

∣∣2
L2(0) + c sup

[0,t]

∣∣(∂t − iAN
0

)
ΦN

∣∣
L2

t∫
0

∣∣∇AN ΦN
∣∣
L4

∣∣EN
∣∣
L4

+ ∣∣ΦN
∣∣
L∞

(∣∣∂tV
N−1

∣∣
L2 + ∣∣divEN

∣∣
L2

)
(43)

where ((∂t − iAN
0 )ΦN)(0) is determined by Ψ N

0 and (25). The integrand is estimated uniformly in time, using (38)
and either the Sobolev or the interpolation) inequalities, e.g. by (6) |∇AN ΦN |L4 � |ΦN |H 2

AN
; also, |∂tV

N−1|L2 �
c|ΦN−1|L∞|(∂t − iAN−1

0 )ΦN−1)|L2 which is bounded inductively using (25)). Without loss of generality we can
assume sup[0,t] |∂t − iAN

0 )ΦN |L2 > 1 and dividing by this quantity the right-hand side is of the form (33).
(iv) Estimate for ∇AN ∇AN ΦN , and ΦN . Estimate (43) above, by Eq. (25), provides also an estimate for

|�AN ΦN |L2(t), and together with the Garding inequality (9) implies,∣∣∇AN ∇AN ΦN
∣∣
L2(t) � 1 + ∣∣�AN ΦN

∣∣
L2(0) + ∣∣V N−1ΦN

∣∣
L2(0) + ∣∣V N−1ΦN

∣∣
L2(t)

+ c
∣∣BN

∣∣1/2
L∞

∣∣∇AN ΦN
∣∣
L2 + c

∣∣ΦN
∣∣1/2
L∞

∣∣∇AN ΦN
∣∣1/2
L2

∣∣∇BN
∣∣1/2
L2

+ c

t∫
0

(∣∣EN
∣∣
L4

∣∣∇AN ΦN
∣∣
L4 + ∣∣ΦN

∣∣
L∞

(∣∣∂tV
N−1

∣∣
L2 + ∣∣∇EN

∣∣
L2

))
ds. (44)

The idea is to estimate this as in (iii) to obtain an estimate of the general form (33) for ∇AN ∇AN ΦN . Now |∇AN ΦN |L2

has already been estimated above but it is necessary to take care of the |ΦN |1/2
L∞ on the right-hand side. To do this

recall the Sobolev inequality |ΦN |L∞ � c|ΦN |H 2
AN

, and use the square root to absorb it in the left-hand side since
√

A
√

B � εA + B/(4ε) for any ε > 0. The induction is now complete and Lemma 4.1 proved. �
We now show that the iteration scheme defines a contraction for Ψ n and derivatives in C([0, Tloc],L2(Σ)) for

some time Tloc � T1.

Lemma 4.2 (Contraction). For the solutions Ψ n = (An,Φn) in Lemma 4.1, consider the vector

Ξn = (
An,divAn,∗dAn,Φn,∇AnΦn

)
.

If ε0 in (23) is sufficiently small there exists a time 0 < Tloc � T1 and positive constants γ < 1 and δn with Σnδn < ∞
such that for n = 1,2, . . .∣∣Ξn − Ξn−1

∣∣
C([0,Tloc],L2(Σ))

� γ
∣∣Ξn−1 − Ξn−2

∣∣
C([0,Tloc],L2(Σ))

+ δn. (45)

Proof. We let T1,M be as in Lemma 4.1 and use the same convention on the generic constant c and positive coefficient
polynomial p as in the previous lemma. For 0 � t � T1 use the notation C(L2) on [0, t] × Σ to indicate the norm
uniform in time on [0, t] and L2 over Σ . (Recall that Ξn ∈ C∞([0,∞) × Σ).)

We start by estimating Fn − Fn−1 (where Fn is the right-hand side of (26)), using Kato’s inequality and the last
lemma∣∣Fn −Fn−1

∣∣2
L2(L2)

� c
(∣∣Φn

∣∣2
C(L∞)

+ ∣∣Φn−1
∣∣2
C(L∞)

)∣∣∇AnΦn − ∇AnΦn−1
∣∣2
L2(L2)

+ c
∣∣∣∣Φn − Φn−1

∣∣(∣∣∇AnΦn
∣∣ + ∣∣∇AnΦn−1

∣∣)∣∣2
L2(L2)

(applying Lemma 4.1 on the first term and Holder’s inequality on the second)

� cp(M)t
∣∣∇AnΦn − ∇AnΦn−1

∣∣2
C(L2)

+ ct
∣∣Φn − Φn−1

∣∣2
C(L4)

(∣∣∇AnΦn
∣∣2
C(L4)

+ ∣∣∇AnΦn−1
∣∣2
C(L4)

)
� cp(M)t

(∣∣∇AnΦn − ∇AnΦn−1
∣∣2
C(L2)

+ ∣∣An − An−1
∣∣2
C(L2)

)
. (46)

(To arrive at the last inequality in (46), the Sobolev and then the Kato inequalities imply that
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∣∣Φn − Φn−1
∣∣
C(L4)

� c
(∣∣∇∣∣Φn − Φn−1

∣∣∣∣
C(L2)

+ ∣∣Φn − Φn−1
∣∣
C(L2)

)
� c

(∣∣∇AnΦn − ∇AnΦn−1
∣∣
C(L2)

+ ∣∣Φn−1
∣∣
C(L∞)

∣∣An − An−1
∣∣
C(L2)

+ ∣∣Φn − Φn−1
∣∣
C(L2)

)
.

Altogether by Lemma 4.1∣∣Φn − Φn−1
∣∣
C(L4)

� cp(M)
(∣∣∇AnΦn − ∇AnΦn−1

∣∣
C(L2)

+ ∣∣An − An−1
∣∣
C(L2)

+ ∣∣Φn − Φn−1
∣∣
C(L2)

)
.

Similarly, note that by the Sobolev inequality |∇AnΦn|C(L4) � c|∇AnΦn|C(H 1
An ) and again Lemma 4.1 applies to

give (46).)
We use similar estimates to prove the contraction of the remaining terms. Subtract (28) at the nth and (n − 1)st

iterates

(∂t − �)
(
divAn − divAn−1) = ∇ · (F(

Φn−1,∇An−1Φ
n−1) −F

(
Φn−2,∇An−2Φ

n−2))
≡ ∇ · (Fn−1 −Fn−2)

and by (46) and (B.1),

∣∣divAn − divAn−1
∣∣2
C(L2)

+
t∫

0

∣∣∇ div
(
An − An−1)∣∣2

L2(s)ds

�
∣∣divAn − divAn−1

∣∣2
L2(0) + cp(M)t

(∣∣∇AnΦn−1 − ∇AnΦn−2
∣∣2
C(L2)

+ ∣∣An−1 − An−2
∣∣2
C(L2)

)
. (47)

From this we obtain a contraction estimate for An: subtract Eqs. (24) for n,n − 1,

∂t

(
An − An−1) = ∇(

divAn − divAn−1) +Fn−1 −Fn−2

≡ g1 + g2

with g1 = ∇(divAn − divAn−1) and g2 =Fn−1 −Fn−2. Use the o.d.e. estimate in Lemma B.3, followed by (47) on
the g1 term and (46) on the g2 term (on [0, t] × Σ as above), to conclude∣∣An − An−1

∣∣
L∞(L2)

�
∣∣An

0 − An−1
0

∣∣
L2 + √

t |g1|L2(L2) + t |g2|L∞(L2)

�
∣∣divAn − divAn−1

∣∣
L2(0) + ctp(M)

(∣∣∇AnΦn−1 − ∇AnΦn−2
∣∣2
C(L2)

+ ∣∣An−1 − An−1
∣∣2
C(L2)

)
� tp(M)

∣∣Ξn − Ξn−1
∣∣
C(L2)

. (48)

Next subtract (25) for n, n − 1,(
∂t − iAn

0 − i

2γ
�An

)(
Φn − Φn−1) = i

(
An

0 − An−1
0

)
Φn−1 − 1

2γ
∇ · (An − An−1)Φn−1

− 1

γ

(
An − An−1) ·

(
∇Φn−1 + i

2

(
An + An−1)Φn−1

)

+ iλ

4γ

(
Φn − Φn−1)(1 − ∣∣Φn−1

∣∣2 + ∣∣Φn−1 + Φn−2
∣∣Φn−1)

≡ gn + iV n−1(Φn − Φn−1) (49)

where V n−1 = λ
4γ

(1 −|Φn−1|2 +|Φn−1 +Φn−2|Φn−1) and gn is the sum of the remaining terms. (This separation of
terms is not essential but slightly simplifies the following estimate as the last term’s contribution vanishes. Also recall
by ∇Φn we imply the background connection which is independent of n and thus this term is bounded just as ∇AnΦn

is.) The contraction is provided by gn since clearly (recall An
0 = divAn)∣∣gn

∣∣
C(L2)

� c
∣∣Φn−1

∣∣
C(L∞)

∣∣divAn − divAn−1
∣∣
C(L2)

+ ∣∣An − An−1
∣∣

2

(∣∣∇Φn−1
∣∣

2 + ∣∣An + An−1
∣∣

2

∣∣Φn−1
∣∣ ∞

)

C(L ) C(L ) C(L ) C(L )
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so that by applying (B.11) of Lemma B.5 as before we have∣∣Φn − Φn−1
∣∣
C(L2)

�
∣∣(Φn − Φn−1)(0)

∣∣
L2 + t

∣∣gn
∣∣
C(L2)

�
∣∣(Φn − Φn−1)(0)

∣∣
L2 + tp(M)

∣∣Ξn − Ξn−1
∣∣
C(L2)

. (50)

From (27) and (50) similarly, (since ||Φn−1|2 − |Φn−2|2|C(L2) � p(M)|Φn−1 − Φn−2|C(L2))∣∣∗dAn − ∗dAn−1
∣∣
C(L2)

� cp(M)
∣∣(Φn − Φn−1)(0)

∣∣
L2 + tp(M)

∣∣Ξn − Ξn−1
∣∣
C(L2)

. (51)

Together with (47), the last estimate implies that in fact the An form a Cauchy sequence in C(H 1), not just in C(L2) as
implied by (48). This follows from solving the elliptic system of divAn and curlAn on [0, t] × Σ which is explained
in Appendix A.

Finally we show the contraction of the sequence of ∇AnΦn; differentiate (49) which implies(
∂t − iAn

0 − i

2γ
�An

)(∇An

(
Φn − Φn−1)) = [

∂t − iAn
0,∇An

](
Φn − Φn−1) − i

2γ

[
�An,∇An

](
Φn − Φn−1)

+ ∇Angn + i
(∇V n−1)(Φn − Φn−1) + iV n−1∇An

(
Φn − Φn−1)

=
(

−iEn − i

2γ

[
�An,∇An

] + i∇V n−1
)(

Φn − Φn−1) + ∇Angn

+ iV n−1∇An

(
Φn − Φn−1) (52)

where gn, V n−1 are the same as in (49). To this we apply again (B.11) (and as before, the last term does not contribute).
For the term [�An,∇An] we refer to (A.5), (A.6) in the appendix which imply,∣∣[�An,∇An

](
Φn − Φn−1)∣∣

L2 � ct
∣∣Φn − Φn−1

∣∣
C(H 1)

.

Also, ∣∣(−iEn + i∇V n−1)(Φn − Φn−1)∣∣
L∞(L2)

� c
(∣∣En

∣∣ + ∣∣∇V n−1
∣∣)

C(L4)

∣∣Φn − Φn−1
∣∣
C(L4)

� ctp(M)
∣∣∇An

(
Φn − Φn−1)∣∣

H 1
An

.

For the terms in ∇Angn it is useful (cf. (39)) to estimate as follows∣∣∇Angn
∣∣2
L2(L2)

� cp(M)
(√

t
∣∣∇ divAn − ∇ divAn−1

∣∣
L2(L2)

+ t
∣∣divAn − divAn−1

∣∣
C(L2)

+ t
∣∣An − An−1

∣∣
C(L2)

)
.

Now apply (B.11) which together with the bounds of Lemma 4.1 implies that∣∣∇An

(
Φn − Φn−1)∣∣

C(L2)
�

∣∣∇An(0)

(
Φn − Φn−1)(0)

∣∣
L2

+ t
∣∣(−iEn + i∇V n−1)(Φn − Φn−1)∣∣

C(L2)
+ √

t
∣∣∇gn

∣∣
L2(L2)

�
∣∣∇An(0)

(
Φn − Φn−1)(0)

∣∣
L2 + tp(M)

(∣∣Φn − Φn−1
∣∣2
C(L4)

+ ∣∣An − An−1
∣∣2
C(L2)

+ ∣∣divAn − divAn−1
∣∣
C(L2)

)
�

∣∣(∇AnΦn − ∇An−1Φ
n−1)(0)

∣∣
L2 + tp(M)

∣∣Ξn − Ξn−1
∣∣
C(L2)

(53)

since ∣∣∇AnΦn − ∇An−1Φ
n−1

∣∣ �
∣∣∇An

(
Φn − Φn−1)∣∣ + ∣∣An − An−1

∣∣∣∣Φn−1
∣∣.

From (48), (47), (51), (48), (50), and (53), and any positive time Tloc � min{ 1
p(M)

, T1}, take γ = Tlocp(M) < 1.
Recalling the regularity of Ξn, this completes the proof of Lemma 4.2. �

Completion of the proof of local existence: the sequence Ξn ∈ C∞([0, Tloc] × Σ)5 of Lemma 4.2 is Cauchy in
C([0, Tloc];L2(Σ))5 and so Ξn → Ξ in C([0, Tloc];L2(Σ))5 for Ξ in the same space. So far we have obtained
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(A0,A,Φ) as the unique weak solution of (2)–(3) in the parabolic gauge (taking pointwise limits of the iterated
equations using the smoothness of (An,Φn)) with the same gauge condition divA = A0.) Further, because by
Lemma 4.1 (An,Φn) are bounded in L∞((0, Tloc], (H 1 × H 2)(Σ)), thus Φ ∈ L∞((0, Tloc),H

2(Σ)). The energy
is constant and (13) holds. By the interpolation inequality (7) (Φn)n is Cauchy in C(W 1,4) and so also in C(L∞)

(since |Φn − Φm|L∞ �c|Φn − Φm|W 1,4 � c|Φn − Φm|1/2
L2 supn |Φn|1/2

H 2 ). Altogether we have Φ ∈ C(H 1) ∩ C(L∞).

To complete the proof we show the further regularity for Φ ∈ C([0, Tloc],H 2(Σ)) ∩ C1([0, Tloc),L
2(Σ)). (It

follows immediately from what is already known that continuity in time of the H 1 norm of Φ is equivalent to con-
tinuity of |∇AΦ|L2(t) and similarly for the H 2 norm). In fact it is enough to prove regularity in only one of these
spaces, because if Φ ∈ C([0, Tloc],H 2(Σ)) then by the equation for Φ in (2) it follows that Φ ∈ C1([0, Tloc],L2(Σ))

(since ∂tΦ is schematically given by A0Φ + �AΦ + V Φ and these terms are all in C(L2)). So it suffices to show
Φ ∈ C([0, Tloc],H 2). This is a consequence of the following

Claim. Φn → Φ in C([0, Tloc], H 2
weak) so that Φ ∈ C([0, Tloc], H 2

weak) and, furthermore, t �→ |Φ(t)|H 2 is continuous
on [0, Tloc].

For the first part it must be shown that for all ψ ∈ H−2(Σ), the map

t �→ 〈
ψ,Φ(t)

〉
is (uniformly) continuous on [0, Tloc]. (In this paragraph 〈 , 〉 is the pairing between Hs and H−s , with s indicated as
a suffix only when necessary for emphasis.) By density, consider a sequence (ψm)m ⊂ H−1 with ψm → ψ in H−2.
Fix any ε > 0, let M = M(ε) such that for all m � M , |ψm − ψ |H−2 � ε/3. As established in Lemma 4.2 Φn → Φ

in C(H 1), so that there is N1 = N(ε,M) such that if n � N1 then |〈ψM,Φn(t) − Φ(t)〉1| � ε/3. Thus for all n � N1∣∣〈ψ,Φn(t)
〉
2 − 〈

ψ,Φ(t)
〉
2

∣∣ �
∣∣〈(ψ − ψM

)
,Φn(t)

〉
2

∣∣ + ∣∣〈ψM,
(
Φn(t) − Φ(t)

)〉
1

∣∣ + ∣∣〈(ψ − ψM
)
,Φ(t)

〉
2

∣∣
�

∣∣ψM − ψ
∣∣
H−2

∣∣Φn
∣∣
C(H 2)

+ ε/3 + ∣∣ψM − ψ
∣∣
H−2 |Φ|L∞(H 2) � ε

by the bounds in Lemma 4.1. Thus Φn → Φ in C(H 2
weak).

For the continuity of the norm, first notice that since Φ ∈ C(H 2
weak) the equation for Φ in (2) implies ∂tΦ ∈

C(L2
weak) (as it is schematically given by terms of type C(L2) · C(L∞) + C(L2

weak) + C(L∞)), and so for any
t0 ∈ [0, Tloc),

|∂tΦ|L2(t0) � lim inf
t→t+0

|∂tΦ|L2(t)

and we must show the reverse inequality for the limit superior. This is done using the estimate (43), however, because
of the choice of parabolic gauge, right and left limits are shown separately, starting with the right limit.

Let (An
0,An,Φn) be iterates obtained for t > t0 by solving (25), (24) with initial data (An

0(t0),A
n(t0),Φ

n(t0))

posed at t = t0 and obtained as in (23) by smoothing (A0(t0),A(t0),Φ(t0)) (the unique solution just constructed
at t = t0). These iterates will converge to a solution which, by uniqueness, will coincide on [t0, t0 + Tloc] with the
solution obtained previously with data Ψ (0) specified at t = 0. We apply the Schroedinger estimate (B.10) for the
iterates (An

0,An,Φn) as in (43) on [t0, t0 + ε] × Σ . Consider first the limit n → ∞ of (43): the integrand on the right
is bounded uniformly in n by Lemma 32 so∣∣(∂t − iA0)Φ

∣∣
L2(t) � lim inf

n→∞
∣∣(∂t − iAn

0

)
Φn

∣∣
L2(t) � lim

n→∞
∣∣(∂t − iAn

0

)
Φn

∣∣
L2(t0) + c(M)ε

where M is the uniform bounds of the iterates in n given in Lemma 4.1, and where the strong convergence of the
initial data at t0 allows replacing liminf by lim on the right-hand side. Therefore,

lim sup
t→t+0

∣∣(∂t − iA0)Φ
∣∣
L2(t) �

∣∣(∂t − iA0)Φ
∣∣
L2(t0).

Therefore,

lim
t→t+

∣∣(∂t − i divA)Φ
∣∣
L2(t) = ∣∣(∂t − i divA)Φ

∣∣
L2(t0)
0
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and together with (∂t − i divA)Φ ∈ C(L2
weak) we conclude that (∂t − i divA)Φ ∈ C(L2).

By the equation for Φ in (2) this implies that �AΦ ∈ C(L2). Now recall the proof of the covariant Garding
inequality in Lemma 1.3: integrating the last inequality in the proof we obtain that |∇A∇AΦ|L2 ∈ C(L2) and because
A ∈ C(H 1) this implies again that t �→ |∇a∇aΦ|L2(t) is a continuous function of t (where a is the background
connection); recalling that Φ ∈ C(H 2

weak) implies that ∇a∇aΦ(t) is weakly convergent in L2 as t → t+0 , and as the
norms converge the (uniform) right continuity in H 2 at any t0 ∈ [0, Tloc) is shown.

Finally, we show the left continuity at t0 ∈ (0, Tloc]. Fix t0 and let Ψ̃ = (Ã0, Ã, Φ̃) be the solution with initial
data Ψ̃ (t0) = Ψ (t0) in the gauge Ã0 = −div Ã, defined for t � t0 close to t0. (Here, Ψ = (A0,A,Φ) is the solution
constructed as before with initial data specified at 0 defined for t > 0 in the gauge A0 = divA.) By the right continuity
already proved and the following claim it follows that Φ̃ is left continuous (in H 2) at t0.

Claim. Let (A0,A,Φ)(t, x) solve (2), (3) on the line bundle L with gauge condition A0 = divA for t > 0. Define for
t < 0 a section Φ̂(t, x) = Φ∗(−t, x) of the complex conjugate bundle L∗, define Â0(t, x) = A0(−t, x) and introduce
a conjugate connection Â on L∗ by the formula X · ∇

Â
Φ̂(t, x) = (X · ∇AΦ)∗(−t, x) for every vector field X on Σ .

Then (Â0, Â, Φ̂) solves the same system on the line bundle L∗ with gauge condition A0 + divA = 0 for t < 0.

The proof of this follows by direct calculation. Moreover, Ψ̂ and Ψ are related by a gauge transformation as in (12)
for which we now solve: for 0 < t < t0 we find a gauge transformation eig such that

(Ã0, Ã, Φ̃) = eig(A0,A,Φ)

locally solves (2), (3) under the gauge condition Ã0 = −div Ã, which implies that g is the solution of

∂tg + �g = −Ã0 − div Ã = −2 div Ã ≡ f (54)

where df ∈ L2(dx dt) (as ∇A ∈ L2(dx dt) and with initial condition g(t0) = 0 (so eig(t0) is the identity on Σ , i.e.
Ψ̃ (t0) = Ψ (t0)). By the time reversal argument just given Φ̃ is left continuous at t0 so that Φ = e−ig(t)Φ̃ is left
continuous at t0 provided g is sufficiently regular: but it follows from Lemma B.2 that g(t) → 0 uniformly as t → t0,
and hence e−ig(t) → 1 uniformly, as t → t0. Thus

e−ig(t)(∂t − iÃ0)Φ̃(t) −→ e−ig(t0)(∂t − iÃ0)Φ̃(t0) as t → t−0 in C
(
L2)

and thus left continuity is proved completing the proof of the regularity assertions in the local existence theorem.
The fact that the solution thus constructed obeys the conservation laws (13) and (14) is proved in the usual way by
computing the rates of change of the corresponding quantities for the iterates and taking a limit. This completes the
proof of Theorem 2.1.

Appendix A. Notation

Assume (Σ,g) is a two-dimensional, oriented, compact Riemannian manifold without boundary (∂Σ = ∅), with
metric g and let {Ui,Vi,χi} for i = 1, . . . , n be a finite, regular covering by spherical coordinate neighbourhoods i.e.
χi(Ui) = B3(0) and Vi = χ−1

i (B1(0)). Let (bi)i be a subordinate C∞ partition of unity such that bi > 0, supp bi ⊂
V1 = χ−1

i (B1(0)),
∑

i bi(x) = 1 for all x ∈ Σ and the supports of the bi form a locally finite covering of Σ . For all f

continuous on Σ∫
Σ

f dμg =
n∑

i=1

∫
Ui

bif dμg =
n∑

i=1

∫
B3(0)

(bif ) ◦ χ−1
i dμi

g

where dμi
g = √

detgi dx ∈ Ω2(B3(0)) is the local representation of the canonical volume element determined by g.
(Here gi :χi(Ui) → Mat+(2,R) that is, gi(x) varies smoothly with x ∈ B3(0) and is a symmetric, positive-definite
invertible 2×2 matrix with smoothly varying inverse (gi)−1, so both matrices are bounded on B1(0), for i = 1, . . . , n.)
The induced measure dμi

g on R
2 is equivalent to Lebesgue measure and, defining fi = f bi and f̃i = (f bi) ◦ χ−1

i , we
have the integrals
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|f |L2(Σ) �
∑

i

|fi |L2(Σ) = Σi

( ∫
B3(0)

|f̃i |2 dμ
g
i

)1/2

, (A.1)

|∇f |2
L2(Σ)

=
∫
Σ

∇αf ∇βfgαβ dμg � c

n∑
i=1

∫
B3(0)

g
αβ
i ∇αf̃i∇βf̃i

√
detgi dx, (A.2)

|∇∇f |2
L2(Σ)

=
∫
Σ

gαγ gβδ∇α∇βf ∇γ ∇δf dμg

� c

n∑
i=1

∫
B3(0)

(
gi

)αγ (
gi

)βδ∇α∇βf̃i∇γ ∇δf̃i

√
detgi dx. (A.3)

The above define norms for the spaces L2(Σ), H 1(Σ) and H 2(Σ) (e.g., |f |2
H 2 = |f |2

L2 + |∇f |2
L2 + |∇∇f |2

L2 ).
Standard density and imbedding theorems are valid, see, for example, [1,11]. To derive the version (11) of the Brezis–
Gallouet inequality used in the proof of Lemma 1.4 we start with the inequality

|u|L∞(Ω) � c
(

1 + |u|H 1(Ω)

√
ln

(
1 + |u|H 2(Ω)

))
(A.4)

valid for smooth u supported in Ω ; the constant c does not depend on Ω . (See [4] for a derivation.) Now for f ∈
C∞(Σ) use the decomposition f = ∑

i fi to infer |f |L∞(Σ) � sup |f̃i |L∞ . Now apply (A.4) to f̃i and observe that
|f̃i |Hs(B3 � c|f |Hs(Σ) by the Leibniz and chain rules applied to f̃i = (f bi) ◦ χ−1

i . This leads to

|f |L∞(Σ) � c
(

1 + |f |H 1(Σ)

√
ln

(
1 + |f |H 2(Σ)

))
and hence (11) follows for u ∈ H 2(Σ) by approximation.

We shall always consider conformal co-ordinate systems on Σ in which the metric is of the form e2ρ((dx1)2 +
(dx2)2) and the volume element is then e2ρ dx1 ∧ dx2. On functions the Hodge operator acts as ∗f = f dμg =
f e2ρ dx1 ∧dx2 and ∗2 = 1. On 1-forms ∗ is just the complex structure in conformal co-ordinates ∗(ω1 dx1 +ω2 dx2) =
εω ≡ ω1 dx2 −ω2 dx1, represented also by the anti-symmetric tensor ε

j
i with ε1

2 = +1, ε2
1 = −1, the other components

being zero. For a real 1-form A we write the co-differential d∗A = −divA with divA = ∇i (g
ij√gAj )/

√
g and

the Laplacian on real functions is �f = ∇i (g
ij√g∇j f )/

√
g = e−2ρ∇i∇if . Finally we sometimes denote the inner

product of two 1-forms with a dot i.e.

ω · α ≡ gijωiαj .

Now let L → Σ be a complex line bundle over (Σ,g) with an inner product h on the fibers; write hp for the
induced inner product on each fiber π−1(p), p ∈ Σ . Consider a local trivialisation determined by choice of a local
unitary frame over the co-ordinate neighbourhoods Ui ; a smooth section s of L then corresponds to a family of
smooth functions si :Ui → C so that on Ui ∩ Uj we have si = eiθij sj with eiθij :Ui ∩ Uj → S1 smooth. A smooth
S1 connection on L is a covariant derivative operator ∇A : s �→ ∇As mapping any smooth section s to ∇As, a smooth
section of Ω1(L) = Ω1 ⊗ L (the L-valued 1-forms, i.e. X · ∇As = (∇As)(X) is a section of L for any vector field X);
it is required that ∇A is unitary (preserves h) and satisfies the Leibniz rule. The commutator gives the curvature:[

(∇A)1, (∇A)2
]
Φ dx1 ∧ dx2 = −iBΦ dμg. (A.5)

This generalises as follows for ω ∈ Ω1(L) to[
(∇A)1, (∇A)2

]
ωk dx1 ∧ dx2 = −iBωk dμg + R

j

12kωj dx1 ∧ dx2. (A.6)

Fix a smooth connection ∇a whose associated curvature b dμg is constant (i.e. b = const.). A general connection
is of the form ∇A = ∇a − iA for a real 1-form A; the choice of ∇a thus gives an identification of Ω1(Σ) with the
space of S1 connections on L. The curvature of ∇A is seen from (A.5) to be B dμg = b dμg + dA and explicitly
B = b + (∇1A2 − ∇2A1)/e2ρ in conformal co-ordinates as above. The dot product between 1-forms on Σ extends in
an obvious way to L-valued 1-forms. The integrals in (A.1)–(A.3) extend to similar integrals on 1-forms on Σ and also
L-valued sections and 1-forms, as do the corresponding Hs

a spaces and associated Sobolev inequalities, see [11]. For
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more general nonsmooth connections A the validity of these Sobolev inequalities can often be proved as in Lemmas
1.2–1.4 using the Kato inequality. The Laplacian on sections is, similar to the real case,

�AΦ = 1√
g

(∇A)j
(
gij√g (∇A)iΦ

) = e−2ρ
(
(∇A)i(∇A)iΦ

)
. (A.7)

This can be further expanded in terms of the Laplacian of the background connection �a as

�AΦ = �aΦ + e−2ρ
(−2iAj(∇a)jΦ − i∇jAj − |A|2Φ)

. (A.8)

The system of equations

B = f, divA = g (A.9)

(where as above div :Ω1 → Ω0 is minus the adjoint of d) is a first order elliptic system which can be solved for A

subject to the condition on
∫

f dμg dictated by the degree of L. It can be rewritten

dA = (f − b)dμg, divA = g (A.10)

and solved via Hodge decomposition as long as the right-hand sides have zero integral. There is a solution unique up
to addition of harmonic 1-forms which satisfies ‖A‖W 1,p � cp(1 + ‖f ‖Lp + ‖g‖Lp) for p < ∞.

In the time dependent setting of (2), (3) we take products with R to get a line bundle R ×L → R ×Σ over R ×Σ .
On this bundle a connection is of the form DAΦ = (∂t − iA0)Φ dt + ∇AΦ and the commutator gives the associated
curvature as∑

μ<ν

[
(DA)μ, (DA)ν

]
Φ dxμ dxν = −iE0j dt ∧ dxj − iBΦ dμg. (A.11)

We consider measurable sections Φ with the norm H 1
A

|Φ|2
H 1

A

=
∫
Σ

|Φ|2 + |∇AΦ|2 dμg.

In the above integral, the inner products h and g are implied, i.e. |Φ|2 = |Φ|2h = 〈Φ,Φ〉h and |∇AΦ|2 =
|∇AΦ|2g×h = gij 〈∇Ai

Φ,∇Aj
Φ〉h and accordingly for |∇A∇AΦ|L2 . The usual Sobolev-type inequalities in the spaces

H 1
A(Σ),H 2

A(Σ) are all valid. This can be seen easily since for Φ ∈ H 1
A, then |Φ|,∇|Φ| ∈ L2 so that |Φ| ∈ H 1(Σ)

which implies |Φ| ∈ Lp(Σ) for all p < ∞. If Φ ∈ H 2
A then Φ,∇AΦ ∈ H 1

A; so |Φ|, |∇AΦ| and ∇|Φ| ∈ Lp for all
p < ∞, implying that |Φ| ∈ W 1,p(Σ) for all p < ∞ and so Φ ∈ L∞. When t is also an independent variable these
facts are valid for each t (with a time-dependent norm H 1

A(t)).

Appendix B. A priori estimates

We base the proof of local existence on the following estimates for the heat, ordinary differential and Schroedinger
equations. (Where functions appear as general, given inhomogeneities, the necessary regularity is assumed for all the
norms involved to be meaningful.) Recall the notation Ek = ∂tAk − ∂xkA0, for k = 1,2.

Lemma B.1. For a smooth solution u : [0,∞) × Σ → R of

ut − �u = ∂xkFk

for given smooth F = (F1,F2), F(t, x) ∈ R
2 it follows that

sup
[0,T ]

∫
Σ

|u|2 dx +
T∫

0

∫
Σ

|∇u|2 dx dt � c

(∣∣u(0)
∣∣2
L2 +

T∫
0

∫
Σ

|F |2 dx dt

)
. (B.1)

For the proof we multiply by u and integrate over [0, T ] × Σ . (The smoothness assumption can be generalised.)
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Lemma B.2. There is a unique solution of the heat equation ut − �u = f on [0, T ] × Σ where f ∈ C(L2), ∇f ∈
L2(L2) with initial data u(0) ≡ 0 such that u(t) → 0 as t → 0+ uniformly on Σ .

Proof. Write the integral equation u(t) = ∫ t

0 e(t−s)�f (s)ds and recall that since Σ is two-dimensional∥∥et�
∥∥

Lp→L∞ � ct−1/p

[14, Chapter 15] while Sobolev’s lemma which implies that f ∈ L2(Lp). Therefore,

∣∣u(t, x)
∣∣ � c

t∫
0

|t − s|−1/p
∣∣f (s)

∣∣
Lp ds � ct1−2/p|f |L2(Lp)

which gives the result for p > 2. �
Lemma B.3. From the ordinary differential equation ∂tA = f for f a given function, f (t, x) ∈ R, it follows for any
spatial derivative of order |s|∣∣∂s

xA(t)
∣∣
L2 − ∣∣∂s

xA(0)
∣∣
L2 � min

{
θ1(t), θ2(t)

}
(B.2)

where θ1(t) = t |∂s
xf |L∞(L2) and θ2(t) = √

t |∂s
xf |L2(L2).

The proof follows by differentiation in space and integration in time and standard Holder estimates.

Lemma B.4. Let Φ be a smooth solution of the Schroedinger equation

(∂t − iA0)Φ − i�AΦ = iV Φ (B.3)

where A0,Ai,V are given smooth functions on [0,∞) × Σ . Then∣∣Φ(t)
∣∣2
L2 = ∣∣Φ(0)

∣∣2
L2 (B.4)

and

∣∣∇AΦ(t)
∣∣2
L2 �

∣∣∇AΦ(0)
∣∣2
L2 + c

t∫
0

|Φ|L∞|∇AΦ|L2

(|∇V |L2 + |∂tA − ∇A0|L2

)
ds. (B.5)

Proof. The identity (B.4) follows as for the usual Schroedinger equation, i.e., by multiplying by Φ and integrating
over Σ . For (B.5) we have

d

dt
|∇AΦ|2

L2 = 2
〈∇AΦ, (∂t − iA0)∇AΦ

〉
L2

= 2
〈∇AΦ,∇A(∂t − iA0)Φ

〉
L2 + 2

〈∇AΦ,−i(∂tAk − ∂xkA0)Φ
〉
L2

where 〈h,g〉L2 = ∫
Σ

〈h,g〉dx. Expanding the first term on the right,

∇A(∂t − iA0)Φ = i∇A�AΦ + i(∇V )Φ + iV ∇AΦ (B.6)

so that〈∇AΦ,∇A(∂t − iA0)Φ
〉
L2 = 〈∇AΦ, i(∇V )Φ

〉
L2 (B.7)

which implies∣∣〈∇AΦ, (∂t − iA0)∇AΦ
〉
L2

∣∣ � |∇AΦ|L2 |Φ|L∞|∇V |L2 (B.8)

and, in addition,∣∣〈∇AΦ,−i(∂tAk − ∂xkA0)Φ
〉∣∣ � |Φ|L∞|∇AΦ|L2 |∂tAk − ∂kA0|L2 (B.9)

and so (B.5) follows by integration in time. �
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Lemma B.5. Solutions of the equation for u,

(∂t − iA0 − i�A)u = g + iV u (B.10)

with A0, Ai , g, V are smooth given functions on [0, T ] × Σ , satisfy the two inequalities

∣∣u(t)
∣∣2
L2 �

∣∣u(0)
∣∣2
L2 + |u|L∞

(0,t)(L
2)

t∫
0

∣∣g(s)
∣∣
L2 ds,

|u|L∞
(0,t)(L

2) �
∣∣u(0)

∣∣
L2 +

t∫
0

∣∣g(s)
∣∣
L2 ds. (B.11)

Proof. Multiply (B.10) by u (the last term in (B.10) vanishes) and integrate:

∣∣u(t)
∣∣2
L2 �

∣∣u(0)
∣∣2
L2 +

t∫
0

∣∣g(s)
∣∣
L2

∣∣u(s)
∣∣
L2

from which (B.11) follows. �
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